Science.gov

Sample records for dorsal premotor cortex

  1. Multimodal Connectivity of Motor Learning-Related Dorsal Premotor Cortex

    PubMed Central

    Hardwick, Robert M.; Lesage, Elise; Eickhoff, Claudia R; Clos, Mareike; Fox, Peter; Eickhoff, Simon B.

    2015-01-01

    The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has also been proposed as a technique that may also allow delineation of functional connectivity. Here we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting the dPMC acts as an interface between motor control and cognition. PMID:26282855

  2. Dorsal premotor cortex and conditional movement selection: A PET functional mapping study.

    PubMed

    Grafton, S T; Fagg, A H; Arbib, M A

    1998-02-01

    Positron emission tomography (PET) brain mapping was used to investigate whether or not human dorsal premotor cortex is involved in selecting motor acts based on arbitrary visual stimuli. Normal subjects performed four movement selection tasks. A manipulandum with three graspable stations was used. An imperative visual cue (LEDs illuminated in random order) indicated which station to grasp next with no instructional delay period. In a power task, a large aperture power grip was used for all trials, irrespective of the LED color. In a precision task, a pincer grasp of thumb and index finger was used. In a conditional task, the type of grasp (power or precision) was randomly determined by LED color. Comparison of the conditional selection task versus the average of the power and precision tasks revealed increased blood flow in left dorsal premotor cortex and superior parietal lobule. The average rate of producing the different grasp types and transport to the manipulandum stations was equivalent across this comparison, minimizing the contribution of movement attributes such as planning the individual movements (as distinct from planning associated with use of instructional stimuli), kinematics, or direction of target or limb movement. A comparison of all three movement tasks versus a rest task identified movement related activity involving a large area of central, precentral and postcentral cortex. In the region of the precentral sulcus movement related activity was located immediately caudal to the area activated during selection. The results establish a role for human dorsal premotor cortex and superior parietal cortex in selecting stimulus guided movements and suggest functional segregation within dorsal premotor cortex.

  3. Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques - anatomical substrate for conditional visuomotor behavior.

    PubMed

    Takahara, Daisuke; Inoue, Ken-Ichi; Hirata, Yoshihiro; Miyachi, Shigehiro; Nambu, Atsushi; Takada, Masahiko; Hoshi, Eiji

    2012-11-01

    Lines of evidence indicate that both the ventrolateral prefrontal cortex (vlPFC) (areas 45/12) and dorsal premotor cortex (PMd) (rostral F2 in area 6) are crucially involved in conditional visuomotor behavior, in which it is required to determine an action based on an associated visual object. However, virtually no direct projections appear to exist between the vlPFC and PMd. In the present study, to elucidate possible multisynaptic networks linking the vlPFC to the PMd, we performed a series of neuroanatomical tract-tracing experiments in macaque monkeys. First, we identified cortical areas that send projection fibers directly to the PMd by injecting Fast Blue into the PMd. Considerable retrograde labeling occurred in the dorsal prefrontal cortex (dPFC) (areas 46d/9/8B/8Ad), dorsomedial motor cortex (dmMC) (F7 and presupplementary motor area), rostral cingulate motor area, and ventral premotor cortex (F5 and area 44), whereas the vlPFC was virtually devoid of neuronal labeling. Second, we injected the rabies virus, a retrograde transneuronal tracer, into the PMd. At 3 days after the rabies injections, second-order neurons were labeled in the vlPFC (mainly area 45), indicating that the vlPFC disynaptically projects to the PMd. Finally, to determine areas that connect the vlPFC to the PMd indirectly, we carried out an anterograde/retrograde dual-labeling experiment in single monkeys. By examining the distribution of axon terminals labeled from the vlPFC and cell bodies labeled from the PMd, we found overlapping labels in the dPFC and dmMC. These results indicate that the vlPFC outflow is directed toward the PMd in a multisynaptic fashion through the dPFC and/or dmMC.

  4. Inhibition of the dorsal premotor cortex does not repair surround inhibition in writer's cramp patients.

    PubMed

    Veugen, Lidwien C; Hoffland, Britt S; Stegeman, Dick F; van de Warrenburg, Bart P

    2013-03-01

    Writer's cramp is a task-specific form of focal dystonia, characterized by abnormal movements and postures of the hand and arm during writing. Two consistent abnormalities in its pathophysiology are a loss of surround inhibition and overactivity of the dorsal premotor cortex (PMd). This study aimed to assess a possible link between these two phenomena by investigating whether PMd inhibition leads to an improvement of surround inhibition, in parallel with previously demonstrated writing improvement. Fifteen writer's cramp patients and ten controls performed a simple motor hand task during which surround inhibition was measured using transcranial magnetic stimulation. Motor cortical excitability was measured of the active and surround muscles at three phases of the task. Surround inhibition and writing performance were assessed before and after PMd inhibitory continuous theta burst stimulation. In contrast to healthy controls, patients did not show inhibition of the abductor digiti minimi muscle during movement initiation of the first dorsal interosseus muscle, confirming the loss of surround inhibition. PMd inhibition led to an improvement of writing speed in writer's cramp patients. However, in both groups, no changes in surround inhibition were observed. The results confirm a role for the PMd in the pathophysiology of writer's cramp. We show that PMd inhibition does not lead to restoration of the surround inhibition defect in writer's cramp, despite the improvement in writing. This questions the involvement of the PMd in the loss of surround inhibition, and perhaps also the direct link between surround inhibition and dystonia.

  5. Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex

    PubMed Central

    Dekleva, Brian M; Ramkumar, Pavan; Wanda, Paul A; Kording, Konrad P; Miller, Lee E

    2016-01-01

    Every movement we make represents one of many possible actions. In reaching tasks with multiple targets, dorsal premotor cortex (PMd) appears to represent all possible actions simultaneously. However, in many situations we are not presented with explicit choices. Instead, we must estimate the best action based on noisy information and execute it while still uncertain of our choice. Here we asked how both primary motor cortex (M1) and PMd represented reach direction during a task in which a monkey made reaches based on noisy, uncertain target information. We found that with increased uncertainty, neurons in PMd actually enhanced their representation of unlikely movements throughout both planning and execution. The magnitude of this effect was highly variable across sessions, and was correlated with a measure of the monkeys’ behavioral uncertainty. These effects were not present in M1. Our findings suggest that PMd represents and maintains a full distribution of potentially correct actions. DOI: http://dx.doi.org/10.7554/eLife.14316.001 PMID:27420609

  6. Modulation of physiological mirror activity with transcranial direct current stimulation over dorsal premotor cortex.

    PubMed

    Beaulé, Vincent; Tremblay, Sara; Lafleur, Louis-Philippe; Ferland, Marie C; Lepage, Jean-François; Théoret, Hugo

    2016-11-01

    Humans have a natural tendency towards symmetrical movements, which rely on a distributed cortical network that allows for complex unimanual movements. Studies on healthy humans using rTMS have shown that disruption of this network, and particularly the dorsal premotor cortex (dPMC), can result in increased physiological mirror movements. The aim of the present set of experiments was to further investigate the role of dPMC in restricting motor output to the contralateral hand and determine whether physiological mirror movements could be decreased in healthy individuals. Physiological mirror movements were assessed before and after transcranial direct current stimulation (tDCS) over right and left dPMC in three conditions: bilateral, unilateral left and unilateral right stimulation. Mirror EMG activity was assessed immediately before, 0, 10 and 20 min after tDCS. Results show that physiological mirroring increased significantly in the hand ipsilateral to cathodal stimulation during bilateral stimulation of the dPMC, 10 and 20 min after stimulation compared to baseline. There was no significant modulation of physiological mirroring in the hand ipsilateral to anodal stimulation in the bilateral condition or following unilateral anodal or unilateral cathodal stimulation. The present data further implicate the dPMC in the control of unimanual hand movements and show that physiological mirroring can be increased but not decreased with dPMC tDCS.

  7. Synchronization patterns suggest different functional organization in parietal reach region and dorsal premotor cortex.

    PubMed

    Chakrabarti, Shubhodeep; Martinez-Vazquez, Pablo; Gail, Alexander

    2014-12-15

    The parietal reach region (PRR) and dorsal premotor cortex (PMd) form part of the fronto-parietal reach network. While neural selectivity profiles of single-cell activity in these areas can be remarkably similar, other data suggest that both areas serve different computational functions in visually guided reaching. Here we test the hypothesis that different neural functional organizations characterized by different neural synchronization patterns might be underlying the putatively different functional roles. We use cross-correlation analysis on single-unit activity (SUA) and multiunit activity (MUA) to determine the prevalence of synchronized neural ensembles within each area. First, we reliably find synchronization in PRR but not in PMd. Second, we demonstrate that synchronization in PRR is present in different cognitive states, including "idle" states prior to task-relevant instructions and without neural tuning. Third, we show that local field potentials (LFPs) in PRR but not PMd are characterized by an increased power and spike field coherence in the beta frequency range (12-30 Hz), further indicating stronger synchrony in PRR compared with PMd. Finally, we show that neurons with similar tuning properties tend to be correlated in their random spike rate fluctuations in PRR but not in PMd. Our data support the idea that PRR and PMd, despite striking similarity in single-cell tuning properties, are characterized by unequal local functional organization, which likely reflects different network architectures to support different functional roles within the fronto-parietal reach network.

  8. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    NASA Astrophysics Data System (ADS)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  9. Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex

    PubMed Central

    Stephan, Marianne A.; Brown, Rachel; Lega, Carlotta; Penhune, Virginia

    2016-01-01

    The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools. PMID:27242414

  10. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury.

  11. The heterogeneity of the left dorsal premotor cortex evidenced by multimodal connectivity-based parcellation and functional characterization.

    PubMed

    Genon, Sarah; Reid, Andrew; Li, Hai; Fan, Lingzhong; Müller, Veronika I; Cieslik, Edna C; Hoffstaedter, Felix; Langner, Robert; Grefkes, Christian; Laird, Angela R; Fox, Peter T; Jiang, Tianzi; Amunts, Katrin; Eickhoff, Simon B

    2017-02-14

    Despite the common conception of the dorsal premotor cortex (PMd) as a single brain region, its diverse connectivity profiles and behavioral heterogeneity argue for a differentiated organization of the PMd. A previous study revealed that the right PMd is characterized by a rostro-caudal and a ventro-dorsal distinction dividing it into five subregions: rostral, central, caudal, ventral and dorsal. The present study assessed whether a similar organization is present in the left hemisphere, by capitalizing on a multimodal data-driven approach combining connectivity-based parcellation (CBP) based on meta-analytic modeling, resting-state functional connectivity, and probabilistic diffusion tractography. The resulting PMd modules were then characterized based on multimodal functional connectivity and a quantitative analysis of associated behavioral functions. Analyzing the clusters consistent across all modalities revealed an organization of the left PMd that mirrored its right counterpart to a large degree. Again, caudal, central and rostral modules reflected a cognitive-motor gradient and a premotor eye-field was found in the ventral part of the left PMd. In addition, a distinct module linked to abstract cognitive functions was observed in the rostro-ventral left PMd across all CBP modalities, implying greater differentiation of higher cognitive functions for the left than the right PMd.

  12. Testing the Role of Dorsal Premotor Cortex in Auditory-Motor Association Learning Using Transcranical Magnetic Stimulation (TMS)

    PubMed Central

    Lega, Carlotta; Stephan, Marianne A.; Zatorre, Robert J.; Penhune, Virginia

    2016-01-01

    Interactions between the auditory and the motor systems are critical in music as well as in other domains, such as speech. The premotor cortex, specifically the dorsal premotor cortex (dPMC), seems to play a key role in auditory-motor integration, and in mapping the association between a sound and the movement used to produce it. In the present studies we tested the causal role of the dPMC in learning and applying auditory-motor associations using 1 Hz repetitive Transcranical Magnetic Stimulation (rTMS). In this paradigm, non-musicians learn a set of auditory-motor associations through melody training in two contexts: first when the sound to key-press mapping was in a conventional sequential order (low to high tones mapped onto keys from left to right), and then when it was in a novel scrambled order. Participant’s ability to match the four pitches to four computer keys was tested before and after the training. In both experiments, the group that received 1 Hz rTMS over the dPMC showed no significant improvement on the pitch-matching task following training, whereas the control group (who received rTMS to visual cortex) did. Moreover, in Experiment 2 where the pitch-key mapping was novel, rTMS over the dPMC also interfered with learning. These findings suggest that rTMS over dPMC disturbs the formation of auditory-motor associations, especially when the association is novel and must be learned rather explicitly. The present results contribute to a better understanding of the role of dPMC in auditory-motor integration, suggesting a critical role of dPMC in learning the link between an action and its associated sound. PMID:27684369

  13. Contribution of writing to reading: Dissociation between cognitive and motor process in the left dorsal premotor cortex.

    PubMed

    Pattamadilok, Chotiga; Ponz, Aurélie; Planton, Samuel; Bonnard, Mireille

    2016-04-01

    Functional brain imaging studies reported activation of the left dorsal premotor cortex (PMd), that is, a main area in the writing network, in reading tasks. However, it remains unclear whether this area is causally relevant for written stimulus recognition or its activation simply results from a passive coactivation of reading and writing networks. Here, we used chronometric paired-pulse transcranial magnetic stimulation (TMS) to address this issue by disrupting the activity of the PMd, the so-called Exner's area, while participants performed a lexical decision task. Both words and pseudowords were presented in printed and handwritten characters. The latter was assumed to be closely associated with motor representations of handwriting gestures. We found that TMS over the PMd in relatively early time-windows, i.e., between 60 and 160 ms after the stimulus onset, increased reaction times to pseudoword without affecting word recognition. Interestingly, this result pattern was found for both printed and handwritten characters, that is, regardless of whether the characters evoked motor representations of writing actions. Our result showed that under some circumstances the activation of the PMd does not simply result from passive association between reading and writing networks but has a functional role in the reading process. At least, at an early stage of written stimuli recognition, this role seems to depend on a common sublexical and serial process underlying writing and pseudoword reading rather than on an implicit evocation of writing actions during reading as typically assumed.

  14. One hertz repetitive transcranial magnetic stimulation over dorsal premotor cortex enhances offline motor memory consolidation for sequence-specific implicit learning.

    PubMed

    Meehan, S K; Zabukovec, J R; Dao, E; Cheung, K L; Linsdell, M A; Boyd, L A

    2013-10-01

    Consolidation of motor memories associated with skilled practice can occur both online, concurrent with practice, and offline, after practice has ended. The current study investigated the role of dorsal premotor cortex (PMd) in early offline motor memory consolidation of implicit sequence-specific learning. Thirty-three participants were assigned to one of three groups of repetitive transcranial magnetic stimulation (rTMS) over left PMd (5 Hz, 1 Hz or control) immediately following practice of a novel continuous tracking task. There was no additional practice following rTMS. This procedure was repeated for 4 days. The continuous tracking task contained a repeated sequence that could be learned implicitly and random sequences that could not. On a separate fifth day, a retention test was performed to assess implicit sequence-specific motor learning of the task. Tracking error was decreased for the group who received 1 Hz rTMS over the PMd during the early consolidation period immediately following practice compared with control or 5 Hz rTMS. Enhanced sequence-specific learning with 1 Hz rTMS following practice was due to greater offline consolidation, not differences in online learning between the groups within practice days. A follow-up experiment revealed that stimulation of PMd following practice did not differentially change motor cortical excitability, suggesting that changes in offline consolidation can be largely attributed to stimulation-induced changes in PMd. These findings support a differential role for the PMd in support of online and offline sequence-specific learning of a visuomotor task and offer converging evidence for competing memory systems.

  15. Dorsal premotor cortex: neural correlates of reach target decisions based on a color-location matching rule and conflicting sensory evidence.

    PubMed

    Coallier, Émilie; Michelet, Thomas; Kalaska, John F

    2015-06-01

    We recorded single-neuron activity in dorsal premotor (PMd) and primary motor cortex (M1) of two monkeys in a reach-target selection task. The monkeys chose between two color-coded potential targets by determining which target's color matched the predominant color of a multicolored checkerboard-like Decision Cue (DC). Different DCs contained differing numbers of colored squares matching each target. The DCs provided evidence about the correct target ranging from unambiguous (one color only) to very ambiguous and conflicting (nearly equal number of squares of each color). Differences in choice behavior (reach response times and success rates as a function of DC ambiguity) of the monkeys suggested that each applied a different strategy for using the target-choice evidence in the DCs. Nevertheless, the appearance of the DCs evoked a transient coactivation of PMd neurons preferring both potential targets in both monkeys. Reach response time depended both on how long it took activity to increase in neurons that preferred the chosen target and on how long it took to suppress the activity of neurons that preferred the rejected target, in both correct-choice and error-choice trials. These results indicate that PMd neurons in this task are not activated exclusively by a signal proportional to the net color bias of the DCs. They are instead initially modulated by the conflicting evidence supporting both response choices; final target selection may result from a competition between representations of the alternative choices. The results also indicate a temporal overlap between action selection and action initiation processes in PMd and M1.

  16. Premotor cortex mediates perceptual performance.

    PubMed

    Callan, Daniel; Callan, Akiko; Gamez, Mario; Sato, Masa-aki; Kawato, Mitsuo

    2010-06-01

    Articulatory goals have long been proposed to mediate perception. Examples include direct realist and constructivist (analysis by synthesis) theories of speech perception. Although the activity in brain regions involved with action production has been shown to be present during action observation (Mirror Neuron System), the relationship of this activity to perceptual performance has not been clearly demonstrated at the event level. To this end we used functional magnetic resonance imaging fMRI and magnetoencephalography MEG to measure brain activity for correct and incorrect trials of an auditory phonetic identification in noise task. FMRI analysis revealed activity in the premotor cortex including the neighboring frontal opercular part of Broca's area (PMC/Broca's) for both perception and production tasks involving the same phonetic stimuli (potential mirror system site) that was significantly greater for correct over incorrect perceptual identification trials. Time-frequency analysis of single trials conducted over MEG current localized to PMC/Broca's using a hierarchical variational Bayesian source analysis technique revealed significantly greater event-related synchronization ERS and desynchronization ERD for correct over incorrect trials in the alpha, beta, and gamma frequency range prior to and after stimulus presentation. Together, these fMRI and MEG results are consistent with the hypothesis that articulatory processes serve to facilitate perceptual performance, while further dispelling concerns that activity found in ventral PMC/Broca's (mirror system) is merely a product of covert production of the perceived action. The finding of performance predictive activity prior to stimulus onset as well as activity related to task difficulty instead of information available in stimulation are consistent with constructivist and contrary to direct realist theories of perception.

  17. Writer's cramp: increased dorsal premotor activity during intended writing.

    PubMed

    Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan

    2013-03-01

    Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing.

  18. Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys.

    PubMed

    Stepniewska, Iwona; Preuss, Todd M; Kaas, Jon H

    2006-04-20

    In order to compare connections of premotor cortical areas of New World monkeys with those of Old World macaque monkeys and prosimian galagos, we placed injections of fluorescent tracers and wheat germ agglutinin-horseradish peroxidase (WGA-HRP) in dorsal (PMD) and ventral (PMV) premotor areas of owl monkeys. Motor areas and injection sites were defined by patterns of movements electrically evoked from the cortex with microelectrodes. Labeled neurons and axon terminals were located in brain sections cut either in the coronal plane or parallel to the surface of flattened cortex, and they related to architectonically and electrophysiologically defined cortical areas. Both the PMV and PMD had connections with the primary motor cortex (M1), the supplementary motor area (SMA), cingulate motor areas, somatosensory areas S2 and PV, and the posterior parietal cortex. Only the PMV had connections with somatosensory areas 3a, 1, 2, PR, and PV. The PMD received inputs from more caudal portions of the cortex of the lateral sulcus and more medial portions of the posterior parietal cortex than the PMV. The PMD and PMV were only weakly interconnected. New World owl monkeys, Old World macaque monkeys, and galagos share a number of PMV and PMD connections, suggesting preservation of a common sensorimotor network from early primates. Comparisons of PMD and PMV connectivity with the cortex of the lateral sulcus and posterior parietal cortex of owl monkeys, galagos, and macaques help identify areas that could be homologous.

  19. Robust neuronal dynamics in premotor cortex during motor planning

    PubMed Central

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-01-01

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in mouse premotor cortex to probe robustness of persistent neural representations during motor planning. Preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  20. A Mediating Role of the Premotor Cortex in Phoneme Segmentation

    ERIC Educational Resources Information Center

    Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.

    2009-01-01

    Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…

  1. Exploring the contributions of premotor and parietal cortex to spatial compatibility using image-guided TMS.

    PubMed

    Koski, Lisa; Molnar-Szakacs, Istvan; Iacoboni, Marco

    2005-01-15

    Functional brain imaging studies have demonstrated increased activity in dorsal premotor and posterior parietal cortex when performing spatial stimulus-response compatibility tasks (SRC). We tested the specific role of these regions in stimulus-response mapping using single-pulse transcranial magnetic stimulation (TMS). Subjects were scanned using functional magnetic resonance imaging (fMRI) prior to the TMS session during performance of a task in which spatial compatibility was manipulated. For each subject, the area of increased signal within the regions of interest was registered onto their own high-resolution T1-weighted anatomic scan. TMS was applied to these areas for each subject using a frameless stereotaxic system. Task accuracy and reaction time (RT) were measured during blocks of compatible or incompatible trials and during blocks of real TMS or sham stimulation. On each trial, a single TMS pulse was delivered at 50, 100, 150, or 200 ms after the onset of the stimulus in the left or right visual field. TMS over the left premotor cortex produced various facilitatory effects, depending on the timing of the stimulation. At short intervals, TMS appeared to prime the left dorsal premotor cortex to select a right-hand response more quickly, regardless of stimulus-response compatibility. The strongest effect of stimulation, however, occurred at the 200-ms interval, when TMS facilitated left-hand responses during the incompatible condition. Facilitation of attention to the contralateral visual hemifield was observed during stimulation over the parietal locations. We conclude that the left premotor cortex is one of the cortical regions responsible for overriding automatic stimulus-response associations.

  2. Multisensory and modality specific processing of visual speech in different regions of the premotor cortex

    PubMed Central

    Callan, Daniel E.; Jones, Jeffery A.; Callan, Akiko

    2014-01-01

    Behavioral and neuroimaging studies have demonstrated that brain regions involved with speech production also support speech perception, especially under degraded conditions. The premotor cortex (PMC) has been shown to be active during both observation and execution of action (“Mirror System” properties), and may facilitate speech perception by mapping unimodal and multimodal sensory features onto articulatory speech gestures. For this functional magnetic resonance imaging (fMRI) study, participants identified vowels produced by a speaker in audio-visual (saw the speaker's articulating face and heard her voice), visual only (only saw the speaker's articulating face), and audio only (only heard the speaker's voice) conditions with varying audio signal-to-noise ratios in order to determine the regions of the PMC involved with multisensory and modality specific processing of visual speech gestures. The task was designed so that identification could be made with a high level of accuracy from visual only stimuli to control for task difficulty and differences in intelligibility. The results of the functional magnetic resonance imaging (fMRI) analysis for visual only and audio-visual conditions showed overlapping activity in inferior frontal gyrus and PMC. The left ventral inferior premotor cortex (PMvi) showed properties of multimodal (audio-visual) enhancement with a degraded auditory signal. The left inferior parietal lobule and right cerebellum also showed these properties. The left ventral superior and dorsal premotor cortex (PMvs/PMd) did not show this multisensory enhancement effect, but there was greater activity for the visual only over audio-visual conditions in these areas. The results suggest that the inferior regions of the ventral premotor cortex are involved with integrating multisensory information, whereas, more superior and dorsal regions of the PMC are involved with mapping unimodal (in this case visual) sensory features of the speech signal with

  3. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    PubMed Central

    Zanon, Marco; Battaglini, Piero P.; Jarmolowska, Joanna; Pizzolato, Gilberto; Busan, Pierpaolo

    2013-01-01

    The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans. PMID:24324426

  4. Neural encoding of auditory discrimination in ventral premotor cortex

    PubMed Central

    Lemus, Luis; Hernández, Adrián; Romo, Ranulfo

    2009-01-01

    Monkeys have the capacity to accurately discriminate the difference between two acoustic flutter stimuli. In this task, monkeys must compare information about the second stimulus to the memory trace of the first stimulus, and must postpone the decision report until a sensory cue triggers the beginning of the decision motor report. The neuronal processes associated with the different components of this task have been investigated in the primary auditory cortex (A1); but, A1 seems exclusively associated with the sensory and not with the working memory and decision components of this task. Here, we show that ventral premotor cortex (VPC) neurons reflect in their activities the current and remembered acoustic stimulus, their comparison, and the result of the animal's decision report. These results provide evidence that the neural dynamics of VPC is involved in the processing steps that link sensation and decision-making during auditory discrimination. PMID:19667191

  5. Increased premotor cortex activation in high functioning autism during action observation.

    PubMed

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system.

  6. The role of the premotor cortex and the primary motor cortex in action verb comprehension: evidence from Granger causality analysis.

    PubMed

    Yang, Jie; Shu, Hua

    2012-08-01

    Although numerous studies find the premotor cortex and the primary motor cortex are involved in action language comprehension, so far the nature of these motor effects is still in controversy. Some researchers suggest that the motor effects reflect that the premotor cortex and the primary motor cortex make functional contributions to the semantic access of action verbs, while other authors argue that the motor effects are caused by comprehension. In the current study, we used Granger causality analysis to investigate the roles of the premotor cortex and the primary motor cortex in processing of manual-action verbs. Regions of interest were selected in the primary motor cortex (M1) and the premotor cortex based on a hand motion task, and in the left posterior middle temporal gyrus (lexical semantic area) based on the reading task effect. We found that (1) the left posterior middle temporal gyrus had a causal influence on the left M1; and (2) the left posterior middle temporal gyrus and the left premotor cortex had bidirectional causal relations. These results suggest that the premotor cortex and the primary motor cortex play different roles in manual verb comprehension. The premotor cortex may be involved in motor simulation that contributes to action language processing, while the primary motor cortex may be engaged in a processing stage influenced by the meaning access of manual-action verbs. Further investigation combining effective connectivity analysis and technique with high temporal resolution is necessary for better clarification of the roles of the premotor cortex and the primary motor cortex in action language comprehension.

  7. An oculomotor representation area within the ventral premotor cortex

    PubMed Central

    Fujii, Naotaka; Mushiake, Hajime; Tanji, Jun

    1998-01-01

    We explored the ventral part of the premotor cortex (PMV) with intracortical microstimulation (ICMS) while monkeys performed a visual fixation task, to see whether the PMV is involved in oculomotor control. ICMS evoked saccades from a small-restricted region in the PMV, without evoking movements in the limbs, neck, or body. We found the saccade-evoking site in the PMV in a total of three hemispheres in two monkeys. Quantitative analysis of the effects of eye position on saccades evoked by microstimulation of the PMV characterized the evoked saccades as goal directed. The nature of the saccades evoked in the PMV contrasted with the fixed vector nature of saccades evoked by ICMS of the frontal eye field. We also found that neurons in this restricted area of the PMV were active while the animals were performing a saccade task that required them to make saccades toward targets without arm movements. These data provide evidence for the presence of an oculomotor-specific subregion within the PMV. This subregion and the surrounding skeletomotor-representing regions of the PMV seem to coordinate oculomotor and skeletomotor control in performing goal-directed motor tasks. PMID:9751785

  8. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms.

    PubMed

    de Manzano, Örjan; Ullén, Fredrik

    2012-10-15

    Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands.

  9. Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep.

    PubMed

    Nitsche, Michael A; Jakoubkova, Michaela; Thirugnanasambandam, Nivethida; Schmalfuss, Leonie; Hullemann, Sandra; Sonka, Karel; Paulus, Walter; Trenkwalder, Claudia; Happe, Svenja

    2010-11-01

    Motor learning and memory consolidation require the contribution of different cortices. For motor sequence learning, the primary motor cortex is involved primarily in its acquisition. Premotor areas might be important for consolidation. In accordance, modulation of cortical excitability via transcranial DC stimulation (tDCS) during learning affects performance when applied to the primary motor cortex, but not premotor cortex. We aimed to explore whether premotor tDCS influences task performance during motor memory consolidation. The impact of excitability-enhancing, -diminishing, or placebo premotor tDCS during rapid eye movement (REM) sleep on recall in the serial reaction time task (SRTT) was explored in healthy humans. The motor task was learned in the evening. Recall was performed immediately after tDCS or the following morning. In two separate control experiments, excitability-enhancing premotor tDCS was performed 4 h after task learning during daytime or immediately before conduction of a simple reaction time task. Excitability-enhancing tDCS performed during REM sleep increased recall of the learned movement sequences, when tested immediately after stimulation. REM density was enhanced by excitability-increasing tDCS and reduced by inhibitory tDCS, but did not correlate with task performance. In the control experiments, tDCS did not improve performance. We conclude that the premotor cortex is involved in motor memory consolidation during REM sleep.

  10. Reputation in an economic game modulates premotor cortex activity during action observation.

    PubMed

    Farmer, Harry; Apps, Matthew; Tsakiris, Manos

    2016-09-01

    Our interactions with other people - and our processing of their actions - are shaped by their reputation. Research has identified an Action Observation Network (AON) which is engaged when observing other people's actions. Yet, little is known about how the processing of others' actions is influenced by another's reputation. Is the response of the AON modulated by the reputation of the actor? We developed a variant of the ultimatum game in which participants watched either the visible or occluded actions of two 'proposers'. These actions were tied to decisions of how to split a pot of money although the proposers' decisions on each trial were not known to participants when observing the actions. One proposer made fair offers on the majority of trials, establishing a positive reputation, whereas the other made predominantly, unfair offers resulting in a negative reputation. We found significant activations in two regions of the left dorsal premotor cortex (dPMC). The first of these showed a main effect of reputation with greater activation for the negative reputation proposer than the positive reputation proposer. Furthermore individual differences in trust ratings of the two proposers covaried with activation in the right primary motor cortex (M1). The second showed an interaction between visibility and reputation driven by a greater effect of reputation when participants were observing an occluded action. Our findings show that the processing of others' actions in the AON is modulated by an actor's reputation, and suggest a predictive role for the PMC during action observation.

  11. The importance of premotor cortex for supporting speech production after left capsular-putaminal damage.

    PubMed

    Seghier, Mohamed L; Bagdasaryan, Juliana; Jung, Dorit E; Price, Cathy J

    2014-10-22

    The left putamen is known to be important for speech production, but some patients with left putamen damage can produce speech remarkably well. We investigated the neural mechanisms that support this recovery by using a combination of techniques to identify the neural regions and pathways that compensate for loss of the left putamen during speech production. First, we used fMRI to identify the brain regions that were activated during reading aloud and picture naming in a patient with left putamen damage. This revealed that the patient had abnormally high activity in the left premotor cortex. Second, we used dynamic causal modeling of the patient's fMRI data to understand how this premotor activity influenced other speech production regions and whether the same neural pathway was used by our 24 neurologically normal control subjects. Third, we validated the compensatory relationship between putamen and premotor cortex by showing, in the control subjects, that lower connectivity through the putamen increased connectivity through premotor cortex. Finally, in a lesion-deficit analysis, we demonstrate the explanatory power of our fMRI results in new patients who had damage to the left putamen, left premotor cortex, or both. Those with damage to both had worse reading and naming scores. The results of our four-pronged approach therefore have clinical implications for predicting which patients are more or less likely to recover their speech after left putaminal damage.

  12. Dorsal Premotor Neurons Encode the Relative Position of the Hand, Eye, and Goal during Reach Planning

    PubMed Central

    Pesaran, Bijan; Nelson, Matthew J.; Andersen, Richard A.

    2011-01-01

    Summary When reaching to grasp an object, we often move our arm and orient our gaze together. How are these movements coordinated? To investigate this question, we studied neuronal activity in the dorsal premotor area (PMd) and the medial intraparietal area (area MIP) of two monkeys while systematically varying the starting position of the hand and eye during reaching. PMd neurons encoded the relative position of the target, hand, and eye. MIP neurons encoded target location with respect to the eye only. These results indicate that whereas MIP encodes target locations in an eye-centered reference frame, PMd uses a relative position code that specifies the differences in locations between all three variables. Such a relative position code may play an important role in coordinating hand and eye movements by computing their relative position. PMID:16815337

  13. TMS-Induced Modulation of Action Sentence Priming in the Ventral Premotor Cortex

    ERIC Educational Resources Information Center

    Tremblay, Pascale; Sato, Marc; Small, Steven L.

    2012-01-01

    Despite accumulating evidence that cortical motor areas, particularly the lateral premotor cortex, are activated during language comprehension, the question of whether motor processes help mediate the semantic encoding of language remains controversial. To address this issue, we examined whether low frequency (1 Hz) repetitive transcranial…

  14. [Neural correlates of perceptual decisions: the role of the ventral premotor cortex].

    PubMed

    Pardo-Vázquez, José L; Acuña, Carlos

    2014-05-01

    Although the premotor cortex was initially viewed as the substrate of pure motor functions, it was soon realized that this cortical region is also involved in higher order cognitive processes. By using behavioral tasks together with electrophysiological recordings it has been possible to advance in our understanding on the functional role of this area. Given its pattern of connections, the premotor ventral cortex is well suited to participate in perceptual decisions, in which sensory information is combined with knowledge on previous outcomes and expectancies to reach a behavioral choice. The neuronal correlates of the decision process have been described in several cortical areas of primates. In this work we describe our experimental results showing that different stages or elements of perceptual decisions are encoded in the firing rate of premotor ventral cortex neurons. This provides compelling evidence suggesting that this area is involved in the use of sensory evidence -maintained in working memory or retrieved from long-term memory- to reach a decision. Furthermore, after the behavioral response the same neurons convey all the information needed to evaluate the outcome of the choice. This suggests that the premotor ventral cortex could participate in shaping future behavior as a result of this evaluation.

  15. Different distal-proximal movement balances in right- and left-hand writing may hint at differential premotor cortex involvement.

    PubMed

    Potgieser, A R E; de Jong, B M

    2011-12-01

    Right-handed people generally write with their right hand. Language expressed in script is thus performed with the hand also preferred for skilled motor tasks. This may suggest an efficient functional interaction between the language area of Broca and the adjacent ventral premotor cortex (PMv) in the left (dominant) hemisphere. Pilot observations suggested that distal movements are particularly implicated in cursive writing with the right hand and proximal movements in left-hand writing, which generated ideas concerning hemisphere-specific roles of PMv and dorsal premotor cortex (PMd). Now we examined upper-limb movements in 30 right-handed participants during right- and left-hand writing, respectively. Quantitative description of distal and proximal movements demonstrated a significant difference between movements in right- and left-hand writing (p<.001, Wilcoxon signed-rank test). A Distal Movement Excess (DME) characterized writing with the right hand, while proximal and distal movements similarly contributed to left-hand writing. Although differences between non-language drawings were not tested, we propose that the DME in right-hand writing may reflect functional dominance of PMv in the left hemisphere. More proximal movements in left-hand writing might be related to PMd dominance in right-hemisphere motor control, logically implicated in spatial visuomotor transformations as seen in reaching.

  16. Decreased Premotor Cortex Volume in Victims of Urban Violence with Posttraumatic Stress Disorder

    PubMed Central

    Rocha-Rego, Vanessa; Pereira, Mirtes G.; Oliveira, Leticia; Mendlowicz, Mauro V.; Fiszman, Adriana; Marques-Portella, Carla; Berger, William; Chu, Carlton; Joffily, Mateus; Moll, Jorge; Mari, Jair J.; Figueira, Ivan; Volchan, Eliane

    2012-01-01

    Background Studies addressing posttraumatic stress disorder (PTSD) have demonstrated that PTSD patients exhibit structural abnormalities in brain regions that relate to stress regulation and fear responses, such as the hippocampus, amygdala, anterior cingulate cortex, and ventromedial prefrontal cortex. Premotor cortical areas are involved in preparing to respond to a threatening situation and in representing the peripersonal space. Urban violence is an important and pervasive cause of human suffering, especially in large urban centers in the developing world. Violent events, such as armed robbery, are very frequent in certain cities, and these episodes increase the risk of PTSD. Assaultive trauma is characterized by forceful invasion of the peripersonal space; therefore, could this traumatic event be associated with structural alteration of premotor areas in PTSD? Methodology/Principal Findings Structural magnetic resonance imaging scans were acquired from a sample of individuals that had been exposed to urban violence. This sample consisted of 16 PTSD patients and 16 age- and gender-matched controls. Psychometric questionnaires differentiated PTSD patients from trauma-exposed controls with regard to PTSD symptoms, affective, and resilience predispositions. Voxel-based morphometric analysis revealed that, compared with controls, the PTSD patients presented significant reductions in gray matter volume in the ventral premotor cortex and in the pregenual anterior cingulate cortex. Conclusions Volume reduction in the premotor cortex that is observed in victims of urban violence with PTSD may be associated with a disruption in the dynamical modulation of the safe space around the body. The finding that PTSD patients presented a smaller volume of pregenual anterior cingulate cortex is consistent with the results of other PTSD neuroimaging studies that investigated different types of traumatic events. PMID:22952599

  17. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy.

    PubMed

    Chen, Joyce L; Schlaug, Gottfried

    2016-03-16

    Non-invasive stimulation of the brain using transcranial direct current stimulation (tDCS) during motor rehabilitation can improve the recovery of movements in individuals with stroke. However, the neural substrates that underlie the clinical improvements are not well understood. In this proof-of-principle open-label pilot study, five individuals with stroke received 10 sessions of tDCS while undergoing usual care physical/occupational therapy for the arm and hand. Motor impairment as indexed by the Upper Extremity Fugl Meyer assessment was significantly reduced after the intervention. Resting state fMRI connectivity increased between ipsilesional motor cortex and contralesional premotor cortex after the intervention. These findings provide preliminary evidence that the neural underpinnings of tDCS coupled with rehabilitation exercises, may be mediated by interactions between motor and premotor cortex. The latter, of which has been shown to play an important role in the recovery of movements post-stroke. Our data suggest premotor cortex could be tested as a target region for non-invasive brain-stimulation to enhance connectivity between regions that might be beneficial for stroke motor recovery.

  18. Role of human premotor dorsal region in learning a conditional visuomotor task.

    PubMed

    Parikh, Pranav J; Santello, Marco

    2017-01-01

    Conditional learning is an important component of our everyday activities (e.g., handling a phone or sorting work files) and requires identification of the arbitrary stimulus, accurate selection of the motor response, monitoring of the response, and storing in memory of the stimulus-response association for future recall. Learning this type of conditional visuomotor task appears to engage the premotor dorsal region (PMd). However, the extent to which PMd might be involved in specific or all processes of conditional learning is not well understood. Using transcranial magnetic stimulation (TMS), we demonstrate the role of human PMd in specific stages of learning of a novel conditional visuomotor task that required subjects to identify object center of mass using a color cue and to apply appropriate torque on the object at lift onset to minimize tilt. TMS over PMd, but not vertex, increased error in torque exerted on the object during the learning trials. Analyses of digit position and forces further revealed that the slowing in conditional visuomotor learning resulted from impaired monitoring of the object orientation during lift, rather than stimulus identification, thus compromising the ability to accurately reduce performance error across trials. Importantly, TMS over PMd did not alter production of torque based on the recall of learned color-torque associations. We conclude that the role of PMd for conditional learning is highly sensitive to the stage of learning visuomotor associations.

  19. Premotor cortex is sensitive to auditory-visual congruence for biological motion.

    PubMed

    Wuerger, Sophie M; Parkes, Laura; Lewis, Penelope A; Crocker-Buque, Alex; Rutschmann, Roland; Meyer, Georg F

    2012-03-01

    The auditory and visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilizing some of the statistical properties of the real world. A well-known example is the perception of biological motion, for example, the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual coactivation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: middle temporal area, inferior parietal lobule, ventral premotor cortex, and cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analyzed within these regions of coactivation. Auditory footsteps were presented concurrently with either an intact visual point-light walker (biological motion) or a scrambled point-light walker; auditory and visual motion in depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the ventral premotor cortex, but only if the visual point-light walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the premotor area assimilates information across the auditory and visual modalities by comparing the incoming sensory input with an internal representation.

  20. Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex.

    PubMed

    Wheaton, Kylie J; Thompson, James C; Syngeniotis, Ari; Abbott, David F; Puce, Aina

    2004-05-01

    Activation of premotor and temporoparietal cortex occurs when we observe others movements, particularly relating to objects. Viewing the motion of different body parts without the context of an object has not been systematically evaluated. During a 3T fMRI study, 12 healthy subjects viewed human face, hand, and leg motion, which was not directed at or did not involve an object. Activation was identified relative to static images of the same human face, hand, and leg in both individual subject and group average data. Four clear activation foci emerged: (1) right MT/V5 activated to all forms of viewed motion; (2) right STS activated to face and leg motion; (3) ventral premotor cortex activated to face, hand, and leg motion in the right hemisphere and to leg motion in the left hemisphere; and (4) anterior intraparietal cortex (aIP) was active bilaterally to viewing hand motion and in the right hemisphere leg motion. In addition, in the group data, a somatotopic activation pattern for viewing face, hand, and leg motion occurred in right ventral premotor cortex. Activation patterns in STS and aIP were more complex--typically activation foci to viewing two types of human motion showed some overlap. Activation in individual subjects was similar; however, activation to hand motion also occurred in the STS with a variable location across subjects--explaining the lack of a clear activation focus in the group data. The data indicate that there are selective responses to viewing motion of different body parts in the human brain that are independent of object or tool use.

  1. Decision-Making in the Ventral Premotor Cortex Harbinger of Action

    PubMed Central

    Pardo-Vazquez, Jose L.; Padron, Isabel; Fernandez-Rey, Jose; Acuña, Carlos

    2011-01-01

    Although the premotor (PM) cortex was once viewed as the substrate of pure motor functions, soon it was realized that it was involved in higher brain functions. By this it is meant that the PM cortex functions would better be explained as motor set, preparation for limb movement, or sensory guidance of movement rather than solely by a fixed link to motor performance. These findings, together with a better knowledge of the PM cortex histology and hodology in human and non-human primates prompted quantitative studies of this area combining behavioral tasks with electrophysiological recordings. In addition, the exploration of the PM cortex neurons with qualitative methods also suggested its participation in higher functions. Behavioral choices frequently depend on temporal cues, which together with knowledge of previous outcomes and expectancies are combined to decide and choose a behavioral action. In decision-making the knowledge about the consequences of decisions, either correct or incorrect, is fundamental because they can be used to adapt future behavior. The neuronal correlates of a decision process have been described in several cortical areas of primates. Among them, there is evidence that the monkey ventral premotor (PMv) cortex, an anatomical and physiological well-differentiated area of the PM cortex, supports both perceptual decisions and performance monitoring. Here we review the evidence that the steps in a decision-making process are encoded in the firing rate of the PMv neurons. This provides compelling evidence suggesting that the PMv is involved in the use of recent and long-term sensory memory to decide, execute, and evaluate the outcomes of the subjects’ choices. PMID:21991249

  2. Intrinsic functional architecture of the macaque dorsal and ventral lateral frontal cortex.

    PubMed

    Goulas, Alexandros; Stiers, Peter; Hutchison, R Matthew; Everling, Stefan; Petrides, Michael; Margulies, Daniel S

    2017-03-01

    Investigations of the cellular and connectional organization of the lateral frontal cortex (LFC) of the macaque monkey provide indispensable knowledge for generating hypotheses about the human LFC. However, despite numerous investigations, there are still debates on the organization of this brain region. In vivo neuroimaging techniques such as resting-state functional magnetic resonance imaging (fMRI) can be used to define the functional circuitry of brain areas, producing results largely consistent with gold-standard invasive tract-tracing techniques and offering the opportunity for cross-species comparisons within the same modality. Our results using resting-state fMRI from macaque monkeys to uncover the intrinsic functional architecture of the LFC corroborate previous findings and inform current debates. Specifically, within the dorsal LFC, we show that 1) the region along the midline and anterior to the superior arcuate sulcus is divided in two areas separated by the posterior supraprincipal dimple, 2) the cytoarchitectonically defined area 6DC/F2 contains two connectional divisions, and 3) a distinct area occupies the cortex around the spur of the arcuate sulcus, updating what was previously proposed to be the border between dorsal and ventral motor/premotor areas. Within the ventral LFC, the derived parcellation clearly suggests the presence of distinct areas: 1) an area with a somatomotor/orofacial connectional signature (putative area 44), 2) an area with an oculomotor connectional signature (putative frontal eye fields), and 3) premotor areas possibly hosting laryngeal and arm representations. Our results illustrate in detail the intrinsic functional architecture of the macaque LFC, thus providing valuable evidence for debates on its organization.NEW & NOTEWORTHY Resting-state functional MRI is used as a complementary method to invasive techniques to inform current debates on the organization of the macaque lateral frontal cortex. Given that the macaque

  3. Premotor Cortex Activation Elicited during Word Comprehension Relies on Access of Specific Action Concepts.

    PubMed

    Lin, Nan; Wang, Xiaoying; Zhao, Ying; Liu, Yanping; Li, Xingshan; Bi, Yanchao

    2015-10-01

    The relationship between the lexical-semantic and sensory-motor systems is an important topic in cognitive neuroscience. An important finding indicating that these two systems interact is that reading action verbs activates the motor system of the human brain. Two constraints have been proposed to modulate this activation: the effector information associated with the action concepts and statistical regularities between sublexical features and grammatical classes. Using fMRI, we examined whether these two types of information can activate the motor system in the absence of specific motor-semantic content by manipulating the existence of a sublexical cue, called the hand radical, which strongly indicates the semantic feature "hand-related" and grammatical class "verb." Although hand radical characters referring to specific manual actions evoked stronger activation in the premotor cortex than the control characters, hand radical pseudocharacters did not evoke specific activation within the motor system. These results indicated that activation of the premotor cortex during word reading relies on the access of specific action concepts.

  4. Beta activity in the premotor cortex is increased during stabilized as compared to normal walking

    PubMed Central

    Bruijn, Sjoerd M.; Van Dieën, Jaap H.; Daffertshofer, Andreas

    2015-01-01

    Walking on two legs is inherently unstable. Still, we humans perform remarkable well at it, mostly without falling. To gain more understanding of the role of the brain in controlling gait stability we measured brain activity using electro-encephalography (EEG) during stabilized and normal walking. Subjects walked on a treadmill in two conditions, each lasting 10 min; normal, and while being laterally stabilized by elastic cords. Kinematics of trunk and feet, electro-myography (EMG) of neck muscles, as well as 64-channel EEG were recorded. To assess gait stability the local divergence exponent, step width, and trunk range of motion were calculated from the kinematic data. We used independent component (IC) analysis to remove movement, EMG, and eyeblink artifacts from the EEG, after which dynamic imaging of coherent sources beamformers were determined to identify cortical sources that showed a significant difference between conditions. Stabilized walking led to a significant increase in gait stability, i.e., lower local divergence exponents. Beamforming analysis of the beta band activity revealed significant sources in bilateral pre-motor cortices. Projection of sensor data on these sources showed a significant difference only in the left premotor area, with higher beta power during stabilized walking, specifically around push-off, although only significant around contralateral push-off. It appears that even during steady gait the cortex is involved in the control of stability. PMID:26578937

  5. Dynamic Control of Response Criterion in Premotor Cortex during Perceptual Detection under Temporal Uncertainty.

    PubMed

    Carnevale, Federico; de Lafuente, Victor; Romo, Ranulfo; Barak, Omri; Parga, Néstor

    2015-05-20

    Under uncertainty, the brain uses previous knowledge to transform sensory inputs into the percepts on which decisions are based. When the uncertainty lies in the timing of sensory evidence, however, the mechanism underlying the use of previously acquired temporal information remains unknown. We study this issue in monkeys performing a detection task with variable stimulation times. We use the neural correlates of false alarms to infer the subject's response criterion and find that it modulates over the course of a trial. Analysis of premotor cortex activity shows that this modulation is represented by the dynamics of population responses. A trained recurrent network model reproduces the experimental findings and demonstrates a neural mechanism to benefit from temporal expectations in perceptual detection. Previous knowledge about the probability of stimulation over time can be intrinsically encoded in the neural population dynamics, allowing a flexible control of the response criterion over time.

  6. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception.

    PubMed

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-04-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as inferior frontal gyrus (IFG) and motor cortices, even in the absence of an explicit task. To investigate this, we applied spectral mixes of a flute sound and either vowels or specific music instrument sounds (e.g. trumpet) in an fMRI study, in combination with three different instructions. The instructions either revealed no information about stimulus features, or explicit information about either the music instrument or the vowel features. The results demonstrated that, besides an involvement of posterior temporal areas, stimulus expectancy modulated in particular a network comprising IFG and premotor cortices during this passive listening task.

  7. The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex

    PubMed Central

    Pardo-Vazquez, Jose L.; Acuña, Carlos; Deco, Gustavo

    2015-01-01

    Estimating the difficulty of a decision is a fundamental process to elaborate complex and adaptive behaviour. In this paper, we show that the movement time of behaving monkeys performing a decision-making task is correlated with decision difficulty and that the activity of a population of neurons in ventral Premotor cortex correlates with the movement time. Moreover, we found another population of neurons that encodes the discriminability of the stimulus, thereby supplying another source of information about the difficulty of the decision. The activity of neurons encoding the difficulty can be produced by very different computations. Therefore, we show that decision difficulty can be encoded through three different mechanisms: 1. Switch time coding, 2. rate coding and 3. binary coding. This rich representation reflects the basis of different functional aspects of difficulty in the making of a decision and the possible role of difficulty estimation in complex decision scenarios. PMID:26556807

  8. Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex.

    PubMed

    Thura, David; Guberman, Guido; Cisek, Paul

    2017-02-01

    Recent studies have shown that activity in sensorimotor structures varies depending on the speed-accuracy trade-off (SAT) context in which a decision is made. Here we tested the hypothesis that the same areas also reflect a more local adjustment of SAT established between individual trials, based on the outcome of the previous decision. Two monkeys performed a reaching decision task in which sensory evidence continuously evolves during the time course of a trial. In two SAT contexts, we compared neural activity in trials following a correct choice vs. those following an error. In dorsal premotor cortex (PMd), we found that 23% of cells exhibited significantly weaker baseline activity after error trials, and for ∼30% of these this effect persisted into the deliberation epoch. These cells also contributed to the process of combining sensory evidence with the growing urgency to commit to a choice. We also found that the activity of 22% of PMd cells was increased after error trials. These neurons appeared to carry less information about sensory evidence and time-dependent urgency. For most of these modulated cells, the effect was independent of whether the previous error was expected or unexpected. We found similar phenomena in primary motor cortex (M1), with 25% of cells decreasing and 34% increasing activity after error trials, but unlike PMd, these neurons showed less clear differences in their response properties. These findings suggest that PMd and M1 belong to a network of brain areas involved in SAT adjustments established using the recent history of reinforcement.

  9. Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

    PubMed Central

    Franquemont, Lachlan; Black, Michael J.; Donoghue, John P.

    2015-01-01

    Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. SIGNIFICANCE STATEMENT The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way. PMID:26224870

  10. The computational and neural basis of rhythmic timing in medial premotor cortex.

    PubMed

    Merchant, Hugo; Averbeck, Bruno B

    2017-03-23

    The neural underpinnings of rhythmic behavior, including music and dance, have been studied using the synchronization-continuation task (SCT), where subjects initially tap in synchrony with an isochronous metronome and then keep tapping at a similar rate via an internal beat mechanism. Here, we provide behavioral and neural evidence that supports a resetting drift-diffusion model (DDM) during SCT. Behaviorally, we show the model replicates the linear relation between the mean and standard-deviation of the intervals produced by monkeys in SCT. We then show that neural populations in the medial premotor cortex (MPC) contain an accurate trial-by-trial representation of elapsed-time between taps. Interestingly, the autocorrelation structure of the elapsed-time representation is consistent with a DDM. These results indicate that MPC has an orderly representation of time with features characteristic of concatenated DDMs and that this population signal can be used to orchestrate the rhythmic structure of the internally timed elements of SCT.SIGNIFICANCE STATEMENTThe present study used behavioral data, ensemble recordings from medial premotor cortex (MPC) in macaque monkeys, and computational modeling, to establish evidence in favor of a class of drift-diffusion models of rhythmic timing during a synchronization-continuation tapping task (SCT). The linear relation between the mean and standard-deviation of the intervals produced by monkeys in SCT is replicated by the model. Populations of MPC cells faithfully represent the elapsed time between taps, and there is significant trial-by-trial relation between decoded times and the timing behavior of the monkeys. Notably, the neural decoding properties, including its autocorrelation structure are consistent with a set of drift-diffusion models that are arranged sequentially and that are resetting in each SCT tap.

  11. Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus).

    PubMed

    Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin

    2016-11-30

    Although evidence from human studies has long indicated the crucial role of the frontal cortex in speech production, it has remained uncertain whether the frontal cortex in nonhuman primates plays a similar role in vocal communication. Previous studies of prefrontal and premotor cortices of macaque monkeys have found neural signals associated with cue- and reward-conditioned vocal production, but not with self-initiated or spontaneous vocalizations (Coudé et al., 2011; Hage and Nieder, 2013), which casts doubt on the role of the frontal cortex of the Old World monkeys in vocal communication. A recent study of marmoset frontal cortex observed modulated neural activities associated with self-initiated vocal production (Miller et al., 2015), but it did not delineate whether these neural activities were specifically attributed to vocal production or if they may result from other nonvocal motor activity such as orofacial motor movement. In the present study, we attempted to resolve these issues and examined single neuron activities in premotor cortex during natural vocal exchanges in the common marmoset (Callithrix jacchus), a highly vocal New World primate. Neural activation and suppression were observed both before and during self-initiated vocal production. Furthermore, by comparing neural activities between self-initiated vocal production and nonvocal orofacial motor movement, we identified a subpopulation of neurons in marmoset premotor cortex that was activated or suppressed by vocal production, but not by orofacial movement. These findings provide clear evidence of the premotor cortex's involvement in self-initiated vocal production in natural vocal behaviors of a New World primate.

  12. Functional significance of the electrocorticographic auditory responses in the premotor cortex

    PubMed Central

    Tanji, Kazuyo; Sakurada, Kaori; Funiu, Hayato; Matsuda, Kenichiro; Kayama, Takamasa; Ito, Sayuri; Suzuki, Kyoko

    2015-01-01

    Other than well-known motor activities in the precentral gyrus, functional magnetic resonance imaging (fMRI) studies have found that the ventral part of the precentral gyrus is activated in response to linguistic auditory stimuli. It has been proposed that the premotor cortex in the precentral gyrus is responsible for the comprehension of speech, but the precise function of this area is still debated because patients with frontal lesions that include the precentral gyrus do not exhibit disturbances in speech comprehension. We report on a patient who underwent resection of the tumor in the precentral gyrus with electrocorticographic recordings while she performed the verb generation task during awake brain craniotomy. Consistent with previous fMRI studies, high-gamma band auditory activity was observed in the precentral gyrus. Due to the location of the tumor, the patient underwent resection of the auditory responsive precentral area which resulted in the post-operative expression of a characteristic articulatory disturbance known as apraxia of speech (AOS). The language function of the patient was otherwise preserved and she exhibited intact comprehension of both spoken and written language. The present findings demonstrated that a lesion restricted to the ventral precentral gyrus is sufficient for the expression of AOS and suggest that the auditory-responsive area plays an important role in the execution of fluent speech rather than the comprehension of speech. These findings also confirm that the function of the premotor area is predominantly motor in nature and its sensory responses is more consistent with the “sensory theory of speech production,” in which it was proposed that sensory representations are used to guide motor-articulatory processes. PMID:25852457

  13. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    PubMed

    Krutki, Piotr; Jelen, Sabina; Jankowska, Elzbieta

    2011-04-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons.

  14. Gateways of ventral and dorsal streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Gao, Enquan; Burkhalter, Andreas

    2011-01-01

    It is widely held that the spatial processing functions underlying rodent navigation are similar to those encoding human episodic memory (Doeller et al, 2010). Spatial and nonspatial information are provided by all senses including vision. It has been suggested that visual inputs are fed to the navigational network in cortex and hippocampus through dorsal and ventral intracortical streams (Whitlock et al, 2008), but this has not been shown directly in rodents. We have used cyto- and chemoarchitectonic markers, topographic mapping of receptive fields and pathway tracing to determine in mouse visual cortex whether the lateromedial (LM) and the anterolateral fields (AL), which are the principal targets of primary visual cortex (V1) (Wang and Burkhalter, 2007) specialized for processing nonspatial and spatial visual information (Gao et al, 2006), are distinct areas with diverse connections. We have found that the LM/AL border coincides with a change in type 2 muscarinic acetylcholine receptor (m2AChR) expression in layer 4 and with the representation of the lower visual field periphery. Our quantitative analyses further show that LM strongly projects to temporal cortex as well as the lateral entorhinal cortex, which has weak spatial selectivity (Hargreaves et al, 2005). In contrast, AL has stronger connections with posterior parietal cortex, motor cortex and the spatially selective medial entorhinal cortex (Haftig et al, 2005). These results support the notion that LM and AL are architecturally, topographically and connectionally distinct areas of extrastriate visual cortex and that they are gateways for ventral and dorsal streams. PMID:21289200

  15. A cluster analysis of neuronal activity in the dorsal premotor cortical area for neuroprosthetic control.

    PubMed

    Ye, N; Roontiva, A; He, J

    2008-01-01

    With the use of the neuronal data acquisition technology, millisecond-level multi-electrode data from several regions of the premotor area were obtained from two rhesus monkeys trained to perform arm-reach tasks with visual cues in virtual reality. In each trial, animals were required to select and perform one of the four possible arm reaching movements to the target on the top-left or top-right of the virtual reality space. They were also required to decide whether they would move their arms straight to the target or curve them in order to avoid the obstacle that was presented. After the acquired neuronal signals were processed, unsupervised Hierarchical clustering and K-means clustering were performed to uncover the similarity and difference in the average firing rate of spike train data between neurons and phases for each experiment condition. The clustering results indicate the similarity of neuronal data in the movement planning and actual movement phases, and the difference of such data from the data in information processing phases. Furthermore, the clustering results show that when the target location is on the right, the move planning started earlier. The analysis of variance (ANOVA) on the neuronal data confirms the results from the hierarchical clustering.

  16. Inhibitory stimulation of the ventral premotor cortex temporarily interferes with musical beat rate preference.

    PubMed

    Kornysheva, Katja; von Anshelm-Schiffer, Anne-Marike; Schubotz, Ricarda I

    2011-08-01

    Behavioral studies suggest that preference for a beat rate (tempo) in auditory sequences is tightly linked to the motor system. However, from a neuroscientific perspective the contribution of motor-related brain regions to tempo preference in the auditory domain remains unclear. A recent fMRI study (Kornysheva et al. [2010]: Hum Brain Mapp 31:48-64) revealed that the activity increase in the left ventral premotor cortex (PMv) is associated with the preference for a tempo of a musical rhythm. The activity increase correlated with how strongly the subjects preferred a tempo. Despite this evidence, it remains uncertain whether an interference with activity in the left PMv affects tempo preference strength. Consequently, we conducted an offline repetitive transcranial magnetic stimulation (rTMS) study, in which the cortical excitability in the left PMv was temporarily reduced. As hypothesized, 0.9 Hz rTMS over the left PMv temporarily affected individual tempo preference strength depending on the individual strength of tempo preference in the control session. Moreover, PMv stimulation temporarily interfered with the stability of individual tempo preference strength within and across sessions. These effects were specific to the preference for tempo in contrast to the preference for timbre, bound to the first half of the experiment following PMv stimulation and could not be explained by an impairment of tempo recognition. Our results corroborate preceding fMRI findings and suggest that activity in the left PMv is part of a network that affects the strength of beat rate preference.

  17. Corticospinal Neurons in Macaque Ventral Premotor Cortex with Mirror Properties: A Potential Mechanism for Action Suppression?

    PubMed Central

    Kraskov, Alexander; Dancause, Numa; Quallo, Marsha M.; Shepherd, Samantha; Lemon, Roger N.

    2009-01-01

    Summary The discovery of “mirror neurons” in area F5 of the ventral premotor cortex has prompted many theories as to their possible function. However, the identity of mirror neurons remains unknown. Here, we investigated whether identified pyramidal tract neurons (PTNs) in area F5 of two adult macaques exhibited “mirror-like” activity. About half of the 64 PTNs tested showed significant modulation of their activity while monkeys observed precision grip of an object carried out by an experimenter, with somewhat fewer showing modulation during precision grip without an object or grasping concealed from the monkey. Therefore, mirror-like activity can be transmitted directly to the spinal cord via PTNs. A novel finding is that many PTNs (17/64) showed complete suppression of discharge during action observation, while firing actively when the monkey grasped food rewards. We speculate that this suppression of PTN discharge might be involved in the inhibition of self-movement during action observation. PMID:20064397

  18. Probing the interaction of the ipsilateral posterior parietal cortex with the premotor cortex using a novel transcranial magnetic stimulation technique

    PubMed Central

    Shields, Jessica; Park, Jung E.; Srivanitchapoom, Prachaya; Paine, Rainer; Thirugnanasambandam, Nivethida; Kukke, Sahana N.; Hallett, Mark

    2015-01-01

    Objective Functional imaging studies have shown that control of planned movement involves a distributed network that involves the premotor (PMv) and posterior parietal cortices (PPC). Similarly, anatomical studies show that these regions are densely interconnected via white matter tracts. We therefore hypothesized that the PPC influence over the motor cortex is partly via a connection with the PMv. Methods Using a novel three-pulse ipsilateral transcranial magnetic stimulation technique, we preconditioned the PPC (80%RMT) at ISIs from 4–15ms prior to stimulating the PMv and M1 at ISIs of 4 and 6ms. Results As previously shown, PMv-M1 paired-pulse stimulation resulted in inhibition of the MEP (90% RMT, 4–6ms) and PPC-M1 paired-pulse stimulation resulted in facilitation of the MEP (90% RMT, 4–8ms). PPC-M1 paired-pulse stimulation at 80%RMT preconditioning had no effect on M1. PPC-PMv-M1 stimulation resulted in reversal of inhibition observed with PMv-M1 stimulation at ISIs ranging from 6–15ms. Conclusions The reversal of inhibition observed with PPC-PMv-M1 stimulation suggests that the parietal connection to the PMv plays a role in the modulation of M1. Significance This is the first study to stimulate three intrahemispheric regions in order to test a disynaptic connection with M1. The described network may be important in a variety of movement disorders. PMID:26253032

  19. Sensorimotor neural dynamics during isochronous tapping in the medial premotor cortex of the macaque.

    PubMed

    Merchant, Hugo; Pérez, Oswaldo; Bartolo, Ramón; Méndez, Juan Carlos; Mendoza, Germán; Gámez, Jorge; Yc, Karyna; Prado, Luis

    2015-03-01

    We determined the response properties of neurons in the primate medial premotor cortex that were classified as sensory or motor during isochronous tapping to a visual or auditory metronome, using different target intervals and three sequential elements in the task. The cell classification was based on a warping transformation, which determined whether the cell activity was statistically aligned to sensory or motor events, finding a large proportion of cells classified as sensory or motor. Two distinctive clusters of sensory cells were observed, i.e. one cell population with short response-onset latencies to the previous stimulus, and another that was probably predicting the occurrence of the next stimuli. These cells were called sensory-driven and stimulus-predicting neurons, respectively. Sensory-driven neurons showed a clear bias towards the visual modality and were more responsive to the first stimulus, with a decrease in activity for the following sequential elements of the metronome. In contrast, stimulus-predicting neurons were bimodal and showed similar response profiles across serial-order elements. Motor cells showed a consecutive activity onset across discrete neural ensembles, generating a rapid succession of activation patterns between the two taps defining a produced interval. The cyclical configuration in activation profiles engaged more motor cells as the serial-order elements progressed across the task, and the rate of cell recruitment over time decreased as a function of the target interval. Our findings support the idea that motor cells were responsible for the rhythmic progression of taps in the task, gaining more importance as the trial advanced, while, simultaneously, the sensory-driven cells lost their functional impact.

  20. Patterns of neural activity in the human ventral premotor cortex reflect a whole-body multisensory percept.

    PubMed

    Gentile, Giovanni; Björnsdotter, Malin; Petkova, Valeria I; Abdulkarim, Zakaryah; Ehrsson, H Henrik

    2015-04-01

    Previous research has shown that the integration of multisensory signals from the body in fronto-parietal association areas underlies the perception of a body part as belonging to one's physical self. What are the neural mechanisms that enable the perception of one's entire body as a unified entity? In one behavioral and one fMRI multivoxel pattern analysis experiment, we used a full-body illusion to investigate how congruent visuo-tactile signals from a single body part facilitate the emergence of the sense of ownership of the entire body. To elicit this illusion, participants viewed the body of a mannequin from the first-person perspective via head-mounted displays while synchronous touches were applied to the hand, abdomen, or leg of the bodies of the participant and the mannequin; asynchronous visuo-tactile stimuli served as controls. The psychometric data indicated that the participants perceived ownership of the entire artificial body regardless of the body segment that received the synchronous visuo-tactile stimuli. Based on multivoxel pattern analysis, we found that the neural responses in the left ventral premotor cortex displayed illusion-specific activity patterns that generalized across all tested pairs of body parts. Crucially, a tripartite generalization analysis revealed the whole-body specificity of these premotor activity patterns. Finally, we also identified multivoxel patterns in the premotor, intraparietal, and lateral occipital cortices and in the putamen that reflected multisensory responses specific to individual body parts. Based on these results, we propose that the dynamic formation of a whole-body percept may be mediated by neuronal populations in the ventral premotor cortex that contain visuo-tactile receptive fields encompassing multiple body segments.

  1. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    PubMed Central

    Batista, Larissa M.; Nogueira, Lídia L. R. F.; de Oliveira, Eliane A.; de Carvalho, Antonio G. C.; Lima, Soriano S.; Santana, Jordânia R. M.; de Lima, Emerson C. C.; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561). PMID:28250992

  2. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial.

    PubMed

    Andrade, Suellen M; Batista, Larissa M; Nogueira, Lídia L R F; de Oliveira, Eliane A; de Carvalho, Antonio G C; Lima, Soriano S; Santana, Jordânia R M; de Lima, Emerson C C; Fernández-Calvo, Bernardino

    2017-01-01

    Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex) combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence) after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561).

  3. Ventral Premotor Cortex May Be Required for Dynamic Changes in the Feeling of Limb Ownership: A Lesion Study

    PubMed Central

    Zeller, Daniel; Gross, Catharina; Bartsch, Andreas; Johansen-Berg, Heidi; Classen, Joseph

    2011-01-01

    The feeling of “body ownership” may be experimentally investigated by perceptual illusions. The “rubber hand illusion” (RHI) leads human subjects to experience an artificial hand as their own. According to functional imaging, the ventral premotor cortex (PMv) plays a key role in the integration of multisensory inputs allowing the “incorporation” of the rubber hand into body representation. However, causal structure–function relationships can only be obtained by lesion studies. Here, we tested the RHI in 70 stroke patients and in 40 age-matched healthy controls. Additionally, asomatognosia, the unawareness of one’s own body parts, was assessed in a subgroup of 64 stroke patients. Ischemic lesions were delineated on diffusion-weighted magnetic resonance images and normalized. Right-hemispheric lesions were mirrored across the midline. Voxels that might be essential for RHI and/or somatognosia were defined by voxel-based lesion-symptom mapping. Probabilistic diffusion tractography was used to identify tracts passing through these voxels. Contralesional rubber hand illusion failure (RHIF) was observed in 18 (26%) of 70 stroke patients, an additional ipsilesional RHIF in seven of these patients. RHIF-associated lesion voxels were located subcortically adjacent to the insula, basal ganglia, and within the periventricular white matter. Tractography revealed fiber tract connections of these voxels with premotor, parietal, and prefrontal cortex. Contralesional asomatognosia was found in 18 (28%) of 64 stroke patients. In contrast to RHIF, asomatognosia-associated lesion voxels showed no connection with PMv. The results point to a role of PMv and its connections in mediating changes in the sense of limb ownership driven by multisensory stimulation. PMID:21451023

  4. A shared representation of the space near oneself and others in the human premotor cortex.

    PubMed

    Brozzoli, Claudio; Gentile, Giovanni; Bergouignan, Loretxu; Ehrsson, H Henrik

    2013-09-23

    Interactions between people require shared high-level cognitive representations of action goals, intentions, and mental states, but do people also share their representation of space? The human ventral premotor (PMv) and parietal cortices contain neuronal populations coding for the execution and observation of actions, analogous to the mirror neurons identified in monkeys. This neuronal system is tuned to the location of the acting person relative to the observer and the target of the action. Therefore, it can be theorized that the observer's brain constructs a low-level, body-centered representation of the space around others similar to one's own peripersonal space representation. Single-cell recordings have reported that parietal visuotactile neurons discharge for objects near specific parts of a monkey's own body and near the corresponding body parts of another individual. In humans, no neuroimaging study has investigated this issue. Here, we identified neuronal populations in the human PMv that encode the space near both one's own hand and another person's hand. The shared peripersonal space representation could support social interactions by coding sensory events, actions, and cognitive processes in a common spatial reference frame.

  5. Post-Stroke Longitudinal Alterations of Inter-Hemispheric Correlation and Hemispheric Dominance in Mouse Pre-Motor Cortex

    PubMed Central

    Panarese, Alessandro; Alia, Claudia; Micera, Silvestro; Caleo, Matteo; Di Garbo, Angelo

    2016-01-01

    Purpose Limited restoration of function is known to occur spontaneously after an ischemic injury to the primary motor cortex. Evidence suggests that Pre-Motor Areas (PMAs) may “take over” control of the disrupted functions. However, little is known about functional reorganizations in PMAs. Forelimb movements in mice can be driven by two cortical regions, Caudal and Rostral Forelimb Areas (CFA and RFA), generally accepted as primary motor and pre-motor cortex, respectively. Here, we examined longitudinal changes in functional coupling between the two RFAs following unilateral photothrombotic stroke in CFA (mm from Bregma: +0.5 anterior, +1.25 lateral). Methods Local field potentials (LFPs) were recorded from the RFAs of both hemispheres in freely moving injured and naïve mice. Neural signals were acquired at 9, 16 and 23 days after surgery (sub-acute period in stroke animals) through one bipolar electrode per hemisphere placed in the center of RFA, with a ground screw over the occipital bone. LFPs were pre-processed through an efficient method of artifact removal and analysed through: spectral,cross-correlation, mutual information and Granger causality analysis. Results Spectral analysis demonstrated an early decrease (day 9) in the alpha band power in both the RFAs. In the late sub-acute period (days 16 and 23), inter-hemispheric functional coupling was reduced in ischemic animals, as shown by a decrease in the cross-correlation and mutual information measures. Within the gamma and delta bands, correlation measures were already reduced at day 9. Granger analysis, used as a measure of the symmetry of the inter-hemispheric causal connectivity, showed a less balanced activity in the two RFAs after stroke, with more frequent oscillations of hemispheric dominance. Conclusions These results indicate robust electrophysiological changes in PMAs after stroke. Specifically, we found alterations in transcallosal connectivity, with reduced inter-hemispheric functional

  6. Stimulus Expectancy Modulates Inferior Frontal Gyrus and Premotor Cortex Activity in Auditory Perception

    ERIC Educational Resources Information Center

    Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten

    2012-01-01

    In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…

  7. Dorsal anterior cingulate cortex and the value of control.

    PubMed

    Shenhav, Amitai; Cohen, Jonathan D; Botvinick, Matthew M

    2016-09-27

    Debates over the function(s) of dorsal anterior cingulate cortex (dACC) have persisted for decades. So too have demonstrations of the region's association with cognitive control. Researchers have struggled to account for this association and, simultaneously, dACC's involvement in phenomena related to evaluation and motivation. We describe a recent integrative theory that achieves this goal. It proposes that dACC serves to specify the currently optimal allocation of control by determining the overall expected value of control (EVC), thereby licensing the associated cognitive effort. The EVC theory accounts for dACC's sensitivity to a wide array of experimental variables, and their relationship to subsequent control adjustments. Finally, we contrast our theory with a recent theory proposing a primary role for dACC in foraging-like decisions. We describe why the EVC theory offers a more comprehensive and coherent account of dACC function, including dACC's particular involvement in decisions regarding foraging or otherwise altering one's behavior.

  8. Sequencing biological and physical events affects specific frequency bands within the human premotor cortex: an intracerebral EEG study.

    PubMed

    Caruana, Fausto; Sartori, Ivana; Lo Russo, Giorgio; Avanzini, Pietro

    2014-01-01

    Evidence that the human premotor cortex (PMC) is activated by cognitive functions involving the motor domain is classically explained as the reactivation of a motor program decoupled from its executive functions, and exploited for different purposes by means of a motor simulation. In contrast, the evidence that PMC contributes to the sequencing of non-biological events cannot be explained by the simulationist theory. Here we investigated how motor simulation and event sequencing coexist within the PMC and how these mechanisms interact when both functions are executed. We asked patients with depth electrodes implanted in the PMC to passively observe a randomized arrangement of images depicting biological actions and physical events and, in a second block, to sequence them in the correct order. This task allowed us to disambiguate between the simple observation of actions, their sequencing (recruiting different motor simulation processes), as well as the sequencing of non-biological events (recruiting a sequencer mechanism non dependant on motor simulation). We analysed the response of the gamma, alpha and beta frequency bands to evaluate the contribution of each brain rhythm to the observation and sequencing of both biological and non-biological stimuli. We found that motor simulation (biological>physical) and event sequencing (sequencing>observation) differently affect the three investigated frequency bands: motor simulation was reflected on the gamma and, partially, in the beta, but not in the alpha band. In contrast, event sequencing was also reflected on the alpha band.

  9. Modulatory Effects of the Ipsi and Contralateral Ventral Premotor Cortex (PMv) on the Primary Motor Cortex (M1) Outputs to Intrinsic Hand and Forearm Muscles in Cebus apella

    PubMed Central

    Quessy, Stephan; Côté, Sandrine L.; Hamadjida, Adjia; Deffeyes, Joan; Dancause, Numa

    2016-01-01

    The ventral premotor cortex (PMv) is a key node in the neural network involved in grasping. One way PMv can carry out this function is by modulating the outputs of the primary motor cortex (M1) to intrinsic hand and forearm muscles. As many PMv neurons discharge when grasping with either arm, both PMv within the same hemisphere (ipsilateral; iPMv) and in the opposite hemisphere (contralateral; cPMv) could modulate M1 outputs. Our objective was to compare modulatory effects of iPMv and cPMv on M1 outputs to intrinsic hand and forearm muscles. We used paired-pulse protocols with intracortical microstimulations in capuchin monkeys. A conditioning stimulus was applied in either iPMv or cPMv simultaneously or prior to a test stimulus in M1 and the effects quantified in electromyographic signals. Modulatory effects from iPMv were predominantly facilitatory, and facilitation was much more common and powerful on intrinsic hand than forearm muscles. In contrast, while the conditioning of cPMv could elicit facilitatory effects, in particular to intrinsic hand muscles, it was much more likely to inhibit M1 outputs. These data show that iPMv and cPMv have very different modulatory effects on the outputs of M1 to intrinsic hand and forearm muscles. PMID:27473318

  10. Progressive loss of speech: a neuropsychological profile of premotor dysfunction.

    PubMed

    Didic, M; Ceccaldi, M; Poncet, M

    1998-01-01

    Several patients with 'progressive loss of speech output' or 'progressive anarthria' of degenerative origin have been reported in the literature. We report 5 clinical cases with slowly progressive loss of speech output and initially no deficit in other cognitive domains. The early clinical features were analysed in an attempt to identify the anatomo-functional systems implied in the degenerative process. The first phase of the disorder was characterised by impaired articulation consistent with speech apraxia, telegraphic style and a difficulty to elaborate a series of orofacial or hand movements. It is argued that these symptoms result from an impairment of complex motor processing due to dysfunction of the ventral premotor system. In the second phase, a decrease in spontaneous speech and self-initiated action was combined with exaggerated dependency on external stimuli, interpreted as dysfunction of the dorsal premotor system. We suggest that the neuropsychological profile of the disorder may result from progressive degeneration of the premotor cortex.

  11. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Dyson-Sutton, William; Barker, Anthony T; Woodruff, Peter W R

    2011-09-02

    Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.

  12. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

    PubMed

    Takemura, Hiromasa; Rokem, Ariel; Winawer, Jonathan; Yeatman, Jason D; Wandell, Brian A; Pestilli, Franco

    2016-05-01

    Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information.

  13. Effectiveness and neural mechanisms associated with tDCS delivered to premotor cortex in stroke rehabilitation: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background More than 60% of stroke survivors experience residual deficits of the paretic upper limb/hand. Standard rehabilitation generates modest gains. Stimulation delivered to the surviving Primary Motor Cortex in the stroke-affected hemisphere has been considered a promising adjunct. However, recent trials challenge its advantage. We discuss our pilot clinical trial that aims to address factors implicated in divergent success of the approach. We assess safety, feasibility and efficacy of targeting an alternate locus during rehabilitation- the premotor cortex. In anticipating variance across patients, we measure neural markers differentiating response from non-response. Methods/Design In a randomized, sham-controlled, double-blinded pilot clinical study, patients with chronic stroke (n = 20) are assigned to receive transcranial direct current stimulation delivered to the premotor cortex or sham during rehabilitation of the paretic arm/hand. Patients receive the designated intervention for 30 min, twice a day for 3 days a week for 5 weeks. We assess hand function and patients’ reports of use of paretic hand. A general linear mixed methods model will analyze changes from pre- to post-intervention. Responders and non-responders will be compared upon baseline level of function, and neural substrates, including function and integrity of output tracts, bi-hemispheric balance, and lesion profile. Incidence of adverse events will be compared using Fisher’s Exact test, while rigor of blinding will be assessed with Chi-square analysis to ascertain feasibility. Discussion Variable success of cortical stimulation in rehabilitation can be related to gaps in theoretical basis and clinical investigation. Given that most patients with severe deficits have damage to the primary motor cortex or its output pathways, it would be futile to target stimulation to this site. We suggest targeting premotor cortex because it contributes substantially to descending output, a

  14. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  15. Perception and Action Selection Dissociate Human Ventral and Dorsal Cortex

    ERIC Educational Resources Information Center

    Ikkai, Akiko; Jerde, Trenton A.; Curtis, Clayton E.

    2011-01-01

    We test theories about the functional organization of the human cortex by correlating brain activity with demands on perception versus action selection. Subjects covertly searched for a target among an array of 4, 8, or 12 items (perceptual manipulation) and then, depending on the color of the array, made a saccade toward, away from, or at a right…

  16. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory

    PubMed Central

    Woodcock, Eric A.; Wadehra, Sunali; Diwadkar, Vaibhav A.

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness’ characterization as a disconnection syndrome. PMID:27092063

  17. Network Profiles of the Dorsal Anterior Cingulate and Dorsal Prefrontal Cortex in Schizophrenia During Hippocampal-Based Associative Memory.

    PubMed

    Woodcock, Eric A; Wadehra, Sunali; Diwadkar, Vaibhav A

    2016-01-01

    Schizophrenia is a disorder characterized by brain network dysfunction, particularly during behavioral tasks that depend on frontal and hippocampal mechanisms. Here, we investigated network profiles of the regions of the frontal cortex during memory encoding and retrieval, phases of processing essential to associative memory. Schizophrenia patients (n = 12) and healthy control (HC) subjects (n = 10) participated in an established object-location associative memory paradigm that drives frontal-hippocampal interactions. Network profiles were modeled of both the dorsal prefrontal (dPFC) and the dorsal anterior cingulate cortex (dACC) as seeds using psychophysiological interaction analyses, a robust framework for investigating seed-based connectivity in specific task contexts. The choice of seeds was motivated by previous evidence of involvement of these regions during associative memory. Differences between patients and controls were evaluated using second-level analyses of variance (ANOVA) with seed (dPFC vs. dACC), group (patients vs. controls), and memory process (encoding and retrieval) as factors. Patients showed a pattern of exaggerated modulation by each of the dACC and the dPFC during memory encoding and retrieval. Furthermore, group by memory process interactions were observed within regions of the hippocampus. In schizophrenia patients, relatively diminished modulation during encoding was associated with increased modulation during retrieval. These results suggest a pattern of complex dysfunctional network signatures of critical forebrain regions in schizophrenia. Evidence of dysfunctional frontal-medial temporal lobe network signatures in schizophrenia is consistent with the illness' characterization as a disconnection syndrome.

  18. A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey

    PubMed Central

    Lyon, David C.; Nassi, Jonathan J.; Callaway, Edward M.

    2010-01-01

    The superior colliculus (SC) is the first station in a subcortical relay of retinal information to extrastriate visual cortex. Ascending SC projections pass through pulvinar and LGN on their way to cortex, but it is not clear how many synapses are required to complete these circuits or which cortical areas are involved. To examine this relay directly, we injected transynaptic rabies virus into several extrastriate visual areas. We observed disynaptically labeled cells in superficial, retino-recipient SC layers from injections in dorsal stream areas MT and V3, but not the earliest extrastriate area, V2, nor ventral stream area V4. This robust SC-dorsal stream pathway is most likely relayed through the inferior pulvinar and can provide magnocellular-like sensory inputs necessary for motion perception and the computation of orienting movements. Furthermore, by circumventing primary visual cortex, this pathway may also underlie the remaining visual capacities associated with blindsight. PMID:20152132

  19. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions.

  20. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex

    PubMed Central

    Luchicchi, Antonio; Mnie-Filali, Ouissame; Terra, Huub; Bruinsma, Bastiaan; de Kloet, Sybren F.; Obermayer, Joshua; Heistek, Tim S.; de Haan, Roel; de Kock, Christiaan P. J.; Deisseroth, Karl; Pattij, Tommy; Mansvelder, Huibert D.

    2016-01-01

    Attending the sensory environment for cue detection is a cognitive operation that occurs on a time scale of seconds. The dorsal and ventral medial prefrontal cortex (mPFC) contribute to separate aspects of attentional processing. Pyramidal neurons in different parts of the mPFC are active during cognitive behavior, yet whether this activity is causally underlying attentional processing is not known. We aimed to determine the precise temporal requirements for activation of the mPFC subregions during the seconds prior to cue detection. To test this, we used optogenetic silencing of dorsal or ventral mPFC pyramidal neurons at defined time windows during a sustained attentional state. We find that the requirement of ventral mPFC pyramidal neuron activity is strictly time-locked to stimulus detection. Inhibiting the ventral mPFC 2 s before or during cue presentation reduces response accuracy and hampers behavioral inhibition. The requirement for dorsal mPFC activity on the other hand is temporally more loosely related to a preparatory attentional state, and short lapses in pyramidal neuron activity in dorsal mPFC do not affect performance. This only occurs when the dorsal mPFC is inhibited during the entire preparatory period. Together, our results reveal that a dissociable temporal recruitment of ventral and dorsal mPFC is required during attentional processing. PMID:27630545

  1. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas

    2012-01-01

    Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489

  2. Neuroanatomical study on the tecto-suprageniculate-dorsal auditory cortex pathway in the rat.

    PubMed

    Horie, M; Meguro, R; Hoshino, K; Ishida, N; Norita, M

    2013-01-03

    Previous anatomical and physiological studies suggest that the superior colliculus sends integrated sensory information to the multimodal cortical areas via the thalamic suprageniculate nucleus (SG). However, the detailed distribution of rat tecto-SG axon terminals and SG neurons projecting to the multimodal cortex, as well as synaptic connections between these tectal axons and SG neurons, remains unclear. In this study, the organization of the tecto-thalamo-cortical pathway was investigated via combined injections of anterograde and retrograde tracers followed by light and electron microscopic observations. Injections of a retrograde tracer, cholera toxin B subunit (CTB), into the temporal cortex, area 2, dorsal part (Te2D), and injections of an anterograde tracer, biotinylated dextran amine (BDA), into the deep layers of the superior colliculus produced the following results: (1) Retrogradely CTB-labeled neurons were found throughout SG, predominantly in its rostral part. CTB-labeled neurons were also found in other cortical areas such as the visual cortex, the auditory cortex, the parietal association cortex, and the perirhinal cortex. (2) Anterogradely BDA-labeled axons and their terminals were also observed throughout SG. Dual visualization of BDA and CTB showed that retrogradely labeled SG neurons and anterogradely labeled tectal axon terminal boutons overlapped considerably in the rostral part of SG, and their direct synaptic contacts were also confirmed via electron microscopy. These findings suggest that multimodal information from the superior colliculus can be processed directly in SG neurons projecting to Te2D.

  3. Practice explains abolished behavioural adaptation after human dorsal anterior cingulate cortex lesions.

    PubMed

    van Steenbergen, H; Haasnoot, E; Bocanegra, B R; Berretty, E W; Hommel, B

    2015-04-08

    The role of mid-cingulate cortex (MCC), also referred to as dorsal anterior cingulate cortex, in regulating cognitive control is a topic of primary importance in cognitive neuroscience. Although many studies have shown that MCC responds to cognitive demands, lesion studies in humans are inconclusive concerning the causal role of the MCC in the adaptation to these demands. By elegantly combining single-cell recordings with behavioural methods, Sheth et al. [Sheth, S. et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488, 218-22 (2012).] recently were able to show that neurons in MCC encode cognitive demand. Importantly, this study also claimed that focal lesions of the MCC abolished behavioural adaptation to cognitive demands. Here we show that the absence of post-cingulotomy behavioural adaptation reported in this study may have been due to practice effects. We run a control condition where we tested subjects before and after a dummy treatment, which substituted cingulotomy with a filler task (presentation of a documentary). The results revealed abolished behavioural adaptation following the dummy treatment. Our findings suggest that future work using proper experimental designs is needed to advance the understanding of the causal role of the MCC in behavioural adaptation.

  4. Impairment in delayed nonmatching to sample following lesions of dorsal prefrontal cortex.

    PubMed

    Moore, Tara L; Schettler, Stephen P; Killiany, Ronald J; Rosene, Douglas L; Moss, Mark B

    2012-12-01

    The prefrontal cortex has been identified as essential for executive function, as well as for aspects of rule learning and recognition memory. As part of our studies to assess prefrontal cortical function in the monkey, we evaluated the effects of damage to the dorsal prefrontal cortex (DPFC) on the Category Set Shifting Task (CSST), a test of abstraction and set-shifting, and on the Delayed Nonmatching to Sample (DNMS) task, a benchmark test of rule learning and recognition memory. The DPFC lesions in this study included dorsolateral and dorsomedial aspects of the PFC. In a previous report, we published evidence of an impairment on the CSST as a consequence of DPFC lesions (Moore, Schettler, Killiany, Rosene, & Moss, 2009). Here we report that monkeys with lesions of the DPFC were also markedly impaired relative to controls on both the acquisition (rule learning) and performance (recognition memory) conditions of trial-unique DNMS. The presence and extent of the deficits that we observed were of some surprise and support the possibility that the dorsal prefrontal cortex plays a more direct role in learning and recognition memory than had been previously thought.

  5. Impairment in Delayed Non-Matching to Sample Following Lesions of Dorsal Prefrontal Cortex

    PubMed Central

    Moore, Tara L; Schettler, Stephen P.; Killiany, Ronald J.; Rosene, Douglas L.; Moss, Mark B.

    2012-01-01

    The prefrontal cortex has been identified as essential for executive function, as well as for aspects of rule learning and recognition memory. As part of our studies to assess prefrontal cortical function in the monkey, we evaluated the effects of damage to the dorsal prefrontal cortex (DPFC) on the Category Set Shifting Task (CSST), a test of abstraction and set-shifting, and on the Delayed Non Matching-to-Sample (DNMS) task, a benchmark test of rule learning and recognition memory. The DPFC lesions in this study included dorsolateral and dorsomedial aspects of the PFC. In a previous report, we published evidence of an impairment on the CSST as a consequence of DPFC lesions (Moore et al, 2009). Here we report that monkeys with lesions of the DPFC were also markedly impaired relative to controls on both the acquisition (rule learning) and performance (recognition memory) conditions of trial-unique DNMS. The presence and extent of the deficits that we observed were of some surprise and support the possibility that the dorsal prefrontal cortex plays a more direct role in learning and recognition memory than had been previously thought. PMID:23088539

  6. Neurophysiologic markers of primary motor cortex for laryngeal muscles and premotor cortex in caudal opercular part of inferior frontal gyrus investigated in motor speech disorder: a navigated transcranial magnetic stimulation (TMS) study.

    PubMed

    Rogić Vidaković, Maja; Jerković, Ana; Jurić, Tomislav; Vujović, Igor; Šoda, Joško; Erceg, Nikola; Bubić, Andreja; Zmajević Schönwald, Marina; Lioumis, Pantelis; Gabelica, Dragan; Đogaš, Zoran

    2016-11-01

    Transcranial magnetic stimulation studies have so far reported the results of mapping the primary motor cortex (M1) for hand and tongue muscles in stuttering disorder. This study was designed to evaluate the feasibility of repetitive navigated transcranial magnetic stimulation (rTMS) for locating the M1 for laryngeal muscle and premotor cortical area in the caudal opercular part of inferior frontal gyrus, corresponding to Broca's area in stuttering subjects by applying new methodology for mapping these motor speech areas. Sixteen stuttering and eleven control subjects underwent rTMS motor speech mapping using modified patterned rTMS. The subjects performed visual object naming task during rTMS applied to the (a) left M1 for laryngeal muscles for recording corticobulbar motor-evoked potentials (CoMEP) from cricothyroid muscle and (b) left premotor cortical area in the caudal opercular part of inferior frontal gyrus while recording long latency responses (LLR) from cricothyroid muscle. The latency of CoMEP in control subjects was 11.75 ± 2.07 ms and CoMEP amplitude was 294.47 ± 208.87 µV, and in stuttering subjects CoMEP latency was 12.13 ± 0.75 ms and 504.64 ± 487.93 µV CoMEP amplitude. The latency of LLR in control subjects was 52.8 ± 8.6 ms and 54.95 ± 4.86 in stuttering subjects. No significant differences were found in CoMEP latency, CoMEP amplitude, and LLR latency between stuttering and control-fluent speakers. These results indicate there are probably no differences in stuttering compared to controls in functional anatomy of the pathway used for transmission of information from premotor cortex to the M1 cortices for laryngeal muscle representation and from there via corticobulbar tract to laryngeal muscles.

  7. 7 Tesla fMRI Reveals Systematic Functional Organization for Binocular Disparity in Dorsal Visual Cortex

    PubMed Central

    Goncalves, Nuno R.; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M.; Francis, Susan T.; Schluppeck, Denis

    2015-01-01

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception. PMID:25698743

  8. 7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    PubMed

    Goncalves, Nuno R; Ban, Hiroshi; Sánchez-Panchuelo, Rosa M; Francis, Susan T; Schluppeck, Denis; Welchman, Andrew E

    2015-02-18

    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.

  9. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.

    PubMed

    Oemisch, Mariann; Westendorff, Stephanie; Everling, Stefan; Womelsdorf, Thilo

    2015-09-23

    The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and

  10. Electrophysiological properties of ependymal cells (radial glia) in dorsal cortex of the turtle, Pseudemys scripta.

    PubMed Central

    Connors, B W; Ransom, B R

    1987-01-01

    1. We have investigated the electrophysiological properties of ependymal cells in the isolated dorsal cortex of the turtle, Pseudemys scripta. The cell bodies of these radial glia form an epithelium at the ventricular surface, and each cell sends one or more branching processes through the cortex to the pial surface. Very few non-ependymal glia exist in the dorsal cortex. 2. Ependymal cells had high resting membrane potentials (-90 mV), very fast time constants and a lack of intrinsic excitability or synaptic potentials. 3. Changes in the K+ concentration ([K+]) of the bathing solution caused near-Nernstian changes of ependymal membrane potentials. When local neuronal pathways were activated, ependymal cells slowly depolarized while extracellular voltage shifted negatively. Simultaneous measurements of extracellular [K+] ([K+]o) near the impaled ependymal cell body showed that these slow depolarizations were fully accounted for by activity-dependent increases in [K+]o. Similar measurements during focal pressure applications of solutions with high [K+] suggested that intrasomatic recordings reflect predominantly the [K+]o adjacent to the cell body, and not the intracortical process. 4. Intracellular injections of the fluorescent dye Lucifer Yellow CH, and simultaneous recordings from neighbouring cells, indicated that ependymal cells are chemically and electrically coupled to one another. Increasing the ambient CO2 level from 5 to 40% depolarized cells, increased their input resistance, and abolished interglial dye coupling. 5. The physiological properties of ependymal cells are very similar to those of a variety of glial cell types in a range of vertebrate and invertebrate species. In the absence of other types of glia, radial glia may function as the sole cellular mediators of K+ redistribution (i.e. K+ spatial buffering) following neural activity, as well as the generators of slow extracellular potentials. Images Plate 1 Plate 2 PMID:3116210

  11. Retinotopic organization of extrastriate cortex in the owl monkey--dorsal and lateral areas.

    PubMed

    Sereno, Martin I; McDonald, Colin T; Allman, John M

    2015-01-01

    Dense retinotopy data sets were obtained by microelectrode visual receptive field mapping in dorsal and lateral visual cortex of anesthetized owl monkeys. The cortex was then physically flatmounted and stained for myelin or cytochrome oxidase. Retinotopic mapping data were digitized, interpolated to a uniform grid, analyzed using the visual field sign technique-which locally distinguishes mirror image from nonmirror image visual field representations-and correlated with the myelin or cytochrome oxidase patterns. The region between V2 (nonmirror) and MT (nonmirror) contains three areas-DLp (mirror), DLi (nonmirror), and DLa/MTc (mirror). DM (mirror) was thin anteroposteriorly, and its reduced upper field bent somewhat anteriorly away from V2. DI (nonmirror) directly adjoined V2 (nonmirror) and contained only an upper field representation that also adjoined upper field DM (mirror). Retinotopy was used to define area VPP (nonmirror), which adjoins DM anteriorly, area FSTd (mirror), which adjoins MT ventrolaterally, and TP (mirror), which adjoins MT and DLa/MTc dorsoanteriorly. There was additional retinotopic and architectonic evidence for five more subdivisions of dorsal and lateral extrastriate cortex-TA (nonmirror), MSTd (mirror), MSTv (nonmirror), FSTv (nonmirror), and PP (mirror). Our data appear quite similar to data from marmosets, though our field sign-based areal subdivisions are slightly different. The region immediately anterior to the superiorly located central lower visual field V2 varied substantially between individuals, but always contained upper fields immediately touching lower visual field V2. This region appears to vary even more between species. Though we provide a summary diagram, given within- and between-species variation, it should be regarded as a guide to parsing complex retinotopy rather than a literal representation of any individual, or as the only way to agglomerate the complex mosaic of partial upper and lower field, mirror- and

  12. Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics.

    PubMed

    Suminski, Aaron J; Mardoum, Philip; Lillicrap, Timothy P; Hatsopoulos, Nicholas G

    2015-04-01

    A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery, and therefore, its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortexes exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought.

  13. The Dorsal Medial Prefrontal Cortex Responds Preferentially to Social Interactions during Natural Viewing

    PubMed Central

    Kelley, William M.; Haxby, James V.; Heatherton, Todd F.

    2016-01-01

    Humans display a strong tendency to make spontaneous inferences concerning the thoughts and intentions of others. Although this ability relies upon the concerted effort of multiple brain regions, the dorsal medial prefrontal cortex (DMPFC) is most closely associated with the ability to reason about other people's mental states and form impressions of their character. Here, we investigated this region's putative social category preference using fMRI as 34 participants engaged in uninstructed viewing of a complex naturalistic stimulus. Using a data-driven “reverse correlation” approach, we characterize the DMPFC's stimulus response profile from ongoing neural responses to a dynamic movie stimulus. Results of this analysis demonstrate that the DMPFC's response profile is dominated by the presence of scenes involving social interactions between characters. Subsequent content analysis of video clips created from this response profile confirmed this finding. In contrast, regions of the inferotemporal and parietal cortex were selectively tuned to faces and actions, both features that often covary with social interaction but may be difficult to disentangle using standard event-related approaches. Together, these findings suggest that the DMPFC is finely tuned for processing social interaction above other categories and that this preference is maintained during unrestricted viewing of complex natural stimuli such as movies. SIGNIFICANCE STATEMENT Recently, studies have brought into question whether the dorsal medial prefrontal cortex (DMPFC), a region long associated with social cognition, is specialized for the processing of social information. We examine the response profile of this region during natural viewing of a reasonably naturalistic stimulus (i.e., a Hollywood movie) using a data-driven reverse correlation technique. Our findings demonstrate that, during natural viewing, the DMPFC is strongly tuned to the social features of the stimulus above other categories

  14. Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior

    PubMed Central

    Asemi, Avisa; Ramaseshan, Karthik; Burgess, Ashley; Diwadkar, Vaibhav A.; Bressler, Steven L.

    2015-01-01

    Motor control is integral to all types of human behavior, and the dorsal Anterior Cingulate Cortex (dACC) is thought to play an important role in the brain network underlying motor control. Yet the role of the dACC in motor control is under-characterized. Here we aimed to characterize the dACC’s role in adolescent brain network interactions during a simple motor control task involving visually coordinated unimanual finger movements. Network interactions were assessed using both undirected and directed functional connectivity analysis of functional Magnetic Resonance Imaging (fMRI) Blood-Oxygen-Level-Dependent (BOLD) signals, comparing the task with a rest condition. The relation between the dACC and Supplementary Motor Area (SMA) was compared to that between the dACC and Primary Motor Cortex (M1). The directed signal from dACC to SMA was significantly elevated during motor control in the task. By contrast, the directed signal from SMA to dACC, both directed signals between dACC and M1, and the undirected functional connections of dACC with SMA and M1, all did not differ between task and rest. Undirected coupling of dACC with both SMA and dACC, and only the dACC-to-SMA directed signal, were significantly greater for a proactive than a reactive task condition, suggesting that dACC plays a role in motor control by maintaining stimulus timing expectancy. Overall, these results suggest that the dACC selectively modulates the SMA during visually coordinated unimanual behavior in adolescence. The role of the dACC as an important brain area for the mediation of task-related motor control may be in place in adolescence, continuing into adulthood. The task and analytic approach described here should be extended to the study of healthy adults to examine network profiles of the dACC during basic motor behavior. PMID:26089783

  15. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain.

    PubMed

    Russo, Jennifer F; Sheth, Sameer A

    2015-06-01

    Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.

  16. Chemogenetic Inactivation of Dorsal Anterior Cingulate Cortex Neurons Disrupts Attentional Behavior in Mouse

    PubMed Central

    Koike, Hiroyuki; Demars, Michael P; Short, Jennifer A; Nabel, Elisa M; Akbarian, Schahram; Baxter, Mark G; Morishita, Hirofumi

    2016-01-01

    Attention is disrupted commonly in psychiatric disorders, yet mechanistic insight remains limited. Deficits in this function are associated with dorsal anterior cingulate cortex (dACC) excitotoxic lesions and pharmacological disinhibition; however, a causal relationship has not been established at the cellular level. Moreover, this association has not yet been examined in a genetically tractable species such as mice. Here, we reveal that dACC neurons causally contribute to attention processing by combining a chemogenetic approach that reversibly suppresses neural activity with a translational, touchscreen-based attention task in mice. We virally expressed inhibitory hM4Di DREADD (designer receptor exclusively activated by a designer drug) in dACC neurons, and examined the effects of this inhibitory action with the attention-based five-choice serial reaction time task. DREADD inactivation of the dACC neurons during the task significantly increased omission and correct response latencies, indicating that the neuronal activities of dACC contribute to attention and processing speed. Selective inactivation of excitatory neurons in the dACC not only increased omission, but also decreased accuracy. The effect of inactivating dACC neurons was selective to attention as response control, motivation, and locomotion remain normal. This finding suggests that dACC excitatory neurons play a principal role in modulating attention to task-relevant stimuli. This study establishes a foundation to chemogenetically dissect specific cell-type and circuit mechanisms underlying attentional behaviors in a genetically tractable species. PMID:26224620

  17. Lesions to the ventral, but not the dorsal, medial prefrontal cortex enhance latent inhibition.

    PubMed

    George, David N; Duffaud, Anaïs M; Pothuizen, Helen H J; Haddon, Josephine E; Killcross, Simon

    2010-04-01

    The acquisition of a conditioned response to a stimulus when it is paired with a reinforcer is retarded if the stimulus has previously been repeatedly pre-exposed in the absence of the reinforcer. This effect, called latent inhibition, has previously been found to be insensitive to lesions of the medial prefrontal cortex (mPFC) in rats. Using an on-baseline conditioned emotional response procedure, which is especially sensitive to small variations in the absolute magnitude of latent inhibition, we found increased latent inhibition following excitotoxic lesions of the mPFC (Experiment 1) or the ventral mPFC alone (Experiment 2) as compared with sham-operated control rats. Lesions restricted to the dorsal mPFC, however, were without effect (Experiment 2). These results are consistent with those of experiments employing another type of interference procedure, extinction. Together, these findings suggest that when different contingencies between a stimulus and a reinforcer are established in separate learning phases, lesions to the ventral mPFC result in increased interference between first-learned and second-learned contingencies. As a consequence, retrieval of the second-learned contingency is impaired, and performance is dominated by the first-learned contingency. These findings are discussed in light of the use of latent inhibition to model cognitive deficits in schizophrenia.

  18. Dissociation of retinal and headcentric disparity signals in dorsal human cortex

    PubMed Central

    Arnoldussen, David M.; Goossens, Jeroen; van Den Berg, Albert V.

    2015-01-01

    Recent fMRI studies have shown fusion of visual motion and disparity signals for shape perception (Ban et al., 2012), and unmasking camouflaged surfaces (Rokers et al., 2009), but no such interaction is known for typical dorsal motion pathway tasks, like grasping and navigation. Here, we investigate human speed perception of forward motion and its representation in the human motion network. We observe strong interaction in medial (V3ab, V6) and lateral motion areas (MT+), which differ significantly. Whereas the retinal disparity dominates the binocular contribution to the BOLD activity in the anterior part of area MT+, headcentric disparity modulation of the BOLD response dominates in area V3ab and V6. This suggests that medial motion areas not only represent rotational speed of the head (Arnoldussen et al., 2011), but also translational speed of the head relative to the scene. Interestingly, a strong response to vergence eye movements was found in area V1, which showed a dependency on visual direction, just like vertical-size disparity. This is the first report of a vertical-size disparity correlate in human striate cortex. PMID:25759642

  19. Decreased expression of nociceptin/orphanin FQ in the dorsal anterior cingulate cortex of suicides.

    PubMed

    Lutz, Pierre-Eric; Zhou, Yi; Labbe, Aurélie; Mechawar, Naguib; Turecki, Gustavo

    2015-11-01

    The nociceptin/orphanin FQ (N/OFQ)-Nociceptin Opiod-like Peptide (NOP) receptor system is a critical mediator of physiological and pathological processes involved in emotional regulation and drug addiction. As such, this system may be an important biological substrate underlying psychiatric conditions that contribute to the risk of suicide. Thus, the goal of the present study was to characterize changes in human N/OFQ and NOP signaling as a function of depression, addiction and suicide. We quantified the expression of N/OFQ and NOP by RT-PCR in the anterior insula, the mediodorsal thalamus, and the dorsal anterior cingulate cortex (dACC) from a large sample of individuals who died by suicide and matched psychiatrically-healthy controls. Suicides displayed an 18% decrease in the expression of N/OFQ in the dACC that was not accounted for by current depressive or substance use disorders at the time of death. Therefore, our results suggest that dysregulation of the N/OFQ-NOP system may contribute to the neurobiology of suicide, a hypothesis that warrants further exploration.

  20. Decreased Expression of Nociceptin/Orphanin FQ in the dorsal Anterior Cingulate Cortex of Suicides

    PubMed Central

    Lutz, Pierre-Eric; Zhou, Yi; Labbe, Aurélie; Mechawar, Naguib; Turecki, Gustavo

    2015-01-01

    The nociceptin/orphanin FQ (N/OFQ) – Nociceptin Opiod-like Peptide (NOP) receptor system is a critical mediator of physiological and pathological processes involved in emotional regulation and drug addiction. As such, this system may be an important biological substrate underlying psychiatric conditions that contribute to the risk of suicide. Thus, the goal of the present study was to characterize changes in human N/OFQ and NOP signaling as a function of depression, addiction and suicide. We quantified the expression of N/OFQ and NOP by RT-PCR in the anterior insula, the mediodorsal thalamus, and the dorsal anterior cingulate cortex (dACC) from a large sample of individuals who died by suicide and matched psychiatrically-healthy controls. Suicides displayed an 18% decrease in the expression of N/OFQ in the dACC that was not accounted for by current depressive or substance use disorders at the time of death. Therefore, our results suggest that dysregulation of the N/OFQ-NOP system may contribute to the neurobiology of suicide, a hypothesis that warrants further exploration. PMID:26349406

  1. Asymmetry of the dorsal anterior cingulate cortex: evidences from multiple modalities of MRI.

    PubMed

    Wang, Jue; Liu, Dong-Qiang; Zhang, Han; Zhu, Wei-Xuan; Dong, Zhang-Ye; Zang, Yu-Feng

    2013-04-01

    The dorsal anterior cingulate cortex (dACC) has been consistently implicated in cognitive control processes. Many studies have found higher fractional anisotropy (FA) in the left anterior cingulum bundle (aCB) than in the right. However, the asymmetry of gray matter density (GMD) is not clear. Using multiple modalities of MRI, we investigated both FA and GMD in the dACC in two independent groups of healthy participants (50 per group, 18-24 years old, half males and half females). Consistent with previous findings, the mean FA of the left aCB was significantly higher than that of the right. Males showed higher FA in the bilateral aCB than females. Voxel-based analysis of GMD in the dACC presented a region-specific significant asymmetry: right > left in the lower part (around callosal sulcus) but left > right in the upper part (around cingulate sulcus). No significant sex effect was found for GMD in the dACC. All these results were almost the same across the two independent groups. The complex pattern of asymmetry in GMD may imply highly differentiated functions of the dACC. Future fine-scale structural and diffusion MRI studies and a battery of cognitive behavioral measurements are needed to fully elucidate the asymmetry of the dACC.

  2. Parieto-premotor areas mediate directional interference during bimanual movements.

    PubMed

    Wenderoth, Nicole; Debaere, Filiep; Sunaert, Stefan; van Hecke, Paul; Swinnen, Stephan P

    2004-10-01

    In bimanual movements, interference emerges when limbs are moved simultaneously along incompatible directions. The neural substrate and mechanisms underlying this phenomenon are largely unknown. We used functional magnetic resonance imaging to compare brain activation during directional incompatible versus compatible bimanual movements. Our main results were that directional interference emerges primarily within superior parietal, intraparietal and dorsal premotor areas of the right hemisphere. The same areas were also activated when the unimanual subtasks were executed in isolation. In light of previous findings in monkeys and humans, we conclude that directional interference activates a parieto-premotor circuit that is involved in the control of goal-directed movements under somatosensory guidance. Moreover, our data suggest that the parietal cortex might represent an important locus for integrating spatial aspects of the limbs' movements into a common action. It is hypothesized to be the candidate structure from where interference arises when directionally incompatible movements are performed. We discuss the possibility that interference emerges when computational resources in these parietal areas are insufficient to code two incompatible movement directions independently from each other.

  3. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow.

    PubMed

    Ulrich, Martin; Keller, Johannes; Grön, Georg

    2016-01-01

    Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus (DRN), and relative activation decreases of the medial prefrontal cortex (MPFC) and of the amygdala (AMY). In the present study, Dynamic Causal Modeling (DCM) was used to explore effective connectivity between those brain regions. To test our hypothesis that the DRN causally down-regulates activity of the MPFC and/or of the AMY, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A "flow" condition, with task demands automatically balanced with participants' skill level, was compared with conditions of "boredom" and "overload". DCM models were constructed modeling full reciprocal endogenous connections between the DRN, the MPFC, the AMY, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the DRN, the MPFC, and the AMY, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection (BMS) was applied to identify a possible winning family (and model). Although BMS revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the DRN on the MPFC when participants experienced flow relative to control conditions. In addition, these condition-dependent modulatory effects significantly predicted participants' experienced degree of

  4. The entorhinal cortex, but not the dorsal hippocampus, is necessary for single-cue latent learning.

    PubMed

    Stouffer, Eric M

    2010-09-01

    Two experiments were conducted to examine the roles of the entorhinal cortex (EC), dorsal hippocampus (DH), and ventral hippocampus (VH) in a modified Latent Cue Preference (LCP) task. The modified LCP task utilized one visual cue in each compartment, compared to several multimodal cues used in a previous version. In the single-cue LCP task, water-replete rats drink water in one compartment of the LCP box on 1 day, and then have no water in a second compartment of the LCP box the following day (one training trial), for a total of three training trials. Rats are then water-deprived prior to a preference test, in which they are allowed to move freely between the two compartments with the water removed. Latent learning is demonstrated when water-deprived rats spend more time in the compartment that previously contained the water. Experiment 1 demonstrated that the single-cue LCP task results in the same irrelevant-incentive latent learning as the multicue LCP task. In addition, Experiment 1 replicated the finding that a compartment preference based on this latent learning requires a deprivation state during the preference test, while a compartment preference based on conditioning does not. Experiment 2 examined the effects of pretraining neurotoxin lesions of the EC, DH, and VH on this single-cue LCP task. Results showed that lesions of the EC and VH disrupted the irrelevant-incentive latent learning, while lesions of the DH did not. These results indicate that a latent learning task that involves one discrete compartment cue, rather than several compartmental cues, does not require the DH. Therefore, the EC appears to play a central role in single-cue latent learning in the LCP task.

  5. Dorsal anterior cingulate and ventromedial prefrontal cortex have inverse roles in both foraging and economic choice.

    PubMed

    Shenhav, Amitai; Straccia, Mark A; Botvinick, Matthew M; Cohen, Jonathan D

    2016-12-01

    Recent research has highlighted a distinction between sequential foraging choices and traditional economic choices between simultaneously presented options. This was partly motivated by observations in Kolling, Behrens, Mars, and Rushworth, Science, 336(6077), 95-98 (2012) (hereafter, KBMR) that these choice types are subserved by different circuits, with dorsal anterior cingulate (dACC) preferentially involved in foraging and ventromedial prefrontal cortex (vmPFC) preferentially involved in economic choice. To support this account, KBMR used fMRI to scan human subjects making either a foraging choice (between exploiting a current offer or swapping for potentially better rewards) or an economic choice (between two reward-probability pairs). This study found that dACC better tracked values pertaining to foraging, whereas vmPFC better tracked values pertaining to economic choice. We recently showed that dACC's role in these foraging choices is better described by the difficulty of choosing than by foraging value, when correcting for choice biases and testing a sufficiently broad set of foraging values (Shenhav, Straccia, Cohen, & Botvinick Nature Neuroscience, 17(9), 1249-1254, 2014). Here, we extend these findings in 3 ways. First, we replicate our original finding with a larger sample and a task modified to address remaining methodological gaps between our previous experiments and that of KBMR. Second, we show that dACC activity is best accounted for by choice difficulty alone (rather than in combination with foraging value) during both foraging and economic choices. Third, we show that patterns of vmPFC activity, inverted relative to dACC, also suggest a common function across both choice types. Overall, we conclude that both regions are similarly engaged by foraging-like and economic choice.

  6. Dorsal Raphe Nucleus Down-Regulates Medial Prefrontal Cortex during Experience of Flow

    PubMed Central

    Ulrich, Martin; Keller, Johannes; Grön, Georg

    2016-01-01

    Previous neuroimaging studies have suggested that the experience of flow aligns with a relative increase in activation of the dorsal raphe nucleus (DRN), and relative activation decreases of the medial prefrontal cortex (MPFC) and of the amygdala (AMY). In the present study, Dynamic Causal Modeling (DCM) was used to explore effective connectivity between those brain regions. To test our hypothesis that the DRN causally down-regulates activity of the MPFC and/or of the AMY, 23 healthy male students solved mental arithmetic tasks of varying difficulty during functional magnetic resonance imaging. A “flow” condition, with task demands automatically balanced with participants’ skill level, was compared with conditions of “boredom” and “overload”. DCM models were constructed modeling full reciprocal endogenous connections between the DRN, the MPFC, the AMY, and the calcarine. The calcarine was included to allow sensory input to enter the system. Experimental conditions were modeled as exerting modulatory effects on various possible connections between the DRN, the MPFC, and the AMY, but not on self-inhibitory connections, yielding a total of 64 alternative DCM models. Model space was partitioned into eight families based on commonalities in the arrangement of the modulatory effects. Random effects Bayesian Model Selection (BMS) was applied to identify a possible winning family (and model). Although BMS revealed a clear winning family, an outstanding winning model could not be identified. Therefore, Bayesian Model Averaging was performed over models within the winning family to obtain representative DCM parameters for subsequent analyses to test our hypothesis. In line with our expectations, Bayesian averaged parameters revealed stronger down-regulatory influence of the DRN on the MPFC when participants experienced flow relative to control conditions. In addition, these condition-dependent modulatory effects significantly predicted participants

  7. Dorsal anterior cingulate cortex integrates reinforcement history to guide voluntary behavior.

    PubMed

    Holroyd, Clay B; Coles, Michael G H

    2008-05-01

    Two competing types of theory have been proposed about the function of dorsal anterior cingulate cortex (dACC): evaluative theories hold that dACC monitors ongoing behavior to detect errors or conflict, whereas response selection theories hold that dACC is directly involved in the decision making process. In particular, one response selection theory proposes that dACC utilizes reward prediction error signals carried by the midbrain dopamine system to decide which of several competing motor control systems should be given control over the motor system (Holroyd and Coles, 2002). The theory further proposes that the impact of these dopamine signals on dACC determines the amplitude of a component of the event-related brain potential called the error-related negativity (ERN). In the present study, we applied this theory to a decision making problem that requires participants to select between two response options in which an erroneous choice is not clearly defined. Rather, the reward received for a particular response evolves in relation to the individual's previous behavior. We adapted a computational model associated with the theory to simulate human performance and the ERN in the task, and tested the predictions of the model against empirical ERP data. Our results indicate that ERN amplitude reflects the subjective value attributed by each participant to their response options as derived from their recent reward history. This finding is consistent with the position that dACC integrates the recent history of reinforcements to guide voluntary choice behavior, as opposed to evaluating behaviors per se.

  8. Childhood emotional maltreatment severity is associated with dorsal medial prefrontal cortex responsivity to social exclusion in young adults.

    PubMed

    van Harmelen, Anne-Laura; Hauber, Kirsten; Gunther Moor, Bregtje; Spinhoven, Philip; Boon, Albert E; Crone, Eveline A; Elzinga, Bernet M

    2014-01-01

    Children who have experienced chronic parental rejection and exclusion during childhood, as is the case in childhood emotional maltreatment, may become especially sensitive to social exclusion. This study investigated the neural and emotional responses to social exclusion (with the Cyberball task) in young adults reporting childhood emotional maltreatment. Using functional magnetic resonance imaging, we investigated brain responses and self-reported distress to social exclusion in 46 young adult patients and healthy controls (mean age = 19.2±2.16) reporting low to extreme childhood emotional maltreatment. Consistent with prior studies, social exclusion was associated with activity in the ventral medial prefrontal cortex and posterior cingulate cortex. In addition, severity of childhood emotional maltreatment was positively associated with increased dorsal medial prefrontal cortex responsivity to social exclusion. The dorsal medial prefrontal cortex plays a crucial role in self-and other-referential processing, suggesting that the more individuals have been rejected and maltreated in childhood, the more self- and other- processing is elicited by social exclusion in adulthood. Negative self-referential thinking, in itself, enhances cognitive vulnerability for the development of psychiatric disorders. Therefore, our findings may underlie the emotional and behavioural difficulties that have been reported in adults reporting childhood emotional maltreatment.

  9. Cerebral pathological and compensatory mechanisms in the premotor phase of leucine-rich repeat kinase 2 parkinsonism.

    PubMed

    van Nuenen, Bart F L; Helmich, Rick C; Ferraye, Murielle; Thaler, Avner; Hendler, Talma; Orr-Urtreger, Avi; Mirelman, Anat; Bressman, Susan; Marder, Karen S; Giladi, Nir; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan

    2012-12-01

    Compensatory cerebral mechanisms can delay motor symptom onset in Parkinson's disease. We aim to characterize these compensatory mechanisms and early disease-related changes by quantifying movement-related cerebral function in subjects at significantly increased risk of developing Parkinson's disease, namely carriers of a leucine-rich repeat kinase 2-G2019S mutation associated with dominantly inherited parkinsonism. Functional magnetic resonance imaging was used to examine cerebral activity evoked during internal selection of motor representations, a core motor deficit in clinically overt Parkinson's disease. Thirty-nine healthy first-degree relatives of Ashkenazi Jewish patients with Parkinson's disease, who carry the leucine-rich repeat kinase 2-G2019S mutation, participated in this study. Twenty-one carriers of the leucine-rich repeat kinase 2-G2019S mutation and 18 non-carriers of this mutation were engaged in a motor imagery task (laterality judgements of left or right hands) known to be sensitive to motor control parameters. Behavioural performance of both groups was matched. Mutation carriers and non-carriers were equally sensitive to the extent and biomechanical constraints of the imagined movements in relation to the current posture of the participants' hands. Cerebral activity differed between groups, such that leucine-rich repeat kinase 2-G2019S carriers had reduced imagery-related activity in the right caudate nucleus and increased activity in the right dorsal premotor cortex. More severe striatal impairment was associated with stronger effective connectivity between the right dorsal premotor cortex and the right extrastriate body area. These findings suggest that altered movement-related activity in the caudate nuclei of leucine-rich repeat kinase 2-G2019S carriers might remain behaviourally latent by virtue of cortical compensatory mechanisms involving long-range connectivity between the dorsal premotor cortex and posterior sensory regions. These

  10. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation.

    PubMed

    Rossato, Janine I; Köhler, Cristiano A; Radiske, Andressa; Bevilaqua, Lia R M; Cammarota, Martín

    2015-11-01

    Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.

  11. Synaptic organization of striate cortex projections in the tree shrew: A comparison of the claustrum and dorsal thalamus.

    PubMed

    Day-Brown, Jonathan D; Slusarczyk, Arkadiusz S; Zhou, Na; Quiggins, Ranida; Petry, Heywood M; Bickford, Martha E

    2017-04-15

    The tree shrew (Tupaia belangeri) striate cortex is reciprocally connected with the dorsal lateral geniculate nucleus (dLGN), the ventral pulvinar nucleus (Pv), and the claustrum. In the Pv or the dLGN, striate cortex projections are thought to either strongly "drive", or more subtly "modulate" activity patterns respectively. To provide clues to the function of the claustrum, we compare the synaptic arrangements of striate cortex projections to the dLGN, Pv, and claustrum, using anterograde tracing and electron microscopy. Tissue was additionally stained with antibodies against γ-aminobutyric acid (GABA) to identify GABAergic interneurons and non-GABAergic projection cells. The striate cortex terminals were largest in the Pv (0.94 ± 0.08 μm(2) ), intermediate in the claustrum (0.34 ± 0.02 μm(2) ), and smallest in the dLGN (0.24 ± 0.01 μm(2) ). Contacts on interneurons were most common in the Pv (39%), intermediate in the claustrum (15%), and least common in the dLGN (12%). In the claustrum, non-GABAergic terminals (0.34 ± 0.01 μm(2) ) and striate cortex terminals were not significantly different in size. The largest terminals in the claustrum were GABAergic (0.51 ± 0.02 μm(2) ), and these terminals contacted dendrites and somata that were significantly larger (1.90 ± 0.30 μm(2) ) than those contacted by cortex or non-GABAergic terminals (0.28 ± 0.02 μm(2) and 0.25 ± 0.02 μm(2) , respectively). Our results indicate that the synaptic organization of the claustrum does not correspond to a driver/modulator framework. Instead, the circuitry of the claustrum suggests an integration of convergent cortical inputs, gated by GABAergic circuits. J. Comp. Neurol. 525:1403-1420, 2017. © 2016 Wiley Periodicals, Inc.

  12. Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression.

    PubMed

    Leem, Yea-Hyun; Yoon, Sang-Sun; Kim, Yu-Han; Jo, Sangmee Ahn

    2014-09-19

    Depression is one of the most prevalent mental illnesses, and causes a constant feeling of sadness and lose of interest, which often leads to suicide. Evidence suggests that depression is associated with aberrant MEK/ERK signaling. However, studies on MEK/ERK signaling in depression have only been done in a few brain regions, such as the hippocampus and mesolimbic reward pathways. Recent studies also implicate the involvement of the prefrontal cortex in depression. Thus, we examined the changes in MEK/ERK signaling in subregions of the prefrontal cortex of C57BL/6 mice by immunohistochemistry using phospho-MEK1/2 (Ser 217/221) and ERK1/2 (Thr202/Tyr204) antibodies. Mice were subjected to 21 consecutive days of restraint stress (for 2h daily), and depression-like behavior was evaluated using a sociability test and tail suspension test. The antidepressant, imipramine (20mg/kg) was injected intraperitoneally 30min before restraint stress exposure. Chronic/repeated restraint stress produced depressive-like behavior, such as increased social avoidance in the social interaction test, and enhanced immobility time in the tail suspension test. This depressive behavior was ameliorated by imipramine. The behavioral changes well corresponded to a decrease in MEK/ERK immunoreactivity in the medial orbital (MO) cortex and dorsal endopiriform nuclei (DEn), which was averted by imipramine, but not in cingulate, prelimbic, infralimbic, and motor cortex. These results suggest that MEK/ERK signaling is disrupted in the DEn and MO subregions of the prefrontal cortex in the depressive phenotype, and that blocking a decrease in activated MEK/ERK is inherent to the antidepressant imipramine response.

  13. Preliminary study of the regenerative processes of the dorsal cortex of the telencephalon of Lacerta viridis.

    PubMed

    Minelli, G; del Grande, P; Mambelli, M C

    1977-01-01

    The authors removed from Lacerta viridis specimens part of the dorsal hippocampus of one telencephalic hemisphere. The animals were sacrificed 110 and 260 days after the operation; 24 hours before the operation on the encephalon, each was dosed with 6--3H thymidine. An examination of the historadiographic slides showed a clear remedial process in the operated area which, 260 days after has renewed in thickness but was still minus its characteristic cellular layer. The area of the telencephalon affected by the remedial process was examined by the authors and they have put forward the hypothesis that in relation to the type of operation performed, said area is localized prevalently in the dorsal hippocampus of the caudal half of the telencephalic hemispherg. The authors have also shown that the remedial procress, though attenuated is still in progress. 260 days after the operation.

  14. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal.

    PubMed

    Ebitz, R Becket; Platt, Michael L

    2015-02-04

    Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it's often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size-a peripheral index of arousal linked to noradrenergic tone-associated with reduced distractor interference. dACC neurons also responded to errors, and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal.

  15. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal

    PubMed Central

    Ebitz, R. Becket; Platt, Michael L.

    2014-01-01

    Summary Whether driving a car, shopping for food, or paying attention in a classroom of boisterous teenagers, it’s often hard to maintain focus on goals in the face of distraction. Brain imaging studies in humans implicate the dorsal anterior cingulate cortex (dACC) in regulating the conflict between goals and distractors. Here we show for the first time that single dACC neurons signal conflict between task goals and distractors in the rhesus macaque, particularly for biologically-relevant social stimuli. For some neurons, task conflict signals predicted subsequent changes in pupil size—a peripheral index of arousal linked to noradrenergic tone—associated with reduced distractor interference. dACC neurons also responded to errors and these signals predicted adjustments in pupil size. These findings provide the first neurophysiological endorsement of the hypothesis that dACC regulates conflict, in part, via modulation of pupil-linked processes such as arousal. PMID:25654259

  16. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    ERIC Educational Resources Information Center

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  17. The Brain’s Dorsal Route for Speech Represents Word Meaning: Evidence from Gesture

    PubMed Central

    Josse, Goulven; Joseph, Sabine; Bertasi, Eric; Giraud, Anne-Lise

    2012-01-01

    The dual-route model of speech processing includes a dorsal stream that maps auditory to motor features at the sublexical level rather than at the lexico-semantic level. However, the literature on gesture is an invitation to revise this model because it suggests that the premotor cortex of the dorsal route is a major site of lexico-semantic interaction. Here we investigated lexico-semantic mapping using word-gesture pairs that were either congruent or incongruent. Using fMRI-adaptation in 28 subjects, we found that temporo-parietal and premotor activity during auditory processing of single action words was modulated by the prior audiovisual context in which the words had been repeated. The BOLD signal was suppressed following repetition of the auditory word alone, and further suppressed following repetition of the word accompanied by a congruent gesture (e.g. [“grasp” + grasping gesture]). Conversely, repetition suppression was not observed when the same action word was accompanied by an incongruent gesture (e.g. [“grasp” + sprinkle]). We propose a simple model to explain these results: auditory and visual information converge onto premotor cortex where it is represented in a comparable format to determine (in)congruence between speech and gesture. This ability of the dorsal route to detect audiovisual semantic (in)congruence suggests that its function is not restricted to the sublexical level. PMID:23049951

  18. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex.

    PubMed

    Akaishi, Rei; Ueda, Naoko; Sakai, Katsuyuki

    2013-01-01

    The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.

  19. STRESS-INDUCED CHANGES IN EXTRACELLULAR DOPAMINE AND SEROTONIN IN THE MEDIAL PREFRONTAL CORTEX AND DORSAL HIPPOCAMPUS OF PRENATALLY MALNOURISHED RATS

    PubMed Central

    Mokler, David J.; Torres, Olga I.; Galler, Janina R.; Morgane, Peter J.

    2009-01-01

    Prenatal protein malnutrition continues to be a significant problem in the world today. Exposure to prenatal protein malnutrition increases the risk of a number of neuropsychiatric disorders in adulthood including depression, schizophrenia and attentional deficit disorder. In the present experiment we have examined the effects of stress on extracellular serotonin (5-HT) and dopamine in the medial prefrontal cortex and dorsal hippocampus of rats exposed in utero to protein malnutrition. The medial prefrontal cortex and dorsal hippocampus were chosen as two limbic forebrain regions involved in learning and memory, attention and the stress response. Extracellular 5-HT and dopamine were determined in the medial prefrontal cortex and dorsal hippocampus of adult male Sprague-Dawley rats using dual probe in vivo microdialysis. Basal extracellular 5-HT did not differ between malnourished and well-nourished controls in either the medial prefrontal cortex or the dorsal hippocampus. Basal extracellular dopamine was significantly decreased in the medial prefrontal cortex of malnourished animals. Restraint stress (20 m) produced a significant rise in extracellular dopamine in the medial prefrontal cortex of well-nourished rats but did not alter release in malnourished rats. In malnourished rats, stress produced an increase in 5-HT in the hippocampus, whereas stress produced a decrease in 5-HT in the hippocampus of well-nourished rats. These data demonstrate that prenatal protein malnutrition alters dopaminergic neurotransmission in the medial prefrontal cortex as well as altering the dopaminergic and serotonergic response to stress. These changes may provide part of the bases for alterations in malnourished animals’ response to stress. PMID:17368432

  20. Is dorsal anterior cingulate cortex activation in response to social exclusion due to expectancy violation? An fMRI study

    PubMed Central

    Kawamoto, Taishi; Onoda, Keiichi; Nakashima, Ken'ichiro; Nittono, Hiroshi; Yamaguchi, Shuhei; Ura, Mitsuhiro

    2012-01-01

    People are typically quite sensitive about being accepted or excluded by others. Previous studies have suggested that the dorsal anterior cingulate cortex (dACC) is a key brain region involved in the detection of social exclusion. However, this region has also been shown to be sensitive to non-social expectancy violations. We often expect other people to follow an unwritten rule in which they include us as they would expect to be included, such that social exclusion likely involves some degree of expectancy violation. The present event-related functional magnetic resonance imaging (fMRI) study sought to separate the effects of expectancy violation from those of social exclusion, such that we employed an “overinclusion” condition in which a player was unexpectedly overincluded in the game by the other players. With this modification, we found that the dACC and right ventrolateral prefrontal cortex (rVLPFC) were activated by exclusion, relative to overinclusion. In addition, we identified a negative correlation between exclusion-evoked brain activity and self-rated social pain in the rVLPFC, but not in the dACC. These findings suggest that the rVLPFC is critical for regulating social pain, whereas the dACC plays an important role in the detection of exclusion. The neurobiological basis of social exclusion is different from that of mere expectancy violation. PMID:22866035

  1. Early Postnatal Lesion of the Medial Dorsal Nucleus Leads to Loss of Dendrites and Spines in Adult Prefrontal Cortex

    PubMed Central

    Marmolejo, Naydu; Paez, Jesse; Levitt, Jonathan B.; Jones, Liesl B.

    2013-01-01

    Research suggests that the medial dorsal nucleus (MD) of the thalamus influences pyramidal cell development in the prefrontal cortex (PFC) in an activity-dependent manner. The MD is reciprocally connected to the PFC. Many psychiatric disorders, such as schizophrenia, affect the PFC, and one of the most consistent findings in schizophrenia is a decrease in volume and neuronal number in the MD. Therefore, understanding the role the MD plays in the development of the PFC is important and may help in understanding the progression of psychiatric disorders that have their root in development. Focusing on the interplay between the MD and the PFC, this study examined the hypothesis that the MD plays a role in the dendritic development of pyramidal cells in the PFC. Unilateral electrolytic lesions of the MD in Long-Evans rat pups were made on postnatal day 4 (P4), and the animals developed to P60. We then examined dendritic morphology by examining MAP2 immunostaining and by using Golgi techniques to determine basilar dendrite number and spine density. Additionally, we examined pyramidal cell density in cingulate area 1 (Cg1), prelimbic region, and dorsolateral anterior cortex, which receive afferents from the MD. Thalamic lesions caused a mean MD volume decrease of 12.4% which led to a significant decrease in MAP2 staining in both superficial and deep layers in all 3 cortical areas. The lesions also caused a significant decrease in spine density and in the number of primary and secondary basilar dendrites on superficial and deep layer pyramidal neurons in all 3 regions. No significant difference was observed in pyramidal cell density in any of the regions or layers, but a nonsignificant increase in cell density was observed in 2 regions. Our data are thus consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good model to begin to examine neurodevelopmental disorders such as autism and schizophrenia. PMID:23406908

  2. Dorsal hippocampus and medial prefrontal cortex each contribute to the retrieval of a recent spatial memory in rats.

    PubMed

    Cholvin, Thibault; Loureiro, Michaël; Cassel, Raphaelle; Cosquer, Brigitte; Herbeaux, Karin; de Vasconcelos, Anne Pereira; Cassel, Jean-Christophe

    2016-01-01

    Systems-level consolidation models propose that recent memories are initially hippocampus-dependent. When remote, they are partially or completely dependent upon the medial prefrontal cortex (mPFC). An implication of the mPFC in recent memory, however, is still debated. Different amounts of muscimol (MSCI 0, 30, 50, 80 and 250 ng in 1 µL PBS) were used to assess the impact of inactivation of the dorsal hippocampus (dHip) or the mPFC (targeting the prelimbic cortex) on a 24-h delayed retrieval of a platform location that rats had learned drug-free in a water maze. The two smallest amounts of MSCI (30 and 50 ng) did not affect recall, whatever the region. 80 ng MSCI infused into the dHip disrupted spatial memory retrieval, as did the larger amount. Infusion of MSCI into the mPFC did not alter performance in the 0-80 ng range. At 250 ng, it induced an as dramatic memory impairment as after efficient dHip inactivation. Stereological quantifications showed that 80 ng MSCI in the dHip and 250 ng MSCI in the mPFC induced a more than 80% reduction of c-Fos expression, suggesting that, beyond the amounts infused, it is the magnitude of the neuronal activity decrease which is determinant as to the functional outcome of the inactivation. Because, based on the literature, even 250 ng MSCI is a small amount, our results point to a contribution of the mPFC to the recall of a recently acquired spatial memory and thereby extend our knowledge about the functions of this major actor of cognition.

  3. Target-specific modulation of the descending prefrontal cortex inputs to the dorsal raphe nucleus by cannabinoids

    PubMed Central

    Geddes, Sean D.; Assadzada, Saleha; Lemelin, David; Sokolovski, Alexandra; Bergeron, Richard; Haj-Dahmane, Samir; Béïque, Jean-Claude

    2016-01-01

    Serotonin (5-HT) neurons located in the raphe nuclei modulate a wide range of behaviors by means of an expansive innervation pattern. In turn, the raphe receives a vast array of synaptic inputs, and a remaining challenge lies in understanding how these individual inputs are organized, processed, and modulated in this nucleus to contribute ultimately to the core coding features of 5-HT neurons. The details of the long-range, top-down control exerted by the medial prefrontal cortex (mPFC) in the dorsal raphe nucleus (DRN) are of particular interest, in part, because of its purported role in stress processing and mood regulation. Here, we found that the mPFC provides a direct monosynaptic, glutamatergic drive to both DRN 5-HT and GABA neurons and that this architecture was conducive to a robust feed-forward inhibition. Remarkably, activation of cannabinoid (CB) receptors differentially modulated the mPFC inputs onto these cell types in the DRN, in effect regulating the synaptic excitatory/inhibitory balance governing the excitability of 5-HT neurons. Thus, the CB system dynamically reconfigures the processing features of the DRN, a mood-related circuit believed to provide a concerted and distributed regulation of the excitability of large ensembles of brain networks. PMID:27114535

  4. Intact renewal after extinction of conditioned suppression with lesions of either the retrosplenial cortex or dorsal hippocampus.

    PubMed

    Todd, Travis P; Jiang, Matthew Y; DeAngeli, Nicole E; Bucci, David J

    2017-03-01

    Extinction of fear to a Pavlovian conditioned stimulus (CS) is known to be context-specific. When the CS is tested outside the context of extinction, fear returns, or renews. Several studies have demonstrated that renewal depends upon the hippocampus, although there are also studies where renewal was not impacted by hippocampal damage, suggesting that under some conditions context encoding and/or retrieval of extinction depends upon other regions. One candidate region is the retrosplenial cortex (RSC), which is known to contribute to contextual and spatial learning and memory. Using a conditioned-suppression paradigm, Experiment 1 tested the impact of pre-training RSC lesions on renewal of extinguished fear. Consistent with previous studies, lesions of the RSC did not impact acquisition or extinction of conditioned fear to the CS. Further, there was no evidence that RSC lesions impaired renewal, indicating that contextual encoding and/or retrieval of extinction does not depend upon the RSC. In Experiment 2, post-extinction lesions of either the RSC or dorsal hippocampus (DH) also had no impact on renewal. However, in Experiment 3, both RSC and DH lesions did impair performance in an object-in-place procedure, an index of place memory. RSC and DH contributions to extinction and renewal are discussed.

  5. Selective activation of dorsal raphe nucleus-projecting neurons in the ventral medial prefrontal cortex by controllable stress

    PubMed Central

    Baratta, Michael V.; Zarza, Christina M.; Gomez, Devan M.; Campeau, Serge; Watkins, Linda R.; Maier, Steven F.

    2009-01-01

    Exposure to uncontrollable stressors produces a variety of behavioral consequences (e.g. exaggerated fear, reduced social exploration) that do not occur if the stressor is controllable. In addition, an initial experience with a controllable stressor can block the behavioral and neural responses to a later uncontrollable stressor. The serotonergic (5-HT) dorsal raphe nucleus (DRN) has come to be viewed as a critical structure in mediating the behavioral effects of uncontrollable stress. Recent work suggests that the buffering effects of behavioral control on the DRN-dependent behavioral outcomes of uncontrollable stress require ventral medial prefrontal cortex (mPFCv) activation at the time of behavioral control. The present studies were conducted to directly determine whether or not controllable stress selectively activates DRN-projecting neurons within the mPFCv. To examine this possibility in the rat, we combined retrograde tracing (fluorogold iontophoresed into the DRN) with Fos immunohistochemistry, a marker for neural activation. Exposure to controllable, relative to uncontrollable, stress increased Fos expression in fluorogold-labeled neurons in the prelimbic region (PL) of the mPFCv. Furthermore, in a separate experiment, a prior experience with controllable stress led to potentiation of Fos expression in retrogradely labeled PL neurons in response to an uncontrollable stressor one week later. These results suggest that the PL selectively responds to behavioral control and utilizes such information to regulate the brainstem response to ongoing and subsequent stressors. PMID:19686468

  6. Combat veterans with comorbid PTSD and mild TBI exhibit a greater inhibitory processing ERP from the dorsal anterior cingulate cortex.

    PubMed

    Shu, I-Wei; Onton, Julie A; O'Connell, Ryan M; Simmons, Alan N; Matthews, Scott C

    2014-10-30

    Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat veterans with mTBI-17 of whom were also comorbid for PTSD (mTBI+PTSD) and 15 without PTSD (mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in veterans with mTBI+PTSD, including greater N200 negativity. Furthermore, greater N200 negativity correlated with greater PTSD severity. This correlation was most dependent on contributions from the dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively classified veterans into mTBI-only or mTBI+PTSD groups with 79.4% accuracy. Our results support a model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including trauma-related thoughts and feelings.

  7. Effects of aripiprazole and terguride on dopamine synthesis in the dorsal striatum and medial prefrontal cortex of preweanling rats.

    PubMed

    Iñiguez, S D; Cortez, A M; Crawford, C A; McDougall, S A

    2008-01-01

    The purpose of this study was to determine whether aripiprazole, a D2-like partial agonist increasingly prescribed to children, alters DA synthesis via actions at autoreceptors in the dorsal striatum and medial prefrontal cortex (mPFC) of preweanling rats. The ability of dopaminergic agents to alter DOPA accumulation in the striatum and mPFC was measured after NSD-1015 on postnatal day (PD) 20. Dopaminergic tone was manipulated by administering reserpine, gamma-butyrolactone (GBL), or through amphetamine withdrawal. Results showed that the partial agonists aripiprazole and terguride increased striatal DOPA accumulation under normosensitive conditions, but decreased DOPA accumulation in states of low dopaminergic tone. A different pattern of results was observed in the mPFC, because terguride and haloperidol, but not aripiprazole, increased DOPA accumulation under normosensitive conditions. In conclusion, the present data show that aripiprazole affects striatal synthesis modulating autoreceptors in an adult-typical manner during the late preweanling period. Unlike in adult rats, however, the mPFC of preweanling rats appears to contain transitory synthesis modulating autoreceptors that are sensitive to drug manipulation.

  8. Sustained decrease in oxygenated hemoglobin during video games in the dorsal prefrontal cortex: a NIRS study of children.

    PubMed

    Matsuda, Goh; Hiraki, Kazuo

    2006-02-01

    Traditional neuroimaging studies have mainly focused on brain activity derived from a simple stimulus and task. Therefore, little is known about brain activity during daily operations. In this study, we investigated hemodynamic changes in the dorsal prefrontal cortex (DPFC) during video games as one of daily amusements, using near infrared spectroscopy technique. It was previously reported that oxygenated hemoglobin (oxyHb) in adults' DPFC decreased during prolonged game playing time. In the present study, we examined whether similar changes were observed in children. Twenty children (7-14 years old) participated in our study, but only 13 of them were eventually subject to analysis. They played one or two commercially available video games; namely a fighting and a puzzle game, for 5 min. We used changes in concentration of oxyHb as an indicator of brain activity and consequently, most of the children exhibited a sustained game-related oxyHb decrease in DPFC. Decrease patterns of oxyHb in children during video game playing time did not differ from those in adults. There was no significant correlation between ages or game performances and changes in oxyHb. These findings suggest that game-related oxyHb decrease in DPFC is a common phenomenon to adults and children at least older than 7 years old, and we suggest that this probably results from attention demand from the video games rather than from subject's age and performance.

  9. Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity

    PubMed Central

    Wheelock, M. D.; Sreenivasan, K. R.; Wood, K. H.; Ver Hoef, L. W.; Deshpande, G.; Knight, D. C.

    2014-01-01

    Conditioned changes in the emotional response to threat (e.g. aversive unconditioned stimulus; UCS) are mediated in part by the prefrontal cortex (PFC). Unpredictable threats elicit large emotional responses, while the response is diminished when the threat is predictable. A better understanding of how PFC connectivity to other brain regions varies with threat predictability would provide important insights into the neural processes that mediate conditioned diminution of the emotional response to threat. The present study examined brain connectivity during predictable and unpredictable threat exposure using a fear conditioning paradigm (previously published in Wood et al., 2012) in which unconditioned functional magnetic resonance imaging data was reanalyzed to assess effective connectivity. Granger causality analysis was performed using the time series data from 15 activated regions of interest after hemodynamic deconvolution, to determine regional effective connectivity. In addition, connectivity path weights were correlated with trait anxiety measures to assess the relationship between negative affect and brain connectivity. Results indicate the dorsomedial PFC (dmPFC) serves as a neural hub that influences activity in other brain regions when threats are unpredictable. In contrast, the dorsolateral PFC (dlPFC) serves as a neural hub that influences the activity of other brain regions when threats are predictable. These findings are consistent with the view that the dmPFC coordinates brain activity to take action, perhaps in a reactive manner, when an unpredicted threat is encountered, while the dlPFC coordinates brain regions to take action, in what may be a more proactive manner, to respond to predictable threats. Further, dlPFC connectivity to other brain regions (e.g. ventromedial PFC, amygdala, and insula) varied with negative affect (i.e. trait anxiety) when the UCS was predictable, suggesting that stronger connectivity may be required for emotion

  10. The body and objects represented in the ventral stream of the parieto-premotor network.

    PubMed

    Murata, Akira; Wen, Wen; Asama, Hajime

    2016-03-01

    The network between the parietal cortex and premotor cortex has a pivotal role in sensory-motor control. Grasping-related neurons in the anterior intraparietal area (AIP) and the ventral premotor cortex (F5) showed complementary properties each other. The object information for grasping is sent from the parietal cortex to the premotor cortex for sensory-motor transformation, and the backward signal from the premotor cortex to parietal cortex can be considered an efference copy/corollary discharge that is used to predict sensory outcome during motor behavior. Mirror neurons that represent both own action and other's action are involved in this system. This system also very well fits with body schema that reflects online state of the body during motor execution. We speculate that the parieto-premotor network, which includes the mirror neuron system, is key for mapping one's own body and the bodies of others. This means that the neuronal substrates that control one's own action and the mirror neuron system are shared with the "who" system, which is related to the recognition of action contribution, i.e., sense of agency. Representation of own and other's body in the parieto-premotor network is key to link between sensory-motor control and higher-order cognitive functions.

  11. The Dorsal Medial Prefrontal Cortex Is Recruited by High Construal of Non-social Stimuli

    PubMed Central

    Baetens, Kris L. M. R.; Ma, Ning; Van Overwalle, Frank

    2017-01-01

    The dorsomedial prefrontal cortex (dmPFC) is part of the mentalizing network, a set of brain regions consistently engaged in inferring mental states. However, its precise function in this network remains unclear. It has recently been proposed that the dmPFC is involved in high-level abstract (i.e., categorical) identification or construction of both social and non-social stimuli, referred to as “high construal.” This was based on the observation of greater activation in the dmPFC shared by a high construal social condition (trait inference based on visually presented behavior) and a high construal non-social condition (categorization of visually presented objects) vs. matched low construal conditions (visual description of the same pictures). However, dmPFC activation has been related to task contexts requiring responses based on self-guided generation of mental content or decisions as compared to responses more directly determined by the experimental context (e.g., free vs. rule-governed choice). The previously reported dmPFC activity may reflect differences in task constraint (i.e., the extent to which the task context guided the process) confounded with the construal manipulation. Therefore, in the present study, we manipulated construal level and constraint independently, while participants underwent functional magnetic resonance imaging (fMRI). As before, participants visually described (low level construal) or categorized (high level construal) pictures of objects. Orthogonal to this, the description or categorization task had to be performed on either one object (low constraint) or on two objects simultaneously (high constraint), limiting the number of possible responses. Statistical analysis revealed common greater activation in both high construal conditions (high and low constraint) than in their low construal counterparts, replicating the influence of construal level on dmPFC activation (greater involvement in high than low construal), but no

  12. Premotor-motor interhemispheric inhibition is released during movement initiation in older but not young adults.

    PubMed

    Hinder, Mark R; Fujiyama, Hakuei; Summers, Jeffery J

    2012-01-01

    Neural interactions between contralateral motor regions are thought to be instrumental in the successful preparation, and execution, of volitional movements. Here we investigated whether healthy ageing is associated with a change in functional connectivity, as indicated by the ability to modulate interhemispheric interactions during movement preparation in a manner that assists rapid movement responses. Thirteen young (mean age 22.2 years) and thirteen older (68.5 years) adults rapidly abducted their left index finger as soon as possible in response to a visual imperative signal, presented 500 ms after a visual warning signal.Interactions between left dorsal premotor cortex (LPMd) and right primary motor cortex (RM1) and between left primary motor cortex (LM1) and RM1 were investigated at six time points between the warning signal and the volitional response using paired-pulse transcranial magnetic stimulation. Relative to the inhibitory interactions measured at rest, both young and older adults released LM1-RM1 inhibition beginning 250 ms after the warning signal, with no significant differences between groups. LPMd-RM1 interactions became facilitatory (from the onset of the imperative signal onwards) in the older, but not the young, group. Regression analyses revealed that for the older adults, modulation of LPMd-RM1 interactions early in the preparation period was associated with faster responses, suggesting that specifically timed modulation of these pathways may be a compensatory mechanism to offset, at least in part, slowing of motor responses. The results suggest a greater reliance on premotor regions during the preparation of simple motor actions with advancing age.

  13. Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys.

    PubMed

    Qi, Hui-Xin; Wang, Feng; Liao, Chia-Chi; Friedman, Robert M; Tang, Chaohui; Kaas, Jon H; Avison, Malcolm J

    2016-11-15

    After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on

  14. Retroactive interference of object-in-context long-term memory: role of dorsal hippocampus and medial prefrontal cortex.

    PubMed

    Martínez, María Cecilia; Villar, María Eugenia; Ballarini, Fabricio; Viola, Haydée

    2014-12-01

    Retroactive interference (RI) is a type of amnesia in which a new learning experience can impair the expression of a previous one. It has been studied in several types of memories for over a century. Here, we aimed to study in the long-term memory (LTM) formation of an object-in-context task, defined as the recognition of a familiar object in a context different to that in which it was previously encountered. We trained rats with two sample trials, each taking place in a different context in association with different objects. Test sessions were performed 24 h later, to evaluate LTM for both object-context pairs using separate groups of trained rats. Furthermore, given the involvement of hippocampus (Hp) and medial prefrontal cortex (mPFC) in several recognition memories, we also analyzed the participation of these structures in the LTM formation of this task by the local infusion of muscimol. Our results show that object-in-context LTM formation is sensitive to RI by a different either familiar or novel object-context pair trial, experienced 1 h later. This interference occurs in a restricted temporal window and works on the LTM consolidation phase, leaving intact short-term memory expression. The second sample trial did not affect the object recognition part of the memory. Besides, muscimol treatment before the second sample trial blocks its object-in-context LTM and restores the first sample trial memory. We hypothesized that LTM-RI amnesia is probably caused by resources or cellular machinery competition in these brain regions when they are engaged in memory formation of the traces. In sum, when two different object-in-context memory traces are being processed, the second trace interferes with the consolidation of the first one requiring mPFC and CA1 dorsal Hp activation.

  15. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus

    PubMed Central

    Reichel, Judith M.; Nissel, Sabine; Rogel-Salazar, Gabriela; Mederer, Anna; Käfer, Karola; Bedenk, Benedikt T.; Martens, Henrik; Anders, Rebecca; Grosche, Jens; Michalski, Dominik; Härtig, Wolfgang; Wotjak, Carsten T.

    2015-01-01

    GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories. PMID:25628548

  16. Distinct behavioral consequences of short-term and prolonged GABAergic depletion in prefrontal cortex and dorsal hippocampus.

    PubMed

    Reichel, Judith M; Nissel, Sabine; Rogel-Salazar, Gabriela; Mederer, Anna; Käfer, Karola; Bedenk, Benedikt T; Martens, Henrik; Anders, Rebecca; Grosche, Jens; Michalski, Dominik; Härtig, Wolfgang; Wotjak, Carsten T

    2014-01-01

    GABAergic interneurons are essential for a functional equilibrium between excitatory and inhibitory impulses throughout the CNS. Disruption of this equilibrium can lead to various neurological or neuropsychiatric disorders such as epilepsy or schizophrenia. Schizophrenia itself is clinically defined by negative (e.g., depression) and positive (e.g., hallucinations) symptoms as well as cognitive dysfunction. GABAergic interneurons are proposed to play a central role in the etiology and progression of schizophrenia; however, the specific mechanisms and the time-line of symptom development as well as the distinct involvement of cortical and hippocampal GABAergic interneurons in the etiology of schizophrenia-related symptoms are still not conclusively resolved. Previous work demonstrated that GABAergic interneurons can be selectively depleted in adult mice by means of saporin-conjugated anti-vesicular GABA transporter antibodies (SAVAs) in vitro and in vivo. Given their involvement in schizophrenia-related disease etiology, we ablated GABAergic interneurons in the medial prefrontal cortex (mPFC) and dorsal hippocampus (dHPC) in adult male C57BL/6N mice. Subsequently we assessed alterations in anxiety, sensory processing, hyperactivity and cognition after long-term (>14 days) and short-term (<14 days) GABAergic depletion. Long-term GABAergic depletion in the mPFC resulted in a decrease in sensorimotor-gating and impairments in cognitive flexibility. Notably, the same treatment at the level of the dHPC completely abolished spatial learning capabilities. Short-term GABAergic depletion in the dHPC revealed a transient hyperactive phenotype as well as marked impairments regarding the acquisition of a spatial memory. In contrast, recall of a spatial memory was not affected by the same intervention. These findings emphasize the importance of functional local GABAergic networks for the encoding but not the recall of hippocampus-dependent spatial memories.

  17. From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: some methodological considerations

    PubMed Central

    Cassaday, Helen J.; Nelson, Andrew J. D.; Pezze, Marie A.

    2014-01-01

    Distinctions along the dorsal-ventral axis of medial prefrontal cortex (mPFC), between anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) sub-regions, have been proposed on a variety of neuroanatomical and neurophysiological grounds. Conventional lesion approaches (as well as some electrophysiological studies) have shown that these distinctions relate to function in that a number behavioral dissociations have been demonstrated, particularly using rodent models of attention, learning, and memory. For example, there is evidence to suggest that AC has a relatively greater role in attention, whereas IL is more involved in executive function. However, the well-established methods of behavioral neuroscience have the limitation that neuromodulation is not addressed. The neurotoxin 6-hydroxydopamine has been used to deplete dopamine (DA) in mPFC sub-regions, but these lesions are not selective anatomically and noradrenalin is typically also depleted. Microinfusion of drugs through indwelling cannulae provides an alternative approach, to address the role of neuromodulation and moreover that of specific receptor subtypes within mPFC sub-regions, but the effects of such treatments cannot be assumed to be anatomically restricted either. New methodological approaches to the functional delineation of the role of mPFC in attention, learning and memory will also be considered. Taken in isolation, the conventional lesion methods which have been a first line of approach may suggest that a particular mPFC sub-region is not necessary for a particular aspect of function. However, this does not exclude a neuromodulatory role and more neuropsychopharmacological approaches are needed to explain some of the apparent inconsistencies in the results. PMID:25249948

  18. The Time Course of Activity within the Dorsal and Rostral-Ventral Anterior Cingulate Cortex in the Emotional Stroop Task.

    PubMed

    Feroz, Farah Shahnaz; Leicht, Gregor; Steinmann, Saskia; Andreou, Christina; Mulert, Christoph

    2017-01-01

    Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.

  19. Ventral and dorsal pathways for language

    PubMed Central

    Saur, Dorothee; Kreher, Björn W.; Schnell, Susanne; Kümmerer, Dorothee; Kellmeyer, Philipp; Vry, Magnus-Sebastian; Umarova, Roza; Musso, Mariacristina; Glauche, Volkmar; Abel, Stefanie; Huber, Walter; Rijntjes, Michel; Hennig, Jürgen; Weiller, Cornelius

    2008-01-01

    Built on an analogy between the visual and auditory systems, the following dual stream model for language processing was suggested recently: a dorsal stream is involved in mapping sound to articulation, and a ventral stream in mapping sound to meaning. The goal of the study presented here was to test the neuroanatomical basis of this model. Combining functional magnetic resonance imaging (fMRI) with a novel diffusion tensor imaging (DTI)-based tractography method we were able to identify the most probable anatomical pathways connecting brain regions activated during two prototypical language tasks. Sublexical repetition of speech is subserved by a dorsal pathway, connecting the superior temporal lobe and premotor cortices in the frontal lobe via the arcuate and superior longitudinal fascicle. In contrast, higher-level language comprehension is mediated by a ventral pathway connecting the middle temporal lobe and the ventrolateral prefrontal cortex via the extreme capsule. Thus, according to our findings, the function of the dorsal route, traditionally considered to be the major language pathway, is mainly restricted to sensory-motor mapping of sound to articulation, whereas linguistic processing of sound to meaning requires temporofrontal interaction transmitted via the ventral route. PMID:19004769

  20. Dorsal Anterior Cingulate Cortex Responses to Repeated Social Evaluative Feedback in Young Women with and without a History of Depression

    PubMed Central

    Dedovic, Katarina; Slavich, George M.; Muscatell, Keely A.; Irwin, Michael R.; Eisenberger, Naomi I.

    2016-01-01

    The dorsal anterior cingulate cortex (dACC) is recruited when a person is socially rejected or negatively evaluated. However, it remains to be fully understood how this region responds to repeated exposure to personally-relevant social evaluation, in both healthy populations and those vulnerable to Major Depressive Disorder (MDD), as well as how responding in these regions is associated with subsequent clinical functioning. To address this gap in the literature, we recruited 17 young women with past history of MDD (previously depressed) and 31 healthy controls and exposed them to a social evaluative session in a neuroimaging environment. In two bouts, participants received an equal amount of positive, negative, and neutral feedback from a confederate. All participants reported increases in feelings of social evaluation in response to the evaluative task. However, compared to healthy controls, previously depressed participants tended to show greater increases in depressed mood following the task. At the neural level, in response to negative (vs. positive) feedback, no main effect of group or evaluation periods was observed. However, a significant interaction between group and evaluation periods was found. Specifically, over the two bouts of evaluation, activity in the dACC decreased among healthy participants while it increased among previously depressed individuals. Interestingly and unexpectedly, in the previously depressed group specifically, this increased activity in dACC over time was associated with lower levels of depressive symptoms at baseline and at 6-months following the evaluation session (controlling for baseline levels). Thus, the subset of previously depressed participants who showed increases in the recruitment of the dACC over time in response to the negative evaluation seemed to fair better emotionally. These findings suggest that examining how the dACC responds to repeated bouts of negative evaluation reveals a new dimension to the role of the d

  1. Role of the dorsal anterior cingulate cortex in obsessive-compulsive disorder: converging evidence from cognitive neuroscience and psychiatric neurosurgery.

    PubMed

    McGovern, Robert A; Sheth, Sameer A

    2017-01-01

    OBJECTIVE Advances in understanding the neurobiological basis of psychiatric disorders will improve the ability to refine neuromodulatory procedures for treatment-refractory patients. One of the core dysfunctions in obsessive-compulsive disorder (OCD) is a deficit in cognitive control, especially involving the dorsal anterior cingulate cortex (dACC). The authors' aim was to derive a neurobiological understanding of the successful treatment of refractory OCD with psychiatric neurosurgical procedures targeting the dACC. METHODS First, the authors systematically conducted a review of the literature on the role of the dACC in OCD by using the search terms "obsessive compulsive disorder" and "anterior cingulate." The neuroscience literature on cognitive control mechanisms in the dACC was then combined with the literature on psychiatric neurosurgical procedures targeting the dACC for the treatment of refractory OCD. RESULTS The authors reviewed 89 studies covering topics that included structural and functional neuroimaging and electrophysiology. The majority of resting-state functional neuroimaging studies demonstrated dACC hyperactivity in patients with OCD relative to that in controls, while task-based studies were more variable. Electrophysiological studies showed altered dACC-related biomarkers of cognitive control, such as error-related negativity in OCD patients. These studies were combined with the cognitive control neurophysiology literature, including the recently elaborated expected value of control theory of dACC function. The authors suggest that a central feature of OCD pathophysiology involves the generation of mis-specified cognitive control signals by the dACC, and they elaborate on this theory and provide suggestions for further study. CONCLUSIONS Although abnormalities in brain structure and function in OCD are distributed across a wide network, the dACC plays a central role. The authors propose a theory of cognitive control dysfunction in OCD that

  2. Rule activity related to spatial and numerical magnitudes: comparison of prefrontal, premotor, and cingulate motor cortices.

    PubMed

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2014-05-01

    In everyday situations, quantitative rules, such as "greater than/less than," need to be applied to a multitude of magnitude comparisons, be they sensory, spatial, temporal, or numerical. We have previously shown that rules applied to different magnitudes are encoded in the lateral PFC. To investigate if and how other frontal lobe areas also contribute to the encoding of quantitative rules applied to multiple magnitudes, we trained monkeys to switch between "greater than/less than" rules applied to either line lengths (spatial magnitudes) or dot numerosities (discrete numerical magnitudes). We recorded single-cell activity from the dorsal premotor cortex (dPMC) and cingulate motor cortex (CMA) and compared it with PFC activity. We found the largest proportion of quantitative rule-selective cells in PFC (24% of randomly selected cells), whereas neurons in dPMC and CMA rarely encoded the rule (6% of the cells). In addition, rule selectivity of individual cells was highest in PFC neurons compared with dPMC and CMA neurons. Rule-selective neurons that simultaneously represented the "greater than/less than" rules applied to line lengths and numerosities ("rule generalists") were exclusively present in PFC. In dPMC and CMA, however, neurons primarily encoded rules applied to only one of the two magnitude types ("rule specialists"). Our data suggest a special involvement of PFC in representing quantitative rules at an abstract level, both in terms of the proportion of neurons engaged and the coding capacities.

  3. Dorsal vs. ventral differences in fast Up-state-associated oscillations in the medial prefrontal cortex of the urethane-anesthetized rat

    PubMed Central

    Gretenkord, Sabine; Whittington, Miles A.; Gartside, Sarah E.

    2017-01-01

    Cortical slow oscillations (0.1–1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2–4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6–15 Hz)-, beta (20–30 Hz), gamma (30–80 Hz)-, and high-gamma (80–150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions. NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral

  4. Ventral Premotor to Primary Motor Cortical Interactions during Noxious and Naturalistic Action Observation

    ERIC Educational Resources Information Center

    Lago, Angel; Koch, Giacomo; Cheeran, Binith; Marquez, Gonzalo; Sanchez, Jose Andres; Ezquerro, Milagros; Giraldez, Manolo; Fernandez-del-Olmo, Miguel

    2010-01-01

    Within the motor system, cortical areas such as the primary motor cortex (M1) and the ventral premotor cortex (PMv), are thought to be activated during the observation of actions performed by others. However, it is not known how the connections between these areas become active during action observation or whether these connections are modulated…

  5. Different Patterns of Cortical Inputs to Subregions of the Primary Motor Cortex Hand Representation in Cebus apella.

    PubMed

    Dea, Melvin; Hamadjida, Adjia; Elgbeili, Guillaume; Quessy, Stephan; Dancause, Numa

    2016-04-01

    The primary motor cortex (M1) plays an essential role in the control of hand movements in primates and is part of a complex cortical sensorimotor network involving multiple premotor and parietal areas. In a previous study in squirrel monkeys, we found that the ventral premotor cortex (PMv) projected mainly to 3 regions within the M1 forearm representation [rostro-medial (RM), rostro-lateral (RL), and caudo-lateral (CL)] with very few caudo-medial (CM) projections. These results suggest that projections from premotor areas to M1 are not uniform, but rather segregated into subregions. The goal of the present work was to study how inputs from diverse areas of the ipsilateral cortical network are organized within the M1 hand representation. In Cebus apella, different retrograde neuroanatomical tracers were injected in 4 subregions of the hand area of M1 (RM, RL, CM, and CL). We found a different pattern of input to each subregion of M1. RM receives inputs predominantly from dorsal premotor cortex, RL from PMv, CM from area 5, and CL from area 2. These results support that the M1 hand representation is composed of several subregions, each part of a unique cortical network.

  6. The medullary dorsal reticular nucleus as a relay for descending pronociception induced by the mGluR5 in the rat infralimbic cortex.

    PubMed

    David-Pereira, Ana; Sagalajev, Boriss; Wei, Hong; Almeida, Armando; Pertovaara, Antti; Pinto-Ribeiro, Filipa

    2017-05-04

    Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.

  7. The dorsal auditory pathway is involved in performance of both visual and auditory rhythms.

    PubMed

    Karabanov, Anke; Blom, Orjan; Forsman, Lea; Ullén, Fredrik

    2009-01-15

    We used functional magnetic resonance imaging to investigate the effect of two factors on the neural control of temporal sequence performance: the modality in which the rhythms had been trained, and the modality of the pacing stimuli preceding performance. The rhythms were trained 1-2 days before scanning. Each participant learned two rhythms: one was presented visually, the other auditorily. During fMRI, the rhythms were performed in blocks. In each block, four beats of a visual or auditory pacing metronome were followed by repetitive self-paced rhythm performance from memory. Data from the self-paced performance phase was analysed in a 2x2 factorial design, with the two factors Training Modality (auditory or visual) and Metronome Modality (auditory or visual), as well as with a conjunction analysis across all active conditions, to identify activations that were independent of both Training Modality and Metronome Modality. We found a significant main effect only for visual versus auditory Metronome Modality, in the left angular gyrus, due to a deactivation of this region after auditory pacing. The conjunction analysis revealed a set of brain areas that included dorsal auditory pathway areas (left temporo-parietal junction area and ventral premotor cortex), dorsal premotor cortex, the supplementary and presupplementary premotor areas, the cerebellum and the basal ganglia. We conclude that these regions are involved in controlling performance of well-learned rhythms, regardless of the modality in which the rhythms are trained and paced. This suggests that after extensive short-term training, all rhythms, even those that were both trained and paced in visual modality, had been transformed into auditory-motor representations. The deactivation of the angular cortex following auditory pacing may represent cross-modal auditory-visual inhibition.

  8. Interhemispheric visuo-motor integration in humans: the role of the superior parietal cortex.

    PubMed

    Iacoboni, Marco; Zaidel, Eran

    2004-01-01

    We used event-related functional magnetic resonance imaging (fMRI) to investigate the neural correlates of basic interhemispheric visuo-motor integration. In a simple reaction time task, subjects responded to lateralized left and right light flashes with unimanual left and right hand responses. Typically, reaction times are faster for uncrossed responses (that is, visual stimulus and response hand on the same side) than for crossed responses (that is, visual stimulus and response hand on opposite sides). The chronometric difference between crossed and uncrossed responses is called crossed-uncrossed difference (CUD) and it is typically taken to represent a behavioral estimate of interhemispheric transfer time. The fMRI results obtained in normal right-handers show that the crossed conditions yielded greater activity, compared to the uncrossed conditions, in bilateral prefrontal, bilateral dorsal premotor, and right superior parietal areas. These results suggest that multiple transfers between the hemispheres occur in parallel at the functional levels of sensory-motor integration (posterior parietal), decision-making (prefrontal) and preparation of motor response (premotor). To test the behavioral significance of these multiple transfers, we correlated the individual CUDs with the difference in signal intensity between crossed and uncrossed responses in the prefrontal, dorsal premotor, and right superior parietal activated areas. The analyses demonstrated a strong correlation between the CUD and signal intensity difference between crossed and uncrossed responses in the right superior parietal cortex. These data suggest a critical role of the superior parietal cortex in interhemispheric visuo-motor integration.

  9. Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement.

    PubMed

    Wheaton, Lewis A; Carpenter, Mackenzie; Mizelle, J C; Forrester, Larry

    2008-01-01

    Event related desynchronization (ERD) allows evaluation of brain signals in multiple frequency dimensions. The purpose of this study was to determine left hemispheric non-primary motor cortex differences at varying frequencies of premovement ERD for similar movements by end-effectors of the upper and lower extremities. We recorded 32-channel electroencephalography (EEG) while subjects performed self-paced right ankle dorsiflexion and wrist extension. Electromyography (EMG) was recorded over the tibialis anterior and extensor carpi ulnaris. EEG was analyzed for premovement ERD within the alpha (8-12 Hz), low beta (13-18 Hz) and high beta (18-22 Hz) frequencies over the premotor, motor, and sensory areas of the left and mesial cortex from -1.5 to 0 s before movement. Within the alpha and high beta bands, wrist movements showed limited topography, but greater ERD over posterior premotor cortex areas. Alpha ERD was also significantly greater over the lateral motor cortex for wrist movements. In the low beta band, wrist movements provided extensive ERD differences to include the left motor and mesial/lateral premotor areas, whereas ankle movements showed only limited ERD activity. Overall, alpha and high beta activity demonstrated distinctions that are consistent with mapping of wrist and ankle representations over the sensorimotor strip, whereas the low beta representation demonstrated the clearest distinctions between the limbs over widespread brain areas, particularly the lateral premotor cortex. This suggests limited leg premovement activity at the dorsolateral premotor cortex. Low beta ERD may be reflect joint or limb specific preparatory activity in the premotor area. Further work is required to better evaluate the extent of this low beta activity for multiple comparative joints.

  10. Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems.

    PubMed

    Goel, Vinod; Vartanian, Oshin

    2005-08-01

    Although patient data have traditionally implicated the left prefrontal cortex (PFC) in hypothesis generation, recent lesion data implicate right PFC in hypothesis generation tasks that involve set shifts (lateral transformations). To test the involvement of the right prefrontal cortex in a hypothesis generation task involving set shifts, we scanned 13 normal subjects with fMRI as they completed Match Problems (a classic divergent thinking task) and a baseline task. In Match Problems subjects determined the number of possible solutions for each trial. Successful solutions are indicative of set shifts. In the baseline condition subjects evaluated the accuracy of hypothetical solutions to match problems. A comparison of Match Problems versus baseline trials revealed activation in right ventral lateral PFC (BA 47) and left dorsal lateral PFC (BA 46). A further comparison of successfully versus unsuccessfully completed Match Problems revealed activation in right ventral lateral PFC (BA 47), left middle frontal gyrus (BA 9) and left frontal pole (BA 10), thus identifying the former as a critical component of the neural mechanisms of set-shift transformation. By contrast, activation in right dorsal lateral PFC (BA 46) covaried as a function of the number of solutions generated in Match Problems, possibly due to increased working memory demands to maintain multiple solutions 'on-line', conflict resolution, or progress monitoring. These results go beyond the patient data by identifying the ventral lateral (BA 47) aspect of right PFC as being a critical component of the neural systems underlying lateral transformations, and demonstrate a dissociation between right VLPFC and DLPFC in hypotheses generation and maintenance.

  11. Brain mediators of cardiovascular responses to social threat, Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity

    PubMed Central

    Wager, Tor D.; Waugh, Christian E.; Lindquist, Martin; Noll, Doug C.; Fredrickson, Barbara L.; Taylor, Stephan F.

    2009-01-01

    Social threat is a key component of mental “stress” and a potent generator of negative emotions and physiological responses in the body. How the human brain processes social context and drives peripheral physiology, however, is relatively poorly understood. Human neuroimaging and animal studies implicate the dorsal medial prefrontal cortex (MPFC), though this heterogeneous region is likely to contain multiple sub-regions with diverse relationships with physiological reactivity and regulation. We used fMRI combined with a novel multi-level path analysis approach to identify brain mediators of the effects of a public speech preparation task (social evaluative threat, SET) on heart rate (HR). This model provides tests of functional pathways linking experimentally manipulated threat, regional fMRI activity, and physiological output, both across time (within person) and across individuals (between persons). It thus integrates time series connectivity and individual difference analyses in the same path model. The results provide evidence for two dissociable, inversely coupled sub-regions of MPFC that independently mediated HR responses. SET caused activity increases in a more dorsal pregenual cingulate region, whose activity was coupled with HR increases. Conversely, SET caused activity decreases in a right ventromedial/medial orbital region, which were coupled with HR increases. Individual differences in coupling strength in each pathway independently predicted individual differences in HR reactivity. These results underscore both the importance and heterogeneity of MPFC in generating physiological responses to threat. PMID:19465137

  12. Fiber tracts of the dorsal language stream in the human brain.

    PubMed

    Yagmurlu, Kaan; Middlebrooks, Erik H; Tanriover, Necmettin; Rhoton, Albert L

    2016-05-01

    OBJECT The aim of this study was to examine the arcuate (AF) and superior longitudinal fasciculi (SLF), which together form the dorsal language stream, using fiber dissection and diffusion imaging techniques in the human brain. METHODS Twenty-five formalin-fixed brains (50 hemispheres) and 3 adult cadaveric heads, prepared according to the Klingler method, were examined by the fiber dissection technique. The authors' findings were supported with MR tractography provided by the Human Connectome Project, WU-Minn Consortium. The frequencies of gyral distributions were calculated in segments of the AF and SLF in the cadaveric specimens. RESULTS The AF has ventral and dorsal segments, and the SLF has 3 segments: SLF I (dorsal pathway), II (middle pathway), and III (ventral pathway). The AF ventral segment connects the middle (88%; all percentages represent the area of the named structure that is connected to the tract) and posterior (100%) parts of the superior temporal gyri and the middle part (92%) of the middle temporal gyrus to the posterior part of the inferior frontal gyrus (96% in pars opercularis, 40% in pars triangularis) and the ventral premotor cortex (84%) by passing deep to the lower part of the supramarginal gyrus (100%). The AF dorsal segment connects the posterior part of the middle (100%) and inferior temporal gyri (76%) to the posterior part of the inferior frontal gyrus (96% in pars opercularis), ventral premotor cortex (72%), and posterior part of the middle frontal gyrus (56%) by passing deep to the lower part of the angular gyrus (100%). CONCLUSIONS This study depicts the distinct subdivision of the AF and SLF, based on cadaveric fiber dissection and diffusion imaging techniques, to clarify the complicated language processing pathways.

  13. Virtual reality and the role of the prefrontal cortex in adults and children.

    PubMed

    Jäncke, Lutz; Cheetham, Marcus; Baumgartner, Thomas

    2009-05-01

    In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

  14. Superlinear Summation of Information in Premotor Neuron Pairs.

    PubMed

    Montani, Fernando; Oliynyk, Andriy; Fadiga, Luciano

    2017-03-01

    Whether premotor/motor neurons encode information in terms of spiking frequency or by their relative time of firing, which may display synchronization, is still undetermined. To address this issue, we used an information theory approach to analyze neuronal responses recorded in the premotor (area F5) and primary motor (area F1) cortices of macaque monkeys under four different conditions of visual feedback during hand grasping. To evaluate the sensitivity of spike timing correlation between single neurons, we investigated the stimulus dependent synchronization in our population of pairs. We first investigated the degree of correlation of trial-to-trial fluctuations in response strength between neighboring neurons for each condition, and second estimated the stimulus dependent synchronization by means of an information theoretical approach. We compared the information conveyed by pairs of simultaneously recorded neurons with the sum of information provided by the respective individual cells. The information transmission across pairs of cells in the primary motor cortex seems largely independent, whereas information transmission across pairs of premotor neurons is summed superlinearly. The brain could take advantage of both the accuracy provided by the independency of F1 and the synergy allowed by the superlinear information population coding in F5, distinguishing thus the generalizing role of F5.

  15. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex – frontal, temporal (auditory), and medial temporal – under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensory–motor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensory–motor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  16. Effective connectivity hierarchically links temporoparietal and frontal areas of the auditory dorsal stream with the motor cortex lip area during speech perception.

    PubMed

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-09-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech perception is unclear. Using paired-coil focal transcranial magnetic stimulation (TMS) in healthy subjects, we demonstrate that Tpj→M1 and pIFG→M1 effective connectivity increased when listening to speech compared to white noise. A virtual lesion induced by continuous theta-burst TMS (cTBS) of the pIFG abolished the task-dependent increase in pIFG→M1 but not Tpj→M1 effective connectivity during speech perception, whereas cTBS of Tpj abolished the task-dependent increase of both effective connectivities. We conclude that speech perception enhances effective connectivity between areas of the auditory dorsal stream and M1. Tpj is situated at a hierarchically high level, integrating speech perception into motor activation through the pIFG.

  17. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats

    PubMed Central

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-01-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague–Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement. PMID:25837282

  18. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex.

    PubMed

    Friedman, Amy L; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D; Hanna, Gregory L; Rosenberg, David R; Diwadkar, Vaibhav A

    2017-02-28

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a "motor set") or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD.

  19. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex

    PubMed Central

    Friedman, Amy L.; Burgess, Ashley; Ramaseshan, Karthik; Easter, Phil; Khatib, Dalal; Chowdury, Asadur; Arnold, Paul D.; Hanna, Gregory L.; Rosenberg, David R.; Diwadkar, Vaibhav A.

    2017-01-01

    In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a “motor set”) or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD. PMID:27992792

  20. Determining auditory-evoked activities from multiple cells in layer 1 of the dorsal cortex of the inferior colliculus of mice by in vivo calcium imaging.

    PubMed

    Ito, Tetsufumi; Hirose, Junichi; Murase, Kazuyuki; Ikeda, Hiroshi

    2014-11-24

    Layer 1 of the dorsal cortex of the inferior colliculus (DCIC) is distinguished from other layers by its cytoarchitecture and fiber connections. However, the information of the sound types represented in layer 1 of the DCIC remains unclear because placing electrodes on such thin structures is challenging. In this study, we utilized in vivo calcium imaging to assess auditory-evoked activities in multiple cells in layer 1 of DCIC and to characterize sound stimuli producing strong activity. Most cells examined showed strong responses to broad-band noise and low-frequency tone bursts of high sound intensity. In some cases, we successfully obtained frequency response areas, which are receptive fields to tone frequencies and intensities, and ~30% of these showed V-shape tunings. This is the first systematic study to record auditory responses of cells in layer 1 of DCIC. These results indicate that cells in this area are selective to tones with low frequency, implying the importance of such auditory information in the neural circuitry of layer 1 of DCIC.

  1. Delay of gratification is associated with white matter connectivity in the dorsal prefrontal cortex: a diffusion tensor imaging study in chimpanzees (Pan troglodytes)

    PubMed Central

    Latzman, Robert D.; Taglialatela, Jared P.; Hopkins, William D.

    2015-01-01

    Individual variability in delay of gratification (DG) is associated with a number of important outcomes in both non-human and human primates. Using diffusion tensor imaging (DTI), this study describes the relationship between probabilistic estimates of white matter tracts projecting from the caudate to the prefrontal cortex (PFC) and DG abilities in a sample of 49 captive chimpanzees (Pan troglodytes). After accounting for time between collection of DTI scans and DG measurement, age and sex, higher white matter connectivity between the caudate and right dorsal PFC was found to be significantly associated with the acquisition (i.e. training phase) but not the maintenance of DG abilities. No other associations were found to be significant. The integrity of white matter connectivity between regions of the striatum and the PFC appear to be associated with inhibitory control in chimpanzees, with perturbations on this circuit potentially leading to a variety of maladaptive outcomes. Additionally, results have potential translational implications for understanding the pathophysiology of a number of psychiatric and clinical outcomes in humans. PMID:26041344

  2. The Dorsal Agranular Insular Cortex Regulates the Cued Reinstatement of Cocaine-Seeking, but not Food-Seeking, Behavior in Rats.

    PubMed

    Cosme, Caitlin V; Gutman, Andrea L; LaLumiere, Ryan T

    2015-09-01

    Prior studies suggest that the insular cortex (IC), and particularly its posterior region (the PIc), is involved in nicotine craving and relapse in humans and rodents. The present experiments were conducted to determine whether the IC and its different subregions regulate relapse to cocaine-seeking behavior in rats. To address this issue, male Sprague-Dawley rats underwent cocaine self-administration followed by extinction training and reinstatement tests. Before each reinstatement, the PIc or the more anterior dorsal agranular IC (AId) was inactivated to determine their roles in the reinstatement to cocaine seeking. In contrast to the nicotine findings, PIc inactivation had no effect on cue-induced reinstatement for cocaine seeking. However, AId inactivation reduced cued reinstatement while having no effect on cocaine-prime reinstatement. AId inactivation had no effect on reinstatement of food-seeking behavior induced by cues, a food-prime, or cues+food-prime. Based on previous work hypothesizing a role for corticotropin-releasing factor (CRF) in the IC during craving and relapse, a subsequent experiment found that CRF receptor-1 (CRF1) blockade in the AId similarly reduced cued reinstatement. Our results suggest that the AId, along with CRF1 receptors in this region, regulates reinstatement to cocaine seeking, but not food seeking, depending on the type of reinstatement, whereas PIc activity does not influence cue-induced reinstatement.

  3. Emotional face recognition, empathic trait (BEES), and cortical contribution in response to positive and negative cues. The effect of rTMS on dorsal medial prefrontal cortex.

    PubMed

    Balconi, Michela; Bortolotti, Adriana

    2013-02-01

    The present study investigated the relationship between three different measures related to the affective empathy: facial expression detection in response to different emotional patterns (positive vs. negative), personal response to empathic scale [Balanced Emotional Empathy Scale (BEES)], and dorsal medial prefrontal cortex (dMPFC) contribution to mediate the facial detection task. Nineteen subjects took part in the study and they were required to recognize facial expression of emotions, after having empathized with these emotional cues. Repeated Transcranial Magnetic Stimulation (rTMS) method was used in the present research in order to produce a temporary virtual disruption of dMPFC activity. dMPFC disruption induced a worse performance, especially in response to negative expressions (i.e. anger and fear). High-BEES subjects paid a higher cost after frontal brain perturbation: they showed to be unable to correctly detect facial expressions more than low-BEES. Moreover, a "negative valence effect" was observed only for high-BEES, and it was probably related with their higher impairment to recognize negative more than positive expressions. dMPFC was found to support emotional facial expression recognition in an empathic condition, with a specific increased responsiveness for negative-valenced faces. The contribution of this research was discussed to explain the mechanisms underlying affective empathy based on rTMS application.

  4. The vigilance promoting drug modafinil modulates serotonin transmission in the rat prefrontal cortex and dorsal raphe nucleus. Possible relevance for its postulated antidepressant activity.

    PubMed

    Ferraro, Luca; Antonelli, Tiziana; Beggiato, Sarah; Cristina Tomasini, Maria; Fuxe, Kjell; Tanganelli, Sergio

    2013-04-01

    Modafinil, (RS)-2-(diphenylmethylsulfinyl)acetamide derivative (Modiodal, Provigil), is a vigilance-promoting agent which reduces sleep episodes by improving wakefulness. It is approved by the USA FDA for narcolepsy, shiftwork sleep disorder and obstructive sleep apnoea with residual excessive sleepiness despite optimal use of continuous positive airway pressure. Unlike classical psychostimulants such as amphetamine and amphetamine-like compounds, the awaking effect of modafinil is not associated with a disturbance of nighttime sleep, tolerance, and sensitization. Its precise mechanism of action is still unclear. In animal studies, modafinil and its analogues have been shown to modify dopaminergic, noradrenergic, glutamatergic, GABAergic, serotoninergic, orexinergic, and histaminergic pathways. Besides the approved use in sleep disorders, modafinil has been investigated for the treatment of fatigue, impaired cognition and some symptoms in a number of other disorders. In particular, clinical studies seem to indicate that the drug could be particularly successful in the treatment of depression and its use in major depressive and bipolar disorders, has been suggested. However, the molecular mechanisms underlying this possible effect are still unknown. The present review firstly summarizes the structure-activity relationship studies and the mechanism of action of modafinil and its related compounds. Then, it focuses on data demonstrating that modafinil interacts with serotonin neuronal activity in rat frontal cortex and dorsal raphe nucleus, two brain areas linked together and involved in depression. Preclinical and clinical evidence of a positive interaction between modafinil and classical antidepressant drugs, is also summarized.

  5. Spatiotemporal Profile of Voltage-Sensitive Dye Responses in the Visual Cortex of Tree Shrews Evoked by Electric Microstimulation of the Dorsal Lateral Geniculate and Pulvinar Nuclei

    PubMed Central

    Thomas, Sébastien; Petry, Heywood M.; Bickford, Martha E.; Casanova, Christian

    2015-01-01

    The primary visual cortex (V1) receives its main thalamic drive from the dorsal lateral geniculate nucleus (dLGN) through synaptic contacts terminating primarily in cortical layer IV. In contrast, the projections from the pulvinar nucleus to the cortex are less clearly defined. The pulvinar projects predominantly to layer I in V1, and layer IV in extrastriate areas. These projection patterns suggest that the pulvinar nucleus most strongly influences (drives) activity in cortical areas beyond V1. Should this hypothesis be true, one would expect the spatiotemporal responses evoked by pulvinar activation to be different in V1 and extrastriate areas, reflecting the different connectivity patterns. We investigated this issue by analyzing the spatiotemporal dynamics of cortical visual areas' activity following thalamic electrical microstimulation in tree shrews, using optical imaging and voltage-sensitive dyes. As expected, electrical stimulation of the dLGN induced fast and local responses in V1, as well as in extrastriate and contralateral cortical areas. In contrast, electrical stimulation of the pulvinar induced fast and local responses in extrastriate areas, followed by weak and diffuse activation in V1 and contralateral cortical areas. This study highlights spatiotemporal cortical activation characteristics induced by stimulation of first (dLGN) and high-order (pulvinar) thalamic nuclei. SIGNIFICANCE STATEMENT The pulvinar nucleus represents the main extrageniculate thalamic visual structure in higher-order mammals, but its exact role remains enigmatic. The pulvinar receive prominent inputs from virtually all visual cortical areas. Cortico-thalamo-cortical pathways through the pulvinar nuclei may then provide a complementary route for corticocortical information flow. One step toward the understanding of the role of transthalamic corticocortical pathways is to determine the nature of the signals transmitted between the cortex and the thalamus. By performing, for

  6. Differences in the Flexibility of Switching Learning Strategies and CREB Phosphorylation Levels in Prefrontal Cortex, Dorsal Striatum and Hippocampus in Two Inbred Strains of Mice

    PubMed Central

    Cho, Woo-Hyun; Han, Jung-Soo

    2016-01-01

    Flexibility in using different learning strategies was assessed in two different inbred strains of mice, the C57BL/6 and DBA/2 strains. Mice were trained sequentially in two different Morris water maze protocols that tested their ability to switch their learning strategy to complete a new task after first being trained in a different task. Training consisted either of visible platform trials (cued training) followed by subsequent hidden platform trials (place training) or the reverse sequence (place training followed by cued training). Both strains of mice showed equivalent performance in the type of training (cued or place) that they received first. However, C57BL/6 mice showed significantly better performances than DBA/2 mice following the switch in training protocols, irrespective of the order of training. After completion of the switched training session, levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were measured in the hippocampus, striatum and prefrontal cortex of the mice. Prefrontal cortical and hippocampal pCREB levels differed by strain, with higher levels found in C57BL/6 mice than in DBA/2 mice. No strain differences were observed in the medial or lateral region of the dorsal striatum. These findings indicate that the engagement (i.e., CREB signaling) of relevant neural structures may vary by the specific demands of the learning strategy, and this is closely tied to differences in the flexibility of C57BL/6 and DBA/2 mice to switch their learning strategies when given a new task. PMID:27695401

  7. Markers of Serotonergic Function in the Orbitofrontal Cortex and Dorsal Raphé Nucleus Predict Individual Variation in Spatial-Discrimination Serial Reversal Learning

    PubMed Central

    Barlow, Rebecca L; Alsiö, Johan; Jupp, Bianca; Rabinovich, Rebecca; Shrestha, Saurav; Roberts, Angela C; Robbins, Trevor W; Dalley, Jeffrey W

    2015-01-01

    Dysfunction of the orbitofrontal cortex (OFC) impairs the ability of individuals to flexibly adapt behavior to changing stimulus-reward (S-R) contingencies. Impaired flexibility also results from interventions that alter serotonin (5-HT) and dopamine (DA) transmission in the OFC and dorsomedial striatum (DMS). However, it is unclear whether similar mechanisms underpin naturally occurring variations in behavioral flexibility. In the present study, we used a spatial-discrimination serial reversal procedure to investigate interindividual variability in behavioral flexibility in rats. We show that flexibility on this task is improved following systemic administration of the 5-HT reuptake inhibitor citalopram and by low doses of the DA reuptake inhibitor GBR12909. Rats in the upper quintile of the distribution of perseverative responses during repeated S-R reversals showed significantly reduced levels of the 5-HT metabolite, 5-hydroxy-indoleacetic acid, in the OFC. Additionally, 5-HT2A receptor binding in the OFC of mid- and high-quintile rats was significantly reduced compared with rats in the low-quintile group. These perturbations were accompanied by an increase in the expression of monoamine oxidase-A (MAO-A) and MAO-B in the lateral OFC and by a decrease in the expression of MAO-A, MAO-B, and tryptophan hydroxylase in the dorsal raphé nucleus of highly perseverative rats. We found no evidence of significant differences in markers of DA and 5-HT function in the DMS or MAO expression in the ventral tegmental area of low- vs high-perseverative rats. These findings indicate that diminished serotonergic tone in the OFC may be an endophenotype that predisposes to behavioral inflexibility and other forms of compulsive behavior. PMID:25567428

  8. Differential role of the dorsal hippocampus, ventro-intermediate hippocampus, and medial prefrontal cortex in updating the value of a spatial goal.

    PubMed

    De Saint Blanquat, Paul; Hok, Vincent; Save, Etienne; Poucet, Bruno; Chaillan, Franck A

    2013-05-01

    Encoding of a goal with a specific value while performing a place navigation task involves the medial prefrontal cortex (mPFC) and the dorsal hippocampus (dHPC), and depends on the coordination between mPFC and the ventro-intermediate hippocampus (vHPC).The present work investigates the contribution of mPFC, dHPC, and vHPC when the rat has to update the value of a goal. Rats were trained to navigate to an uncued goal in order to release a food pellet in a continuous place navigation task. When they had reached criterion performance level in the task, they were subjected to a single "flash session" in which they were exposed to an aversive strobe light during goal visits instead of receiving a food reward. Just before the flash session, the GABA(A) agonist muscimol was injected to temporarily inactivate mPFC, dHPC, or vHPC. The ability to recall the changed value of the goal was tested on the next day. We first demonstrate the aversive effect of the strobe light by showing that rats learn to avoid the goal much more rapidly in the flash session than during a simple extinction session in which goal visits are not rewarded. Furthermore, while dHPC inactivation had no effect on learning and recalling the new goal value, vHPC muscimol injections considerably delayed goal value updating during the flash session, which resulted in a slight deficit during recall. In contrast, mPFC muscimol injections induced faster goal value updating but the rats were markedly impaired on recalling the new goal value on the next day. These results suggest that, contrary to mPFC and dHPC, vHPC is required for updating the value of a goal. In contrast, mPFC is necessary for long-term retention of this updating.

  9. Differences in the Flexibility of Switching Learning Strategies and CREB Phosphorylation Levels in Prefrontal Cortex, Dorsal Striatum and Hippocampus in Two Inbred Strains of Mice.

    PubMed

    Cho, Woo-Hyun; Han, Jung-Soo

    2016-01-01

    Flexibility in using different learning strategies was assessed in two different inbred strains of mice, the C57BL/6 and DBA/2 strains. Mice were trained sequentially in two different Morris water maze protocols that tested their ability to switch their learning strategy to complete a new task after first being trained in a different task. Training consisted either of visible platform trials (cued training) followed by subsequent hidden platform trials (place training) or the reverse sequence (place training followed by cued training). Both strains of mice showed equivalent performance in the type of training (cued or place) that they received first. However, C57BL/6 mice showed significantly better performances than DBA/2 mice following the switch in training protocols, irrespective of the order of training. After completion of the switched training session, levels of cAMP response element-binding protein (CREB) and phosphorylated CREB (pCREB) were measured in the hippocampus, striatum and prefrontal cortex of the mice. Prefrontal cortical and hippocampal pCREB levels differed by strain, with higher levels found in C57BL/6 mice than in DBA/2 mice. No strain differences were observed in the medial or lateral region of the dorsal striatum. These findings indicate that the engagement (i.e., CREB signaling) of relevant neural structures may vary by the specific demands of the learning strategy, and this is closely tied to differences in the flexibility of C57BL/6 and DBA/2 mice to switch their learning strategies when given a new task.

  10. NMDA receptors in the medial prefrontal cortex and the dorsal hippocampus regulate methamphetamine-induced hyperactivity and extracellular amino acid release in mice.

    PubMed

    Han, Wenyan; Wang, Fangyang; Qi, Jia; Wang, Fang; Zhang, Lijia; Zhao, Siqi; Song, Ming; Wu, Chunfu; Yang, Jingyu

    2012-06-15

    The medial prefrontal cortex (mPFC) and the dorsal hippocampus (DHC) play significant roles in stimulant-induced neurobehavioral effects. Methamphetamine (MAP)-induced hyperactivity has been reported to be involved in the regulation of the glutamatergic system. The present study examined whether the glutamatergic and GABAergic systems in the mPFC and DHC were involved in MAP-induced hyperactivity in mice. A combined kainic acid (KA) or N-methyl-d-aspartate (NMDA) lesion and microdialysis technique targeting both the mPFC and DHC were used. The results showed that both KA- and NMDA-induced lesions of the mPFC facilitated MAP-induced hyperactivity, while neither KA- nor NMDA-induced lesions of the DHC had a similar effect. MAP increased the extracellular glutamate (Glu) levels in the mPFC and reduced Glu levels in the DHC. GABA levels in both of these regions were reduced. A KA or NMDA lesion of the mPFC inhibited the Glu reduction in the DHC, and the same lesion of the DHC inhibited the Glu increase in the mPFC induced by MAP. A NMDA lesion of the mPFC blocked GABA reduction in the DHC, but a lesion of DHC enhanced the GABA decrease in the mPFC induced by MAP. Furthermore, a NMDA lesion of DHC increased the vesicular glutamate transporter-2 (VGLUT2) expression in the mPFC following MAP-administration. These findings indicate that glutamatergic as well as GABAergic systems in these two regions are involved in MAP-induced hyperactivity. Moreover, there may be an inhibitory role in these two regions, especially mediated by NMDA receptors, in MAP-induced abnormal behavior and neurotransmission responses.

  11. Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors.

    PubMed

    Faccidomo, Sara; Bannai, Makoto; Miczek, Klaus A

    2008-11-01

    A significant minority of individuals engages in escalated levels of aggression after consuming moderate doses of alcohol (Alc). Neural modulation of escalated aggression involves altered levels of serotonin (5-HT) and the activity of 5-HT(1B) receptors. The aim of these studies was to determine whether 5-HT(1B) receptors in the dorsal raphé (DRN), orbitofrontal (OFC), and medial prefrontal (mPFC) cortex attenuate heightened aggression and regulate extracellular levels of 5-HT. Male mice were trained to self-administer Alc by performing an operant response that was reinforced with a delivery of 6% Alc. To identify Alc-heightened aggressors, each mouse was repeatedly tested for aggression after consuming either 1.0 g/kg Alc or H2O. Next, a cannula was implanted into either the DRN, OFC, or mPFC, and subsets of mice were tested for aggression after drinking either Alc or H(2)O prior to a microinjection of the 5-HT(1B) agonist, CP-94,253. Additional mice were implanted with a microdialysis probe into the mPFC, through which CP-94,253 was perfused and samples were collected for 5-HT measurement. Approximately 60% of the mice were more aggressive after drinking Alc, confirming the aggression-heightening effects of 1.0 g/kg Alc. Infusion of 1 microg CP-94,253 into the DRN reduced both aggressive and motor behaviors. However, infusion of 1 microg CP-94,253 into the mPFC, but not the OFC, after Alc drinking, increased aggressive behavior. In the mPFC, reverse microdialysis of CP-94,253 increased extracellular levels of 5-HT; levels decreased immediately after the perfusion. This 5-HT increase was attenuated in self-administering mice. These results suggest that 5-HT(1B) receptors in the mPFC may serve to selectively disinhibit aggressive behavior in mice with a history of Alc self-administration.

  12. Shape representations in the primate dorsal visual stream

    PubMed Central

    Theys, Tom; Romero, Maria C.; van Loon, Johannes; Janssen, Peter

    2015-01-01

    The primate visual system extracts object shape information for object recognition in the ventral visual stream. Recent research has demonstrated that object shape is also processed in the dorsal visual stream, which is specialized for spatial vision and the planning of actions. A number of studies have investigated the coding of 2D shape in the anterior intraparietal area (AIP), one of the end-stage areas of the dorsal stream which has been implicated in the extraction of affordances for the purpose of grasping. These findings challenge the current understanding of area AIP as a critical stage in the dorsal stream for the extraction of object affordances. The representation of three-dimensional (3D) shape has been studied in two interconnected areas known to be critical for object grasping: area AIP and area F5a in the ventral premotor cortex (PMv), to which AIP projects. In both areas neurons respond selectively to 3D shape defined by binocular disparity, but the latency of the neural selectivity is approximately 10 ms longer in F5a compared to AIP, consistent with its higher position in the hierarchy of cortical areas. Furthermore, F5a neurons were more sensitive to small amplitudes of 3D curvature and could detect subtle differences in 3D structure more reliably than AIP neurons. In both areas, 3D-shape selective neurons were co-localized with neurons showing motor-related activity during object grasping in the dark, indicating a close convergence of visual and motor information on the same clusters of neurons. PMID:25954189

  13. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing

    NASA Technical Reports Server (NTRS)

    Astafiev, Serguei V.; Shulman, Gordon L.; Stanley, Christine M.; Snyder, Abraham Z.; Van Essen, David C.; Corbetta, Maurizio

    2003-01-01

    We studied the functional organization of human posterior parietal and frontal cortex using functional magnetic resonance imaging (fMRI) to map preparatory signals for attending, looking, and pointing to a peripheral visual location. The human frontal eye field and two separate regions in the intraparietal sulcus were similarly recruited in all conditions, suggesting an attentional role that generalizes across response effectors. However, the preparation of a pointing movement selectively activated a different group of regions, suggesting a stronger role in motor planning. These regions were lateralized to the left hemisphere, activated by preparation of movements of either hand, and included the inferior and superior parietal lobule, precuneus, and posterior superior temporal sulcus, plus the dorsal premotor and anterior cingulate cortex anteriorly. Surface-based registration of macaque cortical areas onto the map of fMRI responses suggests a relatively good spatial correspondence between human and macaque parietal areas. In contrast, large interspecies differences were noted in the topography of frontal areas.

  14. Left superior parietal cortex involvement in writing: integrating fMRI with lesion evidence.

    PubMed

    Menon, V; Desmond, J E

    2001-10-01

    Writing is a uniquely human skill that we utilize nearly everyday. Lesion studies in patients with Gerstmann's syndrome have pointed to the parietal cortex as being critical for writing. Very little information is, however, available about the precise anatomical location of brain regions subserving writing in normal healthy individuals. In this study, we used functional magnetic resonance imaging (fMRI) to investigate parietal lobe function during writing to dictation. Significant clusters of activation were observed in left superior parietal lobe (SPL) and the dorsal aspects of the inferior parietal cortex (IPC) bordering the SPL. Localized clusters of activation were also observed in the left premotor cortex, sensorimotor cortex and supplementary motor area. No activation cluster was observed in the right hemisphere. These results clearly indicate that writing appears to be primarily organized in the language-dominant hemisphere. Further analysis revealed that within the parietal cortex, activation was significantly greater in the left SPL, compared to left IPC. Together with lesion studies, findings from the present study provide further evidence for the essential role of the left SPL in writing. Deficits to the precise left hemisphere parietal cortex regions identified in the present study may specifically underlie disorders of writing observed in Gerstmann's syndrome and apractic agraphia.

  15. Dopamine replacement modulates oscillatory coupling between premotor and motor cortical areas in Parkinson's disease.

    PubMed

    Herz, Damian Marc; Florin, Esther; Christensen, Mark Schram; Reck, Christiane; Barbe, Michael Thomas; Tscheuschler, Maike Karoline; Tittgemeyer, Marc; Siebner, Hartwig Roman; Timmermann, Lars

    2014-11-01

    Efficient neural communication between premotor and motor cortical areas is critical for manual motor control. Here, we used high-density electroencephalography to study cortical connectivity in patients with Parkinson's disease (PD) and age-matched healthy controls while they performed repetitive movements of the right index finger at maximal repetition rate. Multiple source beamformer analysis and dynamic causal modeling were used to assess oscillatory coupling between the lateral premotor cortex (lPM), supplementary motor area (SMA), and primary motor cortex (M1) in the contralateral hemisphere. Elderly healthy controls showed task-related modulation in connections from lPM to SMA and M1, mainly within the γ-band (>30 Hz). Nonmedicated PD patients also showed task-related γ-γ coupling from lPM to M1, but γ coupling from lPM to SMA was absent. Levodopa reinstated physiological γ-γ coupling from lPM to SMA and significantly strengthened coupling in the feedback connection from M1 to lPM expressed as β-β as well as θ-β coupling. Enhancement in cross-frequency θ-β coupling from M1 to lPM was correlated with levodopa-induced improvement in motor function. The results show that PD is associated with an altered neural communication between premotor and motor cortical areas, which can be modulated by dopamine replacement.

  16. Cortical connectivity suggests a role in limb coordination for macaque area PE of the superior parietal cortex.

    PubMed

    Bakola, Sophia; Passarelli, Lauretta; Gamberini, Michela; Fattori, Patrizia; Galletti, Claudio

    2013-04-10

    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographic map of the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles.

  17. Object vision to hand action in macaque parietal, premotor, and motor cortices

    PubMed Central

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. DOI: http://dx.doi.org/10.7554/eLife.15278.001 PMID:27458796

  18. Activity in the premotor area related to bite force control--a functional near-infrared spectroscopy study.

    PubMed

    Takeda, Tomotaka; Shibusawa, Mami; Sudal, Osamu; Nakajima, Kazunori; Ishigami, Keiichi; Sakatani, Kaoru

    2010-01-01

    The purpose of this study was to elucidate the influence of bite force control on oxygenated hemoglobin (OxyHb) levels in regional cerebral blood flow as an indicator of brain activity in the premotor area. Healthy right-handed volunteers with no subjective or objective symptoms of problems of the stomatognathic system or cervicofacial region were included. Functional near-infrared spectroscopy (fNIRS) was used to determine OxyHb levels in the premotor area during bite force control. A bite block equipped with an occlusal force sensor was prepared to measure clenching at the position where the right upper and lower canine cusps come into contact. Intensity of clenching was shown on a display and feedback was provided to the subjects. Intensity was set at 20, 50 and 80% of maximum voluntary teeth clenching force. To minimize the effect of the temporal muscle on the working side of the jaw, the fNIRS probes were positioned contralaterally, in the left region. The findings of this study are: activation of the premotor area with bite force control was noted in all subjects, and in the group analysis OxyHb in the premotor cortex was significantly increased as the clenching strengthened at 20, 50 and 80% of maximum voluntary clenching force. These results suggest there is a possibility that the premotor area is involved in bite force control.

  19. Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex.

    PubMed

    Marconi, B; Genovesio, A; Battaglia-Mayer, A; Ferraina, S; Squatrito, S; Molinari, M; Lacquaniti, F; Caminiti, R

    2001-06-01

    The anatomical and physiological substrata of eye-hand coordination during reaching were studied through combined anatomical and physiological techniques. The association connections of parietal areas V6A and PEc, and those of dorso-rostral (F7) and dorso-caudal (F2) premotor cortex were studied in monkeys, after physiological characterization of the parietal regions where retrograde tracers were injected. The results show that parieto-occipital area V6A is reciprocally connected with F7, and receives a smaller projection from F2. Local parietal projections to V6A arise from areas MIP and, to a lesser extent, 7m, PEa and PEC: On the contrary, parietal area PEc is strongly and reciprocally connected with the part of F2 located close to the pre-central dimple (pre-CD). Local parietal projections to PEc come from a distributed network, including PEa, MIP, PEci and, to a lesser extent, 7m, V6A, 7a and MST. Premotor area F7 receives parietal projections mainly from 7m and V6A, and local frontal projections mainly from F2. On the contrary, premotor area F2 in the pre-CD zone receives parietal inputs from PEc and, to a lesser extent, PEci, while in the peri-arcuate zone F2 receives parietal projections from PEa and MIP. Local frontal projections to F2 pre-CD mostly stem from F4, and, to a lesser extent, from F7 and F3, and CMAd; those addressed to peri-arcuate zone of F2 arise mainly from F5 and, to a lesser extent, from F7, F4, dorsal (CMAd) and ventral (CMAv) cingulate motor areas, pre-supplementary (F6) and supplementary (F3) motor areas. The distribution of association cells in both frontal and parietal cortex was characterized through a spectral analysis that revealed an arrangement of these cells in the form of bands, composed of cell clusters, or 'columns'. The reciprocal connections linking parietal and frontal cortex might explain the presence of visually related and eye-position signals in premotor cortex, as well as the influence of information about arm

  20. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    ERIC Educational Resources Information Center

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  1. Projections of the hand field of the macaque ventral premotor area F5 to the brainstem and spinal cord.

    PubMed

    Borra, Elena; Belmalih, Abdelouahed; Gerbella, Marzio; Rozzi, Stefano; Luppino, Giuseppe

    2010-07-01

    In the present study we first assessed that the hand motor field of the macaque ventral premotor area F5, involved in visuomotor control of hand actions, is connected to both the hand field of the primary motor cortex (M1) and the spinal cord. We then injected retroanterograde tracers in this field to completely illustrate its possible descending motor projections. In the brainstem the F5 hand motor field projects to the intermediate and deep layers of the superior colliculus (SC) and to sectors of the mesencephalic, pontine, and bulbar reticular formation, which are the sources of spinal projections. In the spinal cord, labeled terminals were virtually all confined to the C2-T1 segments, mostly contralaterally. At C6-T1 levels the labeling was weaker and mostly clustered laterally in the intermediate zone. At C2-C5 levels, labeled terminals were much denser and diffusely distributed over the mid-dorsal part of the intermediate zone where a propriospinal system that directly controls hand muscle motoneurons and mediates commands for the control of dexterous finger movements is located (Isa et al. [2007] Physiology 22:145-152). Thus, the F5 hand motor field has a weaker direct access and a stronger indirect access to spinal segments where hand muscle motoneurons are located, suggesting a role of this field in the generation and control of hand movements not only at the M1 level, but also at the spinal cord level. These projections may represent the neural substrate for the F5 hand motor field's role in the recovery of manual dexterity after M1 lesions.

  2. Feeling the beat: premotor and striatal interactions in musicians and non-musicians during beat perception

    PubMed Central

    Grahn, Jessica A.; Rowe, James B.

    2009-01-01

    Little is known about the underlying neurobiology of rhythm and beat perception, despite its universal cultural importance. Here we used functional magnetic resonance imaging to study rhythm perception in musicians and non-musicians. Three conditions varied in the degree to which external reinforcement versus internal generation of the beat was required. The ‘Volume’ condition strongly externally marked the beat with volume changes, the ‘Duration’ condition marked the beat with weaker accents arising from duration changes, and the ‘Unaccented’ condition required the beat to be entirely internally generated. In all conditions, beat rhythms compared to nonbeat control rhythms revealed putamen activity. The presence of a beat was also associated with greater connectivity between the putamen and the supplementary motor area (SMA), the premotor cortex (PMC) and auditory cortex. In contrast, the type of accent within the beat conditions modulated the coupling between premotor and auditory cortex, with greater modulation for musicians than non-musicians. Importantly, the putamen's response to beat conditions was not due to differences in temporal complexity between the three rhythm conditions. We propose that a cortico-subcortical network including the putamen, SMA, and PMC is engaged for the analysis of temporal sequences and prediction or generation of putative beats, especially under conditions that may require internal generation of the beat. The importance of this system for auditory-motor interaction and development of precisely timed movement is suggested here by its facilitation in musicians. PMID:19515922

  3. Coordinated activation of premotor and ventromedial prefrontal cortices during vicarious reward.

    PubMed

    Shimada, Sotaro; Matsumoto, Madoka; Takahashi, Hidefumi; Yomogida, Yukihito; Matsumoto, Kenji

    2016-03-01

    The vicarious reward we receive from watching likable others obtaining a positive outcome is a pervasive phenomenon, yet its neural correlates are poorly understood. Here, we conducted a series of functional magnetic resonance imaging experiments to test the hypothesis that the brain areas responsible for action observation and reward processing work in a coordinated fashion during vicarious reward. In the first experiment (manipulation phase), the participant was instructed to cheer for a particular player in a two-player competitive game (Rock-Paper-Scissors). This manipulation made participants feel more unity with that player and resulted in unity-related activation in the premotor area during action observation. In the following main experiment, the participant witnessed the previously cheered-for or non-cheered-for player succeed in a new solitary game (a stopwatch game). The ventromedial prefrontal cortex (vmPFC) was activated when the cheered-for player succeeded in the game but not when the other player did. Interestingly, this vmPFC activation was functionally connected with premotor activation only during the cheered-for player's success. These results suggest that vicarious reward is processed in the vmPFC-premotor network, which is activated specifically by the success of the other person with whom the individual feels unity and closeness.

  4. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  5. Selective Long-term Reorganization of the Corticospinal Projection from the Supplementary Motor Cortex following Recovery from Lateral Motor Cortex Injury

    PubMed Central

    McNeal, David W.; Darling, Warren G.; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; Solon, Kathryn M.; Hynes, Stephanie M.; Pizzimenti, Marc A.; Rotella, Diane; Vanadurongvan, Tyler; Morecraft, Robert J.

    2013-01-01

    Brain injury affecting the frontal motor cortex or its descending axons often causes contralateral upper extremity paresis. Although recovery is variable, the underlying mechanisms supporting favorable motor recovery remain unclear. Since the medial wall of the cerebral hemisphere is often spared following brain injury and recent functional neuroimaging studies in patients indicate a potential role for this brain region in the recovery process, we investigated the long-term effects of isolated lateral frontal motor cortical injury on the corticospinal projection (CSP) from intact, ipsilesional supplementary motor cortex (M2). Following injury to the arm region of the primary motor (M1) and lateral premotor (LPMC) cortices, upper extremity recovery is accompanied by terminal axon plasticity in the contralateral CSP but not the ipsilateral CSP from M2. Furthermore, significant contralateral plasticity occurs only in lamina VII and dorsally within lamina IX. Thus, selective intraspinal sprouting transpires in regions containing interneurons, flexor-related motor neurons and motor neurons supplying intrinsic hand muscles which all play important roles in mediating reaching and digit movements. Following recovery, subsequent injury of M2 leads to reemergence of hand motor deficits. Considering the importance of the CSP in humans and the common occurrence of lateral frontal cortex injury, these findings suggest that spared supplementary motor cortex may serve as an important therapeutic target that should be considered when designing acute and long-term post-injury patient intervention strategies aimed to enhance the motor recovery process following lateral cortical trauma. PMID:20034062

  6. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats.

    PubMed

    Fu, Juan; Xing, Xiaoli; Han, Mengfi; Xu, Na; Piao, Chengji; Zhang, Yue; Zheng, Xigeng

    2016-02-01

    The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear

  7. MEG premotor abnormalities in children with Asperger's syndrome: determinants of social behavior?

    PubMed

    Hauswald, Anne; Weisz, Nathan; Bentin, Shlomo; Kissler, Johanna

    2013-07-01

    Children with Asperger's syndrome show deficits in social functioning while their intellectual and language development is intact suggesting a specific dysfunction in mechanisms mediating social cognition. An action observation/execution matching system might be one such mechanism. Recent studies indeed showed that electrophysiological modulation of the "Mu-rhythm" in the 10-12Hz range is weaker when individuals with Asperger's syndrome observe actions performed by others compared to controls. However, electrophysiological studies typically fall short in revealing the neural generators of this activity. To fill this gap we assessed magnetoencephalographic Mu-modulations in Asperger's and typically developed children, while observing grasping movements. Mu-power increased at frontal and central sensors during movement observation. This modulation was stronger in typical than in Asperger children. Source localization revealed stronger sources in premotor cortex, the intraparietal lobule (IPL) and the mid-occipito-temporal gyrus (MOTG) and weaker sources in prefrontal cortex in typical participants compared to Asperger. Activity in premotor regions, IPL and MOTG correlated positively with social competence, whereas prefrontal Mu-sources correlated negatively with social competence. No correlation with intellectual ability was found at any of these sites. These findings localize abnormal Mu-activity in the brain of Asperger children providing evidence which associates motor-system abnormalities with social-function deficits.

  8. Interplay of Inhibition and Excitation Shapes a Premotor Neural Sequence

    PubMed Central

    Kosche, Georg; Vallentin, Daniela

    2015-01-01

    In the zebra finch, singing behavior is driven by a sequence of bursts within premotor neurons located in the forebrain nucleus HVC (proper name). In addition to these excitatory projection neurons, HVC also contains inhibitory interneurons with a role in premotor patterning that is unclear. Here, we used a range of electrophysiological and behavioral observations to test previously described models suggesting discrete functional roles for inhibitory interneurons in song production. We show that single HVC premotor neuron bursts are sufficient to drive structured activity within the interneuron network because of pervasive and facilitating synaptic connections. We characterize interneuron activity during singing and describe reliable pauses in the firing of those neurons. We then demonstrate that these gaps in inhibition are likely to be necessary for driving normal bursting behavior in HVC premotor neurons and suggest that structured inhibition and excitation may be a general mechanism enabling sequence generation in other circuits. PMID:25609636

  9. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry

    PubMed Central

    Song, Hanbing; Hayes, John A.; Vann, Nikolas C.; Wang, Xueying; LaMar, M. Drew

    2016-01-01

    Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits. In spontaneously rhythmic slices, cumulative ablation of Dbx1 preBötC neurons decreased XII motor output by ∼50% after ∼15 cell deletions, and then decelerated and terminated rhythmic function altogether as the tally increased to ∼85 neurons. In contrast, cumulatively deleting Dbx1 XII premotor neurons decreased motor output monotonically but did not affect frequency nor stop XII output regardless of the ablation tally. Here, we couple an existing preBötC model with a premotor population in several topological configurations to investigate which one may replicate the laser ablation experiments best. If the XII premotor population is a “small-world” network (rich in local connections with sparse long-range connections among constituent premotor neurons) and connected with the preBötC such that the total number of incoming synapses remains fixed, then the in silico system successfully replicates the in vitro laser ablation experiments. This study proposes a feasible configuration for circuits consisting of Dbx1-derived interneurons that generate inspiratory rhythm and motor pattern. SIGNIFICANCE STATEMENT To produce a breathing-related motor pattern, a brainstem core oscillator circuit projects to a population of premotor interneurons, but the assemblage of this network remains

  10. Interaction between the premotor processes of eye and hand movements: possible mechanism underlying eye-hand coordination.

    PubMed

    Hiraoka, Koichi; Kurata, Naoatsu; Sakaguchi, Masato; Nonaka, Kengo; Matsumoto, Naoto

    2014-03-01

    Interaction between the execution process of eye movement and that of hand movement must be indispensable for eye-hand coordination. The present study investigated corticospinal excitability in the hand muscles during the premotor processes of eye and/or hand movement to elucidate interaction between these processes. Healthy humans performed a precued reaction task of eye and/or finger movement and motor-evoked potentials in the hand muscles were evoked in the reaction time. Leftward eye movement suppressed corticospinal excitability in the right abductor digiti minimi muscle only when little finger abduction was simultaneously executed. Corticospinal excitability in the first dorsal interosseous muscle was not suppressed by eye movement regardless of whether or not it was accompanied by finger movement. Suppression of corticospinal excitability in the hand muscles induced by eye movement in the premotor period depends on the direction of eye movement, the muscle tested, and the premotor process of the tested muscle. The suppression may reflect interaction between the motor process of eye movement and that of hand movement particularly active during eye-hand coordination tasks during which both processes proceed.

  11. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion.

    PubMed

    Schwendt, Marek; Rocha, Angelica; See, Ronald E; Pacchioni, Alejandra M; McGinty, Jacqueline F; Kalivas, Peter W

    2009-11-01

    Chronic abuse of methamphetamine leads to cognitive dysfunction and high rates of relapse, paralleled by significant changes of brain dopamine and serotonin neurotransmission. Previously, we found that rats with extended access to methamphetamine self-administration displayed enhanced methamphetamine-primed reinstatement of drug-seeking and cognitive deficits relative to limited access animals. The present study investigated whether extended access to methamphetamine self-administration produced abnormalities in dopamine and serotonin systems in rat forebrain. Rats self-administered methamphetamine (0.02-mg/i.v. infusion) during daily 1-h sessions for 7 to 10 days, followed by either short- (1-h) or long-access (6-h) self-administration for 12 to 14 days. Lever responding was extinguished for 2 weeks before either reinstatement testing or rapid decapitation and tissue dissection. Tissue levels of monoamine transporters and markers of methamphetamine-induced toxicity were analyzed in several forebrain areas. Long-access methamphetamine self-administration resulted in escalation of daily drug intake ( approximately 7 mg/kg/day) and enhanced drug-primed reinstatement compared with the short-access group. Furthermore, long-, but not short-access to self-administered methamphetamine resulted in persistent decreases in dopamine transporter (DAT) protein levels in the prefrontal cortex and dorsal striatum. In contrast, only minor alterations in the tissue levels of dopamine or its metabolites were found, and no changes in markers specific for dopamine terminals or glial cell activation were detected. Our findings suggest that persistent methamphetamine seeking is associated with region-selective changes in DAT levels without accompanying monoaminergic neurotoxicity. Greater understanding of the neuroadaptations underlying persistent methamphetamine seeking and cognitive deficits could yield targets suitable for future therapeutic interventions.

  12. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory.

    PubMed

    Webb, William M; Sanchez, Richard G; Perez, Gabriella; Butler, Anderson A; Hauser, Rebecca M; Rich, Megan C; O'Bierne, Aidan L; Jarome, Timothy J; Lubin, Farah D

    2017-02-20

    Epigenetic mechanisms such as DNA methylation and histone methylation are critical regulators of gene transcription changes during memory consolidation. However, it is unknown how these epigenetic modifications coordinate control of gene expression following reactivation of a previously consolidated memory. Here, we found that retrieval of a recent contextual fear conditioned memory increased global levels of H3 lysine 4-trimethylation (H3K4me3) and DNA 5-hydroxymethylation (5hmC) in area CA1 of the dorsal hippocampus. Further experiments revealed increased levels of H3K4me3 and DNA 5hmC within a CpG-enriched coding region of the Npas4, but not c-fos, gene. Intriguingly, retrieval of a 30-day old memory increased H3K4me3 and DNA 5hmC levels at a CpG-enriched coding region of c-fos, but not Npas4, in the anterior cingulate cortex, suggesting that while these two epigenetic mechanisms co-occur following the retrieval of a recent or remote memory, their gene targets differ depending on the brain region. Additionally, we found that in vivo siRNA-mediated knockdown of the H3K4me3 methyltransferase Mll1 in CA1 abolished retrieval-induced increases in DNA 5hmC levels at the Npas4 gene, suggesting that H3K4me3 couples to DNA 5hmC mechanisms. Consistent with this, loss of Mll1 prevented retrieval-induced increases in Npas4 mRNA levels in CA1 and impaired fear memory. Collectively, these findings suggest an important link between histone methylation and DNA hydroxymethylation mechanisms in the epigenetic control of de novo gene transcription triggered by memory retrieval.

  13. Social instigation and aggression in postpartum female rats: role of 5-Ht1A and 5-Ht1B receptors in the dorsal raphé nucleus and prefrontal cortex

    PubMed Central

    da Veiga, Caroline Perinazzo; Miczek, Klaus A.; Lucion, Aldo Bolten

    2013-01-01

    Rationale 5-HT1A and 5-HT1B receptor agonists effectively reduce aggressive behavior in males that has been escalated by social instigation. Important sites of action for these drugs are the receptors in dorsal raphé nuclei (DRN) and the ventral–orbital prefrontal cortex (VO PFC). DRN and VO PFC areas are particularly relevant in the inhibitory control of escalated aggressive and impulsive behavior. Objectives The objectives of this study are to assess the anti-aggressive effects of 5-HT1A (8-OH-DPAT) and 5-HT1B (CP-93,129) receptor agonists microinjected into DRN and VO PFC, respectively, and to study the aggressive behavior in postpartum female Wistar rats using the social instigation protocol to increase aggression. Methods and Results 8-OH-DPAT (0.56 µg) in the DRN increased aggressive behavior in postpartum female rats. By contrast, CP-93,129 (1.0 µg) microinjected into VO PFC decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming and the latter increasing these acts. When 8-OH-DPAT was microinjected into DRN and CP-93,129 was microinjected into VO PFC in female rats at the same time, maternal aggression decreased. Specific participation of 5-HT1B receptors was verified by reversal of the anti-aggressive effects using the selective antagonist SB-224,289 (1.0 µg). Conclusions The decrease in maternal aggressive behavior after microinjections of 5-HT1B receptor agonists into the VO PFC and DRN of female postpartum rats that were instigated socially supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner, due to activation of 5-HT1B receptors at the soma and terminals. PMID:21107539

  14. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest

    PubMed Central

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J.; Avenanti, Alessio; Keysers, Christian

    2016-01-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of SI and several brain regions functionally associated with SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over SI. PMID:25882754

  15. cTBS delivered to the left somatosensory cortex changes its functional connectivity during rest.

    PubMed

    Valchev, Nikola; Ćurčić-Blake, Branislava; Renken, Remco J; Avenanti, Alessio; Keysers, Christian; Gazzola, Valeria; Maurits, Natasha M

    2015-07-01

    The primary somatosensory cortex (SI) plays a critical role in somatosensation as well as in action performance and social cognition. Although the SI has been a major target of experimental and clinical research using non-invasive transcranial magnetic stimulation (TMS), to date information on the effect of TMS over the SI on its resting-state functional connectivity is very scant. Here, we explored whether continuous theta burst stimulation (cTBS), a repetitive TMS protocol, administered over the SI can change the functional connectivity of the brain at rest, as measured using resting-state functional magnetic resonance imaging (rs-fMRI). In a randomized order on two different days we administered active TMS or sham TMS over the left SI. TMS was delivered off-line before scanning by means of cTBS. The target area was selected previously and individually for each subject as the part of the SI activated both when the participant executes and observes actions. Three analytical approaches, both theory driven (partial correlations and seed based whole brain regression) and more data driven (Independent Component Analysis), indicated a reduction in functional connectivity between the stimulated part of the SI and several brain regions functionally associated with the SI including the dorsal premotor cortex, the cerebellum, basal ganglia, and anterior cingulate cortex. These findings highlight the impact of cTBS delivered over the SI on its functional connectivity at rest. Our data may have implications for experimental and therapeutic applications of cTBS over the SI.

  16. Paying attention through eye movements: a computational investigation of the premotor theory of spatial attention.

    PubMed

    Casarotti, Marco; Lisi, Matteo; Umiltà, Carlo; Zorzi, Marco

    2012-07-01

    Growing evidence indicates that planning eye movements and orienting visuospatial attention share overlapping brain mechanisms. A tight link between endogenous attention and eye movements is maintained by the premotor theory, in contrast to other accounts that postulate the existence of specific attention mechanisms that modulate the activity of information processing systems. The strong assumption of equivalence between attention and eye movements, however, is challenged by demonstrations that human observers are able to keep attention on a specific location while moving the eyes elsewhere. Here we investigate whether a recurrent model of saccadic planning can account for attentional effects without requiring additional or specific mechanisms separate from the circuits that perform sensorimotor transformations for eye movements. The model builds on the basis function approach and includes a circuit that performs spatial remapping using an "internal forward model" of how visual inputs are modified as a result of saccadic movements. Simulations show that the latter circuit is crucial to account for dissociations between attention and eye movements that may be invoked to disprove the premotor theory. The model provides new insights into how spatial remapping may be implemented in parietal cortex and offers a computational framework for recent proposals that link visual stability with remapping of attention pointers.

  17. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task

    PubMed Central

    Gertz, Hanna

    2015-01-01

    Previous research on reach planning in humans has implicated a frontoparietal network, including the precuneus (PCu), a putative human homolog of the monkey parietal reach region (PRR), and the dorsal premotor cortex (PMd). Using a pro-/anti-reach task, electrophysiological studies in monkeys have demonstrated that the movement goal rather than the location of the visual cue is encoded in PRR and PMd. However, if only the effector but not the movement goal is specified (underspecified condition), the PRR and PMd have been shown to represent all potential movement goals. In this functional magnetic resonance imaging study, we investigated whether the human PCu and PMd likewise encode the movement goal, and whether these reach-related areas also engage in situations with underspecified compared with specified movement goals. By using a pro-/anti-reach task, we spatially dissociated the location of the visual cue from the location of the movement goal. In the specified conditions, pro- and anti-reaches activated similar parietal and premotor areas. In the PCu contralateral to the moving arm, we found directionally selective activation fixed to the movement goal. In the underspecified conditions, we observed activation in reach-related areas of the posterior parietal cortex, including PCu. However, the activation was substantially weaker in parietal areas and lacking in PMd. Our results suggest that human PCu encodes the movement goal rather than the location of the visual cue if the movement goal is specified and even engages in situations when only the visual cue but not the movement goal is defined. PMID:25904714

  18. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis.

    PubMed

    Belardinelli, Paolo; Laer, Leonard; Ortiz, Erick; Braun, Christoph; Gharabaghi, Alireza

    2017-01-01

    Motor recovery in severely impaired stroke patients is often very limited. To refine therapeutic interventions for regaining motor control in this patient group, the functionally relevant mechanisms of neuronal plasticity need to be detected. Cortico-muscular coherence (CMC) may provide physiological and topographic insights to achieve this goal. Synchronizing limb movements to motor-related brain activation is hypothesized to reestablish cortico-motor control indexed by CMC. In the present study, right-handed, chronic stroke patients with right-hemispheric lesions and left hand paralysis participated in a four-week training for their left upper extremity. A brain-robot interface turned event-related beta-band desynchronization of the lesioned sensorimotor cortex during kinesthetic motor-imagery into the opening of the paralyzed hand by a robotic orthosis. Simultaneous MEG/EMG recordings and individual models from MRIs were used for CMC detection and source reconstruction of cortico-muscular connectivity to the affected finger extensors before and after the training program. The upper extremity-FMA of the patients improved significantly from 16.23 ± 6.79 to 19.52 ± 7.91 (p = 0.0015). All patients showed significantly increased CMC in the beta frequency-band, with a distributed, bi-hemispheric pattern and considerable inter-individual variability. The location of CMC changes was not correlated to the severity of the motor impairment, the motor improvement or the lesion volume. Group analysis of the cortical overlap revealed a common feature in all patients following the intervention: a significantly increased level of ipsilesional premotor CMC that extended from the superior to the middle and inferior frontal gyrus, along with a confined area of increased CMC in the contralesional premotor cortex. In conclusion, functionally relevant modulations of CMC can be detected in patients with long-term, severe motor deficits after a brain-robot assisted

  19. Individual Differences in Premotor and Motor Recruitment during Speech Perception

    ERIC Educational Resources Information Center

    Szenkovits, Gayaneh; Peelle, Jonathan E.; Norris, Dennis; Davis, Matthew H.

    2012-01-01

    Although activity in premotor and motor cortices is commonly observed in neuroimaging studies of spoken language processing, the degree to which this activity is an obligatory part of everyday speech comprehension remains unclear. We hypothesised that rather than being a unitary phenomenon, the neural response to speech perception in motor regions…

  20. The Largest Response Component in the Motor Cortex Reflects Movement Timing but Not Movement Type

    PubMed Central

    Sussillo, David; Ryu, Stephen I.

    2016-01-01

    Abstract Neural activity in monkey motor cortex (M1) and dorsal premotor cortex (PMd) can reflect a chosen movement well before that movement begins. The pattern of neural activity then changes profoundly just before movement onset. We considered the prediction, derived from formal considerations, that the transition from preparation to movement might be accompanied by a large overall change in the neural state that reflects when movement is made rather than which movement is made. Specifically, we examined “components” of the population response: time-varying patterns of activity from which each neuron’s response is approximately composed. Amid the response complexity of individual M1 and PMd neurons, we identified robust response components that were “condition-invariant”: their magnitude and time course were nearly identical regardless of reach direction or path. These condition-invariant response components occupied dimensions orthogonal to those occupied by the “tuned” response components. The largest condition-invariant component was much larger than any of the tuned components; i.e., it explained more of the structure in individual-neuron responses. This condition-invariant response component underwent a rapid change before movement onset. The timing of that change predicted most of the trial-by-trial variance in reaction time. Thus, although individual M1 and PMd neurons essentially always reflected which movement was made, the largest component of the population response reflected movement timing rather than movement type. PMID:27761519

  1. Inference and Decoding of Motor Cortex Low-Dimensional Dynamics via Latent State-Space Models

    PubMed Central

    Aghagolzadeh, Mehdi; Truccolo, Wilson

    2016-01-01

    Motor cortex neuronal ensemble spiking activity exhibits strong low-dimensional collective dynamics (i.e., coordinated modes of activity) during behavior. Here, we demonstrate that these low-dimensional dynamics, revealed by unsupervised latent state-space models, can provide as accurate or better reconstruction of movement kinematics as direct decoding from the entire recorded ensemble. Ensembles of single neurons were recorded with triple microelectrode arrays (MEAs) implanted in ventral and dorsal premotor (PMv, PMd) and primary motor (M1) cortices while nonhuman primates performed 3-D reach-to-grasp actions. Low-dimensional dynamics were estimated via various types of latent state-space models including, for example, Poisson linear dynamic system (PLDS) models. Decoding from low-dimensional dynamics was implemented via point process and Kalman filters coupled in series. We also examined decoding based on a predictive subsampling of the recorded population. In this case, a supervised greedy procedure selected neuronal subsets that optimized decoding performance. When comparing decoding based on predictive subsampling and latent state-space models, the size of the neuronal subset was set to the same number of latent state dimensions. Overall, our findings suggest that information about naturalistic reach kinematics present in the recorded population is preserved in the inferred low-dimensional motor cortex dynamics. Furthermore, decoding based on unsupervised PLDS models may also outperform previous approaches based on direct decoding from the recorded population or on predictive subsampling. PMID:26336135

  2. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade

    PubMed Central

    Salimi, I; Friel, KM; Martin, JH

    2008-01-01

    Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study we tested the competition hypothesis by determining if activating CST axons, after prior silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5-7. We next electrically stimulated CST axons in the medullary pyramid 2.5 hours daily, between weeks 7-10. In controls (n=3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After prior inactivation (n=3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n=6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury. PMID:18632946

  3. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.

    PubMed

    Salimi, Iran; Friel, Kathleen M; Martin, John H

    2008-07-16

    Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study, we tested the competition hypothesis by determining whether activating CST axons, after previous silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5 and 7. Next, we electrically stimulated CST axons in the medullary pyramid 2.5 h daily, between weeks 7 and 10. In controls (n = 3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After previous inactivation (n = 3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n = 6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury.

  4. Temperature Manipulation in Songbird Brain Implicates the Premotor Nucleus HVC in Birdsong Syntax.

    PubMed

    Zhang, Yisi S; Wittenbach, Jason D; Jin, Dezhe Z; Kozhevnikov, Alexay A

    2017-03-08

    in the Bengalese finch brain-a premotor area homologous to the mammalian premotor cortex-alters the statistics of the syllable sequences, suggesting that HVC is critical for birdsong sequences. HVC is also known for controlling moment-to-moment timings within syllables. Our results show that timing and probabilistic sequencing of actions can share the same neural circuits in local brain areas.

  5. QUANTITATIVE 7T PHASE IMAGING IN PREMOTOR HUNTINGTON DISEASE

    PubMed Central

    Apple, Alexandra C.; Possin, Katherine L.; Satris, Gabriela; Johnson, Erica; Lupo, Janine M.; Jakary, Angela; Wong, Katherine; Kelley, Douglas A. C.; Kang, Gail A.; Sha, Sharon J.; Kramer, Joel H.; Geschwind, Michael; Nelson, Sarah J.; Hess, Christopher P.

    2014-01-01

    Background and Purpose In vivo MRI and postmortem neuropathological studies have demonstrated elevated iron concentration and atrophy within the striatum of patients with Huntington disease (HD), implicating neuronal loss and iron accumulation in the pathogenesis of this neurodegenerative disorder. We used 7T MRI to determine whether quantitative phase, a putative marker of these endpoints, is altered in subjects with premotor HD. Materials and Methods Local field shift (LFS), calculated from 7T MR phase images, was quantified in 13 subjects with premotor HD and 13 age- and gender-matched controls. All participants underwent 3T and 7T MRI, including volumetric 3T T1 and 7T gradient-recalled echo sequences. LFS maps were created from 7T phase data and registered to caudate ROIs automatically parcellated from the 3T T1 images. HD-specific neurocognitive assessment was also performed and compared to LFS. Results Subjects with premotor HD had smaller caudate nuclear volume and higher LFS than controls. A significant correlation between these measurements was not detected, and prediction accuracy for disease state improved with inclusion of both variables. A positive correlation between LFS and genetic disease burden was also found, and there was a trend towards significant correlations between LFS and neurocognitive tests of working memory and executive function. Conclusion Subjects with premotor HD exhibit differences in 7T MRI phase within the caudate nuclei that correlate with genetic disease burden and trend with neurocognitive assessments. Ultra-high field MRI of quantitative phase may be a useful marker for monitoring neurodegeneration in premanifest HD. PMID:24742810

  6. Reduced parietal connectivity with a premotor writing area in writer's cramp.

    PubMed

    Delnooz, Cathérine C S; Helmich, Rick C; Toni, Ivan; van de Warrenburg, Bart P C

    2012-09-15

    Writer's cramp is a task-specific form of dystonia with symptoms characterized by abnormal movements and postures of the hand and arm evident only during writing. Its pathophysiology has been related to faulty sensorimotor integration, abnormal sensory processing, and impaired motor planning. Its symptoms might appear when the computational load of writing pushes a tonically altered circuit outside its operational range. Using resting-state fMRI, we tested whether writer's cramp patients have altered intrinsic functional connectivity in the premotor-parietal circuit. Sixteen patients with right-sided writer's cramp and 19 control subjects were studied. We show that writer's cramp patients have reduced connectivity between the superior parietal lobule and a dorsal precentral region that controls writing movements. This difference between patients and controls occurred in the absence of writing and only in the hemisphere contralateral to the affected hand. This finding adds a novel element to the pathophysiological substrate for writer's cramp, namely, task-independent alterations within a writing-related circuit.

  7. Biochemical Pre-motor Biomarkers for Parkinson Disease

    PubMed Central

    Mollenhauer, Brit; Zhang, Jing

    2012-01-01

    A biomarker is a biological characteristic that is objectively measured and evaluated as an indicator of normal biological or pathologic processes or of pharmacologic responses to a therapeutic intervention. We review the current status on target protein biomarkers (e.g. total/oligomeric α-synuclein and DJ-1) in cerebrospinal fluid, as well as on unbiased processes that can be used to discover novel biomarkers. We also give details about strategies towards potential populations/models and technologies, including the need for standardized sampling techniques, to pursue the identification of new biochemical markers in the pre-motor stage of Parkinson disease in the future. PMID:22508282

  8. Neural evidence for predictive coding in auditory cortex during speech production.

    PubMed

    Okada, Kayoko; Matchin, William; Hickok, Gregory

    2017-04-10

    Recent models of speech production suggest that motor commands generate forward predictions of the auditory consequences of those commands, that these forward predications can be used to monitor and correct speech output, and that this system is hierarchically organized (Hickok, Houde, & Rong, Neuron, 69(3), 407--422, 2011; Pickering & Garrod, Behavior and Brain Sciences, 36(4), 329--347, 2013). Recent psycholinguistic research has shown that internally generated speech (i.e., imagined speech) produces different types of errors than does overt speech (Oppenheim & Dell, Cognition, 106(1), 528--537, 2008; Oppenheim & Dell, Memory & Cognition, 38(8), 1147-1160, 2010). These studies suggest that articulated speech might involve predictive coding at additional levels than imagined speech. The current fMRI experiment investigates neural evidence of predictive coding in speech production. Twenty-four participants from UC Irvine were recruited for the study. Participants were scanned while they were visually presented with a sequence of words that they reproduced in sync with a visual metronome. On each trial, they were cued to either silently articulate the sequence or to imagine the sequence without overt articulation. As expected, silent articulation and imagined speech both engaged a left hemisphere network previously implicated in speech production. A contrast of silent articulation with imagined speech revealed greater activation for articulated speech in inferior frontal cortex, premotor cortex and the insula in the left hemisphere, consistent with greater articulatory load. Although both conditions were silent, this contrast also produced significantly greater activation in auditory cortex in dorsal superior temporal gyrus in both hemispheres. We suggest that these activations reflect forward predictions arising from additional levels of the perceptual/motor hierarchy that are involved in monitoring the intended speech output.

  9. 'What' Is Happening in the Dorsal Visual Pathway.

    PubMed

    Freud, Erez; Plaut, David C; Behrmann, Marlene

    2016-10-01

    The cortical visual system is almost universally thought to be segregated into two anatomically and functionally distinct pathways: a ventral occipitotemporal pathway that subserves object perception, and a dorsal occipitoparietal pathway that subserves object localization and visually guided action. Accumulating evidence from both human and non-human primate studies, however, challenges this binary distinction and suggests that regions in the dorsal pathway contain object representations that are independent of those in ventral cortex and that play a functional role in object perception. We review here the evidence implicating dorsal object representations, and we propose an account of the anatomical organization, functional contributions, and origins of these representations in the service of perception.

  10. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    PubMed Central

    Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D.

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap. PMID:24549297

  11. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  12. Respiratory Modulation Of Premotor Cardiac Vagal Neurons In The Brainstem

    PubMed Central

    Dergacheva, Olga; Griffioen, Kathleen J.; Neff, Robert A.; Mendelowitz, David

    2010-01-01

    The respiratory and cardiovascular systems are highly intertwined, both anatomically and physiologically. Respiratory and cardiovascular neurons are often co-localized in the same brainstem regions, and this is particularly evident in the ventral medulla which contains pre-sympathetic neurons in the rostral ventrolateral medulla, premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus, and the ventral respiratory group, which includes the pre-Botzinger complex. Anatomical studies of respiratory and cardiovascular neurons have demonstrated that many of these neurons have projections and axon collateral processes which extend into their neighboring cardiorespiratory regions providing an anatomical substrate for cardiorespiratory interactions. As other reports in this Special Issue of Respiratory Physiology & Neurobiology focus on interactions between the respiratory network and baroreceptors, neurons in the nucleus tractus solitarius, presympathetic neurons and sympathetic activity, this report will focus on the respiratory modulation of parasympathetic activity and the neurons that generate parasympathetic activity to the heart, cardiac vagal neurons. PMID:20452467

  13. Pre-Motor Parkinson’s Disease: Concepts and Definitions

    PubMed Central

    Siderowf, Andrew; Lang, Anthony E.

    2012-01-01

    Parkinson’s disease (PD) has a prodromal phase during which non-motor clinical features as well as physiological abnormalities may be present. These pre-motor markers could be used to screen for PD before motor abnormalities are present. The technology to identify PD before it reaches symptomatic Braak Stage 3 (substantia nigra compacta (SNc) involvement) already exists. The current challenge is to define the appropriate scope of use of predictive testing for PD. Imaging technologies, like dopamine transporter imaging, currently offer the highest degree of accuracy for identifying pre-motor PD, but they are expensive as screening tools and abnormalities on these studies would only be evident at Braak Stage 3 or higher. Efficiency is greatly enhanced by combining imaging with a pre-screening test, such as olfactory testing. This two-step process has the potential to greatly reduce costs while retaining diagnostic accuracy. Alternatively, or in concert with this approach, evaluating high-risk populations (e.g. patients with rapid eye movement behavior disorder (RBD) or LRRK2 mutations) would enrich the sample for cases with underlying PD. Ultimately, the role of pre-clinical detection of PD will be determined by the ability of emerging therapies to influence clinical outcomes. As such, implementation of large-scale screening strategies awaits the arrival of clearly safe and effective therapies that address the underlying pathogenesis of PD. Future research will establish more definitive biomarkers capable of revealing the presence of disease in advance of SNc involvement with the promise of the potential for introducing disease modifying therapy even before the development of evidence for dopamine deficiency. PMID:22508279

  14. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion

    PubMed Central

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs’ wave-like activity lagged behind that of

  15. Identification of Inhibitory Premotor Interneurons Activated at a Late Phase in a Motor Cycle during Drosophila Larval Locomotion.

    PubMed

    Itakura, Yuki; Kohsaka, Hiroshi; Ohyama, Tomoko; Zlatic, Marta; Pulver, Stefan R; Nose, Akinao

    2015-01-01

    Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of

  16. Probabilistic Tractography Recovers a Rostrocaudal Trajectory of Connectivity Variability in the Human Insular Cortex

    PubMed Central

    Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    2012-01-01

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507

  17. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    PubMed

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  18. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (<100 ms) spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  19. Evidence for a functional subdivision of Premotor Ear-Eye Field (Area 8B)

    PubMed Central

    Lanzilotto, Marco; Perciavalle, Vincenzo; Lucchetti, Cristina

    2015-01-01

    The Supplementary Eye Field (SEF) and the Frontal Eye Field (FEF) have been described as participating in gaze shift control. Recent evidence suggests, however, that other areas of the dorsomedial prefrontal cortex also influence gaze shift. Herein, we have investigated electrically evoked ear- and eye movements from the Premotor Ear-Eye Field, or PEEF (area 8B) of macaque monkeys. We stimulated PEEF during spontaneous condition (outside the task performance) and during the execution of a visual fixation task (VFT). In the first case, we functionally identified two regions within the PEEF: a core and a belt. In the core region, stimulation elicited forward ear movements; regarding the evoked eye movements, in some penetrations, stimulation elicited contraversive fixed-vectors with a mean amplitude of 5.14°; while in other penetrations, we observed prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position. On the contrary, in the belt region, stimulation elicited backward ear movements; regarding the eye movements, in some penetrations stimulation elicited prevalently contralateral goal-directed eye movements having end-points that fell within 15° in respect to the primary eye position, while in the lateral edge of the investigated region, stimulation elicited contralateral goal-directed eye movements having end-points that fell beyond 15° in respect to the primary eye position. Stimulation during VFT either did not elicit eye movements or evoked saccades of only a few degrees. Finally, even though no head rotation movements were observed during the stimulation period, we viewed a relationship between the duration of stimulation and the neck forces exerted by the monkey's head. We propose an updated vision of the PEEF composed of two functional regions, core and belt, which may be involved in integrating auditory and visual information important to the programming of gaze orienting

  20. [Non-motor symptoms in premotor phase of Parkinson disease].

    PubMed

    Takahashi, Kazushi

    2013-01-01

    Non-motor symptoms are common in patients with newly diagnosed Parkinson's disease (PD), and some even predate the emergence of the classic motor features. The premotor phase of PD is characterized by several important non-motor features, including constipation, olfactory dysfunction, REM sleep behavior disorder (RBD), depression, etc. The basis of this prodromal stage is that the pathological process related to Lewy bodies, may start outside of the substantia nigra. We investigated 469 Japanese PD patients in our multicenter study, using the Japanese version of the RBD screening questionnaire. Probable RBD was detected in 146 patients (31%) and the RBD symptoms of 53 patients preceded the onset of PD motor symptoms. With the probable exception of RBD, non-motor clinical markers can be sensitive for an impending diagnosis of PD, but these features are common and non-specific. The combination of non-motor clinical markers and more specific markers (e.g., imaging or genetic markers) may achieve sufficient utility in PD diagnosis and prediction in future. Being able to diagnose that a patient has PD at an earlier time point than is currently possible, would be allowed to introduce potential disease-modifying therapies at a time when it could have fundamental and long-lasting effects.

  1. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    PubMed

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  2. Single-cell coding of sensory, spatial and numerical magnitudes in primate prefrontal, premotor and cingulate motor cortices.

    PubMed

    Eiselt, Anne-Kathrin; Nieder, Andreas

    2016-01-01

    The representation of magnitude information enables humans and animal species alike to successfully interact with the external environment. However, how various types of magnitudes are processed by single neurons to guide goal-directed behavior remains elusive. Here, we recorded single-cell activity from the dorsolateral prefrontal (PFC), dorsal premotor (PMd) and cingulate motor (CMA) cortices in monkeys discriminating discrete numerical (numerosity), continuous spatial (line length) and basic sensory (spatial frequency) stimuli. We found that almost exclusively PFC neurons represented the different magnitude types during sample presentation and working memory periods. The frequency of magnitude-selective cells in PMd and CMA did not exceed chance level. The proportion of PFC neurons selectively tuned to each of the three magnitude types were comparable. Magnitude coding was mainly dissociated at the single-neuron level, with individual neurons representing only one of the three tested magnitude types. Neuronal magnitude discriminability, coding strength and temporal evolution were comparable between magnitude types encoded by PFC neuron populations. Our data highlight the importance of PFC neurons in representing various magnitude categories. Such magnitude representations are based on largely distributed coding by single neurons that are anatomically intermingled within the same cortical area.

  3. Calretinin as a Marker for Premotor Neurons Involved in Upgaze in Human Brainstem

    PubMed Central

    Adamczyk, Christopher; Strupp, Michael; Jahn, Klaus; Horn, Anja K. E.

    2015-01-01

    Eye movements are generated by different premotor pathways. Damage to them can cause specific deficits of eye movements, such as saccades. For correlative clinico-anatomical post-mortem studies of cases with eye movement disorders it is essential to identify the functional cell groups of the oculomotor system in the human brain by marker proteins. Based on monkey studies, the premotor neurons of the saccadic system can be identified by the histochemical markers parvalbumin (PAV) and perineuronal nets in humans. These areas involve the interstitial nucleus of Cajal (INC) and the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF), which both contain premotor neurons for upgaze and downgaze. Recent monkey and human studies revealed a selective excitatory calretinin (CR)-positive input to the motoneurons mediating upgaze, but not to those for downgaze. Three premotor regions were identified as sources of CR input in monkey: y-group, INC and RIMLF. These findings suggest that the expression pattern of parvalbumin and CR may help to identify premotor neurons involved in up- or downgaze. In a post-mortem study of five human cases without neurological diseases we investigated the y-group, INC and RIMLF for the presence of parvalbumin and CR positive neurons including their co-expression. Adjacent thin paraffin sections were stained for the aggrecan (ACAN) component of perineuronal nets, parvalbumin or CR and glutamate decarboxylase. The comparative analysis of scanned thin sections of INC and RIMLF revealed medium-sized parvalbumin positive neurons with and without CR coexpression, which were intermingled. The parvalbumin/CR positive neurons in both nuclei are considered as excitatory premotor upgaze neurons. Accordingly, the parvalbumin-positive neurons lacking CR are considered as premotor downgaze neurons in RIMLF, but may in addition include inhibitory premotor upgaze neurons in the INC as indicated by co-expression of glutamate decarboxylase in a

  4. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.

    PubMed

    Lawton, Kristy J; Perry, Wick M; Yamaguchi, Ayako; Zornik, Erik

    2017-03-22

    Central patterns generators (CPGs) are neural circuits that drive rhythmic motor output without sensory feedback. Vertebrate CPGs are generally believed to operate in a top-down manner in which premotor interneurons activate motor neurons that in turn drive muscles. In contrast, the frog (Xenopus laevis) vocal CPG contains a functionally unexplored neuronal projection from the motor nucleus to the premotor nucleus, indicating a recurrent pathway that may contribute to rhythm generation. In this study, we characterized the function of this bottom-up connection. The X. laevis vocal CPG produces a 50-60 Hz "fast trill" song used by males during courtship. We recorded "fictive vocalizations" in the in vitro CPG from the laryngeal nerve while simultaneously recording premotor activity at the population and single-cell level. We show that transecting the motor-to-premotor projection eliminated the characteristic firing rate of premotor neurons. Silencing motor neurons with the intracellular sodium channel blocker QX-314 also disrupted premotor rhythms, as did blockade of nicotinic synapses in the motor nucleus (the putative location of motor neuron-to-interneuron connections). Electrically stimulating the laryngeal nerve elicited primarily IPSPs in premotor neurons that could be blocked by a nicotinic receptor antagonist. Our results indicate that an inhibitory signal, activated by motor neurons, is required for proper CPG function. To our knowledge, these findings represent the first example of a CPG in which precise premotor rhythms are tuned by motor neuron activity.SIGNIFICANCE STATEMENT Central pattern generators (CPGs) are neural circuits that produce rhythmic behaviors. In vertebrates, motor neurons are not commonly known to contribute to CPG function, with the exception of a few spinal circuits where the functional significance of motor neuron feedback is still poorly understood. The frog hindbrain vocal circuit contains a previously unexplored connection from

  5. Activation of Premotor Vocal Areas during Musical Discrimination

    ERIC Educational Resources Information Center

    Brown, Steven; Martinez, Michael J.

    2007-01-01

    Two same/different discrimination tasks were performed by amateur-musician subjects in this functional magnetic resonance imaging study: Melody Discrimination and Harmony Discrimination. Both tasks led to activations not only in classic working memory areas--such as the cingulate gyrus and dorsolateral prefrontal cortex--but in a series of…

  6. α-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects.

    PubMed

    Kim, Joong-Seok; Park, In-Seok; Park, Hyung-Eun; Kim, Su-Young; Yun, Jung A; Jung, Chan Kwon; Sung, Hye-Young; Lee, Jin-Kwon; Kang, Won-Kyung

    2017-01-01

    Extranigral non-motor signs precede the first motor manifestations of Parkinson's disease by many years in some patients. The presence of α-synuclein deposition within colon tissues in patients with Parkinson's disease can aid in identifying early neuropathological changes prior to disease onset. In the present study, we evaluated the roles of non-motor symptoms and signs and imaging biomarkers of nigral neuronal changes and α-synuclein accumulation in the colon. Twelve subjects undergoing colectomy for primary colon cancer were recruited for this study. Immunohistochemical staining for α-synuclein in normal and phosphorylated forms was performed in normally appearing colonic tissue. We evaluated 16 candidate premotor risk factors in this study cohort. Among them, ten subjects showed positive immunostaining with normal- and phosphorylated-α-synuclein. An accumulation of premotor markers in each subject was accompanied with positive normal- and phosphorylated-α-synuclein immunostaining, ranging from 2 to 7 markers per subject, whereas the absence of Lewy bodies in the colon was associated with relative low numbers of premotor signs. A principal component analysis and a cluster analysis of these premotor markers suggest that urinary symptoms were commonly clustered with deposition of peripheral phosphorylated-α-synuclein. Among other premotor marker, color vision abnormalities were related to non-smoking. This mathematical approach confirmed the clustering of premotor markers in preclinical stage of Parkinson's disease. This is the first report showing that α-synuclein in the colon and other premotor markers are related to each other in neurologically normal subjects.

  7. Functional Connectivity of the Dorsal Striatum in Female Musicians

    PubMed Central

    Tanaka, Shoji; Kirino, Eiji

    2016-01-01

    The dorsal striatum (caudate/putamen) is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC) motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians. Resting state functional magnetic resonance imaging (fMRI) data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to functional connectivity analysis and graph theoretical analysis. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum (FO) and between the left caudate nucleus and cerebellum. The graph theoretical analysis of the entire brain revealed that the degrees, which represent the numbers of connections, of the bilateral putamen were significantly lower in musicians than in nonmusicians. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers, suggesting that long-term musical training reshapes the functional network of the dorsal striatum to be less extensive or selective. PMID:27148025

  8. Dorsal spine osteoblastoma

    PubMed Central

    Bhargava, Pranshu; Singh, Rahul; Garg, Bharat B.

    2016-01-01

    Benign osteoblastoma is a rare primary neoplasm comprising less than 1% of primary bone tumors.[1] We report a case of a 20-year-old female patient presenting with progressive paraparesis over one year and back pain over the dorsal spine gradually increasing in severity over a year. Computerised tomomography (CT) of the spine revealed a well-defined 3.5 × 3.0 cm mass heterodense expansile bony lesion arising from the lamina of the D12 vertebra, having lytic and sclerotic component and causing compromise of the bony spinal canal. D12 laminectomy and total excision of the tumor was done. PMID:27057242

  9. Intrinsic chemosensitivity of rostral ventrolateral medullary sympathetic premotor neurons in the in situ arterially perfused preparation of rats.

    PubMed

    Koganezawa, Tadachika; Paton, Julian F R

    2014-11-01

    Brainstem hypoperfusion is a major excitant of sympathetic activity triggering hypertension, but the exact mechanisms involved remain incompletely understood. A major source of excitatory drive to preganglionic sympathetic neurons originates from the ongoing activity of premotor neurons in the rostral ventrolateral medulla (RVLM sympathetic premotor neurons). The chemosensitivity profile of physiologically characterized RVLM sympathetic premotor neurons during hypoxia and hypercapnia remains unclear. We examined whether physiologically characterized RVLM sympathetic premotor neurons can sense brainstem ischaemia intrinsically. We addressed this issue in a unique in situ arterially perfused preparation before and after a complete blockade of fast excitatory and inhibitory synaptic transmission. During hypercapnic hypoxia, respiratory modulation of RVLM sympathetic premotor neurons was lost, but tonic firing of most RVLM sympathetic premotor neurons was elevated. After blockade of fast excitatory and inhibitory synaptic transmission, RVLM sympathetic premotor neurons continued to fire and exhibited an excitatory firing response to hypoxia but not hypercapnia. This study suggests that RVLM sympathetic premotor neurons can sustain high levels of neuronal discharge when oxygen is scarce. The intrinsic ability of RVLM sympathetic premotor neurons to maintain responsivity to brainstem hypoxia is an important mechanism ensuring adequate arterial pressure, essential for maintaining cerebral perfusion in the face of depressed ventilation and/or high cerebral vascular resistance.

  10. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  11. The Dorsal Pallium in Zebrafish, Danio rerio (Cyprinidae, Teleostei)

    PubMed Central

    Mueller, Thomas; Dong, Zhiqiang; Berberoglu, Michael A.; Guo, Su

    2011-01-01

    Zebrafish as a neurogenetic model system depends on the correct neuroanatomical understanding of its brain organization. Here, we address the unresolved question regarding a possible zebrafish homologue of the dorsal pallial division, the region that in mammals gives rise to the isocortex. Analyzing the distributions of nicotine adenine dinucleotide phosphate diphorase (NADPHd) activity and parvalbumin in the anterior zebrafish telencephalon, we show that against previous assumptions the central (Dc) zone possesses its own germinative region in the dorsal proliferative zone. We define the central (Dc) zone as topologically corresponding to the dorsal pallial division of other vertebrates (mammalian isocortex). In addition, we confirm through BrdU-labeling experiments that the posterior (Dp) zone is formed by radial migration and homologous to the mammalian piriform cortex. Based on our results, we propose a new developmental and organizational model of the zebrafish pallium—one which is the result of a complex outward-inward folding. PMID:21219890

  12. The Laryngeal Motor Cortex: Its Organization and Connectivity

    PubMed Central

    Simonyan, Kristina

    2014-01-01

    Our ability to learn and control the motor aspects of complex laryngeal behaviors, such as speech and song, is modulated by the laryngeal motor cortex (LMC), which is situated in the area 4 of the primary motor cortex and establishes both direct and indirect connections with laryngeal motoneurons. In contrast, the LMC in monkeys is located in the area 6 of the premotor cortex, projects only indirectly to laryngeal motoneurons and its destruction has essentially no effect on production of species-specific calls. These differences in cytoarchitectonic location and connectivity may be a result of hominid evolution that led to the LMC shift from the phylogenetically “old” to “new” motor cortex in order to fulfill its paramount function, i.e., voluntary motor control of human speech and song production. PMID:24929930

  13. The laryngeal motor cortex: its organization and connectivity.

    PubMed

    Simonyan, Kristina

    2014-10-01

    Our ability to learn and control the motor aspects of complex laryngeal behaviors, such as speech and song, is modulated by the laryngeal motor cortex (LMC), which is situated in the area 4 of the primary motor cortex and establishes both direct and indirect connections with laryngeal motoneurons. In contrast, the LMC in monkeys is located in the area 6 of the premotor cortex, projects only indirectly to laryngeal motoneurons and its destruction has essentially no effect on production of species-specific calls. These differences in cytoarchitectonic location and connectivity may be a result of hominid evolution that led to the LMC shift from the phylogenetically 'old' to 'new' motor cortex in order to fulfill its paramount function, that is, voluntary motor control of human speech and song production.

  14. Distinct limb and trunk premotor circuits establish laterality in the spinal cord.

    PubMed

    Goetz, Cyrill; Pivetta, Chiara; Arber, Silvia

    2015-01-07

    Movement coordination between opposite body sides relies on neuronal circuits capable of controlling muscle contractions according to motor commands. Trunk and limb muscles engage in distinctly lateralized behaviors, yet how regulatory spinal circuitry differs is less clear. Here, we intersect virus technology and mouse genetics to unravel striking distribution differences of interneurons connected to functionally distinct motor neurons. We find that premotor interneurons conveying information to axial motor neurons reside in symmetrically balanced locations while mostly ipsilateral premotor interneurons synapse with limb-innervating motor neurons, especially those innervating more distal muscles. We show that observed distribution differences reflect specific premotor interneuron subpopulations defined by genetic and neurotransmitter identity. Synaptic input across the midline reaches axial motor neurons preferentially through commissural axon arborization, and to a lesser extent, through midline-crossing dendrites capturing contralateral synaptic input. Together, our findings provide insight into principles of circuit organization underlying weighted lateralization of movement.

  15. The human lumbar dorsal rami.

    PubMed Central

    Bogduk, N; Wilson, A S; Tynan, W

    1982-01-01

    The L 1-4 dorsal rami tend to form three branches, medial, lateral, and intermediate, which are distributed, respectively, to multifidus, iliocostalis, and longissimus. The intertransversarii mediales are innervated by a branch of the dorsal ramus near the origin of the medial branch. The L 4 dorsal ramus regularly forms three branches while the L 1-3 levels the lateral and intermediate branches may, alternatively, arise from a short common stem. The L 5 dorsal ramus is much longer than the others and forms only a medial and an intermediate branch. Each lumbar medial branch innervates two adjacent zygapophysial joints and ramifies in multifidus, supplying only those fascicles which arise from the spinous process with the same segmental number as the nerve. The comparative anatomy of the lumbar dorsal rami is discussed and the applied anatomy with respect to 'rhizolysis', 'facet denervation' and diagnostic paraspinal electromyography is described. PMID:7076562

  16. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    PubMed Central

    Davare, Marco; Zénon, Alexandre; Desmurget, Michel; Olivier, Etienne

    2015-01-01

    To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the “reaching circuit” remains unknown. Here we used transcranial magnetic stimulation (TMS) in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS) or dorsal premotor cortex (PMd), in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; targets were either visible for the whole trial (Target-ON) or flashed for 200 ms (Target-OFF). Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks—two parameters typically used to probe the planned movement amplitude—irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160–100 ms before movement onset for mIPS and 100–40 ms for left PMd. TMS applied over right PMd had no significant effect. These results demonstrate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  17. Pointing in visual periphery: is DF's dorsal stream intact?

    PubMed

    Hesse, Constanze; Ball, Keira; Schenk, Thomas

    2014-01-01

    Observations of the visual form agnosic patient DF have been highly influential in establishing the hypothesis that separate processing streams deal with vision for perception (ventral stream) and vision for action (dorsal stream). In this context, DF's preserved ability to perform visually-guided actions has been contrasted with the selective impairment of visuomotor performance in optic ataxia patients suffering from damage to dorsal stream areas. However, the recent finding that DF shows a thinning of the grey matter in the dorsal stream regions of both hemispheres in combination with the observation that her right-handed movements are impaired when they are performed in visual periphery has opened up the possibility that patient DF may potentially also be suffering from optic ataxia. If lesions to the posterior parietal cortex (dorsal stream) are bilateral, pointing and reaching deficits should be observed in both visual hemifields and for both hands when targets are viewed in visual periphery. Here, we tested DF's visuomotor performance when pointing with her left and her right hand toward targets presented in the left and the right visual field at three different visual eccentricities. Our results indicate that DF shows large and consistent impairments in all conditions. These findings imply that DF's dorsal stream atrophies are functionally relevant and hence challenge the idea that patient DF's seemingly normal visuomotor behaviour can be attributed to her intact dorsal stream. Instead, DF seems to be a patient who suffers from combined ventral and dorsal stream damage meaning that a new account is needed to explain why she shows such remarkably normal visuomotor behaviour in a number of tasks and conditions.

  18. Evaluation of net causal influences in the circuit responding to premotor control during the movement-readiness state using conditional Granger causality.

    PubMed

    Wang, Yuqing; Chen, Huafu; Gao, Qing; Yang, Yihong; Gong, Qiyong; Gao, Fabao

    2015-01-21

    As an initialization procedure for brain responding to subsequent movement execution (ME), the movement-readiness (MR) state is important for understanding the formation processes from daily movement training to long-term memory of movement pattern. As such, based on functional magnetic resonance imaging (fMRI), the net causal influences among regions contributing to premotor control during the MR state were explored by means of conditional Granger causality (CGC) and graph-theory methods in the present study. Our results found that net causal circuits responding to unimanual MR were identified during right-hand or left-hand MR, involving in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), upper precuneus (UPCU), caudate nucleus (CN), cingulate motor area (CMA), supplementary motor area (SMA) and primary sensorimotor area (S1M1). Moreover, the contralateral CN, SMA and S1M1 revealed greater net causal influences during unimanual MR, which highlighted the contralateral dominant modulations during unimanual MR. Furthermore, according as the graph-theory analysis, the higher In+Out degrees of upper precuneus (UPCU) during right-hand MR or higher In+Out degrees of cingulate motor area (CMA) and posterior cingulate cortex (PCC) during left-hand MR implied the brain asymmetry of causal connectivity in the circuit responding to right-hand or left-hand MR. This article is part of a Special Issue entitled SI: Brain and Memory.

  19. Here, there and everywhere: higher visual function and the dorsal visual stream.

    PubMed

    Cooper, Sarah Anne; O'Sullivan, Michael

    2016-06-01

    The dorsal visual stream, often referred to as the 'where' stream, represents the pathway taken by visual information from the primary visual cortex to the posterior parietal lobe and onwards. It partners the ventral or 'what' stream, the subject of a previous review and largely a temporal-based system. Here, we consider the dorsal stream disorders of perception (simultanagnosia, akinetopsia) along with their consequences on action (eg, optic ataxia and oculomotor apraxia, along with Balint's syndrome). The role of the dorsal stream in blindsight and hemispatial neglect is also considered.

  20. Decoding of finger, hand and arm kinematics using switching linear dynamical systems with pre-motor cortical ensembles.

    PubMed

    Kang, Xiaoxu; Schieber, Marc H; Thakor, Nitish V

    2012-01-01

    Previous works in Brain-Machine Interfaces (BMI) have mostly used a single Kalman filter decoder for deriving continuous kinematics in the complete execution of behavioral tasks. A linear dynamical system may not be able to generalize the sequence whose dynamics changes over time. Examples of such data include human motion such as walking, running, and dancing each of which exhibit complex constantly evolving dynamics. Switching linear dynamical systems (S-LDSs) are powerful models capable of describing a physical process governed by state equations that switch from time to time. The present work demonstrates the motion-state-dependent adaptive decoding of hand and arm kinematics in four different behavioral tasks. Single-unit neural activities were recorded from cortical ensembles in the ventral and dorsal premotor (PMv and PMd) areas of a trained rhesus monkey during four different reach-to-grasp tasks. We constructed S-LDSs for decoding of continuous hand and arm kinematics based on different epochs of the experiments, namely, baseline, pre-movement planning, movement, and final fixation. Average decoding accuracies as high as 89.9%, 88.6%, 89.8%, 89.4%, were achieved for motion-state-dependent decoding across four different behavioral tasks, respectively (p<0.05); these results are higher than previous works using a single Kalman filter (accuracy: 0.83). These results demonstrate that the adaptive decoding approach, or motion-state-dependent decoding, may have a larger descriptive capability than the decoding approach using a single decoder. This is a critical step towards the development of a BMI for adaptive neural control of a clinically viable prosthesis.

  1. Differential grey matter changes in sensorimotor cortex related to exceptional fine motor skills.

    PubMed

    Stoeckel, M Cornelia; Morgenroth, Farina; Buetefisch, Cathrin M; Seitz, Rüdiger J

    2012-01-01

    Functional changes in sensorimotor representation occur in response to use and lesion throughout life. Emerging evidence suggests that functional changes are paralleled by respective macroscopic structural changes. In the present study we used voxel-based morphometry to investigate sensorimotor cortex in subjects with congenitally malformed upper extremities. We expected increased or decreased grey matter to parallel the enlarged or reduced functional representations we reported previously. More specifically, we expected decreased grey matter values in lateral sensorimotor cortex related to compromised hand function and increased grey matter values in medial sensorimotor cortex due to compensatory foot use. We found a medial cluster of grey matter increase in subjects with frequent, hand-like compensatory foot use. This increase was predominantly seen for lateral premotor, supplementary motor, and motor areas and only marginally involved somatosensory cortex. Contrary to our expectation, subjects with a reduced number of fingers, who had shown shrinkage of the functional hand representation previously, did not show decreased grey matter values within lateral sensorimotor cortex. Our data suggest that functional plastic changes in sensorimotor cortex can be associated with increases in grey matter but may also occur in otherwise macroscopically normal appearing grey matter volumes. Furthermore, macroscopic structural changes in motor and premotor areas may be observed without respective changes in somatosensory cortex.

  2. Education and risk of incident dementia during the premotor and motor phases of essential tremor (NEDICES).

    PubMed

    Benito-León, Julián; Contador, Israel; Louis, Elan D; Cosentino, Stephanie; Bermejo-Pareja, Félix

    2016-08-01

    Individuals with late-onset essential tremor (ET) (e.g., older adults) seem to have an increased prevalence of mild cognitive impairment and dementia, and a higher risk of incident dementia. It is well-known that education has a protective role against dementia in individuals without a pre-existing neurologic disorder, but evidence regarding the maintenance of this effect during the premotor and motor phases of ET is unknown. Our aim was to determine the influence of education on the risk of dementia in a population-based cohort of ET patients and controls. In a prospective study (Neurological Disorders in Central Spain), participants ≥65 years old were evaluated twice: at baseline (1994-1995) and at follow-up (1997-1998). There were 3 groups: premotor (i.e., participants first diagnosed with incident ET at follow-up), prevalent ET (i.e., participants diagnosed with ET at baseline and at follow-up), and controls. Participants were stratified into lower education (≤primary studies) versus higher education (≥secondary studies) categories. Dementia risk was estimated using Cox proportional-hazards models (higher education control group = reference category). Among the participants, 3878 had a mean duration of follow-up of 3.2 years. Eight (16.7%) of 48 lower education premotor ET patients developed incident dementia versus 1 (3.3%) of 30 higher education premotor ET patients, 9 (7.1%) of 126 lower education prevalent ET patients, 7 (8.8%) of 80 higher education prevalent ET patients, and 92 (4.9%) of 1892 lower education controls (P < 0.001). In comparison to the higher education controls, the adjusted hazard ratios for incident dementia were 5.84 (lower education premotor ET, P < 0.001); 1.36 (higher education premotor ET, P = 0.76); 2.13 (lower education prevalent ET, P = 0.04); 2.79 (higher education prevalent ET, P = 0.01); and 1.66 (lower education controls, P = 0.01). Our results suggest that a higher educational attainment may ameliorate the risk

  3. Education and risk of incident dementia during the premotor and motor phases of essential tremor (NEDICES)

    PubMed Central

    Benito-León, Julián; Contador, Israel; Louis, Elan D.; Cosentino, Stephanie; Bermejo-Pareja, Félix

    2016-01-01

    Abstract Individuals with late-onset essential tremor (ET) (e.g., older adults) seem to have an increased prevalence of mild cognitive impairment and dementia, and a higher risk of incident dementia. It is well-known that education has a protective role against dementia in individuals without a pre-existing neurologic disorder, but evidence regarding the maintenance of this effect during the premotor and motor phases of ET is unknown. Our aim was to determine the influence of education on the risk of dementia in a population-based cohort of ET patients and controls. In a prospective study (Neurological Disorders in Central Spain), participants ≥65 years old were evaluated twice: at baseline (1994–1995) and at follow-up (1997–1998). There were 3 groups: premotor (i.e., participants first diagnosed with incident ET at follow-up), prevalent ET (i.e., participants diagnosed with ET at baseline and at follow-up), and controls. Participants were stratified into lower education (≤primary studies) versus higher education (≥secondary studies) categories. Dementia risk was estimated using Cox proportional-hazards models (higher education control group = reference category). Among the participants, 3878 had a mean duration of follow-up of 3.2 years. Eight (16.7%) of 48 lower education premotor ET patients developed incident dementia versus 1 (3.3%) of 30 higher education premotor ET patients, 9 (7.1%) of 126 lower education prevalent ET patients, 7 (8.8%) of 80 higher education prevalent ET patients, and 92 (4.9%) of 1892 lower education controls (P < 0.001). In comparison to the higher education controls, the adjusted hazard ratios for incident dementia were 5.84 (lower education premotor ET, P < 0.001); 1.36 (higher education premotor ET, P = 0.76); 2.13 (lower education prevalent ET, P = 0.04); 2.79 (higher education prevalent ET, P = 0.01); and 1.66 (lower education controls, P = 0.01). Our results suggest that a higher educational attainment may

  4. Dorsal Capsuloplasty for Dorsal Instability of the Distal Ulna

    PubMed Central

    Kouwenhoven, S.T.P.; de Jong, T.; Koch, A.R.

    2013-01-01

    Background Dorsal instability of the distal ulna can lead to chronic wrist pain and loss of function. Structural changes to the dorsal radioulnar ligaments (DRUL) of the triangular fibrocartilage complex (TFCC) and the dorsal capsule around the ulnar head with or without foveal detachment can lead to volar subluxation of the distal radius e.g., dorsal instability of the distal ulna. Purpose Is to evaluate the post-operative results of reinstituting distal radioulnar joint (DRUJ) stability through reefing of the dorsal capsule and dorsal radioulnar ligaments, with and without a foveal reattachment of the TFCC. Methods A total of 37 patients were included in this retrospective study. Diagnosis and treatment was based strictly on dry wrist arthroscopy. In 17 patients isolated reefing of the DRUL and their collateral tissue extension was performed. In 20 patients an additional foveal reinsertion was performed. Postoperative results were evaluated with the DASH questionnaire, VAS scores, grip strength and range of motion. These findings were extrapolated in the Mayo wrist score. The two subgroups were compared. Results Mayo wrist scores of the whole population had a mean of 73. There was no difference between the group that was treated with reefing of the DRUL only and the group that was treated with a combined foveal reinsertion. Conclusion This relatively simple 'dorsal reefing' procedure, with foveal reinsertion when indicated, is a reliable method to restore volar-dorsal DRUJ stability with a significant decrease in pain sensation, good DASH scores and restoration of functional grip strength and ROM. Type of Study/Level of Evidence Therapeutic, Level IV. PMID:24436811

  5. Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy.

    PubMed

    Bonnelle, Valerie; Manohar, Sanjay; Behrens, Tim; Husain, Masud

    2016-02-01

    Lack of physical engagement, productivity, and initiative-so-called "behavioral apathy"--is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost--and greater effort sensitivity--for action initiation in more apathetic people.

  6. Individual Differences in Premotor Brain Systems Underlie Behavioral Apathy

    PubMed Central

    Bonnelle, Valerie; Manohar, Sanjay; Behrens, Tim; Husain, Masud

    2016-01-01

    Lack of physical engagement, productivity, and initiative—so-called “behavioral apathy”—is a common problem with significant impact, both personal and economic. Here, we investigate whether there might be a biological basis to such lack of motivation using a new effort and reward-based decision-making paradigm, combined with functional and diffusion-weighted imaging. We hypothesized that behavioral apathy in otherwise healthy people might be associated with differences in brain systems underlying either motivation to act (specifically in effort and reward-based decision-making) or in action processing (transformation of an intention into action). The results demonstrate that behavioral apathy is associated with increased effort sensitivity as well as greater recruitment of neural systems involved in action anticipation: supplementary motor area (SMA) and cingulate motor zones. In addition, decreased structural and functional connectivity between anterior cingulate cortex (ACC) and SMA were associated with increased behavioral apathy. These findings reveal that effort sensitivity and translation of intentions into actions might make a critical contribution to behavioral apathy. We propose a mechanism whereby inefficient communication between ACC and SMA might lead to increased physiological cost—and greater effort sensitivity—for action initiation in more apathetic people. PMID:26564255

  7. The microstructural border between the motor and the cognitive domain in the human cerebral cortex.

    PubMed

    Geyer, S

    2004-01-01

    When we voluntarily interact with our environment, the agranular frontal cortex (Brodmann's areas 4 and 6) plays a pivotal role in cortical motor control. The primary motor cortex (area 4) influences kinematic and dynamic parameters of movements, whereas the rostrally adjoining nonprimary motor cortex (area 6) uses external (e.g., sensory) or internal cues to trigger and guide movements. Once thought to be homogeneous, data from nonhuman primates have shown that area 6 is a mosaic of areas, each with distinct structural and functional properties: the supplementary motor areas "SMA proper" and "pre-SMA" on the mesial cortical surface, and the dorso- and ventrolateral premotor cortex on the cortical convexity. Dorso- and ventrolateral premotor areas are specifically connected with posterior parietal areas. These parieto-frontal circuits work in parallel and tranform different aspects of sensory information into appropriate motor commands. The rostral border of area 6 is very important for functional neuroimaging studies in humans since it separates the "motor domain" of the supplementary motor/premotor cortex from the "cognitive domain" of the prefrontal cortex. Can the topography of this border be inferred from the gyral pattern of the frontal lobe? To answer this, ten postmorterm brains were scanned with a T1-weighted magnetic resonance sequence. The brains were serially sectioned at 20 micro M and area 6 was defined by subjective and objective cytoarchitectonic analysis. Each brain's histological volume (with the representation of area 6) was reconstructed in 3-D and spatially normalized to the reference brain of a computerized atlas. The ten normalized volumes were superimposed and a population map was generated that describes, for each voxel, how many brains have a representation of area 6. On the mesial coetical surface, the rostral border of area 6 lies rostral to the anterior commissure-- though the distance varies across different brains. On the lateral

  8. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  9. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.

    PubMed

    Mueller, Karsten; Arelin, Katrin; Möller, Harald E; Sacher, Julia; Kratzsch, Jürgen; Luck, Tobias; Riedel-Heller, Steffi; Villringer, Arno; Schroeter, Matthias L

    2016-02-01

    Brain-derived neurotrophic factor (BDNF) has been discussed to be involved in plasticity processes in the human brain, in particular during aging. Recently, aging and its (neurodegenerative) diseases have increasingly been conceptualized as disconnection syndromes. Here, connectivity changes in neural networks (the connectome) are suggested to be the most relevant and characteristic features for such processes or diseases. To further elucidate the impact of aging on neural networks, we investigated the interaction between plasticity processes, brain connectivity, and healthy aging by measuring levels of serum BDNF and resting-state fMRI data in 25 young (mean age 24.8 ± 2.7 (SD) years) and 23 old healthy participants (mean age, 68.6 ± 4.1 years). To identify neural hubs most essentially related to serum BDNF, we applied graph theory approaches, namely the new data-driven and parameter-free approach eigenvector centrality (EC) mapping. The analysis revealed a positive correlation between serum BDNF and EC in the premotor and motor cortex in older participants in contrast to young volunteers, where we did not detect any association. This positive relationship between serum BDNF and EC appears to be specific for older adults. Our results might indicate that the amount of physical activity and learning capacities, leading to higher BDNF levels, increases brain connectivity in (pre)motor areas in healthy aging in agreement with rodent animal studies. Pilot results have to be replicated in a larger sample including behavioral data to disentangle the cause for the relationship between BDNF levels and connectivity.

  10. Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals.

    PubMed

    Rothemund, Yvonne; Preuschhof, Claudia; Bohner, Georg; Bauknecht, Hans-Christian; Klingebiel, Randolf; Flor, Herta; Klapp, Burghard F

    2007-08-15

    The neural systems regulating food intake in obese individuals remain poorly understood. Previous studies applied positron emission tomography and manipulated hunger and satiety to investigate differences in appetitive processing between obese and normal-weight individuals. However, it is not known whether manipulation of stimulus value may yield different neural activity in obese as compared to control subjects when intrinsic physiological states are kept constant. We used functional magnetic resonance imaging to investigate 13 obese and 13 normal-weight subjects and manipulated food motivation by presenting visual food stimuli differing in their caloric content and energy density. In contrast to controls, obese women selectively activated the dorsal striatum while viewing high-caloric foods. Moreover, in the high-calorie condition body mass index (BMI) predicted activation in the dorsal striatum, anterior insula, claustrum, posterior cingulate, postcentral and lateral orbitofrontal cortex. The results indicate that in obese individuals simple visual stimulation with food stimuli activates regions related to reward anticipation and habit learning (dorsal striatum). Additionally, high-calorie food images yielded BMI-dependent activations in regions associated with taste information processing (anterior insula and lateral orbitofrontal cortex), motivation (orbitofrontal cortex), emotion as well as memory functions (posterior cingulate). Collectively, the results suggest that the observed activation is independent of the physiological states of hunger and satiation, and thus may contribute to pathological overeating and obesity. Some of the observed activations (dorsal striatum, orbitofrontal cortex) are likely to be dopamine-mediated.

  11. Pre-Motor Response Time Benefits in Multi-Modal Displays

    DTIC Science & Technology

    2013-11-12

    equivalent visual representations of these same messages. Results indicated that there was a performance benefit for concurrent message presentations...public release; distribution is unlimited. Pre-Motor Response Time Benefits in Multi-Modal Displays The views, opinions and/or findings contained in this...Time Benefits in Multi-Modal Displays Report Title The present series of experiments testes the assimilation and efficacy of purpose-created tactile

  12. Multifunctional laryngeal premotor neurons: their activities during breathing, coughing, sneezing, and swallowing.

    PubMed

    Shiba, Keisuke; Nakazawa, Ken; Ono, Kenichi; Umezaki, Toshiro

    2007-05-09

    To examine whether motor commands of two or more distinct laryngeal motor patterns converge onto a common premotor network, we conducted dual recordings from the laryngeal adductor motoneuron and its premotor neuron within the brainstem respiratory circuitry during fictive breathing, coughing, sneezing, and swallowing in decerebrate paralyzed cats. Expiratory neurons with an augmenting firing pattern (EAUG), whose action potentials evoked monosynaptic IPSPs in the adductor motoneurons, sharply fired during the expulsive phases of fictive coughing and sneezing, during which the adductor motoneurons transiently repolarized. In contrast, these premotor neurons were silent during the swallow-related hyperpolarization in adductor motoneurons. These results show that one class of medullary respiratory neuron, EAUG, is multifunctional and shared among the central pattern generators (CPGs) for breathing, coughing, and sneezing. In addition, although the CPGs underlying these three behaviors and the swallowing CPG do overlap, EAUG neurons are not part of the swallowing CPG and, in contrast to the other three behaviors, are not a source of inhibitory input to adductor motoneurons during swallowing.

  13. Functional Evidence for a Cerebellar Node of the Dorsal Attention Network

    PubMed Central

    Brissenden, James A.; Levin, Emily J.; Osher, David E.; Halko, Mark A.

    2016-01-01

    The “dorsal attention network” or “frontoparietal network” refers to a network of cortical regions that support sustained attention and working memory. Recent work has demonstrated that cortical nodes of the dorsal attention network possess intrinsic functional connections with a region in ventral cerebellum, in the vicinity of lobules VII/VIII. Here, we performed a series of task-based and resting-state fMRI experiments to investigate cerebellar participation in the dorsal attention network in humans. We observed that visual working memory and visual attention tasks robustly recruit cerebellar lobules VIIb and VIIIa, in addition to canonical cortical dorsal attention network regions. Across the cerebellum, resting-state functional connectivity with the cortical dorsal attention network strongly predicted the level of activation produced by attention and working memory tasks. Critically, cerebellar voxels that were most strongly connected with the dorsal attention network selectively exhibited load-dependent activity, a hallmark of the neural structures that support visual working memory. Finally, we examined intrinsic functional connectivity between task-responsive portions of cerebellar lobules VIIb/VIIIa and cortex. Cerebellum-to-cortex functional connectivity strongly predicted the pattern of cortical activation during task performance. Moreover, resting-state connectivity patterns revealed that cerebellar lobules VIIb/VIIIa group with cortical nodes of the dorsal attention network. This evidence leads us to conclude that the conceptualization of the dorsal attention network should be expanded to include cerebellar lobules VIIb/VIIIa. SIGNIFICANCE STATEMENT The functional participation of cerebellar structures in nonmotor cortical networks remains poorly understood and is highly understudied, despite the fact that the cerebellum possesses many more neurons than the cerebral cortex. Although visual attention paradigms have been reported to activate

  14. Preparative activities in posterior parietal cortex for self-paced movement in monkeys.

    PubMed

    Gemba, Hisae; Matsuura-Nakao, Kazuko; Matsuzaki, Ryuichi

    2004-02-26

    Cortical field potentials were recorded by electrodes implanted chronically on the surface and at a 2.0-3.0 mm depth in various cortices in monkeys performing self-paced finger, toe, mouth, hand or trunk movements. Surface-negative, depth-positive potentials (readiness potential) appeared in the posterior parietal cortex about 1.0 s before onset of every self-paced movement, as well as in the premotor, motor and somatosensory cortices. Somatotopical distribution was seen in the readiness potential in the posterior parietal cortex, although it was not so distinct as that in the motor or somatosensory cortex. This suggests that the posterior parietal cortex is involved in preparation for self-paced movement of any body part. This study contributes to the investigation of central nervous mechanisms of voluntary movements initiated by internal stimulus.

  15. Structural development and dorsoventral maturation of the medial entorhinal cortex.

    PubMed

    Ray, Saikat; Brecht, Michael

    2016-04-02

    We investigated the structural development of superficial-layers of medial entorhinal cortex and parasubiculum in rats. The grid-layout and cholinergic-innervation of calbindin-positive pyramidal-cells in layer-2 emerged around birth while reelin-positive stellate-cells were scattered throughout development. Layer-3 and parasubiculum neurons had a transient calbindin-expression, which declined with age. Early postnatally, layer-2 pyramidal but not stellate-cells co-localized with doublecortin - a marker of immature neurons - suggesting delayed functional-maturation of pyramidal-cells. Three observations indicated a dorsal-to-ventral maturation of entorhinal cortex and parasubiculum: (i) calbindin-expression in layer-3 neurons decreased progressively from dorsal-to-ventral, (ii) doublecortin in layer-2 calbindin-positive-patches disappeared dorsally before ventrally, and (iii) wolframin-expression emerged earlier in dorsal than ventral parasubiculum. The early appearance of calbindin-pyramidal-grid-organization in layer-2 suggests that this pattern is instructed by genetic information rather than experience. Superficial-layer-microcircuits mature earlier in dorsal entorhinal cortex, where small spatial-scales are represented. Maturation of ventral-entorhinal-microcircuits - representing larger spatial-scales - follows later around the onset of exploratory behavior.

  16. Structural development and dorsoventral maturation of the medial entorhinal cortex

    PubMed Central

    Ray, Saikat; Brecht, Michael

    2016-01-01

    We investigated the structural development of superficial-layers of medial entorhinal cortex and parasubiculum in rats. The grid-layout and cholinergic-innervation of calbindin-positive pyramidal-cells in layer-2 emerged around birth while reelin-positive stellate-cells were scattered throughout development. Layer-3 and parasubiculum neurons had a transient calbindin-expression, which declined with age. Early postnatally, layer-2 pyramidal but not stellate-cells co-localized with doublecortin – a marker of immature neurons – suggesting delayed functional-maturation of pyramidal-cells. Three observations indicated a dorsal-to-ventral maturation of entorhinal cortex and parasubiculum: (i) calbindin-expression in layer-3 neurons decreased progressively from dorsal-to-ventral, (ii) doublecortin in layer-2 calbindin-positive-patches disappeared dorsally before ventrally, and (iii) wolframin-expression emerged earlier in dorsal than ventral parasubiculum. The early appearance of calbindin-pyramidal-grid-organization in layer-2 suggests that this pattern is instructed by genetic information rather than experience. Superficial-layer-microcircuits mature earlier in dorsal entorhinal cortex, where small spatial-scales are represented. Maturation of ventral-entorhinal-microcircuits – representing larger spatial-scales – follows later around the onset of exploratory behavior. DOI: http://dx.doi.org/10.7554/eLife.13343.001 PMID:27036175

  17. Intermodal attention modulates visual processing in dorsal and ventral streams.

    PubMed

    Cate, A D; Herron, T J; Kang, X; Yund, E W; Woods, D L

    2012-11-15

    Attending to visual objects while ignoring information from other modalities is necessary for performing difficult visual discriminations, but it is unclear how selecting between sensory modalities alters processing within the visual system. We used an audio-visual intermodal selective attention paradigm with fMRI to study the effects of visual attention on cortical activity in the absence of competitive interactions between multiple visual stimuli. Complex stimuli (faces and words) activated higher visual areas even in the absence of visual attention. These stimulus-dependent activations (SDAs) covered foveal retinotopic cortex, extended ventrally to the anterior fusiform gyrus and dorsally to include multiple distinct foci in the intraparietal sulcus (IPS). Attention amplified the baseline response in posterior retinotopic regions and altered activity in different ways in the extrastriate dorsal and ventral pathways. The majority of the IPS was strongly and exclusively activated by visual attention: attention-related modulations (ARMs) encompassed and spread well beyond the focal SDAs. In contrast, in the fusiform gyrus only a small subset of the regions activated by unattended stimuli showed ARMs. Ventral cortex was also heterogeneous: we found a distinct ventrolateral region in the occipitotemporal sulcus (OTS) that was activated exclusively by attention, showing neither SDAs nor any significant stimulus preferences. Attention-dependent activations in the IPS and the OTS suggest that these regions play critical roles in intermodal visual attention.

  18. Temporal Frequency Tuning Reveals Interactions between the Dorsal and Ventral Visual Streams

    PubMed Central

    Kristensen, Stephanie; Garcea, Frank E.; Mahon, Bradford Z.; Almeida, Jorge

    2016-01-01

    Visual processing of complex objects is supported by the ventral visual pathway in the service of object identification and by the dorsal visual pathway in the service of object-directed reaching and grasping. Here, we address how these two streams interact during tool processing, by exploiting the known asymmetry in projections of subcortical magnocellular and parvocellular inputs to the dorsal and ventral streams. The ventral visual pathway receives both parvocellular and magnocellular input, whereas the dorsal visual pathway receives largely magnocellular input. We used fMRI to measure tool preferences in parietal cortex when the images were presented at either high or low temporal frequencies, exploiting the fact that parvocellular channels project principally to the ventral but not dorsal visual pathway. We reason that regions of parietal cortex that exhibit tool preferences for stimuli presented at frequencies characteristic of the parvocellular pathway receive their inputs from the ventral stream. We found that the left inferior parietal lobule, in the vicinity of the supramarginal gyrus, exhibited tool preferences for images presented at low temporal frequencies, whereas superior and posterior parietal regions exhibited tool preferences for images present at high temporal frequencies. These data indicate that object identity, processed within the ventral stream, is communicated to the left inferior parietal lobule and may there combine with inputs from the dorsal visual pathway to allow for functionally appropriate object manipulation. PMID:27082048

  19. Do visual illusions probe the visual brain? Illusions in action without a dorsal visual stream.

    PubMed

    Coello, Yann; Danckert, James; Blangero, Annabelle; Rossetti, Yves

    2007-04-09

    Visual illusions have been shown to affect perceptual judgements more so than motor behaviour, which was interpreted as evidence for a functional division of labour within the visual system. The dominant perception-action theory argues that perception involves a holistic processing of visual objects or scenes, performed within the ventral, inferior temporal cortex. Conversely, visuomotor action involves the processing of the 3D relationship between the goal of the action and the body, performed predominantly within the dorsal, posterior parietal cortex. We explored the effect of well-known visual illusions (a size-contrast illusion and the induced Roelofs effect) in a patient (IG) suffering bilateral lesions of the dorsal visual stream. According to the perception-action theory, IG's perceptual judgements and control of actions should rely on the intact ventral stream and hence should both be sensitive to visual illusions. The finding that IG performed similarly to controls in three different illusory contexts argues against such expectations and shows, furthermore, that the dorsal stream does not control all aspects of visuomotor behaviour. Assuming that the patient's dorsal stream visuomotor system is fully lesioned, these results suggest that her visually guided action can be planned and executed independently of the dorsal pathways, possibly through the inferior parietal lobule.

  20. Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey.

    PubMed

    Kojima, Yoshiko; Iwamoto, Yoshiki; Robinson, Farrel R; Noto, Christopher T; Yoshida, Kaoru

    2008-01-01

    Cerebellar output changes during motor learning. How these changes cause alterations of motoneuron activity and movement remains an unresolved question for voluntary movements. To answer this question, we examined premotor neurons for saccadic eye movement. Previous studies indicate that cells in the fastigial oculomotor region (FOR) within the cerebellar nuclei on one side exhibit a gradual increase in their saccade-related discharge as the amplitude of ipsiversive saccades adaptively decreases. This change in FOR activity could cause the adaptive change in saccade amplitude because neurons in the FOR project directly to the brain stem region containing premotor burst neurons (BNs). To test this possibility, we recorded the activity of saccade-related burst neurons in the area that houses premotor inhibitory burst neurons (IBNs) and examined their discharge during amplitude-reducing adaptation elicited by intrasaccadic target steps. We specifically analyzed their activity for off-direction (contraversive) saccades, in which the IBN activity would increase to reduce saccade size. Before adaptation, 29 of 42 BNs examined discharged, at least occasionally, for contraversive saccades. As the amplitude of contraversive saccades decreased adaptively, half of BNs with off-direction spike activity showed an increase in the number of spikes (14/29) or an earlier occurrence of spikes (7/14). BNs that were silent during off-direction saccades before adaptation remained silent after adaptation. These results indicate that the changes in the off-direction activity of BNs are closely related to adaptive changes in saccade size and are appropriate to cause these changes.

  1. How electrode montage affects transcranial direct current stimulation of the human motor cortex.

    PubMed

    Salvador, Ricardo; Wenger, Cornelia; Nitsche, Michael A; Miranda, Pedro C

    2015-01-01

    Several different electrode configurations were originally proposed to induce excitability changes in the hand area of the motor cortex in transcranial direct current stimulation (tDCS). However only one was found to efficiently affect cortical excitability: anode/cathode over the primary motor cortex and return electrode placed over the contralateral orbit (M-CF configuration). In this work we used the finite element method to calculate the electric field (E-field) induced in a realistic human head model in all the proposed electrode configurations. In order to analyze the results, average values of the E-field's magnitude and polar/azimuthal angles were calculated in several cortical motor and premotor areas which may have an effect on the output of the primary motor cortex. The average E-field's magnitude at the hand-knob (HK) was similar between the M-CF configuration (0.16 V/m) and a few other tested configurations, the same happening for the average polar angle (129°). However this configuration achieved the highest mean E-field values over premotor (PM) areas (0.21 V/m). These results show that the polar angle and the average magnitude of the E-field evaluated at the HK and at the PM cortex might be important parameters in predicting the success of a specific electrode montage in tDCS.

  2. Premotor and non-motor features of Parkinson’s disease

    PubMed Central

    Goldman, Jennifer G.; Postuma, Ron

    2014-01-01

    Purpose of review This review highlights recent advances in premotor and non-motor features in Parkinson’s disease, focusing on these issues in the context of prodromal and early stage Parkinson’s disease. Recent findings While Parkinson’s disease patients experience a wide range of non-motor symptoms throughout the disease course, studies demonstrate that non-motor features are not solely a late manifestation. Indeed, disturbances of smell, sleep, mood, and gastrointestinal function may herald Parkinson’s disease or related synucleinopathies and precede these neurodegenerative conditions by 5 or more years. In addition, other non-motor symptoms such as cognitive impairment are now recognized in incident or de novo Parkinson’s disease cohorts. Many of these non-motor features reflect disturbances in non-dopaminergic systems and early involvement of peripheral and central nervous systems including olfactory, enteric, and brainstem neurons as in Braak’s proposed pathological staging of Parkinson’s disease. Current research focuses on identifying potential biomarkers that may detect persons at risk for Parkinson’s disease and permit early intervention with neuroprotective or disease-modifying therapeutics. Summary Recent studies provide new insights on the frequency, pathophysiology, and importance of non-motor features in Parkinson’s disease as well as the recognition that these non-motor symptoms occur in premotor, early, and later phases of Parkinson’s disease. PMID:24978368

  3. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study.

    PubMed

    Zhang, Jingdong; Luo, Pifu; Ro, Jin Y; Xiong, Huangui

    2012-12-13

    Jaw muscle spindle afferents (JMSA) in the mesencephalic trigeminal nucleus (Vme) project to the parvocellular reticular nucleus (PCRt) and dorsomedial spinal trigeminal nucleus (dm-Vsp). A number of premotor neurons that project to the trigeminal motor nucleus (Vmo), facial nucleus (VII) and hypoglossal nucleus (XII) are also located in the PCRt and dm-Vsp. In this study, we examined whether these premotor neurons serve as common relay pool for relaying JMSA to multiple orofacial motoneurons. JMSA inputs to the PCRt and dm-Vsp neurons were verified by recording extracellular responses to electrical stimulation of the caudal Vme or masseter nerve, mechanical stimulation of jaw muscles and jaw opening. After recording, biocytin in recording electrode was inotophorized into recording sites. Biocytin-Iabeled fibers traveled to the Vmo, VII, XII, and the nucleus ambiguus (Amb). Labeled boutons were seen in close apposition with Nissl-stained motoneurons in the Vmo, VII, XII and Amb. In addition, an anterograde tracer (biotinylated dextran amine) was iontophorized into the caudal Vme, and a retrograde tracer (Cholera toxin B subunit) was delivered into either the VII or Xll to identify VII and XII premotor neurons that receive JMSA input. Contacts between labeled Vme neuronal boutons and premotor neurons were observed in the PCRt and adjacent dm-Vsp. Confocal microscopic observations confirmed close contacts between Vme boutons and VII and XII premotor neurons. This study provides evidence that JMSA may coordinate activities of multiple orofacial motor nuclei, including Vmo, VII, XII and Amb in the brainstem via a common premotor neuron pool.

  4. Food related processes in the insular cortex

    PubMed Central

    Frank, Sabine; Kullmann, Stephanie; Veit, Ralf

    2013-01-01

    The insular cortex is a multimodal brain region with regional cytoarchitectonic differences indicating various functional specializations. As a multisensory neural node, the insular cortex integrates perception, emotion, interoceptive awareness, cognition, and gustation. Regarding the latter, predominantly the anterior part of the insular cortex is regarded as the primary taste cortex. In this review, we will specifically focus on the involvement of the insula in food processing and on multimodal integration of food-related items. Influencing factors of insular activation elicited by various foods range from calorie-content to the internal physiologic state, body mass index or eating behavior. Sensory perception of food-related stimuli including seeing, smelling, and tasting elicits increased activation in the anterior and mid-dorsal part of the insular cortex. Apart from the pure sensory gustatory processing, there is also a strong association with the rewarding/hedonic aspects of food items, which is reflected in higher insular activity and stronger connections to other reward-related areas. Interestingly, the processing of food items has been found to elicit different insular activation in lean compared to obese subjects and in patients suffering from an eating disorder (anorexia nervosa (AN), bulimia nervosa (BN)). The knowledge of functional differences in the insular cortex opens up the opportunity for possible noninvasive treatment approaches for obesity and eating disorders. To target brain functions directly, real-time functional magnetic resonance imaging neurofeedback offers a state-of-the-art tool to learn to control the anterior insular cortex activity voluntarily. First evidence indicates that obese adults have an enhanced ability to regulate the anterior insular cortex. PMID:23986683

  5. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions.

    PubMed

    Price, Joseph L

    2007-12-01

    The orbitofrontal cortex is often defined topographically as the cortex on the ventral surface of the frontal lobe. Unfortunately, this definition is not consistently used, and it obscures distinct connectional and functional systems within the orbital cortex. It is difficult to interpret data on the orbital cortex that do not take these different systems into account. Analysis of cortico-cortical connections between areas in the orbital and medial prefrontal cortex indicate two distinct networks in this region. One system, called the orbital network, involves most of the areas in the central orbital cortex. The other system, has been called the medial prefrontal network, though it is actually more complex, since it includes areas on the medial wall, in the medial orbital cortex, and in the posterolateral orbital cortex. Some areas in the medial orbital cortex are involved in both networks. Connections to other brain areas support the distinction between the networks. The orbital network receives several sensory inputs, from olfactory cortex, taste cortex, somatic sensory association cortex, and visual association cortex, and is connected with multisensory areas in the ventrolateral prefrontal cortex and perirhinal cortex. The medial network has outputs to the hypothalamus and brain stem and connects to a cortical circuit that includes the rostral part of the superior temporal gyrus and dorsal bank of the superior temporal sulcus, the cingulate and retrosplenial cortex, the entorhinal and posterior parahippocampal cortex, and the dorsomedial prefrontal cortex.

  6. Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards.

    PubMed

    Lopez-Garcia, C; Martinez-Guijarro, F J

    1988-11-01

    The origin of Timm-positive presynaptic boutons in the cerebral cortex of the lizard, Podarcis hispanica, was investigated by injections of horseradish peroxidase (HRP)-saponine in Timm-positive areas, i.e. the dorsal and dorsomedial cortices. A broad retrograde labelling of cell somata in the medial cortex was found. Injections of HRP-saponine in the medial cortex resulted in broad anterograde labelling of boutons located in the Timm-positive zones. A double-labelling of the HRP labelled boutons was obtained by using the Neo-Timm or the sulphide-osmium methods. The present results suggest that neurons of the medial cortex send axons that terminate in Timm-positive boutons in the cerebral cortex of lizards.

  7. Early Preferential Responses to Fear Stimuli in Human Right Dorsal Visual Stream - A Meg Study

    PubMed Central

    Meeren, Hanneke K. M.; Hadjikhani, Nouchine; Ahlfors, Seppo P.; Hämäläinen, Matti S.; de Gelder, Beatrice

    2016-01-01

    Emotional expressions of others are salient biological stimuli that automatically capture attention and prepare us for action. We investigated the early cortical dynamics of automatic visual discrimination of fearful body expressions by monitoring cortical activity using magnetoencephalography. We show that right parietal cortex distinguishes between fearful and neutral bodies as early as 80-ms after stimulus onset, providing the first evidence for a fast emotion-attention-action link through human dorsal visual stream. PMID:27095660

  8. Dorsal horn cells connected to the lissauer tract and their relation to the dorsal root potential in the rat.

    PubMed

    Lidierth, M; Wall, P D

    1998-08-01

    We have examined the role of dorsal horn cells that respond to Lissauer tract stimulation in regulating primary afferent depolarization (PAD). PAD was monitored by recording the dorsal root potential (DRP) in the roots of the lumbar cord. Recordings were made of the discharges of Lissauer tract-responsive cells, and their discharges were correlated with the DRPs occurring spontaneously and those evoked by stimulation. Electrical microstimulation of the Lissauer tract (<10 microA; 200 micros) was used to activate the tract selectively and evoke a characteristic long-latency DRP. Cells that were excited by Lissauer tract stimulation were found in the superficial laminae of the dorsal horn. They exhibited low rates of ongoing discharge and responded to Lissauer tract stimulation typically with a burst of impulses with a latency to onset of 5.6 +/- 2.7 ms (mean +/- SD) and to termination of 13.6 +/- 4.1 ms (n = 105). Lissauer tract-responsive cells in L5 were shown to receive convergent inputs from cutaneous and muscle afferents as they responded to stimulation of the sural nerve (100%, n = 19) and the nerve to gastrocnemius (95%, n = 19). The latency of the response to sural nerve stimulation was 3.7 +/- 1.5 ms and to gastrocnemius nerve stimulation, 8.3 +/- 3.6 ms. Stimulation through a microelectrode at a depth of 1.5 mm in the sensorimotor cortex (100 microA, 200 micros) evoked a response in 17 of 31 Lissauer tract-responsive cells (55%) with a latency to onset of 21.9 +/- 2.8 ms (n = 17). Stimulation of the sural nerve, nerve to gastrocnemius or sensorimotor cortex was shown to depress the response of Lissauer tract-responsive cells to a subsequent Lissauer tract stimulus. The ongoing discharges of Lissauer tract-responsive cells were correlated to the spontaneous DRP using spike-triggered averaging. Of 123 cells analyzed in this way, 117 (95%) were shown to be correlated to the DRP. In addition, the peaks of spontaneous negative DRPs in spinally transected

  9. Serotonin, via HTR2 receptors, excites neurons in a cortical-like pre-motor nucleus necessary for song learning and production

    PubMed Central

    Wood, William E.; Lovell, Peter V.; Mello, Claudio V.; Perkel, David J.

    2011-01-01

    Serotonin (5-HT) is a neuromodulator that is important for neural development, learning and memory, mood, and perception. Dysfunction of the serotonin system is central to depression and other clinically important mood disorders and has been linked with learning deficits. In mammals, 5-HT release from the raphe nuclei in the brainstem can modulate the functional properties of cortical neurons, influencing sensory and motor processing. Birds also have serotonergic neurons in the dorsal raphe, suggesting that 5-HT plays similar roles in sensory and motor processing, perhaps modulating brain circuitry underlying birdsong. To investigate this possibility we measured the effects of 5-HT on spontaneous firing of projection neurons in the premotor robust nucleus of the arcopallium in brain slices from male zebra finches. These neurons are thought be akin to cortical layer V pyramidal neurons. 5-HT dramatically and reversibly enhanced the endogenous firing of RA neurons. Using pharmacological agonists and antagonists in vitro, we determined this action is mediated via HTR2 receptors, which we verified are expressed by in situ hybridization. Finally, focal administration of the serotonin selective reuptake inhibitor (SSRI) fluvoxamine revealed that endogenous 5-HT is sufficient to mediate this effect in vivo. These findings reveal a modulatory action of serotonin on the physiology of the song system circuitry and suggest a novel role of serotonin in regulating song production and/or learning; further understanding of the role of 5-HT in this system may help illuminate the complex role of this neuromodulator in social interactions and motor plasticity in humans. PMID:21957243

  10. Response slowing in Parkinson's disease: a psychophysiological analysis of premotor and motor processes.

    PubMed

    Low, Kathy A; Miller, Jeff; Vierck, Esther

    2002-09-01

    The mechanisms responsible for reaction time slowing in Parkinson's disease were investigated using movement-related potentials in a choice reaction time task. Parkinson's disease patients and control subjects were required to respond with the left or right hand to indicate whether a visual stimulus was relatively large or small. The difficulty of the size discrimination was manipulated, as was the complexity of the manual response (single key press versus sequence of three key presses). Behavioural responses of Parkinson's disease patients were slower than those of control subjects, especially when complex responses were required. Moreover, the timing of movement-related potentials indicated that motor processes clearly required extra time, relative to control subjects, for Parkinson's disease patients making complex responses. In addition, delayed onset of the movement-related potentials indicated that one or more premotor processes are also slowed in these patients.

  11. Liposarcome dorsal: aspect clinique rare

    PubMed Central

    Agbessi, Odry; Arrob, Adil; Fiqhi, Kamal; Khalfi, Lahcen; Nassih, Mohammed; El Khatib, Karim

    2015-01-01

    Décrit la première fois par Virchow en 1860, le liposarcome est une tumeur mésenchymateuse rare. Cette rareté est relative car les liposarcomes représentent quand même 14 à 18% de l'ensemble des tumeurs malignes des parties molles et ils constituent le plus fréquent des sarcomes des parties molles. Pour la majorité des auteurs, il ne se développerait jamais sur un lipome ou une lipomatose préexistant. Nous rapportons un cas de volumineux liposarcome de la face dorsale du tronc. L'histoire de la maladie, l'aspect clinique inhabituel « de tumeur dans tumeur », l'aspect de la pièce opératoire nous fait évoquer la possibilité de la transformation maligne d'un lipome bénin préexistant. PMID:26113914

  12. Cortical Presynaptic Control of Dorsal Horn C–Afferents in the Rat

    PubMed Central

    Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rojas-Piloni, Gerardo

    2013-01-01

    Lamina 5 sensorimotor cortex pyramidal neurons project to the spinal cord, participating in the modulation of several modalities of information transmission. A well-studied mechanism by which the corticospinal projection modulates sensory information is primary afferent depolarization, which has been characterized in fast muscular and cutaneous, but not in slow-conducting nociceptive skin afferents. Here we investigated whether the inhibition of nociceptive sensory information, produced by activation of the sensorimotor cortex, involves a direct presynaptic modulation of C primary afferents. In anaesthetized male Wistar rats, we analyzed the effects of sensorimotor cortex activation on post tetanic potentiation (PTP) and the paired pulse ratio (PPR) of dorsal horn field potentials evoked by C–fiber stimulation in the sural (SU) and sciatic (SC) nerves. We also explored the time course of the excitability changes in nociceptive afferents produced by cortical stimulation. We observed that the development of PTP was completely blocked when C-fiber tetanic stimulation was paired with cortex stimulation. In addition, sensorimotor cortex activation by topical administration of bicuculline (BIC) produced a reduction in the amplitude of C–fiber responses, as well as an increase in the PPR. Furthermore, increases in the intraspinal excitability of slow-conducting fiber terminals, produced by sensorimotor cortex stimulation, were indicative of primary afferent depolarization. Topical administration of BIC in the spinal cord blocked the inhibition of C–fiber neuronal responses produced by cortical stimulation. Dorsal horn neurons responding to sensorimotor cortex stimulation also exhibited a peripheral receptive field and responded to stimulation of fast cutaneous myelinated fibers. Our results suggest that corticospinal inhibition of nociceptive responses is due in part to a modulation of the excitability of primary C–fibers by means of GABAergic inhibitory

  13. From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation.

    PubMed Central

    Arbib, M A

    1997-01-01

    This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal-premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems-level model of hippocampo parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurones in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal-parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions. PMID:9368931

  14. No evidence of somatotopic place of articulation feature mapping in motor cortex during passive speech perception.

    PubMed

    Arsenault, Jessica S; Buchsbaum, Bradley R

    2016-08-01

    The motor theory of speech perception has experienced a recent revival due to a number of studies implicating the motor system during speech perception. In a key study, Pulvermüller et al. (2006) showed that premotor/motor cortex differentially responds to the passive auditory perception of lip and tongue speech sounds. However, no study has yet attempted to replicate this important finding from nearly a decade ago. The objective of the current study was to replicate the principal finding of Pulvermüller et al. (2006) and generalize it to a larger set of speech tokens while applying a more powerful statistical approach using multivariate pattern analysis (MVPA). Participants performed an articulatory localizer as well as a speech perception task where they passively listened to a set of eight syllables while undergoing fMRI. Both univariate and multivariate analyses failed to find evidence for somatotopic coding in motor or premotor cortex during speech perception. Positive evidence for the null hypothesis was further confirmed by Bayesian analyses. Results consistently show that while the lip and tongue areas of the motor cortex are sensitive to movements of the articulators, they do not appear to preferentially respond to labial and alveolar speech sounds during passive speech perception.

  15. The anatomical connections of the macaque monkey orbitofrontal cortex. A review.

    PubMed

    Cavada, C; Compañy, T; Tejedor, J; Cruz-Rizzolo, R J; Reinoso-Suárez, F

    2000-03-01

    The orbitofrontal cortex (OfC) is a heterogeneous prefrontal sector selectively connected with a wide constellation of other prefrontal, limbic, sensory and premotor areas. Among the limbic cortical connections, the ones with the hippocampus and parahippocampal cortex are particularly salient. Sensory cortices connected with the OfC include areas involved in olfactory, gustatory, somatosensory, auditory and visual processing. Subcortical structures with prominent OfC connections include the amygdala, numerous thalamic nuclei, the striatum, hypothalamus, periaqueductal gray matter, and biochemically specific cell groups in the basal forebrain and brainstem. Architectonic and connectional evidence supports parcellation of the OfC. The rostrally placed isocortical sector is mainly connected with isocortical areas, including sensory areas of the auditory, somatic and visual modalities, whereas the caudal non-isocortical sector is principally connected with non-isocortical areas, and, in the sensory domain, with olfactory and gustatory areas. The connections of the isocortical and non-isocortical orbital sectors with the amygdala, thalamus, striatum, hypothalamus and periaqueductal gray matter are also specific. The medial sector of the OfC is selectively connected with the hippocampus, posterior parahippocampal cortex, posterior cingulate and retrosplenial areas, and area prostriata, while the lateral orbitofrontal sector is the most heavily connected with sensory areas of the gustatory, somatic and visual modalities, with premotor regions, and with the amygdala.

  16. A grasp-related deficit in tactile discrimination following dorsal column lesion in the rat.

    PubMed

    Ballermann, M; McKenna, J; Whishaw, I Q

    2001-01-15

    The dorsal columns of the spinal cord are a major source of haptic (sense of active touch) and proprioceptive input to the brainstem and sensory-motor cortex. Following injury in primates, there are impairments in two-point discrimination, direction of movement across the skin, and frequency of vibration, and qualitative control of the digits, but simple spatial discriminations recover. In the rat there are qualitative deficits in paw control in skilled reaching, but no sensory deficits have been reported. Because recent investigations of sensory control suggest that sensory functions may be related to specific actions, the present study investigated whether the dorsal columns contribute to hapsis during food grasping in the rat. Adult female Long-Evans rats were trained to reach with a single forepaw for a piece of uncooked pasta or for equivalent sized but tactually different nonfood items. One group was given lesions of the dorsal column ipsilateral to their preferred paw, while the second group served as a control. Postlesion, both groups were tested for skilled reaching success and force application as well as adhesive dot removal and forepaw placing. Performance levels on these tests were normal. Nevertheless, the rats with dorsal column lesions were unable to discriminate a food item from a tactually distinctive nonfood item as part of the reaching act, suggesting that the dorsal columns are important for on-line tactile discriminations, or "haptic actions," which contribute to the normal performance of grasping actions.

  17. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream

    PubMed Central

    Berthier, Marcelo L.; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA

  18. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream.

    PubMed

    Berthier, Marcelo L; Froudist Walsh, Seán; Dávila, Guadalupe; Nabrozidis, Alejandro; Juárez Y Ruiz de Mier, Rocío; Gutiérrez, Antonio; De-Torres, Irene; Ruiz-Cruces, Rafael; Alfaro, Francisco; García-Casares, Natalia

    2013-01-01

    Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and(18)FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The

  19. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  20. Functional interactions between the macaque dorsal and ventral visual pathways during three-dimensional object vision.

    PubMed

    Janssen, Peter; Verhoef, Bram-Ernst; Premereur, Elsie

    2017-02-03

    The division of labor between the dorsal and the ventral visual stream in the primate brain has inspired numerous studies on the visual system in humans and in nonhuman primates. However, how and under which circumstances the two visual streams interact is still poorly understood. Here we review evidence from anatomy, modelling, electrophysiology, electrical microstimulation (EM), reversible inactivation and functional imaging in the macaque monkey aimed at clarifying at which levels in the hierarchy of visual areas the two streams interact, and what type of information might be exchanged between the two streams during three-dimensional (3D) object viewing. Neurons in both streams encode 3D structure from binocular disparity, synchronized activity between parietal and inferotemporal areas is present during 3D structure categorization, and clusters of 3D structure-selective neurons in parietal cortex are anatomically connected to ventral stream areas. In addition, caudal intraparietal cortex exerts a causal influence on 3D-structure related activations in more anterior parietal cortex and in inferotemporal cortex. Thus, both anatomical and functional evidence indicates that the dorsal and the ventral visual stream interact during 3D object viewing.

  1. Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: a pathway that could contribute to recovery after spinal cord injury

    PubMed Central

    Liao, Chia-Chi; DiCarlo, Gabriella E.; Gharbawie, Omar A.; Qi, Hui-Xin; Kaas, Jon H.

    2015-01-01

    Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially unilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 (C4) level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use. PMID:25845707

  2. Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury.

    PubMed

    Liao, Chia-Chi; DiCarlo, Gabriella E; Gharbawie, Omar A; Qi, Hui-Xin; Kaas, Jon H

    2015-10-01

    Dorsal column lesions at a high cervical level deprive the cuneate nucleus and much of the somatosensory system of its major cutaneous inputs. Over weeks of recovery, much of the hand representations in the contralateral cortex are reactivated. One possibility for such cortical reactivation by hand afferents is that preserved second-order spinal cord neurons reach the cuneate nucleus through pathways that circumvent the dorsal column lesions, contributing to cortical reactivation in an increasingly effective manner over time. To evaluate this possibility, we first injected anatomical tracers into the cuneate nucleus and plotted the distributions of labeled spinal cord neurons and fibers in control monkeys. Large numbers of neurons in the dorsal horn of the cervical spinal cord were labeled, especially ipsilaterally in lamina IV. Labeled fibers were distributed in the cuneate fasciculus and lateral funiculus. In three other squirrel monkeys, unilateral dorsal column lesions were placed at the cervical segment 4 level and tracers were injected into the ipsilateral cuneate nucleus. Two weeks later, a largely unresponsive hand representation in contralateral somatosensory cortex confirmed the effectiveness of the dorsal column lesion. However, tracer injections in the cuneate nucleus labeled only about 5% of the normal number of dorsal horn neurons, mainly in lamina IV, below the level of lesions. Our results revealed a small second-order pathway to the cuneate nucleus that survives high cervical dorsal column lesions by traveling in the lateral funiculus. This could be important for cortical reactivation by hand afferents, and recovery of hand use.

  3. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    PubMed Central

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data. PMID:28298886

  4. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas.

    PubMed

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G; Menuet, Clement; Neve, Rachael; Allen, Andrew M; Goodchild, Ann K; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88-94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.

  5. Distance modulation of neural activity in the visual cortex.

    PubMed

    Dobbins, A C; Jeo, R M; Fiser, J; Allman, J M

    1998-07-24

    Humans use distance information to scale the size of objects. Earlier studies demonstrated changes in neural response as a function of gaze direction and gaze distance in the dorsal visual cortical pathway to parietal cortex. These findings have been interpreted as evidence of the parietal pathway's role in spatial representation. Here, distance-dependent changes in neural response were also found to be common in neurons in the ventral pathway leading to inferotemporal cortex of monkeys. This result implies that the information necessary for object and spatial scaling is common to all visual cortical areas.

  6. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  7. Auditory cortex of newborn bats is prewired for echolocation.

    PubMed

    Kössl, Manfred; Voss, Cornelia; Mora, Emanuel C; Macias, Silvio; Foeller, Elisabeth; Vater, Marianne

    2012-04-10

    Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.

  8. Syntactic processing depends on dorsal language tracts.

    PubMed

    Wilson, Stephen M; Galantucci, Sebastiano; Tartaglia, Maria Carmela; Rising, Kindle; Patterson, Dianne K; Henry, Maya L; Ogar, Jennifer M; DeLeon, Jessica; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2011-10-20

    Frontal and temporal language areas involved in syntactic processing are connected by several dorsal and ventral tracts, but the functional roles of the different tracts are not well understood. To identify which white matter tract(s) are important for syntactic processing, we examined the relationship between white matter damage and syntactic deficits in patients with primary progressive aphasia, using multimodal neuroimaging and neurolinguistic assessment. Diffusion tensor imaging showed that microstructural damage to left hemisphere dorsal tracts--the superior longitudinal fasciculus including its arcuate component--was strongly associated with deficits in comprehension and production of syntax. Damage to these dorsal tracts predicted syntactic deficits after gray matter atrophy was taken into account, and fMRI confirmed that these tracts connect regions modulated by syntactic processing. In contrast, damage to ventral tracts--the extreme capsule fiber system or the uncinate fasciculus--was not associated with syntactic deficits. Our findings show that syntactic processing depends primarily on dorsal language tracts.

  9. Quantifying dorsal closure in three dimensions

    PubMed Central

    Lu, Heng; Sokolow, Adam; Kiehart, Daniel P.; Edwards, Glenn S.

    2016-01-01

    Dorsal closure is an essential stage of Drosophila embryogenesis and is a powerful model system for morphogenesis, wound healing, and tissue biomechanics. During closure, two flanks of lateral epidermis close an eye-shaped dorsal opening that is filled with amnioserosa. The two flanks of lateral epidermis are zipped together at each canthus (“corner” of the eye). Actomyosin-rich purse strings are localized at each of the two leading edges of lateral epidermis (“lids” of the eye). Here we report that each purse string indents the dorsal surface at each leading edge. The amnioserosa tissue bulges outward during the early-to-mid stages of closure to form a remarkably smooth, asymmetric dome indicative of an isotropic and uniform surface tension. Internal pressure of the embryo and tissue elastic properties help to shape the dorsal surface. PMID:27798232

  10. Corticothalamic Axons Are Essential for Retinal Ganglion Cell Axon Targeting to the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Shanks, James A.; Ito, Shinya; Schaevitz, Laura; Yamada, Jena; Chen, Bin; Litke, Alan

    2016-01-01

    Retinal ganglion cells (RGCs) relay information about the outside world to multiple subcortical targets within the brain. This information is either used to dictate reflexive behaviors or relayed to the visual cortex for further processing. Many subcortical visual nuclei also receive descending inputs from projection neurons in the visual cortex. Most areas receive inputs from layer 5 cortical neurons in the visual cortex but one exception is the dorsal lateral geniculate nucleus (dLGN), which receives layer 6 inputs and is also the only RGC target that sends direct projections to the cortex. Here we ask how visual system development and function changes in mice that develop without a cortex. We find that the development of a cortex is essential for RGC axons to terminate in the dLGN, but is not required for targeting RGC axons to other subcortical nuclei. RGC axons also fail to target to the dLGN in mice that specifically lack cortical layer 6 projections to the dLGN. Finally, we show that when mice develop without a cortex they can still perform a number of vision-dependent tasks. SIGNIFICANCE STATEMENT The dorsal lateral geniculate nucleus (dLGN) is a sensory thalamic relay area that receives feedforward inputs from retinal ganglion cells (RGCs) in the retina, and feed back inputs from layer 6 neurons in the visual cortex. In this study we examined genetically manipulated mice that develop without a cortex or without cortical layer 6 axonal projections, and find that RGC axons fail to project to the dLGN. Other RGC recipient areas, such as the superior colliculus and suprachiasmatic nucleus, are targeted normally. These results provide support for a new mechanism of target selection that may be specific to the thalamus, whereby descending cortical axons provide an activity that promotes feedforward targeting of RGC axons to the dLGN. PMID:27170123

  11. Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC

    NASA Astrophysics Data System (ADS)

    Jin, Dezhe Z.

    2009-11-01

    Songs of songbird species such as Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic transition rules. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. However, the neural basis of the probabilistic transitions between the syllables is not understood. Here we propose that variable syllable sequences are generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The transitions between the chains are Markovian. If the same syllable can be driven by multiple chains, the generated syllable sequences are statistically described by partially observable Markov models. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.

  12. Premotor neurons encode torsional eye velocity during smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Angelaki, Dora E.; Dickman, J. David

    2003-01-01

    Responses to horizontal and vertical ocular pursuit and head and body rotation in multiple planes were recorded in eye movement-sensitive neurons in the rostral vestibular nuclei (VN) of two rhesus monkeys. When tested during pursuit through primary eye position, the majority of the cells preferred either horizontal or vertical target motion. During pursuit of targets that moved horizontally at different vertical eccentricities or vertically at different horizontal eccentricities, eye angular velocity has been shown to include a torsional component the amplitude of which is proportional to half the gaze angle ("half-angle rule" of Listing's law). Approximately half of the neurons, the majority of which were characterized as "vertical" during pursuit through primary position, exhibited significant changes in their response gain and/or phase as a function of gaze eccentricity during pursuit, as if they were also sensitive to torsional eye velocity. Multiple linear regression analysis revealed a significant contribution of torsional eye movement sensitivity to the responsiveness of the cells. These findings suggest that many VN neurons encode three-dimensional angular velocity, rather than the two-dimensional derivative of eye position, during smooth-pursuit eye movements. Although no clear clustering of pursuit preferred-direction vectors along the semicircular canal axes was observed, the sensitivity of VN neurons to torsional eye movements might reflect a preservation of similar premotor coding of visual and vestibular-driven slow eye movements for both lateral-eyed and foveate species.

  13. Social defeat stress induces hyperthermia through activation of thermoregulatory sympathetic premotor neurons in the medullary raphe region.

    PubMed

    Lkhagvasuren, Battuvshin; Nakamura, Yoshiko; Oka, Takakazu; Sudo, Nobuyuki; Nakamura, Kazuhiro

    2011-11-01

    Psychological stress-induced hyperthermia is a fundamental autonomic response in mammals. However, the central circuitry underlying this stress response is poorly understood. Here, we sought to identify sympathetic premotor neurons that mediate a hyperthermic response to social defeat stress, a psychological stress model. Intruder rats that were defeated by a dominant resident conspecific exhibited a rapid increase in abdominal temperature by up to 2.0  °C. In these defeated rats, we found that expression of Fos, a marker of neuronal activation, was increased in the rostral medullary raphe region centered in the rostral raphe pallidus and adjacent raphe magnus nuclei. In this region, Fos expression was observed in a large population of neurons expressing vesicular glutamate transporter 3 (VGLUT3), which are known as sympathetic premotor neurons controlling non-shivering thermogenesis in brown adipose tissue (BAT) and thermoregulatory constriction of skin blood vessels, and also in a small population of tryptophan hydroxylase-positive serotonergic neurons. Intraperitoneal injection of diazepam, an anxiolytic agent, but not indomethacin, an antipyretic, significantly reduced both the stress-induced hyperthermia and Fos expression in these medullary raphe neuronal populations. Systemic blockade of β3 -adrenoreceptors, which are abundantly expressed in BAT, also attenuated the stress-induced hyperthermia. These results suggest that psychological stress signals activate VGLUT3-expressing medullary raphe sympathetic premotor neurons, which then drive hyperthermic effector responses including BAT thermogenesis through β(3) -adrenoreceptors.

  14. Personal authentication through dorsal hand vein patterns

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Bin; Hao, Shu-Sheng; Lee, Jen-Chun

    2011-08-01

    Biometric identification is an emerging technology that can solve security problems in our networked society. A reliable and robust personal verification approach using dorsal hand vein patterns is proposed in this paper. The characteristic of the approach needs less computational and memory requirements and has a higher recognition accuracy. In our work, the near-infrared charge-coupled device (CCD) camera is adopted as an input device for capturing dorsal hand vein images, it has the advantages of the low-cost and noncontact imaging. In the proposed approach, two finger-peaks are automatically selected as the datum points to define the region of interest (ROI) in the dorsal hand vein images. The modified two-directional two-dimensional principal component analysis, which performs an alternate two-dimensional PCA (2DPCA) in the column direction of images in the 2DPCA subspace, is proposed to exploit the correlation of vein features inside the ROI between images. The major advantage of the proposed method is that it requires fewer coefficients for efficient dorsal hand vein image representation and recognition. The experimental results on our large dorsal hand vein database show that the presented schema achieves promising performance (false reject rate: 0.97% and false acceptance rate: 0.05%) and is feasible for dorsal hand vein recognition.

  15. Trigeminal and telencephalic projections to jaw and other upper vocal tract premotor neurons in songbirds: sensorimotor circuitry for beak movements during singing.

    PubMed

    Wild, J M; Krützfeldt, N E O

    2012-02-15

    During singing in songbirds, the extent of beak opening, like the extent of mouth opening in human singers, is partially correlated with the fundamental frequency of the sounds emitted. Since song in songbirds is under the control of "the song system" (a collection of interconnected forebrain nuclei dedicated to the learning and production of song), it might be expected that beak movements during singing would also be controlled by this system. However, direct neural connections between the telencephalic output of the song system and beak muscle motor neurons in the brainstem are conspicuous by their absence, leaving unresolved the question of how beak movements are affected during singing. By using standard tract tracing methods, we sought to answer this question by defining beak premotor neurons and examining their afferent projections. In the caudal medulla, jaw premotor cell bodies were located adjacent to the terminal field of the output of the song system, into which many premotor neurons extended their dendrites. The premotor neurons also received a novel input from the trigeminal ganglion and an overlapping input from a lateral arcopallial component of a trigeminal sensorimotor circuit that traverses the forebrain. The ganglionic input in songbirds, which is not present in doves and pigeons that vocalize with a closed beak, may modulate the activity of beak premotor neurons in concert with the output of the song system. These inputs to jaw premotor neurons could, together, affect beak movements as a means of modulating filter properties of the upper vocal tract during singing.

  16. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons.

    PubMed

    Moreno-López, Y; Martínez-Lorenzana, G; Condés-Lara, M; Rojas-Piloni, G

    2013-04-01

    Oxytocin (OT) secreted by the hypothalamo-spinal projection exerts antinociceptive effects in the dorsal horn. Electrophysiological evidence indicates that OT could exert these effects by activating OT receptors (OTR) directly on dorsal horn neurons and/or primary nociceptive afferents in the dorsal root ganglia (DRG). However, little is known about the identity of the dorsal horn and DRG neurons that express the OTR. In the dorsal horn, we found that the OTR is expressed principally in neurons cell bodies. However, neither spino-thalamic dorsal horn neurons projecting to the contralateral thalamic ventral posterolateral nucleus (VPL) and posterior nuclear group (Po) nor GABaergic dorsal horn neurons express the OTR. The OTR is not expressed in skin nociceptive terminals or in dorsal horn nociceptive fibers. In the DRG, however, the OTR is expressed predominantly in non-peptidergic C-fiber cell bodies, but not in peptidergic or mechanoreceptor afferents or in skin nociceptive terminals. Our results suggest that the antinociceptive effects of OT are mediated by direct activation of dorsal horn neurons and peripheral actions on nociceptive, non-peptidergic C-afferents in the DRG.

  17. Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat.

    PubMed

    Rojas-Piloni, Gerardo; Martínez-Lorenzana, Guadalupe; Condés-Lara, Miguel; Rodríguez-Jiménez, Javier

    2010-09-10

    Clinically, the stimulation of motor cortical areas has been used to alleviate certain pain conditions. However, the attempts to understand the mechanisms of cortical nociceptive modulation at the spinal cord level have yielded controversial results. The objectives of the present work were to: 1) determine the effects of activating and suppressing the activity of sensorimotor cortical neurons on the nociceptive electrophysiological responses of the segmental C-fibers, and 2) evaluate the contribution of direct and indirect corticospinal projections in segmental nociceptive modulation. By means of a bipolar matrix of stimulation electrodes we mapped the stimulation of cortical areas that modulate C-fiber evoked field potentials in the dorsal horn. In addition, suppressing the cortical activity by means of cortical spreading depression, we observed that the C-fiber evoked field potentials in the dorsal horn are facilitated when cortical activity is suppressed specifically in sensorimotor cortex. Moreover, the C-fiber evoked field potentials were inhibited during spontaneous activation of cortical projecting neurons. Furthermore, after a lesion of the pyramidal tract contralateral to the spinal cord recording sites, the cortical action was suppressed. Our results show that corticospinal tract fibers arising from the sensorimotor cortex modulate directly the nociceptive C-fiber evoked responses of the dorsal horn.

  18. Radial glia and somal translocation of radial neurons in the developing cerebral cortex.

    PubMed

    Nadarajah, Bagirathy

    2003-07-01

    A series of recent studies have demonstrated that radial glia are neural precursors in the developing cerebral cortex. These studies have further implied that these cells are the sole precursor constituents of the dorsal forebrain ventricular zone that generate the projection neurons of the cortex. In view of these new findings, this review discusses radial neurons, a progeny of cortical neurons that are generated by radial glia and adopt somal translocation as the mode of migration.

  19. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice.

    PubMed

    Sreenivasan, Varun; Karmakar, Kajari; Rijli, Filippo M; Petersen, Carl C H

    2015-02-01

    Mice can gather tactile sensory information by actively moving their whiskers to palpate objects in their immediate surroundings. Whisker sensory perception therefore requires integration of sensory and motor information, which occurs prominently in the neocortex. The signalling pathways from the neocortex for controlling whisker movements are currently poorly understood in mice. Here, we delineate two pathways, one originating from primary whisker somatosensory cortex (wS1) and the other from whisker motor cortex (wM1), that control qualitatively distinct movements of contralateral whiskers. Optogenetic stimulation of wS1 drove retraction of contralateral whiskers while stimulation of wM1 drove rhythmic whisker protraction. To map brainstem pathways connecting these cortical areas to whisker motor neurons, we used a combination of anterograde tracing using adenoassociated virus injected into neocortex and retrograde tracing using monosynaptic rabies virus injected into whisker muscles. Our data are consistent with wS1 driving whisker retraction by exciting glutamatergic premotor neurons in the rostral spinal trigeminal interpolaris nucleus, which in turn activate the motor neurons innervating the extrinsic retractor muscle nasolabialis. The rhythmic whisker protraction evoked by wM1 stimulation might be driven by excitation of excitatory and inhibitory premotor neurons in the brainstem reticular formation innervating both intrinsic and extrinsic muscles. Our data therefore begin to unravel the neuronal circuits linking the neocortex to whisker motor neurons.

  20. Subthalamic nucleus stimulation modulates motor cortex oscillatory activity in Parkinson's disease.

    PubMed

    Devos, D; Labyt, E; Derambure, P; Bourriez, J L; Cassim, F; Reyns, N; Blond, S; Guieu, J D; Destée, A; Defebvre, L

    2004-02-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but failed to improve impaired motor preparation. PET studies indicate that subthalamic nucleus (STN) stimulation partly reverses the abnormal premotor pattern of brain activation during movement. By monitoring MRD, we aimed to assess changes in premotor and PSM cortex oscillatory activity induced by bilateral STN stimulation and to compare these changes with those induced by l-dopa. Ten Parkinson's disease patients and a group of healthy, age-matched controls performed self-paced wrist flexions in each of four conditions: without either stimulation or l-dopa (the 'off' condition), with stimulation and without l-dopa (On Stim), with l-dopa and without stimulation ('on drug'), and with both stimulation and l-dopa (On Both). Compared with the Off condition, in both the On Stim and the On Drug condition the Unified Parkinson's Disease Rating Scale (UPDRS) III score decreased by about 60% and in the On Both condition it decreased by 80%. The desynchronization latency over central regions contralateral to movement and the movement desynchronization over bilateral central regions were significantly increased by stimulation and by l-dopa, with a maximal effect when the two were associated. Furthermore, desynchronization latency significantly decreased over bilateral frontocentral regions in the three treatment conditions compared with the Off condition. In Parkinson's disease, STN stimulation may induce a change in abnormal cortical oscillatory activity patterns (similar to that produced by l-dopa) by decreasing the abnormal spreading of desynchronization over frontocentral regions and increasing PSM cortex activity during movement

  1. Functional Connectivity in the Left Dorsal Stream Facilitates Simultaneous Language Translation: An EEG Study

    PubMed Central

    Elmer, Stefan; Kühnis, Jürg

    2016-01-01

    Cortical speech processing is dependent on the mutual interdependence of two distinctive processing streams supporting sound-to-meaning (i.e., ventral stream) and sound-to-articulation (i.e., dorsal stream) mapping. Here, we compared the strengths of intracranial functional connectivity between two main hubs of the dorsal stream, namely the left auditory-related cortex (ARC) and Broca’s region, in a sample of simultaneous interpreters (SIs) and multilingual control subjects while the participants performed a mixed and unmixed auditory semantic decision task. Under normal listening conditions such kind of tasks are known to initiate a spread of activation along the ventral stream. However, due to extensive and specific training, here we predicted that SIs will more strongly recruit the dorsal pathway in order to pre-activate the speech codes of the corresponding translation. In line with this reasoning, EEG results demonstrate increased left-hemispheric theta phase synchronization in SLI compared to multilingual control participants during early task-related processing stages. In addition, within the SI group functional connectivity strength in the left dorsal pathway was positively related to the cumulative number of training hours across lifespan, and inversely correlated with the age of training commencement. Hence, we propose that the alignment of neuronal oscillations between brain regions involved in “hearing” and “speaking” results from an intertwining of training, sensitive period, and predisposition. PMID:26924976

  2. Distribution of Catecholaminergic Presympathetic-Premotor Neurons in the Rat Lower Brainstem

    PubMed Central

    Nam, Hyungwoo; Kerman, Ilan A.

    2016-01-01

    We previously characterized the organization of presympathetic-premotor neurons (PSPMNs), which send descending poly-synaptic projections with collaterals to skeletal muscle and the adrenal gland. Such neurons may play a role in shaping integrated adaptive responses, and many of them were found within well-characterized regions of noradrenergic cell populations suggesting that some of the PSPMNs are catecholaminergic. To address this issue, we used retrograde trans-synaptic tract-tracing with attenuated pseudorabies virus (PRV) recombinants combined with multi-label immunofluorescence to identify PSPMNs expressing tyrosine hydroxylase (TH). Our findings indicate that TH-immunoreactive (ir) PSPMNs are present throughout the brainstem within multiple cell populations, including the A1, C1, C2, C3, A5 and A7 cell groups along with the locus coeruleus (LC) and the nucleus subcoeruleus (SubC). The largest numbers of TH-ir PSPMNs were located within the LC and SubC. Within SubC and the A7 cell group, about 70% of TH-ir neurons were PSPMNs, which was a significantly greater fraction of neurons than in the other brain regions we examined. These findings indicate that TH-ir neurons near the pontomesencephalic junction that are distributed across the LC, SubC, and the A7 may play a prominent role in somatomotor-sympathetic integration, and that the major functional role of the A7 and SubC noradrenergic cell groups maybe in the coordination of concomitant activation of somatomotor and sympathetic outflows. These neurons may participate in mediating homeostatic adaptations that require simultaneous activation of sympathetic and somatomotor nerves in the periphery. PMID:26946268

  3. Noradrenergic and GABAB Receptor Activation Differentially Modulate Inputs to the Premotor Nucleus RA in Zebra Finches

    PubMed Central

    Sizemore, Max; Perkel, David J.

    2008-01-01

    Neuromodulators can rapidly modify neural circuits, altering behavior. Songbirds provide an excellent system for studying the role of neuromodulation in modifying circuits that underlie behavior because song learning and production are mediated by a discrete set of interconnected nuclei. We examined the neuromodulatory effects of noradrenergic and GABAB receptor activation on synaptic inputs to the premotor robust nucleus of the arcopallium (RA) in zebra finches using whole cell voltage-clamp recording in vitro. In adults, norepinephrine strongly reduced input from the lateral magnocellular nucleus of the anterior nidopallium (LMAN) but only slightly reduced the input from nucleus HVC (proper name), the excitatory input from axon collaterals of other RA neurons, and input from GABAergic interneurons. The effect of norepinephrine was mimicked by the α2 adrenoceptor agonist UK14,304 and blocked by the α2 antagonist yohimbine. Conversely, the GABAB receptor agonist baclofen strongly decreased HVC, collateral, and GABAergic inputs to RA neurons while causing little reduction in the LMAN input. In juveniles undergoing song learning, norepinephrine reduced the LMAN input, caused only a small reduction in the HVC input, and greatly reduced the collateral and GABAergic inputs. Baclofen caused similar results in juvenile and adult birds, reducing HVC, collateral, and GABAergic inputs significantly more than the LMAN input. Significant increases in paired-pulse ratio accompanied all reductions in synaptic transmission, suggesting a presynaptic locus. The reduction in the LMAN input by norepinephrine may be important for mediating changes in song elicited by different social contexts and is well-placed to play a role in song learning. PMID:18463188

  4. Distribution of catecholaminergic presympathetic-premotor neurons in the rat lower brainstem.

    PubMed

    Nam, H; Kerman, I A

    2016-06-02

    We previously characterized the organization of presympathetic-premotor neurons (PSPMNs), which send descending poly-synaptic projections with collaterals to skeletal muscle and the adrenal gland. Such neurons may play a role in shaping integrated adaptive responses, and many of them were found within well-characterized regions of noradrenergic cell populations suggesting that some of the PSPMNs are catecholaminergic. To address this issue, we used retrograde trans-synaptic tract-tracing with attenuated pseudorabies virus (PRV) recombinants combined with multi-label immunofluorescence to identify PSPMNs expressing tyrosine hydroxylase (TH). Our findings indicate that TH-immunoreactive (ir) PSPMNs are present throughout the brainstem within multiple cell populations, including the A1, C1, C2, C3, A5 and A7 cell groups along with the locus coeruleus (LC) and the nucleus subcoeruleus (SubC). The largest numbers of TH-ir PSPMNs were located within the LC and SubC. Within SubC and the A7 cell group, about 70% of TH-ir neurons were PSPMNs, which was a significantly greater fraction of neurons than in the other brain regions we examined. These findings indicate that TH-ir neurons near the pontomesencephalic junction that are distributed across the LC, SubC, and the A7 may play a prominent role in somatomotor-sympathetic integration, and that the major functional role of the A7 and SubC noradrenergic cell groups maybe in the coordination of concomitant activation of somatomotor and sympathetic outflows. These neurons may participate in mediating homeostatic adaptations that require simultaneous activation of sympathetic and somatomotor nerves in the periphery.

  5. Space and the parietal cortex

    PubMed Central

    Husain, Masud; Nachev, Parashkev

    2007-01-01

    Current views of the parietal cortex have difficulty accommodating the human inferior parietal lobe (IPL) within a simple dorsal versus ventral stream dichotomy. In humans, lesions of the right IPL often lead to syndromes such as hemispatial neglect that are seemingly in accord with the proposal that this region has a crucial role in spatial processing. However, recent imaging and lesion studies have revealed that inferior parietal regions have non-spatial functions, such as in sustaining attention, detecting salient events embedded in a sequence of events and controlling attention over time. Here, we review these findings and show that spatial processes and the visual guidance of action are only part of the repertoire of parietal functions. Although sub-regions in the human superior parietal lobe and intraparietal sulcus contribute to vision-for-action and spatial functions, more inferior parietal regions have distinctly non-spatial attributes that are neither conventionally ‘dorsal’ nor conventionally ‘ventral’ in nature. PMID:17134935

  6. Functional and structural architecture of the human dorsal frontoparietal attention network.

    PubMed

    Szczepanski, Sara M; Pinsk, Mark A; Douglas, Malia M; Kastner, Sabine; Saalmann, Yuri B

    2013-09-24

    The dorsal frontoparietal attention network has been subdivided into at least eight areas in humans. However, the circuitry linking these areas and the functions of different circuit paths remain unclear. Using a combination of neuroimaging techniques to map spatial representations in frontoparietal areas, their functional interactions, and structural connections, we demonstrate different pathways across human dorsal frontoparietal cortex for the control of spatial attention. Our results are consistent with these pathways computing object-centered and/or viewer-centered representations of attentional priorities depending on task requirements. Our findings provide an organizing principle for the frontoparietal attention network, where distinct pathways between frontal and parietal regions contribute to multiple spatial representations, enabling flexible selection of behaviorally relevant information.

  7. Functional and structural architecture of the human dorsal frontoparietal attention network

    PubMed Central

    Szczepanski, Sara M.; Pinsk, Mark A.; Douglas, Malia M.; Kastner, Sabine; Saalmann, Yuri B.

    2013-01-01

    The dorsal frontoparietal attention network has been subdivided into at least eight areas in humans. However, the circuitry linking these areas and the functions of different circuit paths remain unclear. Using a combination of neuroimaging techniques to map spatial representations in frontoparietal areas, their functional interactions, and structural connections, we demonstrate different pathways across human dorsal frontoparietal cortex for the control of spatial attention. Our results are consistent with these pathways computing object-centered and/or viewer-centered representations of attentional priorities depending on task requirements. Our findings provide an organizing principle for the frontoparietal attention network, where distinct pathways between frontal and parietal regions contribute to multiple spatial representations, enabling flexible selection of behaviorally relevant information. PMID:24019489

  8. Responses to interocular disparity correlation in the human cerebral cortex

    PubMed Central

    Ip, Ifan Betina; Minini, Loredana; Dow, James; Parker, Andrew J; Bridge, Holly

    2014-01-01

    Purpose Perceiving binocular depth relies on the ability of our visual system to precisely match corresponding features in the left and right eyes. Yet how the human brain extracts interocular disparity correlation is poorly understood. Methods We used functional magnetic resonance imaging (fMRI) to characterize brain regions involved in processing interocular disparity correlation. By varying the amount of interocular correlation of a disparity-defined random-dot-stereogram, we concomitantly controlled the perception of binocular depth and measured the percent Blood-Oxygenation-Level-Dependent (%BOLD)-signal in multiple regions-of-interest in the human occipital cortex and along the intra-parietal sulcus. Results A linear support vector machine classification analysis applied to cortical responses showed patterns of activation that represented different disparity correlation levels within regions-of-interest in the visual cortex. These also revealed a positive trend between the difference in disparity correlation and classification accuracy in V1, V3 and lateral occipital cortex. Classifier performance was significantly related to behavioural performance in dorsal visual area V3. Cortical responses to random-dot-stereogram stimuli were greater in the right compared to the left hemisphere. Conclusions Our results show that multiple regions in the cerebral cortex are sensitive to changes in interocular disparity correlation, and that dorsal area V3 may play an important role in the early transformation of binocular disparity to depth perception. PMID:24588533

  9. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity.

    PubMed

    Nummenmaa, Lauri; Hirvonen, Jussi; Hannukainen, Jarna C; Immonen, Heidi; Lindroos, Markus M; Salminen, Paulina; Nuutila, Pirjo

    2012-01-01

    Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[¹⁸F]fluoro-2-deoxyglucose ([¹⁸F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity.

  10. Does intrinsic motivation enhance motor cortex excitability?

    PubMed

    Radel, Rémi; Pjevac, Dusan; Davranche, Karen; d'Arripe-Longueville, Fabienne; Colson, Serge S; Lapole, Thomas; Gruet, Mathieu

    2016-11-01

    Intrinsic motivation (IM) is often viewed as a spontaneous tendency for action. Recent behavioral and neuroimaging evidence indicate that IM, in comparison to extrinsic motivation (EM), solicits the motor system. Accordingly, we tested whether IM leads to greater excitability of the motor cortex than EM. To test this hypothesis, we used two different tasks to induce the motivational orientation using either words representing each motivational orientation or pictures previously linked to each motivational orientation through associative learning. Single-pulse transcranial magnetic stimulation over the motor cortex was applied when viewing the stimuli. Electromyographic activity was recorded on the contracted first dorsal interosseous muscle. Two indexes of corticospinal excitability (the amplitude of motor-evoked potential and the length of cortical silent period) were obtained through unbiased automatic detection and analyzed using a mixed model that provided both statistical power and a high level of control over all important individual, task, and stimuli characteristics. Across the two tasks and the two indices of corticospinal excitability, the exposure to IM-related stimuli did not lead to a greater corticospinal excitability than EM-related stimuli or than stimuli with no motivational valence (ps > .20). While these results tend to dismiss the advantage of IM at activating the motor cortex, we suggest alternative hypotheses to explain this lack of effect, which deserves further research.

  11. Hippocampus and Medial Prefrontal Cortex Contributions to Trace and Contextual Fear Memory Expression over Time

    ERIC Educational Resources Information Center

    Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J.

    2013-01-01

    Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…

  12. The dorsal prefrontal and dorsal anterior cingulate cortices exert complementary network signatures during encoding and retrieval in associative memory.

    PubMed

    Woodcock, Eric A; White, Richard; Diwadkar, Vaibhav A

    2015-09-01

    Cognitive control includes processes that facilitate execution of effortful cognitive tasks, including associative memory. Regions implicated in cognitive control during associative memory include the dorsal prefrontal (dPFC) and dorsal anterior cingulate cortex (dACC). Here we investigated the relative degrees of network-related interactions originating in the dPFC and dACC during oscillating phases of associative memory: encoding and cued retrieval. Volunteers completed an established object-location associative memory paradigm during fMRI. Psychophysiological interactions modeled modulatory network interactions from the dPFC and dACC during memory encoding and retrieval. Results were evaluated in second level analyses of variance with seed region and memory process as factors. Each seed exerted differentiable modulatory effects during encoding and retrieval. The dACC exhibited greater modulation (than the dPFC) on the fusiform and parahippocampal gyrus during encoding, while the dPFC exhibited greater modulation (than the dACC) on the fusiform, hippocampus, dPFC and basal ganglia. During retrieval, the dPFC exhibited greater modulation (than the dACC) on the parahippocampal gyrus, hippocampus, superior parietal lobule, and dPFC. The most notable finding was a seed by process interaction indicating that the dACC and the dPFC exerted complementary modulatory control on the hippocampus during each of the associative memory processes. These results provide evidence for differentiable, yet complementary, control-related modulation by the dACC and dPFC, while establishing the primacy of dPFC in exerting network control during both associative memory phases. Our approach and findings are relevant for understanding basic processes in human memory and psychiatric disorders that impact associative memory-related networks.

  13. A grading system for nasal dorsal deformities.

    PubMed

    Kienstra, Matthew A; Gassner, Holger G; Sherris, David A; Kern, Eugene B

    2003-01-01

    There is no uniform grading system for nasal dorsal deformities currently in general use among surgeons who perform rhinoplasty. Given the popularity of this procedure among both the general public and surgeons, it is time that there was a uniform system describing dorsal deformities. Such a system has value in the education of students of rhinology and cosmetic nasal surgery. We have developed one such system, and applied it to 100 cases. In all cases it accurately describes the major pathological conditions of the dorsum, if present, as noted on physical examination. We have found application of this system to be facile.

  14. Specialization in the left prefrontal cortex for sentence comprehension.

    PubMed

    Hashimoto, Ryuichiro; Sakai, Kuniyoshi L

    2002-08-01

    Using functional magnetic resonance imaging (fMRI), we examined cortical activation under syntactic decision tasks and a short-term memory task for sentences, focusing on essential properties of syntactic processing. By comparing activation in these tasks with a short-term memory task for word lists, we found that two regions in the left prefrontal cortex showed selective activation for syntactic processing: the dorsal prefrontal cortex (DPFC) and the inferior frontal gyrus (IFG). Moreover, the left DPFC showed more prominent activation under the short-term memory task for sentences than that for word lists, which cannot be explained by general cognitive factors such as task difficulty and verbal short-term memory. These results support the proposal of specialized systems for sentence comprehension in the left prefrontal cortex.

  15. Knock-out of HCN1 subunit flattens dorsal-ventral frequency gradient of medial entorhinal neurons in adult mice.

    PubMed

    Giocomo, Lisa M; Hasselmo, Michael E

    2009-06-10

    Layer II stellate cells at different locations along the dorsal to ventral axis of medial entorhinal cortex show differences in the frequency of intrinsic membrane potential oscillations and resonance (Giocomo et al., 2007). The frequency differences scale with differences in the size and spacing of grid-cell firing fields recorded in layer II of the medial entorhinal cortex in behaving animals. To determine the mechanism for this difference in intrinsic frequency, we analyzed oscillatory properties in adult control mice and adult mice with a global deletion of the HCN1 channel. Data from whole-cell patch recordings show that the oscillation frequency gradient along the dorsal-ventral axis previously shown in juvenile rats also appears in control adult mice, indicating that the dorsal-ventral gradient generalizes across age and species. Knock-out of the HCN1 channel flattens the dorsal-ventral gradient of the membrane potential oscillation frequency, the resonant frequency, the time constant of the "sag" potential and the amplitude of the sag potential. This supports a role of the HCN1 subunit in the mechanism of the frequency gradient in these neurons. These findings have important implications for models of grid cells and generate predictions for future in vivo work on entorhinal grid cells.

  16. Auditory and visual connectivity gradients in frontoparietal cortex.

    PubMed

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc.

  17. Metaphorical motion in mathematical reasoning: further evidence for pre-motor implementation of structure mapping in abstract domains.

    PubMed

    Fields, Chris

    2013-08-01

    The theory of computation and category theory both employ arrow-based notations that suggest that the basic metaphor "state changes are like motions" plays a fundamental role in all mathematical reasoning involving formal manipulations. If this is correct, structure-mapping inferences implemented by the pre-motor action planning system can be expected to be involved in solving any mathematics problems not solvable by table lookups and number line manipulations alone. Available functional imaging studies of multi-digit arithmetic, algebra, geometry and calculus problem solving are consistent with this expectation.

  18. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    PubMed Central

    Wise, Nan J.; Frangos, Eleni; Komisaruk, Barry R.

    2016-01-01

    Background During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design Eleven healthy women (age range 29–74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the ‘reward system’. In addition

  19. Complete dorsal dislocation of the carpal scaphoid with perilunate dorsal dislocation

    PubMed Central

    Kang, Jong Woo; Park, Jong Hoon; Suh, Dong Hun; Park, Jong Woong

    2016-01-01

    Complete dorsal dislocation of the carpal scaphoid combined with dorsal perilunate dislocation is an extremely rare carpal injury. We describe the case of a 23-year-old man who presented with a complete dorsal dislocation of the carpal scaphoid, combined with a perilunate dislocation. Surgical treatment was performed with open reduction and interosseus ligament repair. At 4 years follow up, the patient's wrist pain had completely resolved without limitations of wrist joint motion and without evidence of avascular necrosis of the carpal scaphoid. PMID:27512229

  20. Gray Matter Volume and Resting-State Functional Connectivity of the Motor Cortex-Cerebellum Network Reflect the Individual Variation in Masticatory Performance in Healthy Elderly People

    PubMed Central

    Lin, Chia-Shu; Wu, Shih-Yun; Wu, Ching-Yi; Ko, Hsien-Wei

    2016-01-01

    Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI) and resting-state function MRI were performed. We analyzed alterations in gray matter volume (GMV) using voxel-based morphometry and resting-state functional connectivity (rsFC) between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1) the GMV change in the premotor cortex was positively correlated with masticatory performance. (2) The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3) The GMV changes in the dorsolateral prefrontal cortex (DLPFC), as well as the rsFC between the cerebellum and the DLPFC, were positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly. PMID:26779015

  1. Gray Matter Volume and Resting-State Functional Connectivity of the Motor Cortex-Cerebellum Network Reflect the Individual Variation in Masticatory Performance in Healthy Elderly People.

    PubMed

    Lin, Chia-Shu; Wu, Shih-Yun; Wu, Ching-Yi; Ko, Hsien-Wei

    2015-01-01

    Neuroimaging studies have consistently identified brain activation in the motor area and the cerebellum during chewing. In this study, we further investigated the structural and functional brain signature associated with masticatory performance, which is a widely used index for evaluating overall masticatory function in the elderly. Twenty-five healthy elderly participants underwent oral examinations, masticatory performance tests, and behavioral assessments, including the Cognitive Abilities Screening Instrument and the short-form Geriatric Depression Scale. Masticatory performance was assessed with the validated colorimetric method, using color-changeable chewing gum. T1-weighted structural magnetic resonance imaging (MRI) and resting-state function MRI were performed. We analyzed alterations in gray matter volume (GMV) using voxel-based morphometry and resting-state functional connectivity (rsFC) between brain regions using the seed-based method. The structural and functional MRI analyses revealed the following findings: (1) the GMV change in the premotor cortex was positively correlated with masticatory performance. (2) The rsFC between the cerebellum and the premotor cortex was positively correlated with masticatory performance. (3) The GMV changes in the dorsolateral prefrontal cortex (DLPFC), as well as the rsFC between the cerebellum and the DLPFC, were positively correlated with masticatory performance. The findings showed that in the premotor cortex, a reduction of GMV and rsFC would reflect declined masticatory performance. The positive correlation between DLPFC connectivity and masticatory performance implies that masticatory ability is associated with cognitive function in the elderly. Our findings highlighted the role of the central nervous system in masticatory performance and increased our understanding of the structural and functional brain signature underlying individual variations in masticatory performance in the elderly.

  2. ON THE ORIGINS OF DORSAL ROOT POTENTIALS

    PubMed Central

    Lloyd, David P. C.; McIntyre, A. K.

    1949-01-01

    The "dorsal root potential" consists of five successive deflections designated for convenience, D.R.I, II, III, IV, and V. Of these, D.R.V alone constitutes the dorsal root potential of prior description. A study has been made of the general properties of those deflections not previously described. Dorsal root potentials are electrotonic extensions into the extramedullary root segment, the result of electrical interactions within the cord comparable to those that have been studied in peripheral nerve. Although the anatomical and electrical conditions of interaction are infinitely more complex in the cord than in nerve, it is seen that the fact of parallel distribution of primary afferent fibers pertaining to neighboring dorsal roots provides a sufficient anatomical basis for qualitative analysis in the first approximation of dorsal root potentials. An extension of the theory of interaction between neighboring nerve fibers has been made to include an especial case of interaction between fibers orientated at right angles to one another. The predictions have been tested in a nerve model and found correct. Given this elaboration, and the stated anatomical propositions, existing knowledge of interaction provides an adequate theoretical basis for an elementary understanding of dorsal root potentials. The study of general properties and the analysis of dorsal root potentials have led to the formulation of certain conclusions that follow. D.R.I, II, and III record the electrotonic spread of polarization resulting from the external field of impulses conducted in the intramedullary segment and longitudinal trajects of primary afferent fibers. D.R.IV arises in part as the result of activity in primary afferent fibers, and in part as the result of activity in secondary neurons. In either case the mode of production is the same, and the responsible agent is residual negativity in the active collaterals, or, more precisely, the external field of current flow about the

  3. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus.

    PubMed

    Denman, Daniel J; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called "visual mammals", we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates.

  4. On Parallel Streams through the Mouse Dorsal Lateral Geniculate Nucleus

    PubMed Central

    Denman, Daniel J.; Contreras, Diego

    2016-01-01

    The mouse visual system is an emerging model for the study of cortical and thalamic circuit function. To maximize the usefulness of this model system, it is important to analyze the similarities and differences between the organization of all levels of the murid visual system with other, better studied systems (e.g., non-human primates and the domestic cat). While the understanding of mouse retina and cortex has expanded rapidly, less is known about mouse dorsal lateral geniculate nucleus (dLGN). Here, we study whether parallel processing streams exist in mouse dLGN. We use a battery of stimuli that have been previously shown to successfully distinguish parallel streams in other species: electrical stimulation of the optic chiasm, contrast-reversing stationary gratings at varying spatial phase, drifting sinusoidal gratings, dense noise for receptive field reconstruction, and frozen contrast-modulating noise. As in the optic nerves of domestic cats and non-human primates, we find evidence for multiple conduction velocity groups after optic chiasm stimulation. As in so-called “visual mammals”, we find a subpopulation of mouse dLGN cells showing non-linear spatial summation. However, differences in stimulus selectivity and sensitivity do not provide sufficient basis for identification of clearly distinct classes of relay cells. Nevertheless, consistent with presumptively homologous status of dLGNs of all mammals, there are substantial similarities between response properties of mouse dLGN neurons and those of cats and primates. PMID:27065811

  5. Avalanche Analysis from Multielectrode Ensemble Recordings in Cat, Monkey, and Human Cerebral Cortex during Wakefulness and Sleep

    PubMed Central

    Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain

    2012-01-01

    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053

  6. Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex.

    PubMed

    Stemmann, Heiko; Freiwald, Winrich A

    2016-11-23

    Attentional selection requires the interplay of multiple brain areas. Theoretical accounts of selective attention predict different areas with different functional properties to support endogenous covert attention. To test these predictions, we devised a demanding attention task requiring motion discrimination and spatial selection and performed whole-brain imaging in macaque monkeys. Attention modulated the early visual cortex, motion-selective dorsal stream areas, the lateral intraparietal area, and the frontal eye fields. This pattern of activation supports early selection, feature-based, and biased-competition attention accounts, as well as the frontoparietal theory of attentional control. While high-level motion-selective dorsal stream areas did not exhibit strong attentional modulation, ventral stream areas V4d and the dorsal posterior inferotemporal cortex (PITd) did. The PITd in fact was, consistently across task variations, the most significantly and most strongly attention-modulated area, even though it did not exhibit signs of motion selectivity. Thus the recruitment of the PITd in attention tasks involving different kinds of motion analysis is not predicted by any theoretical account of attention. These functional data, together with known anatomical connections, suggest a general and possibly critical role of the PITd in attentional selection.

  7. Superficial Dorsal Vein Injury/Thrombosis Presenting as False Penile Fracture Requiring Dorsal Venous Ligation

    PubMed Central

    Rafiei, Arash; Hakky, Tariq S; Martinez, Daniel; Parker, Justin; Carrion, Rafael

    2014-01-01

    Introduction Conditions mimicking penile fracture are extremely rare and have been seldom described. Aim To describe a patient with false penile fracture who presented with superficial dorsal vein injury/thrombosis managed with ligation. Methods A 33-year-old male presented with penile swelling and ecchymosis after intercourse. A penile ultrasound demonstrated a thrombosed superficial dorsal vein but also questionable fracture of the tunica albuginea. As the thrombus was expanding, he was emergently taken to the operating room for exploration and required only dorsal venous ligation. Results Postoperatively, patient's Sexual Health Inventory for Men score was 23, and he had no issues with erections or sexual intercourse. Conclusion Early exploration of patients with suspected penile fracture provides excellent results with maintenance of erectile function. Also, in the setting of dorsal vein thrombosis, ligation preserves the integrity of the penile tissues and avoids unnecessary complications from conservative management. Rafiei A, Hakky TS, Martinez D, Parker J, and Carrion R. Superficial dorsal vein injury/thrombosis presenting as false penile fracture requiring dorsal venous ligation. PMID:25548650

  8. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    SciTech Connect

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  9. Transient human auditory cortex activation during volitional attention shifting

    PubMed Central

    Uhlig, Christian Harm; Gutschalk, Alexander

    2017-01-01

    While strong activation of auditory cortex is generally found for exogenous orienting of attention, endogenous, intra-modal shifting of auditory attention has not yet been demonstrated to evoke transient activation of the auditory cortex. Here, we used fMRI to test if endogenous shifting of attention is also associated with transient activation of the auditory cortex. In contrast to previous studies, attention shifts were completely self-initiated and not cued by transient auditory or visual stimuli. Stimuli were two dichotic, continuous streams of tones, whose perceptual grouping was not ambiguous. Participants were instructed to continuously focus on one of the streams and switch between the two after a while, indicating the time and direction of each attentional shift by pressing one of two response buttons. The BOLD response around the time of the button presses revealed robust activation of the auditory cortex, along with activation of a distributed task network. To test if the transient auditory cortex activation was specifically related to auditory orienting, a self-paced motor task was added, where participants were instructed to ignore the auditory stimulation while they pressed the response buttons in alternation and at a similar pace. Results showed that attentional orienting produced stronger activity in auditory cortex, but auditory cortex activation was also observed for button presses without focused attention to the auditory stimulus. The response related to attention shifting was stronger contralateral to the side where attention was shifted to. Contralateral-dominant activation was also observed in dorsal parietal cortex areas, confirming previous observations for auditory attention shifting in studies that used auditory cues. PMID:28273110

  10. Intracortical Microstimulation Maps of Motor, Somatosensory, and Posterior Parietal Cortex in Tree Shrews (Tupaia belangeri) Reveal Complex Movement Representations.

    PubMed

    Baldwin, Mary K L; Cooke, Dylan F; Krubitzer, Leah

    2017-02-01

    Long-train intracortical microstimulation (LT-ICMS) is a popular method for studying the organization of motor and posterior parietal cortex (PPC) in mammals. In primates, LT-ICMS evokes both multijoint and multiple-body-part movements in primary motor, premotor, and PPC. In rodents, LT-ICMS evokes complex movements of a single limb in motor cortex. Unfortunately, very little is known about motor/PPC organization in other mammals. Tree shrews are closely related to both primates and rodents and could provide insights into the evolution of complex movement domains in primates. The present study investigated the extent of cortex in which movements could be evoked with ICMS and the characteristics of movements elicited using both short train (ST) and LT-ICMS in tree shrews. We demonstrate that LT-ICMS and ST-ICMS maps are similar, with the movements elicited with ST-ICMS being truncated versions of those elicited with LT-ICMS. In addition, LT-ICMS-evoked complex movements within motor cortex similar to those in rodents. More complex movements involving multiple body parts such as the hand and mouth were also elicited in motor cortex and PPC, as in primates. Our results suggest that complex movement networks present in PPC and motor cortex were present in mammals prior to the emergence of primates.

  11. Movement-related activity during goal-directed hand actions in the monkey ventrolateral prefrontal cortex.

    PubMed

    Simone, Luciano; Rozzi, Stefano; Bimbi, Marco; Fogassi, Leonardo

    2015-12-01

    Grasping actions require the integration of two neural processes, one enabling the transformation of object properties into corresponding motor acts, and the other involved in planning and controlling action execution on the basis of contextual information. The first process relies on parieto-premotor circuits, whereas the second is considered to be a prefrontal function. Up to now, the prefrontal cortex has been mainly investigated with conditional visuomotor tasks requiring a learned association between cues and behavioural output. To clarify the functional role of the prefrontal cortex in grasping actions, we recorded the activity of ventrolateral prefrontal (VLPF) neurons while monkeys (Macaca mulatta) performed tasks requiring reaching-grasping actions in different contextual conditions (in light and darkness, memory-guided, and in the absence of abstract learned rules). The results showed that the VLPF cortex contains neurons that are active during action execution (movement-related neurons). Some of them showed grip selectivity, and some also responded to object presentation. Most movement-related neurons discharged during action execution both with and without visual feedback, and this discharge typically did not change when the action was performed with object mnemonic information and in the absence of abstract rules. The findings of this study indicate that a population of VLPF neurons play a role in controlling goal-directed grasping actions in several contexts. This control is probably exerted within a wider network, involving parietal and premotor regions, where the role of VLPF movement-related neurons would be that of activating, on the basis of contextual information, the representation of the motor goal of the intended action (taking possession of an object) during action planning and execution.

  12. Early visuomotor integration processes induce LTP/LTD-like plasticity in the human motor cortex.

    PubMed

    Suppa, A; Li Voti, P; Rocchi, L; Papazachariadis, O; Berardelli, A

    2015-03-01

    To investigate whether visuomotor integration processes induce long-term potentiation (LTP) and depression (LTD)-like plasticity in the primary motor cortex (M1), we designed a new paired associative stimulation (PAS) protocol coupling left primary visual area (V1) activation achieved by hemifield visual evoked potentials (VEPs) and transcranial magnetic stimulation (TMS) over the left M1, at specific interstimulus intervals (ISIs), delivered at 1 Hz (V-PAS). Before and after V-PAS, we measured motor evoked potentials (MEPs). To clarify the mechanisms underlying V-PAS, we tested the effect of 1-Hz repetitive TMS (rTMS), 0.25-Hz V-PAS and rTMS, and a shorter 0.25-Hz V-PAS protocol. To examine V-PAS with contralateral V1 activation, we delivered V-PAS activating the right V1. To clarify whether V-PAS increases V1 activity or parieto- and premotor-to-M1 connectivity, before and after V-PAS, we examined VEPs and MEPs evoked by paired-pulse techniques. V-PAS increased, decreased, or left MEPs unchanged according to the ISI used. After 1-Hz rTMS MEPs decreased. Although 0.25-Hz rTMS elicited no aftereffect, 0.25-Hz V-PAS modulated MEPs according to the ISI used. The short 0.25-Hz V-PAS protocol left MEPs unchanged. Contralateral V-PAS inhibited MEPs. After V-PAS, VEPs remained unchanged and the premotor-to-M1 inhibitory connections decreased. V-PAS induces M1 LTP/LTD-like plasticity by activating premotor-to-motor connections.

  13. Dorsal hippocampal contributions to unimodal contextual conditioning.

    PubMed

    Otto, Tim; Poon, Patrick

    2006-06-14

    Although there is general consensus that the hippocampus is not critically involved in the acquisition of fear conditioned to an explicit conditioned stimulus (CS), the extent to which the hippocampus participates in contextual fear conditioning remains unclear. To further characterize the potential role of the hippocampus in contextual fear conditioning, the present experiments examined the effect of excitotoxic lesions of dorsal hippocampus on the acquisition of a novel contextual fear conditioning paradigm in which a unimodal (olfactory) cue served to disambiguate discrete "contexts" within a single behavioral training chamber. Selective lesions of dorsal hippocampus severely attenuated olfactory contextual conditioning without affecting conditioning to an explicit auditory or olfactory CS. Additional experiments indicate that these contextual conditioning deficits cannot be attributed to a lesion-induced decrement in olfactory perception, a preferential impairment of "weak" forms of conditioning, or hyperactivity. Thus, the hippocampus appears to contribute importantly to the acquisition of fear conditioned to explicitly nonspatial, unimodal, temporally, and spatially diffuse contextual stimuli.

  14. Affective ambiguity for a group recruits ventromedial prefrontal cortex.

    PubMed

    Simmons, Alan; Stein, Murray B; Matthews, Scott C; Feinstein, Justin S; Paulus, Martin P

    2006-01-15

    Affective appraisal often involves processing complex and ambiguous stimuli, such as the mood of a group people. However, affective neuroimaging research often uses individual faces as stimuli when exploring the neural circuitry involved in social appraisal. Results from studies using single face paradigms may not generalize to settings where multiple faces are simultaneously processed. The goal of the current study was to use a novel task that presents groups of affective faces to probe the medial prefrontal cortex (PFC), a region that is critically involved in appraisal of ambiguous affective stimuli, in healthy volunteers. In the current study, 27 subjects performed the Wall of Faces (WOF) task in which multiple matrices of faces were briefly presented during functional MRI. Subjects were asked to decide whether there were more angry or happy faces (emotional decision) or whether there were more male or female faces (gender decision). In each condition, the array contained either an equal (ambiguous trials) or an unequal (unambiguous trials) distribution of one affect or gender. Ambiguous trials relative to unambiguous trials activated regions implicated in conflict monitoring and cognitive control, including the dorsal anterior cingulate cortex (ACC), dorsolateral PFC, and posterior parietal cortex. When comparing ambiguous affective decisions with ambiguous gender decisions, the ventromedial PFC (including the ventral ACC) was significantly more active. This supports the dissociation of the ACC into dorsal cognitive and ventral affective divisions, and suggests that the ventromedial PFC may play a critical role in appraising affective tone in a complex display of multiple human faces.

  15. Early-postnatal iron deficiency impacts plasticity in the dorsal and ventral hippocampus in piglets.

    PubMed

    Nelissen, Ellis; De Vry, Jochen; Antonides, Alexandra; Paes, Dean; Schepers, Melissa; van der Staay, Franz Josef; Prickaerts, Jos; Vanmierlo, Tim

    2017-03-19

    In this study, we investigated whether alterations in plasticity markers such as brain-derived neurotrophic factor (BDNF), p75 neurotrophin receptor (p75(NTR)) and tyrosine receptor kinase B (TrkB) are underlying iron deficiency (ID)-induced cognitive impairments in iron depleted piglets. Newborn piglets were either fed an iron-depleted diet (21mg Fe/kg) or an iron-sufficient diet (88mg Fe/kg) for four weeks. Subsequently, eight weeks after iron repletion (190-240mg Fe/kg) we found a significant decrease in mature BDNF (14kDa) and proBDNF (18kDa and 24kDa) protein levels in the ventral hippocampus, whereas we found increases in the dorsal hippocampus. The phosphorylation of cAMP response element binding protein (CREB) follows the mature BDNF protein level pattern. No effects were found on BDNF and CREB protein levels in the prefrontal cortex. The protein levels of the high affinity BDNF receptor, TrkB, was significantly decreased in both dorsal and ventral hippocampus of ID piglets, whereas it was increased in the prefrontal cortex. Together, our data suggest a disrupted hippocampal plasticity upon postnatal ID.

  16. Asymmetric development of dorsal and ventral attention networks in the human brain.

    PubMed

    Farrant, Kristafor; Uddin, Lucina Q

    2015-04-01

    Two neural systems for goal-directed and stimulus-driven attention have been described in the adult human brain; the dorsal attention network (DAN) centered in the frontal eye fields (FEF) and intraparietal sulcus (IPS), and the ventral attention network (VAN) anchored in the temporoparietal junction (TPJ) and ventral frontal cortex (VFC). Little is known regarding the processes governing typical development of these attention networks in the brain. Here we use resting state functional MRI data collected from thirty 7 to 12 year-old children and thirty 18 to 31 year-old adults to examine two key regions of interest from the dorsal and ventral attention networks. We found that for the DAN nodes (IPS and FEF), children showed greater functional connectivity with regions within the network compared with adults, whereas adults showed greater functional connectivity between the FEF and extra-network regions including the posterior cingulate cortex. For the VAN nodes (TPJ and VFC), adults showed greater functional connectivity with regions within the network compared with children. Children showed greater functional connectivity between VFC and nodes of the salience network. This asymmetric pattern of development of attention networks may be a neural signature of the shift from over-representation of bottom-up attention mechanisms to greater top-down attentional capacities with development.

  17. The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys.

    PubMed

    Aggleton, John P; Saunders, Richard C; Wright, Nicholas F; Vann, Seralynne D

    2014-01-01

    Interactions between the posterior cingulate cortex (areas 23 and 31) and the retrosplenial cortex (areas 29 and 30) with the anterior, laterodorsal and dorsal medial thalamic nuclei are thought to support various aspects of cognition, including memory and spatial processing. To detail these interactions better, the present study used retrograde tracers to reveal the origins of the corticothalamic projections in two closely related monkey species (Macaca mulatta, Macaca fascicularis). The medial dorsal thalamic nucleus received only light cortical inputs, which predominantly arose from area 23. Efferents to the anterior medial thalamic nucleus also arose principally from area 23, but these projections proved more numerous than those to the medial dorsal nucleus and also involved additional inputs from areas 29 and 30. The anterior ventral and laterodorsal thalamic nuclei had similar sources of inputs from the posterior cingulate and retrosplenial cortices. For both nuclei, the densest projections arose from areas 29 and 30, with numbers of thalamic inputs often decreasing when going dorsal from area 23a to 23c and to area 31. In all cases, the corticothalamic projections almost always arose from the deepest cortical layer. The different profiles of inputs to the anterior medial and anterior ventral thalamic nuclei reinforce other anatomical and electrophysiological findings suggesting that these adjacent thalamic nuclei serve different, but complementary, functions supporting memory. While the lack of retrosplenial connections singled out the medial dorsal nucleus, the very similar connection patterns shown by the anterior ventral and laterodorsal nuclei point to common roles in cognition.

  18. Finding and recognizing objects in natural scenes: complementary computations in the dorsal and ventral visual systems

    PubMed Central

    Rolls, Edmund T.; Webb, Tristan J.

    2014-01-01

    Searching for and recognizing objects in complex natural scenes is implemented by multiple saccades until the eyes reach within the reduced receptive field sizes of inferior temporal cortex (IT) neurons. We analyze and model how the dorsal and ventral visual streams both contribute to this. Saliency detection in the dorsal visual system including area LIP is modeled by graph-based visual saliency, and allows the eyes to fixate potential objects within several degrees. Visual information at the fixated location subtending approximately 9° corresponding to the receptive fields of IT neurons is then passed through a four layer hierarchical model of the ventral cortical visual system, VisNet. We show that VisNet can be trained using a synaptic modification rule with a short-term memory trace of recent neuronal activity to capture both the required view and translation invariances to allow in the model approximately 90% correct object recognition for 4 objects shown in any view across a range of 135° anywhere in a scene. The model was able to generalize correctly within the four trained views and the 25 trained translations. This approach analyses the principles by which complementary computations in the dorsal and ventral visual cortical streams enable objects to be located and recognized in complex natural scenes. PMID:25161619

  19. Spatiotemporal dynamics of bimanual integration in human somatosensory cortex and their relevance to bimanual object manipulation.

    PubMed

    Jung, Patrick; Klein, Johannes C; Wibral, Michael; Hoechstetter, Karsten; Bliem, Barbara; Lu, Ming-Kuei; Wahl, Mathias; Ziemann, Ulf

    2012-04-18

    Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.

  20. Abstract rule learning: the differential effects of lesions in frontal cortex.

    PubMed

    Kayser, Andrew S; D'Esposito, Mark

    2013-01-01

    Learning progressively more abstract stimulus-response mappings requires progressively more anterior regions of the lateral frontal cortex. Using an individual differences approach, we studied subjects with frontal lesions performing a hierarchical reinforcement-learning task to investigate how frontal cortex contributes to abstract rule learning. We predicted that subjects with lesions of the left pre-premotor (pre-PMd) cortex, a region implicated in abstract rule learning, would demonstrate impaired acquisition of second-order, as opposed to first-order, rules. We found that 4 subjects with such lesions did indeed demonstrate a second-order rule-learning impairment, but that these subjects nonetheless performed better than subjects with other frontal lesions in a second-order rule condition. This finding resulted from both their restricted exploration of the feature space and the task structure of this condition, for which they identified partially representative first-order rules. Significantly, across all subjects, suboptimal but above-chance performance in this condition correlated with increasing disconnection of left pre-PMd from the putative functional hierarchy, defined by reduced functional connectivity between left pre-PMd and adjacent nodes. These findings support the theory that activity within lateral frontal cortex shapes the search for relevant stimulus-response mappings, while emphasizing that the behavioral correlate of impairments depends critically on task structure.

  1. Anatomic Landmarks for the First Dorsal Compartment

    PubMed Central

    Hazani, Ron; Engineer, Nitin J.; Cooney, Damon; Wilhelmi, Bradon J.

    2008-01-01

    Objective: Knowledge of anatomic landmarks for the first dorsal compartment can assist clinicians with management of de Quervain's disease. The radial styloid, the scaphoid tubercle, and Lister's tubercle can be used as superficial landmarks for the first dorsal compartment. Methods: Thirty-two cadaveric wrists were dissected, and measurements were taken from the predetermined landmarks to the extensor retinaculum. The compartments were also inspected for variability of the abductor pollicis longus tendon and intracompartmental septations. Results: The average length of the extensor retinaculum from its proximal to distal extent measured approximately 2.2 cm. The distal aspect of the radial styloid was 0.3 cm distal to the distal aspect of the extensor retinaculum, and the distance between the distal aspect of the extensor retinaculum and the APL-Lister's-Scaphoid juncture was approximately 0.5 cm. A separate compartment for the extensor pollicis brevis was noted in 35% of the specimens. The abductor pollicis longus tendon demonstrated great variability with 1, 2, 3, or 4 slips in 9%, 30%, 43%, or 26% of the specimens, respectively. Conclusion: The superficial bony prominences of the radial wrist can be used reliably as anatomic landmarks for the first dorsal compartment. PMID:19092992

  2. Dynamic microtubules at the vegetal cortex predict the embryonic axis in zebrafish.

    PubMed

    Tran, Long Duc; Hino, Hiromu; Quach, Helen; Lim, Shimin; Shindo, Asako; Mimori-Kiyosue, Yuko; Mione, Marina; Ueno, Naoto; Winkler, Christoph; Hibi, Masahiko; Sampath, Karuna

    2012-10-01

    In zebrafish, as in many animals, maternal dorsal determinants are vegetally localized in the egg and are transported after fertilization in a microtubule-dependent manner. However, the organization of early microtubules, their dynamics and their contribution to axis formation are not fully understood. Using live imaging, we identified two populations of microtubules, perpendicular bundles and parallel arrays, which are directionally oriented and detected exclusively at the vegetal cortex before the first cell division. Perpendicular bundles emanate from the vegetal cortex, extend towards the blastoderm, and orient along the animal-vegetal axis. Parallel arrays become asymmetric on the vegetal cortex, and orient towards dorsal. We show that the orientation of microtubules at 20 minutes post-fertilization can predict where the embryonic dorsal structures in zebrafish will form. Furthermore, we find that parallel microtubule arrays colocalize with wnt8a RNA, the candidate maternal dorsal factor. Vegetal cytoplasmic granules are displaced with parallel arrays by ~20°, providing in vivo evidence of a cortical rotation-like process in zebrafish. Cortical displacement requires parallel microtubule arrays, and probably contributes to asymmetric transport of maternal determinants. Formation of parallel arrays depends on Ca(2+) signaling. Thus, microtubule polarity and organization predicts the zebrafish embryonic axis. In addition, our results suggest that cortical rotation-like processes might be more common in early development than previously thought.

  3. Expansion of the piriform cortex contributes to corticothalamic pathfinding defects in Gli3 conditional mutants.

    PubMed

    Amaniti, Eleni-Maria; Fu, Chaoying; Lewis, Sean; Saisana, Marina; Magnani, Dario; Mason, John O; Theil, Thomas

    2015-02-01

    The corticothalamic and thalamocortical tracts play essential roles in the communication between the cortex and thalamus. During development, axons forming these tracts have to follow a complex path to reach their target areas. While much attention has been paid to the mechanisms regulating their passage through the ventral telencephalon, very little is known about how the developing cortex contributes to corticothalamic/thalamocortical tract formation. Gli3 encodes a zinc finger transcription factor widely expressed in telencephalic progenitors which has important roles in corticothalamic and thalamocortical pathfinding. Here, we conditionally inactivated Gli3 in dorsal telencephalic progenitors to determine its role in corticothalamic tract formation. In Emx1Cre;Gli3(fl/fl) mutants, only a few corticothalamic axons enter the striatum in a restricted dorsal domain. This restricted entry correlates with a medial expansion of the piriform cortex. Transplantation experiments showed that the expanded piriform cortex repels corticofugal axons. Moreover, expression of Sema5B, a chemorepellent for corticofugal axons produced by the piriform cortex, is similarly expanded. Finally, time course analysis revealed an expansion of the ventral pallial progenitor domain which gives rise to the piriform cortex. Hence, control of lateral cortical development by Gli3 at the progenitor level is crucial for corticothalamic pathfinding.

  4. Segregated and integrated coding of reward and punishment in the cingulate cortex.

    PubMed

    Fujiwara, Juri; Tobler, Philippe N; Taira, Masato; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2009-06-01

    Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice task and compared cingulate activations for different levels of monetary gain and loss. Gain-specific activation (increasing activation for increasing gain, but no activation change in relation to loss) occurred mainly in the anterior part of the anterior cingulate and in the posterior cingulate cortex. Conversely, loss-specific activation (increasing activation for increasing loss, but no activation change in relation to gain) occurred between these areas, in the middle and posterior part of the anterior cingulate. Integrated coding of gain and loss (increasing activation throughout the full range, from biggest loss to biggest gain) occurred in the dorsal part of the anterior cingulate, at the border with the medial prefrontal cortex. Finally, unspecific activation increases to both gains and losses (increasing activation to increasing gains and increasing losses, possibly reflecting attention) occurred in dorsal and middle regions of the cingulate cortex. Together, these results suggest separate and common coding of monetary reward and punishment in distinct subregions of the cingulate cortex. Further meta-analysis suggested that the presently found reward- and punishment-specific areas overlapped with those processing positive and negative emotions, respectively.

  5. Subdivisions and connectional networks of the lateral prefrontal cortex in the macaque monkey.

    PubMed

    Saleem, Kadharbatcha S; Miller, Brad; Price, Joseph L

    2014-05-01

    Neuroanatomical studies have long indicated that corticocortical connections are organized in networks that relate distinct sets of areas. Such networks have been emphasized by development of functional imaging methods for correlating activity across the cortex. Previously, two networks were recognized in the orbitomedial prefrontal cortex, the "orbital" and "medial" networks (OPFC and MPFC, respectively). In this study, three additional networks are proposed for the lateral prefrontal cortex: 1) a ventrolateral network (VLPFC) in and ventral to the principal sulcus; 2) a dorsal network (DPFC) in and dorsal to the principal sulcus and in the frontal pole; 3) a caudolateral network (CLPFC) in and rostral to the arcuate sulcus and the caudal principal sulcus. The connections of the first two networks are described here. Areas in each network are connected primarily with other areas in the same network, with overlaps around the principal sulcus. The VLPFC and DPFC are also connected with the OPFC and MPFC, respectively. Outside the prefrontal cortex, the VLPFC connects with specific areas related to somatic/visceral sensation and vision, in the frontoparietal operculum, insula, ventral bank/fundus of the superior temporal sulcus, inferior temporal gyrus, and inferior parietal cortex. In contrast, the DPFC connects with the rostral superior temporal gyrus, dorsal bank of the superior temporal sulcus, parahippocampal cortex, and posterior cingulate and retrosplenial cortex. Area 45a, in caudal VLPFC, is unique, having connections with all the networks. Its extrinsic connections resemble those of the DPFC. In addition, it has connections with both auditory belt/parabelt areas, and visual related areas.

  6. Task-driven intra- and interarea communications in primate cerebral cortex

    PubMed Central

    Tauste Campo, Adrià; Martinez-Garcia, Marina; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Deco, Gustavo

    2015-01-01

    Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas. PMID:25825731

  7. Functional Microarchitecture of the Mouse Dorsal Inferior Colliculus Revealed through In Vivo Two-Photon Calcium Imaging

    PubMed Central

    Barnstedt, Oliver; Keating, Peter; Weissenberger, Yves

    2015-01-01

    The inferior colliculus (IC) is an obligatory relay for ascending auditory inputs from the brainstem and receives descending input from the auditory cortex. The IC comprises a central nucleus (CNIC), surrounded by several shell regions, but the internal organization of this midbrain nucleus remains incompletely understood. We used two-photon calcium imaging to study the functional microarchitecture of both neurons in the mouse dorsal IC and corticocollicular axons that terminate there. In contrast to previous electrophysiological studies, our approach revealed a clear functional distinction between the CNIC and the dorsal cortex of the IC (DCIC), suggesting that the mouse midbrain is more similar to that of other mammals than previously thought. We found that the DCIC comprises a thin sheet of neurons, sometimes extending barely 100 μm below the pial surface. The sound frequency representation in the DCIC approximated the mouse's full hearing range, whereas dorsal CNIC neurons almost exclusively preferred low frequencies. The response properties of neurons in these two regions were otherwise surprisingly similar, and the frequency tuning of DCIC neurons was only slightly broader than that of CNIC neurons. In several animals, frequency gradients were observed in the DCIC, and a comparable tonotopic arrangement was observed across the boutons of the corticocollicular axons, which form a dense mesh beneath the dorsal surface of the IC. Nevertheless, acoustically responsive corticocollicular boutons were sparse, produced unreliable responses, and were more broadly tuned than DCIC neurons, suggesting that they have a largely modulatory rather than driving influence on auditory midbrain neurons. SIGNIFICANCE STATEMENT Due to its genetic tractability, the mouse is fast becoming the most popular animal model for sensory neuroscience. Nevertheless, many aspects of its neural architecture are still poorly understood. Here, we image the dorsal auditory midbrain and its

  8. Functional-structural degeneration in dorsal and ventral attention systems for Alzheimer's disease, amnestic mild cognitive impairment.

    PubMed

    Qian, Shaowen; Zhang, Zhaoyan; Li, Bo; Sun, Gang

    2015-12-01

    Growing evidence of attention related failures in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) has already been proposed by previous studies. However, previous studies lacked of systematic investigation on the functional and structural substrates for attention function for patients with AD and aMCI. In this work, we investigated the functional connectivity and gray matter density in dorsal and ventral attention networks (DAN, VAN) of normal participants (n = 15) and patients with aMCI (n = 12) and AD (n = 16) by applying group independent component analysis (ICA) and voxel-based morphometry (VBM) analysis. Using ICA, we extracted the functional patterns of DAN and VAN which are respectively responsible for the "top-down" attention process and "bottom-up" process. One-way analysis of variance (ANOVA) revealed significant group-differed functional connectivity in bilateral frontal eye fields (FEF) area and intraparietal sulcus (IPS) area, as well as posterior cingulate cortex and precuneus in the dorsal system. With regard to the ventral system, group-effects were significantly focused in right orbital superior/middle frontal gyrus, right inferior parietal lobule, angular gyrus, and supramarginal gyrus around the temporal-parietal junction area. Post hoc cluster-level comparisons revealed totally impaired functional substrates for both attentional networks for patients with AD, whereas selectively impaired attention systems for patients with aMCI with impaired functional patent of DAN but preserved functional pattern of VAN. Correspondingly, VBM analysis revealed gray matter loss in right ventral and dorsal frontal cortex was in the AD group, whereas preserved gray matter density was in aMCI, even a little extent of expansion of gray matter density in several participants. Using multivariate regression analysis we found discrepant couplings of functional-structural degenerations between both patient groups

  9. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool.

    PubMed

    Jacobs, Stéphane; Danielmeier, Claudia; Frey, Scott H

    2010-11-01

    Humans display a remarkable capacity to use tools instead of their biological effectors. Yet, little is known about the mechanisms that support these behaviors. Here, participants learned to grasp objects, appearing in a variety of orientations, with a novel, handheld mechanical tool. Following training, psychophysical functions relating grip preferences (i.e., pronated vs. supinated) to stimulus orientations indicate a reliance on distinct, effector-specific internal representations when planning grasping actions on the basis of the tool versus the hands. Accompanying fMRI data show that grip planning in both hand and tool conditions was associated with similar increases in activity within the same regions of the anterior intraparietal and caudal ventral premotor cortices, a putative homologue of the macaque anterior intraparietal-ventral premotor (area F5) "grasp circuit." These findings suggest that tool use is supported by effector-specific representations of grasping with the tool that are functionally independent of previously existing representations of the hand and yet occur within the same parieto-frontal regions involved in manual prehension. These levels of representation are critical for accurate planning and execution of actions in a manner that is sensitive to the respective properties of these effectors. These effector-specific representations likely coexist with effector-independent representations. The latter were recently reported in macaque F5 [Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, U.S.A., 105, 2209-2213, 2008] and appear to be established by tool use training through modification of existing representations of grasping with the hand. These more abstract levels of representation may facilitate the transfer of skills between hand and tool.

  10. Population Coding of Visual Space: Comparison of Spatial Representations in Dorsal and Ventral Pathways

    PubMed Central

    Sereno, Anne B.; Lehky, Sidney R.

    2011-01-01

    Although the representation of space is as fundamental to visual processing as the representation of shape, it has received relatively little attention from neurophysiological investigations. In this study we characterize representations of space within visual cortex, and examine how they differ in a first direct comparison between dorsal and ventral subdivisions of the visual pathways. Neural activities were recorded in anterior inferotemporal cortex (AIT) and lateral intraparietal cortex (LIP) of awake behaving monkeys, structures associated with the ventral and dorsal visual pathways respectively, as a stimulus was presented at different locations within the visual field. In spatially selective cells, we find greater modulation of cell responses in LIP with changes in stimulus position. Further, using a novel population-based statistical approach (namely, multidimensional scaling), we recover the spatial map implicit within activities of neural populations, allowing us to quantitatively compare the geometry of neural space with physical space. We show that a population of spatially selective LIP neurons, despite having large receptive fields, is able to almost perfectly reconstruct stimulus locations within a low-dimensional representation. In contrast, a population of AIT neurons, despite each cell being spatially selective, provide less accurate low-dimensional reconstructions of stimulus locations. They produce instead only a topologically (categorically) correct rendition of space, which nevertheless might be critical for object and scene recognition. Furthermore, we found that the spatial representation recovered from population activity shows greater translation invariance in LIP than in AIT. We suggest that LIP spatial representations may be dimensionally isomorphic with 3D physical space, while in AIT spatial representations may reflect a more categorical representation of space (e.g., “next to” or “above”). PMID:21344010

  11. Neural Representation and Causal Models in Motor Cortex.

    PubMed

    Chaisanguanthum, Kris S; Shen, Helen H; Sabes, Philip N

    2017-03-22

    Dorsal premotor (PMd) and primary motor (M1) cortices play a central role in mapping sensation to movement. Many studies of these areas have focused on correlation-based tuning curves relating neural activity to task or movement parameters, but the link between tuning and movement generation is unclear. We recorded motor preparatory activity from populations of neurons in PMd/M1 as macaque monkeys performed a visually guided reaching task and show that tuning curves for sensory inputs (reach target direction) and motor outputs (initial movement direction) are not typically aligned. We then used a simple, causal model to determine the expected relationship between sensory and motor tuning. The model shows that movement variability is minimized when output neurons (those that directly drive movement) have target and movement tuning that are linearly related across targets and cells. In contrast, for neurons that only affect movement via projections to output neurons, the relationship between target and movement tuning is determined by the pattern of projections to output neurons and may even be uncorrelated, as was observed for the PMd/M1 population as a whole. We therefore determined the relationship between target and movement tuning for subpopulations of cells defined by the temporal duration of their spike waveforms, which may distinguish cell types. We found a strong correlation between target and movement tuning for only a subpopulation of neurons with intermediate spike durations (trough-to-peak ∼350 μs after high-pass filtering), suggesting that these cells have the most direct role in driving motor output.SIGNIFICANCE STATEMENT This study focuses on how macaque premotor and primary motor cortices transform sensory inputs into motor outputs. We develop empirical and theoretical links between causal models of this transformation and more traditional, correlation-based "tuning curve" analyses. Contrary to common assumptions, we show that sensory and motor

  12. Open dorsal vertebroplasty of the axis.

    PubMed

    Guerre, Pascal; Kröber, Markus

    2011-05-01

    Vertebroplasty of the axis is always a challenging procedure. We report the case of a young, HIV-positive patient suffering from an osteolytic metastasis of the axis. An open dorsal vertebroplasty was performed. A leakage of the cement formed a new cortical bone of the massa lateralis of C2, and stabilized the C1-C2 articulation by an arthrodesis-like effect. Durable pain relief and stabilization were obtained. The location of the cement, although atypical, had all desired effects of a conventional vertebroplasty. The intra-articular injection of cement into the facets for stabilization and pain relief could be considered in the future.

  13. Nasal dorsal augmentation with silicone implants.

    PubMed

    Erlich, Mark A; Parhiscar, Afshin

    2003-11-01

    Silicone rubber has been used safely and effectively for facial augmentation for nearly 5 decades in eastern Asia. We have used silicone rubber nasal implants in primary ethnic rhinoplasty and have found consistent and long-lasting results with low complication rates. Silicone dorsal nasal augmentation in primary rhinoplasty avoids donor site morbidity and implant resorption as seen with autogenous implants. Silicone nasal implants have a low extrusion and infection rate. In the appropriate patient with proper placement, silicone nasal implant is nearly the ideal implant material.

  14. Diverse spatial reference frames of vestibular signals in parietal cortex

    PubMed Central

    Chen, Xiaodong; DeAngelis, Gregory C; Angelaki, Dora E

    2013-01-01

    Summary Reference frames are important for understanding how sensory cues from different modalities are coordinated to guide behavior, and the parietal cortex is critical to these functions. We compare reference frames of vestibular self-motion signals in the ventral intraparietal area (VIP), parietoinsular vestibular cortex (PIVC), and dorsal medial superior temporal area (MSTd). Vestibular heading tuning in VIP is invariant to changes in both eye and head positions, indicating a body (or world)-centered reference frame. Vestibular signals in PIVC have reference frames that are intermediate between head- and body-centered. In contrast, MSTd neurons show reference frames between head- and eye-centered, but not body-centered. Eye and head position gain fields were strongest in MSTd and weakest in PIVC. Our findings reveal distinct spatial reference frames for representing vestibular signals, and pose new challenges for understanding the respective roles of these areas in potentially diverse vestibular functions. PMID:24239126

  15. Neural Coding of Tactile Decisions in the Human Prefrontal Cortex

    PubMed Central

    Pleger, Burkhard; Ruff, Christian C.; Blankenburg, Felix; Bestmann, Sven; Wiech, Katja; Stephan, Klaas E.; Capilla, Almudena; Friston, Karl J.; Dolan, Raymond J.

    2009-01-01

    The neural processes underlying tactile decisions in the human brain remain elusive. We addressed this question in a functional magnetic resonance imaging study using a somatosensory discrimination task, requiring participants to compare the frequency of two successive tactile stimuli. Tactile stimuli per se engaged somatosensory, parietal, and frontal cortical regions. Using a statistical model that accounted for the relative difference in frequencies (i.e., Weber fraction) and discrimination accuracy (i.e., correct or incorrect), we show that trial-by-trial relative frequency difference is represented linearly by activity changes in the left dorsolateral prefrontal cortex (DLPFC), the dorsal anterior cingulate cortex, and bilateral anterior insular cortices. However, a circumscribed region within the left DLPFC showed a different response pattern expressed as activity changes that were monotonically related to relative stimulation difference only for correct but not for incorrect trials. Our findings suggest that activity in the left DLPFC encodes stimulus representations that underlie veridical tactile decisions in humans. PMID:17135421

  16. Value, search, persistence and model updating in anterior cingulate cortex.

    PubMed

    Kolling, Nils; Wittmann, Marco K; Behrens, Tim E J; Boorman, Erie D; Mars, Rogier B; Rushworth, Matthew F S

    2016-09-27

    Dorsal anterior cingulate cortex (dACC) carries a wealth of value-related information necessary for regulating behavioral flexibility and persistence. It signals error and reward events informing decisions about switching or staying with current behavior. During decision-making, it encodes the average value of exploring alternative choices (search value), even after controlling for response selection difficulty, and during learning, it encodes the degree to which internal models of the environment and current task must be updated. dACC value signals are derived in part from the history of recent reward integrated simultaneously over multiple time scales, thereby enabling comparison of experience over the recent and extended past. Such ACC signals may instigate attentionally demanding and difficult processes such as behavioral change via interactions with prefrontal cortex. However, the signal in dACC that instigates behavioral change need not itself be a conflict or difficulty signal.

  17. Dorsal Raphe Neuroinflammation Promotes Dramatic Behavioral Stress Dysregulation

    PubMed Central

    Howerton, Alexis R.; Roland, Alison V.

    2014-01-01

    Impulsivity, risk-taking behavior, and elevated stress responsivity are prominent symptoms of mania, a behavioral state common to schizophrenia and bipolar disorder. Though inflammatory processes activated within the brain are involved in the pathophysiology of both disorders, the specific mechanisms by which neuroinflammation drives manic behavior are not well understood. Serotonin cell bodies originating within the dorsal raphe (DR) play a major role in the regulation of behavioral features characteristic of mania. Therefore, we hypothesized that the link between neuroinflammation and manic behavior may be mediated by actions on serotonergic neurocircuitry. To examine this, we induced local neuroinflammation in the DR by viral delivery of Cre recombinase into interleukin (IL)-1βXAT transgenic male and female mice, resulting in overexpressing of the proinflammatory cytokine, IL-1β. For assertion of brain-region specificity of these outcomes, the prefrontal cortex (PFC), as a downstream target of DR serotonergic projections, was also infused. Inflammation within the DR, but not the PFC, resulted in a profound display of manic-like behavior, characterized by increased stress-induced locomotion and responsivity, and reduced risk-aversion/fearfulness. Microarray analysis of the DR revealed a dramatic increase in immune-related genes, and dysregulation of genes important in GABAergic, glutamatergic, and serotonergic neurotransmission. Behavioral and physiological changes were driven by a loss of serotonergic neurons and reduced output as measured by high-performance liquid chromatography, demonstrating inflammation-induced serotonergic hypofunction. Behavioral changes were rescued by acute selective serotonin reuptake inhibitor treatment, supporting the hypothesis that serotonin dysregulation stemming from neuroinflammation in the DR underlies manic-like behaviors. PMID:24849347

  18. MEG identifies dorsal medial brain activations during sleep.

    PubMed

    Ioannides, Andreas A; Kostopoulos, George K; Liu, Lichan; Fenwick, Peter B C

    2009-01-15

    All sleep stages contain epochs with high-amplitude electrophysiological phasic events, alternating with quieter "core periods." High-amplitude and core state properties cannot be disentangled with PET and fMRI. Here from high temporal resolution magnetoencephalography data, regional changes in neuronal activity were extracted during core periods in different frequency bands for each sleep stage and waking. We found that gamma-band activity increases in precuneus during light sleep (stages 1/2) and in the left dorso-medial prefrontal cortex (L-DMPFC) during deep sleep (stages 3/4). The L-DMPFC activated area expands laterally during rapid eye movement (REM) sleep, into a volume of about 5 cm(3) bounded by regions attributed to Theory of Mind (ToM) and default systems, both involved in introspection. Gamma band activity in this area was higher during REM sleep than other sleep stages and active wakefulness. There is a tantalizing correspondence between increased wide-band activity (dominated by low frequencies) in early non-REM (NREM) sleep stages and increases in gamma-band activity in late NREM and REM periods that we attribute to a lateral disinhibition mechanism. The results provide a description of regional electrophysiological changes in awake state, light and deep sleep, and REM sleep. These changes are most pronounced in the L-DMPFC and the other areas around the dorsal midline that are close to, but do not overlap with areas of the default and ToM systems, suggesting that the DMPFC, particularly in the left hemisphere, plays an important role in late NREM stages, in REM and possibly in dreaming.

  19. Knife cuts of entorhinal cortex: effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors

    SciTech Connect

    Savage, D.D.; Rigsbee, L.C.; McNamara, J.O.

    1985-02-01

    This report examines the effect of transection of the entorhinal hippocampal projection on amygdaloid kindling. We found that: bilateral knife cuts of entorhinal cortex but not of dorsal neocortex antagonize the development of amygdaloid kindling; and bilateral knife cuts of entorhinal cortex eliminate the seizure-induced decrease in number of muscarinic receptors of dentate granule cells. We suggest the following interpretations of these data: the hippocampal formation circuitry facilitates the development of amygdaloid kindling; and the decline of muscarinic receptors after kindled seizures is due to excessive activation of granule cells by axons from entorhinal cortex, a noncholinergic afferent.

  20. The Embryonic Septum and Ventral Pallium, New Sources of Olfactory Cortex Cells

    PubMed Central

    de Carlos, Juan A.

    2012-01-01

    The mammalian olfactory cortex is a complex structure located along the rostro-caudal extension of the ventrolateral prosencephalon, which is divided into several anatomically and functionally distinct areas: the anterior olfactory nucleus, piriform cortex, olfactory tubercle, amygdaloid olfactory nuclei, and the more caudal entorhinal cortex. Multiple forebrain progenitor domains contribute to the cellular diversity of the olfactory cortex, which is invaded simultaneously by cells originating in distinct germinal areas in the dorsal and ventral forebrain. Using a combination of dye labeling techniques, we identified two novel areas that contribute cells to the developing olfactory cortices, the septum and the ventral pallium, from which cells migrate along a radial and then a tangential path. We characterized these cell populations by comparing their expression of calretinin, calbindin, reelin and Tbr1 with that of other olfactory cell populations. PMID:22984546

  1. Functions and Regulation of Circular Dorsal Ruffles

    PubMed Central

    Hoon, Jing-Ling; Wong, Wai-Keung

    2012-01-01

    Cells construct a number of plasma membrane structures to meet a range of physiological demands. Driven by juxtamembrane actin machinery, these actin-based membrane protrusions are essential for the operation and maintenance of cellular life. They are required for diverse cellular functions, such as directed cell motility, cell spreading, adhesion, and substrate/matrix degradation. Circular dorsal ruffles (CDRs) are one class of such structures characterized as F-actin-rich membrane projections on the apical cell surface. CDRs commence their formation minutes after stimulation as flat, open, and immature ruffles and progressively develop into fully enclosed circular ruffles. These “rings” then mature and contract centrifugally before subsiding. Serving a critical function in receptor internalization and cell migration, CDRs are thus highly dynamic but transient formations. Here, we review the current state of knowledge concerning the regulation of circular dorsal ruffles. We focus specifically on the biochemical pathways leading to CDR formation in order to better define the roles and functions of these enigmatic structures. PMID:22927640

  2. Dorsal root vasodilatation in cat skeletal muscle.

    PubMed Central

    Hilton, S M; Marshall, J M

    1980-01-01

    1. A study has been made, in the cat anaesthetized with chloralose, of the effects of antidromic stimulation of dorsal roots L6-S1 on the blood flow through the gastrocnemius muscle. 2. Stimulation of the peripheral ends of the ligated dorsal roots with current pulses of 0.3-0.5 msec duration and at intensities most effective in activating the smaller afferent fibres, for periods of 15-20 sec, produced a 50-60% increase in muscle vascular conductance which was slow in onset and long outlasted the stimulus. 3. This muscle vasodilatation could be evoked in the paralysed animal and was unaffected by guanethidine or atropine. It was, however, greatly reduced or even abolished by the prostaglandin synthetase inhibitors, indomethacin or acetylsalicylic acid, in doses which had no effect on the dilatation produced by a local injection of acetylcholine or the functional hyperaemia induced by muscle contraction. 4. It is concluded that activity in the smaller myelinated or unmyelinated afferent fibres of skeletal muscle produces an increase in muscle blood flow which is mediated, at least in part, by prostaglandins locally synthesized within the muscle. PMID:7381769

  3. Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices.

    PubMed

    Tosoni, Annalisa; Corbetta, Maurizio; Calluso, Cinzia; Committeri, Giorgia; Pezzulo, Giovanni; Romani, G L; Galati, Gaspare

    2014-04-01

    During simple perceptual decisions, sensorimotor neurons in monkey fronto-parietal cortex represent a decision variable that guides the transformation of sensory evidence into a motor response, supporting the view that mechanisms for decision-making are closely embedded within sensorimotor structures. Within these structures, however, decision signals can be dissociated from motor signals, thus indicating that sensorimotor neurons can play multiple and independent roles in decision-making and action selection/planning. Here we used functional magnetic resonance imaging to examine whether response-selective human brain areas encode signals for decision-making or action planning during a task requiring an arbitrary association between face pictures (male vs. female) and specific actions (saccadic eye vs. hand pointing movements). The stimuli were gradually unmasked to stretch the time necessary for decision, thus maximising the temporal separation between decision and action planning. Decision-related signals were measured in parietal and motor/premotor regions showing a preference for the planning/execution of saccadic or pointing movements. In a parietal reach region, decision-related signals were specific for the stimulus category associated with its preferred pointing response. By contrast, a saccade-selective posterior intraparietal sulcus region carried decision-related signals even when the task required a pointing response. Consistent signals were observed in the motor/premotor cortex. Whole-brain analyses indicated that, in our task, the most reliable decision signals were found in the same neural regions involved in response selection. However, decision- and action-related signals within these regions can be dissociated. Differences between the parietal reach region and posterior intraparietal sulcus plausibly depend on their functional specificity rather than on the task structure.

  4. [Neuroanatomy of Frontal Association Cortex].

    PubMed

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  5. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate.

  6. Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy.

    PubMed

    Qi, Hui-Xin; Jain, Neeraj; Collins, Christine E; Lyon, David C; Kaas, Jon H

    2010-02-16

    When somatosensory cortex (S1) is deprived of some of its inputs after section of ascending afferents in the dorsal columns of the spinal cord, it reorganizes to overrepresent the surviving inputs. As somatosensory cortex provides guiding sensory information to motor cortex, such sensory loss and representational reorganization could affect the development of the motor map in primary motor cortex (M1), especially if the sensory loss occurs early in development. To address this possibility, the dorsal columns of the spinal cord were sectioned between cervical levels (C3-5) 3-12 days after birth in five macaque monkeys. After 3-5 years of maturation (young adults), we determined how movements were represented in M1 contralateral to the lesion by using microelectrodes to electrically stimulate sites in M1 to evoke movements. Although the details of the motor maps in these five monkeys varied, the forelimb motor maps were abnormal. The representations of digit movements were reduced and abnormally arranged. Current levels for evoking movements from the forelimb region of M1 were in the normal range, but the lowest mean stimulation thresholds were for wrist or elbow instead of digit movements. Incomplete lesions and bilateral lesions produced fewer abnormalities. The results suggest that the development of normal motor cortex maps in M1 depends on sensory feedback from somatosensory maps.

  7. Auditory and visual connectivity gradients in frontoparietal cortex

    PubMed Central

    Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert

    2016-01-01

    Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304

  8. Disruption of Locomotor Adaptation with Repetitive Transcranial Magnetic Stimulation Over the Motor Cortex.

    PubMed

    Choi, Julia T; Bouyer, Laurent J; Nielsen, Jens Bo

    2015-07-01

    Locomotor patterns are adapted on a trial-and-error basis to account for predictable dynamics. Once a walking pattern is adapted, the new calibration is stored and must be actively de-adapted. Here, we tested the hypothesis that storage of newly acquired ankle adaptation in walking is dependent on corticospinal mechanisms. Subjects were exposed to an elastic force that resisted ankle dorsiflexion during treadmill walking. Ankle movement was adapted in <30 strides, leading to after-effects on removal of the force. We used a crossover design to study the effects of repetitive transcranial magnetic stimulation (TMS) over the primary motor cortex (M1), compared with normal adaptation without TMS. In addition, we tested the effects of TMS over the primary sensory cortex (S1) and premotor cortex (PMC) during adaptation. We found that M1 TMS, but not S1 TMS and PMC TMS, reduced the size of ankle dorsiflexion after-effects. The results suggest that suprathreshold M1 TMS disrupted the initial processes underlying locomotor adaptation. These results are consistent with the hypothesis that corticospinal mechanisms underlie storage of ankle adaptation in walking.

  9. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    PubMed

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others.

  10. [Correlation of evoked potentials in the frontal cortex and hippocampus of cats in emotional stress].

    PubMed

    Vanetsian, G L; Pavlova, I V

    2002-01-01

    Averaged auditory evoked potentials (AEPs) were recorded in symmetric points of the frontal cortex and dorsal hippocampus of cats performing acquired conditioned food-procuring reaction reinforced in 100% cases, urgent transition to 30%-reinforcement, and return to 100%-reinforcement. Emotional stress estimated by a heart rate rise developed during increased food motivation of a cat as well as during change in ordinary food-procuring stereotype. The emotional stress was accompanied by a high positive correlation of cortical and hippocampal AEPs. Decrease in the stress level led to a drop between AEP correlations and appearance of their negative values. In emotional stress, the interactions between the frontal cortex and dorsal hippocampus were asymmetric: right-side correlations were higher.

  11. Reading without the left ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  12. Functional Connectivity of the Posteromedial Cortex

    PubMed Central

    Cauda, Franco; Geminiani, Giuliano; D'Agata, Federico; Sacco, Katiuscia; Duca, Sergio; Bagshaw, Andrew P.; Cavanna, Andrea E.

    2010-01-01

    As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network. The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results. PMID:20927345

  13. Modulation of the motor cortex during singing-voice perception.

    PubMed

    Lévêque, Yohana; Schön, Daniele

    2015-04-01

    Several studies on action observation have shown that the biological dimension of movement modulates sensorimotor interactions in perception. In the present fMRI study, we tested the hypothesis that the biological dimension of sound modulates the involvement of the motor system in human auditory perception, using musical tasks. We first localized the vocal motor cortex in each participant. Then we compared the BOLD response to vocal, semi-vocal and non-vocal melody perception, and found greater activity for voice perception in the right sensorimotor cortex. We additionally ran a psychophysiological interaction analysis with the right sensorimotor as a seed, showing that the vocal dimension of the stimuli enhanced the connectivity between the seed region and other important nodes of the auditory dorsal stream. Finally, the participants' vocal ability was negatively correlated to the voice effect in the Inferior Parietal Lobule. These results suggest that the biological dimension of singing-voice impacts the activity within the auditory dorsal stream, probably via a facilitated matching between the perceived sound and the participant motor representations.

  14. Functional Connectivity Patterns of Visual Cortex Reflect its Anatomical Organization.

    PubMed

    Genç, Erhan; Schölvinck, Marieke Louise; Bergmann, Johanna; Singer, Wolf; Kohler, Axel

    2016-09-01

    The brain is continuously active, even without external input or task demands. This so-called resting-state activity exhibits a highly specific spatio-temporal organization. However, how exactly these activity patterns map onto the anatomical and functional architecture of the brain is still unclear. We addressed this question in the human visual cortex. We determined the representation of the visual field in visual cortical areas of 44 subjects using fMRI and examined resting-state correlations between these areas along the visual hierarchy, their dorsal and ventral segments, and between subregions representing foveal versus peripheral parts of the visual field. We found that retinotopically corresponding regions, particularly those representing peripheral visual fields, exhibit strong correlations. V1 displayed strong internal correlations between its dorsal and ventral segments and the highest correlation with LGN compared with other visual areas. In contrast, V2 and V3 showed weaker correlations with LGN and stronger between-area correlations, as well as with V4 and hMT+. Interhemispheric correlations between homologous areas were especially strong. These correlation patterns were robust over time and only marginally altered under task conditions. These results indicate that resting-state fMRI activity closely reflects the anatomical organization of the visual cortex both with respect to retinotopy and hierarchy.

  15. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    PubMed Central

    Qi, Hui-Xin; Kaas, Jon H.; Reed, Jamie L.

    2014-01-01

    In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury. PMID:24860443

  16. The Role of Dopamine in Normal Rodent Motor Cortex: Physiological Effects and Structural Correlates

    DTIC Science & Technology

    1999-04-05

    differs somewhat in that the tract lies dorsally in the cervical spinal regions (Paxinos and Watson, 1986 ), and it is unlikely that any axons... 1986 ; Salamone et aI., 1990) and diminished accuracy and rate of skilled movements (Sabol et aI., 1985; Whishawat aI., 1986 ). These motor deficits...pathway has been implicated in their modulation (Whishaw et aI., 1986 ). However, the motor cortex is involved in some of these same aspects of motor

  17. Calcium Signaling in Intact Dorsal Root Ganglia

    PubMed Central

    Gemes, Geza; Rigaud, Marcel; Koopmeiners, Andrew S.; Poroli, Mark J.; Zoga, Vasiliki; Hogan, Quinn H.

    2013-01-01

    Background Ca2+ is the dominant second messenger in primary sensory neurons. In addition, disrupted Ca2+ signaling is a prominent feature in pain models involving peripheral nerve injury. Standard cytoplasmic Ca2+ recording techniques use high K+ or field stimulation and dissociated neurons. To compare findings in intact dorsal root ganglia, we used a method of simultaneous electrophysiologic and microfluorimetric recording. Methods Dissociated neurons were loaded by bath-applied Fura-2-AM and subjected to field stimulation. Alternatively, we adapted a technique in which neuronal somata of intact ganglia were loaded with Fura-2 through an intracellular microelectrode that provided simultaneous membrane potential recording during activation by action potentials (APs) conducted from attached dorsal roots. Results Field stimulation at levels necessary to activate neurons generated bath pH changes through electrolysis and failed to predictably drive neurons with AP trains. In the intact ganglion technique, single APs produced measurable Ca2+ transients that were fourfold larger in presumed nociceptive C-type neurons than in nonnociceptive Aβ-type neurons. Unitary Ca2+ transients summated during AP trains, forming transients with amplitudes that were highly dependent on stimulation frequency. Each neuron was tuned to a preferred frequency at which transient amplitude was maximal. Transients predominantly exhibited monoexponential recovery and had sustained plateaus during recovery only with trains of more than 100 APs. Nerve injury decreased Ca2+ transients in C-type neurons, but increased transients in Aβ-type neurons. Conclusions Refined observation of Ca2+ signaling is possible through natural activation by conducted APs in undissociated sensory neurons and reveals features distinct to neuronal types and injury state. PMID:20526180

  18. Personal technique for wrist dorsal approach.

    PubMed

    Marcuzzi, A; Leigheb, M; Russomando, A; Landi, A

    2014-09-24

    In hand disorders surgical procedures are more and more widely used and often it's necessary to approach the wrist by the dorsal way. Beneath anatomy of this region is well known, there is still room enough to develop new surgical exposure techniques mostly related to physiology and biomechanics. Our goals are to present an innovative surgical dorsal exposure of the wrist, to show its use for different problems solving, and to evaluate its mini-invasive and functional outcome. Our inedited surgical technique is presented. Since November 1999 to February 2008, this technique has been used by the same surgeon in 60 cases for different pathologies and procedures: 14 SNAC-SLAC wrists III-IV treated by proximal row resection and Resurface-Capitate Pyrocarbon Implant (RCPI), 2 Fenton syndromes by bone graft and RCPI, 6 SNACSLAC II by proximal row resection +/- radial styloidectomy, 2 SLAC III by scaphoidectomy and capito-lunate arthrodesis, 12 scapho-lunate recent dissociations by ligamentoplasty (double approach), 4 scapho-lunate inveterate dissociations by Cuenod Saffar-Romano modified technique and 4 by synthetic ligaments, 1 fracture of the scaphoid proximal pole by synthesis-revascularization-S.L.ligament reconstruction, 15 Kienbock's diseases revascularized by II m.c. artery +/- radial osteotomy. Patients have been evaluated at follow up through the DASH disability questionnaire, the Mayo score for the force, ROM, pain, satisfaction grade. Results are good and encouraging for these applications. In conclusion this new technique with its limited exposure permits an early mobilization with a lower risk of stiffness and can be considered mini-invasive.

  19. Volumetric Effects of Motor Cortex Injury on Recovery of Dexterous Movements

    PubMed Central

    Darling, Warren G.; Pizzimenti, Marc A.; Rotella, Diane L.; Peterson, Clayton R.; Hynes, Stephanie M.; Ge, Jizhi; Solon, Kathryn; McNeal, David W.; Stilwell-Morecraft, Kimberly S.; Morecraft, Robert J.

    2009-01-01

    Due to the heterogeneous nature of most brain injuries, the contributions of gray and white matter involvement to motor deficits and recovery potential remain obscure. We tested the hypothesis that duration of hand motor impairment and recovery of skilled arm and hand motor function depends on the volume of gray and white matter damage of the frontal lobe. Lesions of the primary motor cortex (M1), M1 + lateral premotor cortex (LPMC), M1 + LPMC + supplementary motor cortex (M2) or multi-focal lesions affecting motor areas and medial prefrontal cortex were evaluated in rhesus monkeys. Fine hand motor function was quantitatively assessed pre-lesion and for 3–12 months post-lesion using two motor tests. White and gray matter lesion volumes were determined using histological and quantitative methods. Regression analyses showed that duration of fine hand motor impairment was strongly correlated (R2 > 0.8) with the volume of gray and white matter lesions, with white matter lesion volume being the primary predictor of impairment duration. Level of recovery of fine hand motor skill was also well correlated (R2 > 0.5) with gray and white matter lesion volume. In some monkeys post-lesion skill exceeded pre-lesion skill in one or both motor tasks demonstrating that continued post-injury task practice can improve motor performance after localized loss of frontal motor cortex. These findings will assist in interpreting acute motor deficits, predicting the time course and expected level of functional recovery, and designing therapeutic strategies in patients with localized frontal lobe injury or neurosurgical resection. PMID:19679127

  20. Sensory responses in the medial prefrontal cortex of anesthetized rats. Implications for sensory processing.

    PubMed

    Martin-Cortecero, Jesus; Nuñez, Angel

    2016-12-17

    The medial prefrontal cortex (mPFC) plays a key role in higher functions such as memory and attention. In order to demonstrate sensory responses in the mPFC, we used electrophysiological recordings of urethane-anesthetized rats to record somatosensory-evoked potentials (SEPs) or auditory-evoked potentials (AEPs) elicited by whisker deflections and click stimulation, respectively. Contralateral whisker stimulation or auditory stimuli were also applied to study sensory interference in the mPFC. Interference with other sensory stimuli or recent stimulation history reduced whisker responses in the infralimbic and prelimbic cortices of the ventral mPFC. This effect could be mediated by activation of parvalbumin (PV) interneurons since the effect was blocked by the P/Q calcium channel antagonist ω-agatoxin. In contrast, sensory interference or the recent stimulation history was not detected by the dorsal mPFC or the primary somatosensory cortex. Results obtained from retrograde tracer injections in the dorsal and ventral regions of the mPFC indicated that somatosensory and auditory sensory inputs may arrive at the dorsal mPFC through secondary sensory cortical areas, and through the insular and temporal cortical areas. The ventral mPFC may receive sensory information through the strong anatomical connections between the dorsal and ventral mPFC areas. In conclusion, results suggest mPFC plays an important role in sensory processing, which may have important implications in attentional and memory processes.

  1. Alterations of functional connectivity and intrinsic activity within the cingulate cortex of suicidal ideators.

    PubMed

    Chase, Henry W; Segreti, Anna Maria; Keller, Timothy A; Cherkassky, Vladimir L; Just, Marcel A; Pan, Lisa A; Brent, David A

    2017-04-01

    The 'default mode network' (DMN), a collection of brain regions including the posterior cingulate cortex (PCC), shows reliable inter-regional functional connectivity at rest. It has been implicated in rumination and other negative affective states, but its role in suicidal ideation is not well understood. We employed seed based functional connectivity methods to analyze resting state fMRI data in 34 suicidal ideators and 40 healthy control participants. Whole-brain connectivity with dorsal PCC or ventral PCC was broadly intact between the two groups, but while the control participants showed greater coupling between the dorsal anterior cingulate cortex (dACC) and dorsal PCC, compared to the dACC and ventral PCC, this difference was reversed in the ideators. Furthermore, ongoing low frequency BOLD signal in these three regions (dorsal, ventral PCC, dACC) was reduced in the ideators. The structural integrity of the cingulum bundle, as measured using diffusion tensor imaging (DTI), also explained variation in the functional connectivity measures but did not abolish the group differences. Together, these findings provide evidence of abnormalities in the DMN underlying the tendency towards suicidal ideation.

  2. Parkinson disease and sleep: sleep-wake changes in the premotor stage of Parkinson disease; impaired olfaction and other prodromal features.

    PubMed

    Iranzo, Alex

    2013-09-01

    Parkinson disease (PD) has a premotor stage where neurodegeneration occurs before parkinsonism becomes apparent. Identification of individuals at this stage provides an opportunity to study early disease progression and test disease-modifying interventions. Hyposmia, constipation, depression and hypersomnia are part of this premotor phase and predictive of future development of PD. However, these features are common in the general population, and they are most often the result of causes other than incipient PD. In contrast, most individuals with idiopathic REM sleep behavior disorder (IRBD) eventually develop PD and other synucleinopathies. IRBD individuals with hyposmia, substantia nigra hyperechogenicity, and abnormal striatal dopamine transporter imaging findings have increased short-term risk of developing a synucleinopathy. IRBD is an optimal target to test disease-modifying agents in the PD prodromal phase. Serial dopamine transporter imaging, but not olfactory tests, may serve to monitor the disease process in future disease-modifying trials in IRBD.

  3. Ossified Dorsal Wrist Ganglion Cyst: A Case Report

    PubMed Central

    Medina, Juana; Rivlin, Michael; Chan, Joanna; Beredjiklian, Pedro K.

    2016-01-01

    Ganglion cysts are the most common wrist tumors, and 60 -70% originate dorsally from the scapholunate interval. Ossification of these lesions is exceedingly rare, with only one such lesion located in the finger reported in the literature. We present a case of an ossified dorsal wrist ganglion in a 68-year-old woman. PMID:27847858

  4. Ossified Dorsal Wrist Ganglion Cyst: A Case Report.

    PubMed

    Medina, Juana; Rivlin, Michael; Chan, Joanna; Beredjiklian, Pedro K

    2016-10-01

    Ganglion cysts are the most common wrist tumors, and 60 -70% originate dorsally from the scapholunate interval. Ossification of these lesions is exceedingly rare, with only one such lesion located in the finger reported in the literature. We present a case of an ossified dorsal wrist ganglion in a 68-year-old woman.

  5. CX-516 Cortex pharmaceuticals.

    PubMed

    Danysz, Wojciech

    2002-07-01

    CX-516 is one of a series of AMPA modulators under development by Cortex, in collaboration with Shire and Servier, for the potential treatment of Alzheimer's disease (AD), schizophrenia and mild cognitive impairment (MCI) [234221]. By June 2001, CX-516 was in phase II trials for both schizophrenia and attention deficit hyperactivity disorder (ADHD) [412513]. A phase II trial in fragile X syndrome and autism was expected to start in May 2002 [449861]. In October 2001, Cortex was awarded a Phase II SBIR grant of $769,818 from the National Institutes of Mental Health to investigate the therapeutic potential of AMPAkines in schizophrenia. This award was to support a phase IIb study of CX-516 as a combination therapy in schizophrenia patients concomitantly treated with olanzapine. The trial was to enroll 80 patients and employ a randomized, double-blind, placebo-controlled design in which the placebo group was to receive olanzapine plus placebo and the active group was to receive olanzapine plus CX-516 [425982]. In April 2000, Shire and Cortex signed an option agreement in which Shire was to evaluate CX-516for the treatment of ADHD. Under the terms of the agreement, Shire would undertake a double-blind, placebo-controlled evaluation of CX-516 involving ADHD patients. If the study proved effective, Shire would have the right to convert its option into an exclusive worldwide license for the AMPAkines for ADHD under a development and licensing agreement. Should Shire elect to execute this agreement, Shire would bear all future developmental costs [363618]. By February 2002, Cortex and Servier had revealed their intention to begin enrolment for an international study of an AMPAkine compound as a potential treatment for MCI in the near future. Assuming enrollment proceeded as anticipated, results were expected during the second quarter of 2003 [439301]. By May 2002, phase II trials were underway [450134]. In March 2002, Cortex was awarded extended funding under the

  6. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey.

    PubMed

    Romanski, L M; Bates, J F; Goldman-Rakic, P S

    1999-01-11

    Recent anatomical and electrophysiological studies have expanded our knowledge of the auditory cortical system in primates and have described its organization as a series of concentric circles with a central or primary auditory core, surrounded by a lateral and medial belt of secondary auditory cortex with a tertiary parabelt cortex just lateral to this belt. Because recent studies have shown that rostral and caudal belt and parabelt cortices have distinct patterns of connections and acoustic responsivity, we hypothesized that these divergent auditory regions might have distinct targets in the frontal lobe. We, therefore, placed discrete injections of wheat germ agglutinin-horseradish peroxidase or fluorescent retrograde tracers into the prefrontal cortex of macaque monkeys and analyzed the anterograde and retrograde labeling in the aforementioned auditory areas. Injections that included rostral and orbital prefrontal areas (10, 46 rostral, 12) labeled the rostral belt and parabelt most heavily, whereas injections including the caudal principal sulcus (area 46), periarcuate cortex (area 8a), and ventrolateral prefrontal cortex (area12vl) labeled the caudal belt and parabelt. Projections originating in the parabelt cortex were denser than those arising from the lateral or medial belt cortices in most cases. In addition, the anterior third of the superior temporal gyrus and the dorsal bank of the superior temporal sulcus were also labeled after prefrontal injections, confirming previous studies. The present topographical results suggest that acoustic information diverges into separate streams that target distinct rostral and caudal domains of the prefrontal cortex, which may serve different acoustic functions.

  7. Callosal projections in rat somatosensory cortex are altered by early removal of afferent input.

    PubMed Central

    Koralek, K A; Killackey, H P

    1990-01-01

    During the first postnatal week, the distribution of callosal projection neurons in the rat somatosensory cortex changes from a uniform to a discontinuous pattern. To determine if this change is influenced by afferent inputs to the somatosensory cortex, the effect of both early unilateral infraorbital nerve section and unilateral removal of the dorsal thalamus on the distribution of callosal projections in rat somatosensory cortex was examined. One month after either of the above manipulations at birth, the tangential distribution of callosal projections in the somatosensory cortex was examined using the combined retrograde and anterograde transport of horseradish peroxidase. Both manipulations alter the distribution of callosal projection neurons and terminations in the somatosensory cortex. After infraorbital nerve section, the distribution of callosal projections is altered in the contralateral primary somatosensory cortex. The abnormalities observed are consistent with the altered distribution of thalamocortical projections. In addition, consistent abnormalities were observed in the pattern of callosal projections of the second somatosensory area of both hemispheres. Most notably, they are absent in a portion of the region that contains the representation of the mystacial vibrissae and sinus hairs in this area. Thalamic ablation resulted in highly aberrant patterns of callosal projections in the somatosensory cortex on the operated side, where abnormal bands and clusters of callosal projections were observed in apparently random locations. These results are interpreted as evidence that both peripheral and central inputs influence the maturational changes in the distribution of callosal projection neurons. Images PMID:2304906

  8. HTR2 Receptors in a Songbird Premotor Cortical-Like Area Modulate Spectral Characteristics of Zebra Finch Song

    PubMed Central

    Wood, William E.; Roseberry, Thomas K.; Perkel, David J.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is involved in modulating an array of complex behaviors including learning, depression, and circadian rhythms. Additionally, HTR2 receptors on layer V pyramidal neurons are thought to mediate the actions of psychedelic drugs; the native function of these receptors at this site, however, remains unknown. Previously, we found that activation of HTR2 receptors in the zebra finch forebrain song premotor structure the robust nucleus of the arcopallium (RA) led to increased excitation, and that endogenous 5-HT could roughly double spontaneous firing rate. Here, using in vivo single-unit recordings, we found that direct application of 5-HT to these same RA projection neurons, which are analogous to layer V cortical pyramidal neurons, caused a significant increase in the number of action potentials per song-related burst, and a dramatic decrease in signal-to-noise ratio. Injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine into the third ventricle greatly reduced telencephalic 5-HT and resulted in decreased fundamental frequency of harmonic syllables as well as increased goodness of pitch. Both of these results can be explained by the observed actions of 5-HT on RA projection neurons, and both effects recovered to baseline within 2 weeks following the toxin injection. These results show that 5-HT is involved in modulating spectral properties of song, likely via effects on RA projection neurons, but that adult zebra finches can partially compensate for this deficit within 7 d. PMID:23407949

  9. Extroversion-related differences in speed of premotor and motor processing as revealed by lateralized readiness potentials.

    PubMed

    Stahl, Jutta; Rammsayer, Thomas

    2008-03-01

    To further elucidate extroversion-related differences in speed of sensorimotor processing, the authors obtained behavioral and psychophysiological measures as participants (16 introverts and 16 extroverts) performed a visual go/no-go task. Although no extroversion-related differences in reaction time emerged, introverts showed faster premotor processing but slower central and peripheral motor processing--as indicated by latencies of the lateralized readiness potential (LRP) and electromyographic (EMG) data, respectively--than extroverts did. Additional regression analyses revealed that stimulus-locked LRP latency, response-locked LRP latency, and Nl EMG amplitude accounted for 40% of overall variability in individual extroversion scores. On the basis of the present results, the authors introduce a compensation hypothesis that accounts for the common failure of researchers to demonstrate extroversion-related differences in reaction time. The present results challenge J. Brebner and C. Cooper's (1985) model of extroversion in which stimulus analysis is not slower in introverts than in extroverts. However, the present findings support the assumption of faster motor processing in extroverts.

  10. Perceptual, premotor and motor factors in the performance of a delayed-reaching task by subjects with unilateral spatial neglect.

    PubMed

    Shimodozono, M; Matsumoto, S; Miyata, R; Etoh, S; Tsujio, S; Kawahira, K

    2006-01-01

    We used a computerized delayed-reaching task with a simple reaction time (RT) to investigate the visuo-motor and spatio-temporal performance of right brain-damaged (RBD) patients with unilateral spatial neglect (USN). Fifty-three RBD patients (22 with and 31 without USN) and 25 controls performed the tasks. We recorded the following data: the first RT (RT-1), which is thought to reflect the detection of the target position (the perceptual factor); the second RT (RT-2), which represents the initiation of reaching (the motor initiation aspect of premotor factors); the movement time (MT), which is hypothesized to reflect the "pure" motor component of the task. RBD patients with both USN and hemianopia demonstrated significantly longer RTs towards the left than towards the right for both the RT-1 and the RT-2. Among the RBD patients without hemianopia, the laterality index (left side/right side) of the RT-1 in those with USN was significantly greater than in those without USN or the controls. Among the three groups, there were no significant differences between the laterality indices of either the RT-2s or the MTs. These results suggest that the impairment of leftward movement in RBD patients with USN might be caused primarily by a perceptual impairment rather than an impairment in motor initiation, and is certainly not a "pure" motor impairment.

  11. Regional variability in age-related loss of neurons from the primary visual cortex and medial prefrontal cortex of male and female rats

    PubMed Central

    Yates, M.A.; Markham, J.A.; Anderson, S.E.; Morris, J.R.; Juraska, J.M.

    2008-01-01

    During aging, changes in the structure of the cerebral cortex of the rat have been seen, but potential changes in neuron number remain largely unexplored. In the present study, stereological methods were used to examine neuron number in the medial prefrontal cortex and primary visual cortex of young adult (85–90 days of age) and aged (19–22 months old) male and female rats in order to investigate any age-related losses. Possible sex differences in aging were also examined since sexually dimorphic patterns of aging have been seen in other measures. An age-related loss of neurons (18–20%), which was mirrored in volume losses, was found to occur in the primary visual cortex in both sexes in all layers except IV. Males, but not females, also lost neurons (15 %) from layer V/VI of the ventral medial prefrontal cortex and showed an overall decrease in volume of this region. In contrast, dorsal medial prefrontal cortex showed no age-related changes. The effects of aging clearly differ among regions of the rat brain and to some degree, between the sexes. PMID:18513705

  12. Chronic L-dopa decreases serotonin neurons in a subregion of the dorsal raphe nucleus.

    PubMed

    Stansley, Branden J; Yamamoto, Bryan K

    2014-11-01

    L-Dopa (l-3,4-dihydroxyphenylalanine) is the precursor to dopamine and has become the mainstay therapeutic treatment for Parkinson's disease. Chronic L-dopa is administered to recover motor function in Parkinson's disease patients. However, drug efficacy decreases over time, and debilitating side effects occur, such as dyskinesia and mood disturbances. The therapeutic effect and some of the side effects of L-dopa have been credited to its effect on serotonin (5-HT) neurons. Given these findings, it was hypothesized that chronic L-dopa treatment decreases 5-HT neurons in the dorsal raphe nucleus (DRN) and the content of 5-HT in forebrain regions in a manner that is mediated by oxidative stress. Rats were treated chronically with l-dopa (6 mg/kg; twice daily) for 10 days. Results indicated that the number of 5-HT neurons was significantly decreased in the DRN after l-dopa treatment compared with vehicle. This effect was more pronounced in the caudal-extent of the dorsal DRN, a subregion found to have a significantly higher increase in the 3,4-dihydroxyphenylacetic acid/dopamine ratio in response to acute L-dopa treatment. Furthermore, pretreatment with ascorbic acid (400 mg/kg) or deprenyl (2 mg/kg) prevented the l-dopa-induced decreases in 5-HT neurons. In addition, 5-HT content was decreased significantly in the DRN and prefrontal cortex by l-dopa treatment, effects that were prevented by ascorbic acid pretreatment. Taken together, these data illustrate that chronic L-dopa causes a 5-HT neuron loss and the depletion of 5-HT content in a subregion of the DRN as well as in the frontal cortex through an oxidative-stress mechanism.

  13. Whole-Brain Mapping of Inputs to Projection Neurons and Cholinergic Interneurons in the Dorsal Striatum

    PubMed Central

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits. PMID:25830919

  14. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum.

    PubMed

    Guo, Qingchun; Wang, Daqing; He, Xiaobin; Feng, Qiru; Lin, Rui; Xu, Fuqiang; Fu, Ling; Luo, Minmin

    2015-01-01

    The dorsal striatum integrates inputs from multiple brain areas to coordinate voluntary movements, associative plasticity, and reinforcement learning. Its projection neurons consist of the GABAergic medium spiny neurons (MSNs) that express dopamine receptor type 1 (D1) or dopamine receptor type 2 (D2). Cholinergic interneurons account for a small portion of striatal neuron populations, but they play important roles in striatal functions by synapsing onto the MSNs and other local interneurons. By combining the modified rabies virus with specific Cre- mouse lines, a recent study mapped the monosynaptic input patterns to MSNs. Because only a small number of extrastriatal neurons were labeled in the prior study, it is important to reexamine the input patterns of MSNs with higher labeling efficiency. Additionally, the whole-brain innervation pattern of cholinergic interneurons remains unknown. Using the rabies virus-based transsynaptic tracing method in this study, we comprehensively charted the brain areas that provide direct inputs to D1-MSNs, D2-MSNs, and cholinergic interneurons in the dorsal striatum. We found that both types of projection neurons and the cholinergic interneurons receive extensive inputs from discrete brain areas in the cortex, thalamus, amygdala, and other subcortical areas, several of which were not reported in the previous study. The MSNs and cholinergic interneurons share largely common inputs from areas outside the striatum. However, innervations within the dorsal striatum represent a significantly larger proportion of total inputs for cholinergic interneurons than for the MSNs. The comprehensive maps of direct inputs to striatal MSNs and cholinergic interneurons shall assist future functional dissection of the striatal circuits.

  15. Resolving the organization of the third tier visual cortex in primates: A hypothesis-based approach

    PubMed Central

    ANGELUCCI, ALESSANDRA; ROSA, MARCELLO G.P.

    2017-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the “third tier” visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today’s debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the “multiple-areas” model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans

  16. Resolving the organization of the third tier visual cortex in primates: a hypothesis-based approach.

    PubMed

    Angelucci, Alessandra; Rosa, Marcello G P

    2015-01-01

    As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the "third tier" visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the "multiple-areas" model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.

  17. Identification and molecular characterization of dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Lee, Min Chul; Lee, Kyun-Woo; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2015-12-01

    To date, knowledge of the immune system in aquatic invertebrates has been reported in only a few model organisms, even though all metazoans have an innate immune system. In particular, information on the copepod's immunity and the potential role of key genes in the innate immune systems is still unclear. In this study, we identified dorsal and dorsal-like genes in the cyclopoid copepod Paracyclopina nana. In silico analyses for identifying conserved domains and phylogenetic relationships supported their gene annotations. The transcriptional levels of both genes were slightly increased from the nauplius to copepodid stages, suggesting that these genes are putatively involved in copepodid development of P. nana. To examine the involvement of both genes in the innate immune response and under stressful conditions, the copepods were exposed to lipopolysaccharide (LPS), different culture densities, salinities, and temperatures. LPS significantly upregulated mRNA expressions of dorsal and dorsal-like genes, suggesting that both genes are transcriptionally sensitive in response to immune modulators. Exposure to unfavorable culture conditions also increased mRNA levels of dorsal and dorsal-like genes. These findings suggest that transcriptional regulation of the dorsal and dorsal-like genes would be associated with environmental changes in P. nana.

  18. The sensory dorsal organs of crustaceans.

    PubMed

    Lerosey-Aubril, Rudy; Meyer, Roland

    2013-05-01

    The cuticle of crustaceans bears numerous organs, of which the functions of many are unknown. One of these, the sensory dorsal organ (SDO), is present in a wide diversity of taxa. Here we critically review the variability, ultrastructure, distribution, and possible function of this enigmatic cuticular organ. Previous data are complemented by new observations on larvae and adults of various malacostracans. The SDO is composed of four sensors arranged as the corners of a square, the centre of which is occupied by a gland. Pores or pegs surrounding this central complex may also form part of the organ. The arrangement and the external aspect of the five main elements varies greatly, but this apparently has little impact on their ultrastructural organisation. The sensors and the gland are associated with a particularly thin cuticle. Each sensor contains four outer dendritic segments and the central gland is made of a single large cell. It is not yet known what this large cell secretes. The SDO is innervated from the tritocerebrum and therefore belongs to the third cephalic segment. A similar organ, here called the posterior SDO, has been repeatedly observed more posteriorly on the carapace. It resembles the SDO but has a greater number of sensors (usually six, but up to ten) apparently associated with only two outer dendritic segments. The SDO and the posterior SDO are known in the Eumalacostraca, the Hoplocarida, and the Phyllocarida. Some branchiopods also possess a 'dorsal organ' resembling both the SDO and the ion-transporting organ more typical of this group. This may indicate a common origin for these two functionally distinct groups of organs. New observations on the posterior SDO support the hypothesis that the SDO and the posterior SDO are homologous to the lattice organ complexes of the costracans. However, the relationship between the SDO and the dorsal cephalic hump of calanoid copepods remains unclear. No correlation can be demonstrated between the presence

  19. Neuroeconomics of attention-deficit/hyperactivity disorder: differential influences of medial, dorsal, and ventral prefrontal brain networks on suboptimal decision making?

    PubMed

    Sonuga-Barke, Edmund J S; Fairchild, Graeme

    2012-07-15

    Psychiatric neuroeconomics offers an alternative approach to understanding mental disorders by studying the way disorder-related neurobiological alterations constrain economic agency, as revealed through decisions about choices between future goods. In this article, we apply this perspective to understand suboptimal decision making in attention-deficit/hyperactivity disorder (ADHD) by integrating recent advances in the neuroscience of decision making and studies of the pathophysiology of ADHD. We identify three brain networks as candidates for further study and develop specific hypotheses about how these could be implicated in ADHD. First, we postulate that altered patterns of connectivity within a network linking medial prefrontal cortex and posterior cingulate cortex (i.e., the default mode network) disrupts ordering of utilities, prospection about desired future states, setting of future goals, and implementation of aims. Second, we hypothesize that deficits in dorsal frontostriatal networks, including the dorsolateral prefrontal cortex and dorsal striatum, produce executive dysfunction-mediated impairments in the ability to compare outcome options and make choices. Third, we propose that dopaminergic dysregulation in a ventral frontostriatal network encompassing the orbitofrontal cortex, ventral striatum, and amygdala disrupts processing of cues of future utility, evaluation of experienced outcomes (feedback), and learning of associations between cues and outcomes. Finally, we extend this perspective to consider three contemporary themes in ADHD research.

  20. Intracortical connections are altered after long-standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys.

    PubMed

    Liao, Chia-Chi; Reed, Jamie L; Kaas, Jon H; Qi, Hui-Xin

    2016-05-01

    A complete unilateral lesion of the dorsal column somatosensory pathway in the upper cervical spinal cord deactivates neurons in the hand region in contralateral somatosensory cortex (areas 3b and 1). Over weeks to months of recovery, parts of the hand region become reactivated by touch on the hand or face. To determine whether changes in cortical connections potentially contribute to this reactivation, we injected tracers into electrophysiologically identified locations in cortex of area 3b representing the reactivated hand and normally activated face in adult squirrel monkeys. Our results indicated that even when only partially reactivated, most of the expected connections of area 3b remained intact. These intact connections include the majority of intrinsic connections within area 3b; feedback connections from area 1, secondary somatosensory cortex (S2), parietal ventral area (PV), and other cortical areas; and thalamic inputs from the ventroposterior lateral nucleus (VPL). In addition, tracer injections in the reactivated hand region of area 3b labeled more neurons in the face and shoulder regions of area 3b than in normal monkeys, and injections in the face region of area 3b labeled more neurons in the hand region. Unexpectedly, the intrinsic connections within area 3b hand cortex were more widespread after incomplete dorsal column lesions (DCLs) than after a complete DCL. Although these additional connections were limited, these changes in connections may contribute to the reactivation process after injuries. J. Comp. Neurol. 524:1494-1526, 2016. © 2015 Wiley Periodicals, Inc.

  1. [Back pain and dorsal kyphosis in childhood].

    PubMed

    Cravo, Ana Rita; Tavares, Viviana; Canhão, Helena; da Silva, J Canas

    2006-01-01

    Juvenile idiopathic osteoporosis (JIO) is a rare condition of unknown aetiology, with pre-pubertal onset and frequently spontaneous remission after puberty. We report a case of a 14 years old boy, which two years before began dorso-lumbar pain with dorsal kyphosis. At the age of 12, he was on percentil 25 for height and had no other symptoms or alterations on physical exam. He had multiple vertebral fractures, a low serum vitamin D, and a Z-score in lumbar spine of -5,3. Diagnosis of JIO was made after excluding other causes of juvenile osteoporosis. He was submitted to pamidronate therapy and after six months showed clinical and bone mineral density improvement. At the age of 14 he is asymptomatic. The authors present this clinical case because of is rarity and to point out that although many cases have spontaneous remission, without any therapy, some may persist and become more serious, with pain and multiple fractures, justifying therapeutic intervention.

  2. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  3. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  4. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  5. Reorganization of human motor cortex after hand replantation.

    PubMed

    Röricht, S; Machetanz, J; Irlbacher, K; Niehaus, L; Biemer, E; Meyer, B U

    2001-08-01

    In 10 patients, reorganizational changes of the motor cortex contralateral to a replanted hand (MCreplant) were studied one to 14 years after complete traumatic amputation and consecutive successful replantation of the hand. The organizational state of MCreplant was assessed for the deafferentated and peripherally deefferentated hand-associated motor cortex and the adjacent motor representation of the proximal arm. For this, response maps were established for the first dorsal interosseus and biceps brachii muscle using focal transcranial magnetic stimulation (TMS) on a skull surface grid. Characteristics of the maps were center of gravity (COG), number of effective stimulation sites, amplitude sum, and amplitudes and response threshold at the optimal stimulation point. The COG is defined by the spatial distribution of response amplitudes on the map and lies over the cortex region with the most excitable corticospinal neurones supplying the recorded muscle. The COG of the biceps map in MCreplant was shifted laterally by 9.8 +/- 3.6 mm (range 5.0-15.7 mm). The extension of the biceps map in MCreplant was increased and the responses were enlarged and had lowered thresholds. For the muscles of the replanted hand, the pattern of reorganization was different: Response amplitudes were enlarged but thresholds, COG, and area of the cortical response map were normal. The different reorganizational phenomena observed for the motor cortical areas supplying the replanted hand and the biceps brachii of the same arm may be influenced by a different extent of deafferentation and by their different role in hand motor control.

  6. Functional specialization in rat occipital and temporal visual cortex

    PubMed Central

    Vermaercke, Ben; Gerich, Florian J.; Ytebrouck, Ellen; Arckens, Lutgarde; Van den Bergh, Gert

    2014-01-01

    Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed “ventral” pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing. PMID:24990566

  7. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study

    PubMed Central

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-01-01

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in “pop-out” or “search” condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the “search” condition, while PPC is mainly involved in detecting “pop-out” targets. PMID:27452715

  8. Dynamic properties of corticogeniculate excitatory transmission in the rat dorsal lateral geniculate nucleus in vitro

    PubMed Central

    Granseth, Björn

    2004-01-01

    The feedback excitation from the primary visual cortex to principal cells in the dorsal lateral geniculate nucleus (dLGN) is markedly enhanced with firing frequency. This property presumably reflects the ample short-term plasticity at the corticogeniculate synapse. The present study aims to explore corticogeniculate excitatory postsynaptic currents (EPSCs) evoked by brief trains of stimulation with whole-cell patch-clamp recordings in dLGN slices from DA-HAN rats. The EPSCs rapidly increased in amplitude with the first two or three impulses followed by a more gradual growth. A double exponential function with time constants 39 and 450 ms empirically described the growth for 5–25Hz trains. For lower train frequencies (down to 1Hz) a third component with time constant 4.8 s had to be included. The different time constants are suggested to represent fast and slow components of facilitation and augmentation. The time constant of the fast component changed with the extracellular calcium ion concentration as expected for a facilitation mechanism involving an endogenous calcium buffer that is more efficiently saturated with larger calcium influx. Concerning the function of the corticogeniculate feedback pathway, the different components of short-term plasticity interacted to increase EPSC amplitudes on a linear scale to firing frequency in the physiological range. This property makes the corticogeniculate synapse well suited to function as a neuronal amplifier that enhances the thalamic transfer of visual information to the cortex. PMID:14724201

  9. Visualizing sensory transmission between dorsal root ganglion and dorsal horn neurons in co-culture with calcium imaging.

    PubMed

    Ohshiro, Hiroyuki; Ogawa, Shinji; Shinjo, Katsuhiro

    2007-09-15

    Sensory information is conveyed to the central nervous system by primary afferent neurons within dorsal root ganglia (DRG), which synapse onto neurons of the dorsal horn of the spinal cord. This synaptic connection is central to the processing of both sensory and pain stimuli. Here, we describe a model system to monitor synaptic transmission between DRG neurons and dorsal horn neurons that is compatible with high-throughput screening. This co-culture preparation comprises DRG and dorsal horn neurons and utilizes Ca(2+) imaging with the indicator dye Fura-2 to visualize synaptic transmission. Addition of capsaicin to co-cultures stimulated DRG neurons and led to activation of dorsal horn neurons as well as increased intracellular Ca(2+) concentrations. This effect was dose-dependent and absent when DRG neurons were omitted from the culture. NMDA receptors are a critical component of synapses between DRG and dorsal horn neurons as MK-801, a use-dependent non-competitive antagonist, prevented activation of dorsal horn neurons following capsaicin treatment. This model system allows for rapid and efficient analysis of noxious stimulus-evoked Ca(2+) signal transmission and provides a new approach both for investigating synaptic transmission in the spinal cord and for screening potential analgesic compounds.

  10. Emergent selectivity for task-relevant stimuli in higher-order auditory cortex.

    PubMed

    Atiani, Serin; David, Stephen V; Elgueda, Diego; Locastro, Michael; Radtke-Schuller, Susanne; Shamma, Shihab A; Fritz, Jonathan B

    2014-04-16

    A variety of attention-related effects have been demonstrated in primary auditory cortex (A1). However, an understanding of the functional role of higher auditory cortical areas in guiding attention to acoustic stimuli has been elusive. We recorded from neurons in two tonotopic cortical belt areas in the dorsal posterior ectosylvian gyrus (dPEG) of ferrets trained on a simple auditory discrimination task. Neurons in dPEG showed similar basic auditory tuning properties to A1, but during behavior we observed marked differences between these areas. In the belt areas, changes in neuronal firing rate and response dynamics greatly enhanced responses to target stimuli relative to distractors, allowing for greater attentional selection during active listening. Consistent with existing anatomical evidence, the pattern of sensory tuning and behavioral modulation in auditory belt cortex links the spectrotemporal representation of the whole acoustic scene in A1 to a more abstracted representation of task-relevant stimuli observed in frontal cortex.

  11. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  12. [Participation of the primary motor cortex in programming of muscle activity during catching of falling object].

    PubMed

    Kazennikov, O V; Lipshits, M I

    2011-01-01

    Object fell into the cup that sitting subject held between thumb and index fingers. Transcranial magnetic stimulation (TMS) of the primary motor cortex was performed early before and during anticipatory grip force increasing. Comparison of current EMG activity of adductor pollicis brevis and first dorsal interosseous muscles and responses of these muscles on TMS showed that responses were increased before the raising of muscle activity. From the other side only slight augmentation of responses was observed during subsequent strong muscle activation. It is assumed that the increasing of the TMS responses that occurred before the initiation of muscle activity reflects the enhancement ofthe motor cortex excitability associated to specific processes related to the motor cortex participation in programming of the muscles activities.

  13. Efferent connections of the rostral portion of medial agranular cortex in rats.

    PubMed

    Reep, R L; Corwin, J V; Hashimoto, A; Watson, R T

    1987-08-01

    This study of the rostral part of medial agranular cortex (AGm) was undertaken with two principal aims in mind. First, to delineate the efferent connections of AGm and compare these with the pattern of afferents defined by us in a previous study. Second, to provide a firmer basis for anatomical and functional comparisons with cortical regions in monkeys. Autoradiographic, horseradish peroxidase, and fiber degeneration techniques were used. Rostral AGm has a variety of corticocortical connections--with lateral agranular motor cortex (AGl); visual, auditory, and somatic sensory regions; and limbic/paralimbic areas including orbital, insular, perirhinal, entorhinal, retrosplenial and presubicular fields. The projections to orbital, perirhinal and entorhinal cortices are bilateral. Thalamic projections of rostral AGm are concentrated in the ventral lateral, central lateral, paracentral, mediodorsal and ventromedial nuclei. Moderate terminal fields are consistently seen in the reticular, anteromedial, central medial, gelatinosus, parafascicular, and posterior nuclei. More caudal projections reach the central gray, superior colliculus and pontine gray. The efferents of the adjacent AGl were also examined. Although many of these overlapped those of rostral AGm, there were no efferents to visual or auditory cortex and limbic/paralimbic projections were reduced. Thalamic projections were more focused in the ventral lateral and posterior nuclei and there were no terminal fields in the central gray or superior colliculus. Based on its afferent and efferent connections, role in contralateral neglect, and the results of microstimulation studies, rostral AGm can be viewed as a multimodal association area with strong ties to the motor system. On these structural and functional grounds, rostral AGm bears certain striking resemblances to the frontal eye field, supplementary motor, and arcuate premotor areas of monkey cortex.

  14. Compensatory activity in the extrastriate body area of Parkinson's disease patients.

    PubMed

    van Nuenen, Bart F L; Helmich, Rick C; Buenen, Noud; van de Warrenburg, Bart P C; Bloem, Bastiaan R; Toni, Ivan

    2012-07-11

    Compensatory mechanisms are a crucial component of the cerebral changes triggered by neurodegenerative disorders. Identifying such compensatory mechanisms requires at least two complementary approaches: localizing candidate areas using functional imaging, and showing that interference with these areas has behavioral consequences. Building on recent imaging evidence, we use this approach to test whether a visual region in the human occipito-temporal cortex-the extrastriate body area-compensates for altered dorsal premotor activity in Parkinson's disease (PD) during motor-related processes. We separately inhibited the extrastriate body area and dorsal premotor cortex in 11 PD patients and 12 healthy subjects, using continuous theta burst stimulation. Our goal was to test whether these areas are involved in motor compensatory processes. We used motor imagery to isolate a fundamental element of motor planning, namely subjects' ability to incorporate the current state of their body into a motor plan (mental hand rotation). We quantified this ability through a posture congruency effect (i.e., the improvement in subjects' performance when their current body posture is congruent to the imagined movement). Following inhibition of the right extrastriate body area, the posture congruency effect was lost in PD patients, but not in healthy subjects. In contrast, inhibition of the left dorsal premotor cortex reduced the posture congruency effect in healthy subjects, but not in PD patients. These findings suggest that the right extrastriate body area plays a compensatory role in PD by supporting a function that is no longer performed by the dorsal premotor cortex.

  15. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex.

    PubMed

    Tsukano, Hiroaki; Horie, Masao; Bo, Takeshi; Uchimura, Arikuni; Hishida, Ryuichi; Kudoh, Masaharu; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2015-04-01

    The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice.

  16. Delineation of a frequency-organized region isolated from the mouse primary auditory cortex

    PubMed Central

    Horie, Masao; Bo, Takeshi; Uchimura, Arikuni; Hishida, Ryuichi; Kudoh, Masaharu; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2015-01-01

    The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice. PMID:25695649

  17. Current direction specificity of continuous θ-burst stimulation in modulating human motor cortex excitability when applied to somatosensory cortex.

    PubMed

    Jacobs, Mark F; Zapallow, Christopher M; Tsang, Philemon; Lee, Kevin G H; Asmussen, Michael J; Nelson, Aimee J

    2012-11-14

    The present study examines the influence of primary somatosensory cortex (SI) on corticospinal excitability within primary motor cortex (M1) using repetitive transcranial magnetic stimulation. Two groups of subjects participated and both received continuous theta-burst stimulation (cTBS) over SI. One group received cTBS oriented to induce anterior-to-posterior (AP) followed by posterior-to-anterior (PA) current flow in the cortex and the other group received cTBS in the opposite direction (PA-AP). Motor evoked potentials (MEPs) were measured from the first dorsal interosseous muscle of the left and right hand before and at three time points (5, 25, 45 min) following cTBS over left-hemisphere SI. CTBS over SI in the AP-PA direction increased contralateral MEPs at 5 and 45 min with a near significant increase at 25 min. In contrast, PA-AP cTBS decreased contralateral MEPs at 25 min. We conclude that cTBS over SI modulates neural output directed to the hand with effects that depend on the direction of induced current.

  18. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  19. Representation of spatial- and object-specific behavioral goals in the dorsal globus pallidus of monkeys during reaching movement.

    PubMed

    Saga, Yosuke; Hashimoto, Masashi; Tremblay, Léon; Tanji, Jun; Hoshi, Eiji

    2013-10-09

    The dorsal aspect of the globus pallidus (GP) communicates with the prefrontal cortex and higher-order motor areas, indicating that it plays a role in goal-directed behavior. We examined the involvement of dorsal GP neurons in behavioral goal monitoring and maintenance, essential components of executive function. We trained two macaque monkeys to choose a reach target based on relative target position in a spatial goal task or a target shape in an object-goal task. The monkeys were trained to continue to choose a certain behavioral goal when reward volume was constant and to switch the goals when the volume began to decrease. Because the judgment for the next goal was made in the absence of visual signals, the monkeys were required to monitor and maintain the chosen goals during the reaching movement. We obtained three major findings. (1) GP neurons reflected more of the relative spatial position than the shape of the reaching target during the spatial goal task. During the object-goal task, the shape of the reaching object was represented more than the relative position. (2) The selectivity of individual neurons for the relative position was enhanced during the spatial goal task, whereas the object-shape selectivity was enhanced during the object-goal task. (3) When the monkeys switched the goals, the selectivity for either the position or shape also switched. Together, these findings suggest that the dorsal GP is involved in behavioral goal monitoring and maintenance during execution of goal-oriented actions, presumably in collaboration with the prefrontal cortex.

  20. Evolutionary genetics of dorsal wing colour in Colias butterflies.

    PubMed

    Ellers, J; Boggs, C L

    2004-07-01

    The evolution of butterfly wing colouration is strongly affected by its multiple functions and by the correlated evolution of wing colour elements. Both factors may prevent local adaptation to ecological conditions. We investigated one aspect of wing colouration, the degree of dorsal wing melanization, in the butterfly Colias philodice eriphyle across an elevational gradient and its correlation with another aspect of wing colouration, ventral wing melanization. Dorsal wing melanization increased with elevation and these differences persisted in a common environment. Full-sibling analysis revealed high heritability for males but only intermediate heritability for females. The correlation between ventral and dorsal melanization showed significant elevational and sex-specific differences. In males the two traits were highly correlated, whereas in females the strength of the correlation decreased with increasing elevation. We conclude that uncoupling of ventral and dorsal melanization has evolved in females but not in males and discuss possible mechanisms underlying uncoupling.

  1. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.

    PubMed

    Rivera, S M; Reiss, A L; Eckert, M A; Menon, V

    2005-11-01

    Arithmetic reasoning is arguably one of the most important cognitive skills a child must master. Here we examine neurodevelopmental changes in mental arithmetic. Subjects (ages 8-19 years) viewed arithmetic equations and were asked to judge whether the results were correct or incorrect. During two-operand addition or subtraction trials, for which accuracy was comparable across age, older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. These age-related changes were not associated with alterations in gray matter density, and provide novel evidence for increased functional maturation with age. By contrast, younger subjects showed greater activation in the prefrontal cortex, including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex, suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of mental arithmetic performance. Younger subjects also showed greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems. Our findings provide evidence for a process of increased functional specialization of the left inferior parietal cortex in mental arithmetic, a process that is accompanied by decreased dependence on memory and attentional resources with development.

  2. Relationship between individual neuron and network spontaneous activity in developing mouse cortex

    PubMed Central

    Barnett, Heather M.; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L.

    2014-01-01

    Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407–414, 2009). In this study, we used Ca2+ imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1–4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation. PMID:25185811

  3. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  4. Relationship between individual neuron and network spontaneous activity in developing mouse cortex.

    PubMed

    Barnett, Heather M; Gjorgjieva, Julijana; Weir, Keiko; Comfort, Cara; Fairhall, Adrienne L; Moody, William J

    2014-12-15

    Spontaneous synchronous activity (SSA) that propagates as electrical waves is found in numerous central nervous system structures and is critical for normal development, but the mechanisms of generation of such activity are not clear. In previous work, we showed that the ventrolateral piriform cortex is uniquely able to initiate SSA in contrast to the dorsal neocortex, which participates in, but does not initiate, SSA (Lischalk JW, Easton CR, Moody WJ. Dev Neurobiol 69: 407-414, 2009). In this study, we used Ca(2+) imaging of cultured embryonic day 18 to postnatal day 2 coronal slices (embryonic day 17 + 1-4 days in culture) of the mouse cortex to investigate the different activity patterns of individual neurons in these regions. In the piriform cortex where SSA is initiated, a higher proportion of neurons was active asynchronously between waves, and a larger number of groups of coactive cells was present compared with the dorsal cortex. When we applied GABA and glutamate synaptic antagonists, asynchronous activity and cellular clusters remained, while synchronous activity was eliminated, indicating that asynchronous activity is a result of cell-intrinsic properties that differ between these regions. To test the hypothesis that higher levels of cell-autonomous activity in the piriform cortex underlie its ability to initiate waves, we constructed a conductance-based network model in which three layers differed only in the proportion of neurons able to intrinsically generate bursting behavior. Simulations using this model demonstrated that a gradient of intrinsic excitability was sufficient to produce directionally propagating waves that replicated key experimental features, indicating that the higher level of cell-intrinsic activity in the piriform cortex may provide a substrate for SSA generation.

  5. Damage in the dorsal striatum alleviates addictive behavior.

    PubMed

    Muskens, J B; Schellekens, A F A; de Leeuw, F E; Tendolkar, I; Hepark, S

    2012-01-01

    The ventral striatum has been assigned a major role in addictive behavior. In addition, clinical lesion studies have described involvement of the insula and globus pallidus. To the best of our knowledge, this is the first report of alleviation of alcohol and nicotine addiction after a cerebrovascular incident in the dorsal striatum. The patient was still abstinent from alcohol and nicotine at follow-up. This observation suggests that the dorsal striatum may play a critical role in addiction to alcohol and nicotine.

  6. Bilateral tDCS on Primary Motor Cortex: Effects on Fast Arm Reaching Tasks

    PubMed Central

    Arias, Pablo; Corral-Bergantiños, Yoanna; Robles-García, Verónica; Madrid, Antonio; Oliviero, Antonio; Cudeiro, Javier

    2016-01-01

    Background The effects produced by transcranial direct current stimulation (tDCS) applied to the motor system have been widely studied in the past, chiefly focused on primary motor cortex (M1) excitability. However, the effects on functional tasks are less well documented. Objective This study aims to evaluate the effect of tDCS-M1 on goal-oriented actions (i.e., arm-reaching movements; ARM), in a reaction-time protocol. Methods 13 healthy subjects executed dominant ARM as fast as possible to one of two targets in front of them while surface EMG was recorded. Participants performed three different sessions. In each session they first executed ARM (Pre), then received tDCS, and finally executed Post, similar to Pre. Subjects received three different types of tDCS, one per session: In one session the anode was on right-M1 (AR), and the cathode on the left-M1 (CL), thus termed AR-CL; AL-CR reversed the montage; and Sham session was applied likewise. Real stimulation was 1mA-10min while subjects at rest. Three different variables and their coefficients of variation (CV) were analyzed: Premotor times (PMT), reaction-times (RT) and movement-times (MT). Results triceps-PMT were significantly increased at Post-Sham, suggesting fatigue. Results obtained with real tDCS were not different depending on the montage used, in both cases PMT were significantly reduced in all recorded muscles. RT and MT did not change for real or sham stimulation. RT-CV and PMT-CV were reduced after all stimulation protocols. Conclusion tDCS reduces premotor time and fatigability during the execution of fast motor tasks. Possible underlying mechanisms are discussed. PMID:27490752

  7. Reorganization of Motor Cortex after Controlled Cortical Impact in Rats and Implications for Functional Recovery

    PubMed Central

    Nishibe, Mariko; Barbay, Scott; Guggenmos, David

    2010-01-01

    Abstract We report the results of controlled cortical impact (CCI) centered on the caudal forelimb area (CFA) of rat motor cortex to determine the feasibility of examining cortical plasticity in a spared cortical motor area (rostral forelimb area, RFA). We compared the effects of three CCI parameter sets (groups CCI-1, CCI-2, and CCI-3) that differed in impactor surface shape, size, and location, on behavioral recovery and RFA structural and functional integrity. Forelimb deficits in the limb contralateral to the injury were evident in all three CCI groups assessed by skilled reach and footfault tasks that persisted throughout the 35-day post-CCI assessment period. Nissl-stained coronal sections revealed that the RFA was structurally intact. Intracortical microstimulation experiments conducted at 7 weeks post-CCI demonstrated that RFA was functionally viable. However, the size of the forelimb representation decreased significantly in CCI-1 compared to the control group. Subdivided into component movement categories, there was a significant group effect for proximal forelimb movements. The RFA area reduction and reorganization are discussed in relation to possible diaschisis, and to compensatory functional behavior, respectively. Also, an inverse correlation between the anterior extent of the lesion and the size of the RFA was identified and is discussed in relation to corticocortical connectivity. The results suggest that CCI can be applied to rat CFA while sparing RFA. This CCI model can contribute to our understanding of neural plasticity in premotor cortex as a substrate for functional motor recovery. PMID:20873958

  8. Functional versus effector-specific organization of the human posterior parietal cortex: revisited

    PubMed Central

    Leone, Frank T. M.; Medendorp, W. Pieter

    2016-01-01

    It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level. PMID:27466132

  9. Posterior cingulate cortex integrates the senses of self-location and body ownership.

    PubMed

    Guterstam, Arvid; Björnsdotter, Malin; Gentile, Giovanni; Ehrsson, H Henrik

    2015-06-01

    The senses of owning a body and being localized somewhere in space are two key components of human self-consciousness. Despite a wealth of neurophysiological and neuroimaging research on the representations of the spatial environment in the parietal and medial temporal cortices, the relationship between body ownership and self-location remains unexplored. To investigate this relationship, we used a multisensory out-of-body illusion to manipulate healthy participants' perceived self-location, head direction, and sense of body ownership during high-resolution fMRI. Activity patterns in the hippocampus and the posterior cingulate, retrosplenial, and intraparietal cortices reflected the sense of self-location, whereas the sense of body ownership was associated with premotor-intraparietal activity. The functional interplay between these two sets of areas was mediated by the posterior cingulate cortex. These results extend our understanding of the role of the posterior parietal and medial temporal cortices in spatial cognition by demonstrating that these areas not only are important for ecological behaviors, such as navigation and perspective taking, but also support the perceptual representation of the bodily self in space. Our results further suggest that the posterior cingulate cortex has a key role in integrating the neural representations of self-location and body ownership.

  10. Interactions between dorsal and ventral streams for controlling skilled grasp

    PubMed Central

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317

  11. Interactions between dorsal and ventral streams for controlling skilled grasp.

    PubMed

    van Polanen, Vonne; Davare, Marco

    2015-12-01

    The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur.

  12. Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex.

    PubMed

    Yoshida, Motoharu; Giocomo, Lisa M; Boardman, Ian; Hasselmo, Michael E

    2011-08-31

    Neurons from layer II of the medial entorhinal cortex show subthreshold membrane potential oscillations (SMPOs) which could contribute to theta-rhythm generation in the entorhinal cortex and to generation of grid cell firing patterns. However, it is unclear whether single neurons have a fixed unique oscillation frequency or whether their frequency varies depending on the mean membrane potential in a cell. We therefore examined the frequency of SMPOs at different membrane potentials in layer II stellate-like cells of the rat medial entorhinal cortex in vitro. Using whole-cell patch recordings, we found that the fluctuations in membrane potential show a broad band of low power frequencies near resting potential that transition to more narrowband oscillation frequencies with depolarization. The transition from broadband to narrowband frequencies depends on the location of the neuron along the dorsoventral axis in the entorhinal cortex, with dorsal neurons transitioning to higher-frequency oscillations relative to ventral neurons transitioning to lower-frequency oscillations. Once SMPOs showed a narrowband frequency, systematic frequency changes were not observed with further depolarization. Using a Hodgkin-Huxley-style model of membrane currents, we show that differences in the influence of depolarization on the frequency of SMPOs at different dorsal to ventral positions could arise from differences in the properties of the h current. The properties of frequency changes in this data are important for evaluating models of the generation of grid cell firing fields with different spacings along the dorsal-to-ventral axis of medial entorhinal cortex.

  13. Dopamine D1 receptor activity modulates object recognition memory consolidation in the perirhinal cortex but not in the hippocampus.

    PubMed

    Balderas, Israela; Moreno-Castilla, Perla; Bermudez-Rattoni, Federico

    2013-10-01

    It has been proposed that distributed neuronal networks in the medial temporal lobe process different characteristics of a recognition event; the hippocampus has been associated with contextual recollection while the perirhinal cortex has been linked with familiarity. Here we show that D1 dopamine receptor activity in these two structures participates differentially in object recognition memory consolidation. The D1 receptor antagonist SCH23390 was infused bilaterally 15 min before a 5 min sample phase in either rats' perirhinal cortex or dorsal hippocampus, and they were tested 90 min for short-term memory or 24 h later for long-term memory. SCH23390 impaired long-term memory when infused in the perirhinal cortex but not when infused in the hippocampus. Conversely, when the D1 receptor agonist SKF38393 was infused 10 min before a 3 min sample phase in the perirhinal cortex, long-term memory was enhanced, however, this was not observed when the D1 agonist was infused in the hippocampus. Short-term memory was spared when SCH23390 or SKF38393 were infused in the perirhinal cortex or the dorsal hippocampus suggesting that acquisition was unaffected. These results suggest that dopaminergic transmission in these medial temporal lobe structures have a differential involvement in object recognition memory consolidation.

  14. Modifications in resting state functional anticorrelation between default mode network and dorsal attention network: comparison among young adults, healthy elders and mild cognitive impairment patients.

    PubMed

    Esposito, Roberto; Cieri, Filippo; Chiacchiaretta, Piero; Cera, Nicoletta; Lauriola, Mariella; Di Giannantonio, Massimo; Tartaro, Armando; Ferretti, Antonio

    2017-02-07

    Resting state brain activity incorporates different components, including the Default Mode Network and the Dorsal Attention Network, also known as task-negative network and task-positive network respectively. These two networks typically show an anticorrelated activity during both spontaneous oscillations and task execution. However modifications of this anticorrelated activity pattern with age and pathology are still unclear. The present study aimed to investigate differences in resting state Default Mode Network-Dorsal Attention Network functional anticorrelation among young adults, healthy elders and Mild Cognitive Impairment patients. We retrospectively enrolled in this study 27 healthy young adults (age range: 25-35 y.o.; mean age: 28,5), 26 healthy elders (age range: 61-72 y.o.; mean age: 65,1) and 17 MCI patients (age range 64-87 y.o.; mean age: 73,6). Mild Cognitive Impairment patients were selected following Petersen criteria. All participants underwent neuropsychological evaluation and resting state functional Magnetic Resonance Imaging. Spontaneous anticorrelated activity between Default Mode Network and Dorsal Attention Network was observed in each group. This anticorrelation was significantly decreased with age in most Default Mode Network-Dorsal Attention Network connections (p < 0.001, False Discovery Rate corrected). Moreover, the anticorrelation between the posterior cingulate cortex node of the Default Mode Network and the right inferior parietal sulcus node of the Dorsal Attention Network was significantly decreased when comparing Mild Cognitive Impairment with normal elders (p < 0.001, False Discovery Rate corrected). The functional connectivity changes in patients were not related to significant differences in grey matter content. Our results suggest that a reduced anticorrelated activity between Default Mode Network and Dorsal Attention Network is part of the normal aging process and that Mild Cognitive Impairment status is associated with

  15. Remapping in the ipsilesional motor cortex after VR-based training: a pilot fMRI study.

    PubMed

    Tunik, Eugene; Adamovich, Sergei V

    2009-01-01

    In