Science.gov

Sample records for dos modelos voxels

  1. En la búsqueda de características en eyecciones coronales de masa que discriminen entre dos paradigmas físicos en modelos de ECMs

    NASA Astrophysics Data System (ADS)

    Paissan, G.; Stenborg, G.; Rovira, M.

    Se conocen tres diferentes fenómenos de gran escala que ocurren en la atmósfera solar, denominados eyecciones coronales de masa (ECMs), protuberancias eruptivas y grandes fulguraciones de dos bandas. Estos fenómenos están estrechamente relacionados y podrían ser distintas manifestaciones de un único proceso físico. Las ECMs son definidas como eyecciones de gran escala de masa y flujo magnético desde la baja corona al espacio interplanetario. Desde su descubrimiento en los '70, muchos modelos han sido propuestos para explicar su origen y evolución. La explicación física de las ECMs es un tema de debate intenso. No obstante, los modelos pueden sintetizarse en dos grandes grupos: 1) los modelos de inyección de flujo y 2) los modelos de almacenamiento y liberación. En este trabajo, se presentan los estudios realizados con una serie de eventos observados con el coronógrafo MICA (Mirror Coronograph for Argentina), el telescopio en H-alfa HASTA (H-alpha Solar Telescope for Argentina) y los coronógrafos C2 y C3 de la sonda SOHO (Solar and Heliospheric Observatory). Los eventos que pudieron ser identificados como ECMs son contrastados dentro del esquema de los dos paradigmas teóricos propuestos.

  2. Voxelated liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.; McConney, Michael E.; Wie, Jeong Jae; Tondiglia, Vincent P.; White, Timothy J.

    2015-02-01

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  3. Análise da aplicação e dos resultados do modelo OPM3® para a área da saúde

    PubMed Central

    Augusto dos Santos, Luis; de Fátima Marin, Heimar

    2015-01-01

    Esta pesquisa procurou analisar se um modelo de questionário criado por uma comunidade internacional de gerenciamento de projetos e se é aplicavél a organizações voltadas a área de saúde. O modelo OPM3® (Organizational Project Management Maturity Model) foi criado para que organizações de qualquer área ou porte pudessem identificar a presença, ou ausência, de boas práticas de gerenciamento. O objetivo da aplicação desse modelo é avaliar sempre a organização e não o entrevistado. No presente artigo, são apresentados os resultados da aplicação desse modelo em uma organização que possuía produtos e serviços de tecnologia da informação aplicados à área de saúde. Este estudo verificou que o modelo é aplicável de forma rápida e que a organização analisada possuía um número expressivo de boas práticas. PMID:26924862

  4. Intra voxel analysis in MRI

    NASA Astrophysics Data System (ADS)

    Ambrosanio, Michele; Baselice, Fabio; Ferraioli, Giampaolo; Pascazio, Vito

    2014-03-01

    A new application of Compressive Sensing (CS) in Magnetic Resonance Imaging (MRI) field is presented. In particular, first results of the Intra Voxel Analysis (IVA) technique are reported. The idea is to exploit CS peculiarities in order to distinguish different contributions inside the same resolution cell, instead of reconstructing images from not fully sampled k-space acquisition. Applied to MRI field, this means the possibility of estimating the presence of different tissues inside the same voxel, i.e. in one pixel of the obtained image. In other words, the method is the first attempt, as far as we know, of achieving Spectroscopy-like results starting from each pixel of MR images. In particular, tissues are distinguished each others by evaluating their spin-spin relaxation times. Within this manuscript, first results on clinical dataset, in particular a phantom made by aqueous solution and oil and an occipital brain lesion corresponding to a metastatic breast cancer nodule, are reported. Considering the phantom dataset, in particular focusing on the slice where the separation between water and oil occurs, the methodology is able to distinguish the two components with different spin-spin relaxation times. With respect to clinical dataset,focusing on a voxel of the lesion area, the approach is able to detect the presence of two tissues, namely the healthy and the cancer related ones, while in other location outside the lesion only the healthy tissue is detected. Of course, these are the first results of the proposed methodology, further studies on different types of clinical datasets are required in order to widely validate the approach. Although few datasets have been considered, results seem both interesting and promising.

  5. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  6. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis

    PubMed Central

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A.; Benedet, Andrea L.; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S.; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab® and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  7. The GSF family of voxel phantoms

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Zankl, Maria; Fill, Ute; Regulla, Dieter

    2002-01-01

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  8. Voxel-Based LIDAR Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  9. Gait analysis and validation using voxel data.

    PubMed

    Wang, Fang; Stone, Erik; Dai, Wenqing; Skubic, Marjorie; Keller, James

    2009-01-01

    In this paper, we present a method for extracting gait parameters including walking speed, step time and step length from a three-dimensional voxel reconstruction, which is built from two calibrated camera views. These parameters are validated with a GAITRite Electronic mat and a Vicon motion capture system. Experiments were conducted in which subjects walked across the GAITRite mat at various speeds while the Vicon cameras recorded the motion of reflective markers attached to subjects' shoes, and our two calibrated cameras captured the images. Excellent agreements were found for walking speed. Step time and step length were also found to have good agreement given the limitation of frame rate and voxel resolution.

  10. Voxel2MCNP: software for handling voxel models for Monte Carlo radiation transport calculations.

    PubMed

    Hegenbart, Lars; Pölz, Stefan; Benzler, Andreas; Urban, Manfred

    2012-02-01

    Voxel2MCNP is a program that sets up radiation protection scenarios with voxel models and generates corresponding input files for the Monte Carlo code MCNPX. Its technology is based on object-oriented programming, and the development is platform-independent. It has a user-friendly graphical interface including a two- and three-dimensional viewer. A row of equipment models is implemented in the program. Various voxel model file formats are supported. Applications include calculation of counting efficiency of in vivo measurement scenarios and calculation of dose coefficients for internal and external radiation scenarios. Moreover, anthropometric parameters of voxel models, for instance chest wall thickness, can be determined. Voxel2MCNP offers several methods for voxel model manipulations including image registration techniques. The authors demonstrate the validity of the program results and provide references for previous successful implementations. The authors illustrate the reliability of calculated dose conversion factors and specific absorbed fractions. Voxel2MCNP is used on a regular basis to generate virtual radiation protection scenarios at Karlsruhe Institute of Technology while further improvements and developments are ongoing.

  11. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  12. Modeling and analysis of caves using voxelization

    NASA Astrophysics Data System (ADS)

    Szeifert, Gábor; Szabó, Tivadar; Székely, Balázs

    2014-05-01

    Although there are many ways to create three dimensional representations of caves using modern information technology methods, modeling of caves has been challenging for researchers for a long time. One of these promising new alternative modeling methods is using voxels. We are using geodetic measurements as an input for our voxelization project. These geodetic underground surveys recorded the azimuth, altitude and distance of corner points of cave systems relative to each other. The diameter of each cave section is estimated from separate databases originating from different surveys. We have developed a simple but efficient method (it covers more than 99.9 % of the volume of the input model on the average) to convert these vector-type datasets to voxels. We have also developed software components to make visualization of the voxel and vector models easier. Since each cornerpoint position is measured relative to another cornerpoints positions, propagation of uncertainties is an important issue in case of long caves with many separate sections. We are using Monte Carlo simulations to analyze the effect of the error of each geodetic instrument possibly involved in a survey. Cross-sections of the simulated three dimensional distributions show, that even tiny uncertainties of individual measurements can result in high variation of positions that could be reduced by distributing the closing errors if such data are available. Using the results of our simulations, we can estimate cave volume and the error of the calculated cave volume depending on the complexity of the cave. Acknowledgements: the authors are grateful to Ariadne Karst and Cave Exploring Association and State Department of Environmental and Nature Protection of the Hungarian Ministry of Rural Development, Department of National Parks and Landscape Protection, Section Landscape and Cave Protection and Ecotourism for providing the cave measurement data. BS contributed as an Alexander von Humboldt Research

  13. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  14. Investigation of Nonuniform Dose Voxel Geometry in Monte Carlo Calculations.

    PubMed

    Yuan, Jiankui; Chen, Quan; Brindle, James; Zheng, Yiran; Lo, Simon; Sohn, Jason; Wessels, Barry

    2015-08-01

    The purpose of this work is to investigate the efficacy of using multi-resolution nonuniform dose voxel geometry in Monte Carlo (MC) simulations. An in-house MC code based on the dose planning method MC code was developed in C++ to accommodate the nonuniform dose voxel geometry package since general purpose MC codes use their own coupled geometry packages. We devised the package in a manner that the entire calculation volume was first divided into a coarse mesh and then the coarse mesh was subdivided into nonuniform voxels with variable voxel sizes based on density difference. We name this approach as multi-resolution subdivision (MRS). It generates larger voxels in small density gradient regions and smaller voxels in large density gradient regions. To take into account the large dose gradients due to the beam penumbra, the nonuniform voxels can be further split using ray tracing starting from the beam edges. The accuracy of the implementation of the algorithm was verified by comparing with the data published by Rogers and Mohan. The discrepancy was found to be 1% to 2%, with a maximum of 3% at the interfaces. Two clinical cases were used to investigate the efficacy of nonuniform voxel geometry in the MC code. Applying our MRS approach, we started with the initial voxel size of 5 × 5 × 3 mm(3), which was further divided into smaller voxels. The smallest voxel size was 1.25 × 1.25 × 3 mm(3). We found that the simulation time per history for the nonuniform voxels is about 30% to 40% faster than the uniform fine voxels (1.25 × 1.25 × 3 mm(3)) while maintaining similar accuracy.

  15. Voxel similarity measures for automated image registration

    NASA Astrophysics Data System (ADS)

    Hill, Derek L.; Studholme, Colin; Hawkes, David J.

    1994-09-01

    We present the concept of the feature space sequence: 2D distributions of voxel features of two images generated at registration and a sequence of misregistrations. We provide an explanation of the structure seen in these images. Feature space sequences have been generated for a pair of MR image volumes identical apart from the addition of Gaussian noise to one, MR image volumes with and without Gadolinium enhancement, MR and PET-FDG image volumes and MR and CT image volumes, all of the head. The structure seen in the feature space sequences was used to devise two new measures of similarity which in turn were used to produce plots of cost versus misregistration for the 6 degrees of freedom of rigid body motion. One of these, the third order moment of the feature space histogram, was used to register the MR image volumes with and without Gadolinium enhancement. These techniques have the potential for registration accuracy to within a small fraction of a voxel or resolution element and therefore interpolation errors in image transformation can be the dominant source of error in subtracted images. We present a method for removing these errors using sinc interpolation and show how interpolation errors can be reduced by over two orders of magnitude.

  16. Actuating materials. Voxelated liquid crystal elastomers.

    PubMed

    Ware, Taylor H; McConney, Michael E; Wie, Jeong Jae; Tondiglia, Vincent P; White, Timothy J

    2015-02-27

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods.

  17. Parallel reconstruction in accelerated multi voxel MR Spectroscopy

    PubMed Central

    Boer, V.O.; Klomp, D.W.J.; Laterra, J.; Barker, P.B.

    2015-01-01

    Purpose To develop the simultaneous acquisition of multiple voxels in localized MR spectroscopy using sensitivity encoding, allowing reduced total scan time compared to conventional sequential single voxel acquisition methods. Methods Dual volume localization was used to simultaneously excite voxels in both hemispheres. Receiver coil sensitivity profiles were used to unfold the data. To demonstrate the method, MRS voxels in the left and right hippocampus were measured at 3T, and left and right motor cortex at 7T. Spectra were compared to conventional single voxel acquisitions. Spectra were also recorded from the lesion and contralateral hemisphere of a patient with a low grade oligodendroglioma at 7T. Results It was possible to generate signal in two voxels simultaneously and separate the signal originating from the different locations, with spectral results almost identical to those observed using conventional single voxel methods. The method results in an increased chemical shift displacement artifact, which might be improved by advanced pulse designs, and a noise increase due to the unfolding ‘g-factor’, which was larger at 3T than 7T. Conclusion The simultaneous acquisition of voxels for MR spectroscopy is possible by using modulated slice selective pulses and receive coil sensitivity profiles to unfold the resulting signals. PMID:26151840

  18. ODVBA: Optimally-Discriminative Voxel-Based Analysis

    PubMed Central

    Davatzikos, Christos

    2012-01-01

    Gaussian smoothing of images prior to applying voxel-based statistics is an important step in Voxel-Based Analysis and Statistical Parametric Mapping (VBA-SPM), and is used to account for registration errors, to Gaussianize the data, and to integrate imaging signals from a region around each voxel. However, it has also become a limitation of VBA-SPM based methods, since it is often chosen empirically and lacks spatial adaptivity to the shape and spatial extent of the region of interest, such as a region of atrophy or functional activity. In this paper, we propose a new framework, named Optimally-Discriminative Voxel-Based Analysis (ODVBA), for determining the optimal spatially adaptive smoothing of images, followed by applying voxel-based group analysis. In ODVBA, Nonnegative Discriminative Projection is applied regionally to get the direction that best discriminates between two groups, e.g., patients and controls; this direction is equivalent to local filtering by an optimal kernel whose coefficients define the optimally discriminative direction. By considering all the neighborhoods that contain a given voxel, we then compose this information to produce the statistic for each voxel. Finally, permutation tests are used to obtain a statistical parametric map of group differences. ODVBA has been evaluated using simulated data in which the ground truth is known and with data from an Alzheimer’s disease (AD) study. The experimental results have shown that the proposed ODVBA can precisely describe the shape and location of structural abnormality. PMID:21324774

  19. Finding significantly connected voxels based on histograms of connection strengths

    NASA Astrophysics Data System (ADS)

    Kasenburg, Niklas; Pedersen, Morten Vester; Darkner, Sune

    2016-03-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based on the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding null-distribution and significance is determined using the false discovery rate (FDR). Segmentations are based on significantly connected voxels and their FDR. In this work we focus on the thalamus and the target regions were chosen by dividing the cortex into a prefrontal/temporal zone, motor zone, somatosensory zone and a parieto-occipital zone. The obtained segmentations consistently show a sparse number of significantly connected voxels that are located near the surface of the anterior thalamus over a population of 38 subjects.

  20. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  1. Quantitative Voxel-to-Voxel Comparison of TriBeam and DCT Strontium Titanate Three-Dimensional Data Sets (Postprint)

    DTIC Science & Technology

    2015-02-09

    AFRL-RX-WP-JA-2016-0194 QUANTITATIVE VOXEL-TO-VOXEL COMPARISON OF TRIBEAM AND DCT STRONTIUM TITANATE THREE- DIMENSIONAL DATA SETS...OF TRIBEAM AND DCT STRONTIUM TITANATE THREE- DIMENSIONAL DATA SETS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-10-D-5226-0003 5b. GRANT NUMBER 5c...resolved diffraction contrast tomography (DCT) and a new TriBeam tomography technique with high spatial resolution to address grain growth in strontium

  2. An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling

    NASA Astrophysics Data System (ADS)

    Lai, Guangling; Ding, Lu; Qin, Zhiyuan; Tong, Xiaochong

    2016-11-01

    Compared with the traditional triangulation approaches, the voxelized point cloud data can reduce the sensitivity of scenario and complexity of calculation. While on the base of the point cloud data, implementation scenario organization could be accomplishment by subtle voxel, but it will add more memory consumption. Therefore, an effective voxel representation method is very necessary. At present, the specific study of voxel visualization algorithm is less. This paper improved the ray tracing algorithm by the characteristics of voxel configuration. Firstly, according to the scope of point cloud data, determined the scope of the pixels on the screen. Then, calculated the light vector came from each pixel. Lastly, used the rules of voxel configuration to calculate all the voxel penetrated through by light. The voxels closest to viewpoint were named visible ones, the rest were all obscured ones. This experimental showed that the method could realize voxelization organization and voxel occlusion culling of implementation scenario efficiently, and increased the render efficiency.

  3. Voxel inversion of airborne electromagnetic data for improved model integration

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054

  4. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  5. Selection of voxel size and photon number in voxel-based Monte Carlo method: criteria and applications.

    PubMed

    Li, Dong; Chen, Bin; Ran, Wei Yu; Wang, Guo Xiang; Wu, Wen Juan

    2015-01-01

    The voxel-based Monte Carlo method (VMC) is now a gold standard in the simulation of light propagation in turbid media. For complex tissue structures, however, the computational cost will be higher when small voxels are used to improve smoothness of tissue interface and a large number of photons are used to obtain accurate results. To reduce computational cost, criteria were proposed to determine the voxel size and photon number in 3-dimensional VMC simulations with acceptable accuracy and computation time. The selection of the voxel size can be expressed as a function of tissue geometry and optical properties. The photon number should be at least 5 times the total voxel number. These criteria are further applied in developing a photon ray splitting scheme of local grid refinement technique to reduce computational cost of a nonuniform tissue structure with significantly varying optical properties. In the proposed technique, a nonuniform refined grid system is used, where fine grids are used for the tissue with high absorption and complex geometry, and coarse grids are used for the other part. In this technique, the total photon number is selected based on the voxel size of the coarse grid. Furthermore, the photon-splitting scheme is developed to satisfy the statistical accuracy requirement for the dense grid area. Result shows that local grid refinement technique photon ray splitting scheme can accelerate the computation by 7.6 times (reduce time consumption from 17.5 to 2.3 h) in the simulation of laser light energy deposition in skin tissue that contains port wine stain lesions.

  6. The influence of voxel size on atom probe tomography data.

    PubMed

    Torres, K L; Daniil, M; Willard, M A; Thompson, G B

    2011-05-01

    A methodology for determining the optimal voxel size for phase thresholding in nanostructured materials was developed using an atom simulator and a model system of a fixed two-phase composition and volume fraction. The voxel size range was banded by the atom count within each voxel. Some voxel edge lengths were found to be too large, resulting in an averaging of compositional fluctuations; others were too small with concomitant decreases in the signal-to-noise ratio for phase identification. The simulated methodology was then applied to the more complex experimentally determined data set collected from a (Co(0.95)Fe(0.05))(88)Zr(6)Hf(1)B(4)Cu(1) two-phase nanocomposite alloy to validate the approach. In this alloy, Zr and Hf segregated to an intergranular amorphous phase while Fe preferentially segregated to a crystalline phase during the isothermal annealing step that promoted primary crystallization. The atom probe data analysis of the volume fraction was compared to transmission electron microscopy (TEM) dark-field imaging analysis and a lever rule analysis of the volume fraction within the amorphous and crystalline phases of the ribbon.

  7. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  8. Efficient graphics processing unit-based voxel carving for surveillance

    NASA Astrophysics Data System (ADS)

    Ober-Gecks, Antje; Zwicker, Marius; Henrich, Dominik

    2016-07-01

    A graphics processing unit (GPU)-based implementation of a space carving method for the reconstruction of the photo hull is presented. In particular, the generalized voxel coloring with item buffer approach is transferred to the GPU. The fast computation on the GPU is realized by an incrementally calculated standard deviation within the likelihood ratio test, which is applied as color consistency criterion. A fast and efficient computation of complete voxel-pixel projections is provided using volume rendering methods. This generates a speedup of the iterative carving procedure while considering all given pixel color information. Different volume rendering methods, such as texture mapping and raycasting, are examined. The termination of the voxel carving procedure is controlled through an anytime concept. The photo hull algorithm is examined for its applicability to real-world surveillance scenarios as an online reconstruction method. For this reason, a GPU-based redesign of a visual hull algorithm is provided that utilizes geometric knowledge about known static occluders of the scene in order to create a conservative and complete visual hull that includes all given objects. This visual hull approximation serves as input for the photo hull algorithm.

  9. Monte Carlo study of voxel S factor dependence on tissue density and atomic composition

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-11-01

    Voxel dosimetry is a common approach to the internal dosimetry of non-uniform activity distributions in nuclear medicine therapies with radiopharmaceuticals and in the estimation of the radiation hazard due to internal contamination of radionuclides. Aim of the present work is to extend our analytical approach for the calculation of voxel S factors to materials different from the soft tissue. We used a Monte Carlo simulation in GEANT4 of a voxelized region of each material in which the source of monoenergetic electrons or photons was uniformly distributed within the central voxel, and the energy deposition was scored over the surrounding 11×11×11 voxels. Voxel S factors were obtained for the following standard ICRP materials: Adipose tissue, Bone cortical, Brain, Lung, Muscle skeletal and Tissue soft with 1 g cm-3 density. Moreover, we considered the standard ICRU materials: Bone compact and Muscle striated. Voxel S factors were represented as a function of the “normalized radius”, defined as the ratio between the source-target voxel distance and the voxel side. We found that voxel S factors and related analytical fit functions are mainly affected by the tissue density, while the material composition gives only a slight contribution to the difference between data series, which is negligible for practical purposes. Our results can help in broadening the dosimetric three-dimensional approach based on voxel S factors to other tissues where diagnostic and therapeutic radionuclides can be taken up and radiation can propagate.

  10. Modelo de galaxia disco

    NASA Astrophysics Data System (ADS)

    Ledesma, M.; Mosconi, M.

    El objetivo de este trabajo es estudiar la formación de galaxias anillo, a través de simulaciones numéricas. En el estudio numérico es necesario construir el modelo de una galaxia disco normal, en condición de equilibrio estable, que se ajuste a los parámetros observacionales disponibles de estos objetos. En dicho modelo se considera la galaxia constituída por un halo de materia oscura, un bulge y el disco propiamente dicho. A partir de perfiles de densidad obtenidos de las observaciones, se lleva a cabo la distribución espacial de las partículas, a través del ``Método del rechazo". La asignación de velocidades se realiza considerando que las partículas del disco están aproximadamente en equilibrio rotacional, y se agregan dispersiones de velocidad de acuerdo con el parámetro de Toomre Q=1.5.

  11. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents

    PubMed Central

    Hoseinian-Azghadi, E.; Rafat-Motavalli, L.; Miri-Hakimabad, H.

    2014-01-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for 131Iodine, 123Iodine and 99mTc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0–55% was made, and the effect of various techniques for administration of 99mTc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source–target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for 123I and 99mTc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5–55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for 99mTc incorporation. PMID:24222311

  12. A voxel-based approach to gray matter asymmetries.

    PubMed

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  13. Internal dosimetry estimates using voxelized reference phantoms for thyroid agents.

    PubMed

    Hoseinian-Azghadi, E; Rafat-Motavalli, L; Miri-Hakimabad, H

    2014-05-01

    This work presents internal dosimetry estimates for diagnostic procedures performed for thyroid disorders by relevant radiopharmaceuticals. The organ doses for (131)Iodine, (123)Iodine and (99m)Tc incorporated into the body were calculated for the International Commission on Radiological Protection (ICRP) reference voxel phantoms using the Monte Carlo transport method. A comparison between different thyroid uptakes of iodine in the range of 0-55% was made, and the effect of various techniques for administration of (99m)Tc on organ doses was studied. To investigate the necessity of calculating organ dose from all source regions, the major source organ and its contribution to total dose were specified for each target organ. Moreover, we compared effective dose in ICRP voxel phantoms with that in stylized phantoms. In our method, we directly calculated the organ dose without using the S values or SAFs, as is commonly done. Hence, a distribution of the absorbed dose to entire tissues was obtained. The chord length distributions (CLDs) were also computed for the selected source-target pairs to make comparison across the genders. The results showed that the S values for radionuclides in the thyroid are not sufficient for calculating the organ doses, especially for (123)I and (99m)Tc. The thyroid and its neighboring organs receive a greater dose as thyroid uptake increases. Our comparisons also revealed an underestimation of organ doses reported for the stylized phantoms compared with the values based on the ICRP voxel phantoms in the uptake range of 5-55%, and an overestimation of absorbed dose by up to 2-fold for Iodine administration using blocking agent and for (99m)Tc incorporation.

  14. Fast voxel and polygon ray-tracing algorithms in intensity modulated radiation therapy treatment planning.

    PubMed

    Fox, Christopher; Romeijn, H Edwin; Dempsey, James F

    2006-05-01

    We present work on combining three algorithms to improve ray-tracing efficiency in radiation therapy dose computation. The three algorithms include: An improved point-in-polygon algorithm, incremental voxel ray tracing algorithm, and stereographic projection of beamlets for voxel truncation. The point-in-polygon and incremental voxel ray-tracing algorithms have been used in computer graphics and nuclear medicine applications while the stereographic projection algorithm was developed by our group. These algorithms demonstrate significant improvements over the current standard algorithms in peer reviewed literature, i.e., the polygon and voxel ray-tracing algorithms of Siddon for voxel classification (point-in-polygon testing) and dose computation, respectively, and radius testing for voxel truncation. The presented polygon ray-tracing technique was tested on 10 intensity modulated radiation therapy (IMRT) treatment planning cases that required the classification of between 0.58 and 2.0 million voxels on a 2.5 mm isotropic dose grid into 1-4 targets and 5-14 structures represented as extruded polygons (a.k.a. Siddon prisms). Incremental voxel ray tracing and voxel truncation employing virtual stereographic projection was tested on the same IMRT treatment planning cases where voxel dose was required for 230-2400 beamlets using a finite-size pencil-beam algorithm. Between a 100 and 360 fold cpu time improvement over Siddon's method was observed for the polygon ray-tracing algorithm to perform classification of voxels for target and structure membership. Between a 2.6 and 3.1 fold reduction in cpu time over current algorithms was found for the implementation of incremental ray tracing. Additionally, voxel truncation via stereographic projection was observed to be 11-25 times faster than the radial-testing beamlet extent approach and was further improved 1.7-2.0 fold through point-classification using the method of translation over the cross product technique.

  15. Mapping Protein Abundance Patterns in the Brain Using Voxelation Combined with Liquid Chromatography and Mass Spectrometry

    PubMed Central

    Petyuk, Vladislav A.; Qian, Wei-Jun; Smith, Richard D.; Smith, Desmond J.

    2009-01-01

    Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation, instrumental set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps. PMID:19654045

  16. Mapping protein abundance patterns in the brain using voxelation combined with liquid chromatography and mass spectrometry

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Smith, Richard D.; Smith, Desmond J.

    2010-02-01

    Voxelation creates expression atlases by high-throughput analysis of spatially registered cubes or voxels harvested from the brain. The modality independence of voxelation allows a variety of bioanalytical techniques to be used to map abundance. Protein expression patterns in the brain can be obtained using liquid chromatography (LC) combined with mass spectrometry (MS). Here we describe the methodology of voxelation as it pertains particularly to LC-MS proteomic analysis: sample preparation, instrumental set up and analysis, peptide identification and protein relative abundance quantitation. We also briefly describe some of the advantages, limitations and insights into the brain that can be obtained using combined proteomic and transcriptomic maps

  17. Cerebral atrophy in myotonic dystrophy: a voxel based morphometric study.

    PubMed

    Antonini, G; Mainero, C; Romano, A; Giubilei, F; Ceschin, V; Gragnani, F; Morino, S; Fiorelli, M; Soscia, F; Di Pasquale, A; Caramia, F

    2004-11-01

    Brain involvement in myotonic dystrophy type 1 (DM1) is characterised by cortical atrophy and white matter lesions. We compared the magnetic resonance imaging derived grey matter maps of 22 DM1 patients with those of matched, healthy controls using voxel based morphometry to evaluate the extension of global and regional cortical atrophy in DM1, as well as its relationships with clinical and genetic features. Patients had significantly reduced brain tissue volumes. Grey matter volume was inversely correlated with age; this inverse correlation was significantly stronger in DM1 than in controls. Neither the clinical and genetic characteristics nor white matter lesions were correlated with cortical atrophy. Grey matter atrophy was located mainly in the bilateral frontal and parietal lobes, in the bilateral middle temporal gyrus, and in the left superior temporal and occipital gyrus.

  18. Multi-voxel pattern analysis in human hippocampal subfields

    PubMed Central

    Bonnici, Heidi M.; Chadwick, Martin J.; Kumaran, Dharshan; Hassabis, Demis; Weiskopf, Nikolaus; Maguire, Eleanor A.

    2012-01-01

    A complete understanding of the hippocampus depends on elucidating the representations and computations that exist in its anatomically distinct subfields. High-resolution structural and functional MRI scanning is starting to permit insights into hippocampal subfields in humans. In parallel, such scanning has facilitated the use of multi-voxel pattern analysis (MVPA) to examine information present in the distributed pattern of activity across voxels. The aim of this study was to combine these two relatively new innovations and deploy MVPA in the hippocampal subfields. Delineating subregions of the human hippocampus, a prerequisite for our study, remains a significant challenge, with extant methods often only examining part of the hippocampus, or being unable to differentiate CA3 and dentate gyrus (DG). We therefore devised a new high-resolution anatomical scanning and subfield segmentation protocol that allowed us to overcome these issues, and separately identify CA1, CA3, DG, and subiculum (SUB) across the whole hippocampus using a standard 3T MRI scanner. We then used MVPA to examine fMRI data associated with a decision-making paradigm involving highly similar scenes that had relevance for the computations that occur in hippocampal subfields. Intra- and inter-rater scores for subfield identification using our procedure confirmed its reliability. Moreover, we found that decoding of information within hippocampal subfields was possible using MVPA, with findings that included differential effects for CA3 and DG. We suggest that MVPA in human hippocampal subfields may open up new opportunities to examine how different types of information are represented and processed at this fundamental level. PMID:23087638

  19. Voxel Based Representation of Full-Waveform Airborne Laser Scanner Data for Forestry Applications

    NASA Astrophysics Data System (ADS)

    Stelling, N.; Richter, K.

    2016-06-01

    The advantages of using airborne full-waveform laser scanner data in forest applications, e.g. for the description of the vertical vegetation structure or accurate biomass estimation, have been emphasized in many publications. To exploit the full potential offered by airborne full-waveform laser scanning data, the development of voxel based methods for data analysis is essential. In contrast to existing approaches based on the extraction of discrete 3D points by a Gaussian decomposition, it is very promising to derive the voxel attributes from the digitised waveform directly. For this purpose, the waveform data have to be transferred into a 3D voxel representation. This requires a series of radiometric and geometric transformations of the raw full-waveform laser scanner data. Thus, the paper deals with the geometric aspects and describes a processing chain from the raw waveform data to an attenuationcorrected volumetric forest stand reconstruction. The integration of attenuation-corrected waveform data into the voxel space is realised with an efficient parametric voxel traversal method operating on an octree data structure. The voxel attributes are derived from the amplitudes of the attenuation-corrected waveforms. Additionally, a new 3D filtering approach is presented to eliminate non-object voxel. Applying these methods to real full-waveform laser scanning data, a voxel based representation of a spruce was generated combining three flight strips from different viewing directions.

  20. 3D change detection in staggered voxels model for robotic sensing and navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  1. The investigation of data voxelization for a three-dimensional volumetric display system

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyan; Liu, Xu; Lin, Yuanfang

    2009-04-01

    A high resolution three-dimensional (3D) volumetric display system utilizing a rotating light-emitting diode (LED) array is presented, which provides viewers with true depth cues, binocular parallax, accommodation and convergence, etc, and can be observed from any direction without the need for any special viewing aids. The data voxelization method for the system is presented. The evaluation of texture distortion due to the deviations of the voxel positions caused in voxelization is introduced. 3D models with two types of texture are built: one in which the gray scale is nearly invariant in the background, and the other in which the gray scale varies in the whole picture. The texture distortion of models with the two types of texture is evaluated and a numerical analysis is given. The relationship between texture distortion and voxelization precision is studied. Voxelization precision can be improved by shortening the voxelization step length. Experiments show that models with textures in which gray scale varies gradually in the whole picture need higher voxelization precision than textures with an invariant gray scale background. In order to obtain similar display quality, the ratio of the voxelization step length of models with the two types of texture is about 5/2. This project was supported by the High-Tech Research and Development Program of China (2007AA01Z339).

  2. Study on the consistency of the voxel of two photon polymerization with inclined beam

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Zhou, Xiaoqin; Zheng, Xu; Lin, Jieqiong

    2016-12-01

    In the process of two photon polymerization, the focused beam should be perpendicular to the materials to be processed. But actually it is hard to control, because of the errors of the optical system and the three-dimensional motion platform. So, the inconsistencies of voxels in size and angle due to the errors mentioned above will seriously impact the surface quality of the products. In this paper, the size, angle and location of the titled voxels formed by inclined beam are simulated according to matrix optics and polymerization theory. According to the simulation results, a method for angle errors compensation with the aid of scanning galvanometer is proposed. Although the angle of the voxels can be controlled by scanning galvanometer, but the deflection angles of the scanning galvanometer have a certain range, it should be lower than 3°, or the deformation of the voxels will be serious. Therefore the consistency of the voxel in both size and angle will be ensured.

  3. Monte Carlo-based diffusion tensor tractography with a geometrically corrected voxel-centre connecting method

    NASA Astrophysics Data System (ADS)

    Bodammer, N. C.; Kaufmann, J.; Kanowski, M.; Tempelmann, C.

    2009-02-01

    Diffusion tensor tractography (DTT) allows one to explore axonal connectivity patterns in neuronal tissue by linking local predominant diffusion directions determined by diffusion tensor imaging (DTI). The majority of existing tractography approaches use continuous coordinates for calculating single trajectories through the diffusion tensor field. The tractography algorithm we propose is characterized by (1) a trajectory propagation rule that uses voxel centres as vertices and (2) orientation probabilities for the calculated steps in a trajectory that are obtained from the diffusion tensors of either two or three voxels. These voxels include the last voxel of each previous step and one or two candidate successor voxels. The precision and the accuracy of the suggested method are explored with synthetic data. Results clearly favour probabilities based on two consecutive successor voxels. Evidence is also provided that in any voxel-centre-based tractography approach, there is a need for a probability correction that takes into account the geometry of the acquisition grid. Finally, we provide examples in which the proposed fibre-tracking method is applied to the human optical radiation, the cortico-spinal tracts and to connections between Broca's and Wernicke's area to demonstrate the performance of the proposed method on measured data.

  4. Influence of voxel S factors on three-dimensional internal dosimetry calculations.

    PubMed

    Berenato, Salvatore; Amato, Ernesto; Fischer, Alexander; Baldari, Sergio

    2016-10-01

    Internal dosimetry is a fundamental instrument for the personalization of nuclear medicine therapies, to maximize the therapeutic effect while minimizing the radiation burden to other organs. Three-dimensional (3D) dosimetry can quantify the impact of heterogeneous radiopharmaceutical distributions in organs, lesions and tissues. We analysed the influence of radionuclide voxel S factors in 3D dosimetry of (111)In, (177)Lu and (90)Y, the most used radionuclides in Peptide Receptor Radionuclide Therapy (PRRT). Calculations were carried out for kidneys on a workstation equipped with a software for 3D dosimetry (Imalytics STRATOS, Philips AG), adopting a computational anthropomorphic phantom and, retrospectively, the SPECT-CT image series of a clinical case of PRRT. Two sets of voxel S factors were adopted: the pre-loaded Philips kernels, calculated by direct Monte Carlo simulation, and the ones calculated through a previously proposed analytical approach. Philips (111)In kernel did not account for mono-energetic Auger or Conversion electrons. Results indicate a difference of about -32% in voxel S factors for (111)In in 4.42mm voxel size and around -35% in 4.80mm voxel size, particularly self-dose values; this lead to significant shift in dose histograms and average doses. For (177)Lu and (90)Y, differences are about 2% and 12% for 4.42mm voxels and about -8% and 9% for 4.80mm voxels, respectively, attributable to the different calculation methods of the voxel S factors; this does not lead to significant discrepancies between the two dose histograms. Consequently, voxel S factors must account accurately for all radiations emitted by the nuclide.

  5. Empirical comparison of maximal voxel and non-isotropic adjusted cluster extent results in a voxel-based morphometry study of comorbid learning disability with schizophrenia.

    PubMed

    Moorhead, T William J; Job, Dominic E; Spencer, Michael D; Whalley, Heather C; Johnstone, Eve C; Lawrie, Stephen M

    2005-11-15

    We present an empirical comparison of cluster extent and maximal voxel results in a voxel-based morphometry (VBM) study of brain structure. The cluster extents are adjusted for underlying deviation from uniform smoothness. We implement this comparison on a four-group cohort that has previously shown evidence of a neuro-developmental component in schizophrenia (Moorhead, T.W.J., Job, D.E., Whalley, H.C., Sanderson, T.L., Johnstone, E.C. and Lawrie, S.M. 2004. Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods. NeuroImage 22: 188-202.). We find that adjusted cluster extent results provide information on the nature of deficits that occur in the schizophrenia affected groups, and these important structural differences are not all shown in maximal voxel results. The maximal voxel and cluster extent results are corrected for multiple comparisons using Random Fields (RF) methods. In order to apply the cluster extent measures, we propose a post-hoc method for determining the primary threshold in the analysis. Unadjusted cluster extent results are reported, for these, no allowance is made for non-isotropic smoothness, and comparison with the adjusted extent results shows that the unadjusted results can be either conservative or anti-conservative depending upon the underlying tissue distributions.

  6. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to

  7. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of

  8. Voxel-based morphometry in autopsy proven PSP and CBD.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Dickson, Dennis W; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Jack, Clifford R

    2008-02-01

    The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.

  9. Voxel Based Morphometry in Optical Coherence Tomography: Validation & Core Findings

    PubMed Central

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-01-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype. PMID:27199503

  10. Simulation of computed tomography dose based on voxel phantom

    NASA Astrophysics Data System (ADS)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  11. Distinct Cortical Pathways for Music and Speech Revealed by Hypothesis-Free Voxel Decomposition.

    PubMed

    Norman-Haignere, Sam; Kanwisher, Nancy G; McDermott, Josh H

    2015-12-16

    The organization of human auditory cortex remains unresolved, due in part to the small stimulus sets common to fMRI studies and the overlap of neural populations within voxels. To address these challenges, we measured fMRI responses to 165 natural sounds and inferred canonical response profiles ("components") whose weighted combinations explained voxel responses throughout auditory cortex. This analysis revealed six components, each with interpretable response characteristics despite being unconstrained by prior functional hypotheses. Four components embodied selectivity for particular acoustic features (frequency, spectrotemporal modulation, pitch). Two others exhibited pronounced selectivity for music and speech, respectively, and were not explainable by standard acoustic features. Anatomically, music and speech selectivity concentrated in distinct regions of non-primary auditory cortex. However, music selectivity was weak in raw voxel responses, and its detection required a decomposition method. Voxel decomposition identifies primary dimensions of response variation across natural sounds, revealing distinct cortical pathways for music and speech.

  12. A genome-scale map of expression for a mouse brain section obtained using voxelation

    PubMed Central

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Wei-Jun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2011-01-01

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed two-dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation, and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified, and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community. PMID:17504947

  13. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  14. A novel, optimized approach of voxel division for water vapor tomography

    NASA Astrophysics Data System (ADS)

    Yao, Yibin; Zhao, Qingzhi

    2017-02-01

    Water vapor information with highly spatial and temporal resolution can be acquired using Global Navigation Satellite System (GNSS) water vapor tomography technique. Usually, the targeted tomographic area is discretized into a number of voxels and the water vapor distribution can be reconstructed using a large number of GNSS signals which penetrate the entire tomographic area. Due to the influence of geographic distribution of receivers and geometric location of satellite constellation, many voxels located at the bottom and the side of research area are not crossed by signals, which would undermine the quality of tomographic result. To alleviate this problem, a novel, optimized approach of voxel division is here proposed which increases the number of voxels crossed by signals. On the vertical axis, a 3D water vapor profile is utilized, which is derived from radiosonde data for many years, to identify the maximum height of tomography space. On the horizontal axis, the total number of voxel crossed by signal is enhanced, based on the concept of non-uniform symmetrical division of horizontal voxels. In this study, tomographic experiments are implemented using GPS data from Hong Kong Satellite Positioning Reference Station Network, and tomographic result is compared with water vapor derived from radiosonde and European Center for Medium-Range Weather Forecasting (ECMWF). The result shows that the Integrated Water Vapour (IWV), RMS, and error distribution of the proposed approach are better than that of traditional method.

  15. Variation in voxel value distribution and effect of time between exposures in six CBCT units.

    PubMed

    Spin-Neto, R; Gotfredsen, E; Wenzel, A

    2014-01-01

    The aim of this study is to assess the variation in voxel value distribution in volumetric data sets obtained by six cone beam CT (CBCT) units, and the effect of time between exposures. Six CBCT units [Cranex(®) 3D (CRAN; Soredex Oy, Tuusula, Finland), Scanora(®) 3D (SCAN; Soredex Oy), NewTom™ 5G (NEWT; QR Srl, Verona, Italy), Promax(®) Dimax 3 (Planmeca Oy, Helsinki, Finland), i-CAT (Imaging Sciences International, Hatfield, PA) and 3D Accuitomo FPD80 (Morita, Kyoto, Japan)] were tested. Two volumetric data sets of a dry human skull embedded in acrylic were acquired by each CBCT unit in two sessions on separate days. Each session consisted of 20 exposures: 10 acquired with 30 min between exposures and 10 acquired immediately one after the other. CBCT data were exported as digital imaging and communications in medicine (DICOM) files and converted to text files. The text files were re-organized to contain x-, y- and z-position and grey shade for each voxel. The files were merged to contain 1 record per voxel position, including the voxel values from the 20 exposures in a session. For each voxel, subtractions were performed between Data Set 1 and the remaining 19 data sets (1 - 2, 1 - 3, etc) in a session. Means, medians, ranges and standard deviations for grey shade variation in the subtraction data sets were calculated for each unit and session. For all CBCT units, variation in voxel values was observed throughout the 20 exposures. A "fingerprint" for the grey shade variation was observed for CRAN, SCAN and NEWT. For the other units, the variation was (apparently) randomly distributed. Large discrepancies in voxel value distribution are seen in CBCT images. This variation should be considered in studies that assess minute changes in CBCT images.

  16. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency

    SciTech Connect

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, Rene; Beaulieu, Luc

    2006-08-15

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation.

  17. Octree indexing of DICOM images for voxel number reduction and improvement of Monte Carlo simulation computing efficiency.

    PubMed

    Hubert-Tremblay, Vincent; Archambault, Louis; Tubic, Dragan; Roy, René; Beaulieu, Luc

    2006-08-01

    The purpose of the present study is to introduce a compression algorithm for the CT (computed tomography) data used in Monte Carlo simulations. Performing simulations on the CT data implies large computational costs as well as large memory requirements since the number of voxels in such data reaches typically into hundreds of millions voxels. CT data, however, contain homogeneous regions which could be regrouped to form larger voxels without affecting the simulation's accuracy. Based on this property we propose a compression algorithm based on octrees: in homogeneous regions the algorithm replaces groups of voxels with a smaller number of larger voxels. This reduces the number of voxels while keeping the critical high-density gradient area. Results obtained using the present algorithm on both phantom and clinical data show that compression rates up to 75% are possible without losing the dosimetric accuracy of the simulation.

  18. Voxel-Based Approach for Estimating Urban Tree Volume from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Vonderach, C.; Voegtle, T.; Adler, P.

    2012-07-01

    The importance of single trees and the determination of related parameters has been recognized in recent years, e.g. for forest inventories or management. For urban areas an increasing interest in the data acquisition of trees can be observed concerning aspects like urban climate, CO2 balance, and environmental protection. Urban trees differ significantly from natural systems with regard to the site conditions (e.g. technogenic soils, contaminants, lower groundwater level, regular disturbance), climate (increased temperature, reduced humidity) and species composition and arrangement (habitus and health status) and therefore allometric relations cannot be transferred from natural sites to urban areas. To overcome this problem an extended approach was developed for a fast and non-destructive extraction of branch volume, DBH (diameter at breast height) and height of single trees from point clouds of terrestrial laser scanning (TLS). For data acquisition, the trees were scanned with highest scan resolution from several (up to five) positions located around the tree. The resulting point clouds (20 to 60 million points) are analysed with an algorithm based on voxel (volume elements) structure, leading to an appropriate data reduction. In a first step, two kinds of noise reduction are carried out: the elimination of isolated voxels as well as voxels with marginal point density. To obtain correct volume estimates, the voxels inside the stem and branches (interior voxels) where voxels contain no laser points must be regarded. For this filling process, an easy and robust approach was developed based on a layer-wise (horizontal layers of the voxel structure) intersection of four orthogonal viewing directions. However, this procedure also generates several erroneous "phantom" voxels, which have to be eliminated. For this purpose the previous approach was extended by a special region growing algorithm. In a final step the volume is determined layer-wise based on the extracted

  19. Mapping the Voxel-Wise Effective Connectome in Resting State fMRI

    PubMed Central

    Wu, Guo-Rong; Stramaglia, Sebastiano; Chen, Huafu; Liao, Wei; Marinazzo, Daniele

    2013-01-01

    A network approach to brain and dynamics opens new perspectives towards understanding of its function. The functional connectivity from functional MRI recordings in humans is widely explored at large scale, and recently also at the voxel level. The networks of dynamical directed connections are far less investigated, in particular at the voxel level. To reconstruct full brain effective connectivity network and study its topological organization, we present a novel approach to multivariate Granger causality which integrates information theory and the architecture of the dynamical network to efficiently select a limited number of variables. The proposed method aggregates conditional information sets according to community organization, allowing to perform Granger causality analysis avoiding redundancy and overfitting even for high-dimensional and short datasets, such as time series from individual voxels in fMRI. We for the first time depicted the voxel-wise hubs of incoming and outgoing information, called Granger causality density (GCD), as a complement to previous repertoire of functional and anatomical connectomes. Analogies with these networks have been presented in most part of default mode network; while differences suggested differences in the specific measure of centrality. Our findings could open the way to a new description of global organization and information influence of brain function. With this approach is thus feasible to study the architecture of directed networks at the voxel level and individuating hubs by investigation of degree, betweenness and clustering coefficient. PMID:24069220

  20. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation

    PubMed Central

    Liu, Zhiyi; Quinn, Kyle P.; Speroni, Lucia; Arendt, Lisa; Kuperwasser, Charlotte; Sonnenschein, Carlos; Soto, Ana M.; Georgakoudi, Irene

    2015-01-01

    Defining fiber orientation at each voxel within a 3D biomedical image stack is potentially useful for a variety of applications, including cancer, wound healing and tissue regeneration. Current methods are typically computationally intensive or inaccurate. Herein, we present a 3D weighted orientation vector summation algorithm, which is a generalization of a previously reported 2D vector summation technique aimed at quantifying collagen fiber orientations simultaneously at each voxel of an image stack. As a result, voxel-wise fiber orientation information with 4° to 5° accuracy can be determined, and the computational time required to analyze a typical stack with the size of 512x512x100 voxels is less than 5 min. Thus, this technique enables the practical extraction of voxel-specific orientation data for characterizing structural anisotropy in 3D specimens. As examples, we use this approach to characterize the fiber organization in an excised mouse mammary gland and a 3D breast tissue model. PMID:26203362

  1. Temporal discrimination of sub- and suprasecond time intervals: a voxel-based lesion mapping analysis.

    PubMed

    Gooch, Cynthia M; Wiener, Martin; Hamilton, A Cris; Coslett, H Branch

    2011-01-01

    We used voxel-based lesion-symptom mapping (VLSM) to determine which brain areas are necessary for discriminating time intervals above and below 1 s. VLSM compares behavioral scores of patients that have damage to a given voxel to those that do not on a voxel-by-voxel basis to determine which voxels are critical for the given behavior. Forty-seven subjects with unilateral hemispheric lesions performed a temporal discrimination task in which a standard stimulus was compared on each trial to a test stimulus. In different blocks of trials, standard stimuli were either 600 or 2000 ms. Behavioral measures included the point of subjective equality, a measure of accuracy, and the coefficient of variation, a measure of variability. Lesions of the right middle and inferior frontal gyri were associated with decrements in performance on both durations. In addition, lesions of the left temporal lobe and right precentral gyrus were associated exclusively with impaired performance for subsecond stimuli. In line with results from other studies, these data suggest that different circuits are necessary for timing intervals in these ranges, and that right frontal areas are particularly important to timing.

  2. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  3. Mapping the voxel-wise effective connectome in resting state FMRI.

    PubMed

    Wu, Guo-Rong; Stramaglia, Sebastiano; Chen, Huafu; Liao, Wei; Marinazzo, Daniele

    2013-01-01

    A network approach to brain and dynamics opens new perspectives towards understanding of its function. The functional connectivity from functional MRI recordings in humans is widely explored at large scale, and recently also at the voxel level. The networks of dynamical directed connections are far less investigated, in particular at the voxel level. To reconstruct full brain effective connectivity network and study its topological organization, we present a novel approach to multivariate Granger causality which integrates information theory and the architecture of the dynamical network to efficiently select a limited number of variables. The proposed method aggregates conditional information sets according to community organization, allowing to perform Granger causality analysis avoiding redundancy and overfitting even for high-dimensional and short datasets, such as time series from individual voxels in fMRI. We for the first time depicted the voxel-wise hubs of incoming and outgoing information, called Granger causality density (GCD), as a complement to previous repertoire of functional and anatomical connectomes. Analogies with these networks have been presented in most part of default mode network; while differences suggested differences in the specific measure of centrality. Our findings could open the way to a new description of global organization and information influence of brain function. With this approach is thus feasible to study the architecture of directed networks at the voxel level and individuating hubs by investigation of degree, betweenness and clustering coefficient.

  4. Influence of voxel size settings in X-Ray CT Imagery of soil in scaling properties

    NASA Astrophysics Data System (ADS)

    Heck, R.; Scaiff, N. T.; Andina, D.; Tarquis, A. M.

    2012-04-01

    Fundamental to the interpretation and comparison of X-ray CT imagery of soil is recognition of the objectivity and consistency of procedures used to generate the 3D models. Notably, there has been a lack of consistency in the size of voxels used for diverse interpretations of soils features and processes; in part, this is due to the ongoing evolution of instrumentation and computerized image processing capacity. Moreover, there is still need for discussion on whether standard voxels sizes should be recommended, and what those would be. Regardless of any eventual adoption of such standards, there is a need to also consider the manner in which voxel size is set in the 3D imagery. In the typical approaches to X-ray CT imaging, voxel size may be set at three stages: image acquisition (involving the position of the sample relative to the tube and detector), image reconstruction (where binning of pixels in the acquired images may occur), as well as post-reconstruction re-sampling (which may involve algorithms such as tri-cubic convolution). This research evaluates and compares the spatial distribution of intra-aggregate voids in 3D imagery as well as their scaling properties, of equivalent voxel size, generated using various combinations of the afore-mentioned approaches. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  5. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.

    PubMed

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari

    2011-03-01

    Computed tomography (CT)-based measures of skeletal geometry and material properties have been widely used to develop finite element (FE) models of bony structures. However, in the case of thin bone structures, the ability to develop FE models with accurate geometry derived from clinical CT data presents a challenge due to the thinness of the bone and the limited resolution of the imaging devices. The purpose of this study was to quantify the impact of voxel size on the thickness and intensity values of thin bone structure measurements and to assess the effect of voxel size on strains through FE modeling. Cortical bone thickness and material properties in five thin bone specimens were quantified at voxel sizes ranging from 16.4 to 488 μm. The measurements derived from large voxel size scans showed large increases in cortical thickness (61.9-252.2%) and large decreases in scan intensity (12.9-49.5%). Maximum principal strains from FE models generated using scans at 488 μm were decreased as compared to strains generated at 16.4 μm voxel size (8.6-64.2%). A higher level of significance was found in comparing intensity (p = 0.0001) vs. thickness (p = 0.005) to strain measurements. These findings have implications in developing methods to generate accurate FE models to predict the biomechanical behavior of thin bone structures.

  6. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  7. Singularity-free finite element model of bone through automated voxel-based reconstruction.

    PubMed

    Esposito, L; Bifulco, P; Gargiulo, P; Fraldi, M

    2016-02-01

    Computed tomography (CT) provides both anatomical and density information about tissues. Bone is segmented by raw images and Finite Element Method (FEM) voxel-based meshing technique is achieved by matching each CT voxel to a single finite element (FE). As a consequence of the automated model reconstruction, unstable elements - i.e. elements insufficiently anchored to the whole model and thus potentially involved in partial rigid body motion - can be generated, a crucial problem in obtaining consistent FE models, hindering mechanical analyses. Through the classification of instabilities on topological connections between elements, a numerical procedure is proposed in order to avoid unconstrained models.

  8. Automating the segmentation of medical images for the production of voxel tomographic computational models.

    PubMed

    Caon, M; Mohyla, J

    2001-12-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models.

  9. Difusión de Arnold en un modelo simple

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.; Nuñez, J. A.; Miloni, O.

    Investigadores como Merritt, Valluri, Pfenniger o Contopoulos (por citar los más relevantes) consideran seriamente la hipótesis que la difusión de Arnold juega un rol importante en la evolución dinámica de los sistemas estelares y planetarios. Sin embargo no existe ninguna evidencia. El mayor problema para investigar fenómenos como éste es que uno debe estudiar numéricamente sistemas multidimensionales (más de dos grados de libertad) y visualizar de alguna manera el espacio de fases (más de cuatro dimensiones). Más complicado aún es el caso de difusión de Arnold, donde deben considerarse tiempos de movimiento extremadamente largos y tratar con parámetros exponencialmente pequeños. El propósito de este trabajo es estudiar, en un modelo simple 3D, la existencia o no de difusión de Arnold mediante experimentos numéricos y estimaciones analíticas. Siguiendo los trabajos de Cincotta (2000) y Cincotta, Nuñez y Simo (2000), aquí se pretende ``visualizar" la difusión y, a la vez, determinar la escala de tiempo en la que ésta se podría manifestar. Este trabajo es el escalón inicial para luego abordar este problema en modelos.

  10. Input permutation method to detect active voxels in fMRI study☆

    PubMed Central

    Lee, Sang H.; Lim, Johan; Park, DoHwan; Biswal, Bharat B.; Petkova, Eva

    2013-01-01

    Correctly identifying voxels or regions of interest (ROI) that actively respond to a given stimulus is often an important objective/step in many functional magnetic resonance imaging (fMRI) studies. In this article, we study a nonparametric method to detect active voxels, which makes minimal assumption about the distribution of blood oxygen level-dependent (BOLD) signals. Our proposal has several interesting features. It uses time lagged correlation to take into account the delay in response to the stimulus, due to hemodynamic variations. We introduce an input permutation method (IPM), a type of block permutation method, to approximate the null distribution of the test statistic. Also, we propose to pool the permutation-derived statistics of preselected voxels for a better approximation to the null distribution. Finally, we control multiple testing error rate using the local false discovery rate (FDR) by Efron [Correlation and large-scale simultaneous hypothesis testing. J Am Stat Assoc 102 (2007) 93–103] and Park et al. [Estimation of empirical null using a mixture of normals and its use in local false discovery rate. Comput Stat Data Anal 55 (2011) 2421–2432] to select the active voxels. PMID:22819177

  11. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  12. Select and Cluster: A Method for Finding Functional Networks of Clustered Voxels in fMRI

    PubMed Central

    DonGiovanni, Danilo

    2016-01-01

    Extracting functional connectivity patterns among cortical regions in fMRI datasets is a challenge stimulating the development of effective data-driven or model based techniques. Here, we present a novel data-driven method for the extraction of significantly connected functional ROIs directly from the preprocessed fMRI data without relying on a priori knowledge of the expected activations. This method finds spatially compact groups of voxels which show a homogeneous pattern of significant connectivity with other regions in the brain. The method, called Select and Cluster (S&C), consists of two steps: first, a dimensionality reduction step based on a blind multiresolution pairwise correlation by which the subset of all cortical voxels with significant mutual correlation is selected and the second step in which the selected voxels are grouped into spatially compact and functionally homogeneous ROIs by means of a Support Vector Clustering (SVC) algorithm. The S&C method is described in detail. Its performance assessed on simulated and experimental fMRI data is compared to other methods commonly used in functional connectivity analyses, such as Independent Component Analysis (ICA) or clustering. S&C method simplifies the extraction of functional networks in fMRI by identifying automatically spatially compact groups of voxels (ROIs) involved in whole brain scale activation networks. PMID:27656202

  13. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning.

    PubMed

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-03-15

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.

  14. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  15. Neural Correlates of Communication Skill and Symptom Severity in Autism: A Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.

    2009-01-01

    Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…

  16. Voxel-Based Neighborhood for Spatial Shape Pattern Classification of Lidar Point Clouds with Supervised Learning

    PubMed Central

    Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso

    2017-01-01

    Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood. PMID:28294963

  17. List-mode image reconstruction for positron emission tomography using tetrahedral voxels

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Angelis, Georgios I.; Meikle, Steven R.

    2016-09-01

    Image space decomposition based on tetrahedral voxels are interesting candidates for use in emission tomography. Tetrahedral voxels provide many of the advantages of point clouds with irregular spacing, such as being intrinsically multi-resolution, yet they also serve as a volumetric partition of the image space and so are comparable to more standard cubic voxels. Additionally, non-rigid displacement fields can be applied to the tetrahedral mesh in a straight-forward manner. So far studies incorporating tetrahedral decomposition of the image space have concentrated on pre-calculated, node-based, system matrix elements which reduces the flexibility of the tetrahedral approach and the capacity to accurately define regions of interest. Here, a list-mode on-the-fly calculation of the system matrix elements is described using a tetrahedral decomposition of the image space and volumetric elements—voxels. The algorithm is demonstrated in the context of awake animal PET which may require both rigid and non-rigid motion compensation, as well as quantification within small regions of the brain. This approach allows accurate, event based, motion compensation including non-rigid deformations.

  18. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels

    NASA Astrophysics Data System (ADS)

    Li, Ruru; Yang, Y. Sam; Pan, Jinxiao; Pereira, Gerald G.; Taylor, John A.; Clennell, Ben; Zou, Caineng

    2014-09-01

    A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.

  19. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.

    PubMed

    Li, Ruru; Yang, Y Sam; Pan, Jinxiao; Pereira, Gerald G; Taylor, John A; Clennell, Ben; Zou, Caineng

    2014-09-01

    A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.

  20. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  1. Voxel-Based Dose Reconstruction for Total Body Irradiation With Helical TomoTherapy

    SciTech Connect

    Chao Ming; Penagaricano, Jose; Yan Yulong; Moros, Eduardo G.; Corry, Peter; Ratanatharathorn, Vaneerat

    2012-04-01

    Purpose: We have developed a megavoltage CT (MVCT)-based dose reconstruction strategy for total body irradiation (TBI) with helical TomoTherapy (HT) using a deformable registration model to account for the patient's interfraction changes. The proposed technique serves as an efficient tool for delivered dose verification and, potentially, plan adaptation. Methods and Materials: Four patients with acute myelogenous leukemia treated with TBI using HT were selected for this study. The prescription was 12 Gy, 2 Gy/fraction, twice per day, given at least 6 h apart. The original plan achieved coverage of 80% of the clinical target volume (CTV) by the 12 Gy isodose surface. MVCTs were acquired prior to each treatment. Regions of interest were contoured on each MVCT. The dose for each fraction was calculated based on the MVCT using the HT planned adaptive station. B-spline deformable registration was conducted to establish voxel-to-voxel correspondence between the MVCT and the planning CT. The resultant deformation vector was employed to map the reconstructed dose from each fraction to the same point as the plan dose, and a voxel-to-voxel summed dose from all six fractions was obtained. The reconstructed dose distribution and its dosimetric parameters were compared with those of the original treatment plan. Results: While changes in CTV contours occurred in all patients, the reconstructed dose distribution showed that the dose-volume histogram for CTV coverage was close (<1.5%) to that of the original plan. For sensitive structures, the differences between the reconstructed and the planned doses were less than 3.0%. Conclusion: Voxel-based dose reconstruction strategy that takes into account interfraction anatomical changes using MVCTs is a powerful tool for treatment verification of the delivered doses. This proposed technique can also be applied to adaptive TBI therapy using HT.

  2. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  3. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT

    PubMed Central

    Maret, D; Telmon, N; Peters, O A; Lepage, B; Treil, J; Inglèse, J M; Peyre, A; Kahn, J L; Sixou, M

    2012-01-01

    Objectives The various types of cone beam CT (CBCT) differ in several technical characteristics, notably their spatial resolution, which is defined by the acquisition voxel size. However, data are still lacking on the effects of voxel size on the metric accuracy of three-dimensional (3D) reconstructions. This study was designed to assess the effect of isotropic voxel size on the 3D reconstruction accuracy and reproducibility of CBCT data. Methods The study sample comprised 70 teeth (from the Institut d’Anatomie Normale, Strasbourg, France). The teeth were scanned with a KODAK 9500 3D® CBCT (Carestream Health, Inc., Marne-la-Vallée, France), which has two voxel sizes: 200 µm (CBCT 200 µm group) and 300 µm (CBCT 300 µm group). These teeth had also been scanned with the KODAK 9000 3D® CBCT (Carestream Health, Inc.) (CBCT 76 µm group) and the SCANCO Medical micro-CT XtremeCT (SCANCO Medical, Brüttisellen, Switzerland) (micro-CT 41 µm group) considered as references. After semi-automatic segmentation with AMIRA® software (Visualization Sciences Group, Burlington, MA), tooth volumetric measurements were obtained. Results The Bland–Altman method showed no difference in tooth volumes despite a slight underestimation for the CBCT 200 µm and 300 µm groups compared with the two reference groups. The underestimation was statistically significant for the volumetric measurements of the CBCT 300 µm group relative to the two reference groups (Passing–Bablok method). Conclusions CBCT is not only a tool that helps in diagnosis and detection but it has the complementary advantage of being a measuring instrument, the accuracy of which appears connected to the size of the voxels. Future applications of such measurements with CBCT are discussed. PMID:23166362

  4. Quantitative myocardial perfusion PET parametric imaging at the voxel-level

    NASA Astrophysics Data System (ADS)

    Mohy-ud-Din, Hassan; Lodge, Martin A.; Rahmim, Arman

    2015-08-01

    Quantitative myocardial perfusion (MP) PET has the potential to enhance detection of early stages of atherosclerosis or microvascular dysfunction, characterization of flow-limiting effects of coronary artery disease (CAD), and identification of balanced reduction of flow due to multivessel stenosis. We aim to enable quantitative MP-PET at the individual voxel level, which has the potential to allow enhanced visualization and quantification of myocardial blood flow (MBF) and flow reserve (MFR) as computed from uptake parametric images. This framework is especially challenging for the 82Rb radiotracer. The short half-life enables fast serial imaging and high patient throughput; yet, the acquired dynamic PET images suffer from high noise-levels introducing large variability in uptake parametric images and, therefore, in the estimates of MBF and MFR. Robust estimation requires substantial post-smoothing of noisy data, degrading valuable functional information of physiological and pathological importance. We present a feasible and robust approach to generate parametric images at the voxel-level that substantially reduces noise without significant loss of spatial resolution. The proposed methodology, denoted physiological clustering, makes use of the functional similarity of voxels to penalize deviation of voxel kinetics from physiological partners. The results were validated using extensive simulations (with transmural and non-transmural perfusion defects) and clinical studies. Compared to post-smoothing, physiological clustering depicted enhanced quantitative noise versus bias performance as well as superior recovery of perfusion defects (as quantified by CNR) with minimal increase in bias. Overall, parametric images obtained from the proposed methodology were robust in the presence of high-noise levels as manifested in the voxel time-activity-curves.

  5. A Comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging.

    PubMed

    Cabeen, Ryan P; Bastin, Mark E; Laidlaw, David H

    2017-02-01

    This paper presents a comparative evaluation of methods for automated voxel-based spatial mapping in diffusion tensor imaging studies. Such methods are an essential step in computational pipelines and provide anatomically comparable measurements across a population in atlas-based studies. To better understand their strengths and weaknesses, we tested a total of eight methods for voxel-based spatial mapping in two types of diffusion tensor templates. The methods were evaluated with respect to scan-rescan reliability and an application to normal aging. The methods included voxel-based analysis with and without smoothing, two types of region-based analysis, and combinations thereof with skeletonization. The templates included a study-specific template created with DTI-TK and the IIT template serving as a standard template. To control for other factors in the pipeline, the experiments used a common dataset, acquired at 1.5T with a single shell high angular resolution diffusion MR imaging protocol, and tensor-based spatial normalization with DTI-TK. Scan-rescan reliability was assessed using the coefficient of variation (CV) and intraclass correlation (ICC) in eight subjects with three scans each. Sensitivity to normal aging was assessed in a population of 80 subjects aged 25-65 years old, and methods were compared with respect to the anatomical agreement of significant findings and the R(2) of the associated models of fractional anisotropy. The results show that reliability depended greatly on the method used for spatial mapping. The largest differences in reliability were found when adding smoothing and comparing voxel-based and region-based analyses. Skeletonization and template type were found to have either a small or negligible effect on reliability. The aging results showed agreement among the methods in nine brain areas, with some methods showing more sensitivity than others. Skeletonization and smoothing were not major factors affecting sensitivity to aging

  6. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    NASA Astrophysics Data System (ADS)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  7. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4.

    PubMed

    Schümann, J; Paganetti, H; Shin, J; Faddegon, B; Perl, J

    2012-06-07

    A key task within all Monte Carlo particle transport codes is 'navigation', the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4Phantom

  8. Prediction of fMRI time series of a single voxel using radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Zhang, Jiacai; Yao, Li

    2011-03-01

    A great deal of current literature regarding functional neuroimaging has elucidated the relationships of neurons distributed all over the brain. Modern neuroimaging techniques, such as the functional MRI (fMRI), provide a convenient tool for people to study the correlation among different voxels as well as the spatio-temporal patterns of brain activity. In this study, we present a computational model using radial basis function neural network (RBF-NN) to predict the fMRI voxel activation with the activation of other voxels acquired at the same time. The fMRI data from a visual images stimuli presentation experiment was separated into two sets; one was used to train the model, and the other to validate the accuracy or generalizability of the model. In the visual stimuli presentation experiment, the subject did simple one-back-repetition tasks when four categories of stimuli (houses, faces, cars, and cats) were presented. Voxel sets A and B were selected from fMRI data by two different voxel selection criterion: (1) Voxel set A are those activated for any kind of object stronger than the other three objects in regions of interest (ROIs) without correction (P=0.001); (2) Voxel set B are those activated for at least one of the categories of stimuli within the ROIs (FWE correction, P=0.05). RBF-NN regression models construct the nonlinear relationship between the activation of voxels in A and B. Our test results showed that RBF-NN can capture the nonlinear relationship existing in neurons and reveal the relationship between voxel's activation from different brain regions.

  9. A generalization of voxel-wise procedures for high-dimensional statistical inference using ridge regression

    NASA Astrophysics Data System (ADS)

    Sjöstrand, Karl; Cardenas, Valerie A.; Larsen, Rasmus; Studholme, Colin

    2008-03-01

    Whole-brain morphometry denotes a group of methods with the aim of relating clinical and cognitive measurements to regions of the brain. Typically, such methods require the statistical analysis of a data set with many variables (voxels and exogenous variables) paired with few observations (subjects). A common approach to this ill-posed problem is to analyze each spatial variable separately, dividing the analysis into manageable subproblems. A disadvantage of this method is that the correlation structure of the spatial variables is not taken into account. This paper investigates the use of ridge regression to address this issue, allowing for a gradual introduction of correlation information into the model. We make the connections between ridge regression and voxel-wise procedures explicit and discuss relations to other statistical methods. Results are given on an in-vivo data set of deformation based morphometry from a study of cognitive decline in an elderly population.

  10. A Voxel-Map Quantitative Analysis Approach for Atherosclerotic Noncalcified Plaques of the Coronary Artery Tree

    PubMed Central

    Li, Ying; Chen, Wei; Chen, Yonglin; Chu, Chun; Fang, Bingji; Tan, Liwen

    2013-01-01

    Noncalcified plaques (NCPs) are associated with the presence of lipid-core plaques that are prone to rupture. Thus, it is important to detect and monitor the development of NCPs. Contrast-enhanced coronary Computed Tomography Angiography (CTA) is a potential imaging technique to identify atherosclerotic plaques in the whole coronary tree, but it fails to provide information about vessel walls. In order to overcome the limitations of coronary CTA and provide more meaningful quantitative information for percutaneous coronary intervention (PCI), we proposed a Voxel-Map based on mathematical morphology to quantitatively analyze the noncalcified plaques on a three-dimensional coronary artery wall model (3D-CAWM). This approach is a combination of Voxel-Map analysis techniques, plaque locating, and anatomical location related labeling, which show more detailed and comprehensive coronary tree wall visualization. PMID:24348749

  11. Monte Carlo simulation of portal dosimetry on a rectilinear voxel geometry: a variable gantry angle solution.

    PubMed

    Chin, P W; Spezi, E; Lewis, D G

    2003-08-21

    A software solution has been developed to carry out Monte Carlo simulations of portal dosimetry using the BEAMnrc/DOSXYZnrc code at oblique gantry angles. The solution is based on an integrated phantom, whereby the effect of incident beam obliquity was included using geometric transformations. Geometric transformations are accurate within +/- 1 mm and +/- 1 degrees with respect to exact values calculated using trigonometry. An application in portal image prediction of an inhomogeneous phantom demonstrated good agreement with measured data, where the root-mean-square of the difference was under 2% within the field. Thus, we achieved a dose model framework capable of handling arbitrary gantry angles, voxel-by-voxel phantom description and realistic particle transport throughout the geometry.

  12. A voxel-based neural approach (VBNA) to identify lung nodules in the ANODE09 study

    NASA Astrophysics Data System (ADS)

    Retico, Alessandra; Bagagli, Francesco; Camarlinghi, Niccolo; Carpentieri, Carmela; Fantacci, Maria Evelina; Gori, Ilaria

    2009-02-01

    The computer-aided detection (CAD) system we applied on the ANODE09 dataset is devoted to identify pulmonary nodules in low-dose and thin-slice computed tomography (CT) images: we developed two different systems for internal (CADI) and juxtapleural nodules (CADJP) in the framework of the italian MAGIC-5 collaboration. The basic modules of CADI subsystem are: a 3D dot-enhancement algorithm for nodule candidate identification and an original approach, we referred as Voxel-Based Neural Approach (VBNA), to reduce the amount of false-positive findings based on a neural classifier working at the voxel level. To detect juxtapleural nodules we developed the CADJP subsystem based on a procedure enhancing regions where many pleura surface normals intersect, followed by a VBNA classification. We present both the FROC curves we obtained on the 5 annotated ANODE09 example dataset, and on all the ANODE09 50 test cases.

  13. A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes

    PubMed Central

    Naselaris, Thomas; Olman, Cheryl A.; Stansbury, Dustin E.; Ugurbil, Kamil; Gallant, Jack L.

    2015-01-01

    Recent multi-voxel pattern classification (MVPC) studies have shown that in early visual cortex patterns of brain activity generated during mental imagery are similar to patterns of activity generated during perception. This finding implies that low-level visual features (e.g., space, spatial frequency, and orientation) are encoded during mental imagery. However, the specific hypothesis that low-level visual features are encoded during mental imagery is difficult to directly test using MVPC. The difficulty is especially acute when considering the representation of complex, multi-object scenes that can evoke multiple sources of variation that are distinct from low-level visual features. Therefore, we used a voxel-wise modeling and decoding approach to directly test the hypothesis that low-level visual features are encoded in activity generated during mental imagery of complex scenes. Using fMRI measurements of cortical activity evoked by viewing photographs, we constructed voxel-wise encoding models of tuning to low-level visual features. We also measured activity as subjects imagined previously memorized works of art. We then used the encoding models to determine if putative low-level visual features encoded in this activity could pick out the imagined artwork from among thousands of other randomly selected images. We show that mental images can be accurately identified in this way; moreover, mental image identification accuracy depends upon the degree of tuning to low-level visual features in the voxels selected for decoding. These results directly confirm the hypothesis that low-level visual features are encoded during mental imagery of complex scenes. Our work also points to novel forms of brain-machine interaction: we provide a proof-of-concept demonstration of an internet image search guided by mental imagery. PMID:25451480

  14. Sweeping Raster Cross Sections Along Trajectories in Three-Dimensional Voxel Models

    NASA Astrophysics Data System (ADS)

    Gorte, B.; Zlatanova, S.; Leidner, A.

    2016-10-01

    The paper presents a new algorithm to reconstruct elongated objects defined by cross sections and trajectories in gridded threedimensional models represented as voxels. Examples of such objects are the elements of underground infrastructure in urban environments, such as pipes, conduits and tunnels. Starting from a basic methodology, which is based on distance transformations, the algorithm is extended in three ways on the basis of Voronoi datasets being produced alongside.

  15. Two-Photon Laser Micro-Nano Fabrication; Understanding from Single-Voxel Level

    DTIC Science & Technology

    2003-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014231 TITLE: Two-Photon Laser Micro - Nano Fabrication; Understanding...758 @ 2003 Materials Research Society LL4.6 Two-Photon Laser Micro - Nano Fabrication; Understanding from Single-Voxel Level Satoshi Kawatal and Hong...spatial resolution by the radical quenching effect [8, 9], improvement of fabrication efficiency by using 3D vector scanning [9], 3D micro -diagnosis by

  16. Voxel-based dose calculation in radiocolloid therapy of cystic craniopharyngiomas

    NASA Astrophysics Data System (ADS)

    Treuer, H.; Hoevels, M.; Luyken, K.; Gierich, A.; Hellerbach, A.; Lachtermann, B.; Visser-Vandewalle, V.; Ruge, M.; Wirths, J.

    2015-02-01

    Very high doses are administered in radiocolloid therapy of cystic craniopharyngiomas. However individual dose planning is not common yet mainly due to insufficient image resolution. Our aim was to investigate whether currently available high-resolution image data can be used for voxel-based dose calculation for short-ranged β-emitters (32P,90Y,186Re) and to assess the achievable accuracy. We developed a convolution algorithm based on voxelized dose activity distributions and dose-spread kernels. Results for targets with 5-40 mm diameter were compared with high-resolution Monte Carlo calculations in spherical phantoms. Voxel size was 0.35 mm. Homogeneous volume and surface activity distributions were used. Dose-volume histograms of targets and shell structures were compared and γ index (dose tolerance 5%, distance to agreement 0.35 mm) was calculated for dose profiles along the principal axes. For volumetric activity distributions 89.3% ± 11.9% of all points passed the γ test (mean γ 0.53  ±  0.16). For surface distributions 33.6% ± 14.8% of all points passed the γ test (mean γ 2.01  ±  0.60). The shift of curves in dose-volume histograms was -1.7 Gy ± 7.6 Gy (-4.4 Gy ± 24.1 Gy for 186Re) in volumetric distributions and 46.3% ± 32.8% in surface distributions. The results show that individual dose planning for radiocolloid therapy of cystic craniopharyngiomas based on high-resolution voxelized image data is feasible and yields highly accurate results for volumetric activity distributions and reasonable dose estimates for surface distributions.

  17. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    PubMed

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries.

  18. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.

    PubMed

    Patriat, Rémi; Molloy, Erin K; Birn, Rasmus M

    2015-11-01

    Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.

  19. An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-06-01

    The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  20. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry

    NASA Astrophysics Data System (ADS)

    Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek

    2014-09-01

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  1. Voxel-level reproducibility assessment of modality independent elastography in a pre-clinical murine model

    NASA Astrophysics Data System (ADS)

    Flint, Katelyn M.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2015-03-01

    Changes in tissue mechanical properties, measured non-invasively by elastography methods, have been shown to be an important diagnostic tool, particularly for cancer. Tissue elasticity information, tracked over the course of therapy, may be an important prognostic indicator of tumor response to treatment. While many elastography techniques exist, this work reports on the use of a novel form of elastography that uses image texture to reconstruct elastic property distributions in tissue (i.e., a modality independent elastography (MIE) method) within the context of a pre-clinical breast cancer system.1,2 The elasticity results have previously shown good correlation with independent mechanical testing.1 Furthermore, MIE has been successfully utilized to localize and characterize lesions in both phantom experiments and simulation experiments with clinical data.2,3 However, the reproducibility of this method has not been characterized in previous work. The goal of this study is to evaluate voxel-level reproducibility of MIE in a pre-clinical model of breast cancer. Bland-Altman analysis of co-registered repeat MIE scans in this preliminary study showed a reproducibility index of 24.7% (scaled to a percent of maximum stiffness) at the voxel level. As opposed to many reports in the magnetic resonance elastography (MRE) literature that speak to reproducibility measures of the bulk organ, these results establish MIE reproducibility at the voxel level; i.e., the reproducibility of locally-defined mechanical property measurements throughout the tumor volume.

  2. VIDA: A Voxel-Based Dosimetry Method for Targeted Radionuclide Therapy Using Geant4

    PubMed Central

    Dewaraja, Yuni K.; Abramson, Richard G.; Stabin, Michael G.

    2015-01-01

    Abstract We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy (131I, 90Y, 111In, 177Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by 131I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression. PMID:25594357

  3. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    PubMed

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  4. VIDA: a voxel-based dosimetry method for targeted radionuclide therapy using Geant4.

    PubMed

    Kost, Susan D; Dewaraja, Yuni K; Abramson, Richard G; Stabin, Michael G

    2015-02-01

    We have developed the Voxel-Based Internal Dosimetry Application (VIDA) to provide patient-specific dosimetry in targeted radionuclide therapy performing Monte Carlo simulations of radiation transport with the Geant4 toolkit. The code generates voxel-level dose rate maps using anatomical and physiological data taken from individual patients. Voxel level dose rate curves are then fit and integrated to yield a spatial map of radiation absorbed dose. In this article, we present validation studies using established dosimetry results, including self-dose factors (DFs) from the OLINDA/EXM program for uniform activity in unit density spheres and organ self- and cross-organ DFs in the Radiation Dose Assessment Resource (RADAR) reference adult phantom. The comparison with reference data demonstrated agreement within 5% for self-DFs to spheres and reference phantom source organs for four common radionuclides used in targeted therapy ((131)I, (90)Y, (111)In, (177)Lu). Agreement within 9% was achieved for cross-organ DFs. We also present dose estimates to normal tissues and tumors from studies of two non-Hodgkin Lymphoma patients treated by (131)I radioimmunotherapy, with comparison to results generated independently with another dosimetry code. A relative difference of 12% or less was found between methods for mean absorbed tumor doses accounting for tumor regression.

  5. Dynamic Isosurface Extraction and Level-of-Detail in Voxel Space

    SciTech Connect

    Lamphere, P.B.; Linebarger, J.M.

    1999-03-01

    A new visualization representation is described, which dramatically improves interactivity for scientific visualizations of structured grid data sets by creating isosurfaces at interactive speeds and with dynamically changeable levels-of-detail (LOD). This representation enables greater interactivity by allowing an analyst to dynamically specify both the desired isosurface threshold and required level-of-detail to be used while rendering the image. A scientist can therefore view very large isosurfaces at interactive speeds (with a low level-of-detail), but has the full data set always available for analysis. The key idea is that various levels-of-detail are represented as differently sized hexahedral virtual voxels, which are stored in a three-dimensional binary tree, or kd-tree; thus the level-of-detail representation is done in voxel space instead of the traditional approach which relies on surface or geometry space decimations. Utilizing the voxel space is an essential step to moving from a post-processing visualization paradigm to a quantitative, real-time paradigm. This algorithm has been implemented as an integral component of the EIGEN/VR project at Sandia National Laboratories, which provides a rich environment for scientists to interactively explore and visualize the results of very large-scale simulations performed on massively parallel supercomputers.

  6. Dynamic isosurface extraction and level-of-detail in voxel space

    SciTech Connect

    Linebarger, J.M.; Lamphere, P.B.; Breckenridge, A.R.

    1998-06-01

    A new visualization technique is reported, which dramatically improves interactivity for scientific visualizations by working directly with voxel data and by employing efficient algorithms and data structures. This discussion covers the research software, the file structures, examples of data creation, data search, and triangle rendering codes that allow geometric surfaces to be extracted from volumetric data. Uniquely, these methods enable greater interactivity by allowing an analyst to dynamically specify both the desired isosurface threshold and required level-of-detail to be used while rendering the image. The key idea behind this visualization paradigm is that various levels-of-detail are represented as differently sized hexahedral virtual voxels, which are stored in a three-dimensional kd-tree; thus the level-of-detail representation is done in voxel space instead of the traditional approach which relies on surface or geometry space decimations. This algorithm has been implemented as an integral component in the EIGEN/VR project at Sandia National Laboratories, which provides a rich environment for scientists to interactively explore and visualize the results of very large-scale simulations performed on massively parallel supercomputers.

  7. Voxel-Wise Meta-Analysis of Gray Matter Changes in Amyotrophic Lateral Sclerosis

    PubMed Central

    Shen, Dongchao; Cui, Liying; Fang, Jia; Cui, Bo; Li, Dawei; Tai, Hongfei

    2016-01-01

    Background: Increasing neuroimaging studies have revealed gray matter (GM) anomalies of several brain regions by voxel-based morphometry (VBM) studies in patients with amyotrophic lateral sclerosis (ALS). A voxel-wise meta-analysis was conducted to integrate the reported studies to determine the consistent GM alterations in ALS based on VBM methods. Methods: Ovid Medline, Pubmed, Emabase, and BrainMap database were searched for relevant studies.Data were extracted by two independent researchers. Voxel-wise meta-analysis was performed using the effect-size signed differential mapping (ES-SDM) software. Results: Twenty-nine VBM studies comprising 638 subjects with ALS and 622 healthy controls (HCs) met inclusion criteria.The global GM volumes of ALS patients were significantly decreased compared with those of HCs. GM reductions in patients were mainly located in the right precentral gyrus, the left Rolandic operculum, the left lenticular nucleus and the right anterior cingulate/paracingulate gyri. The right precentral gyrus and the left inferior frontal gyrus might be potential anatomical biomarkers to evaluate the severity of the disease, and longer disease duration was associated with more GM atrophy in the left frontal aslant tract and the right precentral gyrus in ALS patients. Conclusion: The results support that ALS is a complex degenerative disease involving multisystems besides the motor system.The mechanism of asymmetric atrophy of the motor cortex and the implication of Rolandic operculum involvement in ALS need to be further elucidated in future studies. PMID:27065078

  8. Modelos Teoricos de Linhas de Recombinacao EM Radio Frequencias Para Regioes H II

    NASA Astrophysics Data System (ADS)

    Abraham, Z.; Cancoro, A. C. O.

    1987-05-01

    Foram feitos modelos de linhas de recombinção provenientes de regiões HII nas frequências de rádio para distintos números quãnticos. Estes modelos consideram regrões H II esfericamente simétricas com variações radiais na densidade e temperatura eletrônica, efeitos de colisoes inelásticas dos eletrons (alargarnento por pressão), e afastarnento do equiliíbrio termodinâmico local. 0 bojetivo é construir o perfil da linha para cada ponto da nuvern e obter o valor médio resultante da sua convoluçã com o feixe da antena de tarnanho comparável corn o tarnanho angular da nuvern para posterIor cornpara o corn

  9. Quantification of Vasa Vasorum Density in Multi-Slice Computed Tomographic Coronary Angiograms: Role of Computed Tomographic Image Voxel Size

    SciTech Connect

    Moritz, R.; Eaker, D; Langheinrich, A; Jorgensen, S; Bohle, R; Ritman, E

    2010-01-01

    This study is motivated by the possibility of using computed tomography (CT) to detect early coronary atherosclerosis by the increased CT values within the arterial wall resulting from vasa vasorum proliferation. Coronary arteries (n = 5) with early atherosclerotic changes were injected with Microfil and scanned (micro-CT). Noise was added to the CT projection data sets (to represent the radiation exposure of current clinical CT scanners) and then reconstructed to generate 3-dimensional images at different voxel sizes. Higher CT values were detected because of contrast agent in vasa vasorum if voxel size was less than (150 {micro}m){sup 3}. Contrast in the main lumen increased the CT values dramatically at voxels greater than (100 {micro}m){sup 3}, whereas CT values of the same specimen without contrast in the main lumen remained constant. Voxel sizes less than (200 {micro}m){sup 3} are needed to quantitate arterial wall opacification due to vasa vasorum proliferation.

  10. Evaluation of absorbed doses in voxel-based and simplified models for small animals.

    PubMed

    Mohammadi, Akram; Kinase, Sakae; Saito, Kimiaki

    2012-07-01

    Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25%, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30% uncertainties with exceptions for body contour (up to -40%) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185%) due to differences in the mass attenuation coefficients. For nuclides such as (90)Y and (90)Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3%, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel-based models

  11. In vitro comparison of cone beam computed tomography with different voxel sizes for detection of simulated external root resorption.

    PubMed

    Neves, Frederico S; de Freitas, Deborah Q; Campos, Paulo S F; de Almeida, Solange M; Haiter-Neto, Francisco

    2012-09-01

    The present study compared the efficacy of cone beam computed tomography using different voxel sizes in the diagnosis of simulated external root resorption. The presence or absence of simulated defects on buccal, mesial and distal root surfaces of 20 premolars was evaluated. The defects were small (0.26 mm in diameter and 0.08 mm deep), medium (0.62 mm in diameter and 0.19 mm deep) and large (1.05 mm in diameter and 0.24 mm deep), equally distributed on each root surface. Images were obtained using Classic i-CAT cone beam computed tomography with different voxel sizes: 0.12, 0.20, 0.25 and 0.30 mm. Five oral radiologists evaluated the images. Accuracy, sensitivity, specificity, positive and negative predictive values were determined. The sensitivity decreased and specificity increased as voxel size increased. Accuracy values were the highest for the smallest voxel size (0.12 mm). The results for voxel sizes 0.20 mm and 0.25 mm were similar. Positive and negative predictive values were similar in all protocols, except with 0.30 mm, in which they were the lowest. In conclusion, external root resorption was more easily diagnosed when a smaller voxel size was used.

  12. Estudio de distintos modelos de protuberancias solares

    NASA Astrophysics Data System (ADS)

    Cirigliano, D.; Rovira, M.; Mauas, P.

    En este trabajo presentamos perfiles de líneas del CaII, MgII y HeI calculados para distintos modelos de protuberancias, y los comparamos con observaciones obtenidas por los satélites OSO 8 y SOHO. Para obtener las poblaciones de los distintos niveles de los átomos, utilizamos un código numérico que combina las ecuaciones de transporte de radiación y equilibrio estadístico en un único sistema de ecuaciones no lineal. Los modelos básicos que consideramos para las protuberancias consisten en placas homogéneas y unidimensionales apoyadas sobre la superficie del Sol. Dichas placas se hallan estratificadas en hebras y los modelos difieren entre sí en la temperatura y ancho de la placa, en la presión a la cual se halla el plasma y en el número de hebras. A partir de estos modelos se investiga cada uno de estos parámetros libres y como influyen en la atmósfera de las protuberancias solares y en el perfil de línea de cada especie estudiada, con el objetivo de determinar las condiciones en las que se halla el material atmosférico de estas protuberancias.

  13. Object category classification of fMRI data using support vector machine combined with deactivation voxel selection

    NASA Astrophysics Data System (ADS)

    Yan, Caifeng; Song, Sutao; Li, Yao; Guo, Xiaojuan

    2012-03-01

    Support Vector Machine (SVM) is an accurate pattern recognition method which has been widely used in functional MRI (fMRI) data classification. Voxel selection is a very important part in classification. In general, voxel selection is based on brain regions associated with activation caused by different experiment conditions or stimulations. However, negative blood oxygenation level-dependent responses (deactivation) which have also been found in humans or animals contribute to the classification of different cognitive tasks. Different from traditional studies which focused merely on the activation voxel selection methods, our aim is to investigate the deactivation voxel selection methods in the classification of fMRI data using SVM. In this study, three different voxel selection methods (deactivation, activation, the combination of deactivation and activation) are applied to decide which voxel is included in SVM classifier with linear kernel in classifying 4-category objects on fMRI data. The average accuracies of deactivation classification were 73.36%(house vs. face), 60.34%(house vs. car), 60.94%(house vs. cat), 71.43%(face vs. car), 63.17%(face vs. cat) and 61.61%(car vs. cat). The classification results of deactivation were significantly above the chance level which implies the deactivation is informative. The accuracies of combination of activation and deactivation method were close to that of activation method, and it was even better for some representative subjects. These results suggest deactivation provides useful information in the object category classification on fMRI data and the method of voxel selection based on both activation and deactivation will be a significant method in classification in the future.

  14. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Community Identification.

    PubMed

    Kalcher, Klaudius; Boubela, Roland N; Huf, Wolfgang; Našel, Christian; Moser, Ewald

    2015-01-01

    Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms) multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels). A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6±5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remaining differences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needing any additional data beyond what is usually acquired (and exported) in standard fMRI experiments.

  15. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Loureiro, E. C. M.; Lima, V. J. M.; Lima, F. R. A.; Hoff, G.

    2004-12-01

    The International Commission on Radiological Protection (ICRP) has created a task group on dose calculations, which, among other objectives, should replace the currently used mathematical MIRD phantoms by voxel phantoms. Voxel phantoms are based on digital images recorded from scanning of real persons by computed tomography or magnetic resonance imaging (MRI). Compared to the mathematical MIRD phantoms, voxel phantoms are true to the natural representations of a human body. Connected to a radiation transport code, voxel phantoms serve as virtual humans for which equivalent dose to organs and tissues from exposure to ionizing radiation can be calculated. The principal database for the construction of the FAX (Female Adult voXel) phantom consisted of 151 CT images recorded from scanning of trunk and head of a female patient, whose body weight and height were close to the corresponding data recommended by the ICRP in Publication 89. All 22 organs and tissues at risk, except for the red bone marrow and the osteogenic cells on the endosteal surface of bone ('bone surface'), have been segmented manually with a technique recently developed at the Departamento de Energia Nuclear of the UFPE in Recife, Brazil. After segmentation the volumes of the organs and tissues have been adjusted to agree with the organ and tissue masses recommended by ICRP for the Reference Adult Female in Publication 89. Comparisons have been made with the organ and tissue masses of the mathematical EVA phantom, as well as with the corresponding data for other female voxel phantoms. The three-dimensional matrix of the segmented images has eventually been connected to the EGS4 Monte Carlo code. Effective dose conversion coefficients have been calculated for exposures to photons, and compared to data determined for the mathematical MIRD-type phantoms, as well as for other voxel phantoms.

  16. Identification of Voxels Confounded by Venous Signals Using Resting-State fMRI Functional Connectivity Graph Community Identification

    PubMed Central

    Kalcher, Klaudius; Boubela, Roland N.; Huf, Wolfgang; Našel, Christian; Moser, Ewald

    2015-01-01

    Identifying venous voxels in fMRI datasets is important to increase the specificity of fMRI analyses to microvasculature in the vicinity of the neural processes triggering the BOLD response. This is, however, difficult to achieve in particular in typical studies where magnitude images of BOLD EPI are the only data available. In this study, voxelwise functional connectivity graphs were computed on minimally preprocessed low TR (333 ms) multiband resting-state fMRI data, using both high positive and negative correlations to define edges between nodes (voxels). A high correlation threshold for binarization ensures that most edges in the resulting sparse graph reflect the high coherence of signals in medium to large veins. Graph clustering based on the optimization of modularity was then employed to identify clusters of coherent voxels in this graph, and all clusters of 50 or more voxels were then interpreted as corresponding to medium to large veins. Indeed, a comparison with SWI reveals that 75.6±5.9% of voxels within these large clusters overlap with veins visible in the SWI image or lie outside the brain parenchyma. Some of the remaining differences between the two modalities can be explained by imperfect alignment or geometric distortions between the two images. Overall, the graph clustering based method for identifying venous voxels has a high specificity as well as the additional advantages of being computed in the same voxel grid as the fMRI dataset itself and not needing any additional data beyond what is usually acquired (and exported) in standard fMRI experiments. PMID:26733787

  17. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    SciTech Connect

    Bolch, Wesley

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  18. Voxel Level Survival Analysis of Grey Matter Volume and Incident Mild Cognitive Impairment or Alzheimer's Disease.

    PubMed

    Zeifman, Lubov E; Eddy, William F; Lopez, Oscar L; Kuller, Lewis H; Raji, Cyrus; Thompson, Paul M; Becker, James T

    2015-01-01

    The purpose of this study was to identify, at the voxel level, brain regions associated with the time to develop mild cognitive impairment (MCI) or Alzheimer's disease (AD) from normal cognition. We analyzed incident MCI (n = 58) or AD (n = 151) in 292 cognitively normal participants in the Cardiovascular Health Study-Cognition Study (mean age = 79.2 ± 3.6 years). We used segmented, modulated grey matter maps from 3D (spoiled gradient echo) MRI scans obtained in 1998/99 (with clinical follow-up through 2012) that were smoothed with a 3-D 4 mm Gaussian filter. We fit approximately 1.92 million voxel-level Cox proportional hazard models to examine the grey matter volume effect on time to event, adjusting for age, sex, and diabetes. We used the significance threshold of p <  0.005 with contiguity threshold of at least 68 voxels (false detection probability <2.5×10 -8). Areas within the mesial temporal lobe (MTL), anterior temporal lobe, hippocampus, and posterior cingulate gyrus were associated with time to MCI or AD. The presence of white matter lesions (a marker of small vessel disease in the brain) was associated with the volumes of the MTL and precuneus; MRI-identified infarcts also predicted MTL volume. These findings are important because we identified critical brain regions that predict a person's increased likelihood of developing MCI or AD over a decade prior to the onset of clinical symptoms; these critical brain regions were themselves affected by the presence of vascular disease.

  19. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    SciTech Connect

    Espinoza, I.; Peschke, P.; Karger, C. P.

    2015-01-15

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  20. Postprocessing of Voxel-Based Topologies for Additive Manufacturing Using the Computational Geometry Algorithms Library (CGAL)

    DTIC Science & Technology

    2015-06-01

    that a structure is built up by layers. Typically, additive manufacturing devices (3-dimensional [3-D] printers , e.g.), use the stereolithography (STL...begin with a standard, voxel-based topology optimization scheme and end with an STL file, ready for use in a 3-D printer or other additive manufacturing...S, Yvinec M. Cgal 4.6 - 3d alpha shapes. 2015 [accessed 2015 May 18]. http://doc.cgal.org/latest/Alpha_shapes_3/index.html#Chapter_3D_ Alpha_Shapes

  1. A fast algorithm for voxel-based deterministic simulation of X-ray imaging

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhao, Hua-Xia; Cho, Sang-Hyun; Choi, Jung-Gil; Kim, Myoung-Hee

    2008-04-01

    Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer. Program summaryProgram title: X-ray Catalogue identifier: AEAD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 416 257 No. of bytes in distributed program, including test data, etc.: 6 018 263 Distribution format: tar.gz Programming language: C (Visual C++) Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAM Operating system: Windows XP Classification: 14, 21.1 Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique. Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations. Restrictions: Memory constraints. There are three programs in all. A. Program for test 3.1(1): Object and detector have axis-aligned orientation; B. Program for test 3.1(2): Object in arbitrary orientation; C. Program for test 3.2: Simulation of X-ray video

  2. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  3. TU-F-CAMPUS-J-04: Impact of Voxel Anisotropy On Statistic Texture Features of Oncologic PET: A Simulation Study

    SciTech Connect

    Yang, F; Byrd, D; Bowen, S; Kinahan, P; Sandison, G

    2015-06-15

    Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolution of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter

  4. A decomposition model and voxel selection framework for fMRI analysis to predict neural response of visual stimuli.

    PubMed

    Raut, Savita V; Yadav, Dinkar M

    2017-04-06

    This paper presents an fMRI signal analysis methodology using geometric mean curve decomposition (GMCD) and mutual information-based voxel selection framework. Previously, the fMRI signal analysis has been conducted using empirical mean curve decomposition (EMCD) model and voxel selection on raw fMRI signal. The erstwhile methodology loses frequency component, while the latter methodology suffers from signal redundancy. Both challenges are addressed by our methodology in which the frequency component is considered by decomposing the raw fMRI signal using geometric mean rather than arithmetic mean and the voxels are selected from EMCD signal using GMCD components, rather than raw fMRI signal. The proposed methodologies are adopted for predicting the neural response. Experimentations are conducted in the openly available fMRI data of six subjects, and comparisons are made with existing decomposition models and voxel selection frameworks. Subsequently, the effect of degree of selected voxels and the selection constraints are analyzed. The comparative results and the analysis demonstrate the superiority and the reliability of the proposed methodology.

  5. Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data

    NASA Astrophysics Data System (ADS)

    Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar

    2011-03-01

    Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.

  6. Spatial indices for measuring three-dimensional patterns in a voxel-based space

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Spatial indices are used to quantitatively describe the spatial arrangements of the features within a study region. However, most of the indices used are two-dimensional in their representation of the surface characteristics, and this is insufficient to quantify the three-dimensional properties of an area or geospatial features. With the increased availability of 3D data from laser scanning and other collection methods, a voxel-based representation of space is an important methodology that allows for an intuitive visualization of geospatial features and their analysis with 3D GIS techniques. The objective of this study is to conceptualize, develop, and implement indices that can characterize three-dimensional space and can be used to analyze the structure of spatial features in a landscape. The indices for three-dimensional space that are implemented are, namely, surface area volume, fractal dimension, lacunarity, and Moran's I which are all useful in the quantification of spatial organization found in ecological landscapes. In addition to providing the quantitative descriptors, the results indicate that a voxel-based representation provides a straightforward means of characterizing the form and composition of the spatial features using 3D indices.

  7. Automated Voxel Model from Point Clouds for Structural Analysis of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Castellazzi, G.; D'Altri, A. M.; De Miranda, S.; Lambertini, A.; Selvaggi, I.

    2016-06-01

    In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM) of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy) that was hit by an earthquake in 2012.

  8. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy

    PubMed Central

    Acosta, Oscar; Drean, Gael; Ospina, Juan David; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; De Crevoisier, Renaud

    2013-01-01

    The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (≥Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80Gy to the prostate by IMRT. Within the patients presenting bleeding, a significant dose excess (6Gy on average, p<0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step. PMID:23528429

  9. On the evolution of cured voxel in bulk photopolymerization upon focused Gaussian laser exposure

    SciTech Connect

    Bhole, Kiran Gandhi, Prasanna; Kundu, T.

    2014-07-28

    Unconstrained depth photopolymerization is emerging as a promising technique for fabrication of several polymer microstructures such as self propagating waveguides, 3D freeform structures by bulk lithography, and polymer nanoparticles by flash exposure. Experimental observations reveal governing physics beyond Beer Lambert's law and scattering effects. This paper seeks to model unconstrained depth photopolymerization using classical nonlinear Schrödinger equation coupled with transient diffusion phenomenon. The beam propagation part of the proposed model considers scattering effects induced due to spatial variation of the refractive index as a function of the beam intensity. The critical curing energy model is used to further predict profile of polymerized voxel. Profiles of photopolymerized voxel simulated using proposed model are compared with the corresponding experimental results for several cases of exposure dose and duration. The comparison shows close match leading to conclusion that the experimentally observed deviation from Beer Lambert's law is indeed due to combined effect of diffusion of photoinitiator and scattering of light because of change in the refractive index.

  10. An improved MCNP version of the NORMAN voxel phantom for dosimetry studies

    NASA Astrophysics Data System (ADS)

    Ferrari, P.; Gualdrini, G.

    2005-09-01

    In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.

  11. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    NASA Astrophysics Data System (ADS)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  12. Voxel-coding method for quantification of vascular structure from 3D images

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Shahrokni, Ali; Zoroofi, Reza A.

    2001-05-01

    This paper presents an image processing method for information extraction from 3D images of vasculature. It automates the study of vascular structures by extracting quantitative information such as skeleton, length, diameter, and vessel-to- tissue ratio for different vessels as well as their branches. Furthermore, it generates 3D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3D connectivity. Steps of the proposed approach are as follows. (1) Preprocessing, in which intensity adjustment, optimal thresholding, and median filtering are done. (2) 3D thinning, in which medial axis and skeleton of the vessels are found. (3) Branch labeling, in which different branches are identified and each voxel is assigned to the corresponding branch. (4) Quantitation, in which length of each branch is estimated, based on the number of voxels assigned to it, and its diameter is calculated using the medial axis direction. (5) Visualization, in which vascular structure is shown in 3D, using color coding and surface rendering methods. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications.

  13. Multi-voxel pattern analysis of noun and verb differences in ventral temporal cortex.

    PubMed

    Boylan, Christine; Trueswell, John C; Thompson-Schill, Sharon L

    2014-10-01

    Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid FG), sometimes called the "visual word form area." Crucially, we examined only those volumes sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient to generate word form-based estimates in visual areas.

  14. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    NASA Astrophysics Data System (ADS)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  15. Multi-Voxel Pattern Analysis of Noun and Verb Differences in Ventral Temporal Cortex Marked Revision

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2014-01-01

    Recent evidence suggests a probabilistic relationship exists between the phonological/orthographic form of a word and its lexical-syntactic category (specifically nouns vs. verbs) such that syntactic prediction may elicit form-based estimates in sensory cortex. We tested this hypothesis by conducting multi-voxel pattern analysis (MVPA) of fMRI data from early visual cortex (EVC), left ventral temporal (VT) cortex, and a subregion of the latter - the left mid fusiform gyrus (mid FG), sometimes called the “visual word form area.” Crucially, we examined only those volumes sampled when subjects were predicting, but not viewing, nouns and verbs. This allowed us to investigate prediction effects in visual areas without any bottom-up orthographic input. We found that voxels in VT and mid FG, but not in EVC, were able to classify noun-predictive trials vs. verb-predictive trials in sentence contexts, suggesting that sentence-level predictions are sufficient to generate word form-based estimates in visual areas. PMID:25156159

  16. Incorporating a measure of local scale in voxel-based 3-D image registration.

    PubMed

    Nyúl, László G; Udupa, Jayaram K; Saha, Punam K

    2003-02-01

    We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), operating on original gray-level images, and utilizing the intermediate images resulting from our new scale-based method. In the scale image, every voxel has the local "scale" value assigned to it, defined as the radius of the largest ball centered at the voxel with homogeneous intensities. Three-dimensional image data of the head were acquired from ten MS patients for each of six MRI protocols. Images in some of the protocols were acquired in registration. The registered pairs were used as ground truth. Accuracy and consistency of the six registration methods were measured within and between protocols for known amounts of misregistrations. Our analysis indicates that there is no "best" method. For medium misregistration, the method using MI, for small add large misregistration the method using normalized cross-correlation performs best. For high-resolution data the correlation method and for low-resolution data the MI method, both using the original gray-level images, are the most consistent. We have previously demonstrated the use of local scale information in fuzzy connectedness segmentation and image filtering. Scale may also have potential for image registration as suggested by this work.

  17. Surface mesh to voxel data registration for patient-specific anatomical modeling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  18. The brain structure correlates of individual differences in trait mindfulness: a voxel-based morphometry study.

    PubMed

    Lu, H; Song, Y; Xu, M; Wang, X; Li, X; Liu, J

    2014-07-11

    Mindfulness is the state of being attentive to and aware of what is taking place in the present, which is beneficial for reducing stress-related symptoms and improving mental and physical health. Previous studies have demonstrated that meditation practice can improve individuals' mindfulness through modifying functions and structures of multiple brain regions, including the anterior cingulate cortex (ACC), insula, fronto-limbic network, posterior cingulate cortex (PCC), and temporal-parietal junction. However, little is known about the neuroanatomical correlates of trait mindfulness. In the current study, we used voxel-based morphometry to investigate the neural correlates of individual differences in trait mindfulness by correlating the gray matter (GM) volume of each voxel across the whole brain with trait mindfulness measured by the Mindful Attention Awareness Scale in a large sample of young adults (N=247). We found that individuals who were more mindful of the present had greater GM volume in the right hippocampus/amygdala and bilateral ACC, but less GM volume in bilateral PCC and the left orbitofrontal cortex. These results suggest that trait mindfulness is associated with brain regions involved in executive attention, emotion regulation, and self-referential processing, through which mindfulness may exert its beneficial effects on psychological and physical well-being.

  19. Multi-atlas registration and adaptive hexahedral voxel discretization for fast bioluminescence tomography

    PubMed Central

    Ren, Shenghan; Hu, Haihong; Li, Gen; Cao, Xu; Zhu, Shouping; Chen, Xueli; Liang, Jimin

    2016-01-01

    Bioluminescence tomography (BLT) has been a valuable optical molecular imaging technique to non-invasively depict the cellular and molecular processes in living animals with high sensitivity and specificity. Due to the inherent ill-posedness of BLT, a priori information of anatomical structure is usually incorporated into the reconstruction. The structural information is usually provided by computed tomography (CT) or magnetic resonance imaging (MRI). In order to obtain better quantitative results, BLT reconstruction with heterogeneous tissues needs to segment the internal organs and discretize them into meshes with the finite element method (FEM). It is time-consuming and difficult to handle the segmentation and discretization problems. In this paper, we present a fast reconstruction method for BLT based on multi-atlas registration and adaptive voxel discretization to relieve the complicated data processing procedure involved in the hybrid BLT/CT system. A multi-atlas registration method is first adopted to estimate the internal organ distribution of the imaged animal. Then, the animal volume is adaptively discretized into hexahedral voxels, which are fed into FEM for the following BLT reconstruction. The proposed method is validated in both numerical simulation and an in vivo study. The results demonstrate that the proposed method can reconstruct the bioluminescence source efficiently with satisfactory accuracy. PMID:27446674

  20. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    SciTech Connect

    Yip, Stephen Chen, Aileen B.; Berbeco, Ross; Aerts, Hugo J. W. L.

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  1. Comparison of Monoenergetic Photon Organ Dose Rate Coefficients for the Female Stylized and Voxel Phantoms Submerged in Air

    DOE PAGES

    Hiller, Mauritius; Dewji, Shaheen Azim

    2017-02-16

    Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less

  2. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} -{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a viable

  3. VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE.

    PubMed

    Giménez-Alventosa, V; Ballester, F; Vijande, J

    2016-12-01

    The design and construction of geometries for Monte Carlo calculations is an error-prone, time-consuming, and complex step in simulations describing particle interactions and transport in the field of medical physics. The software VoxelMages has been developed to help the user in this task. It allows to design complex geometries and to process DICOM image files for simulations with the general-purpose Monte Carlo code PENELOPE in an easy and straightforward way. VoxelMages also allows to import DICOM-RT structure contour information as delivered by a treatment planning system. Its main characteristics, usage and performance benchmarking are described in detail.

  4. Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI.

    PubMed

    Dickie, David A; Mikhael, Shadia; Job, Dominic E; Wardlaw, Joanna M; Laidlaw, David H; Bastin, Mark E

    2015-12-01

    Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how gray matter proportion changes with age in a group of working age adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25-64years. Using a validated VBM procedure and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in gray matter proportion with age were assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at P<0.05 and false discovery rate (FDR) was used to correct for multiple comparisons. Clusters of voxels with statistically significant (PFDR<0.05) declines in gray matter proportion with age identified with permutation testing inference (N≈6000) were approximately twice the size of those identified with parametric inference (N=3221voxels). Permutation testing with 10000 (N=6251voxels) and 20000 (N=6233voxels) permutations produced clusters that were generally consistent with each other. However, with 1000 permutations there were approximately 20% more statistically significant voxels (N=7117voxels) than with ≥10000 permutations. Permutation testing inference may provide a more sensitive method than traditional parametric inference for identifying age-related differences in gray matter proportion. Based on the results reported here, at least 10000 permutations should be used in future univariate VBM studies investigating age related changes in gray matter to avoid potential false findings. Additional studies using permutation testing in large imaging databanks

  5. Permutation and parametric tests for effect sizes in voxel-based morphometry of grey matter volume in brain structural MRI

    PubMed Central

    Dickie, David A.; Mikhael, Shadia; Job, Dominic E.; Wardlaw, Joanna M.; Laidlaw, David H.; Bastin, Mark E.

    2015-01-01

    Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how grey matter proportion changes with age in a group of working age adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25–64 years. Using a validated VBM procedure and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in grey matter proportion with age were assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at P < 0.05 and false discovery rate (FDR) used to correct for multiple comparisons. Clusters of voxels with statistically significant (PFDR < 0.05) declines in grey matter proportion with age identified with permutation testing inference (N ≈ 6000) were approximately twice the size of those identified with parametric inference (N = 3221 voxels). Permutation testing with 10000 (N = 6251 voxels) and 20000 (N = 6233 voxels) permutations produced clusters that were generally consistent with each other. However, with ≥ 1000 permutations there were approximately 20% more statistically significant voxels (N = 7117 voxels) than with 10000 permutations. Permutation testing inference may provide a more sensitive method than traditional parametric inference for identifying age-related differences in grey matter proportion. Based on the results reported here, at least 10000 permutations should be used in future univariate VBM studies investigating age related changes in grey matter to avoid potential false findings. Additional studies using permutation testing in large

  6. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin–orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  7. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  8. A hybrid approach for rapid, accurate, and direct kilovoltage radiation dose calculations in CT voxel space

    SciTech Connect

    Kouznetsov, Alexei; Tambasco, Mauro

    2011-03-15

    Purpose: To develop and validate a fast and accurate method that uses computed tomography (CT) voxel data to estimate absorbed radiation dose at a point of interest (POI) or series of POIs from a kilovoltage (kV) imaging procedure. Methods: The authors developed an approach that computes absorbed radiation dose at a POI by numerically evaluating the linear Boltzmann transport equation (LBTE) using a combination of deterministic and Monte Carlo (MC) techniques. This hybrid approach accounts for material heterogeneity with a level of accuracy comparable to the general MC algorithms. Also, the dose at a POI is computed within seconds using the Intel Core i7 CPU 920 2.67 GHz quad core architecture, and the calculations are performed using CT voxel data, making it flexible and feasible for clinical applications. To validate the method, the authors constructed and acquired a CT scan of a heterogeneous block phantom consisting of a succession of slab densities: Tissue (1.29 cm), bone (2.42 cm), lung (4.84 cm), bone (1.37 cm), and tissue (4.84 cm). Using the hybrid transport method, the authors computed the absorbed doses at a set of points along the central axis and x direction of the phantom for an isotropic 125 kVp photon spectral point source located along the central axis 92.7 cm above the phantom surface. The accuracy of the results was compared to those computed with MCNP, which was cross-validated with EGSnrc, and served as the benchmark for validation. Results: The error in the depth dose ranged from -1.45% to +1.39% with a mean and standard deviation of -0.12% and 0.66%, respectively. The error in the x profile ranged from -1.3% to +0.9%, with standard deviations of -0.3% and 0.5%, respectively. The number of photons required to achieve these results was 1x10{sup 6}. Conclusions: The voxel-based hybrid method evaluates the LBTE rapidly and accurately to estimate the absorbed x-ray dose at any POI or series of POIs from a kV imaging procedure.

  9. Modelo analítico del efecto de PRS sobre satélites GPS

    NASA Astrophysics Data System (ADS)

    Meza, A.; Brunini, C.; Usandivaras, J. C.

    El sistema GPS (Global Position System) es, hoy en día, la herramienta de navegación y posicionamiento más potente y lo será sin duda en la próxima década. Gran parte de su valiosa utilidad se debe a la alta precisión que permite lograr y ésta, a su vez, depende, entre otras causas, de la precisión con que se conocen las órbitas de los satélites. La presión de radiación solar (PRS) fija el límite de la precisión con que pueden calcularse en la actualidad las efemérides satelitarias. El objetivo de este trabajo es proponer una mejor resolución de este fenómeno. El modelo analítico aquí presentado, se basa en el análisis del comportamiento de los residuos de un ajuste por mínimos cuadrados en el que se utiliza el modelo de PRS propuesto por Beutler. El mismo consiste en un modelo determinista del fenómeno con dos parámetros libres. Los resultados obtenidos ponen de manifiesto que, aún después de aplicar dichos parámetros, prevalecen en los residuos efectos semidiurnos en las componentes radial,tangencial y normal. Estos resultados obtenidos se comparan con los de un trabajo desarrollado por el Instituto de Berne (Beutler et al., 1994), en el que se utilizaron como pseudo-observaciones las órbitas precisas del IGS (CODE). El intervalo de integración escogido por este centro fueron las semanas 680 y 681. En resumen se tienen arcos de 14 días para todos los satélites, donde las efemérides precisas de los mismos para los 14 días fueron utilizados como pseudo-observaciones. El modelo de fuerza que empleó dicho centro fue básicamente el tradicional en lo que respecta al modelo de las fuerzas gravitacionales, y para la PRS utilizo el modelo standard de Beutler. Los parámetros de este modelo junto con las 6 condiciones iniciales (posición y velocidad) fueron ajustados por el método general de mínimos cuadrados. Los residuos en la componente radial, tangencial y normal, para los satélites con un buen comportamiento, presentan una

  10. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  11. Voxel based morphometry in optical coherence tomography: validation and core findings

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.

  12. Voxel-based morphometry in patients with cryptogenic occipital epilepsies. Preliminary data.

    PubMed

    Bilo, L; De Leva, M F; Meo, R; Tortora, F; Esposito, F; Aragri, A; Elefante, A

    2010-03-01

    We evaluated the differences in grey matter concentration (GMC) by voxel-based morphometry (VBM) in patients with cryptogenic occipital epilepsies. VBM analysis was performed in 11 patients with cryptogenic occipital epilepsies compared to 11 healthy controls. VBM analysis in patients revealed focal areas of reduced GMC in the occipital cortex and, more interestingly, increased GMC in the midbrain tegmentum and basal ganglia (globus pallidus and thalamus). VBM may disclose slight structural abnormalities in the brain of cryptogenic epilepsy patients, not evident with standard MRI. To the best of our knowledge, this is the first literature report describing areas of altered GMC in patients with occipital epilepsy. We hypothesize that these findings might be related to epileptic discharges and/or their diffusion and suggest that midbrain, globus pallidus and thalamus may be part of a functional network originating from the occipital areas.

  13. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation.

    PubMed

    Boia, L S; Menezes, A F; Cardoso, M A C; da Rosa, L A R; Batista, D V S; Cardoso, S C; Silva, A X; Facure, A

    2012-01-01

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of (60)Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively.

  14. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning.

    PubMed

    Keifer, O P; Hurt, R C; Gutman, D A; Keilholz, S D; Gourley, S L; Ressler, K J

    2015-07-07

    Neuroimaging has provided compelling data about the brain. Yet the underlying mechanisms of many neuroimaging techniques have not been elucidated. Here we report a voxel-based morphometry (VBM) study of Thy1-YFP mice following auditory fear conditioning complemented by confocal microscopy analysis of cortical thickness, neuronal morphometric features and nuclei size/density. Significant VBM results included the nuclei of the amygdala, the insula and the auditory cortex. There were no significant VBM changes in a control brain area. Focusing on the auditory cortex, confocal analysis showed that fear conditioning led to a significantly increased density of shorter and wider dendritic spines, while there were no spine differences in the control area. Of all the morphology metrics studied, the spine density was the only one to show significant correlation with the VBM signal. These data demonstrate that learning-induced structural changes detected by VBM may be partially explained by increases in dendritic spine density.

  15. Volumetric and voxel-based morphometry findings in autism subjects with and without macrocephaly.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E

    2010-01-01

    This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly overrepresentation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings.

  16. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    SciTech Connect

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; Veinot, Kenneth G.; Leggett, Richard Wayne; Eckerman, Keith F.; Easterly, Clay E.; Hertel, Nolan E.

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photons in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.

  17. Feasibility of voxel-based statistical analysis method for myocardial PET

    NASA Astrophysics Data System (ADS)

    Ram Yu, A.; Kim, Jin Su; Paik, Chang H.; Kim, Kyeong Min; Moo Lim, Sang

    2014-09-01

    Although statistical parametric mapping (SPM) analysis is widely used in neuroimaging studies, to our best knowledge, there was no application to myocardial PET data analysis. In this study, we developed the voxel based statistical analysis method for myocardial PET which provides statistical comparison results between groups in image space. PET Emission data of normal and myocardial infarction rats were acquired For the SPM analysis, a rat heart template was created. In addition, individual PET data was spatially normalized and smoothed. Two sample t-tests were performed to identify the myocardial infarct region. This developed SPM method was compared with conventional ROI methods. Myocardial glucose metabolism was decreased in the lateral wall of the left ventricle. In the result of ROI analysis, the mean value of the lateral wall was 29% decreased. The newly developed SPM method for myocardial PET could provide quantitative information in myocardial PET study.

  18. Volumetric and Voxel-Based Morphometry Findings in Autism Subjects With and Without Macrocephaly

    PubMed Central

    Bigler, Erin D.; Abildskov, Tracy J.; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E.

    2015-01-01

    This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly over-representation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings. PMID:20446133

  19. Comparison of monoenergetic photon organ dose rate coefficients for stylized and voxel phantoms submerged in air

    DOE PAGES

    Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...

    2016-02-01

    As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less

  20. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV.

  1. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  2. A voxel-based finite element model for the prediction of bladder deformation

    SciTech Connect

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-15

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  3. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy.

    PubMed

    Acosta, Oscar; Drean, Gael; Ospina, Juan D; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud

    2013-04-21

    The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (≥Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.

  4. Voxel-based lesion-symptom mapping of stroke lesions underlying somatosensory deficits

    PubMed Central

    Meyer, Sarah; Kessner, Simon S.; Cheng, Bastian; Bönstrup, Marlene; Schulz, Robert; Hummel, Friedhelm C.; De Bruyn, Nele; Peeters, Andre; Van Pesch, Vincent; Duprez, Thierry; Sunaert, Stefan; Schrooten, Maarten; Feys, Hilde; Gerloff, Christian; Thomalla, Götz; Thijs, Vincent; Verheyden, Geert

    2015-01-01

    The aim of this study was to investigate the relationship between stroke lesion location and the resulting somatosensory deficit. We studied exteroceptive and proprioceptive somatosensory symptoms and stroke lesions in 38 patients with first-ever acute stroke. The Erasmus modified Nottingham Sensory Assessment was used to clinically evaluate somatosensory functioning in the arm and hand within the first week after stroke onset. Additionally, more objective measures such as the perceptual threshold of touch and somatosensory evoked potentials were recorded. Non-parametric voxel-based lesion-symptom mapping was performed to investigate lesion contribution to different somatosensory deficits in the upper limb. Additionally, structural connectivity of brain areas that demonstrated the strongest association with somatosensory symptoms was determined, using probabilistic fiber tracking based on diffusion tensor imaging data from a healthy age-matched sample. Voxels with a significant association to somatosensory deficits were clustered in two core brain regions: the central parietal white matter, also referred to as the sensory component of the superior thalamic radiation, and the parietal operculum close to the insular cortex, representing the secondary somatosensory cortex. Our objective recordings confirmed findings from clinical assessments. Probabilistic tracking connected the first region to thalamus, internal capsule, brain stem, postcentral gyrus, cerebellum, and frontal pathways, while the second region demonstrated structural connections to thalamus, insular and primary somatosensory cortex. This study reveals that stroke lesions in the sensory fibers of the superior thalamocortical radiation and the parietal operculum are significantly associated with multiple exteroceptive and proprioceptive deficits in the arm and hand. PMID:26900565

  5. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: A Voxel-Based Morphometry Study

    PubMed Central

    Piccinin, Camila C.; Piovesana, Luiza G.; Santos, Maria C. A.; Guimarães, Rachel P.; De Campos, Brunno M.; Rezende, Thiago J. R.; Campos, Lidiane S.; Torres, Fabio R.; Amato-Filho, Augusto C.; França, Marcondes C.; Lopes-Cendes, Iscia; Cendes, Fernando; D’Abreu, Anelyssa

    2015-01-01

    Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia (CCD). Neuroimaging studies have attempted to identify structural abnormalities in CCD but a clear pattern of alteration has not been established. We performed whole-brain evaluation using voxel-based morphometry (VBM) to identify patterns of gray matter (GM) changes in CCD. Methods: We compared 27 patients with CCD matched in age and gender to 54 healthy controls. VBM was used to compare GM volumes. We created a two-sample t-test corrected for subjects’ age, and we tested with a level of significance of p < 0.001 and false discovery rate (FDR) correction (p < 0.05). Results: Voxel-based morphometry demonstrated significant reductions of GM using p < 0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus, and calcarine fissure; in the left hemisphere in the supplementary motor area, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum, hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior, and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the FDR correction. We also detected correlations between GM volume and age, disease duration, duration of botulinum toxin treatment, and the Marsden–Fahn dystonia scale scores. Conclusion: We detected large clusters of GM changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function, and emotional processing. PMID:25620953

  6. Voxel modeling of rabbits for use in radiological dose rate calculations.

    PubMed

    Caffrey, E A; Johansen, M P; Higley, K A

    2016-01-01

    Radiation dose to biota is generally calculated using Monte Carlo simulations of whole body ellipsoids with homogeneously distributed radioactivity throughout. More complex anatomical phantoms, termed voxel phantoms, have been developed to test the validity of these simplistic geometric models. In most voxel models created to date, human tissue composition and density values have been used in lieu of biologically accurate values for non-human biota. This has raised questions regarding variable tissue composition and density effects on the fraction of radioactive emission energy absorbed within tissues (e.g. the absorbed fraction - AF), along with implications for age-dependent dose rates as organisms mature. The results of this study on rabbits indicates that the variation in composition between two mammalian tissue types (e.g. human vs rabbit bones) made little difference in self-AF (SAF) values (within 5% over most energy ranges). However, variable tissue density (e.g. bone vs liver) can significantly impact SAF values. An examination of differences across life-stages revealed increasing SAF with testis and ovary size of over an order of magnitude for photons and several factors for electrons, indicating the potential for increasing dose rates to these sensitive organs as animals mature. AFs for electron energies of 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, and 4.0 MeV and photon energies of 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV are provided for eleven rabbit tissues. The data presented in this study can be used to calculate accurate organ dose rates for rabbits and other small rodents; to aide in extending dose results among different mammal species; and to validate the use of ellipsoidal models for regulatory purposes.

  7. Organ doses from environmental exposures calculated using voxel phantoms of adults and children

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Schlattl, H.; Zankl, M.; Endo, A.; Saito, K.

    2012-09-01

    This paper presents effective and organ dose conversion coefficients for members of the public due to environmental external exposures, calculated using the ICRP adult male and female reference computational phantoms as well as voxel phantoms of a baby, two children and four adult individual phantoms--one male and three female, one of them pregnant. Dose conversion coefficients are given for source geometries representing environmental radiation exposures, i.e. whole body irradiations from a volume source in air, representing a radioactive cloud, a plane source in the ground at a depth of 0.5 g cm-2, representing ground contamination by radioactive fall-out, and uniformly distributed natural sources in the ground. The organ dose conversion coefficients were calculated employing the Monte Carlo code EGSnrc simulating the photon transport in the voxel phantoms, and are given as effective and equivalent doses normalized to air kerma free-in-air at height 1 m above the ground in Sv Gy-1. The findings showed that, in general, the smaller the body mass of the phantom, the higher the dose. The difference in effective dose between an adult and an infant is 80-90% at 50 keV and less than 40% above 100 keV. Furthermore, dose equivalent rates for photon exposures of several radionuclides for the above environmental exposures were calculated with the most recent nuclear decay data. Data are shown for effective dose, thyroid, colon and red bone marrow. The results are expected to facilitate regulation of exposure to radiation, relating activities of radionuclides distributed in air and ground to dose of the public due to external radiation as well as the investigation of the radiological effects of major radiation accidents such as the recent one in Fukushima and the decision making of several committees.

  8. S values for 131I based on the ICRP adult voxel phantoms

    PubMed Central

    Lamart, Stephanie; Simon, Steven L.; Bouville, Andre; Moroz, Brian E.; Lee, Choonsik

    2016-01-01

    To improve the estimates of organ doses from nuclear medicine procedures using 131I, the authors calculated a comprehensive set of 131I S values, defined as absorbed doses in target tissues per unit of nuclear transition in source regions, for different source and target combinations. The authors used the latest reference adult male and female voxel phantoms published by the International Commission on Radiological Protection (ICRP Publication 110) and the 131I photon and electron spectra from the ICRP Publication 107 to perform Monte Carlo radiation transport calculations using MCNPX2.7 to compute the S values. For each phantom, the authors simulated 55 source regions with an assumed uniform distribution of 131I. They computed the S values for 42 target tissues directly, without calculating specific absorbed fractions. From these calculations, the authors derived a comprehensive set of S values for 131I for 55 source regions and 42 target tissues in the ICRP male and female voxel phantoms. Compared with the stylised phantoms from Oak Ridge National Laboratory (ORNL) that consist of 22 source regions and 24 target regions, the new data set includes 1662 additional S values corresponding to additional combinations of source–target tissues that are not available in the stylised phantoms. In a comparison of S values derived from the ICRP and ORNL phantoms, the authors found that the S values to the radiosensitive tissues in the ICRP phantoms were 1.1 (median, female) and 1.3 (median, male) times greater than the values based on the ORNL phantoms. However, for several source–target pairs, the difference was up to 10-fold. The new set of S values can be applied prospectively or retrospectively to the calculation of radiation doses in adults internally exposed to 131I, including nuclear medicine patients treated for thyroid cancer or hyperthyroidism. PMID:25829162

  9. Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy

    PubMed Central

    Grabher, Patrick; Mohammadi, Siawoosh; Trachsler, Aaron; Friedl, Susanne; David, Gergely; Sutter, Reto; Weiskopf, Nikolaus; Thompson, Alan J.; Curt, Armin; Freund, Patrick

    2016-01-01

    In this prospective study, we made an unbiased voxel-based analysis to investigate above-stenosis spinal degeneration and its relation to impairment in patients with cervical spondylotic myelopathy (CSM). Twenty patients and 18 controls were assessed with high-resolution MRI protocols above the level of stenosis. Cross-sectional areas of grey matter (GM), white matter (WM), and posterior columns (PC) were measured to determine atrophy. Diffusion indices assessed tract-specific integrity of PC and lateral corticospinal tracts (CST). Regression analysis was used to reveal relationships between MRI measures and clinical impairment. Patients showed mainly sensory impairment. Atrophy was prominent within the cervical WM (13.9%, p = 0.004), GM (7.2%, p = 0.043), and PC (16.1%, p = 0.005). Fractional anisotropy (FA) was reduced in the PC (−11.98%, p = 0.006) and lateral CST (−12.96%, p = 0.014). In addition, radial (+28.47%, p = 0.014), axial (+14.72%, p = 0.005), and mean (+16.50%, p = 0.001) diffusivities were increased in the PC. Light-touch score was associated with atrophy (R2 = 0.3559, p = 0.020) and FA (z score 3.74, p = 0.003) in the PC, as was functional independence and FA in the lateral CST (z score 3.68, p = 0.020). This study demonstrates voxel-based degeneration far above the stenosis at a level not directly affected by the compression and provides unbiased readouts of tract-specific changes that relate to impairment. PMID:27095134

  10. The small-voxel tracking algorithm for simulating chemical reactions among diffusing molecules

    NASA Astrophysics Data System (ADS)

    Gillespie, Daniel T.; Seitaridou, Effrosyni; Gillespie, Carol A.

    2014-12-01

    Simulating the evolution of a chemically reacting system using the bimolecular propensity function, as is done by the stochastic simulation algorithm and its reaction-diffusion extension, entails making statistically inspired guesses as to where the reactant molecules are at any given time. Those guesses will be physically justified if the system is dilute and well-mixed in the reactant molecules. Otherwise, an accurate simulation will require the extra effort and expense of keeping track of the positions of the reactant molecules as the system evolves. One molecule-tracking algorithm that pays careful attention to the physics of molecular diffusion is the enhanced Green's function reaction dynamics (eGFRD) of Takahashi, Tănase-Nicola, and ten Wolde [Proc. Natl. Acad. Sci. U.S.A. 107, 2473 (2010)]. We introduce here a molecule-tracking algorithm that has the same theoretical underpinnings and strategic aims as eGFRD, but a different implementation procedure. Called the small-voxel tracking algorithm (SVTA), it combines the well known voxel-hopping method for simulating molecular diffusion with a novel procedure for rectifying the unphysical predictions of the diffusion equation on the small spatiotemporal scale of molecular collisions. Indications are that the SVTA might be more computationally efficient than eGFRD for the problematic class of non-dilute systems. A widely applicable, user-friendly software implementation of the SVTA has yet to be developed, but we exhibit some simple examples which show that the algorithm is computationally feasible and gives plausible results.

  11. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP)

    NASA Astrophysics Data System (ADS)

    Bitar, A.; Lisbona, A.; Thedrez, P.; Sai Maurel, C.; LeForestier, D.; Barbet, J.; Bardies, M.

    2007-02-01

    Murine models are useful for targeted radiotherapy pre-clinical experiments. These models can help to assess the potential interest of new radiopharmaceuticals. In this study, we developed a voxel-based mouse for dosimetric estimates. A female nude mouse (30 g) was frozen and cut into slices. High-resolution digital photographs were taken directly on the frozen block after each section. Images were segmented manually. Monoenergetic photon or electron sources were simulated using the MCNP4c2 Monte Carlo code for each source organ, in order to give tables of S-factors (in Gy Bq-1 s-1) for all target organs. Results obtained from monoenergetic particles were then used to generate S-factors for several radionuclides of potential interest in targeted radiotherapy. Thirteen source and 25 target regions were considered in this study. For each source region, 16 photon and 16 electron energies were simulated. Absorbed fractions, specific absorbed fractions and S-factors were calculated for 16 radionuclides of interest for targeted radiotherapy. The results obtained generally agree well with data published previously. For electron energies ranging from 0.1 to 2.5 MeV, the self-absorbed fraction varies from 0.98 to 0.376 for the liver, and from 0.89 to 0.04 for the thyroid. Electrons cannot be considered as 'non-penetrating' radiation for energies above 0.5 MeV for mouse organs. This observation can be generalized to radionuclides: for example, the beta self-absorbed fraction for the thyroid was 0.616 for I-131; absorbed fractions for Y-90 for left kidney-to-left kidney and for left kidney-to-spleen were 0.486 and 0.058, respectively. Our voxel-based mouse allowed us to generate a dosimetric database for use in preclinical targeted radiotherapy experiments.

  12. S values for 131I based on the ICRP adult voxel phantoms.

    PubMed

    Lamart, Stephanie; Simon, Steven L; Bouville, Andre; Moroz, Brian E; Lee, Choonsik

    2016-01-01

    To improve the estimates of organ doses from nuclear medicine procedures using (131)I, the authors calculated a comprehensive set of (131)I S values, defined as absorbed doses in target tissues per unit of nuclear transition in source regions, for different source and target combinations. The authors used the latest reference adult male and female voxel phantoms published by the International Commission on Radiological Protection (ICRP Publication 110) and the (131)I photon and electron spectra from the ICRP Publication 107 to perform Monte Carlo radiation transport calculations using MCNPX2.7 to compute the S values. For each phantom, the authors simulated 55 source regions with an assumed uniform distribution of (131)I. They computed the S values for 42 target tissues directly, without calculating specific absorbed fractions. From these calculations, the authors derived a comprehensive set of S values for (131)I for 55 source regions and 42 target tissues in the ICRP male and female voxel phantoms. Compared with the stylised phantoms from Oak Ridge National Laboratory (ORNL) that consist of 22 source regions and 24 target regions, the new data set includes 1662 additional S values corresponding to additional combinations of source-target tissues that are not available in the stylised phantoms. In a comparison of S values derived from the ICRP and ORNL phantoms, the authors found that the S values to the radiosensitive tissues in the ICRP phantoms were 1.1 (median, female) and 1.3 (median, male) times greater than the values based on the ORNL phantoms. However, for several source-target pairs, the difference was up to 10-fold. The new set of S values can be applied prospectively or retrospectively to the calculation of radiation doses in adults internally exposed to (131)I, including nuclear medicine patients treated for thyroid cancer or hyperthyroidism.

  13. Voxel model of individual cells and its implementation in microdosimetric calculations using GEANT4.

    PubMed

    Sihver, Lembit; Ni, Jie; Sun, Liang; Kong, Dong; Ren, Yuanyuan; Gu, Siyi

    2014-08-01

    Accurate dosimetric calculations at cellular and sub-cellular levels are crucial to obtain an increased understanding of the interactions of ionizing radiation with a cell and its nucleus and cytoplasm. Ion microbeams provide a superior opportunity to irradiate small biological samples, e.g., DNA, cells, and to compare their response to computer simulations. However, the phantoms used to simulate small biological samples at cellular levels are often simplified as simple volumes filled with water. As a first step to improve the situation in comparing measurements of cell response to ionizing radiation with model calculations, a realistic voxel model of a KB cell was constructed and used together with an already constructed geometry and tracking 4 (GEANT4) model of the horizontal microbeam line of the Centre d'Etudes Nucléaires de Bordeaux-Gradignan (CENBG) 3.5 MV Van de Graaf accelerator at the CENBG, France. The microbeam model was then implemented into GEANT4 for simulations of the average number of particles hitting an irradiated cell when a specified number of particles are produced in the beam line. The result shows that when irradiating the developed voxel model of a KB cell with 200 α particles, with a nominal energy of 3 MeV in the beam line and 2.34 MeV at the cell entrance, 100 particles hit the cell on average. The mean specific energy is 0.209 ± 0.019 Gy in the nucleus and 0.044 ± 0.001 Gy in the cytoplasm. These results are in agreement with previously published data, which indicates that this model could act as a reference model for dosimetric calculations of radiobiological experiments, and that the proposed method could be applied to build a cell model database.

  14. Voxel-based population analysis for correlating local dose and rectal toxicity in prostate cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Acosta, Oscar; Drean, Gael; Ospina, Juan D.; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud

    2013-04-01

    The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (⩾Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.

  15. Voxel2MCNP: a framework for modeling, simulation and evaluation of radiation transport scenarios for Monte Carlo codes.

    PubMed

    Pölz, Stefan; Laubersheimer, Sven; Eberhardt, Jakob S; Harrendorf, Marco A; Keck, Thomas; Benzler, Andreas; Breustedt, Bastian

    2013-08-21

    The basic idea of Voxel2MCNP is to provide a framework supporting users in modeling radiation transport scenarios using voxel phantoms and other geometric models, generating corresponding input for the Monte Carlo code MCNPX, and evaluating simulation output. Applications at Karlsruhe Institute of Technology are primarily whole and partial body counter calibration and calculation of dose conversion coefficients. A new generic data model describing data related to radiation transport, including phantom and detector geometries and their properties, sources, tallies and materials, has been developed. It is modular and generally independent of the targeted Monte Carlo code. The data model has been implemented as an XML-based file format to facilitate data exchange, and integrated with Voxel2MCNP to provide a common interface for modeling, visualization, and evaluation of data. Also, extensions to allow compatibility with several file formats, such as ENSDF for nuclear structure properties and radioactive decay data, SimpleGeo for solid geometry modeling, ImageJ for voxel lattices, and MCNPX's MCTAL for simulation results have been added. The framework is presented and discussed in this paper and example workflows for body counter calibration and calculation of dose conversion coefficients is given to illustrate its application.

  16. Quantification of Vasa Vasorum Density in MSCT Coronary Angiograms – Role of CT-Image Voxel Size

    PubMed Central

    Moritz, Regina; Eaker, Diane R.; Langheinrich, Alexander C.; Jorgensen, Steven M.; Bohle, Rainer M.; Ritman, Erik L.

    2009-01-01

    Objective This study is motivated by the possibility of using CT to detect early coronary atherosclerosis by the increased CT-values within the arterial wall resulting from vasa vasorum proliferation. Methods Coronary arteries (n=5) with early atherosclerotic changes were injected with Microfil® and scanned (micro-CT). Noise was added to the scan projection data sets (to represent the radiation exposure of current clinical CT-scanners), and then reconstructed to generate 3D-images at different voxel sizes. Results Higher CT-values were detected due to contrast agent in vasa vasorum if voxel size was less than (150μm)3. Contrast in the main lumen increased CT-values dramatically at voxels greater than (100μm)3, whereas CT-values of the same specimen without contrast in the main lumen remained constant. Conclusion Voxel sizes < (200μm)3 are needed to quantitate arterial wall opacification due to vasa vasorum proliferation. PMID:20351520

  17. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  18. The Neural Basis of Reversible Sentence Comprehension: Evidence from Voxel-Based Lesion Symptom Mapping in Aphasia

    ERIC Educational Resources Information Center

    Thothathiri, Malathi; Kimberg, Daniel Y.; Schwartz, Myrna F.

    2012-01-01

    We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We…

  19. Abnormal Functional Specialization within Medial Prefrontal Cortex in High-Functioning Autism: A Multi-Voxel Similarity Analysis

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Meuwese, Julia D. I.; Towgood, Karren J.; Frith, Christopher D.; Burgess, Paul W.

    2009-01-01

    Multi-voxel pattern analyses have proved successful in "decoding" mental states from fMRI data, but have not been used to examine brain differences associated with atypical populations. We investigated a group of 16 (14 males) high-functioning participants with autism spectrum disorder (ASD) and 16 non-autistic control participants (12 males)…

  20. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects

    PubMed Central

    Kolsuz, M E; Bagis, N; Avsever, H; Demiralp, K Ö

    2015-01-01

    Objectives: This study assessed the influence of different voxel resolutions of two different CBCT units on the in vitro detection of periodontal defects. Methods: The study used 12 dry skulls with a maxilla and a mandible. Artificial defects (dehiscence, tunnel, fenestration) were separately created on the anterior, premolar and molar teeth using burrs. A total of 14 dehiscences, 13 fenestrations, 8 tunnels and 16 non-defect controls were used in the study. Images were obtained from two different CBCT units in six voxel sizes (voxel size: 0.080, 0.100, 0.125, 0.150, 0.160 and 0.200 mm3). Kappa coefficients were calculated to assess both intra- and interobserver agreements for each image set. Results: Overall intraobserver kappa coefficients ranged between 0.978 and 0.973 for the 0.080-mm3 images and between 0.751 and 0.737 for the 0.160-mm3 images, suggesting notably high intraobserver agreement for detecting periodontal defects. CBCT performed significantly better at detecting fenestrations (p < 0.05) than tunnel and dehiscence defects. No statistically significant difference was found between the detection of dehiscence and tunnel defects (p > 0.05). Conclusions: A voxel size of 0.150 mm3 was identified as the cut-off point for overall detection of periodontal defects. CBCT should be considered the most reliable imaging modality for the diagnosis of periodontal defects. PMID:25900235

  1. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  2. Standardized method to quantify the variation in voxel value distribution in patient-simulated CBCT data sets

    PubMed Central

    Gotfredsen, E; Wenzel, A

    2015-01-01

    Objectives: To suggest a standardized method to assess the variation in voxel value distribution in patient-simulated CBCT data sets and the effect of time between exposures (TBE). Additionally, a measurement of reproducibility, Aarhus measurement of reproducibility (AMORe), is introduced, which could be used for quality assurance purposes. Methods: Six CBCT units were tested [Cranex® 3D/CRAN (Soredex Oy, Tuusula, Finland); Scanora® 3D/SCAN (Soredex Oy); NewTom™ 5G/NEW5 (QR srl, Verona, Italy); i-CAT/ICAT (Imaging Sciences International, Hatfield, PA); 3D Accuitomo FPD80/ACCU (Morita, Kyoto, Japan); and NewTom VG/NEWV (QR srl)]. Two sets of volumetric data of a wax-imbedded dry human skull (containing a titanium implant) were acquired by each CBCT unit at two sessions on separate days. Each session consisted 21 exposures: 1 “initial” followed by a 30-min interval (initial data set), 10 acquired with 30-min TBE (data sets 1–10) and 10 acquired with 15-min TBE (data sets 11–20). CBCT data were exported as digital imaging and communications in medicine files and converted to text files containing x, y and z positions and grey shade for each voxel. Subtractions were performed voxel-by-voxel in two set-ups: (1) between two consecutive data sets and (2) between any subsequent data set and data set 1. The mean grey shade variation for each voxel was calculated for each unit/session. Results: The largest mean grey shade variation was found in the subtraction set-up 2 (27–447 shades of grey, depending on the unit). Considering subtraction set-up 1, the highest variation was seen for NEW5, between data sets 1 and the initial. Conclusions: Discrepancies in voxel value distribution were found by comparing the initial examination of the day with the subsequent examinations. TBE had no predictable effect on the variation of CBCT-derived voxel values. AMORe ranged between 0 and 64. PMID:25354021

  3. Construction of anthropomorphic hybrid, dual-lattice voxel models for optimizing image quality and dose in radiography

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph

    2014-03-01

    In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.

  4. Effects of voxel size and resolution on the accuracy of endodontic length measurement using cone beam computed tomography.

    PubMed

    Aktan, Ali Murat; Yildirim, Cihan; Karataşlıoğlu, Emrah; Çiftçi, Mehmet Ertuğrul; Aksoy, Fatih

    2016-11-01

    An accurate determination of the working length is indispensable for successful endodontic treatment. The aim of this study was to determine the influence of the voxel size and resolution of CBCT on measuring root canal working length. Thirty extracted single-rooted permanent teeth were used for this study. The working lengths of the teeth were determined by a researcher inserted a K-file into each canal until the tip became visible through the major foramen. The file was withdrawn until its tip was seen at the level of the coronal-most border of the major foramen under. The rubber stop was adjusted to the occlusal reference and the distance from the stop to the false tip was measured with digital calipers and recorded as the actual working length. The CBCT images were obtained with a Planmeca ProMax 3D Mid (Planmeca, Helsinki, Finland) using four sets of settings: from voxel size 0.5mm to voxel size 1.0mm. These measurements were compared with actual lengths (as a control group) using Analysis of Variance and the Dunnett Post Hoc Test. The Pearson correlation coefficient (r) and 95% confidence intervals were calculated to compare all measurement methods. The significance level was set at P<0.05. No significant difference was found among CBCT groups and working length. A highest correlation was found between the actual length and smallest voxel size and highest CBCT measurements (r=0.94). CBCT imaging can be used endodontic working length measurement and the smallest voxel size and highest resolution yielded more accurate results.

  5. Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy

    SciTech Connect

    Bazalova, Magdalena; Zhou, Hu; Keall, Paul J.; Graves, Edward E.

    2009-11-15

    Purpose: Small animal conformal radiotherapy (RT) is essential for preclinical cancer research studies and therefore various microRT systems have been recently designed. The aim of this paper is to efficiently calculate the dose delivered using our microRT system based on a microCT scanner with the Monte Carlo (MC) method and to compare the MC calculations to film measurements. Methods: Doses from 2-30 mm diameter 120 kVp photon beams deposited in a solid water phantom with 0.2x0.2x0.2 mm{sup 3} voxels are calculated using the latest versions of the EGSnrc codes BEAMNRC and DOSXYZNRC. Two dose calculation approaches are studied: a two-step approach using phase-space files and direct dose calculation with BEAMNRC simulation sources. Due to the small beam size and submillimeter voxel size resulting in long calculation times, variance reduction techniques are studied. The optimum bremsstrahlung splitting number (NBRSPL in BEAMNRC) and the optimum DOSXYZNRC photon splitting (N{sub split}) number are examined for both calculation approaches and various beam sizes. The dose calculation efficiencies and the required number of histories to achieve 1% statistical uncertainty--with no particle recycling--are evaluated for 2-30 mm beams. As a final step, film dose measurements are compared to MC calculated dose distributions. Results: The optimum NBRSPL is approximately 1x10{sup 6} for both dose calculation approaches. For the dose calculations with phase-space files, N{sub split} varies only slightly for 2-30 mm beams and is established to be 300. N{sub split} for the DOSXYZNRC calculation with the BEAMNRC source ranges from 300 for the 30 mm beam to 4000 for the 2 mm beam. The calculation time significantly increases for small beam sizes when the BEAMNRC simulation source is used compared to the simulations with phase-space files. For the 2 and 30 mm beams, the dose calculations with phase-space files are more efficient than the dose calculations with BEAMNRC sources by

  6. Application of Single Voxel 1H Magnetic Resonance Spectroscopy in Hepatic Benign and Malignant Lesions

    PubMed Central

    Yang, Zifeng; Sun, Shiqiang; Chen, Yuanli; Li, Rui

    2016-01-01

    Background To quantify the metabolite changes in hepatic tumors by single-voxel 1H magnetic resonance spectroscopy (MRS) at 3.0 T and explore the application value of 1HMRS in the diagnosis of hepatic benign and malignant lesions. Material/Methods A total of 45 patients (55 lesions) diagnosed with hepatic lesions by ultrasound and/or computer topography (CT) from November 2006 to March 2007 were included in this study. All patients underwent 3D-dynamic enhanced scan with liver acquisition with acceleration volume acquisition (LAVA) sequence and single-voxel 1HMRS imaging with PRESS (point-resolved spectroscopy) sequence. The metabolite concentrations such as choline (Cho) and lipids (Lip) were measured. Results There was significant difference regarding the occurrence rate of the obvious elevated Cho peaks between benign and malignant tumors (7/27 vs. 21/28, p=0.000). There was statistical significant differences regarding the Cho/Lip ratios in hepatic benign (0.0686±0.0283, 95% CI: 0.0134–0.1245) and malignant (0.1266±0.1124, 95% CI: 0.0937–0.2203) lesions (p<0.05). When compared with the pathological results, the sensitivity, specificity, positive predictive value, negative predictive value, and overall accuracy were 85.7% (24/28), 92.6% (25/27), 92.3% (24/26), 86.2% (25/29), and 89.1% (49/55) respectively for the MRI assessment, and 92.6% (26/28), 88.9% (24/27), 89.7 (26/29), 92.3 (24/26), and 90.9% (50/55) respectively for 1HMRS combined with MRI assessment. Conclusions Single Cho peaks or Lip peaks cannot be used for the diagnosis of hepatic benign and malignant lesions. Combined use of 1HMRS and MRI can greatly improve the application value of MRI assessment in the diagnosis of hepatic benign and malignant lesions with a higher sensitivity, negative predictive value, and overall accuracy. PMID:27992399

  7. Influence of Group on Individual Subject Maps in SPM Voxel Based Morphometry

    PubMed Central

    Michael, Andrew M.; Evans, Eli; Moore, Gregory J.

    2016-01-01

    Voxel based morphometry (VBM) is a widely utilized neuroimaging technique for spatially normalizing brain structural MRI (sMRI) onto a common template. The DARTEL technique of VBM takes into account the spatial intensity distribution of sMRIs to construct a study specific group template. The group template is then used to create final individual normalized tissue maps (FINTM) for each subject in the group. In this study, we investigate the effect of group on FINTM, i.e., we evaluate the variability of a constant subject's FINTM when other subjects in the group are iteratively changed. We examine this variability under the following scenarios: (1) when the demographics of the iterative groups are similar, (2) when the average age of the iterative groups is increased, and (3) when the number of subjects with a brain disorder (here we use subjects with autism) is increased. Our results show that when subject demographics of the group remains similar the mean standard deviation (SD) of FINTM gray matter (GM) of the constant subject was around 0.01. As the average age of the group is increased, mean SD of GM increased to around 0.03 and at certain brain locations variability was as high as 0.23. A similar increase in variability was observed when the number of autism subjects in the group was increased where mean SD was around 0.02. Further, we find that autism vs. control GM differences are in the range of −0.05 to +0.05 for more than 97% of the voxels and note that the magnitude of the differences are comparable to GM variability. Finally, we report that opting not to modulate during normalization or increasing the size of the smoothing kernel can decrease FINTM variability but at the loss of subject-specific features. Based on the findings of this study, we outline precautions that should be considered by investigators to reduce the impact of group on FINTM and thereby derive more meaningful group differences when comparing two cohorts of subjects. PMID:27994534

  8. Influence of Group on Individual Subject Maps in SPM Voxel Based Morphometry.

    PubMed

    Michael, Andrew M; Evans, Eli; Moore, Gregory J

    2016-01-01

    Voxel based morphometry (VBM) is a widely utilized neuroimaging technique for spatially normalizing brain structural MRI (sMRI) onto a common template. The DARTEL technique of VBM takes into account the spatial intensity distribution of sMRIs to construct a study specific group template. The group template is then used to create final individual normalized tissue maps (FINTM) for each subject in the group. In this study, we investigate the effect of group on FINTM, i.e., we evaluate the variability of a constant subject's FINTM when other subjects in the group are iteratively changed. We examine this variability under the following scenarios: (1) when the demographics of the iterative groups are similar, (2) when the average age of the iterative groups is increased, and (3) when the number of subjects with a brain disorder (here we use subjects with autism) is increased. Our results show that when subject demographics of the group remains similar the mean standard deviation (SD) of FINTM gray matter (GM) of the constant subject was around 0.01. As the average age of the group is increased, mean SD of GM increased to around 0.03 and at certain brain locations variability was as high as 0.23. A similar increase in variability was observed when the number of autism subjects in the group was increased where mean SD was around 0.02. Further, we find that autism vs. control GM differences are in the range of -0.05 to +0.05 for more than 97% of the voxels and note that the magnitude of the differences are comparable to GM variability. Finally, we report that opting not to modulate during normalization or increasing the size of the smoothing kernel can decrease FINTM variability but at the loss of subject-specific features. Based on the findings of this study, we outline precautions that should be considered by investigators to reduce the impact of group on FINTM and thereby derive more meaningful group differences when comparing two cohorts of subjects.

  9. Voxel-wise information theoretic EEG-fMRI feature integration.

    PubMed

    Ostwald, Dirk; Porcaro, Camillo; Bagshaw, Andrew P

    2011-04-01

    We have recently proposed the evaluation of a set of information theoretic quantities (ITQs) for the integration of simultaneously acquired EEG-fMRI data (Ostwald, D., Porcaro, C., Bagshaw, A.P., 2010. An information theoretic approach to EEG-fMRI integration of visually evoked responses. Neuroimage. 49, 498-516). In our previous experimental evaluation of the information theoretic framework, we defined the data subsets from which to calculate the ITQs using a priori constraints. In the case of EEG, this meant that data were extracted from a single electrode, while for fMRI the analysed data came from voxels contained within a sphere surrounding the most responsive voxel of visual cortex. While this approach was a natural starting point for the evaluation of the framework in the application to combined EEG-fMRI data sets, a more principled approach to data selection is desirable. Here, we propose to combine standard fMRI data pre-processing and low-resolution electromagnetic tomography (LORETA) for the evaluation of ITQs across the entire three-dimensional brain space. We apply the proposed method to a simultaneous EEG-fMRI data set acquired during checkerboard stimulation and assess the topographical informativeness of EEG (time and frequency domain) and fMRI features with respect to the stimulus and each other. The resulting information theoretic effect size maps are supplemented with a statistical evaluation based on Gaussian null model simulations using a false-discovery rate procedure. Given the contamination of EEG recordings by artefacts induced by the MR scanning environment we further assessed the influence of different advanced EEG pre-processing methods (independent component analysis and functional source separation) on the information topography. The results of this analysis provide evidence for the topographically focussed informativeness of both EEG and fMRI features with respect to the stimulus, but for the current feature selection do not detect

  10. An MR image-guided, voxel-based partial volume correction method for PET images

    PubMed Central

    Wang, Hesheng; Fei, Baowei

    2012-01-01

    Purpose: Partial volume effect in positron emission tomography (PET) can cause incorrect quantification of radiopharmaceutical uptake in functional imaging. A PET partial volume correction method is presented to attenuate partial volume blurring and to yield voxel-based corrected PET images. Methods: By modeling partial volume effect as a convolution of point spread function of the PET scanner, the reconstructed PET images are corrected by iterative deconvolution with an edge-preserving smoothness constraint. The constraint is constructed to restore discontinuities extracted from coregistered MR images but maintains the smoothness in radioactivity distribution. The correction is implemented in a Bayesian deconvolution framework and is solved by a conjugate gradient method. The performance of the method was compared with the geometric transfer matrix (GTM) method on a simulated dataset. The method was evaluated on synthesized brain FDG–PET data and phantom MRI–PET experiments. Results: The true PET activity of objects with a size of greater than the full-width at half maximum of the point spread function has been effectively restored in the simulated data. The partial volume correction method is quantitatively comparable to the GTM method. For synthesized FDG–PET with true activity 0 μci/cc for cerebrospinal fluid (CSF), 228 μci/cc for white matter (WM), and 621 μci/cc for gray matter (GM), the method has improved the radioactivity quantification from 186 ± 16 μci/cc to 30 ± 7 μci/cc in CSF, 317 ± 15 μci/cc to 236 ± 10 μci/cc for WM, 438 ± 4 μci/cc to 592 ± 5 μci/cc for GM. Both visual and quantitative assessments show improvement of partial volume correction in the synthesized and phantom experiments. Conclusions: The partial volume correction method improves the quantification of PET images. The method is comparable to the GTM method but does not need MR image segmentation or prior tracer distribution information. The

  11. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons

    SciTech Connect

    Xie Tianwu; Han Dao; Liu Yang; Sun Wenjuan; Liu Qian

    2010-05-15

    Purpose: The skeleton makes a significant contribution to the whole body absorbed dose evaluation of rats, since the bone marrow and bone surface in the skeleton express high radiosensitivity and are considered to be important dose-limiting tissues. The bone marrow can be categorized as red bone marrow (RBM) and yellow bone marrow (YBM). It is important to investigate the bone marrow in skeletal dosimetry. Methods: Cryosectional color images of the skeleton of a 156 g rat were segmented into mineral bone (including cortical bone and trabecular bone), RBM, and YBM. These three tissue types were identified at 40 different bone sites and integrated into a previously developed voxel-based rat computational phantom. Photon and electron skeletal absorbed fractions were then calculated using the MCNPX Monte Carlo code. Results: Absorbed fraction (AF) and specific absorbed fraction (SAF) for mineral bone, RBM, and YBM at the 40 different bone sites were established for monoenergetic photon and electron sources placed in 18 organs and seven bone sites. Discrete photon energy was varied from 0.01 to 5.0 MeV in 21 discrete steps, while 21 discrete electron energies were studied, from 0.1 to 10.0 MeV. The trends and values found were consistent with the results of other researchers [M. G. Stabin, T. E. Peterson, G. E. Holburn, and M. A. Emmons, ''Voxel-based mouse and rat models for internal dose calculations,'' J. Nucl. Med. 47, 655-659 (2006)]. S-factors for the radionuclides {sup 169}Er, {sup 143}Pr, {sup 89}Sr, {sup 32}P, and {sup 90}Y, located in 18 organs and seven bone sites for the skeleton, were calculated and are provided in detail. Conclusions: For internal dose calculations, the AF data reveal that the mineral bone in the rat skeletal system is responsible for significant attenuation of gamma rays, especially at low energies. The photon SAF curves of RBM show that, for photon energies greater than 0.6 MeV, there is an increase in secondary photons emitted from the

  12. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    SciTech Connect

    Lee, C; Badal, A

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  13. Analytical calculation of proton linear energy transfer in voxelized geometries including secondary protons.

    PubMed

    Sanchez-Parcerisa, D; Cortés-Giraldo, M A; Dolney, D; Kondrla, M; Fager, M; Carabe, A

    2016-02-21

    In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm(-1)) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.

  14. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry.

  15. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  16. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.

    PubMed

    Mercadillo, Roberto E; Galvez, Víctor; Díaz, Rosalinda; Hernández-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Boll, Marie-Catherine; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-15

    Spinocerebellar Ataxia Type 2 (SCA2) is a genetic disorder causing cerebellar degeneration that result in motor and cognitive alterations. Voxel-based morphometry (VBM) analyses have found neurodegenerative patterns associated to SCA2, but they show some discrepancies. Moreover, behavioral deficits related to non-cerebellar functions are scarcely discussed in those reports. In this work we use behavioral and cognitive tests and VBM to identify and confirm cognitive and gray matter alterations in SCA2 patients compared with control subjects. Also, we discuss the cerebellar and non-cerebellar functions affected by this disease. Our results confirmed gray matter reduction in the cerebellar vermis, pons, and insular, frontal, parietal and temporal cortices. However, our analysis also found unreported loss of gray matter in the parahippocampal gyrus bilaterally. Motor performance test ratings correlated with total gray and white matter reductions, but executive performance and clinical features such as CAG repetitions and disease progression did not show any correlation. This pattern of cerebellar and non-cerebellar morphological alterations associated with SCA2 has to be considered to fully understand the motor and non-motor deficits that include language production and comprehension and some social skill changes that occur in these patients.

  17. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    PubMed Central

    Wu, Ping; Zhou, Yu-mei; Zeng, Fang; Li, Zheng-jie; Luo, Lu; Li, Yong-xin; Fan, Wei; Qiu, Li-hua; Qin, Wei; Chen, Lin; Bai, Lin; Nie, Juan; Zhang, San; Xiong, Yan; Bai, Yu; Yin, Can-xin; Liang, Fan-rong

    2016-01-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = –0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = –0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients. PMID:27857744

  18. Brain correlates of pro-social personality traits: a voxel-based morphometry study.

    PubMed

    Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F

    2013-09-01

    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.

  19. Structural Correlates of Functional Language Dominance: A Voxel-Based Morphometry Study

    PubMed Central

    Deppe, Michael; Kanowski, Martin; Ölschläger, Christian; Albers, Johannes M.; Schlaug, Gottfried; Knecht, Stefan

    2015-01-01

    BACKGROUND AND PURPOSE The goal of this study was to explore the structural correlates of functional language dominance by directly comparing the brain morphology of healthy subjects with left- and right-hemisphere language dominance. METHODS Twenty participants were selected based on their language dominance from a cohort of subjects with known language lateralization. Structural differences between both groups were assessed by voxel-based morphometry, a technique that automatically identifies differences in the local gray matter volume between groups using high-resolution T1-weighted magnetic resonance images. RESULTS The main findings can be summarized as follows: (1) Subjects with right-hemisphere language dominance had significantly larger gray matter volume in the right hippocampus than subjects with left-hemisphere language dominance. (2) Leftward structural asymmetries in the posterior superior temporal cortex, including the planum temporale (PT), were observed in both groups. CONCLUSIONS Our study does not support the still prevalent view that asymmetries of the PT are related in a direct way to functional language lateralization. The structural differences found in the hippocampus underline the importance of the medial temporal lobe in the neural language network. They are discussed in the context of recent findings attributing a critical role of the hippocampus in the development of language lateralization. PMID:19453831

  20. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    NASA Astrophysics Data System (ADS)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  1. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's Disease.

    PubMed

    Matsuda, Hiroshi

    2013-02-01

    Voxel-based morphometry (VBM) using structural brain MRI has been widely used for assessment of normal aging and Alzheimer's disease (AD). VBM of MRI data comprises segmentation into gray matter, white matter, and cerebrospinal fluid partitions, anatomical standardization of all the images to the same stereotactic space using linear affine transformation and further non-linear warping, smoothing, and finally performing a statistical analysis. Two techniques for VBM are commonly used, optimized VBM using statistical parametric mapping (SPM) 2 or SPM5 with non-linear warping based on discrete cosine transforms and SPM8 plus non-linear warping based on diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL). In normal aging, most cortical regions prominently in frontal and insular areas have been reported to show age-related gray matter atrophy. In contrast, specific structures such as amygdala, hippocampus, and thalamus have been reported to be preserved in normal aging. On the other hand, VBM studies have demonstrated progression of atrophy mapping upstream to Braak's stages of neurofibrillary tangle deposition in AD. The earliest atrophy takes place in medial temporal structures. Stand-alone VBM software using SPM8 plus DARTEL running on Windows has been newly developed as an adjunct to the clinical assessment of AD. This software provides a Z-score map as a consequence of comparison of a patient's MRI with a normal database.

  2. Tracking competition and cognitive control during language comprehension with multi-voxel pattern analysis.

    PubMed

    Musz, Elizabeth; Thompson-Schill, Sharon L

    2017-02-01

    To successfully comprehend a sentence that contains a homonym, readers must select the ambiguous word's context-appropriate meaning. The outcome of this process is influenced both by top-down contextual support and bottom-up, word-specific characteristics. We examined how these factors jointly affect the neural signatures of lexical ambiguity resolution. We measured the similarity between multi-voxel patterns evoked by the same homonym in two distinct linguistic contexts: once after subjects read sentences that biased interpretation toward each homonym's most frequent, dominant meaning, and again after interpretation was biased toward a weaker, subordinate meaning. We predicted that, following a subordinate-biasing context, the dominant yet inappropriate meaning would nevertheless compete for activation, manifesting in increased similarity between the neural patterns evoked by the two word meanings. In left anterior temporal lobe (ATL), degree of within-word pattern similarity was positively predicted by the association strength of each homonym's dominant meaning. Further, within-word pattern similarity in left ATL was negatively predicted by item-specific responses in a region of left ventrolateral prefrontal cortex (VLPFC) sensitive to semantic conflict. These findings have implications for psycholinguistic models of lexical ambiguity resolution, and for the role of left VLPFC function during this process. Moreover, these findings demonstrate the utility of item-level, similarity-based analyses of fMRI data for our understanding of competition between co-activated word meanings during language comprehension.

  3. Networks underlying trait impulsivity: Evidence from voxel-based lesion-symptom mapping.

    PubMed

    McDonald, Valerie; Hauner, Katherina K; Chau, Aileen; Krueger, Frank; Grafman, Jordan

    2017-02-01

    Impulsivity is considered a multidimensional construct that encompasses a range of behaviors, including poor impulse control, premature decision-making, and the inability to delay gratification. In order to determine the extent to which impulsivity and its components share a common network, a voxel-based lesion-symptom mapping (VLSM) analysis was performed in a large sample of patients (N = 131) with focal, penetrating traumatic brain injuries (pTBI). Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11), a standard self-report measure that allows for unique estimates of global impulsivity and its factor analysis-derived components (e.g., "motor impulsivity"). Heightened global impulsivity was associated with damage to multiple areas in bilateral prefrontal cortex (PFC), left superior, middle and inferior temporal gyrus, and left hippocampus. Moreover, a cluster was identified within the left PFC associated specifically with motor impulsivity (defined as "acting without thinking"). The results were consistent with the existing literature on bilateral prefrontal cortical involvement in behavioral impulsivity, but also provided new evidence for a more complex neuroanatomical representation of this construct, characterized by left-lateralized temporal and hippocampal involvement, as well as a left-lateralized prefrontal network specifically associated with motor impulsivity. Hum Brain Mapp 38:656-665, 2017. © 2016 Wiley Periodicals, Inc.

  4. The Neuroanatomical Basis of Panic Disorder and Social Phobia in Schizophrenia: A Voxel Based Morphometric Study

    PubMed Central

    Picado, Marisol; Carmona, Susanna; Hoekzema, Elseline; Pailhez, Guillem; Bergé, Daniel; Mané, Anna; Fauquet, Jordi; Hilferty, Joseph; Moreno, Ana; Cortizo, Romina; Vilarroya, Oscar; Bulbena, Antoni

    2015-01-01

    Objective It is known that there is a high prevalence of certain anxiety disorders among schizophrenic patients, especially panic disorder and social phobia. However, the neural underpinnings of the comorbidity of such anxiety disorders and schizophrenia remain unclear. Our study aims to determine the neuroanatomical basis of the co-occurrence of schizophrenia with panic disorder and social phobia. Methods Voxel-based morphometry was used in order to examine brain structure and to measure between-group differences, comparing magnetic resonance images of 20 anxious patients, 20 schizophrenic patients, 20 schizophrenic patients with comorbid anxiety, and 20 healthy control subjects. Results Compared to the schizophrenic patients, we observed smaller grey-matter volume (GMV) decreases in the dorsolateral prefrontal cortex and precentral gyrus in the schizophrenic-anxiety group. Additionally, the schizophrenic group showed significantly reduced GMV in the dorsolateral prefrontal cortex, precentral gyrus, orbitofrontal cortex, temporal gyrus and angular/inferior parietal gyrus when compared to the control group. Conclusions Our findings suggest that the comorbidity of schizophrenia with panic disorder and social phobia might be characterized by specific neuroanatomical and clinical alterations that may be related to maladaptive emotion regulation related to anxiety. Even thought our findings need to be replicated, our study suggests that the identification of neural abnormalities involved in anxiety, schizophrenia and schizophrenia-anxiety may lead to an improved diagnosis and management of these conditions. PMID:25774979

  5. Voxel-based analyses of magnetization transfer imaging of the brain in hepatic encephalopathy

    PubMed Central

    Miese, Falk R; Wittsack, Hans-Jörg; Kircheis, Gerald; Holstein, Arne; Mathys, Christian; Mödder, Ulrich; Cohnen, Mathias

    2009-01-01

    AIM: To evaluate the spatial distribution of cerebral abnormalities in cirrhotic subjects with and without hepatic encephalopathy (HE) found with magnetization transfer imaging (MTI). METHODS: Nineteen cirrhotic patients graded from neurologically normal to HE grade 2 and 18 healthy control subjects underwent magnetic resonance imaging. They gave institutional-review-board-approved written consent. Magnetization transfer ratio (MTR) maps were generated from MTI. We tested for significant differences compared to the control group using statistical non-parametric mapping (SnPM) for a voxel-based evaluation. RESULTS: The MTR of grey and white matter was lower in subjects with more severe HE. Changes were found in patients with cirrhosis without neurological deficits in the basal ganglia and bilateral white matter. The loss in magnetization transfer increased in severity and spatial extent in patients with overt HE. Patients with HE grade 2 showed an MTR decrease in white and grey matter: the maximum loss of magnetization transfer effect was located in the basal ganglia [SnPM (pseudo-)t = 17.98, P = 0.0001]. CONCLUSION: The distribution of MTR changes in HE points to an early involvement of basal ganglia and white matter in HE. PMID:19891014

  6. Tracking competition and cognitive control during language comprehension with multi-voxel pattern analysis

    PubMed Central

    Musz, Elizabeth; Thompson-Schill, Sharon L.

    2017-01-01

    To successfully comprehend a sentence that contains a homonym, readers must select the ambiguous word’s context-appropriate meaning. The outcome of this process is influenced both by top-down contextual support and bottom-up, word-specific characteristics. We examined how these factors jointly affect the neural signatures of lexical ambiguity resolution. We measured the similarity between multi-voxel patterns evoked by the same homonym in two distinct linguistic contexts: once after subjects read sentences that biased interpretation toward each homonym’s most frequent, dominant meaning, and again after interpretation was biased toward a weaker, subordinate meaning. We predicted that, following a subordinate-biasing context, the dominant yet inappropriate meaning would nevertheless compete for activation, manifesting in increased similarity between the neural patterns evoked by the two word meanings. In left anterior temporal lobe (ATL), degree of within-word pattern similarity was positively predicted by the association strength of each homonym’s dominant meaning. Further, within-word pattern similarity in left ATL was negatively predicted by item-specific responses in a region of left ventrolateral prefrontal cortex (VLPFC) sensitive to semantic conflict. These findings have implications for psycholinguistic models of lexical ambiguity resolution, and for the role of left VLPFC function during this process. Moreover, these findings demonstrate the utility of item-level, similarity-based analyses of fMRI data for our understanding of competition between co-activated word meanings during language comprehension. PMID:27898341

  7. Grey matter volume alterations in CADASIL: a voxel-based morphometry study.

    PubMed

    Rossi Espagnet, Maria Camilla; Romano, Andrea; Carducci, Filippo; Calabria, Luigi Fausto; Fiorillo, Martina; Orzi, Francesco; Bozzao, Alessandro

    2012-04-01

    CADASIL is a hereditary disease characterized by cerebral subcortical microangiopathy leading to early onset cerebral strokes and progressive severe cognitive impairment. Until now, only few studies have investigated the extent and localization of grey matter (GM) involvement. The purpose of our study was to evaluate GM volume alterations in CADASIL patients compared to healthy subjects. We also looked for correlations between global and regional white matter (WM) lesion load and GM volume alterations. 14 genetically proved CADASIL patients and 12 healthy subjects were enrolled in our study. Brain MRI (1.5 T) was acquired in all subjects. Optimized-voxel based morphometry method was applied for the comparison of brain volumes between CADASIL patients and controls. Global and lobar WM lesion loads were calculated for each patient and used as covariate-of-interest for regression analyses with SPM-8. Compared to controls, patients showed GM volume reductions in bilateral temporal lobes (p < 0.05; FDR-corrected). Regression analysis in the patient group revealed a correlation between total WM lesion load and temporal GM atrophy (p < 0.05; uncorrected), not between temporal lesion load and GM atrophy. Temporal GM volume reduction was demonstrated in CADASIL patients compared to controls; it was related to WM lesion load involving the whole brain but not to lobar and, specifically, temporal WM lesion load. Complex interactions between sub-cortical and cortical damage should be hypothesized.

  8. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Hashizume, Hiroshi; Nakagawa, Seishu; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Achievement motivation can be defined as a recurrent need to improve one's past performance. Despite previous functional imaging studies on motivation-related functional activation, the relationship between regional gray matter (rGM) morphology and achievement motivation has never been investigated. We used voxel-based morphometry and a questionnaire (achievement motivation scale) to measure individual achievement motivation and investigated the association between rGM density (rGMD) and achievement motivation [self-fulfillment achievement motivation (SFAM) and competitive achievement motivation (CAM) across the brain in healthy young adults (age 21.0 ± 1.8 years, men (n = 94), women (n = 91)]. SFAM and rGMD significantly and negatively correlated in the orbitofrontal cortex (OFC). CAM and rGMD significantly and positively correlated in the right putamen, insula, and precuneus. These results suggest that the brain areas that play central roles in externally modulated motivation (OFC and putamen) also contribute to SFAM and CAM, respectively, but in different ways. Furthermore, the brain areas in which rGMD correlated with CAM are related to cognitive processes associated with distressing emotions and social cognition, and these cognitive processes may characterize CAM.

  9. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study

    PubMed Central

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-01-01

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals’ creative performance in the fields of science and art. PMID:28220826

  10. Gray Matter Volume Decreases in Elderly Patients with Schizophrenia: A Voxel-based Morphometry Study

    PubMed Central

    Schuster, Caroline; Schuller, Anne Marie; Paulos, Carlos; Namer, Izzie; Pull, Charles; Danion, Jean Marie; Foucher, Jack René

    2012-01-01

    Background: Aged patients (>50 years old) with residual schizophrenic symptoms differ from young patients. They represent a subpopulation with a more unfavorable Kraepelinian course and have an increased risk (up to 30%) for dementia of unknown origin. However, our current understanding of age-related brain changes in schizophrenia is derived from studies that included less than 17% of patients who were older than 50 years of age. This study investigated the anatomical distribution of gray matter (GM) brain deficits in aged patients with ongoing schizophrenia. Methods: Voxel-based morphometry was applied to 3D-T1 magnetic resonance images obtained from 27 aged patients with schizophrenia (mean age of 60 years) and 40 age-matched normal controls. Results: Older patients with schizophrenia showed a bilateral reduction of GM volume in the thalamus, the prefrontal cortex, and in a large posterior region centered on the occipito-temporo-parietal junction. Only the latter region showed accelerated GM volume loss with increasing age. None of these results could be accounted for by institutionalization, antipsychotic medication, or cognitive scores. Conclusions: This study replicated most common findings in patients with schizophrenia with regard to thalamic and frontal GM deficits. However, it uncovered an unexpected large region of GM atrophy in the posterior tertiary cortices. The latter observation may be specific to this aged and chronically symptomatic subpopulation, as atrophy in this region is rarely reported in younger patients and is accelerated with age. PMID:21205677

  11. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2015-01-01

    Background Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature. PMID:26601082

  12. Investigating the brain basis of facial expression perception using multi-voxel pattern analysis.

    PubMed

    Wegrzyn, Martin; Riehle, Marcel; Labudda, Kirsten; Woermann, Friedrich; Baumgartner, Florian; Pollmann, Stefan; Bien, Christian G; Kissler, Johanna

    2015-08-01

    Humans can readily decode emotion expressions from faces and perceive them in a categorical manner. The model by Haxby and colleagues proposes a number of different brain regions with each taking over specific roles in face processing. One key question is how these regions directly compare to one another in successfully discriminating between various emotional facial expressions. To address this issue, we compared the predictive accuracy of all key regions from the Haxby model using multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data. Regions of interest were extracted using independent meta-analytical data. Participants viewed four classes of facial expressions (happy, angry, fearful and neutral) in an event-related fMRI design, while performing an orthogonal gender recognition task. Activity in all regions allowed for robust above-chance predictions. When directly comparing the regions to one another, fusiform gyrus and superior temporal sulcus (STS) showed highest accuracies. These results underscore the role of the fusiform gyrus as a key region in perception of facial expressions, alongside STS. The study suggests the need for further specification of the relative role of the various brain areas involved in the perception of facial expression. Face processing appears to rely on more interactive and functionally overlapping neural mechanisms than previously conceptualised.

  13. The correlation between gray matter volume and perceived social support: a voxel-based morphometry study.

    PubMed

    Che, XianWei; Wei, DongTao; Li, WenFu; Li, HaiJiang; Qiao, Lei; Qiu, Jiang; Zhang, QingLin; Liu, YiJun

    2014-01-01

    Social support refers to interpersonal exchanges that include the combinations of aid, affirmation and affection. Perceived social support is a kind of subjective judgment of one's availability of social support. In spite of the importance of perceived social support to health, however, its neural substrate remains unknown. To address this question, voxel-based morphometry was employed to investigate the neural bases of individual differences in responses to the Perceived Social Support Scale (PSSS) in healthy volunteers (144 men and 203 women; mean age = 19.9; SD = 1.33, age range : 17-27). As a result, multiple regression analysis revealed that the PSSS scores were significantly and positively correlated with gray matter volume in a cluster that mainly included areas in posterior parts of posterior cingulate cortex, bilateral lingual cortex, left occipital lobe and cuneus. Highly-supported individuals had larger gray matter volume in these brain regions, implying a relatively high level of ability to engage in self-referential processes and social cognition. Our results provide a biological basis for exploring perceived social support particularly in relationship to various health parameters and outcomes.

  14. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    PubMed

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A; Robertson, Diana C

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  15. Short Latency Gray Matter Changes in Voxel-Based Morphometry following High Frequent Visual Stimulation

    PubMed Central

    Theysohn, Nina; Diener, Hans-Christoph; Katsarava, Zaza; Obermann, Mark; Holle, Dagny

    2017-01-01

    Magnetic resonance imaging studies using voxel-based morphometry (VBM) detected structural changes in the human brain within periods of months or weeks. The underlying molecular mechanisms of VBM findings remain unresolved. We showed that simple visual stimulation by an alternating checkerboard leads to instant, short-lasting alterations of the primary and secondary visual cortex detected by VBM. The rapidness of occurrence (i.e., within 10 minutes) rather excludes most of the proposed physiological mechanism such as neural or glial cell genesis/degeneration or synapse turnover. We therefore favour cerebral fluid shifts to be the underlying correlate of the here observed VBM gray matter changes. Fast onset gray matter changes might be one important explanation for the inconsistency of VBM study results that often raise concern in regard to the validity of presented data. This study shows that changes detectable by VBM may occur within a few minutes after physiological stimulation and must be considered in future VBM experiments to avoid misinterpretation of results. PMID:28293437

  16. Voxel-based morphometry evaluation of patients with photosensitive juvenile myoclonic epilepsy.

    PubMed

    Lin, Katia; Jackowski, Andrea Parolin; Carrete, Henrique; de Araújo Filho, Gerardo Maria; Silva, Henrique Hattori; Guaranha, Mirian Salvadori Bittar; Guilhoto, Laura Maria Figueiredo Ferreira; Bressan, Rodrigo Affonseca; Yacubian, Elza Márcia Targas

    2009-10-01

    We aim to investigate structural brain abnormalities in juvenile myoclonic epilepsy (JME) patients with photosensitivity (PS). Sixty JME patients, 19 (32%) of whom were photosensitive, were submitted to 1.5T magnetic resonance voxel-based morphometry (VBM). The control group (CTL) consisted of 30 sex-matched healthy volunteers. JME patients with (JME-PS) and without (JME-NPS) PS did not differ in their duration of disease, treatment or seizure control. VBM revealed significantly reduced bilateral gray matter volume (GMV) in thalami, insula cortices and cerebellar hemispheres; while significantly increased GMV was observed in the right superior frontal, orbitofrontal and medial frontal gyri of the JME group compared to CTL. JME-PS had reduced bilateral GMV of visual cortices when compared with CTL; while it was not seen among JME-NPS patients. Reduced left hippocampus and left inferior frontal gyrus volume was observed among JME-PS compared with JME-NPS. This study demonstrates structural abnormalities beyond the limits of the frontal lobes and provides evidence for the role of the occipital cortex in human PS, reinforcing the existence of functional-anatomic ictogenic networks in JME and the concept of 'system epilepsies'.

  17. An incremental-iterative method for modeling damage evolution in voxel-based microstructure models

    NASA Astrophysics Data System (ADS)

    Zhu, Qi-Zhi; Yvonnet, Julien

    2015-02-01

    Numerical methods motivated by rapid advances in image processing techniques have been intensively developed during recent years and increasingly applied to simulate heterogeneous materials with complex microstructure. The present work aims at elaborating an incremental-iterative numerical method for voxel-based modeling of damage evolution in quasi-brittle microstructures. The iterative scheme based on the Lippmann-Schwinger equation in the real space domain (Yvonnet, in Int J Numer Methods Eng 92:178-205, 2012) is first cast into an incremental form so as to implement nonlinear material models efficiently. In the proposed scheme, local strain increments at material grid points are computed iteratively by a mapping operation through a transformation array, while local stresses are determined using a constitutive model that accounts for material degradation by damage. For validation, benchmark studies and numerical simulations using microtomographic data of concrete are performed. For each test, numerical predictions by the incremental-iterative scheme and the finite element method, respectively, are presented and compared for both global responses and local damage distributions. It is emphasized that the proposed incremental-iterative formulation can be straightforwardly applied in the framework of other Lippmann-Schwinger equation-based schemes, like the fast Fourier transform method.

  18. Parallel solutions for voxel-based simulations of reaction-diffusion systems.

    PubMed

    D'Agostino, Daniele; Pasquale, Giulia; Clematis, Andrea; Maj, Carlo; Mosca, Ettore; Milanesi, Luciano; Merelli, Ivan

    2014-01-01

    There is an increasing awareness of the pivotal role of noise in biochemical processes and of the effect of molecular crowding on the dynamics of biochemical systems. This necessity has given rise to a strong need for suitable and sophisticated algorithms for the simulation of biological phenomena taking into account both spatial effects and noise. However, the high computational effort characterizing simulation approaches, coupled with the necessity to simulate the models several times to achieve statistically relevant information on the model behaviours, makes such kind of algorithms very time-consuming for studying real systems. So far, different parallelization approaches have been deployed to reduce the computational time required to simulate the temporal dynamics of biochemical systems using stochastic algorithms. In this work we discuss these aspects for the spatial TAU-leaping in crowded compartments (STAUCC) simulator, a voxel-based method for the stochastic simulation of reaction-diffusion processes which relies on the Sτ-DPP algorithm. In particular we present how the characteristics of the algorithm can be exploited for an effective parallelization on the present heterogeneous HPC architectures.

  19. Neurostructural correlates of two subtypes of specific phobia: a voxel-based morphometry study.

    PubMed

    Hilbert, Kevin; Evens, Ricarda; Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2015-02-28

    The animal and blood-injection-injury (BII) subtypes of specific phobia are both characterized by subjective fear but distinct autonomic reactions to threat. Previous functional neuroimaging studies have related these characteristic responses to shared and non-shared neural underpinnings. However, no comparative structural data are available. This study aims to fill this gap by comparing the two subtypes and also comparing them with a non-phobic control group. Gray and white matter data of 33 snake phobia subjects (SP), 26 dental phobia subjects (DP), and 37 healthy control (HC) subjects were analyzed with voxel-based morphometry. Especially DP differed from HC and SP by showing significantly increased grey matter volumes in widespread areas including the right subgenual anterior cingulate gyrus, left insula, left orbitofrontal and left prefrontal (PFC) cortices. In addition, white matter volume was significantly increased in the left PFC in DP compared with SP. These results are in line with functional changes observed in dental phobia and point toward those brain circuits associated with emotional processing and regulation. Future studies should aim to further delineate functional and structural connectivity alterations in specific phobia.

  20. Estimation of Photon Specific Absorbed Fractions in Digimouse Voxel Phantom using Monte Carlo Simulation Code FLUKA

    PubMed Central

    Sinha, A.; Patni, H.K.; Dixit, B.M.; Painuly, N.K.; Singh, N.

    2016-01-01

    Background: Most preclinical studies are carried out on mice. For internal dose assessment of a mouse, specific absorbed fraction (SAF) values play an important role. In most studies, SAF values are estimated using older standard human organ compositions and values for limited source target pairs. Objective: SAF values for monoenergetic photons of energies 15, 50, 100, 500, 1000 and 4000 keV were evaluated for the Digimouse voxel phantom incorporated in Monte Carlo code FLUKA. The organ sources considered in this study were lungs, skeleton, heart, bladder, testis, stomach, spleen, pancreas, liver, kidney, adrenal, eye and brain. The considered target organs were lungs, skeleton, heart, bladder, testis, stomach, spleen, pancreas, liver, kidney, adrenal and brain. Eye was considered as a target organ only for eye as a source organ. Organ compositions and densities were adopted from International Commission on Radiological Protection (ICRP) publication number 110. Results: Evaluated organ masses and SAF values are presented in tabular form. It is observed that SAF values decrease with increasing the source-to-target distance. The SAF value for self-irradiation decreases with increasing photon energy. The SAF values are also found to be dependent on the mass of target in such a way that higher values are obtained for lower masses. The effect of composition is highest in case of target organ lungs where mass and estimated SAF values are found to have larger differences. Conclusion: These SAF values are very important for absorbed dose calculation for various organs of a mouse. PMID:28144589

  1. An automatic framework for quantitative validation of voxel based morphometry measures of anatomical brain asymmetry.

    PubMed

    Pepe, Antonietta; Dinov, Ivo; Tohka, Jussi

    2014-10-15

    The study of anatomical brain asymmetries has been a topic of great interest in the neuroimaging community in the past decades. However, the accuracy of brain asymmetry measurements has been rarely investigated. In this study, we propose a fully automatic methodology for the quantitative validation of brain tissue asymmetries as measured by Voxel Based Morphometry (VBM) from structural magnetic resonance (MR) images. Starting from a real MR image, the methodology generates simulated 3D MR images with a known and realistic pattern of inter-hemispheric asymmetry that models the left-occipital right-frontal petalia of a normal brain and the related rightward bending of the inter-hemispheric fissure. As an example, we generated a dataset of 64 simulated MR images and applied this dataset for the quantitative validation of optimized VBM measures of asymmetries in brain tissue composition. Our results suggested that VBM analysis strongly depended on the spatial normalization of the individual brain images, the selected template space, and the amount of spatial smoothing applied. The most accurate asymmetry detections were achieved by 9-degrees of freedom registration to the symmetrical template space with 4 to 8mm spatial smoothing.

  2. Analytical calculation of proton linear energy transfer in voxelized geometries including secondary protons

    NASA Astrophysics Data System (ADS)

    Sanchez-Parcerisa, D.; Cortés-Giraldo, M. A.; Dolney, D.; Kondrla, M.; Fager, M.; Carabe, A.

    2016-02-01

    In order to integrate radiobiological modelling with clinical treatment planning for proton radiotherapy, we extended our in-house treatment planning system FoCa with a 3D analytical algorithm to calculate linear energy transfer (LET) in voxelized patient geometries. Both active scanning and passive scattering delivery modalities are supported. The analytical calculation is much faster than the Monte-Carlo (MC) method and it can be implemented in the inverse treatment planning optimization suite, allowing us to create LET-based objectives in inverse planning. The LET was calculated by combining a 1D analytical approach including a novel correction for secondary protons with pencil-beam type LET-kernels. Then, these LET kernels were inserted into the proton-convolution-superposition algorithm in FoCa. The analytical LET distributions were benchmarked against MC simulations carried out in Geant4. A cohort of simple phantom and patient plans representing a wide variety of sites (prostate, lung, brain, head and neck) was selected. The calculation algorithm was able to reproduce the MC LET to within 6% (1 standard deviation) for low-LET areas (under 1.7 keV μm-1) and within 22% for the high-LET areas above that threshold. The dose and LET distributions can be further extended, using radiobiological models, to include radiobiological effectiveness (RBE) calculations in the treatment planning system. This implementation also allows for radiobiological optimization of treatments by including RBE-weighted dose constraints in the inverse treatment planning process.

  3. A DOS Primer for Librarians.

    ERIC Educational Resources Information Center

    Beecher, Henry

    1989-01-01

    Presents a basic orientation to the functions and capabilities of disk operating systems (DOS), aimed at the nontechnically oriented user of IBM personal computers and compatible microcomputers. Areas discussed include booting up, the use of floppy and hard disks, file storage and manipulation, and directories. Further readings are provided. (CLB)

  4. Monte Carlo modelling for in vivo measurements of Americium in a knee voxel phantom: general criteria for an international comparison.

    PubMed

    Gómez-Ros, J M; de Carlan, L; Franck, D; Gualdrini, G; Lis, M; López, M A; Moraleda, M; Zankl, M

    2007-01-01

    The general criteria and the scientific approach adopted for an 'International comparison on Monte Carlo modelling for in vivo measurement of Americium in a knee phantom' that is being organised within the EU Coordination Action CONRAD (Coordinated Network for Radiation Dosimetry) are described her. Detection system and a knee voxel phantom based on a computerised axial tomography of the Spitz anthropometric knee phantom with a homogeneous distribution of 241Am in bone have been considered for the simulation of three specific situations: (a) a single Low Energy Germanium detector for a point 241Am source in air; (b) the calculation of photon fluence spectra in air around the voxel phantom; and (c) the calculation of the energy distribution of pulses and peak detection efficiency in the real detection system geometry.

  5. High cone-angle x-ray computed micro-tomography with 186 GigaVoxel datasets

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Latham, Shane J.; Kingston, Andrew M.; Kolomazník, Jan; Krajíček, Václav; Krupka, TomáÅ.¡; Varslot, Trond K.; Sheppard, Adrian P.

    2016-10-01

    X-ray computed micro-tomography systems are able to collect data with sub-micron resolution. This high- resolution imaging has many applications but is particularly important in the study of porous materials, where the sub-micron structure can dictate large-scale physical properties (e.g. carbonates, shales, or human bone). Sample preparation and mounting become diffiult for these materials below 2mm diameter: consequently, a typical ultra-micro-CT reconstruction volume (with sub-micron resolution) will be around 3k x 3k x 10k voxels, with some reconstructions becoming much larger. In this paper, we discuss the hardware (MPI-parallel CPU/GPU) and software (python/C++/CUDA) tools used at the ANU CTlab to reconstruct 186 GigaVoxel datasets.

  6. Assessing hippocampal functional reserve in temporal lobe epilepsy: a multi-voxel pattern analysis of fMRI data.

    PubMed

    Bonnici, Heidi M; Sidhu, Meneka; Chadwick, Martin J; Duncan, John S; Maguire, Eleanor A

    2013-07-01

    Assessing the functional reserve of key memory structures in the medial temporal lobes (MTL) of pre-surgical patients with intractable temporal lobe epilepsy (TLE) remains a challenge. Conventional functional MRI (fMRI) memory paradigms have yet to fully convince of their ability to confidently assess the risk of a post-surgical amnesia. An alternative fMRI analysis method, multi-voxel pattern analysis (MVPA), focuses on the patterns of activity across voxels in specific brain regions that are associated with individual memory traces. This method makes it possible to investigate whether the hippocampus and related structures contralateral to any proposed surgery are capable of laying down and representing specific memories. Here we used MVPA-fMRI to assess the functional integrity of the hippocampi and MTL in patients with long-standing medically refractory TLE associated with unilateral hippocampal sclerosis (HS). Patients were exposed to movie clips of everyday events prior to scanning, which they subsequently recalled during high-resolution fMRI. MTL structures were delineated and pattern classifiers were trained to learn the patterns of brain activity across voxels associated with each memory. Predictable patterns of activity across voxels associated with specific memories could be detected in MTL structures, including the hippocampus, on the side contralateral to the HS, indicating their functional viability. By contrast, no discernible memory representations were apparent in the sclerotic hippocampus, but adjacent MTL regions contained detectable information about the memories. These findings suggest that MVPA in fMRI memory studies of TLE can indicate hippocampal functional reserve and may be useful to predict the effects of hippocampal resection in individual patients.

  7. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  8. Adverse effects of metallic artifacts on voxel-wise analysis and tract-based spatial statistics in diffusion tensor imaging.

    PubMed

    Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu

    2017-02-01

    Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.

  9. Selected organ dose conversion coefficients for external photons calculated using ICRP adult voxel phantoms and Monte Carlo code FLUKA.

    PubMed

    Patni, H K; Nadar, M Y; Akar, D K; Bhati, S; Sarkar, P K

    2011-11-01

    The adult reference male and female computational voxel phantoms recommended by ICRP are adapted into the Monte Carlo transport code FLUKA. The FLUKA code is then utilised for computation of dose conversion coefficients (DCCs) expressed in absorbed dose per air kerma free-in-air for colon, lungs, stomach wall, breast, gonads, urinary bladder, oesophagus, liver and thyroid due to a broad parallel beam of mono-energetic photons impinging in anterior-posterior and posterior-anterior directions in the energy range of 15 keV-10 MeV. The computed DCCs of colon, lungs, stomach wall and breast are found to be in good agreement with the results published in ICRP publication 110. The present work thus validates the use of FLUKA code in computation of organ DCCs for photons using ICRP adult voxel phantoms. Further, the DCCs for gonads, urinary bladder, oesophagus, liver and thyroid are evaluated and compared with results published in ICRP 74 in the above-mentioned energy range and geometries. Significant differences in DCCs are observed for breast, testis and thyroid above 1 MeV, and for most of the organs at energies below 60 keV in comparison with the results published in ICRP 74. The DCCs of female voxel phantom were found to be higher in comparison with male phantom for almost all organs in both the geometries.

  10. Voxel-Based Lesion Symptom Mapping of Coarse Coding and Suppression Deficits in Patients With Right Hemisphere Damage

    PubMed Central

    Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.

    2015-01-01

    Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785

  11. MAX meets ADAM: a dosimetric comparison between a voxel-based and a mathematical model for external exposure to photons.

    PubMed

    Kramer, R; Vieira, J W; Khoury, H J; de Andrade Lima, F

    2004-03-21

    The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.

  12. Robust discrimination of glioblastomas from metastatic brain tumors on the basis of single-voxel (1)H MRS.

    PubMed

    Vellido, A; Romero, E; Julià-Sapé, M; Majós, C; Moreno-Torres, Á; Pujol, J; Arús, C

    2012-06-01

    This article investigates methods for the accurate and robust differentiation of metastases from glioblastomas on the basis of single-voxel (1)H MRS information. Single-voxel (1)H MR spectra from a total of 109 patients (78 glioblastomas and 31 metastases) from the multicenter, international INTERPRET database, plus a test set of 40 patients (30 glioblastomas and 10 metastases) from three different centers in the Barcelona (Spain) metropolitan area, were analyzed using a robust method for feature (spectral frequency) selection coupled with a linear-in-the-parameters single-layer perceptron classifier. For the test set, a parsimonious selection of five frequencies yielded an area under the receiver operating characteristic curve of 0.86, and an area under the convex hull of the receiver operating characteristic curve of 0.91. Moreover, these accurate results for the discrimination between glioblastomas and metastases were obtained using a small number of frequencies that are amenable to metabolic interpretation, which should ease their use as diagnostic markers. Importantly, the prediction can be expressed as a simple formula based on a linear combination of these frequencies. As a result, new cases could be straightforwardly predicted by integrating this formula into a computer-based medical decision support system. This work also shows that the combination of spectra acquired at different TEs (short TE, 20-32 ms; long TE, 135-144 ms) is key to the successful discrimination between glioblastomas and metastases from single-voxel (1)H MRS.

  13. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom.

    PubMed

    Evans, J F; Blue, T E; Gupta, N

    2001-05-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85 x 109 x 120 lattice of voxels, where each voxel is 2.2 x 2.2 x 1.4 mm3. This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose.

  14. Different Roles of DosS and DosT in the Hypoxic Adaptation of Mycobacteria▿

    PubMed Central

    Kim, Min-Ju; Park, Kwang-Jin; Ko, In-Jeong; Kim, Young Min; Oh, Jeong-Il

    2010-01-01

    The DosS (DevS) and DosT histidine kinases form a two-component system together with the DosR (DevR) response regulator in Mycobacterium tuberculosis. DosS and DosT, which have high sequence similarity to each other over the length of their amino acid sequences, contain two GAF domains (GAF-A and GAF-B) in their N-terminal sensory domains. Complementation tests in conjunction with phylogenetic analysis showed that DevS of Mycobacterium smegmatis is more closely related to DosT than DosS. We also demonstrated in vivo that DosS and DosT of M. tuberculosis play a differential role in hypoxic adaptation. DosT responds to a decrease in oxygen tension more sensitively and strongly than DosS, which might be attributable to their different autooxidation rates. The different responsiveness of DosS and DosT to hypoxia is due to the difference in their GAF-A domains accommodating the hemes. Multiple alignment analysis of the GAF-A domains of mycobacterial DosS (DosT) homologs and subsequent site-directed mutagenesis revealed that just one substitution of E87, D90, H97, L118, or T169 of DosS with the corresponding residue of DosT is sufficient to convert DosS to DosT with regard to the responsiveness to changes in oxygen tension. PMID:20675480

  15. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading

    PubMed Central

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  16. A voxel-based investigation for MRI-only radiotherapy of the brain using ultra short echo times

    NASA Astrophysics Data System (ADS)

    Edmund, Jens M.; Kjer, Hans M.; Van Leemput, Koen; Hansen, Rasmus H.; Andersen, Jon AL; Andreasen, Daniel

    2014-12-01

    Radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality, so-called MRI-only RT, would remove the systematic registration error between MR and computed tomography (CT), and provide co-registered MRI for assessment of treatment response and adaptive RT. Electron densities, however, need to be assigned to the MRI images for dose calculation and patient setup based on digitally reconstructed radiographs (DRRs). Here, we investigate the geometric and dosimetric performance for a number of popular voxel-based methods to generate a so-called pseudo CT (pCT). Five patients receiving cranial irradiation, each containing a co-registered MRI and CT scan, were included. An ultra short echo time MRI sequence for bone visualization was used. Six methods were investigated for three popular types of voxel-based approaches; (1) threshold-based segmentation, (2) Bayesian segmentation and (3) statistical regression. Each approach contained two methods. Approach 1 used bulk density assignment of MRI voxels into air, soft tissue and bone based on logical masks and the transverse relaxation time T2 of the bone. Approach 2 used similar bulk density assignments with Bayesian statistics including or excluding additional spatial information. Approach 3 used a statistical regression correlating MRI voxels with their corresponding CT voxels. A similar photon and proton treatment plan was generated for a target positioned between the nasal cavity and the brainstem for all patients. The CT agreement with the pCT of each method was quantified and compared with the other methods geometrically and dosimetrically using both a number of reported metrics and introducing some novel metrics. The best geometrical agreement with CT was obtained with the statistical regression methods which performed significantly better than the threshold and Bayesian segmentation methods (excluding spatial information). All methods agreed significantly better with CT than a reference water MRI

  17. Effects of voxel size and iterative reconstruction parameters on the spatial resolution of 99mTc SPECT/CT.

    PubMed

    Kappadath, S Cheenu

    2011-11-15

    The purpose of this study was to evaluate the effects of voxel size and iterative reconstruction parameters on the radial and tangential resolution for 99mTc SPECT as a function of radial distance from isocenter. SPECT/CT scans of eight coplanar point sources of size smaller than 1 mm3 containing high concentration 99mTc solution were acquired on a SPECT/CT system with 5/8 inch NaI(Tl) detector and low-energy, high-resolution collimator. The tomographic projection images were acquired in step-and-shoot mode for 360 views over 360° with 250,000 counts per view, a zoom of 2.67, and an image matrix of 256 × 256 pixels that resulted in a 0.9 × 0.9 × 0.9 mm3 SPECT voxel size over 230 mm field-of-view. The projection images were also rebinned to image matrices of 128 × 128 and 64 × 64 to yield SPECT voxel sizes of 1.8 × 1.8 × 1.8 and 3.6 × 3.6 × 3.6 mm3, respectively. The SPECT/CT datasets were reconstructed using the vendor-supplied iterative reconstruction software that incorporated collimator-specific resolution recovery, CT-based attenuation correction, and dual-energy window-based scatter correction using different combinations of iterations and subsets. SPECT spatial resolution was estimated as the full width at half maximum of the radial and tangential profiles through the center of each point source in reconstructed SPECT images. Both radial and tangential resolution improved with higher iterations and subsets, and with smaller voxel sizes. Both radial and tangential resolution also improved with radial distance further away from isocenter. The magnitude of variation decreased for smaller voxel sizes and for higher number of iterations and subsets. Tangential resolution was found not to be equal to the radial resolution, and the nature of the anisotropy depended on the distribution of the radionuclide and on the reconstruction parameters used. The tangential resolution converged faster than the radial resolution, with higher iterations and subsets

  18. Voxel-wise relationships between distribution volume ratio and cerebral blood flow: implications for analysis of β-amyloid images

    PubMed Central

    Sojkova, Jitka; Goh, Joshua; Bilgel, Murat; Landman, Bennett; Yang, Xue; Zhou, Yun; An, Yang; Beason-Held, Lori L.; Kraut, Michael A.; Wong, Dean F.; Resnick, Susan M.

    2017-01-01

    Quantification of β-amyloid (Aβ) in vivo is often accomplished using the distribution volume ratio (DVR), based on a simplified reference tissue model. We investigated the local relationships between DVR and cerebral blood flow (CBF), as well as relative blood flow (R1), in nondemented older adults. Methods Fifty-five nondemented participants (mean age 78.5 years) in the Baltimore Longitudinal Study of Aging underwent 15O-H2O PET CBF and dynamic 11C-PiB-PET. 15O-H2O PET images were normalized and smoothed using SPM. A simplified reference tissue model with linear regression and spatial constraints was used to generate parametric DVR images. The DVR images were regressed on CBF images on a voxel-by-voxel basis using robust Biological Parametric Mapping, adjusting for age and sex (FDR p=0.05, k=50). DVR images were also regressed on R1 images, a measure of the transport rate constant from vascular space to tissue. All analyses were performed in the entire sample, and in high and low tertiles of mean cortical DVR. Results Voxel-based analyses showed that increased DVR is associated with increased CBF in frontal, parietal, temporal, and occipital cortices. However, this association appears to spare regions that typically show early β-amyloid (Aβ) deposition. A more robust relationship between DVR and CBF was observed in the lowest tertile of DVR, i.e., negligible cortical Aβ load, compared to the highest tertile of cortical DVR and Aβ load. Spatial distributions of the DVR-CBF and DVR-R1 correlations showed similar patterns. No reliable negative voxel-wise relationships between DVR and CBF or R1 were observed. Conclusion Robust associations between DVR and CBF at negligible Aβ levels, together with similar spatial distributions of DVR-CBF and DVR-R1 correlations, suggest that regional distribution of DVR reflects blood flow and tracer influx rather than pattern of Aβ deposition in those with minimal Aβ load. DVR-CBF associations in individuals with higher DVR

  19. The effect of in situ/in vitro three-dimensional quantitative computed tomography image voxel size on the finite element model of human vertebral cancellous bone.

    PubMed

    Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd

    2014-11-01

    Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications.

  20. Accuracy in the diagnosis of vertical root fractures, external root resorptions, and root perforations using cone-beam computed tomography with different voxel sizes of acquisition

    PubMed Central

    Bragatto, Fernanda Paula; Iwaki Filho, Liogi; Kasuya, Amanda Vessoni Barbosa; Chicarelli, Mariliani; Queiroz, Alfredo Franco; Takeshita, Wilton Mitsunari; Iwaki, Lilian Cristina Vessoni

    2016-01-01

    Aim: The aim of this study is to assess the accuracy of images acquired with cone-beam computed tomography (CBCT) in the identification of three different root alterations. Materials and Methods: Forty human premolars were allocated to four experimental groups (n = 10): sound teeth (control), vertical root fracture (VRF), external root resorption (ERR), and root perforation (RP). After the root alterations had been produced, four teeth were randomly assembled into 10 macerated mandibles and submitted to CBCT. Images were acquired with five voxel sizes (0.125, 0.200, 0.250, 0.300, and 0.400 mm) and assessed by three experienced dental radiologists. Sensitivity, specificity, positive and negative predictive values, and the areas under the receiver operating characteristic curve (accuracy) were calculated. The accuracy of imaging in different voxel sizes was compared with Tukey exact binomial test (α=5%). Results: Accuracy with voxel sizes 0.125, 0.200, and 0.250 mm was significantly higher in the detection of ERRs and VRFs than voxel sizes 0.300 and 0.400 mm. No statistical difference was found in terms of accuracy among any of the studied voxel sizes in the identification of RPs. Conclusions: Voxel size 0.125 mm produced images with the best resolution without increasing radiation levels to the patient when compared to voxel sizes 0.200 and 0.250 mm. Voxel sizes 0.300 and 0.400 mm should be avoided in the identification of root alterations. PMID:27994322

  1. Rotating and translating anthropomorphic head voxel models to establish an horizontal Frankfort plane for dental CBCT Monte Carlo simulations: a dose comparison study

    NASA Astrophysics Data System (ADS)

    Stratis, A.; Zhang, G.; Jacobs, R.; Bogaerts, R.; Bosmans, H.

    2016-12-01

    In order to carry out Monte Carlo (MC) dosimetry studies, voxel phantoms, modeling human anatomy, and organ-based segmentation of CT image data sets are applied to simulation frameworks. The resulting voxel phantoms preserve patient CT acquisition geometry; in the case of head voxel models built upon head CT images, the head support with which CT scanners are equipped introduces an inclination to the head, and hence to the head voxel model. In dental cone beam CT (CBCT) imaging, patients are always positioned in such a way that the Frankfort line is horizontal, implying that there is no head inclination. The orientation of the head is important, as it influences the distance of critical radiosensitive organs like the thyroid and the esophagus from the x-ray tube. This work aims to propose a procedure to adjust head voxel phantom orientation, and to investigate the impact of head inclination on organ doses in dental CBCT MC dosimetry studies. The female adult ICRP, and three in-house-built paediatric voxel phantoms were in this study. An EGSnrc MC framework was employed to simulate two commonly used protocols; a Morita Accuitomo 170 dental CBCT scanner (FOVs: 60  ×  60 mm2 and 80  ×  80 mm2, standard resolution), and a 3D Teeth protocol (FOV: 100  ×  90 mm2) in a Planmeca Promax 3D MAX scanner. Result analysis revealed large absorbed organ dose differences in radiosensitive organs between the original and the geometrically corrected voxel models of this study, ranging from  -45.6% to 39.3%. Therefore, accurate dental CBCT MC dose calculations require geometrical adjustments to be applied to head voxel models.

  2. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder.

  3. Structural neural correlates of multitasking: A voxel-based morphometry study.

    PubMed

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities.

  4. Assessment of the chest wall thickness of the lawrence livermore torso phantom using a voxel image.

    PubMed

    Ahmed, A S M Sabbir; Capello, Kevin; Kramer, Gary H

    2011-06-01

    This paper describes the methodology of measuring the chest wall thickness using the voxel image of the Lawrence Livermore National Lab (LLNL) torso phantom. The LLNL phantom is used as a standard to calibrate a lung counter consisting of a 2 × 2 array of germanium detectors. In general, an average thickness estimated from four counting positions is used as the chest wall thickness for a given overlay plate. For a given overlay, the outer chest surface differs from that of inner one, and the chest wall thickness varies from one position to other. The LLNL phantom with chest plate and C4 overlay plate installed was scanned with a CT (computed tomography) scanner. The image data, collected in DICOM (Digital Imaging and Communication) format, were converted to the MCNP input file by using the Scan2Mcnp program. The MCNP file was visualized and analyzed with the Moritz visual editor. An analytic expression was formulated and solved to calculate the chest wall thickness by using the point detector responses (F 5 tally of MCNP). To map the chest thickness, the entire chest wall was meshed into virtual grids of 1 cm width. A source and detector pair was moved along the inner and outer surface of the chest wall from right to left at different heights from neck to abdomen. For each height (z(k)), (x(i), y(j)) coordinates for the detector source pair were calculated from the visual editor and were scaled on-screen. For each (x(i), y(j), z(k)) position, a mesh thickness was measured from on-screen measurement and by solving the detector responses. The chest wall thicknesses at different positions on the outer surface of the chest were compared and verified using two methods.

  5. Structural Abnormalities in Childhood Absence Epilepsy: Voxel-Based Analysis Using Diffusion Tensor Imaging

    PubMed Central

    Qiu, Wenchao; Gao, Yuan; Yu, Chuanyong; Miao, Ailiang; Tang, Lu; Huang, Shuyang; Hu, Zheng; Xiang, Jing; Wang, Xiaoshan

    2016-01-01

    Purpose: Childhood absence epilepsy (CAE) is a common syndrome of idiopathic generalized epilepsy. However, little is known about the brain structural changes in this type of epilepsy, especially in the default mode network (DMN) regions. This study aims at using the diffusion tensor imaging (DTI) technique to quantify structural abnormalities of DMN nodes in CAE patients. Method: DTI data were acquired in 14 CAE patients (aged 8.64 ± 2.59 years, seven females and seven males) and 16 age- and sex-matched healthy controls. The data were analyzed using voxel-based analysis (VBA) and statistically compared between patients and controls. Pearson correlation was explored between altered DTI metrics and clinical parameters. The difference of brain volumes between patients and controls were also tested using unpaired t-test. Results: Patients showed significant increase of mean diffusivity (MD) and radial diffusivity (RD) in left medial prefrontal cortex (MPFC), and decrease of fractional anisotropy (FA) in left precuneus and axial diffusivity (AD) in both left MPFC and precuneus. In correlation analysis, MD value from left MPFC was positively associated with duration of epilepsy. Neither the disease duration nor the seizure frequency showed significant correlation with FA values. Between-group comparison of brain volumes got no significant difference. Conclusion: The findings indicate that structural impairments exist in DMN regions in children suffering from absence epilepsy and MD values positively correlate with epilepsy duration. This may contribute to understanding the pathological mechanisms of chronic neurological deficits and promote the development of new therapies for this disorder. PMID:27733824

  6. A Voxel-Based Morphometric MRI Study in Young Adults with Borderline Personality Disorder

    PubMed Central

    Jin, Xinhu; Zhong, Mingtian; Yao, Shuqiao; Cao, Xiyu; Tan, Changlian; Gan, Jun; Zhu, Xiongzhao; Yi, Jinyao

    2016-01-01

    Background Increasing evidence has documented subtle changes in brain morphology and function in patients with borderline personality disorder (BPD). However, results of magnetic resonance imaging volumetry in patients with BPD are inconsistent. In addition, few researchers using voxel-based morphometry (VBM) have focused on attachment and childhood trauma in BPD. This preliminary study was performed to investigate structural brain changes and their relationships to attachment and childhood trauma in a homogenous sample of young adults with BPD. Method We examined 34 young adults with BPD and 34 healthy controls (HCs) to assess regionally specific differences in gray matter volume (GMV) and gray matter concentration (GMC). Multiple regressions between brain volumes measured by VBM and attachment style questionnaire (ASQ) and childhood trauma questionnaire (CTQ) scores were performed. Results Compared with HCs, subjects with BPD showed significant bilateral increases in GMV in the middle cingulate cortex (MCC)/posterior cingulate cortex (PCC)/precuneus. GMC did not differ significantly between groups. In multiple regression models, ASQ insecure attachment scores were correlated negatively with GMV in the precuneus/MCC and middle occipital gyrus in HCs, HCs with more severe insecure attachment showed smaller volumes in precuneus/MCC and middle occipital gyrus, whereas no negative correlations between insecure attachment and GMV in any region were found in BPD group. In addition, CTQ total scores were not correlated with GMV in any region in the two groups respectively. Conclusions Our findings fit with those of previous reports of larger precuneus GMV in patients with BPD, and suggest that GMV in the precuneus/MCC and middle occipital gyrus is associated inversely with insecure attachment style in HCs. Our finding of increased GMV in the MCC and PCC in patients with BPD compared with HCs has not been reported in previous VBM studies. PMID:26808504

  7. Sports and brain morphology - a voxel-based morphometry study with endurance athletes and martial artists.

    PubMed

    Schlaffke, L; Lissek, S; Lenz, M; Brüne, M; Juckel, G; Hinrichs, T; Platen, P; Tegenthoff, M; Schmidt-Wilcke, T

    2014-02-14

    Physical exercises and motor skill learning have been shown to induce changes in regional brain morphology, this has been demonstrated for various activities and tasks. Also individuals with special skills show differences in regional brain morphology. This has been indicated for professional musicians, London taxi drivers, as well as for athletes like dancers, golfers and judokas. However little is known about whether sports with different metabolic profiles (aerobic vs. anaerobic) are associated with different patterns of altered brain morphology. In this cross-sectional study we investigated two groups of high-performance athletes, one group performing sports that are thought to be mainly aerobic, and one group performing sports known to have intermittent phases of anaerobic metabolism. Using high-resolution structural imaging and voxel-based morphometry (VBM), we investigated a group of 26 male athletes consisting of 13 martial artists and 13 endurance athletes as well as a group of non-exercising men (n=13). VBM analyses revealed higher gray matter (GM) volumes in the supplementary motor area/dorsal premotor cortex (BA 6) in both athlete groups as compared to the control group. In addition, endurance athletes showed significantly higher GM volume in the medial temporal lobe (MTL), specifically in the hippocampus and parahippocampal gyrus, which was not seen in the martial arts group. Our data suggest that high-performance sports are associated with changes in regional brain morphology in areas implicated in motor planning and motor learning. In addition high-level endurance sports seem to affect MTL structures, areas that have previously been shown to be modulated by aerobic exercise.

  8. Neuroanatomical phenotype of Klinefelter syndrome in childhood: a voxel-based morphometry study.

    PubMed

    Bryant, Daniel M; Hoeft, Fumiko; Lai, Song; Lackey, John; Roeltgen, David; Ross, Judith; Reiss, Allan L

    2011-05-04

    Klinefelter syndrome (KS) is a genetic disorder characterized by a supernumerary X chromosome. As such, KS offers a naturally occurring human model for the study of both X-chromosome gene expression and androgen on brain development. Previous neuroimaging studies have revealed neuroanatomical variations associated with KS, but have differed widely with respect to subject inclusion criteria, including mosaicism, pubertal status, and history of testosterone replacement therapy (TRT), all factors likely to influence neurodevelopment. We conducted a voxel-based morphometry study of regional gray and white matter (GM and WM, respectively) volumes in 31 KS males (mean age, 9.69 ± 1.70 years) and 36 typically developing (TD) male controls (10.99 ± 1.72 years). None of the participants with KS had received TRT, and all were prepubertal and had nonmosaic 47,XXY karyotypes. After controlling for age, males with KS showed trends (0.05 < p < 0.10) for significantly reduced total gray matter volume (TGMV) and total white matter volume (TWMV), relative to TD males. After controlling for TGMV and age, the KS group had significantly increased sensorimotor and parietal-occipital GM and significantly reduced amygdalar, hippocampal, insular, temporal, and inferior frontal GM relative to TD controls. After controlling for TWMV and age, the KS group had significantly increased left parietal WM as well as significantly reduced frontal and temporal WM. These findings are indicative of a characteristic prepubertal neuroanatomical phenotype that may be associated with cognitive-behavioral features of KS. This work offers new insight into the relationships among X-chromosome gene expression, neuroanatomy, and cognitive-behavioral functions impaired in KS, including language and attention.

  9. Medical staff extremity dosimetry in CT fluoroscopy: an anthropomorphic hand voxel phantom study

    NASA Astrophysics Data System (ADS)

    Figueira, C.; Becker, F.; Blunck, C.; DiMaria, S.; Baptista, M.; Esteves, B.; Paulo, G.; Santos, J.; Teles, P.; Vaz, P.

    2013-08-01

    This work aims to contribute to the study of the radiation dose distribution delivered to the hands of medical staff members during a general computed tomographic (CT) fluoroscopic guided procedure. In this study, both Monte Carlo simulations and measurements were performed. For free-in-air and computed tomography dose index (CTDI) body phantom measurements, a standard pencil ionization chamber (IC) 100 mm long was used. The CT scanner model was implemented using MCNPX (Monte Carlo N-Particle eXtended) and was successfully validated by comparing the simulated results with measurements. Subsequently, CT images of a hand, together with an anthropomorphic phantom, were voxelized and used with the MCNPX code for dose calculations. The hand dose distribution study was performed both by using thermo-luminescent detector measurements and Monte Carlo simulations. The validated simulation tool provides a new perspective for detailed investigations of CT-irradiation scenarios. Simulations show that there is a strong dose gradient, namely the even zones of the hand that are in precise vicinity to the x-ray beam only receive about 4% of the maximum dose delivered to adjacent areas which are directly exposed to the primary x-ray beam. Finally, the scatter contribution of the patient was also studied through MC simulations. The results show that for directly exposed parts of the hand surface, the dose is reduced by the body of the patient (due to the shielding), whereas the dose is increased by scattered radiation from the patient for parts of the skin that receive scattered radiation only.

  10. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    PubMed Central

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  11. Voxel-based morphometry and intellectual assessment in patients with congenital bilateral perisylvian syndrome.

    PubMed

    Yasuda, Clarissa L; Guimarães, Catarina A; Guerreiro, Marilisa M; Boscariol, Mirela; Oliveira, Ecila P M; Teixeira, Karine C; Costa, André L F; Beltramini, Guilherme C; Cendes, Fernando

    2014-07-01

    Congenital bilateral perisylvian syndrome (CBPS) presents with heterogeneous clinical manifestations such as pseudobulbar palsy, language disorder, variable cognitive deficits, epilepsy, and perisylvian abnormalities (most frequently polymicrogyria) on imaging studies. We investigated the relationship between seizures and extent of gray matter (GM) and white matter (WM) abnormalities using voxel-based morphometry (VBM) of brain magnetic resonance imaging (MRI) as well the association between seizures, structural abnormalities and cognitive ability. In this cross-sectional study, we evaluated 51 healthy volunteers and 18 patients with CBPS with epilepsy (seizure group, n = 7) and without (non-seizure group, n = 11). We used VBM (SPM8/DARTEL) to investigate areas with excess and atrophy of both gray and white matter, comparing groups of patients with controls. Intellectual ability of patients was assessed by the WISC-III or WAIS-III. Both groups with CBPS and the control group were homogeneous with respect to gender (p = 0.07) and age (p = 0.065). Besides perisylvian polymicrogyria, the seizure group exhibited areas with GM and WM reduction including temporal, frontal, parietal and occipital lobes. In contrast, we identified fewer areas with GM and WM reduction in the non-seizure group. The seizure group presented worse intellectual performance (performance IQ and global IQ) than the non-seizure group. The seizure group presented with a more widespread pattern of cortical and sub-cortical abnormalities, as well as worse cognition. Our results suggest that patients with CBPS and epilepsy appear to have widespread neuronal damage that goes beyond the areas with MRI-visible perisylvian polymicrogyria.

  12. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    PubMed

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  13. Voxel-based Morphometric MRI Post-processing in MRI-negative Epilepsies

    PubMed Central

    Wang, ZI; Jones, SE; Jaisani, Z; Najm, IM; Prayson, RA; Burgess, RC; Krishnan, B; Ristic, A; Wong, CH; Bingaman, W; Gonzalez-Martinez, JA; Alexopoulos, AV

    2015-01-01

    Objective In the presurgical workup of MRI-negative (MRI−, or “nonlesional”) pharmacoresistant focal epilepsy (PFE) patients, discovering a previously undetected lesion can drastically change the evaluation and likely improve surgical outcome. Our study utilizes a voxel-based MRI post-processing technique, implemented in a morphometric analysis program (MAP), to facilitate detection of subtle abnormalities in a consecutive cohort of MRI− surgical candidates. Methods Included in this retrospective study was a consecutive cohort of 150 MRI-surgical patients. MAP was performed on T1-weighted MRI, with comparison to a scanner-specific normal database. Review and analysis of MAP were performed blinded to patients’ clinical information. The pertinence of MAP+ areas was confirmed by surgical outcome and pathology. Results MAP showed a 43% positive rate, sensitivity of 0.9 and specificity of 0.67. Overall, patients with MAP+ region completely resected had the best seizure outcomes, followed by the MAP− patients, and patients who had no/partial resection of the MAP+ region had the worst outcome (p<0.001). Subgroup analysis revealed that visually identified subtle findings are more likely correct if also MAP+. False-positive rate in 52 normal controls was 2%. Surgical pathology of the resected MAP+ areas contained mainly non-balloon-cell FCD. Multiple MAP+ regions were present in 7% of patients. Conclusions MAP can be a practical and valuable tool to: (1) guide the search for subtle MRI abnormalities, and (2) confirm visually identified questionable abnormalities in patients with PFE due to suspected FCD. A MAP+ region, when concordant with the patient’s electro-clinical presentation, should provide a legitimate target for surgical exploration. PMID:25807928

  14. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  15. A causa das estações do ano: modelos mentais

    NASA Astrophysics Data System (ADS)

    de Campos, J. A. S.; de Araujo, J. F. S.

    2003-08-01

    A década de 70 do século passado foi marcada pelo estudo das concepções alternativas que os alunos trazem para a sala de aula. A identificação destas concepções foi o ponto de partida para promover a mudança conceitual, onde as pré-concepções seriam trocadas pelas concepções científicas. Na década seguinte, surgiram muitas propostas de estratégias educacionais para facilitar esta troca, na sua maioria baseadas na idéia do conflito cognitivo, proposta por Piaget. Entretanto, os resultados pouco animadores conduziram à percepção de que a mudança conceitual é um processo mais complexo. Pelas idéias da Ciência Cognitiva, a mudança conceitual é uma mudança progressiva dos modelos mentais que o aluno tem sobre o mundo físico, através de enriquecimento e revisão. A causa das Estações do Ano é um tópico sobre o qual a maioria dos estudantes apresenta concepções alternativas. Os autores fizeram um levantamento sobre as pré-concepções encontradas em trabalhos sobre o tema (16 referências), procurando encontrar elementos comuns que indicassem a presença de modelos mentais específicos. As pré-concepções encontradas na literatura foram obtidas usando-se diversas metodologias (desde entrevistas clínicas até questionários de múltipla escolha) e envolvendo alunos e professores de diferentes regiões geográficas. A partir de uma análise aprofundada de cada trabalho, e utilizando-se a técnica das Redes Sistêmicas, chegou-se a conclusão que as diversas pré-concepções identificadas (em torno de 50), poderiam ser representadas por 6 modelos mentais, onde a explicação da causa das estações do ano tem um mecanismo causal responsável. Os mecanismos causais identificados foram: a dependência da distância, a dependência da orientação, a dependência conjunta da distância e orientação, a dependência da obstrução, a dependência da velocidade e a dependência da inclinação dos raios solares. Foram ainda identificadas

  16. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    PubMed

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  17. Creation of two tomographic voxel models of paediatric patients in the first year of life

    NASA Astrophysics Data System (ADS)

    Nipper, J. C.; Williams, J. L.; Bolch, W. E.

    2002-09-01

    Tomographic computational models, based on regional segmentation of CT or MRI medical images, have increasingly been proposed as replacements for current stylized mathematical models of human anatomy used in radiation dosimetry studies. While much effort has been devoted towards the creation of adult models, few research studies have been initiated to address the need for models supporting paediatric radiology dosimetry. In this study, two tomographic models were created using a combination of automatic and manual segmentation via a program created in-house using IDL version 5.5. The first model is of a normal 6 day female newborn, and consists of a 512 × 512 × 485 data array. The CT slices of this model were obtained every 1 mm, and 66 different anatomic regions were defined. The second model is of a patient developmentally equivalent to a 2 month male, and was saved as a 512 × 512 × 438 data array. This subject had severe tissue oedema within the gut, kidneys, liver and spleen. The model is thus considered representative of a critically ill child, from a patient subpopulation expected to receive a larger than normal number of diagnostic x-ray exams. The voxel volumes for the two models are 0.35 mm3 and 0.30 mm3, respectively, thus making these models the most detailed in existence for paediatric dosimetry applications. Ratios of organ masses for the UF newborn model to those within the reference ORNL/MIRD model range from highs of 1.2 to 1.7 for the oesophagus and small intestine/colon, respectively, to lows of 0.18 to 0.27 for the mandible and humeri, respectively. For the UF 2 month model, ratios of organ masses in the UF model to those in the 8 week GSF BABY model ranged from highs of 3.7 to 5.2 for the clavicles and spleen, respectively, to lows of 0.2 to 0.3 for the adrenals and scapulae, respectively.

  18. Spatial distribution of lacunarity of voxelized airborne LiDAR point clouds in various forest assemblages

    NASA Astrophysics Data System (ADS)

    Székely, Balázs; Kania, Adam; Standovár, Tibor; Heilmeier, Hermann

    2015-04-01

    Forest ecosystems have characteristic structure of features defined by various structural elements of different scales and vertical positions: shrub layers, understory vegetation, tree trunks, and branches. Furthermore in most of the cases there are superimposed structures in distributions (mosaic or island patterns) due to topography, soil variability, or even anthropogenic factors like past/present forest management activity. This multifaceted spatial context of the forests is relevant for many ecological issues, especially for maintaining forest biodiversity. Our aim in this study is twofold: (1) to quantify this structural variability laterally and vertically using lacunarity, and (2) to relate these results to relevant ecological features, i.e quantitatively described forest properties. Airborne LiDAR data of various quality and point density have been used for our study including a number of forested sites in Central and East Europe (partly Natura 2000 sites). The point clouds have been converted to voxel format and then converted to horizontal layers as images. These images were processed further for the lacunarity calculation. Areas of interest (AOIs) have been selected based on evaluation of the forested areas and auxiliary field information. The calculation has been performed for the AOIs for all available vertical data slices. The lacunarity function referring to a certain point and given vicinity varies horizontally and vertically, depending on the vegetation structure. Furthermore, the topography may also influence this property as the growth of plants, especially spacing and size of trees are influenced by the local topography and relief (e.g., slope, aspect). The comparisons of the flatland and hilly settings show interesting differences and the spatial patterns also vary differently. Because of the large amount of data resulting from these calculations, sophisticated methods are required to analyse the results. The large data amount then has been

  19. A software to digital image processing to be used in the voxel phantom development.

    PubMed

    Vieira, J W; Lima, F R A

    2009-11-15

    Anthropomorphic models used in computational dosimetry, also denominated phantoms, are based on digital images recorded from scanning of real people by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel phantom construction requests computational processing for transformations of image formats, to compact two-dimensional (2-D) images forming of three-dimensional (3-D) matrices, image sampling and quantization, image enhancement, restoration and segmentation, among others. Hardly the researcher of computational dosimetry will find all these available abilities in single software, and almost always this difficulty presents as a result the decrease of the rhythm of his researches or the use, sometimes inadequate, of alternative tools. The need to integrate the several tasks mentioned above to obtain an image that can be used in an exposure computational model motivated the development of the Digital Image Processing (DIP) software, mainly to solve particular problems in Dissertations and Thesis developed by members of the Grupo de Pesquisa em Dosimetria Numérica (GDN/CNPq). Because of this particular objective, the software uses the Portuguese idiom in their implementations and interfaces. This paper presents the second version of the DIP, whose main changes are the more formal organization on menus and menu items, and menu for digital image segmentation. Currently, the DIP contains the menus Fundamentos, Visualizações, Domínio Espacial, Domínio de Frequências, Segmentações and Estudos. Each menu contains items and sub-items with functionalities that, usually, request an image as input and produce an image or an attribute in the output. The DIP reads edits and writes binary files containing the 3-D matrix corresponding to a stack of axial images from a given geometry that can be a human body or other volume of interest. It also can read any type of computational image and to make conversions. When the task involves only an output image

  20. Motion as a perturbation: Measurement-guided dose estimates to moving patient voxels during modulated arc deliveries

    SciTech Connect

    Feygelman, Vladimir; Zhang, Geoffrey; Hunt, Dylan; Opp, Daniel; Stambaugh, Cassandra; Wolf, Theresa K.; Nelms, Benjamin E.

    2013-02-15

    Purpose: To present a framework for measurement-guided VMAT dose reconstruction to moving patient voxels from a known motion kernel and the static phantom data, and to validate this perturbation-based approach with the proof-of-principle experiments. Methods: As described previously, the VMAT 3D dose to a static patient can be estimated by applying a phantom measurement-guided perturbation to the treatment planning system (TPS)-calculated dose grid. The fraction dose to any voxel in the presence of motion, assuming the motion kernel is known, can be derived in a similar fashion by applying a measurement-guided motion perturbation. The dose to the diodes in a helical phantom is recorded at 50 ms intervals and is transformed into a series of time-resolved high-density volumetric dose grids. A moving voxel is propagated through this 4D dose space and the fraction dose to that voxel in the phantom is accumulated. The ratio of this motion-perturbed, reconstructed dose to the TPS dose in the phantom serves as a perturbation factor, applied to the TPS fraction dose to the similarly situated voxel in the patient. This approach was validated by the ion chamber and film measurements on four phantoms of different shape and structure: homogeneous and inhomogeneous cylinders, a homogeneous cube, and an anthropomorphic thoracic phantom. A 2D motion stage was used to simulate the motion. The stage position was synchronized with the beam start time with the respiratory gating simulator. The motion patterns were designed such that the motion speed was in the upper range of the expected tumor motion (1-1.4 cm/s) and the range exceeded the normally observed limits (up to 5.7 cm). The conformal arc plans for X or Y motion (in the IEC 61217 coordinate system) consisted of manually created narrow (3 cm) rectangular strips moving in-phase (tracking) or phase-shifted by 90 Degree-Sign (crossing) with respect to the phantom motion. The XY motion was tested with the computer-derived VMAT

  1. Clusters of Low (18)F-Fluorodeoxyglucose Uptake Voxels in Combat Veterans with Traumatic Brain Injury and Post-Traumatic Stress Disorder.

    PubMed

    Buchsbaum, Monte S; Simmons, Alan N; DeCastro, Alex; Farid, Nikdokht; Matthews, Scott C

    2015-11-15

    Individuals with mild traumatic brain injury (TBI) show diminished metabolic activity when studied with positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG). Since blast injury may not be localized in the same specific anatomical areas in every patient or may be diffuse, significance probability mapping may be vulnerable to false-negative detection of abnormalities. To address this problem, we used an anatomically independent measure to assess PET scans: increased numbers of contiguous voxels that are 2 standard deviations below values found in an uninjured control group. We examined this in three age-matched groups of male patients: 16 veterans with a history of mild TBI, 17 veterans with both mild TBI and post-traumatic stress disorder (PTSD), and 15 veterans without either condition. After FDG administration, subjects performed a modified version of the California Verbal Learning Task. Clusters of low uptake voxels were identified by computing the mean and standard deviation for each voxel in the healthy combat veteran group and then determining the voxel-based z-score for the patient groups. Abnormal clusters were defined as those that contained contiguous voxels with a z-score <-2. Patients with mild TBI alone and patients with TBI+PTSD had larger clusters of low uptake voxels, and cluster size significantly differentiated the mild TBI groups from combat controls. Clusters were more irregular in shape in patients, and patients also had a larger number of low-activity voxels throughout the brain. In mild TBI and TBI+PTSD patients, but not healthy subjects, cluster volume was significantly correlated with verbal learning during FDG uptake.

  2. Neuroanatomical Maps of Psychosis Onset: Voxel-wise Meta-Analysis of Antipsychotic-Naive VBM Studies

    PubMed Central

    Fusar-Poli, Paolo; Radua, Joaquim; McGuire, Philip; Borgwardt, Stefan

    2012-01-01

    Background: Despite impressive advancements in early interventions in psychosis, there is an urgent need of robust neurobiological markers to improve the predictive value of psychosis transition. Available structural imaging literature in the field is undermined by several methodological caveats and a number of confounders such as exposure to antipsychotic treatment. Methods: Fourteen voxel-based morphometry studies of antipsychotic-naive subjects at enhanced clinical risk for psychosis (high risk [HR]) or experiencing a first-episode psychosis (FEP) were included. Formal meta-analysis of effect sizes and “signed differential mapping” voxel-based meta-analysis were combined to control the results for sample sizes, strength of individual findings, and confounding variables. Results: Formal effect size meta-analysis indicated consistent gray matter (GM) reductions both in subjects at enhanced clinical risk for psychosis and in first-episode subjects when compared with control groups. Voxel-based meta-analysis showed GM reductions in the temporal, limbic prefrontal cortex within the HR group and in the temporal insular cortex and cerebellum within the FEP group. Psychosis onset was characterized by GM decreases in temporal, anterior cingulate, cerebellar, and insular regions. GM alterations in the temporal regions directly related to severity of psychotic symptoms. There was no publication bias. Heterogeneity across studies was low. Sensitivity analyses confirmed robustness of the above results. Conclusions: Vulnerability to psychosis is associated with consistent GM decreases in prefrontal and temporolimbic areas. The onset of full disease is accompanied by temporoinsular, anterior cingulate, and cerebellar GM reductions. Neuroanatomical alterations in temporal regions may underlie the clinical onset of psychotic symptoms. PMID:22080494

  3. A voxel based comparative analysis using magnetization transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy

    PubMed Central

    Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar

    2014-01-01

    Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571

  4. Measuring Complete 3D Vegetation Structure With Airborne Waveform Lidar: A Calibration and Validation With Terrestrial Lidar Derived Voxels

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Anderson, K.; Disney, M.; Gaston, K. J.

    2015-12-01

    Accurate measurements of vegetation are vital to understand habitats and their provision of ecosystem services as well as having applications in satellite calibration, weather modelling and forestry. The majority of humans now live in urban areas and so understanding vegetation structure in these very heterogeneous areas is of importance. A number of previous studies have used airborne lidar (ALS) to characterise canopy height and canopy cover, but very few have fully characterised 3D vegetation, including understorey. Those that have either relied on leaf-off scans to allow unattenuated measurement of understorey or else did not validate. A method for creating a detailed voxel map of urban vegetation, in which the surface area of vegetation within a grid of cuboids (1.5m by 1.5m by 25 cm) is defined, from full-waveform ALS is presented. The ALS was processed with deconvolution and attenuation correction methods. The signal processing was calibrated and validated against synthetic waveforms generated from terrestrial laser scanning (TLS) data, taken as "truth". The TLS data was corrected for partial hits and attenuation using a voxel approach and these steps were validated and found to be accurate. The ALS results were benchmarked against the more common discrete return ALS products (produced automatically by the lidar manufacturer's algorithms) and Gaussian decomposition of full-waveform ALS. The true vegetation profile was accurately recreated by deconvolution. Far more detail was captured by the deconvolved waveform than either the discrete return or Gaussian decomposed ALS, particularly detail within the canopy; vital information for understanding habitats. In the paper, we will present the results with a focus on the methodological steps towards generating the voxel model, and the subsequent quantitative calibration and validation of the modelling approach using TLS. We will discuss the implications of the work for complete vegetation canopy descriptions in

  5. Voxel Level Survival Analysis of Grey Matter Volume and Incident Mild Cognitive Impairment or Alzheimer’s Disease

    PubMed Central

    Zeifman, Lubov E.; Eddy, William F.; Lopez, Oscar L.; Kuller, Lewis H.; Raji, Cyrus; Thompson, Paul M.; Becker, James T.

    2015-01-01

    The purpose of this study was to identify, at the voxel level, brain regions associated with the time to develop mild cognitive impairment (MCI) or Alzheimer’s disease (AD) from normal cognition. We analyzed incident MCI (n = 58) or AD (n = 151) in 292 cognitively normal participants in the Cardiovascular Health Study–Cognition Study (mean age = 79.2±3.6 years). We used segmented, modulated grey matter maps from 3D (spoiled gradient echo) MRI scans obtained in 1998/99 (with clinical follow-up through 2012) that were smoothed with a 3-D 4 mm Gaussian filter. We fit approximately 1.92 million voxel-level Cox proportional hazard models to examine the grey matter volume effect on time to event, adjusting for age, sex, and diabetes. We used the significance threshold of p < 0.005 with contiguity threshold of at least 68 voxels (false detection probability <2.5 × 10−8). Areas within the mesial temporal lobe (MTL), anterior temporal lobe, hippocampus, and posterior cingulate gyrus were associated with time to MCI or AD. The presence of white matter lesions (a marker of small vessel disease in the brain) was associated with the volumes of the MTL and precuneus; MRI-identified infarcts also predicted MTL volume. These findings are important because we identified critical brain regions that predict a person’s increased likelihood of developing MCI or AD over a decade prior to the onset of clinical symptoms; these critical brain regions were themselves affected by the presence of vascular disease. PMID:25720412

  6. VOXEL-LEVEL MAPPING OF TRACER KINETICS IN PET STUDIES: A STATISTICAL APPROACH EMPHASIZING TISSUE LIFE TABLES1

    PubMed Central

    O’Sullivan, Finbarr; Muzi, Mark; Mankoff, David A.; Eary, Janet F.; Spence, Alexander M.; Krohn, Kenneth A.

    2014-01-01

    Most radiotracers used in dynamic positron emission tomography (PET) scanning act in a linear time-invariant fashion so that the measured time-course data are a convolution between the time course of the tracer in the arterial supply and the local tissue impulse response, known as the tissue residue function. In statistical terms the residue is a life table for the transit time of injected radiotracer atoms. The residue provides a description of the tracer kinetic information measurable by a dynamic PET scan. Decomposition of the residue function allows separation of rapid vascular kinetics from slower blood-tissue exchanges and tissue retention. For voxel-level analysis, we propose that residues be modeled by mixtures of nonparametrically derived basis residues obtained by segmentation of the full data volume. Spatial and temporal aspects of diagnostics associated with voxel-level model fitting are emphasized. Illustrative examples, some involving cancer imaging studies, are presented. Data from cerebral PET scanning with 18F fluoro-deoxyglucose (FDG) and 15O water (H2O) in normal subjects is used to evaluate the approach. Cross-validation is used to make regional comparisons between residues estimated using adaptive mixture models with more conventional compartmental modeling techniques. Simulations studies are used to theoretically examine mean square error performance and to explore the benefit of voxel-level analysis when the primary interest is a statistical summary of regional kinetics. The work highlights the contribution that multivariate analysis tools and life-table concepts can make in the recovery of local metabolic information from dynamic PET studies, particularly ones in which the assumptions of compartmental-like models, with residues that are sums of exponentials, might not be certain. PMID:25392718

  7. Neurofunctional maps of the 'maternal brain' and the effects of oxytocin: a multimodal voxel-based meta-analysis.

    PubMed

    Rocchetti, Matteo; Radua, Joaquim; Paloyelis, Yannis; Xenaki, Lida-Alkisti; Frascarelli, Marianna; Caverzasi, Edgardo; Politi, Pierluigi; Fusar-Poli, Paolo

    2014-10-01

    Several studies have tried to understand the possible neurobiological basis of mothering. The putative involvement of oxytocin, in this regard, has been deeply investigated. Performing a voxel-based meta-analysis, we aimed at testing the hypothesis of overlapping brain activation in functional magnetic resonance imaging (fMRI) studies investigating the mother-infant interaction and the oxytocin modulation of emotional stimuli in humans. We performed two systematic literature searches: fMRI studies investigating the neurofunctional correlates of the 'maternal brain' by employing mother-infant paradigms; and fMRI studies employing oxytocin during emotional tasks. A unimodal voxel-based meta-analysis was performed on each database, whereas a multimodal voxel-based meta-analytical tool was adopted to assess the hypothesis that the neurofunctional effects of oxytocin are detected in brain areas implicated in the 'maternal brain.' We found greater activation in the bilateral insula extending to the inferior frontal gyrus, basal ganglia and thalamus during mother-infant interaction and greater left insular activation associated with oxytocin administration versus placebo. Left insula extending to basal ganglia and frontotemporal gyri as well as bilateral thalamus and amygdala showed consistent activation across the two paradigms. Right insula also showed activation across the two paradigms, and dorsomedial frontal cortex activation in mothers but deactivation with oxytocin. Significant activation in areas involved in empathy, emotion regulation, motivation, social cognition and theory of mind emerged from our multimodal meta-analysis, supporting the need for further studies directly investigating the neurobiology of oxytocin in the mother-infant relationship.

  8. Exploratory analysis of voxel size effects on CT measurements of situation characteristics of type point-to-point distance

    NASA Astrophysics Data System (ADS)

    Fernandes, T. L.; Donatelli, G. D.; Baldo, C. R.

    2016-07-01

    In recent years, computed tomography (CT) has been applied as an industrial metrology tool for the dimensional evaluation of visible and even hidden features of production parts in a non-destructive manner. Considering the experimental findings of a recent work of the authors, this paper deals with the effect of voxel size on measuring distances between feature-of-size centers, which would be less sensitive to edge offset errors. Particular attention is given to the design of experiment and to the measurement uncertainty sources. The most significant experimental findings are outlined and discussed in this paper.

  9. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  10. Voxel-based analysis of Alzheimer's disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG.

    PubMed

    Shin, Jonghan; Lee, Sang-Yoon; Kim, Seog Ju; Kim, So-Hee; Cho, Seong-Jin; Kim, Young-Bo

    2010-08-15

    Beta amyloid plaques, neurofibrillary tangles, and impaired glucose metabolism are among the most prevalent pathological characteristics of Alzheimer's disease (AD). However, separate visualization of these three AD-related pathologies in living humans has not been conducted. Here, we show that positron emission tomography (PET) imaging using the three radiotracers (11)C-Pittsburgh compound B (PIB), 2-(1-{6-[(2-(18)F-fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene) malononitrile (FDDNP), and 2-[18F]fluoro-2-deoxy-d-glucose (FDG), in the same subjects, with and without AD, can provide valuable information on the pathological patterns of the distribution of tracers for amyloid plaque, neurofibrillary tangle, and glucose hypometabolism in AD. Voxel-based analysis of PIB-PET in patients with AD compared with normal control subjects showed that patients with AD have highly significant PIB retention in brain regions known to have high amyloid plaque deposition (e.g., frontal, parietal, temporal, and posterior cingulate/precuneus cortices). In contrast, voxel-based analysis of FDDNP-PET showed significantly high FDDNP binding in some brain regions known to have high tangle accumulation in patients with AD compared with age-matched normal subjects (e.g., entorhinal cortex, inferior temporal gyrus, and secondary visual cortex). In addition, because FDDNP binds both plaques and tangles but PIB binds plaques specifically, we examined subtracted PET data (FDDNP minus PIB) acquired from the same patients with AD using an SPM analysis. We found that the hippocampal formation was the most significant brain region in the voxel mapping of FDDNP minus PIB in the same patients with AD. Voxel-based analysis of FDG-PET in the same subjects revealed that brain regions with glucose hypometabolism in patients with AD overlap with regions of high PIB binding. In conclusion, PET imaging using these three radiotracers in the same subjects may contribute toward developing and testing disease

  11. Shallow subsurface control on earthquake damage patterns: first results from a 3D geological voxel model study (Tokyo Lowland, Japan)

    NASA Astrophysics Data System (ADS)

    Stafleu, Jan; Busschers, Freek; Tanabe, Susumu

    2016-04-01

    The Tokyo Lowland is situated in a Neogene sedimentary basin near the triple junction of the North American, Pacific, and Philippine tectonic plates. The basin is filled with Neogene and Quaternary sediments up to a thickness of 3 km. In the upper 70 m of the basin, thick sequences of soft Holocene sediments occur which are assumed to have played a key role in the spatial variation of damage intensity during the 1923 Kanto earthquake (Magnitude 7.9 to 8.3). Historical records show this earthquake destroyed large parts of the Tokyo urban area which in that time was largely made up by wooden houses. Although the epicentre was 70 km to the southwest of Tokyo, severe damage occurred north of the city centre, presumably due to ground motion amplification in the soft Holocene sediments in the shallow subsurface. In order to assess the presumed relation between the damage pattern of the 1923 earthquake and the occurrence of soft Holocene sediments in the shallow subsurface, we constructed a 3D geological voxel model of the central part of the Tokyo Lowland. The model was constructed using a methodology originally developed for the lowlands of the Netherlands. The modelling workflow basically consists of three steps. First, some 10,000 borehole descriptions (gathered for geomechanical purposes), were subdivided into geological units that have uniform sediment characteristics, using both lithological and geomechanical (N-value) criteria. Second, 2D bounding surfaces were constructed, representing tops and bases of the geological units. These surfaces were used to place each voxel (100 by 100 by 1 m) within the correct geological unit. The N-values and lithological units in the borehole descriptions were subsequently used to perform a 3D stochastic interpolation of N-value and lithological class within each geological unit. Using a vertical voxel stack analysis, we were able to create a map showing the accumulated thickness of soft muds in the Holocene succession. A

  12. The neural basis of reversible sentence comprehension: evidence from voxel-based lesion symptom mapping in aphasia.

    PubMed

    Thothathiri, Malathi; Kimberg, Daniel Y; Schwartz, Myrna F

    2012-01-01

    We explored the neural basis of reversible sentence comprehension in a large group of aphasic patients (n = 79). Voxel-based lesion symptom mapping revealed a significant association between damage in temporo-parietal cortex and impaired sentence comprehension. This association remained after we controlled for phonological working memory. We hypothesize that this region plays an important role in the thematic or what-where processing of sentences. In contrast, we detected weak or no association between reversible sentence comprehension and the ventrolateral pFC, which includes Broca's area, even for syntactically complex sentences. This casts doubt on theories that presuppose a critical role for this region in syntactic computations.

  13. Modelling shallow urban geology using reservoir modelling techniques: voxel-based lithology and physical properties of the greater Glasgow area

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Williams, John D. O.; Williamson, J. Paul; Lark, R. Murray; Dobbs, Marcus R.; Kearsey, Timothy; Finlayson, Andrew; Campbell, S. Diarmad G.

    2013-04-01

    Conventional 3D geological models of lithostratigraphy undertaken by BGS have facilitated a significant step forward in understanding of the 3D sedimentological and structural controls in the subsurface of the UK. However, when lithostratigraphic units are mapped or modelled in 3D, intra-unit variability is often not recognized and may be substantial, particularly in sedimentologically heterogeneous successions. Because of this BGS has been testing voxel grid-based approaches in urban areas with high borehole density. A city-scale lithology model of shallow, unconsolidated sediments in Glasgow, Scotland has been developed as a test of the applicability of these techniques to aid geological understanding and possible future applications. This is of particular significance in this location due to the complex fluvial and glacial history of the superficial geology which alternates between inter-fingering sedimentary packages and short-scale variability of subsurface materials. The model has been created by developing a stochastic model of clastic geology on a voxel support, based on upscaling of observed borehole lithology, independent of lithostratigraphy. Multiple realisations of lithology were generated, each honouring the borehole observations. Lithology information has therefore been used to both develop a model of the distribution of lithology throughout the grid, but also to develop an understanding of the associated uncertainty by providing estimates of the probability with which a particular lithology occurs at a given node. This lithological model compares well with 'traditional' deterministic lithostratigraphic 3D models created in the same area, and with field-based geological maps. This lithological voxel model has been used as a matrix through which physical property data can be attributed within the grid by stochastic modelling and simulation of the variability of properties within the lithological units. Several different property datasets have been

  14. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    SciTech Connect

    Yani, Sitti; Dirgayussa, I Gde E.; Haryanto, Freddy; Arif, Idam; Rhani, Moh. Fadhillah

    2015-09-30

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm{sup 3}, 1 × 1 × 0.5 cm{sup 3}, and 1 × 1 × 0.8 cm{sup 3}. The 1 × 10{sup 9} histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in d{sub max} from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm{sup 3} about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm{sup 3} about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  15. Application of a dual-resolution voxellation scheme to small ROI reconstruction in iterative CBCT for the reduction of computational cost

    NASA Astrophysics Data System (ADS)

    Lee, Minsik; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Park, Yeonok; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo

    2014-11-01

    In iterative methods for cone-beam computed tomography (CBCT) reconstruction, the use of a huge system matrix is the primary computational bottleneck and is still an obstacle to the more widespread use of these methods in practice. In this paper, to put iterative methods to practical applications, we propose a pragmatic idea, the-so-called dual-resolution voxellation scheme, for a small region-of-interest (ROI) reconstruction in CBCT in which voxels outside the ROI are binned with a double resolution such as 2×2×2, 4×4×4, 8×8×8, 16×16×16, etc., and the voxel sizewithin the ROI remains unchanged. In some situations of medical diagnosis, physicians are interested only in a small ROI containing a target diagnosis from the examined structure. We implemented an efficient compressed-sensing (CS)-based reconstruction algorithm with the proposed voxellation scheme incorporated and performed both simulation and experimental works to investigate the imaging characteristics. Our results indicate that the proposed voxellation scheme seems to be effective in reducing the computational cost considerably for a small ROI reconstruction in iterative CBCT, with the image quality inside the ROI not being noticeably impaired.

  16. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments.

    PubMed

    Hippeläinen, E; Tenhunen, M; Sohlberg, A

    2015-09-07

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for (177)Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions.Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by (177)Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared.The photon cross-fire dose from the kidney increased the background's absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  17. Fast voxel-level dosimetry for 177Lu labelled peptide treatments

    NASA Astrophysics Data System (ADS)

    Hippeläinen, E.; Tenhunen, M.; Sohlberg, A.

    2015-09-01

    In peptide receptor radionuclide therapy (PRRT), voxel-level radiation absorbed dose calculations can be performed using several different methods. Each method has it strengths and weaknesses; however, Monte Carlo (MC) simulation is presently considered the most accurate method at providing absorbed dose distributions. Unfortunately MC simulation is time-consuming and often impractical to carry out in a clinical practice. In this work, a fast semi-Monte Carlo (sMC) absorbed dose calculation method for 177Lu PRRT dosimetry is presented. The sMC method is based on a local electron absorption assumption and fast photon MC simulations. The sMC method is compared against full MC simulation code built on PENELOPE (vxlPen) using digital phantoms to assess the accuracy of these assumptions. Due to the local electron absorption assumption of sMC, the potential errors in cross-fire dose from electrons and photons emitted by 177Lu were first evaluated using an ellipsoidal kidney model by comparing vxlPen and sMC. The photon cross-fire dose from background to kidney and kidney to background with varying kidney-to-background activity concentration ratios were calculated. In addition, kidney to kidney photon and electron cross-dose with different kidney to kidney distances were studied. Second, extended cardiac-torso (XCAT) phantoms were created with liver lesions and with realistic activity distributions and tissue densities. The XCAT phantoms were used to simulate SPECT projections and 3D activity distribution images were reconstructed using an OSEM algorithm. Image-based dose rate distributions were calculated using vxlPen and sMC. Total doses and dose rate volume histograms (DrVH) produced by the two methods were compared. The photon cross-fire dose from the kidney increased the background’s absorbed dose by 5% or more up to 5.8 cm distance with 20 : 1 kidney to background activity concentration ratio. On the other hand, the photon cross-fire dose from the background to

  18. A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.

    PubMed

    Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M

    2010-01-01

    The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.

  19. Impact of image acquisition on voxel-based-morphometry investigations of age-related structural brain changes.

    PubMed

    Streitbürger, Daniel-Paolo; Pampel, André; Krueger, Gunnar; Lepsien, Jöran; Schroeter, Matthias L; Mueller, Karsten; Möller, Harald E

    2014-02-15

    A growing number of magnetic resonance imaging studies employ voxel-based morphometry (VBM) to assess structural brain changes. Recent reports have shown that image acquisition parameters may influence VBM results. For systematic evaluation, gray-matter-density (GMD) changes associated with aging were investigated by VBM employing acquisitions with different radiofrequency head coils (12-channel matrix coil vs. 32-channel array), different pulse sequences (MP-RAGE vs. MP2RAGE), and different voxel dimensions (1mm vs. 0.8mm). Thirty-six healthy subjects, classified as young, middle-aged, or elderly, participated in the study. Two-sample and paired t-tests revealed significant effects of acquisition parameters (coil, pulse sequence, and resolution) on the estimated age-related GMD changes in cortical and subcortical regions. Potential advantages in tissue classification and segmentation were obtained for MP2RAGE. The 32-channel coil generally outperformed the 12-channel coil, with more benefit for MP2RAGE. Further improvement can be expected from higher resolution if the loss in SNR is accounted for. Use of inconsistent acquisition parameters in VBM analyses is likely to introduce systematic bias. Overall, acquisition and protocol changes require careful adaptations of the VBM analysis strategy before generalized conclusion can be drawn.

  20. Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer.

    PubMed

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J; Newhauser, Wayne D

    2009-01-07

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance.

  1. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  2. Evaluation of sub-voxel registration accuracy between MRI and 3D MR spectroscopy of the brain

    NASA Astrophysics Data System (ADS)

    Rousseau, Francois; Maudsley, Andrew; Ebel, Andreas; Darkazanli, Ammar; Weber, Patrice; Sivasankaran, Krishnakumar; Yu, Yingjian; Studholme, Colin

    2005-04-01

    The implementation of Magnetic Resonance Spectroscopic Imaging (MRSI) for diagnostic imaging benefits from close integration of the lower-spatial resolution MRSI information with information from high-resolution structural MRI. Since patients can commonly move between acquisitions, it is necessary to account for possible mis-registration between the datasets arising from differences in patient positioning. In this paper we evaluate the use of 4 common multi-modality registration criteria to recover alignment between high resolution structural MRI and 3D MRSI data of the brain with sub-voxel accuracy. We explore the use of alternative MRSI water reference images to provide different types of structural information for the alignment process. The alignment accuracy was evaluated using both synthetically created MRSI and MRI data and a set of carefully collected subject image data with known ground truth spatial transformation between image volumes. The final accuracy and precision of estimates were assessed using multiple random starts of the registration algorithm. Sub voxel accuracy was found by all four similarity criteria with normalized mutual information providing the lowest target registration error for the 7 subject images. This effort supports the ongoing development of a database of brain metabolite distributions in normal subjects, which will be used in the evaluation of metabolic changes in neurological diseases.

  3. NOTE: Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer

    NASA Astrophysics Data System (ADS)

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J.; Newhauser, Wayne D.

    2009-01-01

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance.

  4. Generation of postured voxel-based human models for the study of step voltage excited by lightning current

    NASA Astrophysics Data System (ADS)

    Gao, J.; Munteanu, I.; Müller, W. F. O.; Weiland, T.

    2011-07-01

    With the development of medical technique and computational electromagnetics, high resolution anatomic human models have already been widely developed and used in computation of electromagnetic fields induced in human body. Although these so called voxel-based human models are powerful tools for research on electromagnetic safety, their unchangeable standing posture makes it impossible to simulate a realistic scenario in which people have a lot of different postures. This paper describes a poser program package which was developed as an improved version of the free-from deformation technique to overcome this problem. It can set rotation angles of different human joints and then deform the original human model to make it have different postures. The original whole-body human model can be deformed smoothly, continuity of internal tissues and organs is maintained and the mass of different tissues and organs can be conserved in a reasonable level. As a typical application of the postured human models, this paper also studies the effect of the step voltage due to a lightning strike on the human body. Two voxel-based human body models with standing and walking posture were developed and integrated into simulation models to compute the current density distribution in the human body shocked by the step voltage. In order to speed up the transient simulation, the reduced c technique was used, leading to a speedup factor of around 20. The error introduced by the reduced c technique is discussed and simulation results are presented in detail.

  5. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography - Mass Spectrometry

    SciTech Connect

    Petyuk, Vladislav A; Qian, Weijun; Chin, Mark H; Wang, Haixing H; Livesay, Eric A; Monroe, Matthew E; Adkins, Joshua N; Jaitly, Navdeep; Anderson, David J; Camp, David G; Smith, Desmond J; Smith, Richard D

    2007-01-25

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a “universal” stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion.

  6. Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia

    PubMed Central

    Kimberg, Daniel Y.; Walker, Grant M.; Faseyitan, Olufunsho; Brecher, Adelyn; Dell, Gary S.; Coslett, H. Branch

    2009-01-01

    Analysis of error types provides useful information about the stages and processes involved in normal and aphasic word production. In picture naming, semantic errors (horse for goat) generally result from something having gone awry in lexical access such that the right concept was mapped to the wrong word. This study used the new lesion analysis technique known as voxel-based lesion-symptom mapping to investigate the locus of lesions that give rise to semantic naming errors. Semantic errors were obtained from 64 individuals with post-stroke aphasia, who also underwent high-resolution structural brain scans. Whole brain voxel-based lesion-symptom mapping was carried out to determine where lesion status predicted semantic error rate. The strongest associations were found in the left anterior to mid middle temporal gyrus. This area also showed strong and significant effects in further analyses that statistically controlled for deficits in pre-lexical, conceptualization processes that might have contributed to semantic error production. This study is the first to demonstrate a specific and necessary role for the left anterior temporal lobe in mapping concepts to words in production. We hypothesize that this role consists in the conveyance of fine-grained semantic distinctions to the lexical system. Our results line up with evidence from semantic dementia, the convergence zone framework and meta-analyses of neuroimaging studies on word production. At the same time, they cast doubt on the classical linkage of semantic error production to lesions in and around Wernicke's area. PMID:19942676

  7. Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study.

    PubMed

    Chen, Shulin; Xia, Weiwei; Li, Lingjiang; Liu, Jun; He, Zhong; Zhang, Zishu; Yan, Lirong; Zhang, Jinli; Hu, Dewen

    2006-01-30

    Voxel-based morphometry (VBM) is an objective whole-brain technique for characterizing regional cerebral volume and tissue concentration differences in structural magnetic resonance images. In the current study, we used VBM to examine possible cerebral gray matter abnormalities in patients with posttraumatic stress disorder (PTSD) due to fire. The subjects included 12 victims of a fire disaster with PTSD and 12 matched victims of the same fire without PTSD. Magnetic resonance images were obtained on a 1.5-Tesla General Electric scanner at Central South University, and an entire brain volume of 248 contiguous slices was obtained for each subject. Then, gray matter density in patients with PTSD and control groups was compared by using a VBM approach in SPM2. Group analysis was thresholded at P<0.001, uncorrected, at the voxel level. The following three regions of reduced gray matter volume were found in patients with PTSD compared with controls: left hippocampus, left anterior cingulate cortex (ACC), and bilateral insular cortex. It was concluded that there are structural abnormalities of the hippocampus, the ACC and the insular cortex in patients with PTSD due to fire.

  8. Monte Carlo fast dose calculator for proton radiotherapy: application to a voxelized geometry representing a patient with prostate cancer

    PubMed Central

    Yepes, Pablo; Randeniya, Sharmalee; Taddei, Phillip J; Newhauser, Wayne D

    2014-01-01

    The Monte Carlo method is used to provide accurate dose estimates in proton radiation therapy research. While it is more accurate than commonly used analytical dose calculations, it is computationally intense. The aim of this work was to characterize for a clinical setup the fast dose calculator (FDC), a Monte Carlo track-repeating algorithm based on GEANT4. FDC was developed to increase computation speed without diminishing dosimetric accuracy. The algorithm used a database of proton trajectories in water to calculate the dose of protons in heterogeneous media. The extrapolation from water to 41 materials was achieved by scaling the proton range and the scattering angles. The scaling parameters were obtained by comparing GEANT4 dose distributions with those calculated with FDC for homogeneous phantoms. The FDC algorithm was tested by comparing dose distributions in a voxelized prostate cancer patient as calculated with well-known Monte Carlo codes (GEANT4 and MCNPX). The track-repeating approach reduced the CPU time required for a complete dose calculation in a voxelized patient anatomy by more than two orders of magnitude, while on average reproducing the results from the Monte Carlo predictions within 2% in terms of dose and within 1 mm in terms of distance. PMID:19075361

  9. Estabilidad de los modelos de Heggie y Ramamani

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.; Vergne, M. M.; Wachlin, F. C.; Carpintero, D. D.

    Los modelos de Heggie y Ramamani de satélites galácticos en órbitas circulares se basan en una teoría aproximada, por lo que es importante verificar su estabilidad mediante simulaciones numéricas. En esta forma, hemos logrado mostrar que son estables sobre intervalos de tiempo mucho mayores que los que lograron los propios autores de los modelos. Por otra parte, dado que hemos mostrado que el caos es significativo en estos modelos, son un sistema ideal para investigar si, pese a ello, se mantienen estacionarios. Nuestras simulaciones numéricas muestran que, pese al caos, la estacionariedad se mantiene sobre intervalos de centenares de tiempos de cruce del sistema, mucho mayores que los tiempos de Liapunov característicos de sus movimientos caóticos.

  10. DIGLIB. PC-DOS Graphics Subroutine Library

    SciTech Connect

    Burleson, R.R.

    1989-02-01

    DIGLIB is a collection of general graphics subroutines. It was designed to be small, reasonably fast, device-independent, and compatible with DEC-supplied operating systems for VAXes, PDP-11s, and LSI-11s, and the DOS operating system for IBM PCs and IBM-compatible machines. DIGLIB/PC runs on IBM PCs under PC-DOS or MS-DOS. The software is readily usable by casual programmers for two-dimensional plotting.

  11. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment: a voxel-based lesion symptom mapping study.

    PubMed

    Reynolds, Alexandria M; Peters, Denise M; Vendemia, Jennifer M C; Smith, Lenwood P; Sweet, Raymond C; Baylis, Gordon C; Krotish, Debra; Fritz, Stacy L

    2014-04-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuronal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deficits expected after damage to the cortical motor system due to stroke. These findings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex.

  12. Neuronal injury in the motor cortex after chronic stroke and lower limb motor impairment: a voxel-based lesion symptom mapping study

    PubMed Central

    Reynolds, Alexandria M.; Peters, Denise M.; Vendemia, Jennifer M. C.; Smith, Lenwood P.; Sweet, Raymond C.; Baylis, Gordon C.; Krotish, Debra; Fritz, Stacy L.

    2014-01-01

    Many studies have examined motor impairments using voxel-based lesion symptom mapping, but few are reported regarding the corresponding relationship between cerebral cortex injury and lower limb motor impairment analyzed using this technique. This study correlated neuronal injury in the cerebral cortex of 16 patients with chronic stroke based on a voxel-based lesion symptom mapping analysis. Neuronal injury in the corona radiata, caudate nucleus and putamen of patients with chronic stroke could predict walking speed. The behavioral measure scores were consistent with motor deficits expected after damage to the cortical motor system due to stroke. These findings suggest that voxel-based lesion symptom mapping may provide a more accurate prognosis of motor recovery from chronic stroke according to neuronal injury in cerebral motor cortex. PMID:25206888

  13. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    SciTech Connect

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  14. SU-E-T-642: PTV Is the Voxel-Wise Worst-Case of CTV in Prostate Photon Therapy

    SciTech Connect

    Harrington, D; Schild, S; Wong, W; Vora, S; Liu, W

    2015-06-15

    Purpose: To examine the adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution in prostate volumetric-modulated arc therapy (VMAT) plans. Methods: Ten intact prostate cancer cases treated by VMAT at our institution were randomly selected. Isocenter was shifted in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (±3 mm) for a total of six shifted plans per original plan. Rotationally-perturbed plans were generated with a couch rotation of ±1° to simulate patient yaw. The eight perturbed dose distributions were recalculated in the treatment planning system using the same, fixed fluence map as the original plan. The voxel-wise worst-case CTV dose distribution was constructed from the minimum value per voxel from the eight perturbed doses. The resulting dose volume histograms (DVH) were evaluated for statistical correlation between the worst-case CTV and nominal PTV dose distributions based on D95% by Wilcoxon signed-rank test with significance level p ≤ 0.05. Results: Inspection demonstrates the PTV DVH in the nominal dose distribution is bounded by the CTV DVH in the worst-case dose distribution. Comparison of D95% for the two dose distributions by Wilcoxon signed-rank test gives p = 0.131. Therefore the null hypothesis cannot be rejected since the difference in median values is not statistically significant. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the ten plans under examination. Although the worst-case dose distribution is unphysical since the dose per voxel is chosen independently, it serves as a lower bound for the possible CTV coverage. Furthermore, this is consistent with the unphysical nature of the PTV. Minor discrepancies between the two dose distributions are expected since the dose cloud is not strictly static. Funding Support

  15. Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter.

    PubMed

    Payne, Geoffrey S; deSouza, Nandita M; Messiou, Christina; Leach, Martin O

    2015-04-01

    Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as

  16. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  17. TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT

    SciTech Connect

    Liu, J; Wu, Q.J.; Yin, F; Kirkpatrick, J; Cabrera, A; Ge, Y

    2014-06-15

    Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into five groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant

  18. Compositionality and the angular gyrus: a multi-voxel similarity analysis of the semantic composition of nouns and verbs

    PubMed Central

    Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.

    2015-01-01

    The cognitive and neural systems that enable conceptual processing must support the ability to combine (and recombine) concepts to form an infinite number of ideas. Two candidate neural systems for conceptual combination—the left anterior temporal lobe (ATL) and the left angular gyrus (AG)—have been characterized as “semantic hubs” due to both functional and anatomical properties; however, these two regions likely support different aspects of composition. Here we consider two hypotheses for the role of AG in conceptual combination, both of which differ from a putative role for the ATL in “feature-based” combinatorics (i.e., meaning derived by combining concepts’ features). Firstly, we examine whether AG is more sensitive to function-argument relations of the sort that arise when a predicate is combined with its arguments. Secondly, we examine the non-mutually exclusive possibility that AG represents information carried on a verb in particular, whether this be information about event composition or about thematic relations denoted uniquely by verbs. We identified voxels that respond differentially to two-word versus one-word stimuli, and we measured the similarity of the patterns in these voxels evoked by (1) pairs of two-word phrases that shared a noun that was an argument, thus sharing function-argument composition (e.g. eats meat and with meat), in comparison with two-word phrases that shared only a noun, not an argument (e.g., eats meat and tasty meat); and (2) stimulus pairs that shared only an event (operationalized here as sharing a verb; e.g. eats meat and eats quickly), in comparison to both of the above. We found that activity patterns in left AG tracked information relating to the presence of an event-denoting verb in a pair of two-word phrases. We also found that the neural similarity in AG voxel patterns between two phrases sharing a verb correlated with subjects’ ratings of how similar the meanings of those two verb phrases were. These

  19. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    PubMed Central

    2016-01-01

    Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS). We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM) imaging results to identify consistent gray matter (GM) difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015) and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE) technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS. PMID:28105430

  20. Larger right posterior parietal volume in action video game experts: a behavioral and voxel-based morphometry (VBM) study.

    PubMed

    Tanaka, Satoshi; Ikeda, Hanako; Kasahara, Kazumi; Kato, Ryo; Tsubomi, Hiroyuki; Sugawara, Sho K; Mori, Makoto; Hanakawa, Takashi; Sadato, Norihiro; Honda, Manabu; Watanabe, Katsumi

    2013-01-01

    Recent studies suggest that action video game players exhibit superior performance in visuospatial cognitive tasks compared with non-game players. However, the neural basis underlying this visuospatial cognitive performance advantage remains largely unknown. The present human behavioral and imaging study compared gray matter volume in action video game experts and non-experts using structural magnetic resonance imaging and voxel-based morphometry analysis. The results revealed significantly larger gray matter volume in the right posterior parietal cortex in experts compared with non-experts. Furthermore, the larger gray matter volume in the right posterior parietal cortex significantly correlated with individual performance in a visual working memory task in experts. These results suggest that differences in brain structure may be linked to extensive video game play, leading to superior visuospatial cognitive performance in action video game experts.

  1. Whole-brain gray matter volume abnormalities in patients with generalized anxiety disorder: voxel-based morphometry.

    PubMed

    Moon, Chung-Man; Kim, Gwang-Won; Jeong, Gwang-Woo

    2014-02-12

    Patients with generalized anxiety disorder (GAD) experience psychological distress because of excessive and uncontrollable anxiety in everyday life. Only a few morphological studies have so far focused on specific brain regions of interest as well as the gray matter volume changes in GAD patients. This study evaluated gray matter volume alterations in whole-brain areas between GAD patients and healthy controls, and sex differences between the specific brain areas with significant volume changes in GAD patients using voxel-based morphometry. Twenty-two patients with GAD (13 men and nine women), who were diagnosed using the DSM-IV-TR, and 22 age-matched healthy controls (13 men and nine women) participated in this study. The high-resolution MRI data were processed using voxel-based morphometry analysis on the basis of diffeomorphic anatomical registration through an exponentiated Lie algebra algorithm in Statistical Parametric Mapping 8. There was no significant difference in the total intracranial volume between GAD patients and controls, but a significant difference was observed between sexes (P<0.05). Patients with GAD showed significant volume reductions in the hippocampus, midbrain, thalamus, insula, and superior temporal gyrus compared with the controls. As for the sex comparison, female patients showed a significant increase in the volume of the dorsolateral prefrontal cortex relative to male patients. Also, the volume of the dorsolateral prefrontal cortex in female patients was correlated positively with the Hamilton Anxiety Rating Scale score (γ=0.68, P=0.04). The specific morphological variations in patient with GAD will be helpful to understand the neural mechanism associated with a symptom of GAD. Furthermore, the findings would be valuable for the diagnostic accuracy of GAD using morphometric MRI analysis.

  2. SU-E-T-169: Evaluation of Oncentra TPS for Nasopharynx Brachy Using Patient Specific Voxel Phantom and EGSnrc

    SciTech Connect

    Hadad, K; Zoherhvand, M; Faghihi, R

    2014-06-01

    Purpose: Nasopharnx carcinoma (NPC) treatment is being carried out using Ir-192 HDR seeds in Mehdieh Hospital in Hamadan, Iran. The Oncentra™ TPS is based on optimized TG-43 formalism which disregards heterogeneity in the treatment area. Due to abundant heterogeneity in head and neck, comparison of the Oncentra™ TPS dose evaluation and an accurate dose calculation method in NPC brachytherapy is the objective of this study. Methods: CT DICOMs of a patient with NPC obtained from Mehdieh Hospital used to create 3D voxel phantom with CTCREATE utility of EGSnrc code package. The voxel phantom together with Ir-192 HDR brachytherapy source were the input to DOSXYZnrc to calculate the 3D dose distribution. The sources were incorporate with type 6 source in DOSXYZnrc and their dwell times were taken into account in final dose calculations. Results: The direct comparison between isodoses as well as DVHs for the GTV, PTV and CTV obtained by Oncentra™ and EGSnrc Monte Carlo code are made. EGSnrc results are obtained using 5×10{sup 9} histories to reduce the statistical error below 1% in GTV and 5% in 5% dose areas. The standard ICRP700 cross section library is employed in DOSXYZnrc dose calculation. Conclusion: A direct relationship between increased dose differences and increased material density (hence heterogeneity) is observed when isodoses contours of the TPS and DOSXYZnrc are compared. Regarding the point dose calculations, the differences range from 1.2% in PTV to 5.6% for cavity region and 7.8% for bone regions. While Oncentra™ TPS overestimates the dose in cavities, it tends to underestimate dose depositions within bones.

  3. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes.

    PubMed

    Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M

    2015-10-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p < 0.05, cluster size k > 200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.

  4. Approach to voxel-based carbon stock quanticiation using LiDAR data in tropical rainforest, Brunei

    NASA Astrophysics Data System (ADS)

    Kim, Eunji; Piao, Dongfan; Lee, Jongyeol; Lee, Woo-Kyun; Yoon, Mihae; Moon, Jooyeon

    2016-04-01

    Forest is an important means to adapt climate change as the only carbon sink recognized by the international community (KFS 2009). According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), Agriculture, Forestry, and Other Land Use (AFOLU) sectors including forestry contributed 24% of total anthropogenic emissions in 2010 (IPCC 2014; Tubiello et al. 2015). While all sectors excluding AFOLU have increased Greenhouse Gas (GHG) emissions, land use sectors including forestry remains similar level as before due to decreasing deforestation and increasing reforestation. In earlier researches, optical imagery has been applied for analysis (Jakubowski et al. 2013). Optical imagery collects spectral information in 2D. It is difficult to effectively quantify forest stocks, especially in dense forest (Cui et al. 2012). To detect individual trees information from remotely sensed data, Light detection and ranging (LiDAR) has been used (Hyyppäet al. 2001; Persson et al. 2002; Chen et al. 2006). Moreover, LiDAR has the ability to actively acquire vertical tree information such as tree height using geo-registered 3D points (Kwak et al. 2007). In general, however, geo-register 3D point was used with a raster format which contains only 2D information by missing all the 3D data. Therefore, this research aimed to use the volumetric pixel (referred as "voxel") approach using LiDAR data in tropical rainforest, Brunei. By comparing the parameters derived from voxel based LiDAR data and field measured data, we examined the relationships between them for the quantification of forest carbon. This study expects to be more helpful to take advantage of the strategic application of climate change adaption.

  5. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    PubMed Central

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  6. Regional specificity of MRI contrast parameter changes in normal ageing revealed by voxel-based quantification (VBQ).

    PubMed

    Draganski, B; Ashburner, J; Hutton, C; Kherif, F; Frackowiak, R S J; Helms, G; Weiskopf, N

    2011-04-15

    Normal ageing is associated with characteristic changes in brain microstructure. Although in vivo neuroimaging captures spatial and temporal patterns of age-related changes of anatomy at the macroscopic scale, our knowledge of the underlying (patho)physiological processes at cellular and molecular levels is still limited. The aim of this study is to explore brain tissue properties in normal ageing using quantitative magnetic resonance imaging (MRI) alongside conventional morphological assessment. Using a whole-brain approach in a cohort of 26 adults, aged 18-85years, we performed voxel-based morphometric (VBM) analysis and voxel-based quantification (VBQ) of diffusion tensor, magnetization transfer (MT), R1, and R2* relaxation parameters. We found age-related reductions in cortical and subcortical grey matter volume paralleled by changes in fractional anisotropy (FA), mean diffusivity (MD), MT and R2*. The latter were regionally specific depending on their differential sensitivity to microscopic tissue properties. VBQ of white matter revealed distinct anatomical patterns of age-related change in microstructure. Widespread and profound reduction in MT contrasted with local FA decreases paralleled by MD increases. R1 reductions and R2* increases were observed to a smaller extent in overlapping occipito-parietal white matter regions. We interpret our findings, based on current biophysical models, as a fingerprint of age-dependent brain atrophy and underlying microstructural changes in myelin, iron deposits and water. The VBQ approach we present allows for systematic unbiased exploration of the interaction between imaging parameters and extends current methods for detection of neurodegenerative processes in the brain. The demonstrated parameter-specific distribution patterns offer insights into age-related brain structure changes in vivo and provide essential baseline data for studying disease against a background of healthy ageing.

  7. A Voxel-Based Morphometry Study Reveals Local Brain Structural Alterations Associated with Ambient Fine Particles in Older Women

    PubMed Central

    Casanova, Ramon; Wang, Xinhui; Reyes, Jeanette; Akita, Yasuyuki; Serre, Marc L.; Vizuete, William; Chui, Helena C.; Driscoll, Ira; Resnick, Susan M.; Espeland, Mark A.; Chen, Jiu-Chiuan

    2016-01-01

    Objective: Exposure to ambient fine particulate matter (PM2.5: PM with aerodynamic diameters < 2.5 μm) has been linked with cognitive deficits in older adults. Using fine-grained voxel-wise analyses, we examined whether PM2.5 exposure also affects brain structure. Methods: Brain MRI data were obtained from 1365 women (aged 71–89) in the Women's Health Initiative Memory Study and local brain volumes were estimated using RAVENS (regional analysis of volumes in normalized space). Based on geocoded residential locations and air monitoring data from the U.S. Environmental Protection Agency, we employed a spatiotemporal model to estimate long-term (3-year average) exposure to ambient PM2.5 preceding MRI scans. Voxel-wise linear regression models were fit separately to gray matter (GM) and white matter (WM) maps to analyze associations between brain structure and PM2.5 exposure, with adjustment for potential confounders. Results: Increased PM2.5 exposure was associated with smaller volumes in both cortical GM and subcortical WM areas. For GM, associations were clustered in the bilateral superior, middle, and medial frontal gyri. For WM, the largest clusters were in the frontal lobe, with smaller clusters in the temporal, parietal, and occipital lobes. No statistically significant associations were observed between PM2.5 exposure and hippocampal volumes. Conclusions: Long-term PM2.5 exposures may accelerate loss of both GM and WM in older women. While our previous work linked smaller WM volumes to PM2.5, this is the first neuroimaging study reporting associations between air pollution exposure and smaller volumes of cortical GM. Our data support the hypothesized synaptic neurotoxicity of airborne particles. PMID:27790103

  8. Altered Brain Network in Amyotrophic Lateral Sclerosis: A Resting Graph Theory-Based Network Study at Voxel-Wise Level.

    PubMed

    Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.

  9. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    PubMed

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  10. Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz

    NASA Astrophysics Data System (ADS)

    Nagaoka, Tomoaki; Kunieda, Etsuo; Watanabe, Soichi

    2008-12-01

    The development of high-resolution anatomical voxel models of children is difficult given, inter alia, the ethical limitations on subjecting children to medical imaging. We instead used an existing voxel model of a Japanese adult and three-dimensional deformation to develop three voxel models that match the average body proportions of Japanese children at 3, 5 and 7 years old. The adult model was deformed to match the proportions of a child by using the measured dimensions of various body parts of children at 3, 5 and 7 years old and a free-form deformation technique. The three developed models represent average-size Japanese children of the respective ages. They consist of cubic voxels (2 mm on each side) and are segmented into 51 tissues and organs. We calculated the whole-body-averaged specific absorption rates (WBA-SARs) and tissue-averaged SARs for the child models for exposures to plane waves from 30 MHz to 3 GHz; these results were then compared with those for scaled down adult models. We also determined the incident electric-field strength required to produce the exposure equivalent to the ICNIRP basic restriction for general public exposure, i.e., a WBA-SAR of 0.08 W kg-1.

  11. Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

    2013-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

  12. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain.

    PubMed

    van den Heuvel, M P; Stam, C J; Boersma, M; Hulshoff Pol, H E

    2008-11-15

    The brain is a complex dynamic system of functionally connected regions. Graph theory has been successfully used to describe the organization of such dynamic systems. Recent resting-state fMRI studies have suggested that inter-regional functional connectivity shows a small-world topology, indicating an organization of the brain in highly clustered sub-networks, combined with a high level of global connectivity. In addition, a few studies have investigated a possible scale-free topology of the human brain, but the results of these studies have been inconclusive. These studies have mainly focused on inter-regional connectivity, representing the brain as a network of brain regions, requiring an arbitrary definition of such regions. However, using a voxel-wise approach allows for the model-free examination of both inter-regional as well as intra-regional connectivity and might reveal new information on network organization. Especially, a voxel-based study could give information about a possible scale-free organization of functional connectivity in the human brain. Resting-state 3 Tesla fMRI recordings of 28 healthy subjects were acquired and individual connectivity graphs were formed out of all cortical and sub-cortical voxels with connections reflecting inter-voxel functional connectivity. Graph characteristics from these connectivity networks were computed. The clustering-coefficient of these networks turned out to be much higher than the clustering-coefficient of comparable random graphs, together with a short average path length, indicating a small-world organization. Furthermore, the connectivity distribution of the number of inter-voxel connections followed a power-law scaling with an exponent close to 2, suggesting a scale-free network topology. Our findings suggest a combined small-world and scale-free organization of the functionally connected human brain. The results are interpreted as evidence for a highly efficient organization of the functionally connected

  13. A DOS Primer for Librarians: Part II.

    ERIC Educational Resources Information Center

    Beecher, Henry

    1990-01-01

    Provides an introduction to DOS commands and strategies for the effective organization and use of hard disks. Functions discussed include the creation of directories and subdirectories, enhanced copying, the assignment of disk drives, and backing up the hard disk. (CLB)

  14. 3-D ion distribution and evolution in storm-time RC Retrieved from TWINS ENA by differential voxel CT technique

    NASA Astrophysics Data System (ADS)

    Ma, S.; Yan, W.; Xu, L.

    2013-12-01

    The quantitative retrieval of the 3-D spatial distribution of the parent energetic ions of ENA from a 2-D ENA image is a quite challenge task. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission of NASA is the first constellation to perform stereoscopic magnetospheric imaging of energetic neutral atoms (ENA) from a pair of spacecraft flying on two widely-separated Molniya orbits. TWINS provides a unique opportunity to retrieve the 3-D distribution of ions in the ring current (RC) by using a volumetric pixel (voxel) CT inversion method. In this study the voxel CT method is implemented for a series of differential ENA fluxes averaged over about 6 to 7 sweeps (corresponding to a time period of about 9 min.) at different energy levels ranging from 5 to 100 keV, obtained simultaneously by the two satellites during the main phase of a great magnetic storm with minimum Sym-H of -156 nT on 24-25 October 2011. The data were selected to span a period about 50 minutes during which a large substorm was undergoing its expansion phase first and then recovery. The ENA species of O and H are distinguished for some time-segments by analyzing the signals of pulse heights of second electrons emitted from the carbon foil and impacted on the MCP detector in the TWINS sensors. In order to eliminate the possible influence on retrieval induced by instrument bias error, a differential voxel CT technique is applied. The flux intensity of the ENAs' parent ions in the RC has been obtained as a function of energy, L value, MLT sector and latitude, along with their time evolution during the storm-time substorm expansion phase. Forward calculations proved the reliability of the retrieved results. It shows that the RC is highly asymmetric, with a major concentration in the midnight to dawn sector for equatorial latitudes. Halfway through the substorm expansion there occurred a large enhancement of equatorial ion flux at lower energy (5 keV) in the dusk sector, with narrow extent

  15. Storm-time RC ion distribution and evolution retrieved from TWINS ENA by differential voxel CT technique

    NASA Astrophysics Data System (ADS)

    Ma, S. Y.; Xu, Liang; Yan, Wei-Nan

    The quantitative retrieval of the 3-D spatial distribution of the parent energetic ions of ENA from a 2-D ENA image is a challenge task. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission of NASA provides an unique opportunity to retrieve the 3-D distribution of ions in the ring current (RC) by using a volumetric pixel (voxel) CT inversion method. In this study the voxel CT method is implemented for a series of differential ENA fluxes at different energy levels ranging from 5 to 80 keV obtained simultaneously by the two satellites of TWINS flying on two widely-separated Molniya orbits during the main phase of the magnetic storm of 24-25 October 2011 with minimum Sym-H index of -160 nT. The data were selected to span a period of about 50 minutes during which a large substorm was undergoing its expansion phase first and then recovery. The ENA species of O and H are distinguished for lower energy-mass ratio in some time- segments by analyzing the signals of pulse heights of second electrons emitted from the carbon foil and impacted on the MCP detector in the TWINS sensors. In order to eliminate the possible influence on retrieval caused by instrument bias error, a differential voxel CT technique is applied. To weaken the influence of low altitude emission (LAE) produced by ion precipitation, a correction is made for the ENA intensity along the line-of-sight that run deep into the high latitude atmosphere, invoking the so called thick-target approximation. The flux intensity of the ENAs’ parent ions in the RC has been obtained as a function of energy, L value, MLT sector and latitude, along with their time evolution during the storm-time substorm expansion phase. Forward calculations proved the reliability of the retrieved results. It shows that the RC is highly asymmetric with a major concentration in the midnight to dawn sector for equatorial latitudes. The ion flux spectra undergo dramatic changes from pre-storm to the main phase. Besides

  16. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    SciTech Connect

    Kuboi, Nobuyuki Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  17. Storm-time RC ion distribution and evolution retrieved from TWINS ENA by differential voxel CT technique

    NASA Astrophysics Data System (ADS)

    Yan, Wei-Nan; Ma, Shu-Ying; Xu, Liang

    2014-05-01

    The quantitative retrieval of the 3-D spatial distribution of the parent energetic ions of ENA from a 2-D ENA image is a challenge task. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission of NASA provides an unique opportunity to retrieve the 3-D distribution of ions in the ring current (RC) by using a volumetric pixel (voxel) CT inversion method. In this study the voxel CT method is implemented for a series of differential ENA fluxes at different energy levels ranging from 5 to 80 keV obtained simultaneously by the two satellites of TWINS flying on two widely-separated Molniya orbits during the main phase of the magnetic storm of 24-25 October 2011 with minimum Sym-H index of -160 nT. The data were selected to span a period of about 50 minutes during which a large substorm was undergoing its expansion phase first and then recovery. The ENA species of O and H are distinguished for lower energy-mass ratio in some time- segments by analyzing the signals of pulse heights of second electrons emitted from the carbon foil and impacted on the MCP detector in the TWINS sensors. In order to eliminate the possible influence on retrieval caused by instrument bias error, a differential voxel CT technique is applied. To weaken the influence of low altitude emission (LAE) produced by ion precipitation, a correction is made for the ENA intensity along the line-of-sight that run deep into the high latitude atmosphere, invoking the so called thick-target approximation. The flux intensity of the ENAs' parent ions in the RC has been obtained as a function of energy, L value, MLT sector and latitude, along with their time evolution during the storm-time substorm expansion phase. Forward calculations proved the reliability of the retrieved results. It shows that the RC is highly asymmetric with a major concentration in the midnight to dawn sector for equatorial latitudes. The ion flux spectra undergo dramatic changes from pre-storm to the main phase. Besides, halfway

  18. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome.

    PubMed

    Hashimoto, Ryu-ichiro; Javan, Alireza K; Tassone, Flora; Hagerman, Randi J; Rivera, Susan M

    2011-03-01

    Fragile X-associated tremor/ataxia syndrome is a neurodegenerative disorder that primarily affects older male premutation carriers of the fragile X mental retardation gene. Although its core symptoms are mainly characterized by motor problems such as intention tremor and gait ataxia, cognitive decline and psychiatric problems are also commonly observed. Past radiological and histological approaches have focused on prominent neurodegenerative changes in specific brain structures including the cerebellum and limbic areas. However, quantitative investigations of the regional structural abnormalities have not been performed over the whole brain. In this study, we adopted the voxel-based morphometry method together with regions of interest analysis for the cerebellum to examine the pattern of regional grey matter change in the male premutation carriers with and without fragile X-associated tremor/ataxia syndrome. In a comparison with healthy controls, we found striking grey matter loss of the patients with fragile X-associated tremor/ataxia syndrome in multiple regions over the cortical and subcortical structures. In the cerebellum, the anterior lobe and the superior posterior lobe were profoundly reduced in both vermis and hemispheres. In the cerebral cortex, clusters of highly significant grey matter reduction were found in the extended areas in the medial surface of the brain, including the dorsomedial prefrontal cortex, anterior cingulate cortex and precuneus. The other prominent grey matter loss was found in the lateral prefrontal cortex, orbitofrontal cortex, amygdala and insula. Although the voxel-wise comparison between the asymptomatic premutation group and healthy controls did not reach significant difference, a regions of interest analysis revealed significant grey matter reduction in anterior subregions of the cerebellar vermis and hemisphere in the asymptomatic premutation group. Correlation analyses using behavioural scales of the premutation groups showed

  19. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  20. Is there more valuable information in PWI datasets for a voxel-wise acute ischemic stroke tissue outcome prediction than what is represented by typical perfusion maps?

    NASA Astrophysics Data System (ADS)

    Forkert, Nils Daniel; Siemonsen, Susanne; Dalski, Michael; Verleger, Tobias; Kemmling, Andre; Fiehler, Jens

    2014-03-01

    The acute ischemic stroke is a leading cause for death and disability in the industry nations. In case of a present acute ischemic stroke, the prediction of the future tissue outcome is of high interest for the clinicians as it can be used to support therapy decision making. Within this context, it has already been shown that the voxel-wise multi-parametric tissue outcome prediction leads to more promising results compared to single channel perfusion map thresholding. Most previously published multi-parametric predictions employ information from perfusion maps derived from perfusion-weighted MRI together with other image sequences such as diffusion-weighted MRI. However, it remains unclear if the typically calculated perfusion maps used for this purpose really include all valuable information from the PWI dataset for an optimal tissue outcome prediction. To investigate this problem in more detail, two different methods to predict tissue outcome using a k-nearest-neighbor approach were developed in this work and evaluated based on 18 datasets of acute stroke patients with known tissue outcome. The first method integrates apparent diffusion coefficient and perfusion parameter (Tmax, MTT, CBV, CBF) information for the voxel-wise prediction, while the second method employs also apparent diffusion coefficient information but the complete perfusion information in terms of the voxel-wise residue functions instead of the perfusion parameter maps for the voxel-wise prediction. Overall, the comparison of the results of the two prediction methods for the 18 patients using a leave-one-out cross validation revealed no considerable differences. Quantitatively, the parameter-based prediction of tissue outcome led to a mean Dice coefficient of 0.474, while the prediction using the residue functions led to a mean Dice coefficient of 0.461. Thus, it may be concluded from the results of this study that the perfusion parameter maps typically derived from PWI datasets include all

  1. Voxel-wise meta-analysis of fMRI studies in patients at clinical high risk for psychosis

    PubMed Central

    Fusar-Poli, Paolo

    2012-01-01

    Background Reliable neurofunctional markers of increased vulnerability to psychosis are needed to improve the predictive value of psychosis risk syndrome and inform preventive interventions. Methods I performed a signed differential mapping (SDM) voxel-wise meta-analysis of functional magnetic resonance imaging (fMRI) studies of patients at clinical high risk for psychosis. Results Ten studies were included in the analysis. Compared with controls, high-risk patients showed reduced neural activation in the left inferior frontal gyrus (Brodmann area [BA] 9) and in a cluster spanning the bilateral medial frontal gyrus (BA 8,6), bilateral superior frontal gyrus (BA 8,6) and the left anterior cingulate (BA 32). There was no publication bias. Heterogeneity across studies was low. Sensitivity analysis confirmed the robustness of the findings. Limitations The cross-sectional nature of the included studies prevented the comparison of high-risk patients who later experienced a psychotic episode with those who did not. Other caveats are reflected in methodologic heterogeneity across tasks employed by different individual imaging studies. Conclusion Reduced neurofunctional activation in prefrontal regions may represent a neurophysiologic correlate of increased vulnerability to psychosis. PMID:22146150

  2. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study

    PubMed Central

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    Objectives To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Design Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Results Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. Conclusions The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation. PMID:26938433

  3. Differences in regional brain volume related to the extraversion-introversion dimension--a voxel based morphometry study.

    PubMed

    Forsman, Lea J; de Manzano, Orjan; Karabanov, Anke; Madison, Guy; Ullén, Fredrik

    2012-01-01

    Extraverted individuals are sociable, behaviorally active, and happy. We report data from a voxel based morphometry study investigating, for the first time, if regional volume in gray and white matter brain regions is related to extraversion. For both gray and white matter, all correlations between extraversion and regional brain volume were negative, i.e. the regions were larger in introverts. Gray matter correlations were found in regions that included the right prefrontal cortex and the cortex around the right temporo-parietal junction--regions that are known to be involved in behavioral inhibition, introspection, and social-emotional processing, e.g. evaluation of social stimuli and reasoning about the mental states of others. White matter correlations extended from the brainstem to widespread cortical regions, and were largely due to global effects, i.e. a larger total white matter volume in introverts. We speculate that these white matter findings may reflect differences in ascending modulatory projections affecting cortical regions involved in behavioral regulation.

  4. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: a voxel-based morphometry study1

    PubMed Central

    Whiteman, Andrew S.; Young, Daniel E.; Budson, Andrew E.; Stern, Chantal E.; Schon, Karin

    2015-01-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N = 33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. PMID:26631814

  5. Zero in the brain: A voxel-based lesion-symptom mapping study in right hemisphere damaged patients.

    PubMed

    Benavides-Varela, Silvia; Passarini, Laura; Butterworth, Brian; Rolma, Giuseppe; Burgio, Francesca; Pitteri, Marco; Meneghello, Francesca; Shallice, Tim; Semenza, Carlo

    2016-04-01

    Transcoding numerals containing zero is more problematic than transcoding numbers formed by non-zero digits. However, it is currently unknown whether this is due to zeros requiring brain areas other than those traditionally associated with number representation. Here we hypothesize that transcoding zeros entails visuo-spatial and integrative processes typically associated with the right hemisphere. The investigation involved 22 right-brain-damaged patients and 20 healthy controls who completed tests of reading and writing Arabic numbers. As expected, the most significant deficit among patients involved a failure to cope with zeros. Moreover, a voxel-based lesion-symptom mapping (VLSM) analysis showed that the most common zero-errors were maximally associated to the right insula which was previously related to sensorimotor integration, attention, and response selection, yet for the first time linked to transcoding processes. Error categories involving other digits corresponded to the so-called Neglect errors, which however, constituted only about 10% of the total reading and 3% of the writing mistakes made by the patients. We argue that damage to the right hemisphere impairs the mechanism of parsing, and the ability to set-up empty-slot structures required for processing zeros in complex numbers; moreover, we suggest that the brain areas located in proximity to the right insula play a role in the integration of the information resulting from the temporary application of transcoding procedures.

  6. Voxelized computational model for convection-enhanced delivery in the rat ventral hippocampus: comparison with in vivo MR experimental studies.

    PubMed

    Kim, Jung Hwan; Astary, Garrett W; Kantorovich, Svetlana; Mareci, Thomas H; Carney, Paul R; Sarntinoranont, Malisa

    2012-09-01

    Convection-enhanced delivery (CED) is a promising local delivery technique for overcoming the blood-brain barrier (BBB) and treating diseases of the central nervous system (CNS). For CED, therapeutics are infused directly into brain tissue and the drug agent is spread through the extracellular space, considered to be highly tortuous porous media. In this study, 3D computational models developed using magnetic resonance (MR) diffusion tensor imaging data sets were used to predict CED transport in the rat ventral hippocampus using a voxelized modeling previously developed by our group. Predicted albumin tracer distributions were compared with MR-measured distributions from in vivo CED in the ventral hippocampus up to 10 μL of Gd-DTPA albumin tracer infusion. Predicted and measured tissue distribution volumes and distribution patterns after 5 and 10 μL infusions were found to be comparable. Tracers were found to occupy the underlying landmark structures with preferential transport found in regions with less fluid resistance such as the molecular layer of the dentate gyrus. Also, tracer spread was bounded by high fluid resistance layers such as the granular cell layer and pyramidal cell layer of dentate gyrus. Leakage of tracers into adjacent CSF spaces was observed towards the end of infusions.

  7. Cerebral gray matter volume variation in female-to-male transsexuals: a voxel-based morphometric study.

    PubMed

    Kim, Tae-Hoon; Kim, Seok-Kwun; Jeong, Gwang-Woo

    2015-12-16

    Several studies seem to support the hypothesis that brain anatomy is associated with transsexualism. However, these studies were still limited because few neuroanatomical findings have been obtained from female-to-male (FtM) transsexuals. This study compared the cerebral regional volumes of gray matter (GM) between FtM transsexuals and female controls using a voxel-based morphometry. Twelve FtM transsexuals who had undergone sex-reassignment surgery and 15 female controls participated in this study. Both groups were age matched and right-handed, with no history of neurological illness. Fifteen female controls were recruited to determine whether GM volumes in FtM transsexuals more closely resembled individuals who shared their biological sex. MRI data were processed using SPM 8 with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL). FtM transsexuals showed significantly larger volumes of the thalamus, hypothalamus, midbrain, gyrus rectus, head of caudate nucleus, precentral gyrus, and subcallosal area compared with the female controls. However, the female controls showed a significantly larger volume in the superior temporal gyrus including Heschl's gyrus and Rolandic operculum. These findings confirm that the volume difference in brain substructures in FtM transsexuals is likely to be associated with transsexualism and that transsexualism is probably associated with distinct cerebral structures, determining gender identity.

  8. Contralesional Cortical Structural Reorganization Contributes to Motor Recovery after Sub-Cortical Stroke: A Longitudinal Voxel-Based Morphometry Study

    PubMed Central

    Cai, Jianxin; Ji, Qiling; Xin, Ruiqiang; Zhang, Dianping; Na, Xu; Peng, Ruchen; Li, Kuncheng

    2016-01-01

    Although changes in brain gray matter after stroke have been identified in some neuroimaging studies, lesion heterogeneity and individual variability make the detection of potential neuronal reorganization difficult. This study attempted to investigate the potential structural cortical reorganization after sub-cortical stroke using a longitudinal voxel-based gray matter volume (GMV) analysis. Eleven right-handed patients with first-onset, subcortical, ischemic infarctions involving the basal ganglia regions underwent structural magnetic resonance imaging in addition to National Institutes of Health Stroke Scale (NIHSS) and Motricity Index (MI) assessments in the acute (<5 days) and chronic stages (1 year later). The GMVs were calculated and compared between the two stages using nonparametric permutation paired t-tests. Moreover, the Spearman correlations between the GMV changes and clinical recoveries were analyzed. Compared with the acute stage, significant decreases in GMV were observed in the ipsilesional (IL) precentral gyrus (PreCG), paracentral gyrus (ParaCG), and contralesional (CL) cerebellar lobule VII in the chronic stage. Additionally, significant increases in GMV were found in the CL orbitofrontal cortex (OFC) and middle (MFG) and inferior frontal gyri (IFG). Furthermore, severe GMV atrophy in the IL PreCG predicted poorer clinical recovery, and greater GMV increases in the CL OFG and MFG predicted better clinical recovery. Our findings suggest that structural reorganization of the CL “cognitive” cortices might contribute to motor recovery after sub-cortical stroke. PMID:27536229

  9. A voxel-based morphometry study of gray matter correlates of facial emotion recognition in bipolar disorder.

    PubMed

    Neves, Maila de Castro L; Albuquerque, Maicon Rodrigues; Malloy-Diniz, Leandro; Nicolato, Rodrigo; Silva Neves, Fernando; de Souza-Duran, Fábio Luis; Busatto, Geraldo; Corrêa, Humberto

    2015-08-30

    Facial emotion recognition (FER) is one of the many cognitive deficits reported in bipolar disorder (BD) patients. The aim of this study was to investigate neuroanatomical correlates of FER impairments in BD type I (BD-I). Participants comprised 21 euthymic BD-I patients without Axis I DSM IV-TR comorbidities and 21 healthy controls who were assessed using magnetic resonance imaging and the Penn Emotion Recognition Test (ER40). Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated Lie algebra) for optimized voxel-based morphometry in SPM8. Compared with healthy subjects, BD-I patients performed poorly in on the ER40 and had reduced gray matter volume (GMV) in the left orbitofrontal cortex, superior portion of the temporal pole and insula. In the BD-I group, the statistical maps indicated a direct correlation between FER on the ER40 and right middle cingulate gyrus GMV. Our findings are consistent with the previous studies regarding the overlap of multiple brain networks of social cognition and BD neurobiology, particularly components of the anterior-limbic neural network.

  10. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    PubMed

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCL<10). We found significant gray matter reductions in frontal and temporal brain regions in psychopaths compared with controls. In particular, we found a highly significant volume loss in the right superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  11. Performance of the moving voxel image reconstruction (MVIR) method in the fixed site detection system (FSDS) prototype

    SciTech Connect

    Estep, Robert J.

    2012-05-31

    We have developed a dynamic image reconstruction method called MVIR (Moving Voxel Image Reconstruction) for lane detection in multilane portal monitor systems. MVIR was evaluated for use in the Fixed Site Detection System, a prototype three-lane portal monitor system for EZ-pass toll plazas. As a baseline, we compared MVIR with a static image reconstruction method in analyzing the same real and simulated data sets. Performance was judged by the distributions of image intensities for source and no-source vehicles over many trials as a function of source strength. We found that MVIR produced significantly better results in all cases. The performance difference was greatest at low count rates, where source/no-source distributions were well separated with the MVIR method, allowing reliable source vehicle identification with a low probability of false positive identifications. Static reconstruction of the same data produced overlapping distributions that made source vehicle identification unreliable. The performance of the static method was acceptable at high count rates. Both algorithms reliably identified two strong sources passing through at nearly the same time.

  12. Damage to Fronto-Parietal Networks Impairs Motor Imagery Ability after Stroke: A Voxel-Based Lesion Symptom Mapping Study

    PubMed Central

    Oostra, Kristine M.; Van Bladel, Anke; Vanhoonacker, Ann C. L.; Vingerhoets, Guy

    2016-01-01

    Background: Mental practice with motor imagery has been shown to promote motor skill acquisition in healthy subjects and patients. Although lesions of the common motor imagery and motor execution neural network are expected to impair motor imagery ability, functional equivalence appears to be at least partially preserved in stroke patients. Aim: To identify brain regions that are mandatory for preserved motor imagery ability after stroke. Method: Thirty-seven patients with hemiplegia after a first time stroke participated. Motor imagery ability was measured using a Motor Imagery questionnaire and temporal congruence test. A voxelwise lesion symptom mapping approach was used to identify neural correlates of motor imagery in this cohort within the first year post-stroke. Results: Poor motor imagery vividness was associated with lesions in the left putamen, left ventral premotor cortex and long association fibers linking parieto-occipital regions with the dorsolateral premotor and prefrontal areas. Poor temporal congruence was otherwise linked to lesions in the more rostrally located white matter of the superior corona radiata. Conclusion: This voxel-based lesion symptom mapping study confirms the association between white matter tract lesions and impaired motor imagery ability, thus emphasizing the importance of an intact fronto-parietal network for motor imagery. Our results further highlight the crucial role of the basal ganglia and premotor cortex when performing motor imagery tasks. PMID:26869894

  13. Association between regional white and gray matter volume and ambiguity tolerance: Evidence from voxel-based morphometry.

    PubMed

    Tong, Dandan; Yang, Wenjing; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Che, Xianwei; Zhang, Meng; Hitchman, Glenn; Qiu, Jiang; Liu, Yijun; Cao, Guikang

    2015-08-01

    The concept of tolerance of ambiguity (AT) is defined as the way in which an individual tends to perceive and deal with confusing, vague, and unclear situations. AT is generally considered as an important personality trait, but the neural mechanisms underlying individual differences in AT have never been investigated. Using voxel-based morphometry and MSTAT-II scale, we investigated the correlations between AT and regional white matter volume (rWMV) and regional gray matter volume (rGMV) in 351 young healthy subjects. We found AT to be positively correlated with rGMV in the dorsolateral prefrontal cortex (DLPFC), and negatively correlated with rGMV in the precuneus. These results indicate that increased rGMV in the left DLPFC may lead to characteristics of ambiguous stimuli consideration from multiple contexts and risk taking. Decreased rGMV in the left precuneus may be associated with a high tolerance for ambiguity, which attributes uncertainty to self-related factors.

  14. Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study.

    PubMed

    Zhu, Feifei; Zhang, Qinglin; Qiu, Jiang

    2013-01-01

    Creativity can be defined the capacity of an individual to produce something original and useful. An important measurable component of creativity is divergent thinking. Despite existing studies on creativity-related cerebral structural basis, no study has used a large sample to investigate the relationship between individual verbal creativity and regional gray matter volumes (GMVs) and white matter volumes (WMVs). In the present work, optimal voxel-based morphometry (VBM) was employed to identify the structure that correlates verbal creativity (measured by the verbal form of Torrance Tests of Creative Thinking) across the brain in young healthy subjects. Verbal creativity was found to be significantly positively correlated with regional GMV in the left inferior frontal gyrus (IFG), which is believed to be responsible for language production and comprehension, new semantic representation, and memory retrieval, and in the right IFG, which may involve inhibitory control and attention switching. A relationship between verbal creativity and regional WMV in the left and right IFG was also observed. Overall, a highly verbal creative individual with superior verbal skills may demonstrate a greater computational efficiency in the brain areas involved in high-level cognitive processes including language production, semantic representation and cognitive control.

  15. Voxel-based morphometry in opera singers: Increased gray-matter volume in right somatosensory and auditory cortices.

    PubMed

    Kleber, Boris; Veit, Ralf; Moll, Christina Valérie; Gaser, Christian; Birbaumer, Niels; Lotze, Martin

    2016-06-01

    In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured.

  16. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines

    PubMed Central

    Sato, Kanako; Kirino, Eiji; Tanaka, Shoji

    2015-01-01

    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions. PMID:26494943

  17. Voxel-based morphometric analysis in hypothyroidism using diffeomorphic anatomic registration via an exponentiated lie algebra algorithm approach.

    PubMed

    Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S

    2013-03-01

    The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism.

  18. The association between the brain and mind pops: a voxel-based morphometry study in 256 Chinese college students.

    PubMed

    Zhang, Lei; Li, Wenfu; Wei, Dongtao; Yang, Wenjing; Yang, Ning; Qiao, Lei; Qiu, Jiang; Zuo, Xi-Nian; Zhang, Qinglin

    2016-06-01

    Mind pops or involuntary semantic memories refer to words, phrases, images, or melodies that suddenly pop into one's mind without any deliberate attempt to recall them. Despite their prevalence in everyday life, research on mind pops has started only recently. Notably, mind pops are very similar to clinical involuntary phenomena such as hallucinations in schizophrenia, suggesting their potential role in pathology. The present study aimed to investigate the relationship between mind pops and the brain morphometry measured in 302 healthy young adults; after exclusions, 256 participants were included in our analyses. Specifically, the Mind Popping Questionnaire (MPQ) was employed to measure the degree of individual mind pops, whereas the Voxel-Based Morphometry (VBM) was used to compute the volumes of both gray and white matter tissues. Multiple regression analyses on MPQ and VBM metrics indicated that high-frequency mind pops were significantly associated with smaller gray matter volume in the left middle temporal gyrus as well as with larger gray and white matter volume in the right medial prefrontal cortex. This increase in mind pops is also linked to higher creativity and the personality trait of 'openness'. These data not only suggest a key role of the two regions in generating self-related thoughts, but also open a possible link between brain and creativity or personality.

  19. Grey matter density decreases as well as increases in patients with classic galactosemia: A voxel-based morphometry study.

    PubMed

    Timmers, Inge; van der Korput, Lisanne D; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2016-10-01

    Brain impairments have been observed in patients with classic galactosemia, an inherited metabolic disorder resulting in a particular neuro-cognitive profile. Neuroimaging studies showed abnormalities such as diffuse white mater (WM) abnormalities and grey matter (GM) atrophy. Our current study analysed grey matter density using voxel-based morphometry (VBM) and compared the brains of eight adolescent patients with classic galactosemia with eight healthy gender- and aged-matched controls. GM density differences were found in several regions. Decreased GM density was found in the patients in the bilateral putamen and bilateral occipital cortex. Increased GM density in the patients, on the other hand, was found in the bilateral inferior frontal and medial prefrontal cortex. The anatomical profile of the abnormalities is in line with the neuro-cognitive profile of patients with classic galactosemia, including motor dysfunction, speech and language difficulties and higher order cognitive problems. Less favourable GM densities in patients (either increased or decreased compared to controls) correlated with younger age, a worse visual working memory performance, and an older age at initiation of the galactose-restricted diet. To conclude, this explorative study is the first to analyse the GM using VBM in this population, and demonstrates a mixed profile of both increased and decreased GM density in these patients.

  20. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.

    PubMed

    Tang, C Y; Tsui, C P; Tang, Y M; Wei, L; Wong, C T; Lam, K W; Ip, W Y; Lu, W W J; Pang, M Y C

    2014-01-01

    With the development of micro-computed tomography (micro-CT) technology, it is possible to construct three-dimensional (3D) models of human bone without destruction of samples and predict mechanical behavior of bone using finite element analysis (FEA). However, due to large number of elements required for constructing the FE models of entire bone, this demands a substantial computational effort and the analysis usually needs a high level of computer. In this article, a voxel-based approach for generation of FE models of entire bone with microscopic architecture from micro-CT image data is proposed. To enable the FE analyses of entire bone to be run even on a general personal computer, grayscale intensity thresholds were adopted to reduce the amount of elements. Human metacarpal bone (MCP) bone was used as an example for demonstrating the applicability of the proposed method. The micro-CT images of the MCP bone were combined and converted into 3D array of pixels. Dual grayscale intensity threshold parameters were used to distinguish the pixels of bone tissues from those of surrounding soft tissues and improve predictive accuracy for the FE analyses with different sizes of elements. The method of selecting an appropriate value of the second grayscale intensity threshold was also suggested to minimize the area error for the reconstructed cross-sections of a FE structure. Experimental results showed that the entire FE MCP bone with microscopic architecture could be modeled and analyzed on a personal computer with reasonable accuracy.

  1. A Voxel-Based Morphometry Study of the Brain of University Students Majoring in Music and Nonmusic Disciplines.

    PubMed

    Sato, Kanako; Kirino, Eiji; Tanaka, Shoji

    2015-01-01

    The brain changes flexibly due to various experiences during the developmental stages of life. Previous voxel-based morphometry (VBM) studies have shown volumetric differences between musicians and nonmusicians in several brain regions including the superior temporal gyrus, sensorimotor areas, and superior parietal cortex. However, the reported brain regions depend on the study and are not necessarily consistent. By VBM, we investigated the effect of musical training on the brain structure by comparing university students majoring in music with those majoring in nonmusic disciplines. All participants were right-handed healthy Japanese females. We divided the nonmusic students into two groups and therefore examined three groups: music expert (ME), music hobby (MH), and nonmusic (NM) group. VBM showed that the ME group had the largest gray matter volumes in the right inferior frontal gyrus (IFG; BA 44), left middle occipital gyrus (BA 18), and bilateral lingual gyrus. These differences are considered to be caused by neuroplasticity during long and continuous musical training periods because the MH group showed intermediate volumes in these regions.

  2. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system.

  3. Grey matter changes associated with deficit awareness in mild cognitive impairment: a voxel-based morphometry study.

    PubMed

    Ford, Andrew H; Almeida, Osvaldo P; Flicker, Leon; Garrido, Griselda J; Greenop, Kathryn R; Foster, Jonathan K; Etherton-Beer, Christopher; van Bockxmeer, Frank M; Lautenschlager, Nicola T

    2014-01-01

    Reduced awareness of cognitive deficits in mild cognitive impairment (MCI) is associated with poorer outcomes although little is known about the anatomical correlates of this. We examined the association of insight and grey matter volume using a voxel-based morphometry approach in 65 volunteers with MCI and 55 healthy age-matched controls. Participants with MCI had multiple areas of subtle grey matter volume loss compared with controls, although these did not survive correction for multiple comparisons. These were predominantly in the temporal and anterior portions of the brain. Individuals with MCI did not differ from each other on a number of demographic and cognitive variables according to level of insight. Reduced awareness of cognitive deficits was associated with few differences in grey matter volume apart from a subtle loss of grey matter in the medial frontal gyri. Given the modest nature of these findings, the routine assessment of insight in non-clinical populations of individuals with MCI is therefore not supported. Prospective data in larger samples, however, would be helpful to clarify this further and determine if impaired insight predicts brain atrophy and cognitive decline.

  4. Fully-3D PET image reconstruction using scanner-independent, adaptive projection data and highly rotation-symmetric voxel assemblies.

    PubMed

    Scheins, J J; Herzog, H; Shah, N J

    2011-03-01

    For iterative, fully 3D positron emission tomography (PET) image reconstruction intrinsic symmetries can be used to significantly reduce the size of the system matrix. The precalculation and beneficial memory-resident storage of all nonzero system matrix elements is possible where sufficient compression exists. Thus, reconstruction times can be minimized independently of the used projector and more elaborate weighting schemes, e.g., volume-of-intersection (VOI), are applicable. A novel organization of scanner-independent, adaptive 3D projection data is presented which can be advantageously combined with highly rotation-symmetric voxel assemblies. In this way, significant system matrix compression is achieved. Applications taking into account all physical lines-of-response (LORs) with individual VOI projectors are presented for the Siemens ECAT HR+ whole-body scanner and the Siemens BrainPET, the PET component of a novel hybrid-MR/PET imaging system. Measured and simulated data were reconstructed using the new method with ordered-subset-expectation-maximization (OSEM). Results are compared to those obtained by the sinogram-based OSEM reconstruction provided by the manufacturer. The higher computational effort due to the more accurate image space sampling provides significantly improved images in terms of resolution and noise.

  5. Cluster analysis for identifying sub-types of tinnitus: a positron emission tomography and voxel-based morphometry study.

    PubMed

    Schecklmann, Martin; Lehner, Astrid; Poeppl, Timm B; Kreuzer, Peter M; Hajak, Göran; Landgrebe, Michael; Langguth, Berthold

    2012-11-16

    Tinnitus is a heterogeneous disorder with respect to its etiology and phenotype. Thus, the identification of sub-types implicates high relevance for treatment recommendations. For this aim, we used cluster analysis of patients for which clinical data, positron-emission tomography (PET) data and voxel-based morphometry (VBM) data were available. 44 patients with chronic tinnitus were included in this analysis. On a phenotypical level, we used tinnitus distress, duration, and laterality for clustering. To correct PET and VBM data for age, gender, and hearing, we built up a design matrix including these variables as regressors and extracted the residuals. We applied Ward's clustering method and forced cluster analysis to divide the data into two groups for both imaging and phenotypical data. On a phenotypical level the clustered groups differed only in tinnitus laterality (uni- vs. bilateral tinnitus), but not in tinnitus duration, distress, age, gender, and hearing. For grey matter volume, groups differed mainly in frontal, cingulate, temporal, and thalamic areas. For glucose metabolism, groups differed in temporal and parietal areas. The correspondence of classification was near chance level for the interrelationship of all three data set clusters. Thus, we showed that clustering according to imaging data is feasible and might depict a new approach for identifying tinnitus sub-types. However, it remains an open question to what extent the phenotypical and imaging levels may be interrelated. This article is part of a Special Issue entitled: Tinnitus Neuroscience.

  6. The pedunculopontine nucleus is related to visual hallucinations in Parkinson's disease: preliminary results of a voxel-based morphometry study.

    PubMed

    Janzen, J; van 't Ent, D; Lemstra, A W; Berendse, H W; Barkhof, F; Foncke, E M J

    2012-01-01

    Visual hallucinations (VH) are common in Parkinson's disease (PD) and lead to a poor quality of life. For a long time, dopaminergic therapy was considered to be the most important risk factor for the development of VH in PD. Recently, the cholinergic system, including the pedunculopontine nucleus (PPN), has been implicated in the pathophysiology of VH. The aim of the present study was to investigate grey matter density of the PPN region and one of its projection areas, the thalamus. Thirteen non-demented PD patients with VH were compared to 16 non-demented PD patients without VH, 13 demented PD patients (PDD) with VH and 11 patients with dementia with Lewy bodies (DLB). Isotropic 3-D T1-weighted MRI images (3T) were analysed using voxel-based morphometry (VBM) with the PPN region and thalamus as ROIs. PD and PDD patients with VH showed grey matter reductions of the PPN region and the thalamus compared to PD patients without VH. VH in PD(D) patients are associated with atrophy of the PPN region and its thalamic target area, suggesting that a cholinergic deficit may be involved in the development of VH in PD(D).

  7. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies.

    PubMed

    Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C

    2009-03-01

    Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.

  8. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods.

    PubMed

    Van Hecke, Wim; Sijbers, Jan; De Backer, Steve; Poot, Dirk; Parizel, Paul M; Leemans, Alexander

    2009-07-01

    Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. These data sets can be employed to evaluate the numerous parameters that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility of different post-processing approaches quantitatively. We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).

  9. Desperately seeking grey matter volume changes in sleep apnea: A methodological review of magnetic resonance brain voxel-based morphometry studies.

    PubMed

    Celle, Sébastien; Delon-Martin, Chantal; Roche, Frédéric; Barthélémy, Jean-Claude; Pépin, Jean-Louis; Dojat, Michel

    2016-02-01

    Cognitive impairment related to obstructive sleep apnea might be explained by subtle changes in brain anatomy. This has been mainly investigated using magnetic resonance brain scans coupled with a voxel-based morphometry analysis. However, this approach is prone to several methodological pitfalls that may explain the large discrepancy in the results reported in the literature. We critically reviewed twelve papers addressing grey matter volume modifications in association with obstructive sleep apnea. Finally, based on strict methodological criteria, only three studies reported robust, but conflicting, results. No clear evidence has emerged and exploring brain alteration due to obstructive sleep apnea should thus be considered as an open field. We provide recommendations for designing additional robust voxel-based morphometry studies, notably the use of larger cohorts, which is the only way to solve the underpowered issue and the underestimated role of confounders in neuroimaging studies.

  10. Retrieving Leaf Area Index and Foliage Profiles Through Voxelized 3-D Forest Reconstruction Using Terrestrial Full-Waveform and Dual-Wavelength Echidna Lidars

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yang, X.; Li, Z.; Schaaf, C.; Wang, Z.; Yao, T.; Zhao, F.; Saenz, E.; Paynter, I.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Martel, J.; Howe, G.; Hewawasam, K.; Jupp, D.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Measuring and monitoring canopy biophysical parameters provide a baseline for carbon flux studies related to deforestation and disturbance in forest ecosystems. Terrestrial full-waveform lidar systems, such as the Echidna Validation Instrument (EVI) and its successor Dual-Wavelength Echidna Lidar (DWEL), offer rapid, accurate, and automated characterization of forest structure. In this study, we apply a methodology based on voxelized 3-D forest reconstructions built from EVI and DWEL scans to directly estimate two important biophysical parameters: Leaf Area Index (LAI) and foliage profile. Gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range are assigned to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. The DWEL instrument, which emits simultaneous laser pulses at 1064 nm and 1548 nm wavelengths, provides a better capability to separate trunk and branch hits from foliage hits due to water absorption by leaf cellular contents at 1548 nm band. We generate voxel datasets of foliage points using a classification methodology solely based on pulse shape for scans collected by EVI and with pulse shape and band ratio for scans collected by DWEL. We then compare the LAIs and foliage profiles retrieved from the voxel datasets of the two instruments at the same red fir site in Sierra National Forest, CA, with each other and with observations from airborne and field measurements. This study further tests the voxelization methodology in obtaining LAI and foliage profiles that are largely free of clumping effects and returns from woody materials in the canopy. These retrievals can provide a valuable 'ground-truth' validation data source for large-footprint spaceborne or airborne lidar systems retrievals.

  11. Comparison of accelerated 3-D spiral chemical shift imaging and single-voxel spectroscopy at 3T in the pediatric age group.

    PubMed

    Yazbek, Sandrine; Prabhu, Sanjay P; Connaughton, Pauline; Grant, Patricia E; Gagoski, Borjan

    2015-08-01

    Single-voxel spectroscopy (SVS) is usually used in the pediatric population when a short acquisition time is crucial. To overcome the long acquisition time of 3-D phase-encoded chemical shift imaging (CSI) and lack of spatial coverage of single-voxel spectroscopy, efficient encoding schemes using spiral k-space trajectories have been successfully deployed, enabling acquisition of volumetric CSI in <5 min. We assessed feasibility of using 3-D spiral CSI sequence routinely in pediatric clinical settings by comparing its reconstructed spectra against SVS spectra. Volumetric spiral CSI obtained spectra from 2-cc isotropic voxels over a 16×16×10-cm region. SVS acquisition encoded a 3.4-cc (1.5-mm) isotropic voxel. Acquisition time was 3 min for every technique. Data were gathered prospectively from 11 random pediatric patients. Spectra from left basal ganglia were obtained using both techniques and were processed with post-processing software. The following metabolite ratios were calculated: N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), lactate/creatine (Lac/Cr) and N-acetylapartate/choline (NAA/Cho). We collected data on 11 children ages 4 days to 10 years. In 10/11 cases, spectral quality of both methods was acceptable. Considering 10/11 cases, we found a statistically significant difference between SVS and 3-D spiral CSI for all three ratios. However, this difference was fixed and was probably caused by a fixed bias. This means that 3-D spiral CSI can be used instead of SVS by removing the mean difference between the methods for each ratio. Accelerated 3-D CSI is feasible in pediatric patients and can potentially substitute for SVS.

  12. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  13. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    PubMed

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  14. Investigation of voxel warping and energy mapping approaches for fast 4D Monte Carlo dose calculations in deformed geometries using VMC++

    NASA Astrophysics Data System (ADS)

    Heath, Emily; Tessier, Frederic; Kawrakow, Iwan

    2011-08-01

    A new deformable geometry class for the VMC++ Monte Carlo code was implemented based on the voxel warping method. Alternative geometries which use tetrahedral sub-elements were implemented and efficiency improvements investigated. A new energy mapping method, based on calculating the volume overlap between deformed reference dose grid and the target dose grid, was also developed. Dose calculations using both the voxel warping and energy mapping methods were compared in simple phantoms as well as a patient geometry. The new deformed geometry implementation in VMC++ increased calculation times by approximately a factor of 6 compared to standard VMC++ calculations in rectilinear geometries. However, the tetrahedron-based geometries were found to improve computational efficiency, relative to the dodecahedron-based geometry, by a factor of 2. When an exact transformation between the reference and target geometries was provided, the voxel and energy warping methods produced identical results. However, when the transformation is not exact, there were discrepancies in the energy deposited on the target geometry which lead to significant differences in the dose calculated by the two methods. Preliminary investigations indicate that these energy differences may correlate with registration errors; however, further work is needed to determine the usefulness of this metric for quantifying registration accuracy.

  15. Automated voxel classification used with atlas-guided diffuse optical tomography for assessment of functional brain networks in young and older adults.

    PubMed

    Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli

    2016-10-01

    Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.

  16. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    SciTech Connect

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-06-15

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast

  17. "DOS for Managers." Management Training Series.

    ERIC Educational Resources Information Center

    Marion County Schools, Fairmont, WV.

    A plan is provided for a lesson on disk operating systems (DOS) for managers. Twenty-five lesson objectives are listed, followed by suggestions for learning activities and special resources. In the presentation section, key points and content are provided for 25 instructional topics that correspond to the 25 lesson objectives. The topics are as…

  18. 27 CFR 9.175 - Dos Rios.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is located in northern Mendocino County, California, at the confluence of the Eel River and the Middle Fork of the Eel River. The area's boundaries are defined as follows— (1) Beginning in the... the Middle Fork of the Eel River, to the southeast corner of section 11, T21N, R13W (Dos...

  19. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    NASA Astrophysics Data System (ADS)

    Brücker, C.; Hess, D.; Kitzhofer, J.

    2013-02-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255-63, 1996a Appl. Sci. Res. 56 157-79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai-Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease while

  20. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in

  1. A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams.

    PubMed

    Cortés-Giraldo, M A; Carabe, A

    2015-04-07

    We compare unrestricted dose average linear energy transfer (LET) maps calculated with three different Monte Carlo scoring methods in voxelized geometries irradiated with proton therapy beams with three different Monte Carlo scoring methods. Simulations were done with the Geant4 (Geometry ANd Tracking) toolkit. The first method corresponds to a step-by-step computation of LET which has been reported previously in the literature. We found that this scoring strategy is influenced by spurious high LET components, which relative contribution in the dose average LET calculations significantly increases as the voxel size becomes smaller. Dose average LET values calculated for primary protons in water with voxel size of 0.2 mm were a factor ~1.8 higher than those obtained with a size of 2.0 mm at the plateau region for a 160 MeV beam. Such high LET components are a consequence of proton steps in which the condensed-history algorithm determines an energy transfer to an electron of the material close to the maximum value, while the step length remains limited due to voxel boundary crossing. Two alternative methods were derived to overcome this problem. The second scores LET along the entire path described by each proton within the voxel. The third followed the same approach of the first method, but the LET was evaluated at each step from stopping power tables according to the proton kinetic energy value. We carried out microdosimetry calculations with the aim of deriving reference dose average LET values from microdosimetric quantities. Significant differences between the methods were reported either with pristine or spread-out Bragg peaks (SOBPs). The first method reported values systematically higher than the other two at depths proximal to SOBP by about 15% for a 5.9 cm wide SOBP and about 30% for a 11.0 cm one. At distal SOBP, the second method gave values about 15% lower than the others. Overall, we found that the third method gave the most consistent

  2. Voxel-based registration of simulated and real patient CBCT data for accurate dental implant pose estimation

    NASA Astrophysics Data System (ADS)

    Moreira, António H. J.; Queirós, Sandro; Morais, Pedro; Rodrigues, Nuno F.; Correia, André Ricardo; Fernandes, Valter; Pinho, A. C. M.; Fonseca, Jaime C.; Vilaça, João. L.

    2015-03-01

    The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant's pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant's pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant's main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant's pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67+/-34μm and 108μm, and angular misfits of 0.15+/-0.08° and 1.4°, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants' pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

  3. Regional Gray Matter Volume Is Associated with Restrained Eating in Healthy Chinese Young Adults: Evidence from Voxel-Based Morphometry

    PubMed Central

    Su, Yanhua; Jackson, Todd; Wei, Dongtao; Qiu, Jiang; Chen, Hong

    2017-01-01

    Highlight Participants were non-clinical young adults with different restrained eating levels.We assessed relations of restrained eating (RE) with regional gray matter volume (rGMV).High RE scores were related to larger GMV in specific areas related to reward.High RE scores were also linked to less GMV in regions related to response inhibition. Objective: Dieting is a popular method of weight control. However, few dieters are able to maintain initial weight losses over an extended period of time. Why do most restrained dieters fail to lose weight? Alterations in brain structures associated with restrained eating (RE) represent one potentially important mechanism that contributes to difficulties in maintaining weight loss within this group. To evaluate this contention, we investigated associations between intentional, sustained restriction of food intake to lose or maintain body weight, and regional gray matter volume (rGMV) within a large non-clinical young adult, sample. Methods: Participants (150 women, 108 men) completed measures of RE and demographics prior to undergoing an MRI scan. Voxel-based morphometry (VBM) evaluated strengths of association between RE scores and rGMV. Results: Higher RE levels corresponded to more rGMV in regions linked to risk of overeating and binge-eating including the left insula and orbitofrontal cortex (OFC). Conversely, RE had significant negative correlations with rGMV in the left and right posterior cingulum gyrus, regions linked to inhibitory control and potential risk for future weight gain. Conclusions: Together, findings suggested individual differences in RE among young adults correspond to GMV variability in regions linked to overweight and obesity risk.

  4. Abnormal Intrinsic Functional Hubs in Severe Male Obstructive Sleep Apnea: Evidence from a Voxel-Wise Degree Centrality Analysis

    PubMed Central

    Shao, Yi; Gong, Honghan; Zhang, Wei; Zeng, Xianjun; Ye, Chenglong; Nie, Si; Chen, Liting; Peng, Dechang

    2016-01-01

    Purpose Obstructive sleep apnea (OSA) has been associated with changes in brain structure and regional function in certain brain areas. However, the functional features of network organization in the whole brain remain largely uncertain. The purpose of this study was to identify the OSA-related spatial centrality distribution of the whole brain functional network and to investigate the potential altered intrinsic functional hubs. Methods Forty male patients with newly confirmed severe OSA on polysomnography, and well-matched good sleepers, participated in this study. All participants underwent a resting-state functional MRI scan and clinical and cognitive evaluation. Voxel-wise degree centrality (DC) was measured across the whole brain, and group difference in DC was compared. The relationship between the abnormal DC value and clinical variables was assessed using a linear correlation analysis. Results Remarkably similar spatial distributions of the functional hubs (high DC) were found in both groups. However, OSA patients exhibited a pattern of significantly reduced regional DC in the left middle occipital gyrus, posterior cingulate cortex, left superior frontal gyrus, and bilateral inferior parietal lobule, and DC was increased in the right orbital frontal cortex, bilateral cerebellum posterior lobes, and bilateral lentiform nucleus, including the putamen, extending to the hippocampus, and the inferior temporal gyrus, which overlapped with the functional hubs. Furthermore, a linear correlation analysis revealed that the DC value in the posterior cingulate cortex and left superior frontal gyrus were positively correlated with Montreal cognitive assessment scores, The DC value in the left middle occipital gyrus and bilateral inferior parietal lobule were negatively correlated with apnea-hypopnea index and arousal index in OSA patients. Conclusion Our findings suggest that OSA patients exhibited specific abnormal intrinsic functional hubs including relatively

  5. Voxel-based magnetic resonance imaging investigation of poor and preserved clinical insight in people with schizophrenia

    PubMed Central

    Sapara, Adegboyega; Ffytche, Dominic H; Cooke, Michael A; Williams, Steven CR; Kumari, Veena

    2016-01-01

    AIM To define regional grey-matter abnormalities in schizophrenia patients with poor insight (Insight-), relative to patients with preserved clinical insight (Insight+), and healthy controls. METHODS Forty stable schizophrenia outpatients (20 Insight- and 20 Insight+) and 20 healthy controls underwent whole brain magnetic resonance imaging (MRI). Insight in all patients was assessed using the Birchwood Insight Scale (BIS; a self-report measure). The two patient groups were pre-selected to match on most clinical and demographic parameters but, by design, they had markedly distinct BIS scores. Voxel-based morphometry employed in SPM8 was used to examine group differences in grey matter volumes across the whole brain. RESULTS The three participant groups were comparable in age [F(2,57) = 0.34, P = 0.71] and the patient groups did not differ in age at illness onset [t(38) = 0.87, P = 0.39]. Insight- and Insight+ patient groups also did not differ in symptoms on the Positive and Negative Syndromes scale (PANSS): Positive symptoms [t(38) = 0.58, P = 0.57], negative symptoms [t(38) = 0.61, P = 0.55], general psychopathology [t(38) = 1.30, P = 0.20] and total PANSS scores [t(38) = 0.21, P = 0.84]. The two patient groups, as expected, varied significantly in the level of BIS-assessed insight [t(38) = 12.11, P < 0.001]. MRI results revealed lower fronto-temporal, parahippocampal, occipital and cerebellar grey matter volumes in Insight- patients, relative to Insight+ patients and healthy controls (for all clusters, family-wise error corrected P < 0.05). Insight+ patient and healthy controls did not differ significantly (P > 0.20) from each other. CONCLUSION Our findings demonstrate a clear association between poor clinical insight and smaller fronto-temporal, occipital and cerebellar grey matter volumes in stable long-term schizophrenia patients. PMID:27679770

  6. Effects of Hormone Therapy on Brain Volumes Changes of Postmenopausal Women Revealed by Optimally-Discriminative Voxel-Based Morphometry

    PubMed Central

    Zhang, Tianhao; Casanova, Ramon; Resnick, Susan M.; Manson, JoAnn E.; Baker, Laura D.; Padual, Claudia B.; Kuller, Lewis H.; Bryan, R. Nick; Espeland, Mark A.; Davatzikos, Christos

    2016-01-01

    Backgrounds The Women's Health Initiative Memory Study Magnetic Resonance Imaging (WHIMS-MRI) provides an opportunity to evaluate how menopausal hormone therapy (HT) affects the structure of older women’s brains. Our earlier work based on region of interest (ROI) analysis demonstrated potential structural changes underlying adverse effects of HT on cognition. However, the ROI-based analysis is limited in statistical power and precision, and cannot provide fine-grained mapping of whole-brain changes. Methods We aimed to identify local structural differences between HT and placebo groups from WHIMS-MRI in a whole-brain refined level, by using a novel method, named Optimally-Discriminative Voxel-Based Analysis (ODVBA). ODVBA is a recently proposed imaging pattern analysis approach for group comparisons utilizing a spatially adaptive analysis scheme to accurately locate areas of group differences, thereby providing superior sensitivity and specificity to detect the structural brain changes over conventional methods. Results Women assigned to HT treatments had significant Gray Matter (GM) losses compared to the placebo groups in the anterior cingulate and the adjacent medial frontal gyrus, and the orbitofrontal cortex, which persisted after multiple comparison corrections. There were no regions where HT was significantly associated with larger volumes compared to placebo, although a trend of marginal significance was found in the posterior cingulate cortical area. The CEE-Alone and CEE+MPA groups, although compared with different placebo controls, demonstrated similar effects according to the spatial patterns of structural changes. Conclusions HT had adverse effects on GM volumes and risk for cognitive impairment and dementia in older women. These findings advanced our understanding of the neurobiological underpinnings of HT effects. PMID:26974440

  7. Ion distributions in RC at different energy levels retrieved from TWINS ENA images by voxel CT tech

    NASA Astrophysics Data System (ADS)

    Ma, S. Y.; McComas, David; Xu, Liang; Goldstein, Jerry; Yan, Wei-Nan

    2012-07-01

    Distributions of energetic ions in the RC regions in different energy levels are retrieved by using 3-D voxel CT inversion method from ENA measurements onboard TWINS constellation during the main phase of a moderate geomagnetic storm. It is assumed that the ion flux distribution in the RC is anisotropic in regard to pitch angle which complies with the adiabatic invariance of the magnetic moment as ion moving in the dipole magnetic mirror field. A semi-empirical model of the RC ion distribution in the magnetic equator is quoted to form the ion flux distribution shape at off-equatorial latitudes by mapping. For the concerned time interval, the two satellites of the TWINS flying in double Molnia orbits were located in nearly the same meridian plane at vantage points widely separated in magnetic local time, and both more than 5 RE geocentric distance from the Earth. The ENA data used in this study are differential fluxes averaged over 12 sweeps (corresponding to an interval of 16 min.) at different energy levels ranging from about 1 to 100 keV. The retrieved ion distributions show that in total the main part of the RC is located in the region with L value larger than 4, tending to increase at larger L. It reveals that there are two distinct dominant energy bands at which the ion fluxes are significantly larger magnitude than at other energy levels, one is at lower level around 2 keV and the other at higher level of 30-100 keV. Furthermore, it is very interesting that the peak fluxes of the RC ions at the two energy bands occurred in different magnetic local time, low energy ions appear preferentially in after midnight, while the higher energy ions mainly distributed around midnight and pre-midnight. This new profile is worthy of further study and needs to be demonstrated by more cases.

  8. Auras and clinical features in temporal lobe epilepsy: a new approach on the basis of voxel-based morphometry.

    PubMed

    Santana, Maria Teresa Castilho Garcia; Jackowski, Andrea Parolin; da Silva, Henrique Hattori; Caboclo, Luis Otávio Sales Ferreira; Centeno, Ricardo Silva; Bressan, Rodrigo A; Carrete, Henrique; Yacubian, Elza Márcia Targas

    2010-05-01

    MRI investigations in patients with temporal lobe epilepsy (TLE) with mesial temporal sclerosis (MTS) have demonstrated structural abnormalities extending beyond ipsilateral hippocampus which may be studied through voxel-based morphometry (VBM). We investigated brain morphology related to clinical features in patients with refractory TLE with MTS using VBM. One hundred patients with unilateral TLE with MTS (59 left) and 30 controls were enrolled. VBM5 was employed to analyze (1) hemispheric damage, (2) influence of initial precipitating injury (IPI): 23 patients with febrile seizures and 19 with status epilepticus, and (3) types of auras classified as: mesial, including psychic auras (19 patients); anterior mesio-lateral, as autonomic symptoms, specially epigastric auras (27 patients) and neocortical, which included auditory, vertiginous, somatosensory and visual auras (16 patients). (1) Left TLE patients presented more widespread gray matter volume (GMV) reductions affecting ipsilateral hippocampus, temporal neocortex, insula and also left uncus, precentral gyrus, thalamus, parietal lobule, cuneus and bilateral cingulum. (2) Febrile seizures group presented ipsilateral GMV reductions in hippocampus, neocortical temporal, frontal and occipital cortices, insula and cingulum. Status epilepticus group presented more widespread GMV reductions involving temporal and extratemporal lobes. (3) Patients with mesial auras showed significant ipsilateral GMV reductions in hippocampus and amygdala, particularly right TLE group, who presented greater extension of GMV reduction in the entorhinal cortex. Significant reductions in hippocampus, amygdala and insula were seen in patients with anterior mesio-lateral auras. This study evaluated a large number of TLE-MTS patients showing structural damage extending beyond hippocampus, and different types of IPI associated with the extension of brain damage. Subtypes of auras are related to different clusters of areas of GMV reductions in

  9. Prospective diagnostic performance evaluation of single-voxel 1H MRS for typing and grading of brain tumours.

    PubMed

    Julià-Sapé, Margarida; Coronel, Indira; Majós, Carles; Candiota, Ana Paula; Serrallonga, Marta; Cos, Mònica; Aguilera, Carles; Acebes, Juan José; Griffiths, John R; Arús, Carles

    2012-04-01

    The purpose of this study was to evaluate whether single-voxel (1)H MRS could add useful information to conventional MRI in the preoperative characterisation of the type and grade of brain tumours. MRI and MRS examinations from a prospective cohort of 40 consecutive patients were analysed double blind by radiologists and spectroscopists before the histological diagnosis was known. The spectroscopists had only the MR spectra, whereas the radiologists had both the MR images and basic clinical details (age, sex and presenting symptoms). Then, the radiologists and spectroscopists exchanged their predictions and re-evaluated their initial opinions, taking into account the new evidence. Spectroscopists used four different systems of analysis for (1)H MRS data, and the efficacy of each of these methods was also evaluated. Information extracted from (1)H MRS significantly improved the radiologists' MRI-based characterisation of grade IV tumours (glioblastomas, metastases, medulloblastomas and lymphomas) in the cohort [area under the curve (AUC) in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.85], and also of the less malignant glial tumours (AUC in the MRI re-evaluation 0.93 versus AUC in the MRI evaluation 0.81). One of the MRS analysis systems used, the INTERPRET (International Network for Pattern Recognition of Tumours Using Magnetic Resonance) decision support system, outperformed the others, as well as being better than the MRI evaluation for the characterisation of grade III astrocytomas. Thus, preoperative MRS data improve the radiologists' performance in diagnosing grade IV tumours and, for those of grade II-III, MRS data help them to recognise the glial lineage. Even in cases in which their diagnoses were not improved, the provision of MRS data to the radiologists had no negative influence on their predictions.

  10. First Steps in Using Multi-Voxel Pattern Analysis to Disentangle Neural Processes Underlying Generalization of Spider Fear

    PubMed Central

    Visser, Renée M.; Haver, Pia; Zwitser, Robert J.; Scholte, H. Steven; Kindt, Merel

    2016-01-01

    A core symptom of anxiety disorders is the tendency to interpret ambiguous information as threatening. Using electroencephalography and blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), several studies have begun to elucidate brain processes involved in fear-related perceptual biases, but thus far mainly found evidence for general hypervigilance in high fearful individuals. Recently, multi-voxel pattern analysis (MVPA) has become popular for decoding cognitive states from distributed patterns of neural activation. Here, we used this technique to assess whether biased fear generalization, characteristic of clinical fear, is already present during the initial perception and categorization of a stimulus, or emerges during the subsequent interpretation of a stimulus. Individuals with low spider fear (n = 20) and high spider fear (n = 18) underwent functional MRI scanning while viewing series of schematic flowers morphing to spiders. In line with previous studies, individuals with high fear of spiders were behaviorally more likely to classify ambiguous morphs as spiders than individuals with low fear of spiders. Univariate analyses of BOLD-MRI data revealed stronger activation toward spider pictures in high fearful individuals compared to low fearful individuals in numerous areas. Yet, neither average activation, nor support vector machine classification (i.e., a form of MVPA) matched the behavioral results – i.e., a biased response toward ambiguous stimuli – in any of the regions of interest. This may point to limitations of the current design, and to challenges associated with classifying emotional and neutral stimuli in groups that differ in their judgment of emotionality. Improvements for future research are suggested. PMID:27303278

  11. Spectroscopic magnetic resonance imaging of the brain: voxel localisation and tissue segmentation in the follow up of brain tumour.

    PubMed

    Poloni, Guy; Bastianello, S; Vultaggio, Angela; Pozzi, S; Maccabelli, Gloria; Germani, Giancarlo; Chiarati, Patrizia; Pichiecchio, Anna

    2008-01-01

    The field of application of magnetic resonance spectroscopy (MRS) in biomedical research is expanding all the time and providing opportunities to investigate tissue metabolism and function. The data derived can be integrated with the information on tissue structure gained from conventional and non-conventional magnetic resonance imaging (MRI) techniques. Clinical MRS is also strongly expected to play an important role as a diagnostic tool. Essential for the future success of MRS as a clinical and research tool in biomedical sciences, both in vivo and in vitro, is the development of an accurate, biochemically relevant and physically consistent and reliable data analysis standard. Stable and well established analysis algorithms, in both the time and the frequency domain, are already available, as is free commercial software for implementing them. In this study, we propose an automatic algorithm that takes into account anatomical localisation, relative concentrations of white matter, grey matter, cerebrospinal fluid and signal abnormalities and inter-scan patient movement. The endpoint is the collection of a series of covariates that could be implemented in a multivariate analysis of covariance (MANCOVA) of the MRS data, as a tool for dealing with differences that may be ascribed to the anatomical variability of the subjects, to inaccuracies in the localisation of the voxel or slab, or to movement, rather than to the pathology under investigation. The aim was to develop an analysis procedure that can be consistently and reliably applied in the follow up of brain tumour. In this study, we demonstrate that the inclusion of such variables in the data analysis of quantitative MRS is fundamentally important (especially in view of the reduced accuracy typical of MRS measures compared to other MRI techniques), reducing the occurrence of false positives.

  12. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI.

    PubMed

    Kassubek, Jan; Unrath, Alexander; Huppertz, Hans-Jürgen; Lulé, Dorothée; Ethofer, Thomas; Sperfeld, Anne-Dorte; Ludolph, Albert C

    2005-12-01

    In ALS, advanced magnetic resonance imaging (MRI) techniques are increasingly used to investigate the underlying pathology. In this study, the technique of voxel-based morphometry (VBM) was applied to 3-D MRI data in ALS patients to localize regional grey and white matter changes. Twenty-two ALS patients (mean age 58+/-9 years) with clinically definite ALS by revised El Escorial criteria were studied. None of the patients had any signs of associated frontotemporal dementia. High-resolution 3-D MRI data sets of the whole brain, collected on a 1.5 T scanner, were analysed by statistical parametric mapping (SPM) and VBM in comparison to an age-matched normal data base consisting of 22 healthy volunteers (mean age 59+/-11 years), for grey matter and white matter segments separately. Global brain atrophy was assessed by calculation of brain parenchymal fractions (BPF). In ALS patients, BPF were significantly reduced compared to controls (p = 0.0003), indicating global brain atrophy. Regional decreases of grey matter density were found in the ALS patients at corrected p<0.01 in the right-hemispheric primary motor cortex (area of the highest Z-score) and in the left medial frontal gyrus. Furthermore, regional white matter alterations were observed along the corticospinal tracts bilaterally and in multiple smaller areas including corpus callosum, cerebellum, frontal and occipital subcortical regions. Besides considerable global atrophy in ALS, the topography of ALS-associated cerebral morphological changes could be mapped using VBM, in particular white matter signal changes along the bilateral corticospinal tracts, but also in extra-motor areas. VBM might be a potential tool to visualize disease progression in future longitudinal studies.

  13. A primitive study of voxel feature generation by multiple stacked denoising autoencoders for detecting cerebral aneurysms on MRA

    NASA Astrophysics Data System (ADS)

    Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Ohtomo, Kuni

    2016-03-01

    The purpose of this study is to evaluate the feasibility of a novel feature generation, which is based on multiple deep neural networks (DNNs) with boosting, for computer-assisted detection (CADe). It is hard and time-consuming to optimize the hyperparameters for DNNs such as stacked denoising autoencoder (SdA). The proposed method allows using SdA based features without the burden of the hyperparameter setting. The proposed method was evaluated by an application for detecting cerebral aneurysms on magnetic resonance angiogram (MRA). A baseline CADe process included four components; scaling, candidate area limitation, candidate detection, and candidate classification. Proposed feature generation method was applied to extract the optimal features for candidate classification. Proposed method only required setting range of the hyperparameters for SdA. The optimal feature set was selected from a large quantity of SdA based features by multiple SdAs, each of which was trained using different hyperparameter set. The feature selection was operated through ada-boost ensemble learning method. Training of the baseline CADe process and proposed feature generation were operated with 200 MRA cases, and the evaluation was performed with 100 MRA cases. Proposed method successfully provided SdA based features just setting the range of some hyperparameters for SdA. The CADe process by using both previous voxel features and SdA based features had the best performance with 0.838 of an area under ROC curve and 0.312 of ANODE score. The results showed that proposed method was effective in the application for detecting cerebral aneurysms on MRA.

  14. Uso de modelos mecânicos em curso informal de astronomia para deficientes visuais. Resgate de uma experiência

    NASA Astrophysics Data System (ADS)

    Tavares, E. T., Jr.; Klafke, J. C.

    2003-08-01

    O presente trabalho propõe-se a resgatar uma experiência que teve lugar no Planetário de São Paulo nos anos 60. Em 1962, o Sr. Acácio, então com 37 anos, deficiente visual desde os 27, passou a assistir às aulas ministradas pelo Prof. Aristóteles Orsini aos integrantes do corpo de servidores do Planetário. O Sr. Acácio era o único deficiente da turma e, embora possuísse conhecimentos básicos e relativamente avançados de matemática, enfrentava dificuldades na compreensão e acompanhamento da exposição, como também em estudos posteriores. Com o intuito de auxiliá-lo na superação desses problemas, o Prof. Orsini solicitou a construção de modelos mecânicos que, através do sentido do tato, permitissem o acompanhamento das aulas e a transposição do modelo para o "constructo" mental. Essa prática mostrou-se tão eficaz que facilitou sobejamente o aprendizado da matéria pelo sujeito. O Sr. Acácio passou a integrar o corpo de professores do Planetário/Escola Municipal de Astrofísica, tendo ficado responsável pelo curso de "Introdução à Astronomia" por vários anos. Além disso, a experiência foi tão bem sucedida que alguns dos modelos tiveram seus elementos constitutivos pintados diferencialmente para serem utilizados em cursos regulares do Planetário, tornando-se parte integrante do conjunto de recursos didáticos da instituição. É pensando nessa eficácia, tanto em seu objetivo original permitir o aprendizado de um deficiente visual quanto no subsidiário recurso didático sistemático da instituição que decidimos resgatar essa experiência. Estribados nela, acreditamos ser extremamente produtivo, em termos educacionais, o aperfeiçoamento dos modelos originais, agora resgatados e restaurados, e a criação de outros que pudessem ser utilizados no ensino dessa ciência a deficientes visuais.

  15. Incorporando a variabilidade no processo de identificação do modelo de máximo global no Grade of Membership (GoM): considerações metodológicas

    PubMed Central

    Guedes, Gilvan Ramalho; Siviero, Pamila Cristina Lima; Caetano, André Junqueira; Machado, Carla Jorge; Brondízio, Eduardo

    2012-01-01

    A disponibilidade de bases de dados cada vez mais complexas e multidimensionais é um dos principais motivadores para o aumento do número de estudos que utilizam análises multivariadas baseadas em lógica de conjuntos nebulosos. Apesar da disseminação do método Grade of Membership nos trabalhos empíricos brasileiros da área de ciências sociais e saúde, questões relativas à identificabilidade e estabilidade dos parâmetros finais estimados pelo programa GoM 3.4 não foram suficientemente aprofundadas. Dada a relevância de se obterem parâmetros únicos e estáveis, Guedes et al. (2010) propuseram um procedimento empírico para localizar um modelo de máximo global (MG) com parâmetros estáveis. Entretanto, seu localizador de MG não incorpora qualquer medida de variabilidade. Neste artigo, tal limitação é contornada por meio da utilização de uma estatística de ponderação – Máximo Global Ponderado (MGP) – semelhante ao coeficiente de variação. Esse indicador busca não penalizar de forma desproporcional situações nas quais os desvios médios, apesar de diferentes de zero, são muito pequenos. Apresentam-se evidências de que o localizador MGP reduz a distância do modelo identificado à real estrutura latente dos dados em análise, quando comparados ao modelo identificado pelo localizador não ponderado, MG. PMID:23293402

  16. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  17. DOS: the discrete-ordinates system. [LMFBR

    SciTech Connect

    Rhoades, W. A.; Emmett, M. B.

    1982-09-01

    The Discrete Ordinates System determines the flux of neutrons or photons due either to fixed sources specified by the user or to sources generated by particle interaction with the problem materials. It also determines numerous secondary results which depend upon flux. Criticality searches can be performed. Numerous input, output, and file manipulation facilities are provided. The DOS driver program reads the problem specification from an input file and calls various program modules into execution as specified by the input file.

  18. DIGLIB. PC-DOS Graphics Subroutine Library

    SciTech Connect

    Brand, H.R.

    1989-02-01

    DIGLIB is a collection of general graphics subroutines. It was designed to be small, reasonably fast, device-independent, and compatible with DEC-supplied operating systems for VAXes, PDP-11s, and LSI-11s, and the DOS operating system for IBM PCs and IBM-compatible machines. DIGLIB/VMS runs on the VAX and MicroVAX series of computers under VMS. The software is readily usable by casual programmers for two-dimensional plotting.

  19. Voxel-based morphometry at ultra-high fields. A comparison of 7T and 3T MRI data

    PubMed Central

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Küblböck, Martin; Kraus, Christoph; Sladky, Ronald; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2017-01-01

    Recent technological progress enables MRI recordings at ultra-high fields of 7 Tesla and above leading to brain images of higher resolution and increased signal-to-noise ratio. Despite these benefits, imaging at 7T exhibits distinct challenges due to B1 field inhomogeneities, causing decreased image quality and problems in data analysis. Although several strategies have been proposed, a systematic investigation of bias-corrected 7T data for voxel-based morphometry (VBM) is still missing and it is an ongoing matter of debate if VBM at 7T can be carried out properly. Here, an optimized VBM study was conducted, evaluating the impact of field strength (3T vs 7T) and pulse sequence (MPRAGE vs MP2RAGE) on gray matter volume (GMV) estimates. More specifically, twenty-two participants were measured under the conditions 3T MPRAGE, 7T MPRAGE and 7T MP2RAGE. Due to the fact that 7T MPRAGE data exhibited strong intensity inhomogeneities, an alternative preprocessing pipeline was proposed and applied for that data. VBM analysis revealed higher GMV estimates for 7T predominantly in superior cortical areas, caudate nucleus, cingulate cortex and the hippocampus. On the other hand, 3T yielded higher estimates especially in inferior cortical areas of the brain, cerebellum, thalamus and putamen compared to 7T. Besides minor exceptions, these results were observed for 7T MPRAGE as well for the 7T MP2RAGE measurements. Results gained in the inferior parts of the brain should be taken with caution, as native GM segmentations displayed misclassifications in these regions for both 7T sequences. This was supported by the test-retest measurements showing highest variability in these inferior regions of the brain for 7T also for the advanced MP2RAGE sequence. Hence, our data support the use of 7T MRI for VBM analysis in cortical areas, but direct comparison between field strengths and sequences requires careful assessment. Similarly, analysis of inferior cortical regions, cerebellum and

  20. Magnetic resonance imaging for monitoring therapeutic response in a transgenic mouse model of Alzheimer’s disease using voxel-based analysis of amyloid plaques

    PubMed Central

    Kim, Jae-Hun; Ha, Tae Lin; Im, Geun Ho; Yang, Jehoon; Seo, Sang Won; Chung, Julius Juhyun; Chae, Sun Young; Lee, In Su

    2014-01-01

    In this study, we have shown the potential of a voxel-based analysis for imaging amyloid plaques and its utility in monitoring therapeutic response in Alzheimer’s disease (AD) mice using manganese oxide nanoparticles conjugated with an antibody of Aβ1-40 peptide (HMON-abAβ40). T1-weighted MR brain images of a drug-treated AD group (n=7), a nontreated AD group (n=7), and a wild-type group (n=7) were acquired using a 7.0 T MRI system before (D−1), 24-h (D+1) after, and 72-h (D+3) after injection with an HMON-abAβ40 contrast agent. For the treatment of AD mice, DAPT was injected intramuscularly into AD transgenic mice (50 mg/kg of body weight). For voxel-based analysis, the skull-stripped mouse brain images were spatially normalized, and these voxels’ intensities were corrected to reduce voxel intensity differences across scans in different mice. Statistical analysis showed higher normalized MR signal intensity in the frontal cortex and hippocampus of AD mice over wild-type mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). After the treatment of AD mice, the normalized MR signal intensity in the frontal cortex and hippocampus decreased significantly in comparison with nontreated AD mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). These results were confirmed by histological analysis using a thioflavin staining. This unique strategy allows us to detect brain regions that are subjected to amyloid plaque deposition and has the potential for human applications in monitoring therapeutic response for drug development in AD. PMID:24518227

  1. Numerical simulations of intra-voxel dephasing effects and signal voids in gradient echo MR imaging using different sub-grid sizes.

    PubMed

    Müller-Bierl, Bernd M; Graf, Hansjörg; Pereira, Philippe L; Schick, Fritz

    2006-05-01

    Signal void artifacts in gradient echo imaging are caused by the intra-voxel dephasing of the spins. Intra-voxel dephasing can be estimated by computing the field distribution on a sub-grid inside each picture element, followed by integration of all magnetization components. The strategy of computing the artifacts based on the integration of the sub-voxel signal components is presented here for different sub-grids. The coarseness of the sub-grid is directly related to computational effort. The possibility to save memory space and computing time for the dipole model by computing the field only on a sub-grid is addressed in the presented article. It is investigated as to how far computational time and memory space can be reduced by using an appropriate sub-grid. Numerical results for a model of a partially diamagnetically coated needle shaft are compared to experimental findings. In the case of a pure titanium needle, it is shown as being sufficient to compute the field distribution on a sub-grid that is at least four times coarser in each direction than the grid used to discretize the object in the related MR image. Due to three nested loops over the 3D grid, the need for memory space and time is saved by a factor 64. Deviations between measurements and simulations for the broad side of the artifact (uncompensated) and for the small side of the artifact (compensated) were 15.5%, respectively, 19.1% for orientation parallel to the exterior field, and 22.7%, respectively, 23.1% for orientation perpendicular to the exterior field.

  2. Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging

    NASA Astrophysics Data System (ADS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2014-03-01

    The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15° sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0° tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

  3. Voxel-Based Sensitivity of Flat-Panel CT for the Detection of Intracranial Hemorrhage: Comparison to Multi-Detector CT

    PubMed Central

    Frölich, Andreas M.; Buhk, Jan-Hendrik; Fiehler, Jens; Kemmling, Andre

    2016-01-01

    Objectives Flat-panel CT (FPCT) allows cross-sectional parenchymal, vascular and perfusion imaging within the angiography suite, which could greatly facilitate acute stroke management. We hypothesized that FPCT offers equal diagnostic accuracy compared to multi-detector CT (MDCT) as a primary tool to exclude intracranial hemorrhage. Methods 22 patients with intracranial hematomas who had both MDCT and FPCT performed within 24 hours were retrospectively identified. Patients with visible change in hematoma size or configuration were excluded. Two raters independently segmented hemorrhagic lesions. Data sets and corresponding binary lesion maps were co-registered to compare hematoma volume. Diagnostic accuracy of FPCT to detect hemorrhage was calculated from voxel-wise analysis of lesion overlap compared to reference MDCT. Results Mean hematoma size was similar between MDCT (16.2±8.9 ml) and FPCT (16.1±8.6 ml), with near perfect correlation of hematoma sizes between modalities (ρ = 0.95, p<0.001). Sensitivity and specificity of FPCT to detect hemorrhagic voxels was 61.6% and 99.8% for intraventricular hematomas and 67.7% and 99.5% for all other intracranial hematomas. Conclusions In this small sample containing predominantly cases with subarachnoid hemorrhage, FPCT based assessment of hemorrhagic volume in brain yields acceptable accuracy compared to reference MDCT, albeit with a limited sensitivity on a voxel level. Further assessment and improvement of FPCT is necessary before it can be applied as a primary imaging modality to exclude intracranial hemorrhage in acute stroke patients. PMID:27806106

  4. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose.

    PubMed

    DeMarco, J J; Cagnon, C H; Cody, D D; Stevens, D M; McCollough, C H; Zankl, M; Angel, E; McNitt-Gray, M F

    2007-05-07

    The purpose of this work is to examine the effects of patient size on radiation dose from CT scans. To perform these investigations, we used Monte Carlo simulation methods with detailed models of both patients and multidetector computed tomography (MDCT) scanners. A family of three-dimensional, voxelized patient models previously developed and validated by the GSF was implemented as input files using the Monte Carlo code MCNPX. These patient models represent a range of patient sizes and ages (8 weeks to 48 years) and have all radiosensitive organs previously identified and segmented, allowing the estimation of dose to any individual organ and calculation of patient effective dose. To estimate radiation dose, every voxel in each patient model was assigned both a specific organ index number and an elemental composition and mass density. Simulated CT scans of each voxelized patient model were performed using a previously developed MDCT source model that includes scanner specific spectra, including bowtie filter, scanner geometry and helical source path. The scan simulations in this work include a whole-body scan protocol and a thoracic CT scan protocol, each performed with fixed tube current. The whole-body scan simulation yielded a predictable decrease in effective dose as a function of increasing patient weight. Results from analysis of individual organs demonstrated similar trends, but with some individual variations. A comparison with a conventional dose estimation method using the ImPACT spreadsheet yielded an effective dose of 0.14 mSv mAs(-1) for the whole-body scan. This result is lower than the simulations on the voxelized model designated 'Irene' (0.15 mSv mAs(-1)) and higher than the models 'Donna' and 'Golem' (0.12 mSv mAs(-1)). For the thoracic scan protocol, the ImPACT spreadsheet estimates an effective dose of 0.037 mSv mAs(-1), which falls between the calculated values for Irene (0.042 mSv mAs(-1)) and Donna (0.031 mSv mAs(-1)) and is higher relative

  5. The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process

    PubMed Central

    Tagliazucchi, Enzo; Siniatchkin, Michael; Laufs, Helmut; Chialvo, Dante R.

    2016-01-01

    Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this “functional connectome” based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series

  6. SU-F-BRB-10: A Statistical Voxel Based Normal Organ Dose Prediction Model for Coplanar and Non-Coplanar Prostate Radiotherapy

    SciTech Connect

    Tran, A; Yu, V; Nguyen, D; Woods, K; Low, D; Sheng, K

    2015-06-15

    Purpose: Knowledge learned from previous plans can be used to guide future treatment planning. Existing knowledge-based treatment planning methods study the correlation between organ geometry and dose volume histogram (DVH), which is a lossy representation of the complete dose distribution. A statistical voxel dose learning (SVDL) model was developed that includes the complete dose volume information. Its accuracy of predicting volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy was quantified. SVDL provided more isotropic dose gradients and may improve knowledge-based planning. Methods: 12 prostate SBRT patients originally treated using two full-arc VMAT techniques were re-planned with 4π using 20 intensity-modulated non-coplanar fields to a prescription dose of 40 Gy. The bladder and rectum voxels were binned based on their distances to the PTV. The dose distribution in each bin was resampled by convolving to a Gaussian kernel, resulting in 1000 data points in each bin that predicted the statistical dose information of a voxel with unknown dose in a new patient without triaging information that may be collectively important to a particular patient. We used this method to predict the DVHs, mean and max doses in a leave-one-out cross validation (LOOCV) test and compared its performance against lossy estimators including mean, median, mode, Poisson and Rayleigh of the voxelized dose distributions. Results: SVDL predicted the bladder and rectum doses more accurately than other estimators, giving mean percentile errors ranging from 13.35–19.46%, 4.81–19.47%, 22.49–28.69%, 23.35–30.5%, 21.05–53.93% for predicting mean, max dose, V20, V35, and V40 respectively, to OARs in both planning techniques. The prediction errors were generally lower for 4π than VMAT. Conclusion: By employing all dose volume information in the SVDL model, the OAR doses were more accurately predicted. 4π plans are better suited for knowledge-based planning than

  7. Novas determinações dos parâmetros atmosféricos das estrelas anãs brancas DA

    NASA Astrophysics Data System (ADS)

    Giovannini, O.; Costa, A. F. M.; Kepler, S. O.

    2003-08-01

    Nós temos selecionado uma amostra de estrelas anãs brancas DA (atmosfera de hidrogênio) a partir dos índices de Strömgren cujos valores estão próximos a região de instabilidade das estrelas anãs brancas DA variáveis, as chamadas estrelas DAV ou ZZ Ceti. O objetivo é determinar os parâmetros fundamentais (temperatura efetiva, Teff, aceleração da gravidade, log g, e massa) destas estrelas para verificar quais os parâmetros estelares estão envolvidos com o mecanismo de pulsação das estrelas DAV. Nós obtemos, até agora, mais de 120 espectros óticos de estrelas DA. Entre as estrelas selecionadas há 20 estrelas variáveis (DAV). Assim, podemos verificar se existem ou não estrelas não variáveis dentro da faixa de instabilidade das estrelas ZZ Ceti. Neste trabalho nós apresentamos a determinação dos parâmetros atmosféricos (temperatura efetiva, Teff, e aceleração da gravidade, log g) das estrelas anãs brancas DA usando os novos modelos de atmosfera ML2/a = 0.6. Estes modelos têm sido utilizados recentemente por fornecerem uma excelente consistência interna na determinação das temperaturas nas regiões do ultra-violeta e ótico. Os parâmetros atmosféricos são determinados espectroscopicamente através da comparação do fluxo de energia das linhas de Balmer (Hb à H9) entre os espectros observados e sintéticos (gerados pelos modelos de atmosfera). As temperaturas obtidas com os novos modelos são, em geral, menores (~ 1000 K menos) que as temperaturas determinadas anteriormente, com modelos ML1. Os valores de log g não mudaram significativamente (menos de 10%). A faixa de instabilidade das DAVs está entre 11000 e 13000 K, consistente com dados de outros autores.

  8. Modelo de atmosfera solar ajustado às observações do raio solar em 17GHz

    NASA Astrophysics Data System (ADS)

    Selhorst, C. L.; Silva, A. V. R.; Costa, J. E. R.

    2003-08-01

    O estudo das variações do raio solar durante o ciclo de atividades do Sol e das diferenças em relação à sua distribuição angular nos fornece informações importantes sobre as mudanças na estrutura da atmosfera solar. Neste trabalho foram analisados mais de 3600 mapas do Sol em 17 GHz obtidos pelo Rádio Heliógrafo de Nobeyama (NoRH), durante 1 ciclo de atividade solar (1992-2003). O raio solar foi definido no ponto onde a temperatura de brilho do mapa era equivalente à metade da temperatura do Sol calmo (temperatura mais comum no mapa).Em relação à sua variação ao longo do ciclo solar, o estudo foi dividido em duas partes: a) ajuste de uma circunferência a pontos distribuídos ao redor do Sol todo. Este estudo mostrou uma variação correlacionada com o ciclo de atividade do Sol. b) ajuste da circunferência a pontos situados somente nas regiões polares. Neste caso os resultados mostraram que o raio polar sofre pouca variação durante o ciclo, com tendência à anticorrelação com este. Além disto, a média do raio polar, durante o período analisado, foi 1" menor que o raio medido no Sol todo. Para estudar a distribuição angular do raio solar, comparamos a média da distribuição de 10 mapas no período de mínima atividade solar com a média de 10 mapas no período de máximo, este estudo mostrou um grande aumento do raio na região equatorial no período de máxima atividade solar. As medidas do raio foram usadas como um dos parâmetros para a criação de um modelo atmosférico (além da temperatura de brilho do Sol e do abrilhantamento do limbo observado), onde mostramos que um modelo atmosférico com a região de transição situada a 3500 km fornece um raio 5" menor que as medidas observacionais. Esta incompatibilidade do modelo com os dados observacionais foi contornada com a inclusão de espículas, estas fazem com que o raio solar aumente proporcionalmente à altura que estas atingem na atmosfera solar. A anticorrelação do raio

  9. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    SciTech Connect

    Baptista, Mariana Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro; Figueira, Catarina; Sarmento, Marta; Orvalho, Lurdes

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  10. Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals.

    PubMed

    Petit, Y; Royon, A; Marquestaut, N; Dussauze, M; Fargues, A; Veber, P; Jubera, V; Cardinal, T; Canioni, L

    2013-01-14

    We report on two-photon excited fluorescence in the oriented Eu(3+)doped LYB monoclinic crystal under femtosecond laser tight focusing. Due to spatial walk-off, the two polarization modes of the incident femtosecond beam simultaneously provide the independent excitation of two distinct focuses, leading to a single-beam dual-voxel nonlinear excitation of fluorescence below material modification threshold. These observations emphasize on the anisotropy of both two-photon absorption as well as fluorescence emission. They demonstrate the localized control of the nonlinear energy deposit, thanks to the adjustment of both the input power and polarization, by properly balancing the injected energy in each voxel. Such approach should be considered for future direct laser writing of waveguides in propagation directions out of the dielectric axes, so as to optimally cope with the highly probable anisotropy of laser-induced material modification thresholds in these crystals. These results open new ways for further potential developments in direct laser writing as the simultaneous inscription of double-line structures for original waveguides processes.

  11. Active brain changes after initiating fingolimod therapy in multiple sclerosis patients using individual voxel-based analyses for diffusion tensor imaging

    PubMed Central

    Senda, Joe; Watanabe, Hirohisa; Endo, Kuniyuki; Yasui, Keizo; Hawsegawa, Yasuhiro; Yoneyama, Noritaka; Tsuboi, Takashi; Hara, Kazuhiro; Ito, Mizuki; Atsuta, Naoki; Epifanio Jr, Bagarinao; Katsuno, Masahisa; Naganawa, Shinji; Sobue, Gen

    2016-01-01

    ABSTRACT Voxel-based analysis (VBA) of diffusion tensor images (DTI) and voxel-based morphometry (VBM) in patients with multiple sclerosis (MS) can sensitively detect occult tissue damage that underlies pathological changes in the brain. In the present study, both at the start of fingolimod and post-four months clinical remission, we assessed four patients with MS who were evaluated with VBA of DTI, VBM, and fluid-attenuated inversion recovery (FLAIR). DTI images for all four patients showed widespread areas of increased mean diffusivity (MD) and decreased fractional anisotropy (FA) that were beyond the high-intensity signal areas across images. After four months of continuous fingolimod therapy, DTI abnormalities progressed; in particular, MD was significantly increased, while brain volume and high-intensity signals were unchanged. These findings suggest that VBA of DTI (e.g., MD) may help assess MS demyelination as neuroinflammatory conditions, even though clinical manifestations of MS appear to be in complete remission during fingolimod. PMID:28008201

  12. Assessment of the Absorbed Dose in the Kidney of Nuclear Nephrology Paediatric Patients using ICRP Biokinetic Data and Monte Carlo Simulations with Mass-Scaled Paediatric Voxel Phantoms.

    PubMed

    Teles, P; Mendes, M; Zankl, M; de Sousa, V; Santos, A I; Vaz, P

    2016-04-21

    The aim of this work is to use Monte Carlo simulations and VOXEL phantoms to estimate the absorbed dose in paediatric patients (aged from 2 weeks to 16 y), with normal renal function, to whom technetium-99m-dimercaptosuccinic acid ((99m)Tc-DMSA) was administered, for diagnostic renal scintigraphy purposes; and compare them with values obtained using the International Commission on Radiological Protection (ICRP) methodology. In the ICRP methodology, the cumulated absorbed dose in the kidneys is estimated by multiplying the administered activity with the corresponding given dose coefficients. The other methods were based on Monte Carlo simulations performed on two paediatric voxel phantoms ( ITALIC! CHILDand ITALIC! BABY), and another three phantoms, which were modified to suit the mass of the patients' kidneys, and other anatomical factors. Different ITALIC! S-values were estimated using this methodology, which together with solving the ICRP biokinetic model to determine the cumulated activities, allowed for the estimation of absorbed doses different from those obtained with the ICRP method, together with new dose coefficients. The obtained values were then compared. The deviations suggest that the ITALIC! S-values are strongly dependent on the patient's total body weight, which could be in contrast with the ICRP data, which is provided by age, regardless of other anatomical parameters.

  13. HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver.

    PubMed

    Kim, Chan Hyeong; Choi, Sang Hyoun; Jeong, Jong Hwi; Lee, Choonsik; Chung, Min Suk

    2008-08-07

    A Korean voxel model, named 'High-Definition Reference Korean-Man (HDRK-Man)', was constructed using high-resolution color photographic images that were obtained by serially sectioning the cadaver of a 33-year-old Korean adult male. The body height and weight, the skeletal mass and the dimensions of the individual organs and tissues were adjusted to the reference Korean data. The resulting model was then implemented into a Monte Carlo particle transport code, MCNPX, to calculate the dose conversion coefficients for the internal organs and tissues. The calculated values, overall, were reasonable in comparison with the values from other adult voxel models. HDRK-Man showed higher dose conversion coefficients than other models, due to the facts that HDRK-Man has a smaller torso and that the arms of HDRK-Man are shifted backward. The developed model is believed to adequately represent average Korean radiation workers and thus can be used for more accurate calculation of dose conversion coefficients for Korean radiation workers in the future.

  14. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus.

    PubMed

    McNeill, M S; Robinson, G E

    2015-06-01

    Immediate early genes (IEGs) have served as useful markers of brain neuronal activity in mammals, and more recently in insects. The mammalian canonical IEG, c-jun, is part of regulatory pathways conserved in insects and has been shown to be responsive to alarm pheromone in honey bees. We tested whether c-jun was responsive in honey bees to another behaviourally relevant stimulus, sucrose, in order to further identify the brain regions involved in sucrose processing. To identify responsive regions, we developed a new method of voxel-based analysis of c-jun mRNA expression. We found that c-jun is expressed in somata throughout the brain. It was rapidly induced in response to sucrose stimuli, and it responded in somata near the antennal and mechanosensory motor centre, mushroom body calices and lateral protocerebrum, which are known to be involved in sucrose processing. c-jun also responded to sucrose in somata near the lateral suboesophageal ganglion, dorsal optic lobe, ventral optic lobe and dorsal posterior protocerebrum, which had not been previously identified by other methods. These results demonstrate the utility of voxel-based analysis of mRNA expression in the insect brain.

  15. Metabolic Changes in the Bilateral Visual Cortex of the Monocular Blind Macaque: A Multi-Voxel Proton Magnetic Resonance Spectroscopy Study.

    PubMed

    Wu, Lingjie; Tang, Zuohua; Feng, Xiaoyuan; Sun, Xinghuai; Qian, Wen; Wang, Jie; Jin, Lixin; Jiang, Jingxuan; Zhong, Yufeng

    2017-02-01

    The metabolic changes accompanied with adaptive plasticity in the visual cortex after early monocular visual loss were unclear. In this study, we detected the metabolic changes in bilateral visual cortex of normal (group A) and monocular blind macaque (group B) for studying the adaptive plasticity using multi-voxel proton magnetic resonance spectroscopy ((1)H-MRS) at 32 months after right optic nerve transection. Then, we compared the N-Acetyl aspartate (NAA)/Creatine (Cr), myoinositol (Ins)/Cr, choline (Cho)/Cr and Glx (Glutamate + glutamine)/Cr ratios in the visual cortex between two groups, as well as between the left and right visual cortex of group A and B. Compared with group A, in the bilateral visual cortex, a decreased NAA/Cr and Glx/Cr ratios in group B were found, which was more clearly in the right visual cortex; whereas the Ins/Cr and Cho/Cr ratios of group B were increased. All of these findings were further confirmed by immunohistochemical staining. In conclusion, the difference of metabolic ratios can be detected by multi-voxel (1)H-MRS in the visual cortex between groups A and B, which was valuable for investigating the adaptive plasticity of monocular blind macaque.

  16. Resting state functional magnetic resonance imaging reveals distinct brain activity in heavy cannabis users – a multi-voxel pattern analysis

    PubMed Central

    Cheng, H; Skosnik, PD; Pruce, BJ; Brumbaugh, MS; Vollmer, JM; Fridberg, DJ; O’Donnell, BF; Hetrick, WP; Newman, SD

    2015-01-01

    Chronic cannabis use can cause cognitive, perceptual and personality alterations, which are believed to be associated with regional brain changes and possible changes in connectivity between functional regions. This study aims to identify the changes from resting state functional magnetic resonance imaging scans. A two-level multi-voxel pattern analysis was proposed to classify male cannabis users from normal controls. The first level analysis works on a voxel basis and identifies clusters for the input of a second level analysis, which works on the functional connectivity between these regions. We found distinct clusters for male cannabis users in the middle frontal gyrus, precentral gyrus, superior frontal gyrus, posterior cingulate cortex, cerebellum and some other regions. Based on the functional connectivity of these clusters, a high overall accuracy rate of 84–88% in classification accuracy was achieved. High correlations were also found between the overall classification accuracy and Barrett Barrett Impulsiveness Scale factor scores of attention and motor. Our result suggests regional differences in the brains of male cannabis users that span from the cerebellum to the prefrontal cortex, which are associated with differences in functional connectivity. PMID:25237118

  17. Assessment of uncertainties in the lung activity measurement of low-energy photon emitters using Monte Carlo simulation of ICRP male thorax voxel phantom.

    PubMed

    Nadar, M Y; Akar, D K; Rao, D D; Kulkarni, M S; Pradeepkumar, K S

    2015-12-01

    Assessment of intake due to long-lived actinides by inhalation pathway is carried out by lung monitoring of the radiation workers inside totally shielded steel room using sensitive detection systems such as Phoswich and an array of HPGe detectors. In this paper, uncertainties in the lung activity estimation due to positional errors, chest wall thickness (CWT) and detector background variation are evaluated. First, calibration factors (CFs) of Phoswich and an array of three HPGe detectors are estimated by incorporating ICRP male thorax voxel phantom and detectors in Monte Carlo code 'FLUKA'. CFs are estimated for the uniform source distribution in lungs of the phantom for various photon energies. The variation in the CFs for positional errors of ±0.5, 1 and 1.5 cm in horizontal and vertical direction along the chest are studied. The positional errors are also evaluated by resizing the voxel phantom. Combined uncertainties are estimated at different energies using the uncertainties due to CWT, detector positioning, detector background variation of an uncontaminated adult person and counting statistics in the form of scattering factors (SFs). SFs are found to decrease with increase in energy. With HPGe array, highest SF of 1.84 is found at 18 keV. It reduces to 1.36 at 238 keV.

  18. Transferências orbitais dentro do modelo quase bicircular no sistema Terra-Lua-Sol

    NASA Astrophysics Data System (ADS)

    Corrêa, A. A.; de Almeida Prado, A. F. B.; Stuchi, T. J.; Beaugé, C.

    2003-08-01

    O problema quase bicircular planar consiste na determinação da dinâmica de um corpo, de massa desprezível, que se move sob o campo gravitacional de três corpos. No caso estudado, o quarto corpo é considerado um satélite artificial e os demais são a Terra, a Lua e o Sol, formando o sistema de três corpos. Este modelo permite a construção de uma hamiltoniana similar a do problema restrito de três corpos (PRTC), incluindo termos periódicos não autônomos, provenientes da presença do Sol, portanto pode ser entendido como uma perturbação ao PRTC. Suas órbitas periódicas aparecem isoladas e possuem o mesmo período solar. Os pontos de equilíbrio colineares possuem o mesmo caráter de estabilidade linear dos pontos lagrangianos (L1, L2 e L3) do PRTC, sendo do tipo sela x centro x centro, instável na direção x e estáveis nas direções y e z. As órbitas periódicas tridimensionais ao redor do ponto colinear é chamada órbita Halo. O objetivo deste trabalho é determinar órbitas de transferências de baixo consumo de combustível para um veículo espacial partindo de uma órbita de estacionamento ao redor da Terra em direção a uma órbita Halo do ponto L1, situado entre a Terra e Lua. Esta tarefa pode ser transformada no problema de valor de contorno: dado um ponto inicial na órbita de estacionamento, um ponto final na órbita halo e o tempo de transferência, deseja-se obter a trajetória que liga estes dois pontos e que minimize os incrementos de velocidade do veículo. Essas transferências são realizadas baseadas no método de Lambert e analisadas de modo a fornecer um baixo consumo. Posteriormente, é feita uma comparação de consumo com as órbitas de transferência equivalentes do PRTC.

  19. Using Voxelized Point-Cloud Forest Reconstructions from Ground-Based Full-Waveform Lidar to Retrieve Leaf Area Index and Foliage Profiles

    NASA Astrophysics Data System (ADS)

    Yang, X.; Strahler, A. H.; Schaaf, C.; Li, Z.; Yao, T.; Zhao, F.; Wang, Z.; Woodcock, C. E.; Jupp, D.; Culvenor, D.; Newnham, G.; Lovell, J.

    2012-12-01

    This study presents a new methodology to directly retrieve two important biophysical parameters, Leaf Area Index (LAI; m^2) and Foliage Area Volume Density (FAVD; m^2 LAI/m^3 volume) profiles through the voxelization of point-cloud forest reconstructions from multiple ground-based full-waveform Echidna® lidar scans. Previous studies have verified that estimates of LAI and FAVD made from single EVI scans, using azimuth-averaged gap probability with zenith angle (Jupp et al. 2009; Zhao et al. 2011), agree well with those of traditional hemispherical photos and LAI-2000 measurements. Strahler et al. (2008) and Yang et al. (2012) established a paradigm for the 3-D reconstruction of forest stands using a full-waveform, ground-based, scanning lidar by merging point clouds constructed from overlapping EVI scans, thereby allowing virtual direct representation of forest biomass. Classification procedures (Yang et al. 2012), based on the shape of the laser pulse returned to the instrument, can separate trunk from foliage scattering events. Volumetric datasets are produced by properly assigning attributes, such as gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range, to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. Clumping occurring at scales coarser than elemental volumes associated with scattering events is observed directly and therefore does not require parametric correction. For validation, comparisons are made between LAI and FAVD profiles retrieved directly from the voxelized 3-D forest reconstructions and those observed from airborne and field measurements. The voxelized 3-D forest reconstructions derived from EVI point clouds provide a pathway to estimate "ground truth" FAVD, LAI, and above-ground biomass without destructive sampling. These

  20. Design, fabrication, and implementation of voxel-based 3D printed textured phantoms for task-based image quality assessment in CT

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan

    2016-03-01

    In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2

  1. 68Ga-HBED-CC-PSMA PET/CT Versus Histopathology in Primary Localized Prostate Cancer: A Voxel-Wise Comparison

    PubMed Central

    Zamboglou, Constantinos; Schiller, Florian; Fechter, Tobias; Wieser, Gesche; Jilg, Cordula Annette; Chirindel, Alin; Salman, Nasr; Drendel, Vanessa; Werner, Martin; Mix, Michael; Meyer, Philipp Tobias; Grosu, Anca Ligia

    2016-01-01

    Purpose: We performed a voxel-wise comparison of 68Ga-HBED-CC-PSMA PET/CT with prostate histopathology to evaluate the performance of 68Ga-HBED-CC-PSMA for the detection and delineation of primary prostate cancer (PCa). Methodology: Nine patients with histopathological proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and histopathologically prepared. Histopathological information was matched to ex-vivo CT. PCa volume (PCa-histo) and non-PCa tissue in the prostate (NPCa-histo) were processed to obtain a PCa-model, which was adjusted to PET-resolution (histo-PET). Each histo-PET was coregistered to in-vivo PSMA-PET/CT data. Results: Analysis of spatial overlap between histo-PET and PSMA PET revealed highly significant correlations (p < 10-5) in nine patients and moderate to high coefficients of determination (R²) from 42 to 82 % with an average of 60 ± 14 % in eight patients (in one patient R2 = 7 %). Mean SUVmean in PCa-histo and NPCa-histo was 5.6 ± 6.1 and 3.3 ± 2.5 (p = 0.012). Voxel-wise receiver-operating characteristic (ROC) analyses comparing the prediction by PSMA-PET with the non-smoothed tumor distribution from histopathology yielded an average area under the curve of 0.83 ± 0.12. Absolute and relative SUV (normalized to SUVmax) thresholds for achieving at least 90 % sensitivity were 3.19 ± 3.35 and 0.28 ± 0.09, respectively. Conclusions: Voxel-wise analyses revealed good correlations of 68Ga-HBED-CC-PSMA PET/CT and histopathology in eight out of nine patients. Thus, PSMA-PET allows a reliable detection and delineation of PCa as basis for PET-guided focal therapies. PMID:27446496

  2. Perfil de temperatura dos funis magnetosféricos de estrelas T Tauri com aquecimento alfvênico

    NASA Astrophysics Data System (ADS)

    Vasconcelos, M. J.

    2003-08-01

    Estrelas T Tauri Clássicas são objetos jovens circundados por discos de gás e poeira e que apresentam uma intensa atividade magnética. Seu espectro mostra linhas de emissão alargadas que são razoavelmente reproduzidas nos modelos de acresção magnetosférica. No entanto, o perfil de temperatura dos funis magnéticos é desconhecido. Aquecimento magnético compressional e difusão ambipolar foram considerados para estas estruturas, porém as temperaturas obtidas não são suficientes para explicar as observações. Neste trabalho, examinamos o aquecimento gerado pelo amortecimento de ondas Alfvén através de quatro mecanismos, os amortecimentos não-linear, turbulento, viscoso-resistivo e colisional como função da freqüência da onda. Inicialmente, a temperatura é ajustada para reproduzir as observações e o grau de turbulência requerido para que o mecanismo seja viável é calculado. Os resultados mostram que este é compatível com os dados observacionais. Apresentam-se, também, resultados preliminares do cálculo auto-consistente do perfil de temperatura dos funis, levando-se em conta fontes de aquecimento Alfvênica e fontes de resfriamento.

  3. Early gray-matter and white-matter concentration in infancy predict later language skills: A whole brain voxel-based morphometry study

    PubMed Central

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia

    2012-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children’s language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants’ receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants’ expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants’ linguistic functions are discussed. PMID:23274797

  4. Use of the CT images for BNCT calculation: development of BNCT treatment planning system and its applications to dose calculation for voxel phantoms.

    PubMed

    Park, Sung Ho; Han, Chi Young; Kim, Soon Young; Kim, Jong Kyung

    2004-01-01

    A BNCT (Boron Neutron Capture Therapy) treatment planning system (BTPS) was developed for BNCT study and treatment planning. Three kinds of CT images, VHP, PINNACLE and DICOM images, were employed to make voxel phantoms for BNCT patient treatment using the BTPS. The thermal neutron, fast neutron, gamma and boron doses are calculated and background, tissue, and tumour doses for idealised standard reactor neutron field (ISRNF) neutron beam were calculated by using BTPS and MCNP code. It was noted that the total computing times needed for BNCT analysis could be greatly reduced since the BTPS system provides a dose analysis tool and a lengthy MCNP input in a short time. It is, thus, expected that the BTPS can significantly contribute the BNCT study for the treatment of patients.

  5. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study

    PubMed Central

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren. PMID:23630510

  6. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    PubMed

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  7. Finite Element Analysis of Warp-Reinforced 2.5D Woven Composites Based on a Meso-Scale Voxel Model under Compression Loading

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Wang, Yanjie; Sun, Ying; Jia, Na; Qian, Kun

    2016-11-01

    A study is conducted with the aim of developing meso-scale voxel-based model for evaluating the compressive behaviors of warp-reinforced 2.5D woven composites. The real microstructure of warp-reinforced 2.5D woven composites is established. For the validation of this model, a series of axial (warp direction) and transverse (weft direction) compressive tests are conducted. The results show that under axial and transverse compressive loading, the calculated max stress and the final damage morphology agree well with the experimental results. Moreover, it is found that the axial compressive strength is mainly dependent on the high-crimp blinder warp, while the transverse compressive strength is significantly influenced by the warp/weft interlaced regions. It is expected that such a numerical investigation will provide useful information for understanding the strength and failure characteristic of 2.5D woven composites.

  8. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study.

    PubMed

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-05-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke's area and Broca's area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt's critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area of

  9. Atlas Based Segmentation and Mapping of Organs at Risk from Planning CT for the Development of Voxel-Wise Predictive Models of Toxicity in Prostate Radiotherapy

    NASA Astrophysics Data System (ADS)

    Acosta, Oscar; Dowling, Jason; Cazoulat, Guillaume; Simon, Antoine; Salvado, Olivier; de Crevoisier, Renaud; Haigron, Pascal

    The prediction of toxicity is crucial to managing prostate cancer radiotherapy (RT). This prediction is classically organ wise and based on the dose volume histograms (DVH) computed during the planning step, and using for example the mathematical Lyman Normal Tissue Complication Probability (NTCP) model. However, these models lack spatial accuracy, do not take into account deformations and may be inappropiate to explain toxicity events related with the distribution of the delivered dose. Producing voxel wise statistical models of toxicity might help to explain the risks linked to the dose spatial distribution but is challenging due to the difficulties lying on the mapping of organs and dose in a common template. In this paper we investigate the use of atlas based methods to perform the non-rigid mapping and segmentation of the individuals' organs at risk (OAR) from CT scans. To build a labeled atlas, 19 CT scans were selected from a population of patients treated for prostate cancer by radiotherapy. The prostate and the OAR (Rectum, Bladder, Bones) were then manually delineated by an expert and constituted the training data. After a number of affine and non rigid registration iterations, an average image (template) representing the whole population was obtained. The amount of consensus between labels was used to generate probabilistic maps for each organ. We validated the accuracy of the approach by segmenting the organs using the training data in a leave one out scheme. The agreement between the volumes after deformable registration and the manually segmented organs was on average above 60% for the organs at risk. The proposed methodology provides a way to map the organs from a whole population on a single template and sets the stage to perform further voxel wise analysis. With this method new and accurate predictive models of toxicity will be built.

  10. Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy

    NASA Astrophysics Data System (ADS)

    España, Samuel; Paganetti, Harald

    2011-07-01

    Dose calculation for lung tumors can be challenging due to the low density and the fine structure of the geometry. The latter is not fully considered in the CT image resolution used in treatment planning causing the prediction of a more homogeneous tissue distribution. In proton therapy, this could result in predicting an unrealistically sharp distal dose falloff, i.e. an underestimation of the distal dose falloff degradation. The goal of this work was the quantification of such effects. Two computational phantoms resembling a two-dimensional heterogeneous random lung geometry and a swine lung were considered applying a variety of voxel sizes for dose calculation. Monte Carlo simulations were used to compare the dose distributions predicted with the voxel size typically used for the treatment planning procedure with those expected to be delivered using the finest resolution. The results show, for example, distal falloff position differences of up to 4 mm between planned and expected dose at the 90% level for the heterogeneous random lung (assuming treatment plan on a 2 × 2 × 2.5 mm3 grid). For the swine lung, differences of up to 38 mm were seen when airways are present in the beam path when the treatment plan was done on a 0.8 × 0.8 × 2.4 mm3 grid. The two-dimensional heterogeneous random lung phantom apparently does not describe the impact of the geometry adequately because of the lack of heterogeneities in the axial direction. The differences observed in the swine lung between planned and expected dose are presumably due to the poor axial resolution of the CT images used in clinical routine. In conclusion, when assigning margins for treatment planning for lung cancer, proton range uncertainties due to the heterogeneous lung geometry and CT image resolution need to be considered.

  11. Evaluation of intracranial neoplasia and noninfectious meningoencephalitis in dogs by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla.

    PubMed

    Carrera, Inés; Richter, Henning; Beckmann, Katrin; Meier, Dieter; Dennler, Matthias; Kircher, Patrick R

    2016-05-01

    OBJECTIVE To investigate metabolite concentrations of the brains of dogs with intracranial neoplasia or noninfectious meningoencephalitis by use of short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 29 dogs with intracranial lesions (14 with neoplasia [3 oligodendromas, 3 glioblastomas multiformes, 3 astrocytomas, 2 lymphomas, and 3 meningiomas] and 15 is with noninfectious meningoencephalitis) and 10 healthy control dogs. PROCEDURES Short echo time, single voxel (1)H-MRS at 3.0 T was performed on neoplastic and noninfectious inflammatory intracranial lesions identified with conventional MRI. Metabolites of interest included N-acetyl aspartate (NAA), total choline, creatine, myoinositol, the glutamine-glutamate complex (Glx), glutathione, taurine, lactate, and lipids. Data were analyzed with postprocessing fitting algorithm software. Metabolite concentrations relative to brain water content were calculated and compared with results for the healthy control dogs, which had been previously evaluated with the same (1)H MRS technique. RESULTS NAA, creatine, and Glx concentrations were reduced in the brains of dogs with neoplasia and noninfectious meningoencephalitis, whereas choline concentration was increased. Concentrations of these metabolites differed significantly between dogs with neoplasia and dogs with noninfectious meningoencephalitis. Concentrations of NAA, creatine, and Glx were significantly lower in dogs with neoplasia, whereas the concentration of choline was significantly higher in dogs with neoplasia. Lipids were predominantly found in dogs with high-grade intra-axial neoplasia, meningioma, and necrotizing meningoencephalitis. A high concentration of taurine was found in 10 of 15 dogs with noninfectious meningoencephalitis. CONCLUSIONS AND CLINICAL RELEVANCE (1)H MRS provided additional metabolic information about intracranial neoplasia and noninfectious meningoencephalitis in dogs.

  12. Combining whole-brain voxel-wise analysis with in vivo tractography of diffusion behavior after sports-related concussion in adolescents: a preliminary report.

    PubMed

    Borich, Michael; Makan, Nadia; Boyd, Lara; Virji-Babul, Naznin

    2013-07-15

    We have previously shown that sports-related concussion in adolescents is associated with changes in whole-brain properties of white-matter pathways. Here, we assess local changes within these pathways. Twelve adolescents with a clinical diagnosis of subacute concussion and 10 healthy adolescents matched for age, gender, and physical activity completed magnetic resonance imaging scanning. Voxel-wise tract-based spatial statistics and tractography were performed to assess local changes in diffusion-based measures of microstructural properties of white-matter pathways (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity) between the two groups. Fractional anisotropy values were higher for the concussed group in multiple cluster regions using tract-based spatial statistics, primarily in frontal white-matter regions, including the anterior corona radiata bilaterally. Using these regions of altered diffusion characteristics to seed fiber tractography, significantly reduced axial diffusivity in tracts passing through these areas were detected in the concussed group (p=0.04). A trend toward reduced mean and radial diffusivity in the concussed group was also observed within the same reconstructed tracts. Diffusion behavior within these tracts was significantly correlated with an assessment of concussion status (Sports Concussion Assessment Tool 2). Fractional anisotropy within the reconstructed tracts was not significantly different between the two groups. These results suggest that subacute concussion in adolescents is associated with altered diffusion properties within regional white-matter tissue and along reconstructed fiber pathways. Combining voxel-wise analysis with fiber tractography provides an alternative objective approach to evaluate and identify subtle changes in white-matter fiber integrity after concussion.

  13. Speech repetition as a window on the neurobiology of auditory-motor integration for speech: A voxel-based lesion symptom mapping study

    PubMed Central

    Rogalsky, Corianne; Poppa, Tasha; Chen, Kuan-Hua; Anderson, Steven W.; Damasio, Hanna; Love, Tracy; Hickok, Gregory

    2015-01-01

    For more than a century, speech repetition has been used as an assay for gauging the integrity of the auditory-motor pathway in aphasia, thought classically to involve a linkage between Wernicke’s area and Broca’s area via the arcuate fasciculus. During the last decade, evidence primarily from functional imaging in healthy individuals has refined this picture both computationally and anatomically, suggesting the existence of a cortical hub located at the parietal-temporal boundary (area Spt) that functions to integrate auditory and motor speech networks for both repetition and spontaneous speech production. While functional imaging research can pinpoint the regions activated in repetition/auditory-motor integration, lesion-based studies are needed to infer causal involvement. Previous lesion studies of repetition have yielded mixed results with respect to Spt’s critical involvement in speech repetition. The present study used voxel-based lesion symptom mapping (VLSM) to investigate the neuroanatomy of repetition of both real words and non-words in a sample of 47 patients with focal left hemisphere brain damage. VLSMs identified a large voxel cluster spanning gray and white matter in the left temporal-parietal junction, including area Spt, where damage was significantly related to poor non-word repetition. Repetition of real words implicated a very similar dorsal network including area Spt. Cortical regions including Spt were implicated in repetition performance even when white matter damage was factored out. In addition, removing variance associated with speech perception abilities did not alter the overall lesion pattern for either task. Together with past functional imaging work, our results suggest that area Spt is integral in both word and non-word repetition, that its contribution is above and beyond that made by white matter pathways, and is not driven by perceptual processes alone. These findings are highly consistent with the claim that Spt is an area

  14. SU-E-J-243: Reproducibility of Radiomics Features Through Different Voxel Discretization Levels in F18-FDG PET Images of Cervical Cancer

    SciTech Connect

    Altazi, B; Fernandez, D; Zhang, G; Biagioli, M; Moros, E; Moffitt, H. Lee

    2015-06-15

    Purpose: Site-specific investigations of the role of Radiomics in cancer diagnosis and therapy are needed. We report of the reproducibility of quantitative image features over different discrete voxel levels in PET/CT images of cervical cancer. Methods: Our dataset consisted of the pretreatment PET/CT scans from a cohort of 76 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 31–76 years, treated with external beam radiation therapy to a dose range between 45–50.4 Gy (median dose: 45 Gy), concurrent cisplatin chemotherapy and MRI-based Brachytherapy to a dose of 20–30 Gy (median total dose: 28 Gy). Two board certified radiation oncologists delineated Metabolic Tumor volume (MTV) for each patient. Radiomics features were extracted based on 32, 64, 128 and 256 discretization levels (DL). The 64 level was chosen to be the reference DL. Features were calculated based on Co-occurrence (COM), Gray Level Size Zone (GLSZM) and Run-Length (RLM) matrices. Mean Percentage Differences (Δ) of features for discrete levels were determined. Normality distribution of Δ was tested using Kolomogorov - Smirnov test. Bland-Altman test was used to investigate differences between feature values measured on different DL. The mean, standard deviation and upper/lower value limits for each pair of DL were calculated. Interclass Correlation Coefficient (ICC) analysis was performed to examine the reliability of repeated measures within the context of the test re-test format. Results: 3 global and 5 regional features out of 48 features showed distribution not significantly different from a normal one. The reproducible features passed the normality test. Only 5 reproducible results were reliable, ICC range 0.7 – 0.99. Conclusion: Most of the radiomics features tested showed sensitivity to voxel level discretization between (32 – 256). Only 4 GLSZM, 3 COM and 1 RLM showed insensitivity towards mentioned discrete levels.

  15. Density abnormalities in normal-appearing gray matter in the middle-aged brain with white matter hyperintense lesions: a DARTEL-enhanced voxel-based morphometry study

    PubMed Central

    Peng, Yan; Li, Shenhong; Zhuang, Ying; Liu, Xiaojia; Wu, Lin; Gong, Honghan; Liu, Dewu; Zhou, Fuqing

    2016-01-01

    Background and purpose Little is known about the structural alterations within gray matter (GM) in middle-aged subjects with white matter hyperintense (WMH) lesions. Here, we aimed to examine the anatomical changes within the GM and their relationship to WMH lesion loads in middle-aged subjects. Participants and methods Twenty-three middle-aged subjects with WMH lesions (WMH group) and 23 demographically matched healthy control subjects participated in the study. A Diffeomorphic Anatomical Registration Through Exponentiated Liealgebra-enhanced voxel-based morphometry was used to measure the GM density, and the correlations between WMH lesion volume and extracted GM values in abnormal regions were identified by voxel-based morphometry analysis. Results Compared with the healthy control subjects, the WMH group had a significantly decreased GM density in the left middle frontal gyrus, bilateral anterior cingulate cortex, left and right premotor cortex, and left and right middle cingulate cortex and an increased GM density in the bilateral cerebellum anterior lobe, left middle temporal gyrus, right temporoparietal junction, left and right prefrontal cortex (PFC), and left inferior parietal lobule. A relationship was observed between the normalized WMH lesion volume and the decreased GM density, including the left middle frontal gyrus (ρ=−0.629, P=0.002), bilateral anterior cingulate cortex (ρ=−0.507, P=0.019), right middle cingulate cortex (ρ=−0.484, P=0.026), and right premotor cortex (ρ=−0.438, P=0.047). The WMH lesion loads also negatively correlated with increased GM density in the right temporoparietal junction (ρ=−0.484, P=0.026), left PFC (ρ=−0.469, P=0.032), and right PFC (ρ=−0.438, P=0.047). Conclusion We observed that lesion load-associated structural plasticity corresponds to bidirectional changes in regional GM density in the WMH group. PMID:27274211

  16. Monte Carlo simulation of skull and knee voxel phantoms for the assessment of skeletal burden of low-energy photon emitters.

    PubMed

    Nadar, M Y; Akar, D K; Patni, H K; Singh, I S; Mishra, L; Rao, D D; Pradeepkumar, K S

    2014-12-01

    In case of internal contamination due to long-lived actinides by inhalation or injection pathway, a major portion of activity will be deposited in the skeleton and liver over a period of time. In this study, calibration factors (CFs) of Phoswich and an array of HPGe detectors are estimated using skull and knee voxel phantoms. These phantoms are generated from International Commission of Radiation Protection reference male voxel phantom. The phantoms as well as 20 cm diameter phoswich, having 1.2 cm thick NaI (Tl) primary and 5cm thick CsI (Tl) secondary detector and an array of three HPGe detectors (each of diameter of 7 cm and thickness of 2.5 cm) are incorporated in Monte Carlo code 'FLUKA'. Biokinetic models of Pu, Am, U and Th are solved using default parameters to identify different parts of the skeleton where activity will accumulate after an inhalation intake of 1 Bq. Accordingly, CFs are evaluated for the uniform source distribution in trabecular bone and bone marrow (TBBM), cortical bone (CB) as well as in both TBBM and CB regions for photon energies of 18, 60, 63, 74, 93, 185 and 238 keV describing sources of (239)Pu, (241)Am, (238)U, (235)U and (232)Th. The CFs are also evaluated for non-uniform distribution of activity in TBBM and CB regions. The variation in the CFs for source distributed in different regions of the bones is studied. The assessment of skeletal activity of actinides from skull and knee activity measurements is discussed along with the errors.

  17. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts

    NASA Astrophysics Data System (ADS)

    Sikaria, Dhiraj; Musinsky, Stephanie; Sturgeon, Gregory M.; Solomon, Justin; Diao, Andrew; Gehm, Michael E.; Samei, Ehsan; Glick, Stephen J.; Lo, Joseph Y.

    2016-03-01

    Physical phantoms are needed for the evaluation and optimization of new digital breast tomosynthesis (DBT) systems. Previously, we developed an anthropomorphic phantom based on human subject breast CT data and fabricated using commercial 3D printing. We now present three key advancements: voxelized 3D printing, photopolymer material doping, and 2D inkjet printing of lesion inserts. First, we bypassed the printer's control software in order to print in voxelized form instead of conventional STL surfaces, thus improving resolution and allowing dithering to mix the two photopolymer materials into arbitrary proportions. We demonstrated ability to print details as small as 150μm, and dithering to combine VeroWhitePlus and TangoPlus in 10% increments. Second, to address the limited attenuation difference among commercial photopolymers, we evaluated a beta sample from Stratasys with increased TiO2 doping concentration up to 2.5%, which corresponded to 98% breast density. By spanning 36% to 98% breast density, this doubles our previous contrast. Third, using inkjet printers modified to print with iopamidol, we created 2D lesion patterns on paper that can be sandwiched into the phantom. Inkjet printing has advantages of being inexpensive and easy, and more contrast can be delivered through overprinting. Printing resolution was maintained at 210 μm horizontally and 330 μm vertically even after 10 overprints. Contrast increased linearly with overprinting at 0.7% per overprint. Together, these three new features provide the basis for creating a new anthropomorphic physical breast phantom with improved resolution and contrast, as well as the ability to insert 2D lesions for task-based assessment of performance.

  18. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  19. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence.

    PubMed

    Zheng, Huiqing; Colvin, Christopher J; Johnson, Benjamin K; Kirchhoff, Paul D; Wilson, Michael; Jorgensen-Muga, Katriana; Larsen, Scott D; Abramovitch, Robert B

    2017-02-01

    The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.

  20. Application of Three-Dimensional Models for the Teaching of Time Zones. (Breton Title: Aplicação de Modelos Tridimensionais Para o Ensino de Fusos Horários.) Aplicación de Modelos Tridimensionales Para la Enseñanza de Husos Horarios

    NASA Astrophysics Data System (ADS)

    Azevedo Sobreira, Paulo Henrique

    2012-07-01

    There are several interesting astronomical topics that must be addressed in the High School and Elementary/Middle School in the disciplines of Geography and of Sciences. Among them, the topic of time zones which is one of the most important to understand the correlation of the Earth's rotation and its implications on daily activities of citizens in local scale, regional and global scales which involve problems of time differences. For the teaching of time zones in the lessons of Geography, for example, there are bi-dimensional representations of thematic maps of world time zones, textbooks and atlas. It happens that teachers face some difficulties to permit its students to view three-dimensionally this astronomical phenomenon from the textbooks available in schools. The aim of this paper is to present two proposals with low-cost materials, which allow the preparation of three-dimensional models for the teaching of time zones. Há vários temas astronômicos interessantes que devem ser trabalhados nos Ensinos Médio e Fundamental, nas disciplinas de Geografia e de Ciências. Entre eles, o tema dos fusos horários que é um dos mais importantes para se correlacionar a rotação da Terra e suas implicações nas atividades cotidianas dos cidadãos em escala local, regional e global, que envolvem problemas de diferenças horárias. Para o ensino dos fusos horários nas aulas de Geografia, por exemplo, há representações bidimensionais de mapas temáticos de fusos horários mundiais, nos livros didáticos e nos atlas. Ocorre que os professores enfrentam algumas dificuldades para possibilitar aos seus alunos a visão tridimensional deste fenômeno astronômico, a partir dos materiais didáticos disponíveis nas escolas. O objetivo deste trabalho é apresentar duas propostas para a confecção de materiais de baixo custo, que possibilitem a elaboração de modelos tridimensionais para o ensino dos fusos horários. Hay algunos temas astronómicos interesantes que se

  1. MO-F-CAMPUS-J-01: Effect of Iodine Contrast Agent Concentration On Cerebrovascular Dose for Synchrotron Radiation Microangiography Based On a Simple Mouse Head Model and a Voxel Mouse Head Phantom

    SciTech Connect

    Lin, H; Jing, J; Xie, C; Lu, Y

    2015-06-15

    Purpose: To find effective setting methods to mitigate the irradiation injure in synchrotron radiation microangiography(SRA) by Monte Carlo simulation. Methods: A mouse 1-D head model and a segmented voxel mouse head phantom were simulated by EGSnrc/Dosxyznrc code to investigate the dose enhancement effect of the iodine contrast agent irradiated by a monochromatic synchrotron radiation(SR) source. The influence of, like iodine concentration (IC), vessel width and depth, with and without skull layer protection and the various incident X ray energies, were simulated. The dose enhancement effect and the absolute dose based on the segmented voxel mouse head phantom were evaluated. Results: The dose enhancement ratio depends little on the irradiation depth, but strongly on the IC, which is linearly increases with IC. The skull layer protection cannot be ignored in SRA, the 700µm thick skull could decrease 10% of the dose. The incident X-ray energy can significantly affact the dose. E.g. compared to the dose of 33.2keV for 50mgI/ml, the 32.7keV dose decreases 38%, whereas the dose of 33.7 keV increases 69.2%, and the variation will strengthen more with enhanced IC. The segmented voxel mouse head phantom also showed that the average dose enhancement effect and the maximal voxel dose per photon depends little on the iodine voxel volume ratio, but strongly on IC. Conclusion: To decrease dose damage in SRA, the high-Z contrast agent should be used as little as possible, and try to avoid radiating locally the injected position immediately after the contrast agent injection. The fragile vessel containing iodine should avoid closely irradiating. Avoiding irradiating through the no or thin skull region, or appending thin equivalent material from outside to protect is also a better method. As long as SRA image quality is ensured, using incident X-ray energy as low as possible.

  2. Automatic segmentation of cartilage in high-field magnetic resonance images of the knee joint with an improved voxel-classification-driven region-growing algorithm using vicinity-correlated subsampling.

    PubMed

    Öztürk, Ceyda Nur; Albayrak, Songül

    2016-05-01

    Anatomical structures that can deteriorate over time, such as cartilage, can be successfully delineated with voxel-classification approaches in magnetic resonance (MR) images. However, segmentation via voxel-classification is a computationally demanding process for high-field MR images with high spatial resolutions. In this study, the whole femoral, tibial, and patellar cartilage compartments in the knee joint were automatically segmented in high-field MR images obtained from Osteoarthritis Initiative using a voxel-classification-driven region-growing algorithm with sample-expand method. Computational complexity of the classification was alleviated via subsampling of the background voxels in the training MR images and selecting a small subset of significant features by taking into consideration systems with limited memory and processing power. Although subsampling of the voxels may lead to a loss of generality of the training models and a decrease in segmentation accuracies, effective subsampling strategies can overcome these problems. Therefore, different subsampling techniques, which involve uniform, Gaussian, vicinity-correlated (VC) sparse, and VC dense subsampling, were used to generate four training models. The segmentation system was experimented using 10 training and 23 testing MR images, and the effects of different training models on segmentation accuracies were investigated. Experimental results showed that the highest mean Dice similarity coefficient (DSC) values for all compartments were obtained when the training models of VC sparse subsampling technique were used. Mean DSC values optimized with this technique were 82.6%, 83.1%, and 72.6% for femoral, tibial, and patellar cartilage compartments, respectively, when mean sensitivities were 79.9%, 84.0%, and 71.5%, and mean specificities were 99.8%, 99.9%, and 99.9%.

  3. Espectro de radiación derivado de un modelo de colapso protoestelar

    NASA Astrophysics Data System (ADS)

    Coca, S.; Rohrmann, R.

    El exceso de emisión infrarroja en objetos protoestelares es atribuido usualmente a un disco de material en torno al cuerpo central. A pesar del avance alcanzado en la elaboración de modelos, aún existen dificultades para explicar la ley de temperatura del disco necesaria para reproducir las luminosidades y perfiles de energía observados. Nuestra propuesta consiste en determinar la distribución espectral de la radiación derivada de un particular modelo de colapso protoestelar, y estudiar la evolución del espectro desde estadíos tempranos de la contracción gravitatoria. Este plan es orientado a evaluar las propiedades del modelo (distribuciones de masa y temperatura del material circunestelar) por comparación con datos observacionales, a fin de inferir de ello los posibles ajustes requeridos en la teoría actualmente empleada.

  4. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    SciTech Connect

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; Ménard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  5. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

    NASA Astrophysics Data System (ADS)

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

    2015-03-01

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  6. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    NASA Astrophysics Data System (ADS)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  7. A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain

    NASA Astrophysics Data System (ADS)

    Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.

    2008-10-01

    The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is

  8. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm.

    PubMed

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  9. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT.

    PubMed

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Diaz, Nestor Cornejo; Perez, Marco Coca; Fernández, María; Lassmann, Michael; Gil, Alex Vergara; Cremonesi, Marta

    2015-03-07

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with (131)I, (177)Lu, (188)Re or (90)Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with (90)Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles.For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for (177)Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED.The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  10. Divorce Matters: Visitation Dos and Don'ts

    MedlinePlus

    divorce matters Visitation dos and don’ts For both parents and children, visitation is critical to maintaining ... sense of connectedness both during and after a divorce. But in the early stages of family restructuring ...

  11. White matter abnormalities associated with auditory hallucinations in schizophrenia: a combined study of voxel-based analyses of diffusion tensor imaging and structural magnetic resonance imaging.

    PubMed

    Seok, Jeong-Ho; Park, Hae-Jeong; Chun, Ji-Won; Lee, Seung-Koo; Cho, Hyun Sang; Kwon, Jun Soo; Kim, Jae-Jin

    2007-11-15

    White matter (WM) abnormalities in schizophrenia may offer important clues to a better understanding of the disconnectivity associated with the disorder. The aim of this study was to elucidate a WM basis of auditory hallucinations in schizophrenia through the simultaneous investigation of WM tract integrity and WM density. Diffusion tensor images (DTIs) and structural T1 magnetic resonance images (MRIs) were taken from 15 hallucinating schizophrenic patients, 15 non-hallucinating schizophrenic patients and 22 normal controls. Voxel-based analyses and post-hoc region of interest analyses were obtained to compare the three groups on fractional anisotropy (FA) derived from DTI as well as WM density derived from structural MRIs. In both the hallucinating and non-hallucinating groups, FA of the WM regions was significantly decreased in the left superior longitudinal fasciculus (SLF), whereas WM density was significantly increased in the left inferior longitudinal fasciculus (ILF). The mean FA value of the left frontal part of the SLF was positively correlated with the severity score of auditory hallucinations in the hallucinating patient group. Our findings show that WM changes were mainly observed in the frontal and temporal areas, suggesting that disconnectivity in the left fronto-temporal area may contribute to the pathophysiology of schizophrenia. In addition, pathologic WM changes in this region may be an important step in the development of auditory hallucinations in schizophrenia.

  12. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    PubMed

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  13. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans

    PubMed Central

    Griffis, Joseph C.; Allendorfer, Jane B.; Szaflarski, Jerzy P.

    2015-01-01

    Background Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. New Method We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Results Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Comparison with Existing Method Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient = 0.66) and volume agreement (mean percent volume difference = 28.91; Pearson’s r = 0.97) with manual lesion delineations. Conclusions Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. PMID:26432931

  14. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure.

  15. Increased medial temporal lobe and striatal grey-matter volume in a rare disorder of androgen excess: a voxel-based morphometry (VBM) study

    PubMed Central

    Mueller, Sven C.; Merke, Deborah P.; Leschek, Ellen W.; Fromm, Steven; VanRyzin, Carol; Ernst, Monique

    2016-01-01

    Major questions remain about how sex hormones influence human brain development and cognition. Studies in humans and animals suggest a strong impact of androgen on the structure and function of the medial temporal lobe (MTL) and striatum. Using voxel-based morphometry (DARTEL), we compared MTL and striatal structures in 13 [mean age (±s.d.) 12.7 ± 3.2 yr, mean bone age 14.8 ± 3.2 yr] boys with familial male precocious puberty (FMPP), characterized by early excess androgen secretion, and 39 healthy age-matched boys (mean age 14.3 ± 2.5 yr). The FMPP group showed significantly larger grey-matter volume (GMV) in parahippocampal and fusiform gyri as well as putamen relative to controls. By comparison, larger GMV for controls relative to patients was only apparent in the precentral gyrus. Exploratory regression analyses that examined the impact of age on the current findings revealed a significant increase of GMV in the putamen with age in patients suffering from excess androgen but not in controls. Finally, current levels of free testosterone were obtained in the patient group. Analyses revealed a significant negative association indicating that FMPP boys with low levels of bioavailable testosterone exhibited high GMV in the bilateral striatum. The findings suggest a critical influence of androgen on human brain development and are discussed in relation to male-dominant psychiatric childhood disorders. PMID:20860880

  16. Greater intake of vitamins B6 and B12 spares gray matter in healthy elderly: a voxel-based morphometry study.

    PubMed

    Erickson, Kirk I; Suever, Barbara L; Prakash, Ruchika Shaurya; Colcombe, Stanley J; McAuley, Edward; Kramer, Arthur F

    2008-03-14

    Previous studies have reported that high concentrations of homocysteine and lower concentrations of vitamins B6, B12, and folate increase the risk for cognitive decline and pathology in aging populations. In this cross-sectional study, high resolution magnetic resonance imaging (MRI) scans and a 3-day food diary were collected on 32 community-dwelling adults between the ages of 59 and 79. We examined the relation between vitamins B6, B12, and folate intake on cortical volume using an optimized voxel-based morphometry (VBM) method and global gray and white matter volume after correcting for age, sex, body mass index, calorie intake, and education. All participants met or surpassed the recommended daily intake for these vitamins. In the VBM analysis, we found that adults with greater vitamin B6 intake had greater gray matter volume along the medial wall, anterior cingulate cortex, medial parietal cortex, middle temporal gyrus, and superior frontal gyrus, whereas people with greater B12 intake had greater volume in the left and right superior parietal sulcus. These effects were driven by vitamin supplementation and were negated when only examining vitamin intake from diet. Folate had no effect on brain volume. Furthermore, there was no relationship between vitamins B6, B12, or folate intake on global brain volume measures, indicating that VBM methods are more sensitive for detecting localized differences in gray matter volume than global measures. These results are discussed in relation to a growing literature on vitamin intake on age-related neurocognitive deterioration.

  17. Voxel-based morphometry of the marmoset brain: In vivo detection of volume loss in the substantia nigra of the MPTP-treated Parkinson's disease model.

    PubMed

    Hikishima, K; Ando, K; Komaki, Y; Kawai, K; Yano, R; Inoue, T; Itoh, T; Yamada, M; Momoshima, S; Okano, H J; Okano, H

    2015-08-06

    Movement dysfunction in Parkinson's disease (PD) is caused by the degeneration of dopaminergic (DA) neurons in the substantia nigra (SN). Here, we established a method for voxel-based morphometry (VBM) and automatic tissue segmentation of the marmoset monkey brain using a 7-T animal scanner and applied the method to assess DA degeneration in a PD model, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated animals, with tyrosine-hydroxylase staining. The most significant decreases of local tissue volume were detected in the bilateral SN of MPTP-treated marmoset brains (-53.0% in right and -46.5% in left) and corresponded with the location of DA neurodegeneration found in histology (-65.4% in right). In addition to the SN, the decreases were also confirmed in the locus coeruleus, and lateral hypothalamus. VBM using 7-T MRI was effective in detecting volume loss in the SN of the PD-model marmoset. This study provides a potential basis for the application of VBM with ultra-high field MRI in the clinical diagnosis of PD. The developed method may also offer value in automatic whole-brain evaluation of structural changes for the marmoset monkey.

  18. Multi-voxel pattern analysis (MVPA) reveals abnormal fMRI activity in both the “core” and “extended” face network in congenital prosopagnosia

    PubMed Central

    Rivolta, Davide; Woolgar, Alexandra; Palermo, Romina; Butko, Marina; Schmalzl, Laura; Williams, Mark A.

    2014-01-01

    The ability to identify faces is mediated by a network of cortical and subcortical brain regions in humans. It is still a matter of debate which regions represent the functional substrate of congenital prosopagnosia (CP), a condition characterized by a lifelong impairment in face recognition, and affecting around 2.5% of the general population. Here, we used functional Magnetic Resonance Imaging (fMRI) to measure neural responses to faces, objects, bodies, and body-parts in a group of seven CPs and ten healthy control participants. Using multi-voxel pattern analysis (MVPA) of the fMRI data we demonstrate that neural activity within the “core” (i.e., occipital face area and fusiform face area) and “extended” (i.e., anterior temporal cortex) face regions in CPs showed reduced discriminability between faces and objects. Reduced differentiation between faces and objects in CP was also seen in the right parahippocampal cortex. In contrast, discriminability between faces and bodies/body-parts and objects and bodies/body-parts across the ventral visual system was typical in CPs. In addition to MVPA analysis, we also ran traditional mass-univariate analysis, which failed to show any group differences in face and object discriminability. In sum, these findings demonstrate (i) face-object representations impairments in CP which encompass both the “core” and “extended” face regions, and (ii) superior power of MVPA in detecting group differences. PMID:25431556

  19. 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution.

    PubMed

    Wu, Jingpeng; He, Yong; Yang, Zhongqin; Guo, Congdi; Luo, Qingming; Zhou, Wei; Chen, Shangbin; Li, Anan; Xiong, Benyi; Jiang, Tao; Gong, Hui

    2014-02-15

    Systematic cellular and vascular configurations are essential for understanding fundamental brain anatomy and metabolism. We demonstrated a 3D brainwide cellular and vascular (called 3D BrainCV) visualization and quantitative protocol for a whole mouse brain. We developed a modified Nissl staining method that quickly labeled the cells and blood vessels simultaneously in an entire mouse brain. Terabytes 3D datasets of the whole mouse brains, with unprecedented details of both individual cells and blood vessels, including capillaries, were simultaneously imaged at 1-μm voxel resolution using micro-optical sectioning tomography (MOST). For quantitative analysis, we proposed an automatic image-processing pipeline to perform brainwide vectorization and analysis of cells and blood vessels. Six representative brain regions from the cortex to the deep, including FrA, M1, PMBSF, V1, striatum, and amygdala, and six parameters, including cell number density, vascular length density, fractional vascular volume, distance from the cells to the nearest microvessel, microvascular length density, and fractional microvascular volume, had been quantitatively analyzed. The results showed that the proximity of cells to blood vessels was linearly correlated with vascular length density, rather than the cell number density. The 3D BrainCV made overall snapshots of the detailed picture of the whole brain architecture, which could be beneficial for the state comparison of the developing and diseased brain.

  20. A comparison of gray and white matter density in patients with Parkinson's disease dementia and dementia with Lewy bodies using voxel-based morphometry.

    PubMed

    Lee, Ji E; Park, Bosuk; Song, Sook K; Sohn, Young H; Park, Hae-Jeong; Lee, Phil Hyu

    2010-01-15

    Despite clinical and neuropsychological similarities between Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), recent studies have demonstrated that structural and pathological changes are more severe in DLB than in PDD. We used voxel-based morphometry using a 3-T MRI scanner to compare gray and white matter densities in 20 patients with probable PDD and 18 patients with probable DLB, who had similar overall severity of dementia and similar demographic characteristics. The gray matter density was significantly decreased in the left occipital, parietal, and striatal areas in patients with DLB compared with patients with PDD. The white matter density was significantly decreased in bilateral occipital and left occipito-parietal areas in patients with DLB compared with those with PDD. The degree of white and gray matter atrophy was similar in patients with DLB; in contrast, there was markedly less atrophy in the white matter than in the gray matter in patients with PDD. On analyzing the change of WM density relative to that of GM density in patients with DLB compared to those with PDD, the area of WM atrophy in the occipital areas was more extensive than that of GM atrophy. Our data demonstrate that atrophy of both gray and white matter was more severe in patients with DLB and that white matter atrophy relative to gray matter atrophy was less severe in patients with PDD. These data may reflect a difference in the underlying nature of PDD and DLB.