Comparison of fluence-to-dose conversion coefficients for deuterons, tritons and helions.
Copeland, Kyle; Friedberg, Wallace; Sato, Tatsuhiko; Niita, Koji
2012-02-01
Secondary radiation in aircraft and spacecraft includes deuterons, tritons and helions. Two sets of fluence-to-effective dose conversion coefficients for isotropic exposure to these particles were compared: one used the particle and heavy ion transport code system (PHITS) radiation transport code coupled with the International Commission on Radiological Protection (ICRP) reference phantoms (PHITS-ICRP) and the other the Monte Carlo N-Particle eXtended (MCNPX) radiation transport code coupled with modified BodyBuilder™ phantoms (MCNPX-BB). Also, two sets of fluence-to-effective dose equivalent conversion coefficients calculated using the PHITS-ICRP combination were compared: one used quality factors based on linear energy transfer; the other used quality factors based on lineal energy (y). Finally, PHITS-ICRP effective dose coefficients were compared with PHITS-ICRP effective dose equivalent coefficients. The PHITS-ICRP and MCNPX-BB effective dose coefficients were similar, except at high energies, where MCNPX-BB coefficients were higher. For helions, at most energies effective dose coefficients were much greater than effective dose equivalent coefficients. For deuterons and tritons, coefficients were similar when their radiation weighting factor was set to 2.
Sato, Tatsuhiko; Endo, Akira; Sihver, Lembit; Niita, Koji
2011-03-01
Absorbed-dose and dose-equivalent rates for astronauts were estimated by multiplying fluence-to-dose conversion coefficients in the units of Gy.cm(2) and Sv.cm(2), respectively, and cosmic-ray fluxes around spacecrafts in the unit of cm(-2) s(-1). The dose conversion coefficients employed in the calculation were evaluated using the general-purpose particle and heavy ion transport code system PHITS coupled to the male and female adult reference computational phantoms, which were released as a common ICRP/ICRU publication. The cosmic-ray fluxes inside and near to spacecrafts were also calculated by PHITS, using simplified geometries. The accuracy of the obtained absorbed-dose and dose-equivalent rates was verified by various experimental data measured both inside and outside spacecrafts. The calculations quantitatively show that the effective doses for astronauts are significantly greater than their corresponding effective dose equivalents, because of the numerical incompatibility between the radiation quality factors and the radiation weighting factors. These results demonstrate the usefulness of dose conversion coefficients in space dosimetry. © Springer-Verlag 2010
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.
1994-01-01
It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.
Sato, Tatsuhiko; Endo, Akira; Niita, Koji
2010-04-21
The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.
Personal Dose Equivalent Conversion Coefficients For Photons To 1 GEV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Hertel, N. E.
2010-09-27
The personal dose equivalent, H{sub p}(d), is the quantity recommended by the International Commission on Radiation Units and Measurements (ICRU) to be used as an approximation of the protection quantity Effective Dose when performing personal dosemeter calibrations. The personal dose equivalent can be defined for any location and depth within the body. Typically, the location of interest is the trunk where personal dosemeters are usually worn and in this instance a suitable approximation is a 30 cm X 30 cm X 15 cm slab-type phantom. For this condition the personal dose equivalent is denoted as H{sub p,slab}(d) and the depths,more » d, are taken to be 0.007 cm for non-penetrating and 1 cm for penetrating radiation. In operational radiation protection a third depth, 0.3 cm, is used to approximate the dose to the lens of the eye. A number of conversion coefficients for photons are available for incident energies up to several MeV, however, data to higher energies are limited. In this work conversion coefficients up to 1 GeV have been calculated for H{sub p,slab}(10) and H{sub p,slab}(3) using both the kerma approximation and by tracking secondary charged particles. For H{sub p}(0.07) the conversion coefficients were calculated, but only to 10 MeV due to computational limitations. Additionally, conversions from air kerma to H{sub p,slab}(d) have been determined and are reported. The conversion coefficients were determined for discrete incident energies, but analytical fits of the coefficients over the energy range are provided. Since the inclusion of air can influence the production of secondary charged particles incident on the face of the phantom conversion coefficients have been determined both in vacuo and with the source and slab immersed within a sphere in air. The conversion coefficients for the personal dose equivalent are compared to the appropriate protection quantity, calculated according to the recommendations of the latest International Commission on Radiological Protection (ICRP) guidance.« less
Monte Carlo calculation of the neutron dose to a fetus at commercial flight altitudes
NASA Astrophysics Data System (ADS)
Alves, M. C.; Galeano, D. C.; Santos, W. S.; Hunt, John G.; d'Errico, Francesco; Souza, S. O.; de Carvalho Júnior, A. B.
2017-11-01
Aircrew members are exposed to primary cosmic rays as well as to secondary radiations from the interaction of cosmic rays with the atmosphere and with the aircraft. The radiation field at flight altitudes comprises neutrons, protons, electrons, positrons, photons, muons and pions. Generally, 50% of the effective dose to airplane passengers is due to neutrons. Care must be taken especially with pregnant aircrew members and frequent fliers so that the equivalent dose to the fetus will not exceed prescribed limits during pregnancy (1 mSv according to ICRP, and 5 mSv according to NCRP). Therefore, it is necessary to evaluate the equivalent dose to a fetus in the maternal womb. Up to now, the equivalent dose rate to a fetus at commercial flight altitudes was obtained using stylized pregnant-female phantom models. The aim of this study was calculating neutron fluence to dose conversion coefficients for a fetus of six months of gestation age using a new, realistic pregnant-female mesh-phantom. The equivalent dose rate to a fetus during an intercontinental flight was also calculated by folding our conversion coefficients with published spectral neutron flux data. The calculated equivalent dose rate to the fetus was 2.35 μSv.h-1, that is 1.5 times higher than equivalent dose rates reported in the literature. The neutron fluence to dose conversion coefficients for the fetus calculated in this study were 2.7, 3.1 and 3.9 times higher than those from previous studies using fetus models of 3, 6 and 9 months of gestation age, respectively. The differences between our study and data from the literature highlight the importance of using more realistic anthropomorphic phantoms to estimate doses to a fetus in pregnant aircrew members.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, David A; Schwahn, Scott O
2011-01-01
While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.
Dose conversion coefficients for electron exposure of the human eye lens
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.; Zankl, M.
2009-07-01
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity Hp(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity Hp(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0° and 45° are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.
Dose conversion coefficients for electron exposure of the human eye lens.
Behrens, R; Dietze, G; Zankl, M
2009-07-07
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Q; Shanghai General Hospital, Shanghai, Shanghai; Zhuo, W
Purpose: Conversion coefficients of organ dose normalized to entrance skin dose (ESD) are widely used to evaluate the organ doses directly using ESD without time-consuming dose measurement, this work aims to investigate the dose conversion coefficients in pediatric chest and abdomen radiography with the development of 5 years and 10 years old children voxel phantoms. Methods: After segmentation of organs and tissues from CT slice images of ATOM tissue-equivalent phantoms, a 5-year-old and a 10-year-old children computational voxel phantoms were developed for Monte Carlo simulation. The organ doses and the entrance skin dose for pediatric chest postero-anterior projection and abdominalmore » antero-posterior projection were simulated at the same time, and then the organ dose conversion coefficients were calculated.To verify the simulated results, dose measurement was carried out with ATOM tissue-equivalent phantoms for 5 year chest radiography. Results: Simulated results and experimental results matched very well with each other, the result differences of all the organs covered in radiation field were below 16% for 5-year-old child in chest projection. I showed that the conversion coefficients of organs covered in the radiation field were much larger than organs out of the field for all the study cases, for example, the conversion coefficients of stomach, liver intestines, and pancreas are larger for abdomen radiography while conversion coefficients of lungs are larger for chest radiography. Conclusion: The voxel children phantoms were helpful to evaluate the radiation doses more accurately and efficiently. Radiation field was the essential factor that affects the organ dose, use reasonably small field should be encouraged for radiation protection. This work was supported by the National Natural Science Foundation of China(11475047)« less
Dose conversion coefficients for photon exposure of the human eye lens.
Behrens, R; Dietze, G
2011-01-21
In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity H(p)(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model-with the addition of the whole body-was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.
Dose conversion coefficients for photon exposure of the human eye lens
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2011-01-01
In recent years, several papers dealing with the eye lens dose have been published, because epidemiological studies implied that the induction of cataracts occurs even at eye lens doses of less than 500 mGy. Different questions were addressed: Which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens? Is a new definition of the dose quantity Hp(3) based on a cylinder phantom to represent the human head necessary? Are current conversion coefficients from fluence to equivalent dose to the lens sufficiently accurate? To investigate the latter question, a realistic model of the eye including the inner structure of the lens was developed. Using this eye model, conversion coefficients for electrons have already been presented. In this paper, the same eye model—with the addition of the whole body—was used to calculate conversion coefficients from fluence (and air kerma) to equivalent dose to the lens for photon radiation from 5 keV to 10 MeV. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are similar between 40 keV and 1 MeV and lower by up to a factor of 5 and 7 for photon energies at about 10 keV and 10 MeV, respectively. Above 1 MeV, the new values (calculated without kerma approximation) should be applied in pure photon radiation fields, while the values adopted by the ICRP in 1996 (calculated with kerma approximation) should be applied in case a significant contribution from secondary electrons originating outside the body is present.
NASA Astrophysics Data System (ADS)
Schlattl, H.; Zankl, M.; Petoussi-Henss, N.
2007-04-01
A new series of organ equivalent dose conversion coefficients for whole body external photon exposure is presented for a standardized couple of human voxel models, called Rex and Regina. Irradiations from broad parallel beams in antero-posterior, postero-anterior, left- and right-side lateral directions as well as from a 360° rotational source have been performed numerically by the Monte Carlo transport code EGSnrc. Dose conversion coefficients from an isotropically distributed source were computed, too. The voxel models Rex and Regina originating from real patient CT data comply in body and organ dimensions with the currently valid reference values given by the International Commission on Radiological Protection (ICRP) for the average Caucasian man and woman, respectively. While the equivalent dose conversion coefficients of many organs are in quite good agreement with the reference values of ICRP Publication 74, for some organs and certain geometries the discrepancies amount to 30% or more. Differences between the sexes are of the same order with mostly higher dose conversion coefficients in the smaller female model. However, much smaller deviations from the ICRP values are observed for the resulting effective dose conversion coefficients. With the still valid definition for the effective dose (ICRP Publication 60), the greatest change appears in lateral exposures with a decrease in the new models of at most 9%. However, when the modified definition of the effective dose as suggested by an ICRP draft is applied, the largest deviation from the current reference values is obtained in postero-anterior geometry with a reduction of the effective dose conversion coefficient by at most 12%.
The Evaluation of the 0.07 and 3 mm Dose Equivalent with a Portable Beta Spectrometer
NASA Astrophysics Data System (ADS)
Hoshi, Katsuya; Yoshida, Tadayoshi; Tsujimura, Norio; Okada, Kazuhiko
Beta spectra of various nuclide species were measured using a commercially available compact spectrometer. The shape of the spectra obtained via the spectrometer was almost similar to that of the theoretical spectra. The beta dose equivalent at any depth was obtained as a product of the measured pulse height spectra and the appropriate conversion coefficients of ICRP Publication 74. The dose rates evaluated from the spectra were comparable with the reference dose rates of standard beta calibration sources. In addition, we were able to determine the dose equivalents with a relative error of indication of 10% without the need for complicated correction.
Yoo, Do Hyeon; Shin, Wook-Geun; Lee, Jaekook; Yeom, Yeon Soo; Kim, Chan Hyeong; Chang, Byung-Uck; Min, Chul Hee
2017-11-01
After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products. To construct the database, we used a skin source method with a computational human phantom and Monte Carlo (MC) simulation. For the validation, the effective dose was compared between the database using interpolation method and the original MC method. Our result showed a similar equivalent dose across the 26 organs and a corresponding average dose between the database and the MC calculations of < 5% difference. The differences in the effective doses were even less, and the result generally show that equivalent and effective doses can be quickly calculated with the database with sufficient accuracy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Principi, S; Guardiola, C; Duch, M A; Ginjaume, M
2016-09-01
Recent studies highlight the fact that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens monitoring could be required for these workers. The recommended operational quantity for monitoring of eye lens exposure is the personal dose equivalent at 3 mm depth Hp(3) (ICRU 51). However, there are no available conversion coefficients in international standards, while in the literature coefficients have only been calculated for monoenergetic beams and for ISO 4037-1 X-ray qualities. The aim of this article is to provide air kerma to Hp(3) conversion coefficients for a cylindrical phantom made of ICRU-4 elements tissue-equivalent material for RQR radiation qualities (IEC-61267) from 40 to 120 kV and for angles of incidence from 0 to 180°, which are characteristic of medical workplace. Analytic calculations using interpolation techniques and Monte Carlo modelling have been compared. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Effective dose rate coefficients for exposure to contaminated soil
Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.; ...
2017-05-10
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less
Effective dose rate coefficients for exposure to contaminated soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, Kenneth G.; Eckerman, Keith F.; Bellamy, Michael B.
The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose ratemore » calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. As a result, the coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios.« less
Katagiri, M; Hikoji, M; Kitaichi, M; Aoki, Y; Sawamura, S
2001-01-01
Organ doses and effective doses were calculated using the EGS-4 Monte Carlo simulation code and a MIRD-5 mathematical human phantom placed in a vacuum. For broad right and left lateral beams of monoenergetic (0.1-200 MeV) electrons, conversion coefficients from the incident fluence to organ dose, to effective dose, and to effective dose equivalent were obtained. There were no clear differences between the conversion coefficients in the case of left-lateral (LLAT) and right-lateral (RLAT) irradiation. Therefore, when investigating lateral geometries for electron exposure, it is not necessary to evaluate both directions independently. In general, conversion coefficients for lateral irradiation (LAT) were smaller than those for AP and PA. The difference between the AP and PA conversion coefficients and LAT became smaller with increasing incident energy; at 200 MeV the conversion coefficients were almost independent of the irradiation geometry. The agreement between the results of the present study and those of other studies was acceptable within the statistical uncertainties.
Monitoring the eye lens: which dose quantity is adequate?
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2010-07-01
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
Monitoring the eye lens: which dose quantity is adequate?
Behrens, R; Dietze, G
2010-07-21
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
New Stochastic Annual Limits on Intake for Selected Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.
Annual limits on intake (ALI) have historically been tabulated by the International Commission on Radiological Protection (e.g., ICRP 1979, 1961) and also by the Environmental Protection Agency (EPA 1988). These compilations have been rendered obsolete by more recent ICRP dosimetry methods, and, rather than provide new ALIs, the ICRP has opted instead to provide committed dose coefficients from which an ALI can be determined by a user for a specific set of conditions. The U.S. Department of Energy historically has referenced compilations of ALIs and has defined their method of calculation in its radiation protection regulation (10 CFDR 835), butmore » has never provided a specific compilation. Under June 2007 amendments to 10 CFR 835, ALIs can be calculated by dividing an appropriate dose limit, either 5-rem (0.05 Sv) effective dose or 50 rem (0.5 Sv) equivalent dose to an individual organ or tissue, by an appropriate committed dose coefficient. When based on effective dose, the ALI is often referred to as a stochastic annual limit on intake (SALI), and when based on the individual organ or tissue equivalent limit, it has often been called a deterministic annual limit on intake (DALI).« less
Calculated organ doses for Mayak production association central hall using ICRP and MCNP.
Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M
2003-03-01
As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.
Sato, Tatsuhiko; Endo, Akira; Zankl, Maria; Petoussi-Henss, Nina; Niita, Koji
2009-04-07
The fluence to organ-dose and effective-dose conversion coefficients for neutrons and protons with energies up to 100 GeV was calculated using the PHITS code coupled to male and female adult reference computational phantoms, which are to be released as a common ICRP/ICRU publication. For the calculation, the radiation and tissue weighting factors, w(R) and w(T), respectively, as revised in ICRP Publication 103 were employed. The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of the absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. By comparing these data with the corresponding data for the effective dose, we found that the numerical compatibilities of the revised w(R) with the Q(L) and Q(y) relationships are fairly established. The calculated data of these dose conversion coefficients are indispensable for constructing the radiation protection systems based on the new recommendations given in ICRP103 for aircrews and astronauts, as well as for workers in accelerators and nuclear facilities.
Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen
2010-12-01
The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-21
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.
NASA Astrophysics Data System (ADS)
Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli
2017-03-01
The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm-2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an individual organ and the body mass between the Chinese and the ICRP adult reference phantoms. These monoenergetic photon conversion coefficients are subsequently used to evaluate radionuclides with decay data from ICRP publication 107.
Neutron fluence-to-dose conversion coefficients for embryo and fetus.
Chen, Jing; Meyerhof, Dorothy; Vlahovich, Slavica
2004-01-01
A problem of concern in radiation protection is the exposure of pregnant women to ionising radiation, because of the high radiosensitivity of the embryo and fetus. External neutron exposure is of concern when pregnant women travel by aeroplane. Dose assessments for neutrons frequently rely on fluence-to-dose conversion coefficients. While neutron fluence-to-dose conversion coefficients for adults are recommended in International Commission on Radiological Protection publications and International Commission on Radiological Units and Measurements reports, conversion coefficients for embryos and fetuses are not given in the publications. This study undertakes Monte Carlo calculations to determine the mean absorbed doses to the embryo and fetus when the mother is exposed to neutron fields. A new set of mathematical models for the embryo and fetus has been developed at Health Canada and is used together with mathematical phantoms of a pregnant female developed at Oak Ridge National Laboratory. Monoenergetic neutrons from 1 eV to 10 MeV are considered in this study. The irradiation geometries include antero-posterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT) and isotropic (ISO) geometries. At each of these standard irradiation geometries, absorbed doses to the fetal brain and body are calculated; for the embryo at 8 weeks and the fetus at 3, 6 or 9 months. Neutron fluence-to-absorbed dose conversion coefficients are derived for the four age groups. Neutron fluence-to-equivalent dose conversion coefficients are given for the AP irradiations which yield the highest radiation dose to the fetal body in the neutron energy range considered here. The results indicate that for neutrons <10 MeV more protection should be given to pregnant women in the first trimester due to the higher absorbed dose per unit neutron fluence to the fetus.
Longo, Mariaconcetta; Marchioni, Chiara; Insero, Teresa; Donnarumma, Raffaella; D'Adamo, Alessandro; Lucatelli, Pierleone; Fanelli, Fabrizio; Salvatori, Filippo Maria; Cannavale, Alessandro; Di Castro, Elisabetta
2016-03-01
This study evaluates X-ray exposure in patient undergoing abdominal extra-vascular interventional procedures by means of Digital Imaging and COmmunications in Medicine (DICOM) image headers and Monte Carlo simulation. The main aim was to assess the effective and equivalent doses, under the hypothesis of their correlation with the dose area product (DAP) measured during each examination. This allows to collect dosimetric information about each patient and to evaluate associated risks without resorting to in vivo dosimetry. The dose calculation was performed in 79 procedures through the Monte Carlo simulator PCXMC (A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations), by using the real geometrical and dosimetric irradiation conditions, automatically extracted from DICOM headers. The DAP measurements were also validated by using thermoluminescent dosemeters on an anthropomorphic phantom. The expected linear correlation between effective doses and DAP was confirmed with an R(2) of 0.974. Moreover, in order to easily calculate patient doses, conversion coefficients that relate equivalent doses to measurable quantities, such as DAP, were obtained. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.
2017-06-01
Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.
Künzel, R; Herdade, S B; Costa, P R; Terini, R A; Levenhagen, R S
2006-04-21
In this study, scattered x-ray distributions were produced by irradiating a tissue equivalent phantom under clinical mammographic conditions by using Mo/Mo, Mo/Rh and W/Rh anode/filter combinations, for 25 and 30 kV tube voltages. Energy spectra of the scattered x-rays have been measured with a Cd(0.9)Zn(0.1)Te (CZT) detector for scattering angles between 30 degrees and 165 degrees . Measurement and correction processes have been evaluated through the comparison between the values of the half-value layer (HVL) and air kerma calculated from the corrected spectra and measured with an ionization chamber in a nonclinical x-ray system with a W/Mo anode/filter combination. The shape of the corrected x-ray spectra measured in the nonclinical system was also compared with those calculated using semi-empirical models published in the literature. Scattered x-ray spectra measured in the clinical x-ray system have been characterized through the calculation of HVL and mean photon energy. Values of the air kerma, ambient dose equivalent and effective dose have been evaluated through the corrected x-ray spectra. Mean conversion coefficients relating the air kerma to the ambient dose equivalent and to the effective dose from the scattered beams for Mo/Mo, Mo/Rh and W/Rh anode/filter combinations were also evaluated. Results show that for the scattered radiation beams the ambient dose equivalent provides an overestimate of the effective dose by a factor of about 5 in the mammography energy range. These results can be used in the control of the dose limits around a clinical unit and in the calculation of more realistic protective shielding barriers in mammography.
NASA Astrophysics Data System (ADS)
Akhlaghi, Parisa; Miri Hakimabad, Hashem; Rafat Motavalli, Laleh
2015-07-01
This paper reports on the methodology applied to select suitable tissue equivalent materials of an 8-year phantom for use in computed tomography (CT) examinations. To find the appropriate tissue substitutes, first physical properties (physical density, electronic density, effective atomic number, mass attenuation coefficient and CT number) of different materials were studied. Results showed that, the physical properties of water and polyurethane (as soft tissue), B-100 and polyvinyl chloride (PVC) (as bone) and polyurethane foam (as lung) agree more with those of original tissues. Then in the next step, the absorbed doses in the location of 25 thermoluminescent dosimeters (TLDs) as well as dose distribution in one slice of phantom were calculated for original and these proposed materials by Monte Carlo simulation at different tube voltages. The comparisons suggested that at tube voltages of 80 and 100 kVp using B-100 as bone, water as soft tissue and polyurethane foam as lung is suitable for dosimetric study in pediatric CT examinations. In addition, it was concluded that by considering just the mass attenuation coefficient of different materials, the appropriate tissue equivalent substitutes in each desired X-ray energy range could be found.
Patient-specific dose estimation for pediatric abdomen-pelvis CT
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.
2009-02-01
The purpose of this study is to develop a method for estimating patient-specific dose from abdomen-pelvis CT examinations and to investigate dose variation across patients in the same weight group. Our study consisted of seven pediatric patients in the same weight/protocol group, for whom full-body computer models were previously created based on the patients' CT data obtained for clinical indications. Organ and effective dose of these patients from an abdomen-pelvis scan protocol (LightSpeed VCT scanner, 120-kVp, 85-90 mA, 0.4-s gantry rotation period, 1.375-pitch, 40-mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated for the same CT system. The seven patients had effective dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs (coefficient of variation: 7.6%). Dose variations across the patients were small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), and the largest for organs partially or completely outside the scan coverage (mean: 14.8%; range: 5.7%-27.7%). Normalized effective dose correlated strongly with body weight (correlation coefficient: r = -0.94). Normalized dose to the kidney and the adrenal gland correlated strongly with mid-liver equivalent diameter (kidney: r = -0.97; adrenal glands: r = -0.98). Normalized dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r = -0.97). These strong correlations suggest that patient-specific dose may be estimated for any other child in the same size group who undergoes the abdomen-pelvis scan.
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
Development of a method to estimate organ doses for pediatric CT examinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John
Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tubemore » current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.« less
The risk equivalent of an exposure to-, versus a dose of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, V.P.
The long-term potential carcinogenic effects of low-level exposure (LLE) are addressed. The principal point discussed is linear, no-threshold dose-response curve. That the linear no-threshold, or proportional relationship is widely used is seen in the way in which the values for cancer risk coefficients are expressed - in terms of new cases, per million persons exposed, per year, per unit exposure or dose. This implies that the underlying relationship is proportional, i.e., ''linear, without threshold''. 12 refs., 9 figs., 1 tab.
Poet, Torka; Hays, Sean
2017-10-13
1. Understanding species differences in the toxicokinetics of bisphenol A (BPA) is central to setting acceptable exposure limits for human exposures to BPA. BPA toxicokinetics have been well studied, with controlled oral dosing studies in several species and across a wide dose range. 2. We analyzed the available toxicokinetic data for BPA following oral dosing to assess potential species differences and dose dependencies. BPA is rapidly conjugated and detoxified in all species. The toxicokinetics of BPA can be well described using non-compartmental analyses. 3. Several studies measured free (unconjugated) BPA in blood and reported area under the curve (AUC) of free BPA in blood of mice, rats, monkeys, chimpanzees and humans following controlled oral doses. Extrinsic clearance was calculated and analyzed across species and dose using allometric scaling. 4. The results indicate free BPA clearance is well described using allometric scaling with high correlation coefficients across all species and doses up to 10 mg/kg. The results indicate a human equivalent dose factor (HEDf) of 0.9 is appropriate for extrapolating a point of departure from mice and rats to a human equivalent dose (HED), thereby replacing default uncertainty factors for animal to human toxicokinetics.
Howell, Rebecca M; Burgett, E A
2014-09-01
Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature.
Howell, Rebecca M.; Burgett, E. A.
2014-01-01
Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to 250 MeV. The authors used the neutron fluence spectrum to demonstrate experimentally the contribution of neutrons with different energies to the total dose equivalent and in particular the contribution of high-energy neutrons (≥20 MeV). These are valuable reference data that can be directly compared with Monte Carlo and experimental data in the literature. PMID:25186404
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Cavalcante, F. R.; Carvalho, A. B.; Hunt, J.
2014-02-01
The dose conversion coefficient (DCC) is important to quantify and assess effective doses associated with medical, professional and public exposures. The calculation of DCCs using anthropomorphic simulators and radiation transport codes is justified since in-vivo measurement of effective dose is extremely difficult and not practical for occupational dosimetry. DCCs have been published by the ICRP using simulators in a standing posture, which is not always applicable to all exposure scenarios, providing an inaccurate dose estimation. The aim of this work was to calculate DCCs for equivalent dose in terms of air kerma (H/Kair) using the Visual Monte Carlo (VMC) code and the VOXTISS8 adult male voxel simulator in sitting and standing postures. In both postures, the simulator was irradiated by a plane source of monoenergetic photons in antero-posterior (AP) geometry. The photon energy ranged from 15 keV to 2 MeV. The DCCs for both postures were compared and the DCCs for the standing simulator were higher. For certain organs, the difference of DCCs were more significant, as in gonads (48% higher), bladder (16% higher) and colon (11% higher). As these organs are positioned in the abdominal region, the posture of the anthropomorphic simulator modifies the form in which the radiation is transported and how the energy is deposited. It was also noted that the average percentage difference of conversion coefficients was 33% for the bone marrow, 11% for the skin, 13% for the bone surface and 31% for the muscle. For other organs, the percentage difference of the DCCs for both postures was not relevant (less than 5%) due to no anatomical changes in the organs of the head, chest and upper abdomen. We can conclude that is important to obtain DCCs using different postures from those present in the scientific literature.
NASA Astrophysics Data System (ADS)
Galeano, D. C.; Santos, W. S.; Alves, M. C.; Souza, D. N.; Carvalho, A. B.
2016-04-01
The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010-10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B. R., E-mail: Bryan.Muir@nrc-cnrc.gc.ca
2015-04-15
Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measuredmore » over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of Standards and Technology standards. This study shows that N{sub D,w} coefficients measured at different ADCLs are statistically equivalent, especially considering reasonable uncertainties. This analysis of N{sub D,w} coefficients also allows identification of chamber types that can be considered stable enough for accurate reference dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Ovalle, S. A.; Barquero, R.; Gomez-Ros, J. M.
Purpose: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to {mu}Gy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. Methods: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbedmore » doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. Results: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In {mu}GyMU{sup -1}, values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in {mu}GyMU{sup -1}, of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 {mu}SvMU{sup -1} were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. Conclusions: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.« less
The effect of dose reduction on the detection of anatomical structures on panoramic radiographs.
Kaeppler, G; Dietz, K; Reinert, S
2006-07-01
The aim was to evaluate the effect of dose reduction on diagnostic accuracy using different screen-film combinations and digital techniques for panoramic radiography. Five observers assessed 201 pairs of panoramic radiographs (a total of 402 panoramic radiographs) taken with the Orthophos Plus (Sirona, Bensheim, Germany), for visualization of 11 anatomical structures on each side, using a 3-point scale -1, 0 and 1. Two radiographs of each patient were taken at two different times (conventional setting and setting with decreased dose, done by increasing tube potential settings or halving tube current). To compare the dose at different tube potential settings dose-length product was measured at the secondary collimator. Films with medium and regular intensifying screens (high and low tube potential settings) and storage phosphor plates (low tube potential setting, tube current setting equivalent to regular intensifying screen and halved) were compared. The five observers made 27 610 assessments. Intrarater agreement was expressed by Cohen's kappa coefficient. The results demonstrated an equivalence of regular screens (low tube potential setting) and medium screens (high and low tube potential settings). A significant difference existed between medium screens (low tube potential setting, mean score 0.92) and the group of regular film-screen combinations at high tube potential settings (mean score 0.89) and between all film-screen combinations and the digital system irrespective of exposure (mean score below 0.82). There were no significant differences between medium and regular screens (mean score 0.88 to 0.92) for assessment of the periodontal ligament space, but there was a significant difference compared with the digital system (mean score below 0.76). The kappa coefficient for intrarater agreement was moderate (0.55). New regular intensifying screens can replace medium screens at low tube potential settings. Digital panoramic radiographs should be taken at low tube potential levels with an exposure equivalent at least to a regular intensifying screen.
Walczak, Katarzyna; Olszewski, Jerzy; Politański, Piotr; Zmyślony, Marek
2017-07-14
Radon concentrations for 31 Polish underground tourist routes were analyzed. The equivalent dose to the lung, the effective dose and the relative risk were calculated for employees of the analyzed routes on the grounds of information on radon concentrations, work time, etc. The relative risk for lung cancers was calculated using the Biological Effects of Ionizing Radiation (BEIR) VI Committee model. Equivalent doses to the lungs of workers were determined using the coefficients calculated by the Kendall and Smith. The conversion coefficient proposed by the International Atomic Energy Agency (IAEA) in the report No. 33 was used for estimating the effective doses. In 13 routes, the effective dose was found to be above 1 mSv/year, and in 3 routes, it exceeded 6 mSv/year. For 5 routes, the equivalent dose to lungs was higher than 100 mSv/year, and in 1 case it was as high as 490 mSv/year. In 22.6% of underground workplaces the risk of developing lung cancer among employees was about 2 times higher than that for the general population, and for 1 tourist route it was about 5 times higher. The geometric mean of the relative risk of lung cancer for all workers of underground tourist routes was 1.73 (95% confidence interval (CI): 1.6-1.87). Routes were divided into: caves, mines, post-military underground constructions and urban underground constructions. The difference between levels of the relative risk of developing lung cancer for all types of underground tourist routes was not found to be significant. If we include the professional group of the employees of underground tourist routes into the group of occupational exposure, the number of persons who are included in the Category A due to occupational exposure may increase by about 3/4. The professional group of the employees of underground tourist routes should be monitored for their exposure to radon. Int J Occup Med Environ Health 2017;30(5):687-694. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Organ and Effective Dose Coefficients for Cranial and Caudal Irradiation Geometries: Neutrons
NASA Astrophysics Data System (ADS)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; Hiller, M. M.
2017-09-01
With the introduction of new recommendations by ICRP Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors, and the introduction of reference sex-specific computational phantoms (ICRP Publication 110). Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT), and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue absorbed doses for caudal and cranial exposures to neutrons ranging in energy from 10-9 MeV to 10 GeV have been performed using the MCNP6 radiation transport code and the adult reference voxel phantoms of ICRP Publication 110. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above about 30 MeV the cranial and caudal values are greater.
Behrens, R
2012-09-01
The International Organization for Standardization (ISO) has issued a standard series on photon reference radiation qualities (ISO 4037). In this series, no conversion coefficients are contained for the quantity personal dose equivalent at a 3 mm depth, H(p)(3). In the past, for this quantity, a slab phantom was recommended as a calibration phantom; however, a cylinder phantom much better approximates the shape of a human head than a slab phantom. Therefore, in this work, the conversion coefficients from air kerma to H(p)(3) for the cylinder phantom are supplied for X- and gamma radiation qualities defined in ISO 4037.
An improved MCNP version of the NORMAN voxel phantom for dosimetry studies.
Ferrari, P; Gualdrini, G
2005-09-21
In recent years voxel phantoms have been developed on the basis of tomographic data of real individuals allowing new sets of conversion coefficients to be calculated for effective dose. Progress in radiation studies brought ICRP to revise its recommendations and a new report, already circulated in draft form, is expected to change the actual effective dose evaluation method. In the present paper the voxel phantom NORMAN developed at HPA, formerly NRPB, was employed with MCNP Monte Carlo code. A modified version of the phantom, NORMAN-05, was developed to take into account the new set of tissues and weighting factors proposed in the cited ICRP draft. Air kerma to organ equivalent dose and effective dose conversion coefficients for antero-posterior and postero-anterior parallel photon beam irradiations, from 20 keV to 10 MeV, have been calculated and compared with data obtained in other laboratories using different numerical phantoms. Obtained results are in good agreement with published data with some differences for the effective dose calculated employing the proposed new tissue weighting factors set in comparison with previous evaluations based on the ICRP 60 report.
Integration of second cancer risk calculations in a radiotherapy treatment planning system
NASA Astrophysics Data System (ADS)
Hartmann, M.; Schneider, U.
2014-03-01
Second cancer risk in patients, in particular in children, who were treated with radiotherapy is an important side effect. It should be minimized by selecting an appropriate treatment plan for the patient. The objectives of this study were to integrate a risk model for radiation induced cancer into a treatment planning system which allows to judge different treatment plans with regard to second cancer induction and to quantify the potential reduction in predicted risk. A model for radiation induced cancer including fractionation effects which is valid for doses in the radiotherapy range was integrated into a treatment planning system. From the three-dimensional (3D) dose distribution the 3D-risk equivalent dose (RED) was calculated on an organ specific basis. In addition to RED further risk coefficients like OED (organ equivalent dose), EAR (excess absolute risk) and LAR (lifetime attributable risk) are computed. A risk model for radiation induced cancer was successfully integrated in a treatment planning system. Several risk coefficients can be viewed and used to obtain critical situations were a plan can be optimised. Risk-volume-histograms and organ specific risks were calculated for different treatment plans and were used in combination with NTCP estimates for plan evaluation. It is concluded that the integration of second cancer risk estimates in a commercial treatment planning system is feasible. It can be used in addition to NTCP modelling for optimising treatment plans which result in the lowest possible second cancer risk for a patient.
DOSE COEFFICIENTS FOR LIVER CHEMOEMBOLISATION PROCEDURES USING MONTE CARLO CODE.
Karavasilis, E; Dimitriadis, A; Gonis, H; Pappas, P; Georgiou, E; Yakoumakis, E
2016-12-01
The aim of the present study is the estimation of radiation burden during liver chemoembolisation procedures. Organ dose and effective dose conversion factors, normalised to dose-area product (DAP), were estimated for chemoembolisation procedures using a Monte Carlo transport code in conjunction with an adult mathematical phantom. Exposure data from 32 patients were used to determine the exposure projections for the simulations. Equivalent organ (H T ) and effective (E) doses were estimated using individual DAP values. The organs receiving the highest amount of doses during these exams were lumbar spine, liver and kidneys. The mean effective dose conversion factor was 1.4 Sv Gy -1 m -2 Dose conversion factors can be useful for patient-specific radiation burden during chemoembolisation procedures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Analyser-based mammography using single-image reconstruction.
Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A
2005-08-07
We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.
Wissmann, F; Reginatto, M; Möller, T
2010-09-01
The problem of finding a simple, generally applicable description of worldwide measured ambient dose equivalent rates at aviation altitudes between 8 and 12 km is difficult to solve due to the large variety of functional forms and parametrisations that are possible. We present an approach that uses Bayesian statistics and Monte Carlo methods to fit mathematical models to a large set of data and to compare the different models. About 2500 data points measured in the periods 1997-1999 and 2003-2006 were used. Since the data cover wide ranges of barometric altitude, vertical cut-off rigidity and phases in the solar cycle 23, we developed functions which depend on these three variables. Whereas the dependence on the vertical cut-off rigidity is described by an exponential, the dependences on barometric altitude and solar activity may be approximated by linear functions in the ranges under consideration. Therefore, a simple Taylor expansion was used to define different models and to investigate the relevance of the different expansion coefficients. With the method presented here, it is possible to obtain probability distributions for each expansion coefficient and thus to extract reliable uncertainties even for the dose rate evaluated. The resulting function agrees well with new measurements made at fixed geographic positions and during long haul flights covering a wide range of latitudes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawashima, K.; Takaku, Y.; Inada, T.
1961-01-01
A tissue-equivalent material was constructed from the following components: polyethylene (CH/sub 2/)/sub n/, 71.4% (by weight), NaNO/sub 3/ 21.3%, Al/sub 2/O/sub 3/ 5.5%, and TiC/sub 2/ 1.8%. The attenuation coefficients of this solid compound, Mix. p in x or gamma rays (40kev --1.25 Mev), were shown to be equal to those of a section of pork loin (m. longissimus dorsi). Thus, Mix. p is concluded to be good phantom material for depth dose measuremeat and suitable material for walls of ionizatlon chambers. (Abstr. Japan Med., 2: No. 3, March 1962)
Water-equivalence of gel dosimeters for radiology medical imaging.
Valente, M; Vedelago, J; Chacón, D; Mattea, F; Velásquez, J; Pérez, P
2018-03-08
International dosimetry protocols are based on determinations of absorbed dose to water. Ideally, the phantom material should be water equivalent; that is, it should have the same absorption and scatter properties as water. This study presents theoretical, experimental and Monte Carlo modeling of water-equivalence of Fricke and polymer (NIPAM, PAGAT and itaconic acid ITABIS) gel dosimeters. Mass and electronic densities along with effective atomic number were calculated by means of theoretical approaches. Samples were scanned by standard computed tomography. Photon mass attenuation coefficients and electron stopping powers were examined. Theoretical, Monte Carlo and experimental results confirmed good water-equivalence for all gel dosimeters. Overall variations with respect to water in the low energy radiology range (up to 130 kVp) were found to be less than 3% in average. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Messerli, Michael; Ottilinger, Thorsten; Warschkow, René; Leschka, Sebastian; Alkadhi, Hatem; Wildermuth, Simon; Bauer, Ralf W
2017-06-01
To determine whether ultralow dose chest CT with tin filtration can be used for emphysema quantification and lung volumetry and to assess differences in emphysema measurements and lung volume between standard dose and ultralow dose CT scans using advanced modeled iterative reconstruction (ADMIRE). 84 consecutive patients from a prospective, IRB-approved single-center study were included and underwent clinically indicated standard dose chest CT (1.7±0.6mSv) and additional single-energy ultralow dose CT (0.14±0.01mSv) at 100kV and fixed tube current at 70mAs with tin filtration in the same session. Forty of the 84 patients (48%) had no emphysema, 44 (52%) had emphysema. One radiologist performed fully automated software-based pulmonary emphysema quantification and lung volumetry of standard and ultralow dose CT with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparison of emphysema and lung volume. Lung volumes were compared using the concordance correlation coefficient. The median low-attenuation areas (LAA) using filtered back projection (FBP) in standard dose was 4.4% and decreased to 2.6%, 2.1% and 1.8% using ADMIRE 3, 4, and 5, respectively. The median values of LAA in ultralow dose CT were 5.7%, 4.1% and 2.4% for ADMIRE 3, 4, and 5, respectively. There was no statistically significant difference between LAA in standard dose CT using FBP and ultralow dose using ADMIRE 4 (p=0.358) as well as in standard dose CT using ADMIRE 3 and ultralow dose using ADMIRE 5 (p=0.966). In comparison with standard dose FBP the concordance correlation coefficients of lung volumetry were 1.000, 0.999, and 0.999 for ADMIRE 3, 4, and 5 in standard dose, and 0.972 for ADMIRE 3, 4 and 5 in ultralow dose CT. Ultralow dose CT at chest X-ray equivalent dose levels allows for lung volumetry as well as detection and quantification of emphysema. However, longitudinal emphysema analyses should be performed with the same scan protocol and reconstruction algorithms for reproducibility. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Santos, Felipe A.; Galeano, Diego C.; Santos, William S.; Silva, Ademir X.; Souza, Susana O.; Carvalho Júnior, Albérico B.
2017-03-01
Clinical scenarios were virtually modeled to estimate both the equivalent and effective doses normalized by KAP (Kerma Area Product) to vertebra compression fracture surgery in patient and surgeon. This surgery is known as kyphoplasty and involves the use of X-ray equipment, the C-arm, which provides real-time images to assist the surgeon in conducting instruments inserted into the patient and in the delivery of surgical cement into the fractured vertebra. The radiation transport code used was MCNPX (Monte Carlo N-Particle eXtended) and a pair of UFHADM (University of Florida Hybrid ADult Male) virtual phantoms. The developed scenarios allowed us to calculate a set of equivalent dose (HT) and effective dose (E) for patients and surgeons. In additional, the same scenario was calculated KAP in the tube output and was used for calculating conversion coefficients (E/KAP and HT/KAP). From the knowledge of the experimental values of KAP and the results presented in this study, it is possible to estimate absolute values of effective doses for different exposure conditions. In this work, we developed scenarios with and without the surgical table with the purpose of comparison with the existing data in the literature. The absence of the bed in the scenario promoted a percentage absolute difference of 56% in the patient effective doses in relation to scenarios calculated with a bed. Regarding the surgeon, the use of the personal protective equipment (PPE) reduces between 75% and 79% the effective dose and the use of the under table shield (UTS) reduces the effective dose of between 3% and 7%. All these variations emphasize the importance of the elaboration of virtual scenarios that approach the actual clinical conditions generating E/KAP and HT/KAP closer to the actual values.
NASA Astrophysics Data System (ADS)
Kessler, P.; Behnke, B.; Dombrowski, H.; Neumaier, S.
2017-11-01
For the upgrade of existing dosimetric early warning networks in Europe spectrometric detectors based on CeBr3, LaBr3, SrI2, and CdZnTe are investigated as possible substitutes for the current detector generation which is mainly based on gas filled detectors. The additional information on the nuclide vector which can be derived from the spectra of γ-radiation is highly useful for an appropriate response in case of a nuclear or radiological accident. The measured γ-spectra will be converted into ambient dose equivalent H* (10) using a method where the spectrum is subdivided into multiple energy bands. For each band the conversion coefficients from count rate to dose rate is determined. The derivation of these conversion coefficients is explained in this work. Both experimental and simulative approaches are investigated using quasi-mono-energetic γ-sources and synthetic spectra from Monte-Carlo simulations to determine the conversion coefficients for each detector type. Finally, precision of the obtained characterization is checked by irradiation of the detectors in different well-known photon fields with traceable dose rates.
To, Minh-Son; Prakash, Shivesh; Poonnoose, Santosh I; Bihari, Shailesh
2018-05-01
The study uses meta-regression analysis to quantify the dose-dependent effects of statin pharmacotherapy on vasospasm, delayed ischemic neurologic deficits (DIND), and mortality in aneurysmal subarachnoid hemorrhage. Prospective, retrospective observational studies, and randomized controlled trials (RCTs) were retrieved by a systematic database search. Summary estimates were expressed as absolute risk (AR) for a given statin dose or control (placebo). Meta-regression using inverse variance weighting and robust variance estimation was performed to assess the effect of statin dose on transformed AR in a random effects model. Dose-dependence of predicted AR with 95% confidence interval (CI) was recovered by using Miller's Freeman-Tukey inverse. The database search and study selection criteria yielded 18 studies (2594 patients) for analysis. These included 12 RCTs, 4 retrospective observational studies, and 2 prospective observational studies. Twelve studies investigated simvastatin, whereas the remaining studies investigated atorvastatin, pravastatin, or pitavastatin, with simvastatin-equivalent doses ranging from 20 to 80 mg. Meta-regression revealed dose-dependent reductions in Freeman-Tukey-transformed AR of vasospasm (slope coefficient -0.00404, 95% CI -0.00720 to -0.00087; P = 0.0321), DIND (slope coefficient -0.00316, 95% CI -0.00586 to -0.00047; P = 0.0392), and mortality (slope coefficient -0.00345, 95% CI -0.00623 to -0.00067; P = 0.0352). The present meta-regression provides weak evidence for dose-dependent reductions in vasospasm, DIND and mortality associated with acute statin use after aneurysmal subarachnoid hemorrhage. However, the analysis was limited by substantial heterogeneity among individual studies. Greater dosing strategies are a potential consideration for future RCTs. Copyright © 2018 Elsevier Inc. All rights reserved.
Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
2015-05-02
With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less
Organ and effective dose coefficients for cranial and caudal irradiation geometries: photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
With the introduction of new recommendations of the International Commission on Radiological Protection (ICRP) in Publication 103, the methodology for determining the protection quantity, effective dose, has been modified. The modifications include changes to the defined organs and tissues, the associated tissue weighting factors, radiation weighting factors and the introduction of reference sex-specific computational phantoms. Computations of equivalent doses in organs and tissues are now performed in both the male and female phantoms and the sex-averaged values used to determine the effective dose. Dose coefficients based on the ICRP 103 recommendations were reported in ICRP Publication 116, the revision ofmore » ICRP Publication 74 and ICRU Publication 57. The coefficients were determined for the following irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), right and left lateral (RLAT and LLAT), rotational (ROT) and isotropic (ISO). In this work, the methodology of ICRP Publication 116 was used to compute dose coefficients for photon irradiation of the body with parallel beams directed upward from below the feet (caudal) and directed downward from above the head (cranial). These geometries may be encountered in the workplace from personnel standing on contaminated surfaces or volumes and from overhead sources. Calculations of organ and tissue kerma and absorbed doses for caudal and cranial exposures to photons ranging in energy from 10 keV to 10 GeV have been performed using the MCNP6.1 radiation transport code and the adult reference phantoms of ICRP Publication 110. As with calculations reported in ICRP 116, the effects of charged-particle transport are evident when compared with values obtained by using the kerma approximation. At lower energies the effective dose per particle fluence for cranial and caudal exposures is less than AP orientations while above similar to 30 MeV the cranial and caudal values are greater.« less
PLASTIC SCINTILLATOR FOR RADIATION DOSIMETRY.
Kim, Yewon; Yoo, Hyunjun; Kim, Chankyu; Lim, Kyung Taek; Moon, Myungkook; Kim, Jongyul; Cho, Gyuseong
2016-09-01
Inorganic scintillators, composed of high-atomic-number materials such as the CsI(Tl) scintillator, are commonly used in commercially available a silicon diode and a scintillator embedded indirect-type electronic personal dosimeters because the light yield of the inorganic scintillator is higher than that of an organic scintillator. However, when it comes to tissue-equivalent dose measurements, a plastic scintillator such as polyvinyl toluene (PVT) is a more appropriate material than an inorganic scintillator because of the mass energy absorption coefficient. To verify the difference in the absorbed doses for each scintillator, absorbed doses from the energy spectrum and the calculated absorbed dose were compared. From the results, the absorbed dose of the plastic scintillator was almost the same as that of the tissue for the overall photon energy. However, in the case of CsI, it was similar to that of the tissue only for a photon energy from 500 to 4000 keV. Thus, the values and tendency of the mass energy absorption coefficient of the PVT are much more similar to those of human tissue than those of the CsI. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru
2016-11-01
Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.
Calculation of conversion coefficients for clinical photon spectra using the MCNP code.
Lima, M A F; Silva, A X; Crispim, V R
2004-01-01
In this work, the MCNP4B code has been employed to calculate conversion coefficients from air kerma to the ambient dose equivalent, H*(10)/Ka, for monoenergetic photon energies from 10 keV to 50 MeV, assuming the kerma approximation. Also estimated are the H*(10)/Ka for photon beams produced by linear accelerators, such as Clinac-4 and Clinac-2500, after transmission through primary barriers of radiotherapy treatment rooms. The results for the conversion coefficients for monoenergetic photon energies, with statistical uncertainty <2%, are compared with those in ICRP publication 74 and good agreements were obtained. The conversion coefficients calculated for real clinic spectra transmitted through walls of concrete of 1, 1.5 and 2 m thick, are in the range of 1.06-1.12 Sv Gy(-1).
2009-01-01
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6
2009-07-05
proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA
Distinguishing dose, focus, and blur for lithography characterization and control
NASA Astrophysics Data System (ADS)
Ausschnitt, Christopher P.; Brunner, Timothy A.
2007-03-01
We derive a physical model to describe the dependence of pattern dimensions on dose, defocus and blur. The coefficients of our model are constants of a given lithographic process. Model inversion applied to dimensional measurements then determines effective dose, defocus and blur for wafers patterned with the same process. In practice, our approach entails the measurement of proximate grating targets of differing dose and focus sensitivity. In our embodiment, the measured attribute of one target is exclusively sensitive to dose, whereas the measured attributes of a second target are distinctly sensitive to defocus and blur. On step-and-scan exposure tools, z-blur is varied in a controlled manner by adjusting the across slit tilt of the image plane. The effects of z-blur and x,y-blur are shown to be equivalent. Furthermore, the exposure slit width is shown to determine the tilt response of the grating attributes. Thus, the response of the measured attributes can be characterized by a conventional focus-exposure matrix (FEM), over which the exposure tool settings are intentionally changed. The model coefficients are determined by a fit to the measured FEM response. The model then fully defines the response for wafers processed under "fixed" dose, focus and blur conditions. Model inversion applied to measurements from the same targets on all such wafers enables the simultaneous determination of effective dose and focus/tilt (DaFT) at each measurement site.
Radiation effects on beta 10.6 of pure and europium doped KCl
NASA Technical Reports Server (NTRS)
Grimes, H. H.; Maisel, J. E.; Hartford, R. H.
1975-01-01
Changes in the optical absorption coefficient as a result of X-ray and electron bombardment of pure KCl (monocrystalline and polycrystalline), and divalent europium doped polycrystalline KCl were determined. The optical absorption coefficients were measured by a constant heat flow calorimetric method. Both 300 KV X-irradiation and 2 MeV electron irradiation produced significant increases in beta 10.6, measured at room temperature. The X-irradiation of pure moncrystalline KCl increased beta 10.6 by 0.005/cm for a 113 MR dose. For an equivalent dose, 2 MeV electrons were found less efficient in changing beta 10.6. However, electron irradiation of pure and Eu-doped polycrystalline KCl produced marked increases in adsorption. Beta increased to over 0.25/cm in Eu-doped material for a 30 x 10 to the 14th power electrons/sq cm dose, a factor of 20 increase over unirradiated material. Moreover, bleaching the electron irradiated doped KCl with 649 m light produced and additional factor of 1.5 increase. These findings will be discussed in light of known defect-center properties in KCl.
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-21
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
NASA Astrophysics Data System (ADS)
Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex
2010-01-01
In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.
Bolch, W E; Dietze, G; Petoussi-Henss, N; Zankl, M
2015-06-01
Based upon recent epidemiological studies of ocular exposure, the Main Commission of the International Commission on Radiological Protection (ICRP) in ICRP Publication 118 states that the threshold dose for radiation-induced cataracts is now considered to be approximately 0.5 Gy for both acute and fractionated exposures. Consequently, a reduction was also recommended for the occupational annual equivalent dose to the lens of the eye from 150 mSv to 20 mSv, averaged over defined periods of 5 years. To support ocular dose assessment and optimisation, Committee 2 included Annex F within ICRP Publication 116 . Annex F provides dose coefficients - absorbed dose per particle fluence - for photon, electron, and neutron irradiation of the eye and lens of the eye using two dosimetric models. The first approach uses the reference adult male and female voxel phantoms of ICRP Publication 110. The second approach uses the stylised eye model of Behrens et al., which itself is based on ocular dimensional data given in Charles and Brown. This article will review the data and models of Annex F with particular emphasis on how these models treat tissue regions thought to be associated with stem cells at risk. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Cesium-137 body burdens in Norwegian Lapps, 1965-1983.
Westerlund, E A; Berthelsen, T; Berteig, L
1987-02-01
Results of measurements of the whole-body contents of 137Cs during the period 1965-1983 in Lapps from the Kautokeino area in Norway are reported with measurements of 137Cs in reindeer meat during the period 1966-1983. By using available data on 137Cs in precipitation for the period 1950-1980, transfer coefficients from 137Cs in precipitation to reindeer meat have been assessed. A correlation between the 137Cs content in reindeer meat and the 137Cs content in Lapp reindeer breeders has been established. The average whole-body committed dose equivalent, H50, to the reindeer breeders from internally deposited 137Cs from intakes up to year 2000 was assessed to 13 mSv with a peak value of 30 mSv. In comparison, the corresponding committed dose equivalent to the Norwegian population from internally deposited 137Cs has been estimated to be about 1 mSv. The higher intake of 137Cs by reindeer breeders is due to the lichen-reindeer-man exposure pathway.
ESR response of phenol compounds for dosimetry of gamma photon beams
NASA Astrophysics Data System (ADS)
Marrale, M.; Longo, A.; Panzeca, S.; Gallo, S.; Principato, F.; Tomarchio, E.; Parlato, A.; Buttafava, A.; Dondi, D.; Zeffiro, A.
2014-11-01
In the present paper we investigate the features of IRGANOX® 1076 phenols as a material for electron spin resonance (ESR) dosimetry. We experimentally analyzed the ESR response of pellets of IRGANOX® 1076 phenols irradiated with 60Co photons. The best experimental parameters (modulation amplitude and microwave power) for dosimetric applications have been obtained. The dependence of ESR signal as function of γ dose is found to be linear in the dose range studied (12-60 Gy) and the lowest measurable dose is found to be of the order of 1 Gy. The signal after irradiation is very stable in the first thirty days. From the point of view of the tissue equivalence, these materials have mass energy absorption coefficient values comparable with those of soft tissue.
Laser microbeam CT scanning of dosimetry gels
NASA Astrophysics Data System (ADS)
Maryanski, Marek J.; Ranade, Manisha K.
2001-06-01
A novel design of an optical tomographic scanner is described that can be used for 3D mapping of optical attenuation coefficient within translucent cylindrical objects with spatial resolution on the order of 100 microns. Our scanner design utilizes the cylindrical geometry of the imaged object to obtain the desired paths of the scanning light rays. A rotating mirror and a photodetector are placed at two opposite foci of the translucent cylinder that acts as a cylindrical lens. A He-Ne laser beam passes first through a focusing lens and then is reflected by the rotating mirror, so as to scan the interior of the cylinder with focused and parallel paraxial rays that are subsequently collected by the photodetector to produce the projection data, as the cylinder rotates in small angle increments between projections. Filtered backprojection is then used to reconstruct planar distributions of optical attenuation coefficient in the cylinder. Multiplanar scans are used to obtain a complete 3D tomographic reconstruction. Among other applications, the scanner can be used in radiation therapy dosimetry and quality assurance for mapping 3D radiation dose distributions in various types of tissue-equivalent gel phantoms that change their optical attenuation coefficients in proportion to the absorbed radiation dose.
Exposure to 137Cs deposited in soil – A Monte Carlo study
NASA Astrophysics Data System (ADS)
da Silveira, Lucas M.; Pereira, Marco A. M.; Neves, Lucio P.; Perini, Ana P.; Belinato, Walmir; Caldas, Linda V. E.; Santos, William S.
2018-03-01
In the event of an environmental contamination with radioactive materials, one of the most dangerous materials is 137Cs. In order to evaluate the radiation doses involved in an environmental contamination of soil, with 137Cs, we carried out a computational dosimetric study. We determined the radiation conversion coefficients (CC) for effective (E) and equivalent (H T) doses, using a male and a female anthropomorphic phantoms. These phantoms were coupled with the MCNPX (2.7.0) Monte Carlo simulation software, for three different types of soil. The highest CC[H T] values were for the gonads and skin (male) and bone marrow and skin (female). We found no difference for the different types of soil.
Water equivalence of NIPAM based polymer gel dosimeters with enhanced sensitivity for x-ray CT
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Bosi, Stephen; Kuncic, Zdenka; Baldock, Clive
2013-10-01
Two new formulations of N-isopropylacrylamide (NIPAM) based three dimensional (3D) gel dosimeters have recently been developed with improved sensitivity to x-ray CT readout, one without any co-solvent and the other one with isopropanol co-solvent. The water equivalence of the NIPAM gel dosimeters was investigated using different methods to calculate their radiological properties including: density, electron density, number of electrons per grams, effective atomic number, photon interaction probabilities, mass attenuation and energy absorption coefficients, electron collisional, radiative and total mass stopping powers and electron mass scattering power. Monte Carlo modelling was also used to compare the dose response of these gel dosimeters with water for kilovoltage and megavoltage x-ray beams and for megavoltage electron beams. We found that the density and electron density of the co-solvent free gel dosimeter are more water equivalent with less than a 2.6% difference compared to a 5.7% difference for the isopropanol gel dosimeter. Both the co-solvent free and isopropanol solvent gel dosimeters have lower effective atomic numbers than water, differing by 2.2% and 6.5%, respectively. As a result, their photoelectric absorption interaction probabilities are up to 6% and 19% different from water, respectively. Compton scattering and pair production interaction probabilities of NIPAM gel with isopropanol differ by up to 10% from water while for the co-solvent free gel, the differences are 3%. Mass attenuation and energy absorption coefficients of the co-solvent free gel dosimeter and the isopropanol gel dosimeter are up to 7% and 19% lower than water, respectively. Collisional and total mass stopping powers of both gel dosimeters differ by less than 2% from those of water. The dose response of the co-solvent free gel dosimeter is water equivalent (with <1% discrepancy) for dosimetry of x-rays with energies <100 keV while the discrepancy increases (up to 5%) for the isopropanol gel dosimeter over the same energy range. For x-ray beams over the energy range 180 keV-18 MV, both gel dosimeters have less than 2% discrepancy with water. For megavoltage electron beams, the dose differences with water reach 7% and 14% for the co-solvent free gel dosimeter and the isopropanol gel dosimeter, respectively. Our results demonstrate that for x-ray beam dosimetry with photon energies higher than 100 keV and megavoltage electron beams, correction factors are needed for both NIPAM gels to be used as water equivalent dosimeters.
Metwaly, M; Glegg, M; Baggarley, S P; Elliott, A
2015-01-01
Objective: This study describes a two dimensional electronic portal imaging device (EPID) transit dosimetry model that can predict either: (1) in-phantom exit dose, or (2) EPID transit dose, for treatment verification. Methods: The model was based on a quadratic equation that relates the reduction in intensity to the equivalent path length (EPL) of the attenuator. In this study, two sets of quadratic equation coefficients were derived from calibration dose planes measured with EPID and ionization chamber in water under reference conditions. With two sets of coefficients, EPL can be calculated from either EPID or treatment planning system (TPS) dose planes. Consequently, either the in-phantom exit dose or the EPID transit dose can be predicted from the EPL. The model was tested with two open, five wedge and seven sliding window prostate and head and neck intensity-modulated radiation therapy (IMRT) fields on phantoms. Results were analysed using absolute gamma analysis (3%/3 mm). Results: The open fields gamma pass rates were >96.8% for all comparisons. For wedge and IMRT fields, comparisons between predicted and TPS-computed in-phantom exit dose resulted in mean gamma pass rate of 97.4% (range, 92.3–100%). As for the comparisons between predicted and measured EPID transit dose, the mean gamma pass rate was 97.5% (range, 92.6–100%). Conclusion: An EPID transit dosimetry model that can predict in-phantom exit dose and EPID transit dose was described and proven to be valid. Advances in knowledge: The described model is practical, generic and flexible to encourage widespread implementation of EPID dosimetry for the improvement of patients' safety in radiotherapy. PMID:25969867
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.
2014-03-01
This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.
Simulated workplace neutron fields
NASA Astrophysics Data System (ADS)
Lacoste, V.; Taylor, G.; Röttger, S.
2011-12-01
The use of simulated workplace neutron fields, which aim at replicating radiation fields at practical workplaces, is an alternative solution for the calibration of neutron dosemeters. They offer more appropriate calibration coefficients when the mean fluence-to-dose equivalent conversion coefficients of the simulated and practical fields are comparable. Intensive Monte Carlo modelling work has become quite indispensable for the design and/or the characterization of the produced mixed neutron/photon fields, and the use of Bonner sphere systems and proton recoil spectrometers is also mandatory for a reliable experimental determination of the neutron fluence energy distribution over the whole energy range. The establishment of a calibration capability with a simulated workplace neutron field is not an easy task; to date only few facilities are available as standard calibration fields.
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
Calculation of equivalent friction coefficient for castor seed by single screw press
NASA Astrophysics Data System (ADS)
Liu, R.; Xiao, Z.; Li, C.; Zhang, L.; Li, P.; Li, H.; Zhang, A.; Tang, S.; Sun, F.
2017-08-01
Based on the traction angle and transportation rate equation, castor beans were pressed by application of single screw under different cake diameter and different screw speed. The results showed that the greater the cake diameter and screw rotation speed, the greater the actual transmission rate was. The equivalent friction coefficient was defined and calculated as 0.4136, and the friction coefficients between press material and screw, bar cage were less than the equivalent friction coefficient value.
Can the Equivalent Sphere Model Approximate Organ Doses in Space Radiation Environments?
NASA Technical Reports Server (NTRS)
Zi-Wei, Lin
2007-01-01
In space radiation calculations it is often useful to calculate the dose or dose equivalent in blood-forming organs (BFO). the skin or the eye. It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However previous studies have shown that a 5cm sphere gives conservative dose values for BFO. In this study we use a deterministic radiation transport with the Computerized Anatomical Man model to investigate whether the equivalent sphere model can approximate organ doses in space radiation environments. We find that for galactic cosmic rays environments the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent and marginally well for the BFO dose and the dose equivalent of the eye or the skin. For solar particle events the radius parameters for the organ dose equivalent increase with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin The ranges of the radius parameters are also shown and the BFO radius parameters are found to be significantly larger than 5 cm in all eases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; Cagnon, C
Purpose: AAPM Task Group 204 described size specific dose estimates (SSDE) for body scans. The purpose of this work is to use a similar approach to develop patient-specific, scanner-independent organ dose estimates for head CT exams using an attenuation-based size metric. Methods: For eight patient models from the GSF family of voxelized phantoms, dose to brain and lens of the eye was estimated using Monte Carlo simulations of contiguous axial scans for 64-slice MDCT scanners from four major manufacturers. Organ doses were normalized by scannerspecific 16 cm CTDIvol values and averaged across all scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficientsmore » for each patient model. Head size was measured at the first slice superior to the eyes; patient perimeter and effective diameter (ED) were measured directly from the GSF data. Because the GSF models use organ identification codes instead of Hounsfield units, water equivalent diameter (WED) was estimated indirectly. Using the image data from 42 patients ranging from 2 weeks old to adult, the perimeter, ED and WED size metrics were obtained and correlations between each metric were established. Applying these correlations to the GSF perimeter and ED measurements, WED was calculated for each model. The relationship between the various patient size metrics and CTDIvol-to-organ-dose conversion coefficients was then described. Results: The analysis of patient images demonstrated the correlation between WED and ED across a wide range of patient sizes. When applied to the GSF patient models, an exponential relationship between CTDIvol-to-organ-dose conversion coefficients and the WED size metric was observed with correlation coefficients of 0.93 and 0.77 for the brain and lens of the eye, respectively. Conclusion: Strong correlation exists between CTDIvol normalized brain dose and WED. For the lens of the eye, a lower correlation is observed, primarily due to surface dose variations. Funding Support: Siemens-UCLA Radiology Master Research Agreement; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski.« less
NASA Astrophysics Data System (ADS)
Wang, Zhechao; Li, Wei; Bi, Liping; Qiao, Liping; Liu, Richeng; Liu, Jie
2018-05-01
A method to estimate the representative elementary volume (REV) size for the permeability and equivalent permeability coefficient of rock mass with a radial flow configuration was developed. The estimations of the REV size and equivalent permeability for the rock mass around an underground oil storage facility using a radial flow configuration were compared with those using a unidirectional flow configuration. The REV sizes estimated using the unidirectional flow configuration are much higher than those estimated using the radial flow configuration. The equivalent permeability coefficient estimated using the radial flow configuration is unique, while those estimated using the unidirectional flow configuration depend on the boundary conditions and flow directions. The influences of the fracture trace length, spacing and gap on the REV size and equivalent permeability coefficient were investigated. The REV size for the permeability of fractured rock mass increases with increasing the mean trace length and fracture spacing. The influence of the fracture gap length on the REV size is insignificant. The equivalent permeability coefficient decreases with the fracture spacing, while the influences of the fracture trace length and gap length are not determinate. The applicability of the proposed method to the prediction of groundwater inflow into rock caverns was verified using the measured groundwater inflow into the facility. The permeability coefficient estimated using the radial flow configuration is more similar to the representative equivalent permeability coefficient than those estimated with different boundary conditions using the unidirectional flow configuration.
Use of borated polyethylene to improve low energy response of a prompt gamma based neutron dosimeter
NASA Astrophysics Data System (ADS)
Priyada, P.; Ashwini, U.; Sarkar, P. K.
2016-05-01
The feasibility of using a combined sample of borated polyethylene and normal polyethylene to estimate neutron ambient dose equivalent from measured prompt gamma emissions is investigated theoretically to demonstrate improvements in low energy neutron dose response compared to only polyethylene. Monte Carlo simulations have been carried out using the FLUKA code to calculate the response of boron, hydrogen and carbon prompt gamma emissions to mono energetic neutrons. The weighted least square method is employed to arrive at the best linear combination of these responses that approximates the ICRP fluence to dose conversion coefficients well in the energy range of 10-8 MeV to 14 MeV. The configuration of the combined system is optimized through FLUKA simulations. The proposed method is validated theoretically with five different workplace neutron spectra with satisfactory outcome.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Radiological properties of MAGIC normoxic polymer gel dosimetry
NASA Astrophysics Data System (ADS)
Aljamal, M.; Zakaria, A.; Shamsuddin, S.
2013-04-01
For a polymer gel dosimeter to be of use in radiation dosimetry, it should display water-equivalent radiological properties. In this study, the radiological properties of the MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) normoxic polymer gels were investigated. The mass density (ρ) was determined based on Archimedes' principle. The weight fraction of elemental composition and the effective atomic number (Zeff) were calculated. The electron density was also measured with 90° scattering angle at room temperature. The linear attenuation coefficient (μ) of unirradiated gel, irradiated gel, and water were determined using Am-241 based on narrow beam geometry. Monte Carlo simulation was used to calculate the depth doses response of MAGIC gel and water for 6MV photon beam. The weight fractions of elements composition of MAGIC gel were close to that for water. The mass density was found to be 1027 ± 2 kg m-3, which is also very close to mass density of muscle tissue (1030 kg m-3) and 2.7% higher than that of water. The electron density (ρe) and atomic number (Zeff) were found to be 3.43 × 1029 e m-3 and 7.105, respectively. The electron density measured was 2.6% greater than that for water. The atomic number was very close to that for water. The prepared MAGIC gel was found to be water equivalent based on the study of element composition, mass density, electron density and atomic number. The linear attenuation coefficient of unirradiated gel was very close to that of water. The μ of irradiated gel was found to be linear with dose 2-40 Gy. The depth dose response for MAGIC gel from a 6 MV photon beam had a percentage dose difference to water of less than 1%. Therefore it satisfies the criteria to be a good polymer gel dosimeter for radiotherapy.
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
Can we use the equivalent sphere model to approximate organ doses in space radiation environments?
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei
For space radiation protection one often calculates the dose or dose equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However, previous studies have concluded that a 5cm sphere gives a very different dose from the exact BFO dose. One study concludes that a 9cm sphere is a reasonable approximation for the BFO dose in solar particle event (SPE) environments. In this study we investigate the reason behind these observations and extend earlier studies by studying whether BFO, eyes or the skin can be approximated by the equivalent sphere model in different space radiation environments such as solar particle events and galactic cosmic ray (GCR) environments. We take the thickness distribution functions of the organs from the CAM (Computerized Anatomical Man) model, then use a deterministic radiation transport to calculate organ doses in different space radiation environments. The organ doses have been evaluated with a water or aluminum shielding from 0 to 20 g/cm2. We then compare these exact doses with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we propose to use a modified equivalent sphere model with two radius parameters to represent the skin or eyes. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for eyes or the skin. For galactic cosmic rays environments, the equivalent sphere model with one organ-specific radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of eyes or the skin, but is unacceptable for the dose of eyes or the skin. The BFO radius parameters are found to be significantly larger than 5 cm in all cases, consistent with the conclusion of an earlier study. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and 11 cm for the BFO, 3.7 to 4.8 cm for eyes, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose. In the proposed modified equivalent sphere model, the range of each of the two radius parameters for the skin (or eyes) is much tighter than that in the equivalent sphere model with one radius parameter. Our results thus show that the equivalent sphere model works better in galactic cosmic rays environments than in solar particle events. The model works well or marginally well for BFO but usually does not work for eyes or the skin. A modified model with two radius parameters works much better in approximating the dose and dose equivalent in eyes or the skin.
Michel, R; Daraoui, A; Gorny, M; Jakob, D; Sachse, R; Romantschuk, L D; Alfimov, V; Synal, H-A
2015-12-01
The radiation exposure of thyroid glands due to (131)I as a consequence of the Chernobyl accident was investigated retrospectively based on (129)I and (137)Cs inventories in soils in Northern Ukraine. To this end, soil samples from 60 settlements were investigated for (129)I, (127)I, and (137)Cs by AMS, ICP-MS and gamma-spectrometry, respectively. Sampling was performed between 2004 und 2007. In those parts of Northern Ukraine investigated here the (129)I and (137)Cs inventories are well correlated, the variability of the individual (129)I/(137)Cs ratios being, however, high. Both the (129)I and (137)Cs inventories in the individual 5 samples for each settlement allowed estimating the uncertainties of the inventories due to the variability of the radionuclide deposition and consequently of the retrospective dosimetry. Thyroid equivalent doses were calculated from the (129)I and the (137)Cs inventories using aggregated dose coefficients for 5-year old and 10-year-old children as well as for adults. The highest thyroid equivalent doses (calculated from (129)I inventories) were calculated for Wladimirowka with 30 Gy for 5-years-old children and 7 Gy for adults. In 35 settlements of contamination zone II the geometric mean of the thyroid equivalent doses was 2.0 Gy for 5-years-old children with a geometric standard deviation (GSD) of 3.0. For adults the geometric mean was 0.47 Gy also with a GSD of 3.0. In more than 25 settlements of contamination zone III the geometric means were 0.82 Gy for 5-years old children with a GSD of 1.8 and 0.21 Gy for adults (GSD 1.8). For 45 settlements, the results of the retrospective dosimetry could be compared with thyroid equivalent doses calculated using time-integrated (131)I activities of thyroids which were measured in 1986. Thus, a critical evaluation of the results was possible which demonstrated the general feasibility of the method, but also the associated uncertainties and limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.
42 CFR 81.4 - Definition of terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
...]. (e) Equivalent dose means the absorbed dose in a tissue or organ multiplied by a radiation weighting... dose means the portion of the equivalent dose that is received from radiation sources outside of the... pattern and level of radiation exposure. (h) Internal dose means the portion of the equivalent dose that...
Andreasen, Nancy C; Pressler, Marcus; Nopoulos, Peg; Miller, Del; Ho, Beng-Choon
2010-02-01
A standardized quantitative method for comparing dosages of different drugs is a useful tool for designing clinical trials and for examining the effects of long-term medication side effects such as tardive dyskinesia. Such a method requires establishing dose equivalents. An expert consensus group has published charts of equivalent doses for various antipsychotic medications for first- and second-generation medications. These charts were used in this study. Regression was used to compare each drug in the experts' charts to chlorpromazine and haloperidol and to create formulas for each relationship. The formulas were solved for chlorpromazine 100 mg and haloperidol 2 mg to derive new chlorpromazine and haloperidol equivalents. The formulas were incorporated into our definition of dose-years such that 100 mg/day of chlorpromazine equivalent or 2 mg/day of haloperidol equivalent taken for 1 year is equal to one dose-year. All comparisons to chlorpromazine and haloperidol were highly linear with R(2) values greater than .9. A power transformation further improved linearity. By deriving a unique formula that converts doses to chlorpromazine or haloperidol equivalents, we can compare otherwise dissimilar drugs. These equivalents can be multiplied by the time an individual has been on a given dose to derive a cumulative value measured in dose-years in the form of (chlorpromazine equivalent in mg) x (time on dose measured in years). After each dose has been converted to dose-years, the results can be summed to provide a cumulative quantitative measure of lifetime exposure. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Can the Equivalent Sphere Model Approximate Organ Doses in Space?
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2007-01-01
For space radiation protection it is often useful to calculate dose or dose,equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to. simulate the BFO dose. However, many previous studies have concluded that a 5cm sphere gives very different dose values from the exact BFO values. One study [1] . concludes that a 9 cm sphere is a reasonable approximation for BFO'doses in solar particle event environments. In this study we use a deterministic radiation transport [2] to investigate the reason behind these observations and to extend earlier studies. We take different space radiation environments, including seven galactic cosmic ray environments and six large solar particle events, and calculate the dose and dose equivalent in the skin, eyes and BFO using their thickness distribution functions from the CAM (Computerized Anatomical Man) model [3] The organ doses have been evaluated with a water or aluminum shielding of an areal density from 0 to 20 g/sq cm. We then compare with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we address why the equivalent sphere model is not a good approximation in some cases. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin. For galactic cosmic rays environments, the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of the eye or the skin, but is unacceptable for the dose of the eye or the skin. The ranges of the radius parameters are also being investigated, and the BFO radius parameters are found to be significantly, larger than 5 cm in all cases, consistent with the conclusion of an earlier study [I]. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and I I cm for the BFO, 3.7 to 4.8 cm for the eye, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose.
Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph
2015-01-01
Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects. PMID:25768061
Eley, John; Newhauser, Wayne; Homann, Kenneth; Howell, Rebecca; Schneider, Christopher; Durante, Marco; Bert, Christoph
2015-03-11
Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.
Dose Equivalents for Antipsychotic Drugs: The DDD Method.
Leucht, Stefan; Samara, Myrto; Heres, Stephan; Davis, John M
2016-07-01
Dose equivalents of antipsychotics are an important but difficult to define concept, because all methods have weaknesses and strongholds. We calculated dose equivalents based on defined daily doses (DDDs) presented by the World Health Organisation's Collaborative Center for Drug Statistics Methodology. Doses equivalent to 1mg olanzapine, 1mg risperidone, 1mg haloperidol, and 100mg chlorpromazine were presented and compared with the results of 3 other methods to define dose equivalence (the "minimum effective dose method," the "classical mean dose method," and an international consensus statement). We presented dose equivalents for 57 first-generation and second-generation antipsychotic drugs, available as oral, parenteral, or depot formulations. Overall, the identified equivalent doses were comparable with those of the other methods, but there were also outliers. The major strength of this method to define dose response is that DDDs are available for most drugs, including old antipsychotics, that they are based on a variety of sources, and that DDDs are an internationally accepted measure. The major limitations are that the information used to estimate DDDS is likely to differ between the drugs. Moreover, this information is not publicly available, so that it cannot be reviewed. The WHO stresses that DDDs are mainly a standardized measure of drug consumption, and their use as a measure of dose equivalence can therefore be misleading. We, therefore, recommend that if alternative, more "scientific" dose equivalence methods are available for a drug they should be preferred to DDDs. Moreover, our summary can be a useful resource for pharmacovigilance studies. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Radiation exposure from consumer products and miscellaneous sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less
Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter
2016-05-01
Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported.
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
NASA Astrophysics Data System (ADS)
Zacharatou Jarlskog, Christina; Lee, Choonik; Bolch, Wesley E.; Xu, X. George; Paganetti, Harald
2008-02-01
Proton beams used for radiotherapy will produce neutrons when interacting with matter. The purpose of this study was to quantify the equivalent dose to tissue due to secondary neutrons in pediatric and adult patients treated by proton therapy for brain lesions. Assessment of the equivalent dose to organs away from the target requires whole-body geometrical information. Furthermore, because the patient geometry depends on age at exposure, age-dependent representations are also needed. We implemented age-dependent phantoms into our proton Monte Carlo dose calculation environment. We considered eight typical radiation fields, two of which had been previously used to treat pediatric patients. The other six fields were additionally considered to allow a systematic study of equivalent doses as a function of field parameters. For all phantoms and all fields, we simulated organ-specific equivalent neutron doses and analyzed for each organ (1) the equivalent dose due to neutrons as a function of distance to the target; (2) the equivalent dose due to neutrons as a function of patient age; (3) the equivalent dose due to neutrons as a function of field parameters; and (4) the ratio of contributions to secondary dose from the treatment head versus the contribution from the patient's body tissues. This work reports organ-specific equivalent neutron doses for up to 48 organs in a patient. We demonstrate quantitatively how organ equivalent doses for adult and pediatric patients vary as a function of patient's age, organ and field parameters. Neutron doses increase with increasing range and modulation width but decrease with field size (as defined by the aperture). We analyzed the ratio of neutron dose contributions from the patient and from the treatment head, and found that neutron-equivalent doses fall off rapidly as a function of distance from the target, in agreement with experimental data. It appears that for the fields used in this study, the neutron dose lateral to the field is smaller than the reported scattered photon doses in a typical intensity-modulated photon treatment. Most importantly, our study shows that neutron doses to specific organs depend considerably on the patient's age and body stature. The younger the patient, the higher the dose deposited due to neutrons. Given the fact that the risk also increases with decreasing patient age, this factor needs to be taken into account when treating pediatric patients of very young ages and/or of small body size. The neutron dose from a course of proton therapy treatment (assuming 70 Gy in 30 fractions) could potentially (depending on patient's age, organ, treatment site and area of CT scan) be equivalent to up to ~30 CT scans.
Seith, Ferdinand; Schmidt, Holger; Kunz, Julia; Küstner, Thomas; Gatidis, Sergios; Nikolaou, Konstantin; la Fougère, Christian; Schwenzer, Nina
2017-10-01
The aim of our study was to evaluate the effect of stepwise-reduced doses on objective and subjective image parameters and on oncologic readings in whole-body 18 F-FDG PET/MRI. Methods: We retrospectively simulated the stepwise reduction of 18 F-FDG doses of 19 patients (mean age ± SD, 50.9 ± 11.7 y; mean body mass index ± SD, 22.8 ± 3.2 kg/m 2 ) who received a whole-body PET/MRI examination from 3 to 0.5 MBq/kg of body weight (kgBW) in intervals of 0.25. Objective imaging parameters were assessed by measuring the SUV and coefficient of variation in different regions (aorta, liver, spleen, kidney, small bowel, lumbar vertebra, psoas muscle, urinary bladder) as well as the noise-equivalent counting rates in each bed position. Subjective image quality was evaluated with a masked reading of each simulated PET compared with the dose of 2 MBq/kgBW. Oncologic reading was performed first according to PERCIST in each dose and second by defining malignant lesions in doses of 2 MBq/kgBW and the maximum dose image (gold standard). The diagnostic confidence of each lesion was measured using a Likert scale. Results: With decreasing doses, regions in the mid abdomen showed a stronger decrease of SUV mean and noise-equivalent counting rates than regions in the upper abdomen (SUV mean , -45% and -15% on average in the small bowel and the liver, respectively). The coefficient of variation showed a nonlinear increase, pronounced below 1.5 MBq/kgBW. Subjective image quality was stable over a range between 1.25 and 2.75 MBq/kgBW compared with 2 MBq/kgBW. However, large photopenic areas in the mid abdomen were observed in 2 patients. In the PERCIST reading, target lesions were above the liver threshold with a stable SUV peak in all cases down to 2 MBq/kgBW. Eighty-six of 90 lesions were identified correctly with a dose of 2 MBq/kgBW; Likert scores did not differ significantly. Conclusion: A reduction of doses in 18 F-FDG PET/MRI might be possible down to 2 MBq/kgBW in oncologic whole-body examinations. The image quality in the mid abdomen seems to be more affected by lower doses than in the upper abdomen, and in single cases large photopenic areas can occur. Therefore, we do not recommend reducing doses below 3 MBq/kgBW in adults at this time. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampado, Osvaldo, E-mail: orampado@cittadellasalute.to.it; Giglioli, Francesca Romana; Rossetti, Veronica
Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution inmore » an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K{sub air}), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses than K{sub air} and KAP, with average ratios ranging between 0.9 and 1.1 and variations for different organs and protocols below 20%. The triple phantom setup allowed us to take into account scatter dose contributions, but nonetheless, the correlation with the evaluated organ doses was not improved with this method. Conclusions: The simulation of rotational geometry and of asymmetric beam distribution by means of PCXMC 2.0 enabled us to determine patient organ doses depending on weight, height and gender. Alternatively, the measurement of an in phantom dose indicator combined with proper correction coefficients can be a useful tool for a first dose estimation of in-field organs. The data and coefficients provided in this study can be applied to any patient undergoing a scan by an Elekta XVI equipment.« less
Response of a tissue equivalent proportional counter to neutrons
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Robbins, D. E.; Gibbons, F.; Braby, L. A.
2002-01-01
The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic. c2002 Elsevier Science Ltd. All rights reserved.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.203 Combining internal and external equivalent doses. (a) The total effective dose...
Quantitative determination of radio-opacity: equivalence of digital and film X-ray systems.
Nomoto, R; Mishima, A; Kobayashi, K; McCabe, J F; Darvell, B W; Watts, D C; Momoi, Y; Hirano, S
2008-01-01
To evaluate the equivalence of a digital X-ray system (DenOptix) to conventional X-ray film in terms of the measured radio-opacity of known filled-resin materials and the suitability of attenuation coefficient for radio-opacity determination. Discs of five thicknesses (0.5-2.5mm) and step-wedges of each of three composite materials of nominal aluminum-equivalence of 50%, 200% and 450% were used. X-ray images of a set of discs (or step-wedge), an aluminum step-wedge, and a lead block were taken at 65 kV and 10 mA at a focus-film distance of 400 mm for 0.15s and 1.6s using an X-ray film or imaging plate. Radio-opacity was determined as equivalent aluminum thickness and attenuation coefficient. The logarithm of the individual optical density or gray scale value, corrected for background, was plotted against thickness, and the attenuation coefficient determined from the slope. The method of ISO 4049 was used for equivalent aluminum thickness. The equivalent aluminum thickness method is not suitable for materials of low radio-opacity, while the attenuation coefficient method could be used for all without difficulty. The digital system gave attenuation coefficients of greater precision than did film, but the use of automatic gain control (AGC) distorted the outcome unusably. Attenuation coefficient is a more precise and generally applicable approach to the determination of radio-opacity. The digital system was equivalent to film but with less noise. The use of AGC is inappropriate for such determinations.
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Daily radionuclide ingestion and internal radiation doses in Aomori prefecture, Japan.
Ohtsuka, Yoshihito; Kakiuchi, Hideki; Akata, Naofumi; Takaku, Yuichi; Hisamatsu, Shun'ichi
2013-10-01
To assess internal annual dose in the general public in Aomori Prefecture, Japan, 80 duplicate cooked diet samples, equivalent to the food consumed over a 400-d period by one person, were collected from 100 volunteers in Aomori City and the village of Rokkasho during 2006–2010 and were analyzed for 11 radionuclides. To obtain average rates of ingestion of radionuclides, the volunteers were selected from among office, fisheries, agricultural, and livestock farm workers. Committed effective doses from ingestion of the diet over a 1-y period were calculated from the analytical results and from International Commission on Radiological Protection dose coefficients; for 40K, an internal effective dose rate from the literature was used. Fisheries workers had significantly higher combined internal annual dose than the other workers, possibly because of high rates of ingestion of marine products known to have high 210Po concentrations. The average internal dose rate, weighted by the numbers of households in each worker group in Aomori Prefecture, was estimated at 0.47 mSv y-1. Polonium-210 contributed 49% of this value. The sum of committed effective dose rates for 210Po, 210Pb, 228Ra, and 14C and the effective dose rate of 40K accounted for approximately 99% of the average internal dose rate.
MTS-6 detectors calibration by using 239Pu-Be neutron source.
Wrzesień, Małgorzata; Albiniak, Łukasz; Al-Hameed, Hiba
2017-10-17
Thermoluminescent detectors, type MTS-6, containing isotope 6Li (lithium) are sensitive in the range of thermal neutron energy; the 239Pu-Be (plutonium-and-beryllium) source emits neutrons in the energy range from 1 to 11 MeV. These seemingly contradictory elements may be combined by using the paraffin moderator, a determined density of thermal neutrons in the paraffin block and a conversion coefficient neutron flux to kerma, not forgetting the simultaneous registration of the photon radiation inseparable from the companion neutron radiation. The main aim of this work is to present the idea of calibration of thermoluminescent detectors that consist of a 6Li isotope, by using 239Pu-Be neutron radiation source. In this work, MTS-6 and MTS-7 thermoluminescent detectors and a plutonium-and-beryllium (239Pu-Be) neutron source were used. Paraffin wax fills the block, acting as a moderator. The calibration idea was based on the determination of dose equivalent rate based on the average kerma rate calculated taking into account the empirically determined function describing the density of thermal neutron flux in the paraffin block and a conversion coefficient neutron flux to kerma. The calculated value of the thermal neutron flux density was 1817.5 neutrons/cm2/s and the average value of kerma rate determined on this basis amounted to 244 μGy/h, and the dose equivalent rate 610 μSv/h. The calculated value allowed for the assessment of the length of time of exposure of the detectors directly in the paraffin block. The calibration coefficient for the used batch of detectors is (6.80±0.42)×10-7 Sv/impulse. Med Pr 2017;68(6):705-710. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
42 CFR 82.5 - Definition of terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Illness Compensation Program Act of 2000, 42 U.S.C. 7384-7385 [1994, supp. 2001]. (i) Equivalent dose is... equivalent dose that is received from radiation sources outside of the body. (k) Internal dose means that portion of the equivalent dose that is received from radioactive materials taken into the body. (l) NIOSH...
Reft, Chester S; Runkel-Muller, Renate; Myrianthopoulos, Leon
2006-10-01
For intensity modulated radiation therapy (IMRT) treatments 6 MV photons are typically used, however, for deep seated tumors in the pelvic region, higher photon energies are increasingly being employed. IMRT treatments require more monitor units (MU) to deliver the same dose as conformal treatments, causing increased secondary radiation to tissues outside the treated area from leakage and scatter, as well as a possible increase in the neutron dose from photon interactions in the machine head. Here we provide in vivo patient and phantom measurements of the secondary out-of-field photon radiation and the neutron dose equivalent for 18 MV IMRT treatments. The patients were treated for prostate cancer with 18 MV IMRT at institutions using different therapy machines and treatment planning systems. Phantom exposures at the different facilities were used to compare the secondary photon and neutron dose equivalent between typical IMRT delivered treatment plans with a six field three-dimensional conformal radiotherapy (3DCRT) plan. For the in vivo measurements LiF thermoluminescent detectors (TLDs) and Al2O3 detectors using optically stimulated radiation were used to obtain the photon dose and CR-39 track etch detectors were used to obtain the neutron dose equivalent. For the phantom measurements a Bonner sphere (25.4 cm diameter) containing two types of TLDs (TLD-600 and TLD-700) having different thermal neutron sensitivities were used to obtain the out-of-field neutron dose equivalent. Our results showed that for patients treated with 18 MV IMRT the photon dose equivalent is greater than the neutron dose equivalent measured outside the treatment field and the neutron dose equivalent normalized to the prescription dose varied from 2 to 6 mSv/Gy among the therapy machines. The Bonner sphere results showed that the ratio of neutron equivalent doses for the 18 MV IMRT and 3DCRT prostate treatments scaled as the ratio of delivered MUs. We also observed differences in the measured neutron dose equivalent among the three therapy machines for both the in vivo and phantom exposures.
Dose Equivalents for Second-Generation Antipsychotic Drugs: The Classical Mean Dose Method
Leucht, Stefan; Samara, Myrto; Heres, Stephan; Patel, Maxine X.; Furukawa, Toshi; Cipriani, Andrea; Geddes, John; Davis, John M.
2015-01-01
Background: The concept of dose equivalence is important for many purposes. The classical approach published by Davis in 1974 subsequently dominated textbooks for several decades. It was based on the assumption that the mean doses found in flexible-dose trials reflect the average optimum dose which can be used for the calculation of dose equivalence. We are the first to apply the method to second-generation antipsychotics. Methods: We searched for randomized, double-blind, flexible-dose trials in acutely ill patients with schizophrenia that examined 13 oral second-generation antipsychotics, haloperidol, and chlorpromazine (last search June 2014). We calculated the mean doses of each drug weighted by sample size and divided them by the weighted mean olanzapine dose to obtain olanzapine equivalents. Results: We included 75 studies with 16 555 participants. The doses equivalent to 1 mg/d olanzapine were: amisulpride 38.3 mg/d, aripiprazole 1.4 mg/d, asenapine 0.9 mg/d, chlorpromazine 38.9 mg/d, clozapine 30.6 mg/d, haloperidol 0.7 mg/d, quetiapine 32.3mg/d, risperidone 0.4mg/d, sertindole 1.1 mg/d, ziprasidone 7.9 mg/d, zotepine 13.2 mg/d. For iloperidone, lurasidone, and paliperidone no data were available. Conclusions: The classical mean dose method is not reliant on the limited availability of fixed-dose data at the lower end of the effective dose range, which is the major limitation of “minimum effective dose methods” and “dose-response curve methods.” In contrast, the mean doses found by the current approach may have in part depended on the dose ranges chosen for the original trials. Ultimate conclusions on dose equivalence of antipsychotics will need to be based on a review of various methods. PMID:25841041
Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.
Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki
2015-11-01
Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum
NASA Astrophysics Data System (ADS)
Walker, Steven A.; Townsend, Lawrence W.; Norbury, John W.
2013-05-01
Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents.
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
Equivalent Noise Dose Obtained through Hearing Aids in the Classrooms of Hearing-Impaired Children.
ERIC Educational Resources Information Center
Wilde, Ronald A.
1990-01-01
A commercial noise dose meter was used to estimate the equivalent noise dose received through high-gain hearing aids worn in four classrooms in a school for deaf children. There were no significant differences among nominal saturation sound pressure level (SSPL) settings, and all SSPL settings produced very high equivalent noise doses. (Author/JDD)
Code of Federal Regulations, 2014 CFR
2014-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2010 CFR
2010-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Moslehi, Amir; Raisali, Gholamreza
2018-07-01
The response of a microdosimeter for neutrons above 14 MeV is investigated. The mean quality factors and dose-equivalents are determined using lineal energy distributions calculated by Monte Carlo simulations (Geant4 toolkit). From 14 MeV to 5 GeV, the mean quality factors were found to vary between 6.00 and 9.30 and the dose-equivalents were in agreement with the true ambient dose-equivalent at the depth of 10 mm inside the ICRU sphere, H * (10). An energy-independent dose-equivalent response around a median value of 0.86 within 22% uncertainty was obtained. Therefore, the microdosimeter is appropriate for dose-equivalent measurement of high-energy neutrons. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K
2010-06-01
Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.
Millar, W T; Davidson, S E
2013-01-01
Objective: To consider the implications of the use of biphasic rather than monophasic repair in calculations of biologically-equivalent doses for pulsed-dose-rate brachytherapy of cervix carcinoma. Methods: Calculations are presented of pulsed-dose-rate (PDR) doses equivalent to former low-dose-rate (LDR) doses, using biphasic vs monophasic repair kinetics, both for cervical carcinoma and for the organ at risk (OAR), namely the rectum. The linear-quadratic modelling calculations included effects due to varying the dose per PDR cycle, the dose reduction factor for the OAR compared with Point A, the repair kinetics and the source strength. Results: When using the recommended 1 Gy per hourly PDR cycle, different LDR-equivalent PDR rectal doses were calculated depending on the choice of monophasic or biphasic repair kinetics pertaining to the rodent central nervous and skin systems. These differences virtually disappeared when the dose per hourly cycle was increased to 1.7 Gy. This made the LDR-equivalent PDR doses more robust and independent of the choice of repair kinetics and α/β ratios as a consequence of the described concept of extended equivalence. Conclusion: The use of biphasic and monophasic repair kinetics for optimised modelling of the effects on the OAR in PDR brachytherapy suggests that an optimised PDR protocol with the dose per hourly cycle nearest to 1.7 Gy could be used. Hence, the durations of the new PDR treatments would be similar to those of the former LDR treatments and not longer as currently prescribed. Advances in knowledge: Modelling calculations indicate that equivalent PDR protocols can be developed which are less dependent on the different α/β ratios and monophasic/biphasic kinetics usually attributed to normal and tumour tissues for treatment of cervical carcinoma. PMID:23934965
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. R. A.; Fuelle, D.
2003-05-01
The MAX (Male Adult voXel) phantom has been developed from existing segmented images of a male adult body, in order to achieve a representation as close as possible to the anatomical properties of the reference adult male specified by the ICRP. The study describes the adjustments of the soft-tissue organ masses, a new dosimetric model for the skin, a new model for skeletal dosimetry and a computational exposure model based on coupling the MAX phantom with the EGS4 Monte Carlo code. Conversion coefficients between equivalent dose to the red bone marrow as well as effective MAX dose and air-kerma free in air for external photon irradiation from the front and from the back, respectively, are presented and compared with similar data from other human phantoms.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...
Code of Federal Regulations, 2012 CFR
2012-01-01
... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...
Code of Federal Regulations, 2011 CFR
2011-01-01
... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...
Code of Federal Regulations, 2013 CFR
2013-01-01
... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...
Code of Federal Regulations, 2010 CFR
2010-01-01
... assessment of dose equivalent by the use of devices designed to be worn by an individual; (2) The assessment... equipment) means devices designed to be worn by a single individual for the assessment of dose equivalent... radionuclide in a year by the reference man that would result in a committed effective dose equivalent of 5...
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
Nandy, Maitreyee; Sarkar, P K; Sanami, T; Takada, M; Shibata, T
2016-09-01
Measured neutron energy distribution emitted from a thick stopping target of natural carbon at 0°, 30°, 60° and 90° from nuclear reactions caused by 12 MeV amu -1 incident 12 C 5+ ions were converted to energy differential and total neutron absorbed dose as well as ambient dose equivalent H * (10) using the fluence-to-dose conversion coefficients provided by the ICRP. Theoretical estimates were obtained using the Monte Carlo nuclear reaction model code PACE and a few existing empirical formulations for comparison. Results from the PACE code showed an underestimation of the high-energy part of energy differential dose distributions at forward angles whereas the empirical formulation by Clapier and Zaidins (1983 Nucl. Instrum. Methods 217 489-94) approximated the energy integrated angular distribution of H * (10) satisfactorily. Using the measured data, the neutron doses received by some vital human organs were estimated for anterior-posterior exposure. The estimated energy-averaged quality factors were found to vary for different organs from about 7 to about 13. Emitted neutrons having energies above 20 MeV were found to contribute about 20% of the total dose at 0° while at 90° the contribution was reduced to about 2%.
RCT: Module 2.06, Air Sampling Program and Methods, Course 8772
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillmer, Kurt T.
The inhalation of radioactive particles is the largest cause of an internal radiation dose. Airborne radioactivity measurements are necessary to ensure that the control measures are and continue to be effective. Regulations govern the allowable effective dose equivalent to an individual. The effective dose equivalent is determined by combining the external and internal dose equivalent values. Typically, airborne radioactivity levels are maintained well below allowable levels to keep the total effective dose equivalent small. This course will prepare the student with the skills necessary for RCT qualification by passing quizzes, tests, and the RCT Comprehensive Phase 1, Unit 2 Examinationmore » (TEST 27566) and will provide in-the-field skills.« less
Passive dosimetry aboard the Mir Orbital Station: internal measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent. c2002 Elsevier Science Ltd. All rights reserved.
Couto, José Guilherme; Bravo, Isabel; Pirraco, Rui
2011-09-01
The purpose of this work was the biological comparison between Low Dose Rate (LDR) and Pulsed Dose Rate (PDR) in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments at our Institution since December 2009. In the first phase we studied the influence of the pulse dose and the pulse time in the biological equivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM). In the second phase, the equivalent dose in 2 Gy/fraction (EQD(2)) for the tumor, rectum and bladder in treatments performed with both techniques was evaluated and statistically compared. All evaluated patients had stage IIB cervical cancer and were treated with External Beam Radiotherapy (EBRT) plus two Brachytherapy (BT) applications. Data were collected from 48 patients (26 patients treated with LDR and 22 patients with PDR). In the analyses of the influence of PDR parameters in the biological equivalence between LDR and PDR treatments (Phase 1), it was calculated that if the pulse dose in PDR was kept equal to the LDR dose rate, a small the-rapeutic loss was expected. If the pulse dose was decreased, the therapeutic window became larger, but a correction in the prescribed dose was necessary. In PDR schemes with 1 hour interval between pulses, the pulse time did not influence significantly the equivalent dose. In the comparison between the groups treated with LDR and PDR (Phase 2) we concluded that they were not equivalent, because in the PDR group the total EQD(2) for the tumor, rectum and bladder was smaller than in the LDR group; the LQM estimated that a correction in the prescribed dose of 6% to 10% was ne-cessary to avoid therapeutic loss. A correction in the prescribed dose was necessary; this correction should be achieved by calculating the PDR dose equivalent to the desired LDR total dose.
Bravo, Isabel; Pirraco, Rui
2011-01-01
Purpose The purpose of this work was the biological comparison between Low Dose Rate (LDR) and Pulsed Dose Rate (PDR) in cervical cancer regarding the discontinuation of the afterloading system used for the LDR treatments at our Institution since December 2009. Material and methods In the first phase we studied the influence of the pulse dose and the pulse time in the biological equivalence between LDR and PDR treatments using the Linear Quadratic Model (LQM). In the second phase, the equivalent dose in 2 Gy/fraction (EQD2) for the tumor, rectum and bladder in treatments performed with both techniques was evaluated and statistically compared. All evaluated patients had stage IIB cervical cancer and were treated with External Beam Radiotherapy (EBRT) plus two Brachytherapy (BT) applications. Data were collected from 48 patients (26 patients treated with LDR and 22 patients with PDR). Results In the analyses of the influence of PDR parameters in the biological equivalence between LDR and PDR treatments (Phase 1), it was calculated that if the pulse dose in PDR was kept equal to the LDR dose rate, a small the-rapeutic loss was expected. If the pulse dose was decreased, the therapeutic window became larger, but a correction in the prescribed dose was necessary. In PDR schemes with 1 hour interval between pulses, the pulse time did not influence significantly the equivalent dose. In the comparison between the groups treated with LDR and PDR (Phase 2) we concluded that they were not equivalent, because in the PDR group the total EQD2 for the tumor, rectum and bladder was smaller than in the LDR group; the LQM estimated that a correction in the prescribed dose of 6% to 10% was ne-cessary to avoid therapeutic loss. Conclusions A correction in the prescribed dose was necessary; this correction should be achieved by calculating the PDR dose equivalent to the desired LDR total dose. PMID:23346123
Li, Wei Bo; Höllriegl, Vera; Roth, Paul; Oeh, Uwe
2006-07-01
Intestinal absorption of strontium (Sr) in thirteen healthy adult German volunteers has been investigated by simultaneous oral and intravenous administration of two stable tracer isotopes, i.e. (84)Sr and (86)Sr. The measured Sr tracer concentration in plasma was analyzed using the convolution integral technique to obtain the intestinal absorption rate. The results showed that the Sr labeled in different foodstuffs was absorbed into the body fluids in a large range of difference. The maximum Sr absorption rates were observed within 60-120 min after administration. The rate of absorption is used to evaluate the intestinal absorption fraction, i.e. the f (1) value for various foodstuffs. The equivalent and effective dose coefficients for ingestion of (90)Sr were calculated using these f (1) values, and they were compared with those recommended by the International Commission on Radiological Protection (ICRP). The geometric and arithmetic means of the f (1) values are 0.38 and 0.45 associated with a geometric standard deviation and a standard deviation of 1.88 and 0.22, respectively. The 90% confidence interval of the f (1) values obtained in the present study ranges from 0.13 to 0.98. Expressed as the ratio of the 95 and 50% percentiles of the estimated probability, the uncertainty for the f (1) value corresponds to a factor of 2.58. The effective dose coefficients of (90)Sr after ingestion are 6.1 x 10(-9) Sv Bq(-1) for an f(1) value of 0.05, 1.0 x 10(-8) Sv Bq(-1) for 0.1, 1.9 x 10(-8) Sv Bq(-1) for 0.2, 2.8 x 10(-8) Sv Bq(-1) for 0.3, 3.6 x 10(-8) Sv Bq(-1) for 0.4, 5.3 x 10(-8) Sv Bq(-1) for 0.6, 7.1 x 10(-8) Sv Bq(-1) for 0.8, and 7.9 x 10(-8) Sv Bq(-1) for 0.9, respectively. Taking the effective dose coefficient of 2.8 x 10(-8) Sv Bq(-1) for an f (1) value of 0.3, which is recommended by the ICRP, as a reference, the effective dose coefficient of (90)Sr after ingestion varies by a factor of 2.8 when the f (1) value changes by a factor of 3, i.e. it decreases from 0.3 to 0.1 or increases from 0.3 to 0.9, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, W. F.
NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.
Al Najjar, Anas; Colosi, Dan; Dauer, Lawrence T; Prins, Robert; Patchell, Gayle; Branets, Iryna; Goren, Arthur D; Faber, Richard D
2013-06-01
With the advent of cone-beam computed tomography (CBCT) scans, there has been a transition toward these scans' replacing traditional radiographs for orthodontic diagnosis and treatment planning. Children represent a significant proportion of orthodontic patients. Similar CBCT exposure settings are predicted to result in higher equivalent doses to the head and neck organs in children than in adults. The purpose of this study was to measure the difference in equivalent organ doses from different scanners under similar settings in children compared with adults. Two phantom heads were used, representing a 33-year-old woman and a 5-year-old boy. Optically stimulated dosimeters were placed at 8 key head and neck organs, and equivalent doses to these organs were calculated after scanning. The manufacturers' predefined exposure settings were used. One scanner had a pediatric preset option; the other did not. Scanning the child's phantom head with the adult settings resulted in significantly higher equivalent radiation doses to children compared with adults, ranging from a 117% average ratio of equivalent dose to 341%. Readings at the cervical spine level were decreased significantly, down to 30% of the adult equivalent dose. When the pediatric preset was used for the scans, there was a decrease in the ratio of equivalent dose to the child mandible and thyroid. CBCT scans with adult settings on both phantom heads resulted in higher radiation doses to the head and neck organs in the child compared with the adult. In practice, this might result in excessive radiation to children scanned with default adult settings. Collimation should be used when possible to reduce the radiation dose to the patient. While CBCT scans offer a valuable tool, use of CBCT scans should be justified on a specific case-by-case basis. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose
NASA Technical Reports Server (NTRS)
Welton, Andrew; Lee, Kerry
2010-01-01
While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.
ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3.
Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Marsh, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Blanchardon, E; Gregoratto, D; Harrison, J D
2017-12-01
The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose per content (Sv Bq−1 measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of publications contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. This third publication in the series provides the above data for the following elements: ruthenium (Ru), antimony (Sb), tellurium (Te), iodine (I), caesium (Cs), barium (Ba), iridium (Ir), lead (Pb), bismuth (Bi), polonium (Po), radon (Rn), radium (Ra), thorium (Th), and uranium (U).
ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2.
Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Ansoborlo, E; Giussani, A; Bolch, W E; Harrison, J D
2016-12-01
The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2–5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq measurement) for inhalation, and graphs of retention and excretion data per Bq intake for inhalation. These data are provided for all absorption types and for the most common isotope(s) of each element. The electronic annex that accompanies the OIR series of reports contains a comprehensive set of committed effective and equivalent dose coefficients, committed effective dose per content functions, and reference bioassay functions. Data are provided for inhalation, ingestion, and direct input to blood. The present publication provides the above data for the following elements: hydrogen (H), carbon (C), phosphorus (P), sulphur (S), calcium (Ca), iron (Fe), cobalt (Co), zinc (Zn), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), and technetium (Tc).
Space Radiation Organ Doses for Astronauts on Past and Future Missions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2007-01-01
We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.
Sohrabi, Mehdi; Hakimi, Amir
2018-02-01
Photoneutron (PN) dosimetry in fast, epithermal and thermal energy ranges originated from the beam and albedo neutrons in high-energy X-ray medical accelerators is highly important from scientific, technical, radiation protection and medical physics points of view. Detailed dose equivalents in the fast, epithermal and thermal PN energy ranges in air up to 2m as well as at 35 positions from the central axis of 12 cross sections of the phantom at different depths were determined in 18MV X-ray beams of a Siemens ONCOR accelerator. A novel dosimetry method based on polycarbonate track dosimeters (PCTD)/ 10 B (with/without cadmium cover) was used to determine and separate different PN dose equivalents in air and in a multilayer polyethylene phantom. Dose equivalent distributions of PNs, as originated from the main beam and/or albedo PNs, on cross-plane, in-plane and diagonal axes in 10cm×10cm fields are reported. PN dose equivalent distributions on the 3 axes have their maxima at the isocenter. Epithermal and thermal PN depth dose equivalent distributions in the phantom for different positions studied peak at ∼3cm depth. The neutron dosimeters used for the first time in such studies are highly effective for separating dose equivalents of PNs in the studied energy ranges (beam and/or albedo). The PN dose equivalent data matrix made available in this paper is highly essential for detailed patient dosimetry in general and for estimating secondary cancer risks in particular. Copyright © 2017. Published by Elsevier GmbH.
Calculation of Radiation Protection Quantities and Analysis of Astronaut Orientation Dependence
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Nealy, John E.; Atwell, William; Anderson, Brooke M.; Luetke, Nathan J.; Wilson, John W.
2006-01-01
Health risk to astronauts due to exposure to ionizing radiation is a primary concern for exploration missions and may become the limiting factor for long duration missions. Methodologies for evaluating this risk in terms of radiation protection quantities such as dose, dose equivalent, gray equivalent, and effective dose are described. Environment models (galactic cosmic ray and solar particle event), vehicle/habitat geometry models, human geometry models, and transport codes are discussed and sample calculations for possible lunar and Mars missions are used as demonstrations. The dependence of astronaut health risk, in terms of dosimetric quantities, on astronaut orientation within a habitat is also examined. Previous work using a space station type module exposed to a proton spectrum modeling the October 1989 solar particle event showed that reorienting the astronaut within the module could change the calculated dose equivalent by a factor of two or more. Here the dose equivalent to various body tissues and the whole body effective dose due to both galactic cosmic rays and a solar particle event are calculated for a male astronaut in two different orientations, vertical and horizontal, in a representative lunar habitat. These calculations also show that the dose equivalent at some body locations resulting from a solar particle event can vary by a factor of two or more, but that the dose equivalent due to galactic cosmic rays has a much smaller (<15%) dependence on astronaut orientation.
Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)
NASA Technical Reports Server (NTRS)
Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.
2000-01-01
Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).
Relative Impact of Incorporating Pharmacokinetics on ...
The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo extrapolation was used to estimate the daily dose in a rat, called the oral equivalent dose, which would result in steady-state in vivo blood concentrations equivalent to the AC50 or lowest effective concentration (LEC) across more than 600 ToxCast phase I in vitro assays. Statistical classification analysis was performed using either oral equivalent doses or unadjusted AC50/LEC values for the in vitro assays to predict the in vivo effects of the 59 chemicals. Adjusting the in vitro assays for pharmacokinetics did not improve the ability to predict in vivo effects as either a discrete (yes or no) response or a low effect level (LEL) on a continuous dose scale. Interestingly, a comparison of the in vitro assay with the lowest oral equivalent dose with the in vivo endpoint with the lowest LEL suggested that the lowest oral equivalent dose may provide a conservative estimate of the point of departure for a chemical in a dose-response assessment. Furthermore, comparing the oral equivalent doses for the in vitro assays with the in vivo dose range that resulted in adverse effects identified more coincident in vitro assays across chemicals than expected by chance, suggesting that the approach ma
Calibration of a mosfet detection system for 6-MV in vivo dosimetry.
Scalchi, P; Francescon, P
1998-03-01
Metal oxide semiconductor field-effect transistor (MOSFET) detectors were calibrated to perform in vivo dosimetry during 6-MV treatments, both in normal setup and total body irradiation (TBI) conditions. MOSFET water-equivalent depth, dependence of the calibration factors (CFs) on the field sizes, MOSFET orientation, bias supply, accumulated dose, incidence angle, temperature, and spoiler-skin distance in TBI setup were investigated. MOSFET reproducibility was verified. The correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was studied. MOSFET midplane dosimetry in TBI setup was compared with thermoluminescent dosimetry in an anthropomorphic phantom. By using ionization chamber measurements, the TBI midplane dosimetry was also verified in the presence of cork as a lung substitute. The water-equivalent depth of the MOSFET is about 0.8 mm or 1.8 mm, depending on which sensor side faces the beam. The field size also affects this quantity; Monte Carlo simulations allow driving this behavior by changes in the contaminating electron mean energy. The CFs vary linearly as a function of the square field side, for fields ranging from 5 x 5 to 30 x 30 cm2. In TBI setup, varying the spoiler-skin distance between 5 mm and 10 cm affects the CFs within 5%. The MOSFET reproducibility is about 3% (2 SD) for the doses normally delivered to the patients. The effect of the accumulated dose on the sensor response is negligible. For beam incidence ranging from 0 degrees to 90 degrees, the MOSFET response varies within 7%. No monotonic correlation between the sensor response and the temperature is apparent. Good correlation between the water-equivalent midplane depth and the ratio of the exit MOSFET readout divided by the entrance MOSFET readout was found (the correlation coefficient is about 1). The MOSFET midplane dosimetry relevant to the anthropomorphic phantom irradiation is in agreement with TLD dosimetry within 5%. Ionization chamber and MOSFET midplane dosimetry in inhomogeneous phantoms are in agreement within 2%. MOSFET characteristics are suitable for the in vivo dosimetry relevant to 6-MV treatments, both in normal and TBI setup. The TBI midplane dosimetry using MOSFETs is valid also in the presence of the lung, which is the most critical organ, and allows verifying that calculation of the lung attenuator thicknesses based only on the density is not correct. Our MOSFET dosimetry system can be used also to determine the surface dose by using the water-equivalent depth and extrapolation methods. This procedure depends on the field size used.
The evaluation of the neutron dose equivalent in the two-bend maze.
Tóth, Á Á; Petrović, B; Jovančević, N; Krmar, M; Rutonjski, L; Čudić, O
2017-04-01
The purpose of this study was to explore the effect of the second bend of the maze, on the neutron dose equivalent, in the 15MV linear accelerator vault, with two bend maze. These two bends of the maze were covered by 32 points where the neutron dose equivalent was measured. There is one available method for estimation of the neutron dose equivalent at the entrance door of the two bend maze which was tested using the results of the measurements. The results of this study show that the neutron equivalent dose at the door of the two bend maze was reduced almost three orders of magnitude. The measured TVD in the first bend (closer to the inner maze entrance) is about 5m. The measured TVD result is close to the TVD values usually used in the proposed models for estimation of neutron dose equivalent at the entrance door of the single bend maze. The results also determined that the TVD in the second bend (next to the maze entrance door) is significantly lower than the TVD values found in the first maze bend. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Puncher, M; Zhang, W; Harrison, J D; Wakeford, R
2017-06-26
Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manabe, K.; Endo, Akira; Eckerman, Keith F
2010-03-01
The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was foundmore » that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.« less
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir
NASA Astrophysics Data System (ADS)
Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.
1992-07-01
Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.
Ravisankar, R; Vanasundari, K; Suganya, M; Raghu, Y; Rajalakshmi, A; Chandrasekaran, A; Sivakumar, S; Chandramohan, J; Vijayagopal, P; Venkatraman, B
2014-02-01
Using γ spectrometry, the concentration of the naturally occurring radionuclides (226)Ra, (232)Th and (40)K has been measured in soil, sand, cement, clay and bricks, which are used as building materials in Tiruvannamalai, Tamilnadu, India. The radium equivalent activity (Raeq), the criterion formula (CF), indoor gamma absorbed dose rate (DR), annual effective dose (HR), activity utilization index (AUI), alpha index (Iα), gamma index (Iγ), external radiation hazard index (Hex), internal radiation hazard index (Hin), representative level index (RLI), excess lifetime cancer risk (ELCR) and annual gonadal dose equivalent (AGDE) associated with the natural radionuclides are calculated to assess the radiation hazard of the natural radioactivity in the building materials. From the analysis, it is found that these materials used for the construction of dwellings are safe for the inhabitants. The radiological data were processed using multivariate statistical methods to determine the similarities and correlation among the various samples. The frequency distributions for all radionuclides were analyzed. The data set consisted of 15 measured variables. The Pearson correlation coefficient reveals that the (226)Ra distribution in building materials is controlled by the variation of the (40)K concentration. Principal component analysis (PCA) yields a two-component representation of the acquired data from the building materials in Tiruvannamalai, wherein 94.9% of the total variance is explained. The resulting dendrogram of hierarchical cluster analysis (HCA) classified the 30 building materials into four major groups using 15 variables. Copyright © 2013 Elsevier Ltd. All rights reserved.
Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn
2013-09-06
The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of the deep dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent may not exceed 0.15 Sv (15... TEDE (hereafter referred to as “dose”) to any real member of the public located beyond the boundary of...
Testing Moderating Detection Systems with {sup 252}Cf-Based Reference Neutron Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hertel, Nolan E.; Sweezy, Jeremy; Sauber, Jeremiah S.
Calibration measurements were carried out on a probe designed to measure ambient dose equivalent in accordance with ICRP Pub 60 recommendations. It consists of a cylindrical {sup 3}He proportional counter surrounded by a 25-cm-diameter spherical polyethylene moderator. Its neutron response is optimized for dose rate measurements of neutrons between thermal energies and 20 MeV. The instrument was used to measure the dose rate in four separate neutron fields: unmoderated {sup 252}Cf, D{sub 2}O-moderated {sup 252}Cf, polyethylene-moderated {sup 252}Cf, and WEP neutron howitzer with {sup 252}Cf at its center. Dose equivalent measurements were performed at source-detector centerline distances from 50 tomore » 200 cm. The ratio of air-scatter- and room-return-corrected ambient dose equivalent rates to ambient dose equivalent rates calculated with the code MCNP are tabulated.« less
NASA Astrophysics Data System (ADS)
Santos, William S.; Neves, Lucio P.; Perini, Ana P.; Caldas, Linda V. E.; Maia, Ana F.
2015-12-01
Cerebral angiography exams may provide valuable diagnostic information for the patients with suspect of cerebral diseases, but it may also deliver high doses of radiation to the patients and medical staff. In order to evaluate the medical and occupational expositions from different irradiation conditions, Monte Carlo (MC) simulations were employed. Virtual anthropomorphic phantoms (MASH) were used to represent the patient and the physician inside a typical fluoroscopy room, also simulated in details, incorporated in the MCNPX 2.7.0 MC code. The evaluation was carried out by means of dose conversion coefficients (CCs) for equivalent (H) and effective (E) doses normalized by the air kerma-area product (KAP). The CCs for the surface entrance dose of the patient (ESD) and equivalent dose for the eyes of the medical staff were determined, because CA exams present higher risks for those organs. The tube voltage was 80 kVp, and Al filters with thicknesses of 2.5 mm, 3.5 mm and 4.0 mm were positioned in the beams. Two projections were simulated: posterior-anterior (PA) and right-lateral (RLAT). In all situations there was an increase of the CC values with the increase of the Al filtration. The highest dose was obtained for a RLAT projection with a 4.0 mm Al filter. In this projection, the ESD/KAP and E/KAP values to patient were 11 (14%) mGy/Gy cm2 and 0.12 (0.1%) mSv/Gy cm2, respectively. For the physician, the use of shield lead glass suspended and lead curtain attached to the surgical table resulted in a significant reduction of the CCs. The use of MC simulations proved to be a very important tool in radiation protection dosimetry, and specifically in this study several parameters could be evaluated, which would not be possible experimentally.
JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.
Grimes, Joshua; Uribe, Carlos; Celler, Anna
2013-07-01
The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann
2014-07-01
There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
Internal dosimetry of inhaled iodine-131.
Kiani Nasab, Mitra; Rafat Motavalli, Laleh; Miri Hakimabad, Hashem
2018-01-01
In this paper, the dose assessment for the iodine inhalation exposure in 19 aerosol sizes and three gas/vapor forms at three levels of thyroid uptake, was performed. Two different modes of work (light vs. heavy) and breathing (nose vs. mouth) for aerosol inhalation were investigated. In order to calculate the cumulated activities per unit of inhaled activity, a combined model which included the latest models of both human respiratory and alimentary tract was developed. The S values for 131 I were computed based on the ICRP adult male and female reference voxel phantoms by the Monte Carlo method. Then, the committed equivalent and committed effective dose coefficients were obtained (The data are available at http://www.um.ac.ir/∼mirihakim). In general, for the nonzero thyroid uptakes, the maximum cumulated activity was found in the thyroid. When the thyroid is blocked, however, the maximum depends on the work and breathing mode and radioisotope form. Overall, the maximum CED coefficient was evaluated for the inhalation of elemental iodine at thyroid uptake of ∼27% (2.8 × 10 -8 Sv/Bq). As for the particle inhalation per se, mouth breathing of 0.6 nm and 0.2 μm AMTD particles showed to have the maximum (2.8 × 10 -8 Sv/Bq) and minimum (6.4 × 10 -9 Sv/Bq) CED coefficients, respectively. Compared to the reference CED coefficients, the authors found an increase of about 58% for inhalation of the aerosols with AMAD of 1 μm and 70% for 5 μm. Copyright © 2017 Elsevier Ltd. All rights reserved.
The effect of a paraffin screen on the neutron dose at the maze door of a 15 MV linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krmar, M.; Kuzmanović, A.; Nikolić, D.
2013-08-15
Purpose: The purpose of this study was to explore the effects of a paraffin screen located at various positions in the maze on the neutron dose equivalent at the maze door.Methods: The neutron dose equivalent was measured at the maze door of a room containing a 15 MV linear accelerator for x-ray therapy. Measurements were performed for several positions of the paraffin screen covering only 27.5% of the cross-sectional area of the maze. The neutron dose equivalent was also measured at all screen positions. Two simple models of the neutron source were considered in which the first assumed that themore » source was the cross-sectional area at the inner entrance of the maze, radiating neutrons in an isotropic manner. In the second model the reduction in the neutron dose equivalent at the maze door due to the paraffin screen was considered to be a function of the mean values of the neutron fluence and energy at the screen.Results: The results of this study indicate that the equivalent dose at the maze door was reduced by a factor of 3 through the use of a paraffin screen that was placed inside the maze. It was also determined that the contributions to the dosage from areas that were not covered by the paraffin screen as viewed from the dosimeter, were 2.5 times higher than the contributions from the covered areas. This study also concluded that the contributions of the maze walls, ceiling, and floor to the total neutron dose equivalent were an order of magnitude lower than those from the surface at the far end of the maze.Conclusions: This study demonstrated that a paraffin screen could be used to reduce the neutron dose equivalent at the maze door by a factor of 3. This paper also found that the reduction of the neutron dose equivalent was a linear function of the area covered by the maze screen and that the decrease in the dose at the maze door could be modeled as an exponential function of the product φ·E at the screen.« less
Puchalska, Monika; Bilski, Pawel; Berger, Thomas; Hajek, Michael; Horwacik, Tomasz; Körner, Christine; Olko, Pawel; Shurshakov, Vyacheslav; Reitz, Günther
2014-11-01
The health effects of cosmic radiation on astronauts need to be precisely quantified and controlled. This task is important not only in perspective of the increasing human presence at the International Space Station (ISS), but also for the preparation of safe human missions beyond low earth orbit. From a radiation protection point of view, the baseline quantity for radiation risk assessment in space is the effective dose equivalent. The present work reports the first successful attempt of the experimental determination of the effective dose equivalent in space, both for extra-vehicular activity (EVA) and intra-vehicular activity (IVA). This was achieved using the anthropomorphic torso phantom RANDO(®) equipped with more than 6,000 passive thermoluminescent detectors and plastic nuclear track detectors, which have been exposed to cosmic radiation inside the European Space Agency MATROSHKA facility both outside and inside the ISS. In order to calculate the effective dose equivalent, a numerical model of the RANDO(®) phantom, based on computer tomography scans of the actual phantom, was developed. It was found that the effective dose equivalent rate during an EVA approaches 700 μSv/d, while during an IVA about 20 % lower values were observed. It is shown that the individual dose based on a personal dosimeter reading for an astronaut during IVA results in an overestimate of the effective dose equivalent of about 15 %, whereas under an EVA conditions the overestimate is more than 200 %. A personal dosemeter can therefore deliver quite good exposure records during IVA, but may overestimate the effective dose equivalent received during an EVA considerably.
Bednarz, Bryan; Hancox, Cindy; Xu, X George
2012-01-01
There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU values for IMRT treatments can be two to three times greater than 3D CRT. Therefore, the total equivalent dose in most organs would be higher from the IMRT treatment compared to the box treatment and comparable to the organ doses from the box treatment plus the 6-field boost. This is the first time when organ dose data for an adult male patient of the ICRP reference anatomy have been calculated and documented. The tools presented in this paper can be used to estimate the second cancer risk to patients undergoing radiation treatment. PMID:19671968
NASA Astrophysics Data System (ADS)
Bednarz, Bryan; Hancox, Cindy; Xu, X. George
2009-09-01
There is growing concern about radiation-induced second cancers associated with radiation treatments. Particular attention has been focused on the risk to patients treated with intensity-modulated radiation therapy (IMRT) due primarily to increased monitor units. To address this concern we have combined a detailed medical linear accelerator model of the Varian Clinac 2100 C with anatomically realistic computational phantoms to calculate organ doses from selected treatment plans. This paper describes the application to calculate organ-averaged equivalent doses using a computational phantom for three different treatments of prostate cancer: a 4-field box treatment, the same box treatment plus a 6-field 3D-CRT boost treatment and a 7-field IMRT treatment. The equivalent doses per MU to those organs that have shown a predilection for second cancers were compared between the different treatment techniques. In addition, the dependence of photon and neutron equivalent doses on gantry angle and energy was investigated. The results indicate that the box treatment plus 6-field boost delivered the highest intermediate- and low-level photon doses per treatment MU to the patient primarily due to the elevated patient scatter contribution as a result of an increase in integral dose delivered by this treatment. In most organs the contribution of neutron dose to the total equivalent dose for the 3D-CRT treatments was less than the contribution of photon dose, except for the lung, esophagus, thyroid and brain. The total equivalent dose per MU to each organ was calculated by summing the photon and neutron dose contributions. For all organs non-adjacent to the primary beam, the equivalent doses per MU from the IMRT treatment were less than the doses from the 3D-CRT treatments. This is due to the increase in the integral dose and the added neutron dose to these organs from the 18 MV treatments. However, depending on the application technique and optimization used, the required MU values for IMRT treatments can be two to three times greater than 3D CRT. Therefore, the total equivalent dose in most organs would be higher from the IMRT treatment compared to the box treatment and comparable to the organ doses from the box treatment plus the 6-field boost. This is the first time when organ dose data for an adult male patient of the ICRP reference anatomy have been calculated and documented. The tools presented in this paper can be used to estimate the second cancer risk to patients undergoing radiation treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, S; Shin, E H; Kim, J
2015-06-15
Purpose: To evaluate the shielding wall design to protect patients, staff and member of the general public for secondary neutron using a simply analytic solution, multi-Monte Carlo code MCNPX, ANISN and FLUKA. Methods: An analytical and multi-Monte Carlo method were calculated for proton facility (Sumitomo Heavy Industry Ltd.) at Samsung Medical Center in Korea. The NCRP-144 analytical evaluation methods, which produced conservative estimates on the dose equivalent values for the shielding, were used for analytical evaluations. Then, the radiation transport was simulated with the multi-Monte Carlo code. The neutron dose at evaluation point is got by the value using themore » production of the simulation value and the neutron dose coefficient introduced in ICRP-74. Results: The evaluation points of accelerator control room and control room entrance are mainly influenced by the point of the proton beam loss. So the neutron dose equivalent of accelerator control room for evaluation point is 0.651, 1.530, 0.912, 0.943 mSv/yr and the entrance of cyclotron room is 0.465, 0.790, 0.522, 0.453 mSv/yr with calculation by the method of NCRP-144 formalism, ANISN, FLUKA and MCNP, respectively. The most of Result of MCNPX and FLUKA using the complicated geometry showed smaller values than Result of ANISN. Conclusion: The neutron shielding for a proton therapy facility has been evaluated by the analytic model and multi-Monte Carlo methods. We confirmed that the setting of shielding was located in well accessible area to people when the proton facility is operated.« less
Neutron dosimetry in low-earth orbit using passive detectors
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2001-01-01
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the 6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission. c2001 Elsevier Science Ltd. All rights reserved.
Organ and effective dose rate coefficients for submersion exposure in occupational settings
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.; ...
2017-08-24
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Organ and effective dose rate coefficients for submersion exposure in occupational settings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Y-12 National Security Complex, Oak Ridge, TN; Dewji, S. A.
External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients.more » In this study, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Finally, results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133.« less
Simon, Steven L.
2014-01-01
While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), heart, and brain. In addition, a series of functional relationships to predict DT per Ka values for RBM dependent on body mass index [BMI (kg m−2) ≡ weight per height2] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters, e.g., energy distribution, the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based. PMID:21617389
Simon, Steven L
2011-07-01
While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), and brain. In addition, a series of functional relationships to predict DT Ka-1 values for RBM dependent on body mass index [BMI (kg m-2) ≡ weight per height] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x-rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed, and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters (e.g., energy distribution), the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based.
Ambient Dose Equivalent in S. Paulo and Bauru cities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umisedo, Nancy K.; Okuno, Emico; Cancio, Francisco S.
2008-08-07
The Laboratory of Dosimetry (Institute of Physics, University of S. Paulo) performs since 1981 the external individual monitoring of workers exposed to X and gamma rays based on thermoluminescent dosimetry (TLD). Personal dose equivalent refers only to the exposure of workers due to the working activities, and the dose due to background radiation, also measured with TLD, must be subtracted to evaluate it. A compilation of ambient dose equivalent was done to evaluate the dose due to the background radiation in the work places, and also to contribute to the knowledge of the level of indoor radiation to which themore » public is exposed.« less
Moslehi, A; Raisali, G
2017-11-01
To determine the dose-equivalent of neutrons in an extended energy range, in the present work a multi-element thick gas electron multiplier-based microdosemeter made of PMMA (Perspex) walls of 10 mm in thickness is designed. Each cavity is filled with the propane-based tissue-equivalent (TE) gas simulating 1 µm of tissue. Also, a few weight fractions of 3He are assumed to be added to the TE gas. The dose-equivalents are determined for 11 neutron energies between thermal and 14 MeV using the lineal energy distributions calculated by Geant4 simulation toolkit and also the lineal energy-based quality factors. The results show that by adding 0.04% of 3He to the TE gas in each cavity, an energy-independent dose-equivalent response within 30% uncertainty around a median value of 0.91 in the above energy range is achieved. It is concluded that after its construction, the studied microdosemeter can be used to measure the dose-equivalent of neutrons, favorably. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E
2016-05-01
To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Harder, Timm C.; Hufnagel, Markus; Zahn, Katrin; Beutel, Karin; Schmitt, Heinz-Josef; Ullmann, Uwe; Rautenberg, Peter
2001-01-01
Detection of parvovirus B19 DNA offers diagnostic advantages over serology, particularly in persistent infections of immunocompromised patients. A rapid, novel method of B19 DNA detection and quantification is introduced. This method, a quantitative PCR assay, is based on real-time glass capillary thermocycling (LightCycler [LC]) and fluorescence resonance energy transfer (FRET). The PCR assay allowed quantification over a dynamic range of over 7 logs and could quantify as little as 250 B19 genome equivalents (geq) per ml as calculated for plasmid DNA (i.e., theoretically ≥5 geq per assay). Interrater agreement analysis demonstrated equivalence of LC-FRET PCR and conventional nested PCR in the diagnosis of an active B19 infection (kappa coefficient = 0.83). The benefit of the new method was demonstrated in an immunocompromised child with a relapsing infection, who required an attenuation of the immunosuppressive therapy in addition to repeated doses of immunoglobulin to eliminate the virus. PMID:11724854
Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
DeMarco, J; Kupelian, P; Santhanam, A; Low, D
2013-07-01
Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8 × 8 cm(3) volumetric spot distribution (5 mm FWHM spot size, 4 mm spot spacing) optimized to produce a uniform dose distribution results in an ambient dose equivalent of 4.5 × 10(-2) mSv per proton Gy in the forward direction. This work evaluated the secondary neutron and photon emission due to monoenergetic proton spots between 70 and 250 MeV, incident on a tissue equivalent phantom. Example calculations were performed to estimate concrete shield thickness based upon appropriate workload and shielding design assumptions. Although lower than traditional passive scattered proton therapy systems, the ambient dose equivalent from secondary neutrons produced by the patient during IMPT can be significant relative to occupational and nonoccupational workers in the vicinity of the treatment vault. This work demonstrates that Monte Carlo simulations are useful as an initial planning tool for studying the impact of the treatment room and maze design on surrounding occupational and nonoccupational work areas.
Karimian, A; Nikparvar, B; Jabbari, I
2014-11-01
Renal angiography is one of the medical imaging methods in which patient and physician receive high equivalent doses due to long duration of fluoroscopy. In this research, equivalent doses of some radiosensitive tissues of patient (adult and child) and physician during renal angiography have been calculated by using adult and child Oak Ridge National Laboratory phantoms and Monte Carlo method (MCNPX). The results showed, in angiography of right kidney in a child and adult patient, that gall bladder with the amounts of 2.32 and 0.35 mSv, respectively, has received the most equivalent dose. About the physician, left hand, left eye and thymus absorbed the most amounts of doses, means 0.020 mSv. In addition, equivalent doses of the physician's lens eye, thyroid and knees were 0.023, 0.007 and 7.9E-4 mSv, respectively. Although these values are less than the reported thresholds by ICRP 103, it should be noted that these amounts are related to one examination. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pharmacokinetic evaluation of avicularin using a model-based development approach.
Buqui, Gabriela Amaral; Gouvea, Dayana Rubio; Sy, Sherwin K B; Voelkner, Alexander; Singh, Ravi S P; da Silva, Denise Brentan; Kimura, Elza; Derendorf, Hartmut; Lopes, Norberto Peporine; Diniz, Andrea
2015-03-01
The aim of this study was to use the pharmacokinetic information of avicularin in rats to project a dose for humans using allometric scaling. A highly sensitive and specific bioanalytical assay to determine avicularin concentrations in the plasma was developed and validated for UPLC-MS/MS. The plasma protein binding of avicularin in rat plasma determined by the ultrafiltration method was 64%. The pharmacokinetics of avicularin in nine rats was studied following an intravenous bolus administration of 1 mg/kg and was found to be best described by a two-compartment model using a nonlinear mixed effects modeling approach. The pharmacokinetic parameters were allometrically scaled by body weight and centered to the median rat weight of 0.23 kg, with the power coefficient fixed at 0.75 for clearance and 1 for volume parameters. Avicularin was rapidly eliminated from the systemic circulation within 1 h post-dose, and the avicularin pharmacokinetic was linear up to 5 mg/kg based on exposure comparison to literature data for a 5-mg/kg single dose in rats. Using allometric scaling and Monte Carlo simulation approaches, the rat doses of 1 and 5 mg/kg correspond to the human equivalent doses of 30 and 150 mg, respectively, to achieve comparable plasma avicularin concentrations in humans. Georg Thieme Verlag KG Stuttgart · New York.
Computational analysis of the dose rates at JSI TRIGA reactor irradiation facilities.
Ambrožič, K; Žerovnik, G; Snoj, L
2017-12-01
The JSI TRIGA Mark II, IJS research reactor is equipped with numerous irradiation positions, where samples can be irradiated by neutrons and γ-rays. Irradiation position selection is based on its properties, such as physical size and accessibility, as well as neutron and γ-ray spectra, flux and dose intensities. This paper presents an overview on the neutron and γ-ray fluxes, spectra and dose intensities calculations using Monte Carlo MCNP software and ENDF/B-VII.0 nuclear data libraries. The dose-rates are presented in terms of ambient dose equivalents, air kerma, and silicon dose equivalent. At full reactor power the neutron ambient dose equivalent ranges from 5.5×10 3 Svh -1 to 6×10 6 Svh -1 , silicon dose equivalent from 6×10 2 Gy/h si to 3×10 5 Gy/h si , and neutron air kerma from 4.3×10 3 Gyh -1 to 2×10 5 Gyh -1 . Ratio of fast (1MeV
NASA Astrophysics Data System (ADS)
Chang, Lienard A.
In the event of a radiological accident or attack, it is important to estimate the organ doses to those exposed. In general, it is difficult to measure organ dose directly in the field and therefore dose conversion coefficients (DCC) are needed to convert measurable values such as air kerma to organ dose. Previous work on these coefficients has been conducted mainly for adults with a focus on radiation protection workers. Hence, there is a large gap in the literature for pediatric values. This study coupled a Monte Carlo N-Particle eXtended (MCNPX) code with International Council of Radiological Protection (ICRP)-adopted University of Florida and National Cancer Institute pediatric reference phantoms to calculate a comprehensive list of dose conversion coefficients (mGy/mGy) to convert air-kerma to organ dose. Parameters included ten phantoms (newborn, 1-year, 5-year, 10-year, 15-year old male and female), 28 organs over 33 energies between 0.01 and 20 MeV in six (6) irradiation geometries relevant to a child who might be exposed to a radiological release: anterior-posterior (AP), posterior-anterior (PA), right-lateral (RLAT), left-lateral (LLAT), rotational (ROT), and isotropic (ISO). Dose conversion coefficients to the red bone marrow over 36 skeletal sites were also calculated. It was hypothesized that the pediatric organ dose conversion coefficients would follow similar trends to the published adult values as dictated by human anatomy, but be of a higher magnitude. It was found that while the pediatric coefficients did yield similar patterns to that of the adult coefficients, depending on the organ and irradiation geometry, the pediatric values could be lower or higher than that of the adult coefficients.
Sun, R K
1990-12-01
To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.
Pediatric patient and staff dose measurements in barium meal fluoroscopic procedures
NASA Astrophysics Data System (ADS)
Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Porto, L. E.; Ledesma, J. A.; Nascimento, E. X.; Legnani, A.; Andrade, M. E. A.; Khoury, H. J.
2015-11-01
This study investigates patient and staff dose measurements in pediatric barium meal series fluoroscopic procedures. It aims to analyze radiographic techniques, measure the air kerma-area product (PKA), and estimate the staff's eye lens, thyroid and hands equivalent doses. The procedures of 41 patients were studied, and PKA values were calculated using LiF:Mg,Ti thermoluminescent dosimeters (TLDs) positioned at the center of the patient's upper chest. Furthermore, LiF:Mg,Cu,P TLDs were used to estimate the equivalent doses. The results showed a discrepancy in the radiographic techniques when compared to the European Commission recommendations. Half of the results of the analyzed literature presented lower PKA and dose reference level values than the present study. The staff's equivalent doses strongly depends on the distance from the beam. A 55-cm distance can be considered satisfactory. However, a distance decrease of ~20% leads to, at least, two times higher equivalent doses. For eye lenses this dose is significantly greater than the annual limit set by the International Commission on Radiological Protection. In addition, the occupational doses were found to be much higher than in the literature. Changing the used radiographic techniques to the ones recommended by the European Communities, it is expected to achieve lower PKA values and occupational doses.
NASA Astrophysics Data System (ADS)
Fujibuchi, Toshioh; Kodaira, Satoshi; Sawaguchi, Fumiya; Abe, Yasuyuki; Obara, Satoshi; Yamaguchi, Masae; Kawashima, Hajime; Kitamura, Hisashi; Kurano, Mieko; Uchihori, Yukio; Yasuda, Nakahiro; Koguchi, Yasuhiro; Nakajima, Masaru; Kitamura, Nozomi; Sato, Tomoharu
2015-04-01
We measured the recoil charged particles from secondary neutrons produced by the photonuclear reaction in a water phantom from a 10-MV photon beam from medical linacs. The absorbed dose and the dose equivalent were evaluated from the linear energy transfer (LET) spectrum of recoils using the CR-39 plastic nuclear track detector (PNTD) based on well-established methods in the field of space radiation dosimetry. The contributions and spatial distributions of these in the phantom on nominal photon exposures were verified as the secondary neutron dose and neutron dose equivalent. The neutron dose equivalent normalized to the photon-absorbed dose was 0.261 mSv/100 MU at source to chamber distance 90 cm. The dose equivalent at the surface gave the highest value, and was attenuated to less than 10% at 5 cm from the surface. The dose contribution of the high LET component of ⩾100 keV/μm increased with the depth in water, resulting in an increase of the quality factor. The CR-39 PNTD is a powerful tool that can be used to systematically measure secondary neutron dose distributions in a water phantom from an in-field to out-of-field high-intensity photon beam.
Dose estimation and dating of pottery from Turkey
NASA Astrophysics Data System (ADS)
Altay Atlıhan, M.; Şahiner, Eren; Soykal Alanyalı, Feriştah
2012-06-01
The luminescence method is a widely used technique for environmental dosimetry and dating archaeological, geological materials. In this study, equivalent dose (ED) and annual dose rate (AD) of an archaeological sample were measured. The age of the material was calculated by means of equivalent dose divided by the annual dose rate. The archaeological sample was taken from Antalya, Turkey. Samples were prepared by the fine grain technique and equivalent dose was found using multiple-aliquot-additive-dose (MAAD) and single aliquot regeneration (SAR) techniques. Also the short shine normalization-MAAD and long shine normalization-MAAD were applied and the results of the methods were compared with each other. The optimal preheat temperature was found to be 200 °C for 10 min. The annual doses of concentrations of the major radioactive isotopes were determined using a high-purity germanium detector and a low-level alpha counter. The age of the sample was found to be 510±40 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorjiara, Tina; Kuncic, Zdenka; Doran, Simon
2012-11-15
Purpose: To evaluate the water and tissue equivalence of a new PRESAGE{sup Registered-Sign} 3D dosimeter for proton therapy. Methods: The GEANT4 software toolkit was used to calculate and compare total dose delivered by a proton beam with mean energy 62 MeV in a PRESAGE{sup Registered-Sign} dosimeter, water, and soft tissue. The dose delivered by primary protons and secondary particles was calculated. Depth-dose profiles and isodose contours of deposited energy were compared for the materials of interest. Results: The proton beam range was found to be Almost-Equal-To 27 mm for PRESAGE{sup Registered-Sign }, 29.9 mm for soft tissue, and 30.5 mmmore » for water. This can be attributed to the lower collisional stopping power of water compared to soft tissue and PRESAGE{sup Registered-Sign }. The difference between total dose delivered in PRESAGE{sup Registered-Sign} and total dose delivered in water or tissue is less than 2% across the entire water/tissue equivalent range of the proton beam. The largest difference between total dose in PRESAGE{sup Registered-Sign} and total dose in water is 1.4%, while for soft tissue it is 1.8%. In both cases, this occurs at the distal end of the beam. Nevertheless, the authors find that PRESAGE{sup Registered-Sign} dosimeter is overall more tissue-equivalent than water-equivalent before the Bragg peak. After the Bragg peak, the differences in the depth doses are found to be due to differences in primary proton energy deposition; PRESAGE{sup Registered-Sign} and soft tissue stop protons more rapidly than water. The dose delivered by secondary electrons in the PRESAGE{sup Registered-Sign} differs by less than 1% from that in soft tissue and water. The contribution of secondary particles to the total dose is less than 4% for electrons and Almost-Equal-To 1% for protons in all the materials of interest. Conclusions: These results demonstrate that the new PRESAGE{sup Registered-Sign} formula may be considered both a tissue- and water-equivalent 3D dosimeter for a 62 MeV proton beam. The results further suggest that tissue-equivalent thickness may provide better dosimetric and geometric accuracy than water-equivalent thickness for 3D dosimetry of this proton beam.« less
NASA Astrophysics Data System (ADS)
Bahauddin, Shah Mohammad; Mehedi Faruk, Mir
2016-09-01
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.
NASA Astrophysics Data System (ADS)
Berk, Alexander
2013-03-01
Exact expansions for Voigt line-shape total, line-tail and spectral bin equivalent widths and for Voigt finite spectral bin single-line transmittances have been derived in terms of optical depth dependent exponentially-scaled modified Bessel functions of integer order and optical depth independent Fourier integral coefficients. The series are convergent for the full range of Voigt line-shapes, from pure Doppler to pure Lorentzian. In the Lorentz limit, the expansion reduces to the Ladenburg and Reiche function for the total equivalent width. Analytic expressions are derived for the first 8 Fourier coefficients for pure Lorentzian lines, for pure Doppler lines and for Voigt lines with at most moderate Doppler dependence. A strong-line limit sum rule on the Fourier coefficients is enforced to define an additional Fourier coefficient and to optimize convergence of the truncated expansion. The moderate Doppler dependence scenario is applicable to and has been implemented in the MODTRAN5 atmospheric band model radiative transfer software. Finite-bin transmittances computed with the truncated expansions reduce transmittance residuals compared to the former Rodgers-Williams equivalent width based approach by ∼2 orders of magnitude.
Coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions
NASA Astrophysics Data System (ADS)
Lin, Shuyu
2007-08-01
In this paper, the coupled vibration of isotropic metal hollow cylinders with large geometrical dimensions is studied by using an approximate analytic method. According to this method, when the equivalent mechanical coupling coefficient that is defined as the stress ratio is introduced, the coupled vibration of a metal hollow cylinder is reduced to two equivalent one-dimensional vibrations, one is an equivalent longitudinal extensional vibration in the height direction of the cylinder, and the other is an equivalent plane radial vibration in the radius direction. These two equivalent vibrations are coupled to each other by the equivalent mechanical coupling coefficient. The resonance frequency equation of metal hollow cylinders in coupled vibration is derived and longitudinal and radial resonance frequencies are computed. For comparison, the resonance frequencies of the hollow cylinders are also computed by using numerical method. The analysis shows that the results from these two methods are in a good agreement with each other.
NASA Astrophysics Data System (ADS)
Sato, T.; Endo, A.; Niita, K.
2013-07-01
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. Therefore, we calculated the mean quality factors in organs and tissues in ICRP/ICRU reference voxel phantoms for the isotropic exposure to various mono-energetic particles using the three Q-functions. The Particle and Heavy Ion Transport code System PHITS was employed to simulate the particle motions inside the phantoms. The effective dose equivalents and the phantom-averaged effective quality factors for the astronauts were then estimated from the calculated mean quality factors multiplied by the fluence-to-dose conversion coefficients and cosmic-ray fluxes inside a spacecraft. It was found from the calculations that QNASA generally gives the largest values for the phantom-averaged effective quality factors among the three Q-functions for neutron, proton, and lighter-ion irradiation, whereas Q(L) provides the largest values for heavier-ion irradiation. Overall, the introduction of QNASA instead of Q(L) or Q(y) in astronaut dosimetry results in the increase the effective dose equivalents because the majority of the doses are composed of the contributions from protons and neutrons, although this tendency may change by the calculation conditions.
Characterization of the Exradin W1 scintillator for use in radiotherapy.
Carrasco, P; Jornet, N; Jordi, O; Lizondo, M; Latorre-Musoll, A; Eudaldo, T; Ruiz, A; Ribas, M
2015-01-01
To evaluate the main characteristics of the Exradin W1 scintillator as a dosimeter and to estimate measurement uncertainties when used in radiotherapy. We studied the calibration procedure, energy and modality dependence, short-term repeatability, dose-response linearity, angular dependence, temperature dependence, time to reach thermal equilibrium, dose-rate dependence, water-equivalent depth of the effective measurement point, and long-term stability. An uncertainty budget was derived for relative and absolute dose measurements in photon and electron beams. Exradin W1 showed a temperature dependence of -0.225% °C(-1). The loss of sensitivity with accumulated dose decreased with use. The sensitivity of Exradin W1 was energy independent for high-energy photon and electron beams. All remaining dependencies of Exradin W1 were around or below 0.5%, leading to an uncertainty budget of about 1%. When a dual channel electrometer with automatic trigger was not used, timing effects became significant, increasing uncertainties by one order of magnitude. The Exradin W1 response is energy independent for high energy x-rays and electron beams, and only one calibration coefficient is needed. A temperature correction factor should be applied to keep uncertainties around 2% for absolute dose measurements and around 1% for relative measurements in high-energy photon and electron beams. The Exradin W1 scintillator is an excellent alternative to detectors such as diodes for relative dose measurements.
Yonai, Shunsuke; Matsufuji, Naruhiro; Akahane, Keiichi
2018-04-23
The aim of this work was to estimate typical dose equivalents to out-of-field organs during carbon-ion radiotherapy (CIRT) with a passive beam for prostate cancer treatment. Additionally, sensitivity analyses of organ doses for various beam parameters and phantom sizes were performed. Because the CIRT out-of-field dose depends on the beam parameters, the typical values of those parameters were determined from statistical data on the target properties of patients who received CIRT at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). Using these typical beam-parameter values, out-of-field organ dose equivalents during CIRT for typical prostate treatment were estimated by Monte Carlo simulations using the Particle and Heavy-Ion Transport Code System (PHITS) and the ICRP reference phantom. The results showed that the dose decreased with distance from the target, ranging from 116 mSv in the testes to 7 mSv in the brain. The organ dose equivalents per treatment dose were lower than those either in 6-MV intensity-modulated radiotherapy or in brachytherapy with an Ir-192 source for organs within 40 cm of the target. Sensitivity analyses established that the differences from typical values were within ∼30% for all organs, except the sigmoid colon. The typical out-of-field organ dose equivalents during passive-beam CIRT were shown. The low sensitivity of the dose equivalent in organs farther than 20 cm from the target indicated that individual dose assessments required for retrospective epidemiological studies may be limited to organs around the target in cases of passive-beam CIRT for prostate cancer. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela
2013-08-01
Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.
Develop real-time dosimetry concepts and instrumentation for long term missions
NASA Technical Reports Server (NTRS)
Braby, L. A.
1982-01-01
The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.
Exposure of the surgeon's hands to radiation during hand surgery procedures.
Żyluk, Andrzej; Puchalski, Piotr; Szlosser, Zbigniew; Dec, Paweł; Chrąchol, Joanna
2014-01-01
The objective of the study was to assess the time of exposure of the surgeon's hands to radiation and calculate of the equivalent dose absorbed during surgery of hand and wrist fractures with C-arm fluoroscope guidance. The necessary data specified by the objective of the study were acquired from operations of 287 patients with fractures of fingers, metacarpals, wrist bones and distal radius. 218 operations (78%) were percutaneous procedures and 60 (22%) were performed by open method. Data on the time of exposure and dose of radiation were acquired from the display of the fluoroscope, where they were automatically generated. These data were assigned to the individual patient, type of fracture, method of surgery and the operating surgeon. Fixations of distal radial fractures required longer times of radiation exposure (mean 61 sec.) than fractures of the wrist/metacarpals and fingers (38 and 32 sec., respectively), which was associated with absorption of significantly higher equivalent doses. Fixations of distal radial fractures by open method were associated with statistically significantly higher equivalent doses (0.41 mSv) than percutaneous procedures (0.3 mSv). Fixations of wrist and metacarpal bone fractures by open method were associated with lower equivalent doses (0.34 mSv) than percutaneous procedures (0.37 mSv),but the difference was not significant. Fixations of finger fractures by open method were associated with lower equivalent doses (0.13 mSv) than percutaneous procedures (0.24 mSv), the difference being statistically non-significant. Statistically significant differences in exposure time and equivalent doses were noted between 4 surgeons participating in the study, but no definitive relationship was found between these parameters and surgeons' employment time. 1. Hand surgery procedures under fluoroscopic guidance are associated with mild exposure of the surgeons' hands to radiation. 2. The equivalent dose was related to the type of fracture, operative technique and - to some degree - to the time of employment of the surgeon.
NASA Astrophysics Data System (ADS)
Athar, Basit S.; Paganetti, Harald
2009-08-01
In this work we have simulated the absorbed equivalent doses to various organs distant to the field edge assuming proton therapy treatments of brain or spine lesions. We have used computational whole-body (gender-specific and age-dependent) voxel phantoms and considered six treatment fields with varying treatment volumes and depths. The maximum neutron equivalent dose to organs near the field edge was found to be approximately 8 mSv Gy-1. We were able to clearly demonstrate that organ-specific neutron equivalent doses are age (stature) dependent. For example, assuming an 8-year-old patient, the dose to brain from the spinal fields ranged from 0.04 to 0.10 mSv Gy-1, whereas the dose to the brain assuming a 9-month-old patient ranged from 0.5 to 1.0 mSv Gy-1. Further, as the field aperture opening increases, the secondary neutron equivalent dose caused by the treatment head decreases, while the secondary neutron equivalent dose caused by the patient itself increases. To interpret the dosimetric data, we analyzed second cancer incidence risks for various organs as a function of patient age and field size based on two risk models. The results show that, for example, in an 8-year-old female patient treated with a spinal proton therapy field, breasts, lungs and rectum have the highest radiation-induced lifetime cancer incidence risks. These are estimated to be 0.71%, 1.05% and 0.60%, respectively. For an 11-year-old male patient treated with a spinal field, bronchi and rectum show the highest risks of 0.32% and 0.43%, respectively. Risks for male and female patients increase as their age at treatment time decreases.
NASA Astrophysics Data System (ADS)
Fontenot, Jonas; Taddei, Phillip; Zheng, Yuanshui; Mirkovic, Dragan; Jordan, Thomas; Newhauser, Wayne
2008-03-01
Proton therapy reduces the integral therapeutic dose required for local control in prostate patients compared to intensity-modulated radiotherapy. One proposed benefit of this reduction is an associated decrease in the incidence of radiogenic secondary cancers. However, patients are also exposed to stray radiation during the course of treatment. The purpose of this study was to quantify the stray radiation dose received by patients during proton therapy for prostate cancer. Using a Monte Carlo model of a proton therapy nozzle and a computerized anthropomorphic phantom, we determined that the effective dose from stray radiation per therapeutic dose (E/D) for a typical prostate patient was approximately 5.5 mSv Gy-1. Sensitivity analysis revealed that E/D varied by ±30% over the interval of treatment parameter values used for proton therapy of the prostate. Equivalent doses per therapeutic dose (HT/D) in specific organs at risk were found to decrease with distance from the isocenter, with a maximum of 12 mSv Gy-1 in the organ closest to the treatment volume (bladder) and 1.9 mSv Gy-1 in the furthest (esophagus). Neutrons created in the nozzle predominated effective dose, though neutrons created in the patient contributed substantially to the equivalent dose in organs near the proton field. Photons contributed less than 15% to equivalent doses.
Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Potapov, Y. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Watts, J. W. Jr; Parnell, T. A.; Schopper, E.; Baican, B.;
1992-01-01
Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the LET spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm-2 shielding) and outside (1 g cm-2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d-1, respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d-1. The effects of the flight parameters on the total fluence of, and on the dose from, the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.
Hamada, Nobuyuki; Fujimichi, Yuki
2014-01-01
Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798
β-blocker dosage and outcomes after acute coronary syndrome.
Allen, Jason E; Knight, Stacey; McCubrey, Raymond O; Bair, Tami; Muhlestein, Joseph Brent; Goldberger, Jeffrey J; Anderson, Jeffrey L
2017-02-01
Although β-blockers increase survival in acute coronary syndrome (ACS) patients, the doses used in trials were higher than doses used in practice, and recent data do not support an advantage of higher doses. We hypothesized that rates of major adverse cardiac events (MACE), all-cause death, myocardial infarction, and stroke are equivalent for patients on low-dose and high-dose β-blocker. Patients admitted to Intermountain Healthcare with ACS and diagnosed with ≥70% coronary stenosis between 1994 and 2013 were studied (N = 7,834). We classified low dose as ≤25% and high dose as ≥50% of an equivalent daily dose of 200 mg of metoprolol. Multivariate analyses were used to test association between low-dose versus high-dose β-blocker dosage and MACE at 0-6 months and 6-24 months. A total of 5,287 ACS subjects were discharged on β-blockers (87% low dose, 12% high dose, and 1% intermediate dose). The 6-month MACE outcomes rates for the β-blocker dosage (low versus high) were not equivalent (P = .18) (hazard ratio [HR] = 0.76; 95% CI, 0.52-1.10). However, subjects on low-dose β-blocker therapy did have a significantly decreased risk of myocardial infarction for 0-6 months (HR = 0.53; 95% CI, 0.33-0.86). The rates of MACE events during the 6-24 months after presentation with ACS were equivalent for the 2 doses (P = .009; HR = 1.03 [95% CI, 0.70-1.50]). In ACS patients, rates of MACE for high-dose and low-dose β-blocker doses are similar. These findings question the importance of achieving a high dose of β-blocker in ACS patients and highlight the need for further investigation of this clinical question. Copyright © 2016 Elsevier Inc. All rights reserved.
Zavgorodni, S
2004-12-07
Inter-fraction dose fluctuations, which appear as a result of setup errors, organ motion and treatment machine output variations, may influence the radiobiological effect of the treatment even when the total delivered physical dose remains constant. The effect of these inter-fraction dose fluctuations on the biological effective dose (BED) has been investigated. Analytical expressions for the BED accounting for the dose fluctuations have been derived. The concept of biological effective constant dose (BECD) has been introduced. The equivalent constant dose (ECD), representing the constant physical dose that provides the same cell survival fraction as the fluctuating dose, has also been introduced. The dose fluctuations with Gaussian as well as exponential probability density functions were investigated. The values of BECD and ECD calculated analytically were compared with those derived from Monte Carlo modelling. The agreement between Monte Carlo modelled and analytical values was excellent (within 1%) for a range of dose standard deviations (0-100% of the dose) and the number of fractions (2 to 37) used in the comparison. The ECDs have also been calculated for conventional radiotherapy fields. The analytical expression for the BECD shows that BECD increases linearly with the variance of the dose. The effect is relatively small, and in the flat regions of the field it results in less than 1% increase of ECD. In the penumbra region of the 6 MV single radiotherapy beam the ECD exceeded the physical dose by up to 35%, when the standard deviation of combined patient setup/organ motion uncertainty was 5 mm. Equivalently, the ECD field was approximately 2 mm wider than the physical dose field. The difference between ECD and the physical dose is greater for normal tissues than for tumours.
NASA Astrophysics Data System (ADS)
Kry, Stephen
Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was possible to estimate the risk of fatal secondary malignancy, which was consistent with previous estimates except for the neutron discrepancy. Conclusions. The Monte Carlo model developed here is well suited to studying the out-of-field dose equivalent from photons and neutrons under a variety of irradiation configurations, including complex treatments on complex phantoms. Based on the calculated dose equivalents, it is possible to estimate the risk of secondary malignancy associated with out-of-field doses. The Monte Carlo model should be used to study, quantify, and minimize the out-of-field dose equivalent and associated risks received by patients undergoing radiation therapy.
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for general employees. 835.202...
Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina
2018-06-01
Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, M; Tabatabaei, Z; Noghreiyan, A Vejdani
Purpose: The aim of this study is to evaluate soft tissue composition effect on dose distribution for various soft tissues and various depths in radiotherapy with 6 MV photon beam of a medical linac. Methods: A phantom and Siemens Primus linear accelerator were simulated using MCNPX Monte Carlo code. In a homogeneous cubic phantom, six types of soft tissue and three types of tissue-equivalent materials were defined separately. The soft tissues were muscle (skeletal), adipose tissue, blood (whole), breast tissue, soft tissue (9-component) and soft tissue (4-component). The tissue-equivalent materials included: water, A-150 tissue-equivalent plastic and perspex. Photon dose relativemore » to dose in 9-component soft tissue at various depths on the beam’s central axis was determined for the 6 MV photon beam. The relative dose was also calculated and compared for various MCNPX tallies including,F8, F6 and,F4. Results: The results of the relative photon dose in various materials relative to dose in 9-component soft tissue and using different tallies are reported in the form of tabulated data. Minor differences between dose distributions in various soft tissues and tissue-equivalent materials were observed. The results from F6 and F4 were practically the same but different with,F8 tally. Conclusion: Based on the calculations performed, the differences in dose distributions in various soft tissues and tissue-equivalent materials are minor but they could be corrected in radiotherapy calculations to upgrade the accuracy of the dosimetric calculations.« less
NASA Astrophysics Data System (ADS)
Ávila, O.; Torres-Ulloa, C. L.; Medina, L. A.; Trujillo-Zamudio, F. E.; de Buen, I. Gamboa; Buenfil, A. E.; Brandan, M. E.
2010-12-01
Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerología, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with 137Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrología, to known 137Cs gamma radiation air kerma. Radionuclides considered for this study are 131I, 18F, 67Ga, 99mTc, 111In, 201Tl and 137Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placed during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with 131I and 137Cs. High dose values were found at the waste storage room, outside corridor of 137Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the 137Cs brachytherapy corridor is equal to (18.51±0.02)×10-3 mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05±0.03)×10-3 mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).
A comparison of quantum limited dose and noise equivalent dose
NASA Astrophysics Data System (ADS)
Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang
2016-03-01
Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.
14 CFR Appendix A to Part 121 - First Aid Kits and Emergency Medical Kits
Code of Federal Regulations, 2013 CFR
2013-01-01
..., 50cc 1 Epinephrine 1:1000, single dose ampule or equivalent) 2 Diphenhydramine HC1 injection, single dose ampule or equivalent 2 Nitroglycerin tablets 10 Basic instructions for use of the drugs in the kit 1 protective nonpermeable gloves or equivalent 1 pair 2. As of April 12, 2004, at least one approved...
14 CFR Appendix A to Part 121 - First Aid Kits and Emergency Medical Kits
Code of Federal Regulations, 2010 CFR
2010-01-01
..., 50cc 1 Epinephrine 1:1000, single dose ampule or equivalent) 2 Diphenhydramine HC1 injection, single dose ampule or equivalent 2 Nitroglycerin tablets 10 Basic instructions for use of the drugs in the kit 1 protective nonpermeable gloves or equivalent 1 pair 2. As of April 12, 2004, at least one approved...
14 CFR Appendix A to Part 121 - First Aid Kits and Emergency Medical Kits
Code of Federal Regulations, 2014 CFR
2014-01-01
..., 50cc 1 Epinephrine 1:1000, single dose ampule or equivalent) 2 Diphenhydramine HC1 injection, single dose ampule or equivalent 2 Nitroglycerin tablets 10 Basic instructions for use of the drugs in the kit 1 protective nonpermeable gloves or equivalent 1 pair 2. As of April 12, 2004, at least one approved...
14 CFR Appendix A to Part 121 - First Aid Kits and Emergency Medical Kits
Code of Federal Regulations, 2011 CFR
2011-01-01
..., 50cc 1 Epinephrine 1:1000, single dose ampule or equivalent) 2 Diphenhydramine HC1 injection, single dose ampule or equivalent 2 Nitroglycerin tablets 10 Basic instructions for use of the drugs in the kit 1 protective nonpermeable gloves or equivalent 1 pair 2. As of April 12, 2004, at least one approved...
14 CFR Appendix A to Part 121 - First Aid Kits and Emergency Medical Kits
Code of Federal Regulations, 2012 CFR
2012-01-01
..., 50cc 1 Epinephrine 1:1000, single dose ampule or equivalent) 2 Diphenhydramine HC1 injection, single dose ampule or equivalent 2 Nitroglycerin tablets 10 Basic instructions for use of the drugs in the kit 1 protective nonpermeable gloves or equivalent 1 pair 2. As of April 12, 2004, at least one approved...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, Cristian; Perez-Calatayud, Jose; Ballester, Facundo
Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes frommore » an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials such as air, bone, or lungs, produced variations between both phantoms which were at most 35% in the considered organ equivalent doses. Finally, effective doses per clinical absorbed dose from IMRT and proton therapy were comparable to those from both brachytherapy sources, with brachytherapy being advantageous over external beam radiation therapy for the furthest organs. Conclusions: A database of organ equivalent doses when applying HDR brachytherapy to the prostate with either {sup 60}Co or {sup 192}Ir is provided. According to physical considerations, {sup 192}Ir is dosimetrically advantageous over {sup 60}Co sources at large distances, but not in the closest organs. Damage to distant healthy organs per clinical absorbed dose is lower with brachytherapy than with IMRT or protons, although the overall effective dose per Gy given to the prostate seems very similar. Given that there are several possible fractionation schemes, which result in different total amounts of therapeutic absorbed dose, advantage of a radiation treatment (according to equivalent dose to healthy organs) is treatment and facility dependent.« less
Huhn, Carolin; Pyell, Ute
2008-07-11
It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.
Evaluation of Exposure From a Low Energy X-Ray Device Using Thermoluminescent Dosimeters
NASA Technical Reports Server (NTRS)
Edwards, David L.; Harris, William S., Jr.
1997-01-01
The exposure from an electron beam welding device was evaluated using thermoluminescent dosimeters (TLDs). The device generated low energy X-rays which the current dose equivalent conversion algorithm was not designed to evaluate making it necessary to obtain additional information relating to TLD operation at the photon energies encountered with the device. This was accomplished by performing irradiations at the National Institute of Standards and Technology (NIST) using low energy X-ray techniques. The resulting data was used to determine TLD badge response for low energy X-rays and to establish the relationship between TLD element response and the dose equivalent at specific depths in tissue for these photon energies. The new energy/dose equivalent calibration data was used to calculate the shallow and eye dose equivalent of badges exposed to the device.
Measurement of absorbed dose with a bone-equivalent extrapolation chamber.
DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B
2002-03-01
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.
Kusano, Maggie; Caldwell, Curtis B
2014-07-01
A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.
Pázmándi, Tamás; Deme, Sándor; Láng, Edit
2006-01-01
One of the many risks of long-duration space flights is the excessive exposure to cosmic radiation, which has great importance particularly during solar flares and higher sun activity. Monitoring of the cosmic radiation on board space vehicles is carried out on the basis of wide international co-operation. Since space radiation consists mainly of charged heavy particles (protons, alpha and heavier particles), the equivalent dose differs significantly from the absorbed dose. A radiation weighting factor (w(R)) is used to convert absorbed dose (Gy) to equivalent dose (Sv). w(R) is a function of the linear energy transfer of the radiation. Recently used equipment is suitable for measuring certain radiation field parameters changing in space and over time, so a combination of different measurements and calculations is required to characterise the radiation field in terms of dose equivalent. The objectives of this project are to develop and manufacture a three-axis silicon detector telescope, called Tritel, and to develop software for data evaluation of the measured energy deposition spectra. The device will be able to determine absorbed dose and dose equivalent of the space radiation.
Biological effects and equivalent doses in radiotherapy: A software solution
Voyant, Cyril; Julian, Daniel; Roustit, Rudy; Biffi, Katia; Lantieri, Céline
2013-01-01
Background The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding delivered doses or any future prescriptions relating to treatment changes. Aim We, therefore, propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). Materials and methods The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. Results and conclusions The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to an equivalent dose computed using standard calculators in seven French radiotherapy centers. PMID:24936319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolch, W E; Eckerman, Keith F; Sgouros, George
2009-03-01
The internal dosimetry schema of the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine has provided a broad framework for assessment of the absorbed dose to whole organs, tissue subregions, voxelized tissue structures, and individual cellular compartments for use in both diagnostic and therapeutic nuclear medicine. The schema was originally published in 1968, revised in 1976, and republished in didactic form with comprehensive examples as the MIRD primer in 1988 and 1991. The International Commission on Radiological Protection (ICRP) is an organization that also supplies dosimetric models and technical data, for use in providing recommendations formore » limits on ionizing radiation exposure to workers and members of the general public. The ICRP has developed a dosimetry schema similar to that of the MIRD Committee but has used different terminology and symbols for fundamental quantities such as the absorbed fraction, specific absorbed fraction, and various dose coefficients. The MIRD Committee objectives for this pamphlet are 3-fold: to restate its schema for assessment of absorbed dose in a manner consistent with the needs of both the nuclear medicine and the radiation protection communities, with the goal of standardizing nomenclature; to formally adopt the dosimetry quantities equivalent dose and effective dose for use in comparative evaluations of potential risks of radiation-induced stochastic effects to patients after nuclear medicine procedures; and to discuss the need to identify dosimetry quantities based on absorbed dose that address deterministic effects relevant to targeted radionuclide therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony
2016-03-08
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.
Patient-specific dose estimation for pediatric chest CT
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.
2008-01-01
Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols. PMID:19175138
Patient-specific dose estimation for pediatric chest CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiang; Samei, Ehsan; Segars, W. Paul
2008-12-15
Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structuresmore » were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.« less
NASA Technical Reports Server (NTRS)
Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Sun, Rai Ko S.F.
1994-01-01
A device for measuring dose equivalents in neutron radiation fields. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning.
Assessment of radiation doses from residential smoke detectors that contain americium-241
NASA Astrophysics Data System (ADS)
Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.
Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.
Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C
2006-07-01
Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children.
NASA Astrophysics Data System (ADS)
Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang
2015-07-01
We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.
Cosmic ray LET spectra and doses on board Cosmos-2044 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Dudkin, V. E.; Kovalev, E. E.; Potapov, Yu. V.; Benton, E. V.; Frank, A. L.; Benton, E. R.; Beaujean, R.; Heilmann, C.
1995-01-01
Results of the experiments on board Cosmos-2044 (Biosatellite 9) are presented. Various nuclear track detectors (NTD) (dielectric, AgCl-based, nuclear emulsions) were used to obtain the Linear Energy Transfer (LET) spectra inside and outside the satellite. The spectra from the different NTDs have proved to be in general agreement. The results of LET spectra calculations using two different models are also presented. The resultant LET distributions are used to calculate the absorbed and equivalent doses and the orbit-averaged quality factors (QF) of the cosmic rays (CR). Absorbed dose rates inside (approximately 20 g cm (exp -2) shielding) and outside (1 g cm(exp -2) the spacecraft, omitting electrons, were found to be 4.8 and 8.6 mrad d (exp -1), respectively, while the corresponding equivalent doses were 8.8 and 19.7 mrem d(exp -1). The effects of the flight parameters on the total fluence of, and on the dose from the CR particles are analyzed. Integral dose distributions of the detected particles are also determined. The LET values which separate absorbed and equivalent doses into 50% intervals are estimated. The CR-39 dielectric NTD is shown to detect 20-30% of the absorbed dose and 60-70% of the equivalent dose in the Cosmos-2044 orbit. The influence of solar activity phase on the magnitude of CR flux is discussed.
Horn, Kevin M [Albuquerque, NM
2008-05-20
A broad-beam laser irradiation apparatus can measure the parametric or functional response of a semiconductor device to exposure to dose-rate equivalent infrared laser light. Comparisons of dose-rate response from before, during, and after accelerated aging of a device, or from periodic sampling of devices from fielded operational systems can determine if aging has affected the device's overall functionality. The dependence of these changes on equivalent dose-rate pulse intensity and/or duration can be measured with the apparatus. The synchronized introduction of external electrical transients into the device under test can be used to simulate the electrical effects of the surrounding circuitry's response to a radiation exposure while exposing the device to dose-rate equivalent infrared laser light.
LET spectra measurements from the STS-35 CPDs
NASA Technical Reports Server (NTRS)
1995-01-01
Linear energy transfer (LET) spectra derived form automated track analysis system (ATAS) track parameter measurements for crew passive dosimeters (CPD's) flown with the astronauts on STS-35 are plotted. The spread between the seven individual spectra is typical of past manual measurements of sets of CPD's. This difference is probably due to the cumulative net shielding variations experienced by the CPD's as the astronauts carrying them went about their activities on the Space Shuttle. The STS-35 mission was launched on Dec. 2, 1990, at 28.5 degrees inclination and 352-km altitude. This is somewhat higher than the nominal 300-km flights and the orbit intersects more of the high intensity trapped proton region in the South Atlantic Anomaly (SAA). However, in comparison with APD spectra measured on earlier lower altitude missions (STS-26, -29, -30, -32), the flux spectra are all roughly comparable. This may be due to the fact that the STS-35 mission took place close to solar maximum (Feb. 1990), or perhaps to shielding differences. The corresponding dose and dose equivalent spectra for this mission are shown. The effect of statistical fluctuations at the higher LET values, where track densities are small, is very noticeable. This results in an increased spread within the dose rate and dose equivalent rate spectra, as compared to the flux spectra. The contribution to dose and dose equivalent per measured track is much greater in the high LET region and the differences, though numerically small, are heavily weighted in the integral spectra. The optimum measurement and characterization of the high LET tails of the spectra represent an important part of the research into plastic nuclear track detector (PNTD) response. The integral flux, dose rate, dose equivalent rate and mission dose equivalent for the seven astronauts are also given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avila, O.; Torres-Ulloa, C. L.; Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, AP 70-542, 04510, DF
2010-12-07
Ambient dose equivalent values were determined in several sites at the Instituto Nacional de Cancerologia, Departmento de Medicina Nuclear, using TLD-100 and TLD-900 thermoluminescent dosemeters. Additionally, ambient dose equivalent was measured at a corridor outside the hospitalization room for patients treated with {sup 137}Cs brachytherapy. Dosemeter calibration was performed at the Instituto Nacional de Investigaciones Nucleares, Laboratorio de Metrologia, to known {sup 137}Cs gamma radiation air kerma. Radionuclides considered for this study are {sup 131}I, {sup 18}F, {sup 67}Ga, {sup 99m}Tc, {sup 111}In, {sup 201}Tl and {sup 137}Cs, with main gamma energies between 93 and 662 keV. Dosemeters were placedmore » during a five month period in the nuclear medicine rooms (containing gamma-cameras), injection corridor, patient waiting areas, PET/CT study room, hot lab, waste storage room and corridors next to the hospitalization rooms for patients treated with {sup 131}I and {sup 137}Cs. High dose values were found at the waste storage room, outside corridor of {sup 137}Cs brachytherapy patients and PET/CT area. Ambient dose equivalent rate obtained for the {sup 137}Cs brachytherapy corridor is equal to (18.51{+-}0.02)x10{sup -3} mSv/h. Sites with minimum doses are the gamma camera rooms, having ambient dose equivalent rates equal to (0.05{+-}0.03)x10{sup -3} mSv/h. Recommendations have been given to the Department authorities so that further actions are taken to reduce doses at high dose sites in order to comply with the ALARA principle (as low as reasonably achievable).« less
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1998-01-01
A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.
Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.
Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less
Organ and effective dose coefficients for cranial and caudal irradiation geometries: Neutrons
Veinot, K. G.; Eckerman, K. F.; Hertel, N. E.; ...
2016-08-29
Dose coefficients based on the recommendations of International Commission on Radiological Protection (ICRP) Publication 103 were reported in ICRP Publication 116, the revision of ICRP Publication 74 and ICRU Publication 57 for the six reference irradiation geometries: anterior–posterior, posterior–anterior, right and left lateral, rotational and isotropic. In this work, dose coefficients for neutron irradiation of the body with parallel beams directed upward from below the feet (caudal) and downward from above the head (cranial) using the ICRP 103 methodology were computed using the MCNP 6.1 radiation transport code. The dose coefficients were determined for neutrons ranging in energy from 10more » –9 MeV to 10 GeV. Here, at energies below about 500 MeV, the cranial and caudal dose coefficients are less than those for the six reference geometries reported in ICRP Publication 116.« less
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Suzuki, Akira; Matsubara, Kosuke; Sasa, Yuko
2018-04-01
The present study aimed to determine doses delivered to the eye lenses of surgeons while using the inverted-C-arm technique and the protective effect of leaded spectacles during orthopedic surgery. The kerma in air was measured at five positions on leaded glasses positioned near the eye lens and on the neck using small optically stimulated luminescence (OSL) dosemeters. The lens equivalent dose was also measured at the neck using an OSL dosemeter. The maximum equivalent dose to the eye lens and the maximum kerma were 0.8 mSv/month and 0.66 mGy/month, respectively. The leaded glasses reduced the exposure by ~60%. Even if the surgeons are exposed to the maximum dose of X-ray radiation for 5 years, the equivalent doses to the eye lens will not exceed the present limit recommended by the ICRP.
NASA Astrophysics Data System (ADS)
Kramer, R.; Vieira, J. W.; Khoury, H. J.; Lima, F. de Andrade
2004-03-01
The International Commission on Radiological Protection intends to revise the organ and tissue equivalent dose conversion coefficients published in various reports. For this purpose the mathematical human medical internal radiation dose (MIRD) phantoms, actually in use, have to be replaced by recently developed voxel-based phantoms. This study investigates the dosimetric consequences, especially with respect to the effective male dose, if not only a MIRD phantom is replaced by a voxel phantom, but also if the tissue compositions and the radiation transport codes are changed. This task will be resolved by systematically replacing in the mathematical ADAM/GSF exposure model, first the radiation transport code, then the tissue composition and finally the phantom anatomy, in order to arrive at the voxel-based MAX/EGS4 exposure model. The results show that the combined effect of these replacements can decrease the effective male dose by up to 25% for external exposures to photons for incident energies above 30 keV for different field geometries, mainly because of increased shielding by a heterogeneous skeleton and by the overlying adipose and muscle tissue, and also because of the positions internal organs have in a realistically designed human body compared to their positions in the mathematically constructed phantom.
NASA Astrophysics Data System (ADS)
Kramer, R.; Khoury, H. J.; Vieira, J. W.; Kawrakow, I.
2007-11-01
Micro computed tomography (µCT) images of human spongiosa have recently been used for skeletal dosimetry with respect to external exposure to photon radiation. In this previous investigation, the calculation of equivalent dose to the red bone marrow (RBM) and to the bone surface cells (BSC) was based on five different clusters of micro matrices derived from µCT images of vertebrae, and the BSC equivalent dose for 10 µm thickness of the BSC layer was determined using an extrapolation method. The purpose of this study is to extend the earlier investigation by using µCT images from eight different bone sites and by introducing an algorithm for the direct calculation of the BSC equivalent dose with sub-micro voxel resolution. The results show that for given trabecular bone volume fractions (TBVFs) the whole-body RBM equivalent dose does not depend on bone site-specific properties or imaging parameters. However, this study demonstrates that apart from the TBVF and the BSC layer thickness, the BSC equivalent dose additionally depends on a so-called trabecular bone structure (TBS) effect, i.e. that the contribution of photo-electrons released in trabecular bone to the BSC equivalent dose also depends on the bone site-specific structure of the trabeculae. For a given bone site, the TBS effect is also a function of the thickness of the BSC layer, and it could be shown that this effect would disappear almost completely, should the BSC layer thickness be raised from 10 to 50 µm, according to new radiobiological findings.
Hiller, Mauritius; Dewji, Shaheen Azim
2017-02-16
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiller, Mauritius; Dewji, Shaheen Azim
Dose rate coefficients computed using the International Commission on Radiological Protection (ICRP) reference adult female voxel phantom were compared with values computed using the Oak Ridge National Laboratory (ORNL) adult female stylized phantom in an air submersion exposure geometry. This is a continuation of previous work comparing monoenergetic organ dose rate coefficients for the male adult phantoms. With both the male and female data computed, effective dose rate as defined by ICRP Publication 103 was compared for both phantoms. Organ dose rate coefficients for the female phantom and ratios of organ dose rates for the voxel and stylized phantoms aremore » provided in the energy range from 30 to 5 MeV. Analysis of the contribution of the organs to effective dose is also provided. Lastly, comparison of effective dose rates between the voxel and stylized phantoms was within 8% at 100 keV and is <5% between 200 and 5000 keV.« less
Neutrons in active proton therapy: Parameterization of dose and dose equivalent.
Schneider, Uwe; Hälg, Roger A; Lomax, Tony
2017-06-01
One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.
Medical and occupational dose reduction in pediatric barium meal procedures
NASA Astrophysics Data System (ADS)
Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Ledesma, J. A.; Legnani, A.; Bunick, A. P.; Sauzen, J.; Yagui, A.; Vosiak, P.
2017-11-01
Doses received in pediatric Barium Meal procedure can be rather high. It is possible to reduce dose values following the recommendations of the European Communities (EC) and the International Commission on Radiological Protection (ICRP). In the present work, the modifications of radiographic techniques made in a Brazilian hospital according to the EC and the ICRP recommendations and their influence on medical and occupational exposure are reported. The procedures of 49 patients before and 44 after the optimization were studied and air kerma-area product (PK,A) values and the effective doses were evaluated. The occupational equivalent doses were measured next to the eyes, under the thyroid shield and on each hand of both professionals who remained inside the examination room. The implemented modifications reduced by 70% and 60% the PK,A and the patient effective dose, respectively. The obtained dose values are lower than approximately 75% of the results from similar studies. The occupational annual equivalent doses for all studied organs became lower than the limits set by the ICRP. The equivalent doses in one examination were on average below than 75% of similar studies.
NASA Astrophysics Data System (ADS)
Geng, Changran; Moteabbed, Maryam; Seco, Joao; Gao, Yiming; Xu, X. George; Ramos-Méndez, José; Faddegon, Bruce; Paganetti, Harald
2016-01-01
The goal of this work was to determine the scattered photon dose and secondary neutron dose and resulting risk for the sensitive fetus from photon and proton radiotherapy when treating a brain tumor during pregnancy. Anthropomorphic pregnancy phantoms with three stages (3-, 6-, 9-month) based on ICRP reference parameters were implemented in Monte Carlo platform TOPAS, to evaluate the scattered dose and secondary neutron dose and dose equivalent. To evaluate the dose equivalent, dose averaged quality factors were considered for neutrons. This study compared three treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS) and 6-MV 3D conformal photon therapy. The results show that, for 3D conformal photon therapy, the scattered photon dose equivalent to the fetal body increases from 0.011 to 0.030 mSv per treatment Gy with increasing stage of gestation. For PBS, the neutron dose equivalent to the fetal body was significantly lower, i.e. increasing from 1.5 × 10-3 to 2.5 × 10-3 mSv per treatment Gy with increasing stage of gestation. For PPT, the neutron dose equivalent of the fetus decreases from 0.17 to 0.13 mSv per treatment Gy with the growing fetus. The ratios of dose equivalents to the fetus for a 52.2 Gy(RBE) course of radiation therapy to a typical CT scan of the mother’s head ranged from 3.4-4.4 for PBS, 30-41 for 3D conformal photon therapy and 180-500 for PPT, respectively. The attained dose to a fetus from the three modalities is far lower than the thresholds of malformation, severe mental retardation and lethal death. The childhood cancer excessive absolute risk was estimated using a linear no-threshold dose-response relationship. The risk would be 1.0 (95% CI: 0.6, 1.6) and 0.1 (95% CI: -0.01, 0.52) in 105 for the 9-month fetus for PBS with a prescribed dose of 52.2 Gy(RBE). The increased risks for PPT and photon therapy are about two and one orders of magnitude larger than that for PBS, respectively. We can conclude that a pregnant woman with a brain tumor could be treated with pencil beam scanning with acceptable risks to the fetus.
Okunade, Akintunde A.
2007-01-01
In order to achieve uniformity in radiological imaging, it is recommended that the concept of equivalence in shape (quality) and size (quantity) of clinical Xray beams should be used for carrying out the comparative evaluation of image and patient dose. When used under the same irradiation geometry, X-ray beams that are strictly or relatively equivalent in terms of shape and size will produce identical or relatively identical image quality and patient dose. Simple mathematical models and software program EQSPECT.FOR were developed for the comparative evaluation of the performance characteristics in terms of contrast (C), contrast to noise ratio (CNR) and figure-of-merit (FOM = CNR2/DOSE) for spectrally equivalent beams transmitted through filter materials referred to as conventional and k-edged. At the same value of operating potential (kVp), results show that spectrally equivalent beam transmitted through conventional filter with higher atomic number (Z-value) in comparison with that transmitted through conventional filter with lower Z-value resulted in the same value of C and FOM. However, in comparison with the spectrally equivalent beam transmitted through filter of lower Z-value, the beam through filter of higher Z-value produced higher value of CNR and DOSE at equal tube loading (mAs) and kVp. Under the condition of equivalence of spectrum, at scaled (or reduced) tube loading and same kVp, filter materials of higher Z-value can produce the same values of C, CNR, DOSE and FOM as filter materials of lower Z-value. Unlike the case of comparison of spectrally equivalent beam transmitted through one conventional filter and that through another conventional filter, it is not possible to derive simple mathematical formulations for the relative performance of spectrally equivalent beam transmitted through a given conventional filter material and that through kedge filter material. PMID:21224928
Rai, K.S.F.
1994-01-11
A device for measuring dose equivalents in neutron radiation fields is described. The device includes nested symmetrical hemispheres (forming spheres) of different neutron moderating materials that allow the measurement of dose equivalents from 0.025 eV to past 1 GeV. The layers of moderating material surround a spherical neutron counter. The neutron counter is connected by an electrical cable to an electrical sensing means which interprets the signal from the neutron counter in the center of the moderating spheres. The spherical shape of the device allows for accurate measurement of dose equivalents regardless of its positioning. 2 figures.
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.
1995-01-01
The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.
1995-01-01
The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.
Radiation measurements and doses at SST altitudes
NASA Technical Reports Server (NTRS)
Foelsche, T.
1972-01-01
Radiation components and dose equivalents due to galactic and solar cosmic rays in the high atmosphere, especially at SST altitudes, are presented. The dose equivalent rate for the flight personnel flying 500 hours per year in cruise altitudes of 60,000-65,000 feet (18-19.5 km) in high magnetic latitudes is about 0.75-1.0 rem per year averaged over the solar cycle, or about 15-20 percent of the maximum permissible dose rate.
Organ dose conversion coefficients for tube current modulated CT protocols for an adult population
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan
2016-03-01
In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.
The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology?
Wood, R E; Harris, A M; van der Merwe, E J; Nortjé, C J
1991-05-01
A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
NASA Astrophysics Data System (ADS)
Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini
Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.
MO-AB-BRA-04: Radiation Measurements with a DNA Double-Strand-Break Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obeidat, M; Cline, K; Stathakis, S
Purpose: Many types of dosimeters are used to measure radiation, but none of them directly measures the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. Methods: The dosimeter has DNA strands, which are labeled on one end with biotin and on the other with fluorescein. The biotin attaches these strands to magnetic beads. We suspended the DNA dosimeter in phosphate-buffered saline (PBS) as it matches the internal environment of the body. We placed smallmore » volumes (50µL) of the DNA dosimeter into tubes and irradiated these samples in a water-equivalent plastic phantom with several doses (three samples per dose). After irradiating the samples, a magnet was placed against the tubes. The fluorescein attached to broken DNA strands was extracted (called the supernatant) and placed into a different tube. The fluorescein on the unbroken strands remained attached to the beads in the tube and was re-suspended with 50µL of PBS. A fluorescence reader was used to measure the fluorescence for both the re-suspended beads and supernatant. To prove that we are measuring DSB, we tested dosimeter response with two different lengths of attached DNA strands (1 and 4 kilo-base pair). Results: The probability of DSB at the dose levels of 5, 10, 25, and 50 Gy were 0.05, 0.08, 0.12, and 0.19, respectively, while the coefficients of variation were 0.14, 0.07, 0.02, and 0.01, respectively. The 4 kilo-base-pair dosimeter produced 5.3 times the response of the 1 kilo-base-pair dosimeter. Conclusion: The DNA dosimeter yields a measurable response to dose that scales with the DNA strand length. The goal now is to refine the dosimeter fabrication to reproducibly create a low coefficient of variation for the lower doses. This work was supported in part by Yarmouk University (Irbid, Jordan) and CPRIT (RP140105)« less
Alejo, L; Koren, C; Corredoira, E; Sánchez, F; Bayón, J; Serrada, A; Guibelalde, E
2017-04-01
To analyse the correlations between the eye lens dose estimates performed with dosimeters placed next to the eyes of paediatric interventional cardiologists working with a biplane system, the personal dose equivalent measured on the thorax and the patient dose. The eye lens dose was estimated in terms of H p (0.07) on a monthly basis, placing optically stimulated luminescence dosimeters (OSLDs) on goggles. The H p (0.07) personal dose equivalent was measured over aprons with whole-body OSLDs. Data on patient dose as recorded by the kerma-area product (P KA ) were collected using an automatic dose management system. The 2 paediatric cardiologists working in the facility were involved in the study, and 222 interventions in a 1-year period were evaluated. The ceiling-suspended screen was often disregarded during interventions. The annual eye lens doses estimated on goggles were 4.13±0.93 and 4.98±1.28mSv. Over the aprons, the doses obtained were 10.83±0.99 and 11.97±1.44mSv. The correlation between the goggles and the apron dose was R 2 =0.89, with a ratio of 0.38. The correlation with the patient dose was R 2 =0.40, with a ratio of 1.79μSvGy -1 cm -2 . The dose per procedure obtained over the aprons was 102±16μSv, and on goggles 40±9μSv. The eye lens dose normalized to P KA was 2.21±0.58μSvGy -1 cm -2 . Measurements of personal dose equivalent over the paediatric cardiologist's apron are useful to estimate eye lens dose levels if no radiation protection devices are typically used. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Assessment of radiation doses from residential smoke detectors that contain americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Donnell, F.R.; Etnier, E.L.; Holton, G.A.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq (3 ..mu..Ci) americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv (0.4 prem) to 20 nSv (2 ..mu..rem) for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 ..mu..Svmore » (0.0006 to 8 mrem) to total body and from 0.06 to 800 ..mu..Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft/sup 2/).« less
Zahnreich, Sebastian; Ebersberger, Anne; Kaina, Bernd; Schmidberger, Heinz
2015-04-01
The aim of this current study was to quantitatively describe radiation-induced DNA damage and its distribution in leukocytes of cancer patients after fractionated partial- or total-body radiotherapy. Specifically, the impact of exposed anatomic region and administered dose was investigated in breast and prostate cancer patients receiving partial-body radiotherapy. DNA double-strand breaks (DSBs) were quantified by γ-H2AX immunostaining. The frequency of unstable chromosomal aberrations in stimulated lymphocytes was also determined and compared with the frequency of DNA DSBs in the same samples. The frequency of radiation-induced DNA damage was converted into dose, using ex vivo generated calibration curves, and was then compared with the administered physical dose. This study showed that 0.5 h after partial-body radiotherapy the quantity of radiation-induced γ-H2AX foci increased linearly with the administered equivalent whole-body dose for both tumor entities. Foci frequencies dropped 1 day thereafter but proportionality to the equivalent whole-body dose was maintained. Conversely, the frequency of radiation-induced cytogenetic damage increased from 0.5 h to 1 day after the first partial-body exposure with a linear dependence on the administered equivalent whole-body dose, for prostate cancer patients only. Only γ-H2AX foci assessment immediately after partial-body radiotherapy was a reliable measure of the expected equivalent whole-body dose. Local tumor doses could be approximated with both assays after one day. After total-body radiotherapy satisfactory dose estimates were achieved with both assays up to 8 h after exposure. In conclusion, the quantification of radiation-induced γ-H2AX foci, but not cytogenetic damage in peripheral leukocytes was a sensitive and rapid biodosimeter after acute heterogeneous irradiation of partial body volumes that was able to primarily assess the absorbed equivalent whole-body dose.
Conversion coefficients for determining organ doses in paediatric spine radiography.
Seidenbusch, Michael; Schneider, Karl
2014-04-01
Knowledge of organ and effective doses achieved during paediatric x-ray examinations is an important prerequisite for assessment of radiation burden to the patient. Conversion coefficients for reconstruction of organ and effective doses from entrance doses for segmental spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients are provided regarding the Guidelines of Good Radiographic Technique of the European Commission. Using the personal computer program PCXMC developed by the Finnish Centre for Radiation and Nuclear Safety (Säteilyturvakeskus STUK), conversion coefficients for conventional segmental spine radiographs were calculated performing Monte Carlo simulations in mathematical hermaphrodite phantom models describing patients of different ages. The clinical variation of beam collimation was taken into consideration by defining optimal and suboptimal radiation field settings. Conversion coefficients for the reconstruction of organ doses in about 40 organs and tissues from measured entrance doses during cervical, thoracic and lumbar spine radiographs of 0-, 1-, 5-, 10-, 15- and 30-year-old patients were calculated for the standard sagittal and lateral beam projections and the standard focus detector distance of 115 cm. The conversion coefficients presented may be used for organ dose assessments from entrance doses measured during spine radiographs of patients of all age groups and all field settings within the optimal and suboptimal standard field settings.
Progress in radar snow research. [Brookings, South Dakota
NASA Technical Reports Server (NTRS)
Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.
1981-01-01
Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam
NASA Technical Reports Server (NTRS)
Cox, Bradley
2009-01-01
The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wroe, Andrew; Centre for Medical Radiation Physics, University of Wollongong, Wollongong; Clasie, Ben
2009-01-01
Purpose: Microdosimetric measurements were performed at Massachusetts General Hospital, Boston, MA, to assess the dose equivalent external to passively delivered proton fields for various clinical treatment scenarios. Methods and Materials: Treatment fields evaluated included a prostate cancer field, cranial and spinal medulloblastoma fields, ocular melanoma field, and a field for an intracranial stereotactic treatment. Measurements were completed with patient-specific configurations of clinically relevant treatment settings using a silicon-on-insulator microdosimeter placed on the surface of and at various depths within a homogeneous Lucite phantom. The dose equivalent and average quality factor were assessed as a function of both lateral displacement frommore » the treatment field edge and distance downstream of the beam's distal edge. Results: Dose-equivalent value range was 8.3-0.3 mSv/Gy (2.5-60-cm lateral displacement) for a typical prostate cancer field, 10.8-0.58 mSv/Gy (2.5-40-cm lateral displacement) for the cranial medulloblastoma field, 2.5-0.58 mSv/Gy (5-20-cm lateral displacement) for the spinal medulloblastoma field, and 0.5-0.08 mSv/Gy (2.5-10-cm lateral displacement) for the ocular melanoma field. Measurements of external field dose equivalent for the stereotactic field case showed differences as high as 50% depending on the modality of beam collimation. Average quality factors derived from this work ranged from 2-7, with the value dependent on the position within the phantom in relation to the primary beam. Conclusions: This work provides a valuable and clinically relevant comparison of the external field dose equivalents for various passively scattered proton treatment fields.« less
Fell, T P
2007-01-01
The ICRP has published dose coefficients for the ingestion or inhalation of radionuclides in a series of reports covering intakes by workers and members of the public including children and pregnant or lactating women. The calculation of these coefficients conveniently divides into two distinct parts--the biokinetic and dosimetric. This paper gives a brief summary of the methods used to solve the biokinetic problem in the generation of dose coefficients on behalf of the ICRP, as implemented in the Health Protection Agency's internal dosimetry code PLEIADES.
Portable neutron spectrometer and dosimeter
Waechter, D.A.; Erkkila, B.H.; Vasilik, D.G.
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
Portable neutron spectrometer and dosimeter
Waechter, David A.; Erkkila, Bruce H.; Vasilik, Dennis G.
1985-01-01
The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.
Neubauer, Jakob; Benndorf, Matthias; Reidelbach, Carolin; Krauß, Tobias; Lampert, Florian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Fiebich, Martin; Goerke, Sebastian M.
2016-01-01
Purpose To compare the diagnostic accuracy of radiography, to radiography equivalent dose multidetector computed tomography (RED-MDCT) and to radiography equivalent dose cone beam computed tomography (RED-CBCT) for wrist fractures. Methods As study subjects we obtained 10 cadaveric human hands from body donors. Distal radius, distal ulna and carpal bones (n = 100) were artificially fractured in random order in a controlled experimental setting. We performed radiation dose equivalent radiography (settings as in standard clinical care), RED-MDCT in a 320 row MDCT with single shot mode and RED-CBCT in a device dedicated to musculoskeletal imaging. Three raters independently evaluated the resulting images for fractures and the level of confidence for each finding. Gold standard was evaluated by consensus reading of a high-dose MDCT. Results Pooled sensitivity was higher in RED-MDCT with 0.89 and RED-MDCT with 0.81 compared to radiography with 0.54 (P = < .004). No significant differences were detected concerning the modalities’ specificities (with values between P = .98). Raters' confidence was higher in RED-MDCT and RED-CBCT compared to radiography (P < .001). Conclusion The diagnostic accuracy of RED-MDCT and RED-CBCT for wrist fractures proved to be similar and in some parts even higher compared to radiography. Readers are more confident in their reporting with the cross sectional modalities. Dose equivalent cross sectional computed tomography of the wrist could replace plain radiography for fracture diagnosis in the long run. PMID:27788215
Binukumar, John Pichy; Amri, Iqbal Al; Davis, Cheriyathmanjiyil Antony
2016-01-01
Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue‐equivalent properties. We investigated a commercially available ‘microdiamond’ detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1 mm, thickness 1×10−3mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ±0.17% (1 SD) (n=11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stopping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long‐term stability and reproducibility. Based on micro‐dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PACS number(s): 87.56.Da PMID:27074452
Poder, Joel; Yuen, Johnson; Howie, Andrew; Bece, Andrej; Bucci, Joseph
2017-11-01
The purpose of this study was to assess whether deformable image registration (DIR) is required for dose accumulation of multiple high dose rate prostate brachytherapy (HDRPBT) plans treated with the same catheter pattern on two different CT datasets. DIR was applied to 20 HDRPBT patients' planning CT images who received two treatment fractions on sequential days, on two different CT datasets, with the same implant. Quality of DIR in Velocity and MIM image registration systems was assessed by calculating the Dice Similarity Coefficient (DSC) and mean distance to agreement (MDA) for the prostate, urethra and rectum contours. Accumulated doses from each system were then calculated using the same DIR technique and dose volume histogram (DVH) parameters compared to manual addition with no DIR. The average DSC was found to be 0.83 (Velocity) and 0.84 (MIM), 0.80 (Velocity) and 0.80 (MIM), 0.80 (Velocity) and 0.81 (MIM), for the prostate, rectum and urethra contours, respectively. The average difference in calculated DVH parameters between the two systems using dose accumulation was less than 1%, and there was no statistically significant difference found between deformably accumulated doses in the two systems versus manual DVH addition with no DIR. Contour propagation using DIR in velocity and MIM was shown to be at least equivalent to inter-observer contouring variability on CT. The results also indicate that dose accumulation through manual addition of DVH parameters may be sufficient for HDRPBT treatments treated with the same catheter pattern on two different CT datasets. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
The damage equivalence of electrons, protons, alphas and gamma rays in rad-hard MOS devices
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Van Gunten, O.; Brucker, G. J.; Knudson, A. R.; Jordan, T. M.
1983-01-01
This paper reports on a study of damage equivalence in rad-hard MOS devices with 100,000 rads (SiO2) capability. Damage sensitivities for electrons of 1, 2, 3, 5, and 7 MeV, protons of 1, 3, 7, 22, and 40 MeV, 3.4-MeV alphas, and Co-60 gammas were measured and compared. Results indicated that qualitatively the same charge recombination effects occurred in hard oxide devices for doses of 100,000 rads (SiO2) as in soft oxide parts for doses of 1 to 4 krads (SiO2). Consequently, damage equivalency or non-equivalency depended on radiation type and energy. However, recovery effects, both during and after irradiation, controlled relative damage sensitivity and its dependency on total dose, dose rate, supply bias, gate bias, radiation type, and energy. Correction factors can be derived from these data or from similar tests of other hard oxide type, so as to properly evaluate the combined effects of the total space environment.
Protracted exposure to fallout: the Rongelap and Utirik experience.
Lessard, E T; Miltenberger, R P; Cohn, S H; Musolino, S V; Conard, R A
1984-03-01
From June 1946 to August 1958, the U.S. Department of Defense and the U.S. Atomic Energy Commission (AEC) conducted nuclear weapons tests in the Northern Marshall Islands. On 1 March 1954, BRAVO, an above-ground test in the Castle series, produced high levels of radioactive material, some of which subsequently fell on Rongelap and Utirik Atolls due to an unexpected wind shift. On 3 March 1954, the inhabitants of these atolls were moved out of the affected area. They later returned to Utirik in June 1954 and to Rongelap in June 1957. Comprehensive environmental and personnel radiological monitoring programs were initiated in the mid 1950s by Brookhaven National Laboratory to ensure that body burdens of the exposed Marshallese subjects remained within AEC guidelines. Their body-burden histories and calculated activity ingestion rate patterns post-return are presented along with estimates of internal committed effective dose equivalents. External exposure data are also included. In addition, relationships between body burden or urine-activity concentration and declining continuous intake were developed. The implications of these studies are: (1) the dietary intake of 137Cs was a major component contributing to the committed effective dose equivalent for the years after the initial contamination of the atolls; (2) for persons whose diet included fish, 65Zn was a major component of committed effective dose equivalent during the first years post-return; (3) a decline in the daily activity ingestion rate greater than that resulting from radioactive decay of the source was estimated for 137Cs, 65Zn, 90Sr and 60Co; (4) the relative impact of each nuclide on the estimate of committed effective dose equivalent was dependent upon the time interval between initial contamination and rehabilitation; and (5) the internal committed effective dose equivalent exceeded the external dose equivalent by a factor of 1.1 at Utirik and 1.5 at Rongelap during the rehabitation period. Few reliable 239Pu measurements on human excreta were made. An analysis of the tentative data leads to the conclusion that a reliable estimate of committed effective dose equivalent requires further research.
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-01-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852
Bays, Harold E; Chen, Erluo; Tomassini, Joanne E; McPeters, Gail; Polis, Adam B; Triscari, Joseph
2015-04-01
Co-administration of ezetimibe with atorvastatin is a generally well-tolerated treatment option that reduces LDL-C levels and improves other lipids with greater efficacy than doubling the atorvastatin dose. The objective of the study was to demonstrate the equivalent lipid-modifying efficacy of fixed-dose combination (FDC) ezetimibe/atorvastatin compared with the component agents co-administered individually in support of regulatory filing. Two randomized, 6-week, double-blind cross-over trials compared the lipid-modifying efficacy of ezetimibe/atorvastatin 10/20 mg (n = 353) or 10/40 mg (n = 280) vs. separate co-administration of ezetimibe 10 mg plus atorvastatin 20 mg (n = 346) or 40 mg (n = 280), respectively, in hypercholesterolemic patients. Percent changes from baseline in LDL-C (primary endpoint) and other lipids (secondary endpoints) were assessed by analysis of covariance; triglycerides were evaluated by longitudinal-data analysis. Expected differences between FDC and the corresponding co-administered doses were predicted from a dose-response relationship model; sample size was estimated given the expected difference and equivalence margins (±4%). LDL-C-lowering equivalence was based on 97.5% expanded confidence intervals (CI) for the difference contained within the margins; equivalence margins for other lipids were not prespecified. Ezetimibe/atorvastatin FDC 10/20 mg was equivalent to co-administered ezetimibe+atorvastatin 20 mg in reducing LDL-C levels (54.0% vs. 53.8%) as was FDC 10/40 mg and ezetimibe+atorvastatin 40 mg (58.9% vs. 58.7%), as predicted by the model. Changes in other lipids were consistent with equivalence (97.5% expanded CIs <±3%, included 0); triglyceride changes varied more. All treatments were generally well tolerated. Hypercholesterolemic patients administered ezetimibe/atorvastatin 10/20 and 10/40 mg FDC had equivalent LDL-C lowering. This FDC formulation proved to be an efficacious and generally well-tolerated lipid-lowering therapy. © 2014 Société Française de Pharmacologie et de Thérapeutique.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.
1996-01-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.
Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D
1996-11-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Activation of Dosimeters Used in qa of Medical Linear Accelerators
NASA Astrophysics Data System (ADS)
Polaczek-Grelik, Kinga; Nowacka, Magdalena; Raczkowski, Maciej
2017-09-01
This paper presents the first results of a project intended to investigate γ-radiation activity induced in dosimeters used in clinical practice during routine quality assurance of high-energy photon beams emitted by electron linear accelerators. Two aspects of the activation via photonuclear reactions (X, n) of therapeutic beam and subsequent capture of secondary neutrons (n,γ) are under considerations: the influence of activation on intrinsic background of the dosimeters and exposure of dosimetrists who operate this equipment. The activation of several types of ionization chambers as well as the silicon diodes was studied after long-time exposure (10 000 MUs) of the 15 MV photon beam (Elekta Synergy). Photon fluxes obtained from spectra of γ-rays registered by HPGe spectrometer were subsequently converted to equivalent doses using appropriate coefficients. The main contribution to the induced activity comes from the neutron capture process on Al, Mn and Cu, therefore it decays quite fast with the half-lives of the order of 15 minutes. Nevertheless, the activation of chlorine was also observed. The estimated equivalent doses to skin and eye lens were in the range 0.19 - 0.62 μSv/min. However, no influence on intrinsic background signal of all studied dosimeters was observed. The preliminary results indicate that induced radioactivity of dosimeters is strongly influenced by therapeutic beam quality and neutron source strength of particular linac. This dependence will be studied deeper in order to quantify it more precisely.
[Dosimetric aspects in studying the biological action of nonionizing electromagnetic radiation].
Karpov, V N; Galkin, A A; Davydov, B I
1984-01-01
In order to clarify mechanisms of biological reactions, it is very important to study the absorption and spatial distribution of the absorbed electromagnetic energy. The procedures and methods of calculating the electromagnetic energy absorption of biological specimens exposed to nonionizing electromagnetic irradiation in a wide frequency range (0-300 GHz) are described. Also presented are formulas and plots to be used in calculating the specific absorption of the dose rate by biological specimens, with the inclusion of resonance absorption, polarization of the incident electromagnetic wave, presence of reflecting surfaces and grounding. The extrapolation of the average energy absorption from one animal species to another and to man is discussed, assuming that spatial and energy distributions are equivalent. The notion of the irradiation quality coefficient is introduced. The magnitudes of the coefficients are given as related to the irradiation frequency and polarization type. A mathematical relation is offered to determine the safety of a complex spectrum of electromagnetic irradiation. The relation takes into consideration different dimensionality of the parameters of the electromagnetic field in the low- and high-frequency ranges.
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive
2010-11-01
A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.
Reliability of equivalent sphere model in blood-forming organ dose estimation
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Nealy, John E.
1990-01-01
The radiation dose equivalents to blood-forming organs (BFO's) of the astronauts at the Martian surface due to major solar flare events are calculated using the detailed body geometry of Langley and Billings. The solar flare spectra of February 1956, November 1960, and August 1972 events are employed instead of the idealized Webber form. The detailed geometry results are compared with those based on the 5-cm sphere model which was used often in the past to approximate BFO dose or dose equivalent. Larger discrepancies are found for the later two events possibly due to the lower numbers of highly penetrating protons. It is concluded that the 5-cm sphere model is not suitable for quantitative use in connection with future NASA deep-space, long-duration mission shield design studies.
Neuroleptic bioequivalency: tablet versus concentrate.
Fann, W E; Moreira, A F
1985-01-01
Two forms of the antipsychotic neuroleptic molindone were administered to newly admitted psychotic patients. A coated tablet was administered for ten days, followed by administration of liquid concentrate in equivalent doses for four days. Plasma was analyzed by gas chromatography with electron capture for the parent compound following each dosing phase. Our data suggest that oral doses of the tablet and concentrate forms of this neuroleptic are equivalent in clinical bioavailability.
10 CFR 835.402 - Individual monitoring.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conditions, are likely to receive one or more of the following: (i) An effective dose of 0.1 rem (0.001 Sv) or more in a year; (ii) An equivalent dose to the skin or to any extremity of 5 rems (0.05 Sv) or more in a year; (iii) An equivalent dose to the lens of the eye of 1.5 rems (0.015 Sv) or more in a...
10 CFR 835.402 - Individual monitoring.
Code of Federal Regulations, 2013 CFR
2013-01-01
... conditions, are likely to receive one or more of the following: (i) An effective dose of 0.1 rem (0.001 Sv) or more in a year; (ii) An equivalent dose to the skin or to any extremity of 5 rems (0.05 Sv) or more in a year; (iii) An equivalent dose to the lens of the eye of 1.5 rems (0.015 Sv) or more in a...
10 CFR 835.402 - Individual monitoring.
Code of Federal Regulations, 2011 CFR
2011-01-01
... conditions, are likely to receive one or more of the following: (i) An effective dose of 0.1 rem (0.001 Sv) or more in a year; (ii) An equivalent dose to the skin or to any extremity of 5 rems (0.05 Sv) or more in a year; (iii) An equivalent dose to the lens of the eye of 1.5 rems (0.015 Sv) or more in a...
10 CFR 835.402 - Individual monitoring.
Code of Federal Regulations, 2012 CFR
2012-01-01
... conditions, are likely to receive one or more of the following: (i) An effective dose of 0.1 rem (0.001 Sv) or more in a year; (ii) An equivalent dose to the skin or to any extremity of 5 rems (0.05 Sv) or more in a year; (iii) An equivalent dose to the lens of the eye of 1.5 rems (0.015 Sv) or more in a...
10 CFR 835.402 - Individual monitoring.
Code of Federal Regulations, 2014 CFR
2014-01-01
... conditions, are likely to receive one or more of the following: (i) An effective dose of 0.1 rem (0.001 Sv) or more in a year; (ii) An equivalent dose to the skin or to any extremity of 5 rems (0.05 Sv) or more in a year; (iii) An equivalent dose to the lens of the eye of 1.5 rems (0.015 Sv) or more in a...
2013-01-01
Background To establish a generalized equivalent uniform dose (gEUD) -based prescription method for Image Guided Brachytherapy (IGBT) that reproduces the Gyn GEC-ESTRO WG (GGE) prescription for cervix carcinoma patients on CT images with limited soft tissue resolution. Methods The equivalence of two IGBT planning approaches was investigated in 20 patients who received external beam radiotherapy (EBT) and 5 concomitant high dose rate IGBT treatments. The GGE planning strategy based on dose to the most exposed 2 cm3 (D2cc) was used to derive criteria for the gEUD-based planning of the bladder and rectum. The safety of gEUD constraints in terms of GGE criteria was tested by maximizing dose to the gEUD constraints for individual fractions. Results The gEUD constraints of 3.55 Gy for the rectum and 5.19 Gy for the bladder were derived. Rectum and bladder gEUD-maximized plans resulted in D2cc averages very similar to the initial GGE criteria. Average D2ccs and EUDs from the full treatment course were comparable for the two techniques within both sets of normal tissue constraints. The same was found for the tumor doses. Conclusions The derived gEUD criteria for normal organs result in GGE-equivalent IGBT treatment plans. The gEUD-based planning considers the entire dose distribution of organs in contrast to a single dose-volume-histogram point. PMID:24225184
Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination
NASA Astrophysics Data System (ADS)
Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem
2017-10-01
This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, A; Boone, J
Purpose: To estimate normalized mean glandular dose values for dedicated breast CT (DgN-CT) using breast CT-derived phantoms and compare to estimations using cylindrical phantoms. Methods: Segmented breast CT (bCT) volume data sets (N=219) were used to measure effective diameter profiles and were grouped into quintiles by volume. The profiles were averaged within each quintile to represent the range of breast sizes found clinically. These profiles were then used to generate five voxelized computational phantoms (V1, V2, V3, V4, V5 for the small to large phantom sizes, respectively), and loaded into the MCNP6 lattice geometry to simulate normalized mean glandular dosemore » coefficients (DgN-CT) using the system specifications of the Doheny-prototype bCT scanner in our laboratory. The DgN-CT coefficients derived from the bCT-derived breast-shaped phantoms were compared to those generated using a simpler cylindrical phantom using a constant volume, and the following constraints: (1) Length=1.5*radius; (2) radius determined at chest wall (Rcw), and (3) radius determined at the phantom center-of-mass (Rcm). Results: The change in Dg-NCT coefficients averaged across all phantom sizes, was - 0.5%, 19.8%, and 1.3%, for constraints 1–3, respectively. This suggests that the cylindrical assumption is a good approximation if the radius is taken at the breast center-of-mass, but using the radius at the chest wall results in an underestimation of the glandular dose. Conclusion: The DgN-CT coefficients for bCT-derived phantoms were compared against the assumption of a cylindrical phantom and proved to be essentially equivalent when the cylinder radius was set to r=1.5/L or Rcm. While this suggests that for dosimetry applications a patient’s breast can be approximated as a cylinder (if the correct radius is applied), this assumes a homogenous composition of breast tissue and the results may be different if the realistic heterogeneous distribution of glandular tissue is considered. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less
Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval
NASA Technical Reports Server (NTRS)
Alford, John A., II
2012-01-01
We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.
Agudelo, M.
2012-01-01
Animal models of infection have been used to demonstrate the therapeutic failure of “bioequivalent” generic products, but their applicability for this purpose requires the accurate identification of those products that are truly bioequivalent. Here, we present data comparing one intravenous generic product of metronidazole with the innovator product in a neutropenic mouse thigh anaerobic infection model. Simultaneous experiments allowed comparisons (generic versus innovator) of potency and the concentration of the active pharmaceutical ingredient (API), analytical chemistry (liquid chromatography/mass spectrometry [LC/MS]), in vitro susceptibility testing, single-dose serum pharmacokinetics (PK) in infected mice, and in vivo pharmacodynamics (PD) against Bacteroides fragilis ATCC 25825 in synergy with Escherichia coli SIG-1 in the neutropenic mouse thigh anaerobic infection model. The Hill dose-response model followed by curve-fitting analysis was used to calculate and compare primary and secondary PD parameters. The generic and the innovator products were identical in terms of the concentration and potency of the API, chromatographic and spectrographic profiles, MIC and minimal bactericidal concentrations (MBC) (2.0 mg/liter), and mouse PK. We found no differences between products in bacteriostatic doses (BD) (15 to 22 mg/kg of body weight per day) or the doses needed to kill 1 log (1LKD) (21 to 29 mg/kg per day) or 2 logs (2LKD) (28 to 54 mg/kg per day) of B. fragilis under dosing schedules of every 12 h (q12h), q8h, or q6h. The area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) was the best PD index to predict the antibacterial efficacy of metronidazole (adjusted coefficient of determination [AdjR2] = 84.6%), and its magnitude to reach bacteriostasis in vivo (56.6 ± 5.17 h) or to kill the first (90.8 ± 9.78 h) and second (155.5 ± 22.2 h) logs was the same for both products. Animal models of infection allow a thorough demonstration of the therapeutic equivalence of generic antimicrobials. PMID:22330928
Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III.
Golightly, M J; Hardy, K; Quam, W
1994-01-01
Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.
Liu, Dan; Khong, Pek-Lan; Gao, Yiming; Mahmood, Usman; Quinn, Brian; St Germain, Jean; Xu, X George; Dauer, Lawrence T
2016-06-01
Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial radiation dose incurred, judicious medical justification is required with every whole-body dual-tracer PET/CT referral. Although radiation risks may have less impact for the population with cancer because of their reduced life expectancy, the information is of interest and relevant for both justification, to evaluate risk/benefit, and protocol optimization. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.; ...
2016-02-01
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellamy, Michael B.; Hiller, Mauritius M.; Dewji, Shaheen A.
As part of a broader effort to calculate effective dose rate coefficients for external exposure to photons and electrons emitted by radionuclides distributed in air, soil or water, age-specific stylized phantoms have been employed to determine dose coefficients relating dose rate to organs and tissues in the body. In this article, dose rate coefficients computed using the International Commission on Radiological Protection reference adult male voxel phantom are compared with values computed using the Oak Ridge National Laboratory adult male stylized phantom in an air submersion exposure geometry. Monte Carlo calculations for both phantoms were performed for monoenergetic source photonsmore » in the range of 30 keV to 5 MeV. Furthermore, these calculations largely result in differences under 10 % for photon energies above 50 keV, and it can be expected that both models show comparable results for the environmental sources of radionuclides.« less
NASA Astrophysics Data System (ADS)
Agosteo, S.; Bedogni, R.; Caresana, M.; Charitonidis, N.; Chiti, M.; Esposito, A.; Ferrarini, M.; Severino, C.; Silari, M.
2012-12-01
The accurate determination of the ambient dose equivalent in the mixed neutron-photon fields encountered around high-energy particle accelerators still represents a challenging task. The main complexity arises from the extreme variability of the neutron energy, which spans over 10 orders of magnitude or more. Operational survey instruments, which response function attempts to mimic the fluence-to-ambient dose equivalent conversion coefficient up to GeV neutrons, are available on the market, but their response is not fully reliable over the entire energy range. Extended range rem counters (ERRC) do not require the exact knowledge of the energy distribution of the neutron field and the calibration can be done with a source spectrum. If the actual neutron field has an energy distribution different from the calibration spectrum, the measurement is affected by an added uncertainty related to the partial overlap of the fluence-to-ambient dose equivalent conversion curve and the response function. For this reason their operational use should always be preceded by an "in-field" calibration, i.e. a calibration made against a reference instrument exposed in the same field where the survey-meter will be employed. In practice the extended-range Bonner Sphere Spectrometer (ERBSS) is the only device which can serve as reference instrument in these fields, because of its wide energy range and the possibility to assess the neutron fluence and the ambient dose equivalent (H*(10)) values with the appropriate accuracy. Nevertheless, the experience gained by a number of experimental groups suggests that mandatory conditions for obtaining accurate results in workplaces are: (1) the use of a well-established response matrix, thus implying validation campaigns in reference monochromatic neutrons fields, (2) the expert and critical use of suitable unfolding codes, and (3) the performance test of the whole system (experimental set-up, elaboration and unfolding procedures) in a well controlled workplace field. The CERF (CERN-EU high-energy reference field) facility is a unique example of such a field, where a number of experimental campaigns and Monte Carlo simulations have been performed over the past years. With the aim of performing this kind of workplace performance test, four different ERBSS with different degrees of validation, operated by three groups (CERN, INFN-LNF and Politecnico of Milano), were exposed in two fixed positions at CERF. Using different unfolding codes (MAXED, GRAVEL, FRUIT and FRUIT SGM), the experimental data were analyzed to provide the neutron spectra and the related dosimetric quantities. The results allow assessing the overall performance of each ERBSS and of the unfolding codes, as well as comparing the performance of three ERRCs when used in a neutron field with energy distribution different from the calibration spectrum.
Berris, Theocharis; Mazonakis, Michalis; Kachris, Stefanos; Damilakis, John
2014-05-01
Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85-62 mSv, 0.28-1.6 mSv and 0.04-1.6 mSv, respectively. Respective ranges for cancer risk were 0-5.1, 0-0.6 and 0-1.3 cases per 10(4) persons. Increasing the field size caused an average increase of peripheral doses by 15-20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Brain injury and development in preterm infants exposed to fentanyl
McPherson, Christopher; Haslam, Matthew; Pineda, Roberta; Rogers, Cynthia; Neil, Jeffrey J.; Inder, Terrie E.
2015-01-01
Background Fentanyl is commonly utilized in preterm infants. Relatively little is known regarding the neurodevelopmental outcomes of preterm infants exposed to fentanyl. Objective To investigate the association between cumulative fentanyl dose and brain injury and diameters in a cohort of preterm infants Methods Data on demographics, perinatal course, and neonatal course, including total fentanyl exposure prior to term equivalent age, were retrospectively evaluated for 103 infants born at ≤ 30 weeks gestational age who underwent magnetic resonance imaging at term equivalent age (mean gestational age 26.9 ± 1.8 weeks). Magnetic resonance images were evaluated for brain injury and regional brain diameters. Developmental testing was conducted at term equivalent and 2 years of age. Results Seventy-eight infants (76%) received fentanyl (median cumulative dose 3 μg/kg, interquartile range 1 – 441 μg/kg). Cumulative fentanyl dose in the first week of life correlated with the incidence of cerebellar hemorrhage after correction for covariates (OR 2.1, 95% confidence interval 1.1 – 4.1). Cumulative fentanyl dose before term equivalent age correlated with reductions in transverse cerebellar diameter after correction for covariates including the presence of cerebellar hemorrhage (r = 0.461, p = 0.002). No correlation was detected between cumulative fentanyl dose and development at 2 years of age. Conclusions Higher cumulative fentanyl dose in preterm infants correlated with a higher incidence of cerebellar injury and lower cerebellar diameter at term equivalent age. Our findings must be taken with caution, but emphasize the need for future prospective trials examining the risks and benefits of commonly utilized analgesic agents in preterm infants. PMID:26369570
Coupling intensity between discharge and magnetic circuit in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Liqiu; Yang, Xinyong; Ding, Yongjie; Yu, Daren; Zhang, Chaohai
2017-03-01
Coupling oscillation is a newly discovered plasma oscillation mode that utilizes the coupling between the discharge circuit and magnetic circuit, whose oscillation frequency spectrum ranges from several kilohertz to megahertz. The coupling coefficient parameter represents the intensity of coupling between the discharge and magnetic circuits. According to previous studies, the coupling coefficient is related to the material and the cross-sectional area of the magnetic coils, and the magnetic circuit of the Hall thruster. However, in our recent study on coupling oscillations, it was found that the Hall current equivalent position and radius have important effects on the coupling intensity between the discharge and magnetic circuits. This causes a difference in the coupling coefficient for different operating conditions of Hall thrusters. Through non-intrusive methods for measuring the Hall current equivalent radius and the axial position, it is found that with an increase in the discharge voltage and magnetic field intensity, the Hall current equivalent radius increases and its axial position moves towards the exit plane. Thus, both the coupling coefficient and the coupling intensity between the discharge and magnetic circuits increase. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams
NASA Astrophysics Data System (ADS)
Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.
2014-02-01
The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.
Sub-mSV breast XACT scanner: concept and design
NASA Astrophysics Data System (ADS)
Tang, Shanshan; Ren, Liqiang; Samant, Pratik; Chen, Jian; Liu, Hong; Xiang, Liangzhong
2016-04-01
Excessive exposure to radiation increases the risk of cancer. We present the concept and design of a new imaging paradigm, X-ray induced acoustic computed tomography (XACT). Applying this innovative technology to breast imaging, one single X-ray exposure can generate a 3D acoustic image, which dramatically reduces the radiation dose to patients when compared to beast CT. A theoretical model is developed to analyze the sensitivity of XACT. A noise equivalent pressure model is used for calculating the minimal radiation dose in XACT imaging. Furthermore, K-Wave simulation is employed to study the acoustic wave propagation in breast tissue. Theoretical analysis shows that the X-ray induced acoustic signal has a 100% relative sensitivity to the X-ray absorption (given that the percentage change in the X-ray absorption coefficient yields the same percentage change in the acoustic signal amplitude), but not to X-ray scattering. The final detection sensitivity is primarily limited by the thermal noise. The radiation dose can be reduced by a factor of 100 compared with the newly FDA approved breast CT. Reconstruction result shows that breast calcification with diameter of 80 μm can be observed in XACT image by using ultrasound transducers with 5.5 MHz center frequency. Therefore, with the proposed innovative technology, one can potentially reduce radiation dose to patient in breast imaging as compared with current x-ray modalities.
Annual environmental monitoring report of the Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schleimer, G.E.
1983-04-01
In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations duringmore » 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.« less
Radiological properties of normoxic polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venning, A.J.; Nitschke, K.N.; Keall, P.J.
2005-04-01
The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% highermore » than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.« less
Yoo, Sua; Wu, Q. Jackie; Godfrey, Devon; Yan, Hui; Ren, Lei; Das, Shiva; Lee, William R.; Yin, Fang-Fang
2008-01-01
Purpose To evaluate on-board digital tomosynthesis (DTS) for patient positioning in comparison with 2D-radiographs and 3D-CBCT. Methods and Materials A total of 92 image sessions from 9 prostate cancer patients were analyzed. An on-board image set was registered to a corresponding reference image set. Four pairs of image sets were used; DRR vs. on-board orthogonal paired radiograph for the 2D method, coronal-reference-DTS (RDTS) vs. on-board coronal-DTS for the coronal-DTS method, sagittal-RDTS vs. on-board sagittal-DTS for the sagittal-DTS method, and planning CT vs. CBCT for the CBCT method. Registration results were compared. Results The systematic errors in all methods were less than 1 mm/1°. When registering bony anatomy, the mean vector differences were 0.21±0.11 cm between 2D and CBCT, 0.11±0.08 cm between CBCT and coronal-DTS, and 0.14±0.07 cm between CBCT and sagittal-DTS. The correlation of CBCT to DTS was stronger (coefficients=0.92–0.95) than the correlation between 2D and CBCT or DTS (coefficients=0.81–0.83). When registering soft tissue, the mean vector differences were 0.18±0.11 cm between CBCT and coronal-DTS and 0.29±0.17 cm between CBCT and sagittal-DTS. The correlation coefficients of CBCT to sagittal-DTS and to coronal-DTS were 0.84 and 0.92, respectively. Conclusions DTS could provide equivalent results to CBCT when bony anatomy is used as landmarks for prostate IGRT. For soft tissue-based positioning verification, coronal-DTS produced equivalent results to CBCT and sagittal-DTS alone was insufficient. DTS could allow comparable soft tissue-based target localization with faster scanning time and less imaging dose compared to CBCT. PMID:19100923
NASA Astrophysics Data System (ADS)
Şahiner, Eren; Meriç, Niyazi; Polymeris, George S.
2017-02-01
Equivalent dose estimation (De) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different De estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible De estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large De values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is interesting that most of De values yielded using different luminescence signals agree with each other and ESR Ge center has very large D0 values. The results presented above highly support the argument that the stability and the initial ESR signal of the Ge center is highly sample-dependent, without any instability problems for the cases of quartz resulting from fault gouge.
Rublee, Dale A; Burke, James P
2010-03-01
As clinical trials have shown the benefits of more intensive cholesterol control, treatment targets for low-density lipoprotein cholesterol (LDL-C) have decreased progressively. At the same time, physicians have been encouraged to contain costs by prescribing cheaper, generic statins for cholesterol management. To determine how these possibly conflicting goals are managed in clinical practice, we examined LDL-C control in patients switched from a potent, branded statin (atorvastatin) to a less potent, generic statin (simvastatin). Patients who switched from atorvastatin to simvastatin between July 2006 and January 2008 were retrospectively identified from a US medical and pharmacy claims database, and matched with controls remaining on atorvastatin. Outcomes measured were the number of switched patients receiving a simvastatin milligram dose>or=2 times their previous atorvastatin dose, changes in LDL-C levels, and percentage of patients achieving recommended LDL-C targets. All study variables were analyzed descriptively. After applying exclusion and inclusion criteria, 1048 patients who switched from atorvastatin to simvastatin and 1048 matched controls who remained on atorvastatin were included. Among the switchers, 379 (36%) received an inappropriately low dose of simvastatin (<2 times atorvastatin dose). In patients remaining on atorvastatin, mean LDL-C decreased from 105.7 mg/dL to 102.3 mg/dL after 44 weeks, whereas in switched patients, LDL-C remained similar, at 105.9 mg/dL on atorvastatin and 105.8 mg/dL on simvastatin. Before switching, when all patients were receiving atorvastatin, 67.4% of switchers and 69.9% of controls achieved recommended LDL-C targets. After switching, significantly fewer switchers than controls met LDL-C targets (69.1% vs 74.6%; P=0.005). However, among patients who switched to an equivalent dose of simvastatin (>or=2 times prior atorvastatin dose), similar proportions met LDL-C targets (72.8% vs 74.6% of controls; P=0.402), whereas among patients who switched to inappropriate non-equivalent dose of simvastatin, a significantly lower proportion met LDL-C targets (62.5% vs 74.6% of controls; P=0.001). Continuing atorvastatin was associated with lower LDL-C levels and better LDL-C target attainment compared with switching to simvastatin. Patients switched to an equivalent simvastatin dose had lower LDL-C levels and were more likely to achieve LDL-C targets than patients switched to a non-equivalent dose, suggesting physicians must consider dosage equivalence when switching statins, and should measure LDL-C and titrate statins as necessary to achieve LDL-C control.
Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W
2012-04-01
To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
10 CFR 835.203 - Combining internal and external equivalent doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Combining internal and external equivalent doses. 835.203 Section 835.203 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and... the radiation and tissue weighting factor values provided in § 835.2. [72 FR 31926, June 8, 2007] ...
Organic Scintillator for Real-Time Neutron Dosimetry
Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana; ...
2017-11-15
We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less
Organic Scintillator for Real-Time Neutron Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Kyle A.; Di Fulvio, Angela; Stolarczyk, Liliana
We have developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV–0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cfmore » neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.« less
Passive dosimetry aboard the Mir Orbital Station: external measurements.
Benton, E R; Benton, E V; Frank, A L
2002-10-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
Passive dosimetry aboard the Mir Orbital Station: external measurements
NASA Technical Reports Server (NTRS)
Benton, E. R.; Benton, E. V.; Frank, A. L.
2002-01-01
This paper reports results from the first measurements made on the exterior of a LEO spacecraft of mean dose equivalent rate and average quality factor as functions of shielding depth for shielding less than 1 g/cm2 Al equivalent. Two sets of measurements were made on the outside of the Mir Orbital Station; one near solar maximum in June 1991 and one near solar minimum in 1997. Absorbed dose was measured using stacks of TLDs. LET spectrum from charged particles of LET infinity H2O > o r= 5keV/micrometers was measured using stacks of CR-39 PNTDs. Results from the TLD and PNTD measurements at a given shielding depth were combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Measurements made near solar maximum tend to be greater than those made during solar minimum. Both mean dose rate and mean dose equivalent rate decrease by nearly four orders of magnitude within the first g/cm2 shielding illustrating the attenuation of both trapped electrons and low-energy trapped protons. In order to overcome problems with detector saturation after standard chemical processing, measurement of LET spectrum in the least shielded CR-39 PNTD layer (0.005 g/cm2 Al) was carried out using an atomic force microscope. c2002 Elsevier Science Ltd. All rights reserved.
Colucci, Philippe; D'Angelo, Pina; Mautone, Giuseppe; Scarsi, Claudia; Ducharme, Murray P
2011-06-01
To assess the pharmacokinetic equivalence of a new soft capsule formulation of levothyroxine versus a marketed reference product and to assess the soft capsule formulated with stricter potency guidelines versus the capsule before the implementation of the new potency rule. Two single-dose randomized two-way crossover pharmacokinetic equivalence studies and one dosage form proportionality single-dose study comparing low, medium, and high strengths of the new formulation. All three studies were performed in a clinical setting. Participants were healthy male and female adult subjects with normal levothyroxine levels. A total of 90 subjects participated in the three studies. Pharmacokinetic parameters were calculated on baseline- adjusted concentrations. The first pharmacokinetic equivalence study compared the levothyroxine sodium soft capsule formulation (Tirosint) with the reference Synthroid tablets and the two products were considered bioequivalent. The dosage form proportionality study compared the 50-, 100-, and 150-μg test capsules strengths dosed at the same level (600 μg) and all three strengths were considered equivalent when given at the same dosage. The last study compared the test capsule used in the first two studies with a new capsule formulation following the new potency guideline (±5%) set forward by the Food and Drug Administration and the two capsules were considered bioequivalent. Doses were well tolerated by subjects in all three studies with no serious adverse events reported. The levothyroxine soft capsule formulated with the stricter new potency guideline set forward by the Food and Drug Administration met equivalence criteria in terms of rate and extent of exposure under fasting conditions to the reference tablet formulation. Clinical doses of the capsule formulation can be given using any combination of the commercialized strengths.
Manimaran, S
2007-06-01
The aim of this study was to compare the biological equivalent of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy in terms of the more recent linear quadratic (LQ) model, which leads to theoretical estimation of biological equivalence. One of the key features of the LQ model is that it allows a more systematic radiobiological comparison between different types of treatment because the main parameters alpha/beta and micro are tissue-specific. Such comparisons also allow assessment of the likely change in the therapeutic ratio when switching between LDR and HDR treatments. The main application of LQ methodology, which focuses on by increasing the availability of remote afterloading units, has been to design fractionated HDR treatments that can replace existing LDR techniques. In this study, with LDR treatments (39 Gy in 48 h) equivalent to 11 fractions of HDR irradiation at the experimental level, there are increasing reports of reproducible animal models that may be used to investigate the biological basis of brachytherapy and to help confirm theoretical predictions. This is a timely development owing to the nonavailability of sufficient retrospective patient data analysis. It appears that HDR brachytherapy is likely to be a viable alternative to LDR only if it is delivered without a prohibitively large number of fractions (e.g., fewer than 11). With increased scientific understanding and technological capability, the prospect of a dose equivalent to HDR brachytherapy will allow greater utilization of the concepts discussed in this article.
Space radiation dose estimates on the surface of Mars
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan
2012-01-01
A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.
van Noord, J A; Smeets, J J; Creemers, J P; Greefhorst, L P; Dewberry, H; Cornelissen, P J
2000-01-01
The phase-out of chlorofluorocarbons (CFCs) for metered dose inhalers (MDIs) has prompted the development of alternative propellants and the design of propellant-free devices for inhalation therapy. This study was carried out to determine the dose of fenoterol inhaled from Respimat (RMT), a new propellant-free soft mist inhaler, which is equivalent in terms of efficacy and safety to 1 puff of either 100 or 200 microg fenoterol inhaled from a conventional CFC-MDI (Berotec). Sixty-two asthmatic patients (35 male, 27 female) with a mean baseline FEV(1) of 1.7 liters, corresponding to 55% of the predicted normal value, were randomized at two study centers to 4 of a total of 8 possible treatments: placebo; 12.5, 25, 50, 100, or 200 microg fenoterol via RMT, and 100 or 200 microg fenoterol delivered via the MDI. Fifty-nine patients completed the study as planned. Results of the therapeutic equivalence test for the primary endpoint, average FEV(1) (AUC(0-6))/6 and for the secondary endpoint, peak FEV(1), showed that the 12.5- and 25-microg fenoterol doses administered via RMT were equivalent to the 100 microg fenoterol dose from the MDI. The 50-, 100- and 200-microg fenoterol doses delivered by RMT did not meet the criterion for therapeutic equivalence with the 100-microg dose from the MDI, and if tested for a difference would have been significantly different in favor of RMT. All 5 RMT fenoterol doses were therapeutically equivalent to the MDI 200-microg fenoterol dose. Headache, reported by 4 patients on test days and 2 patients between test days in those randomized to RMT, was the most common adverse event, but the active treatments were generally well tolerated with no dose-dependent increases in incidence or severity of adverse events observed. The results from the study suggest that safe and efficacious bronchodilation can be obtained from single-dose fenoterol administered via RMT. Use of lower absolute doses to obtain a clinically significant improvement in pulmonary function may be possible because of the increased lung deposition achievable with the novel soft mist inhaler. Copyright 2000 S. Karger AG, Basel
NASA Technical Reports Server (NTRS)
VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward
2011-01-01
The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronauts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less
Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E
2013-10-21
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.
2013-10-01
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
Research on the equivalence between digital core and rock physics models
NASA Astrophysics Data System (ADS)
Yin, Xingyao; Zheng, Ying; Zong, Zhaoyun
2017-06-01
In this paper, we calculate the elastic modulus of 3D digital cores using the finite element method, systematically study the equivalence between the digital core model and various rock physics models, and carefully analyze the conditions of the equivalence relationships. The influences of the pore aspect ratio and consolidation coefficient on the equivalence relationships are also further refined. Theoretical analysis indicates that the finite element simulation based on the digital core is equivalent to the boundary theory and Gassmann model. For pure sandstones, effective medium theory models (SCA and DEM) and the digital core models are equivalent in cases when the pore aspect ratio is within a certain range, and dry frame models (Nur and Pride model) and the digital core model are equivalent in cases when the consolidation coefficient is a specific value. According to the equivalence relationships, the comparison of the elastic modulus results of the effective medium theory and digital rock physics is an effective approach for predicting the pore aspect ratio. Furthermore, the traditional digital core models with two components (pores and matrix) are extended to multiple minerals to more precisely characterize the features and mineral compositions of rocks in underground reservoirs. This paper studies the effects of shale content on the elastic modulus in shaly sandstones. When structural shale is present in the sandstone, the elastic modulus of the digital cores are in a reasonable agreement with the DEM model. However, when dispersed shale is present in the sandstone, the Hill model cannot describe the changes in the stiffness of the pore space precisely. Digital rock physics describes the rock features such as pore aspect ratio, consolidation coefficient and rock stiffness. Therefore, digital core technology can, to some extent, replace the theoretical rock physics models because the results are more accurate than those of the theoretical models.
Modal sound transmission loss of a single leaf panel: Asymptotic solutions.
Wang, Chong
2015-12-01
In a previously published paper [C. Wang, J. Acoust. Soc. Am. 137(6), 3514-3522 (2015)], the modal sound transmission coefficients of a single leaf panel were discussed with regard to the inter-modal coupling effects. By incorporating such effect into the equivalent modal radiation impedance, which is directly related to the modal sound transmission coefficient of each mode, the overall sound transmission loss for both normal and randomized sound incidences was computed through a simple modal superposition. Benefiting from the analytical expressions of the equivalent modal impedance and modal transmission coefficients, in this paper, behaviors of modal sound transmission coefficients in several typical frequency ranges are discussed in detail. Asymptotic solutions are also given for the panels with relatively low bending stiffnesses, for which the sound transmission loss has been assumed to follow the mass law of a limp panel. Results are also compared to numerical analysis and the renowned mass law theories.
Verlangieri, A J; Fay, M J; Bannon, A W
1991-01-01
The Osteogenic Disorder Shionogi (ODS) rat, Clea Inc., Tokyo, Japan lacks the ability to synthesize L-ascorbic acid (AA). As with man, monkey and the guinea pig, this rat lacks L-gulonolactone oxidase necessary for the synthesis of AA from glucose. This study shows this animal to be an alternative to the guinea pig in AA studies. The anti-scorbutic potency of Ester C (EC), a calcium ascorbate and calcium threonate mixture, was compared with an AA dose of equal ascorbate activity equivalents (AAE) for anti-scorbutic activity in the ODS rat. The minimal anti-scorbutic dose of EC was determined to be 0.44 mg/kg/day (AAE), while an AA dose of 0.51 mg/kg/day (AAE) was not anti-scorbutic in a 24 day study. At 24 days EC rats gained 125% of initial body weight (BW) and the AA rats only 45% BW. Scorbutic signs at 24 days were scored on a 0 (min) to 3 (max) scale. The EC/AA ratio scores were: hemorrhage 0/1.4, behavior change 0/2.0, piloerection 0/2.2, mobility 0.4/2.2, dysbasia 0.6/2.8 and ataxia 0.4/1.0. Pearson's correlation coefficient for BW versus AAE was r = .34 for the AA group and r = .90 for the EC group. The morbidity index for EC was 0/5 and for the AA group 2/5. The AAE dose of AA which was 16% higher/day than the EC AAE dose was not anti-scorbutic, while the EC dose was anti-scorbutic. EC rats had 3.5X greater weight gain, a sensitive indicator of scurvy, than the AA rats. EC rats had 3-4 times less, if any, scorbutic signs than AA rats. The results clearly show that, based on ascorbate activity equivalents, EC has more available ascorbate activity/potency than AA. The mechanism of this increased potency is believed to be due to the facilitated transport of AAE into the cell by the threonate (a normal in vivo metabolite of AA) present in the EC product. In addition, previous studies have shown EC (AAE) to be higher in plasma and excreted less rapidly than the AAE derived from AA administered orally.
Horn, Kevin M.
2013-07-09
A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with{sup 125}I, {sup 103}Pd, or {sup 131}Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom andmore » our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model simulations, the average dose to the lens is larger by 7%–9% than the dose to the center of the lens, and the maximum dose to the optic nerve is 17%–22% higher than the dose to the optic disk for all radionuclides. In general, when normalized to the same prescription dose at the tumor apex, doses delivered to all structures of interest in the full eye model are lowest for{sup 103}Pd and highest for {sup 131}Cs, except for the tumor where the average dose is highest for {sup 103}Pd and lowest for {sup 131}Cs. Conclusions : The eye is not radiologically water-equivalent, as doses from simulations of the plaque in the full eye model differ considerably from doses for the plaque in a water phantom and from simulated TG-43 calculated doses. This demonstrates the importance of model-based dose calculations for eye plaque brachytherapy, for which accurate elemental compositions of ocular media are necessary.« less
NASA Technical Reports Server (NTRS)
Sakaguchi, T.; Doke, T.; Hayashi, T.; Kikuchi, J.; Hasebe, N.; Kashiwagi, T.; Takashima, T.; Takahashi, K.; Nakano, T.; Nagaoka, S.;
1997-01-01
The real-time measurement of radiation environment was made with an improved real-time radiation monitoring device (RRMD)-II onboard Space Shuttle STS-79 (S/MM#4: 4th Shuttle MIR Mission, at an inclination angle of 51.6 degrees and an altitude of 250-400km) for 199 h during 17-25 September, 1996. The observation of the detector covered the linear energy transfer (LET) range of 3.5-6000 keV/micrometer. The Shuttle orbital profile in this mission was equivalent to that of the currently planned Space Station, and provided an opportunity to investigate variations in count rate and dose equivalent rate depending on altitude, longitude, and latitude in detail. Particle count rate and dose equivalent rate were mapped geographically during the mission. Based on the map of count rate, an analysis was made by dividing whole region into three regions: South Atlantic Anomaly (SAA) region, high latitude region and other regions. The averaged absorbed dose rate during the mission was 39.3 microGy/day for a LET range of 3.5-6000 keV/micrometer. The corresponding average dose equivalent rates during the mission are estimated to be 293 microSv/day with quality factors from International Commission on Radiological Protection (ICRP)-Pub. 60 and 270 microSv/day with quality factors from ICRP-Pub. 26. The effective quality factors for ICRP-Pub. 60 and 26 are 7.45 and 6.88, respectively. From the present data for particles of LET > 3.5keV/micrometer, we conclude that the average dose equivalent rate is dominated by the contribution of galactic cosmic ray (GCR) particles. The dose-detector depth dependence was also investigated.
Dowdy, John C; Czako, Eugene A; Stepp, Michael E; Schlitt, Steven C; Bender, Gregory R; Khan, Lateef U; Shinneman, Kenneth D; Karos, Manuel G; Shepherd, James G; Sayre, Robert M
2011-09-01
The authors compared calculations of sunlamp maximum exposure times following current USFDA Guidance Policy on the Maximum Timer Interval and Exposure Schedule, with USFDA/CDRH proposals revising these to equivalent erythemal exposures of ISO/CIE Standard Erythema Dose (SED). In 2003, [USFDA/CDRH proposed replacing their unique CDRH/Lytle] erythema action spectrum with the ISO/CIE erythema action spectrum and revising the sunlamp maximum exposure timer to 600 J m(-2) ISO/CIE effective dose, presented as being biologically equivalent. Preliminary analysis failed to confirm said equivalence, indicating instead ∼38% increased exposure when applying these proposed revisions. To confirm and refine this finding, a collaboration of tanning bed and UV lamp manufacturers compiled 89 UV spectra representing a broad sampling of U.S. indoor tanning equipment. USFDA maximum recommended exposure time (Te) per current sunlamp guidance and CIE erythemal effectiveness per ISO/CIE standard were calculated. The CIE effective dose delivered per Te averaged 456 J(CIE) m(-2) (SD = 0.17) or ∼4.5 SED. The authors found that CDRH's proposed 600 J(CIE) m(-2) recommended maximum sunlamp exposure exceeds current Te erythemal dose by ∼33%. The current USFDA 0.75 MED initial exposure was ∼0.9 SED, consistent with 1.0 SED initial dose in existing international sunlamp standards. As no sunlamps analyzed exceeded 5 SED, a revised maximum exposure of 500 J(CIE) m(-2) (∼80% of CDRH's proposal) should be compatible with existing tanning equipment. A tanning acclimatization schedule is proposed beginning at 1 SED thrice-weekly, increasing uniformly stepwise over 4 wk to a 5 SED maximum exposure in conjunction with a tan maintenance schedule of twice-weekly 5 SED sessions, as biologically equivalent to current USFDA sunlamp policy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, Y; Shahnazi, K; Wang, W
Purpose: Ion beams have an unavoidable lateral spread due to nuclear interactions interacting with the air and monitoring systems. To minimize this spread, the distance between the nozzle and the patient should be kept as small as possible.The purpose of this work was to determine the impact of the target-to-nozzle distance reduction on the secondary neutron dose equivalent in proton and carbon ion radiotherapy. Methods: In this study, abdominal and head phantoms were scanned with our CT scanner. Cubical targets with side lengths of 3 cm to 10 cm and 1 cm to 5 cm were drawn in the abdominalmore » and head phantoms respectively. Two intensity-modulated plans were made for each phantom and ion. The first of these plans placed the target at the isocenter while the other shifted the phantom 30 cm towards the nozzle. The plans at both phantom locations were optimized to provide identical dose coverage to the PTVs.Secondary neutron dose equivalent at 50 cm lateral to the center of target. Results: The neutron dose equivalent was higher for the larger field size from 0.25µSv per Gy (RBE) to 72µSv per Gy (RBE). The neutron dose equivalent was smaller when the phantom was placed at the upstream target location versus at the isocenter location by 8.9% to 10.4% and 11.0% to 22.1% for proton plans of the abdominal and head phantoms respectively. Differences for carbon plans with different target-to-nozzle locations were less than 3% for both phantoms. Conclusion: A reduction of target-to-nozzle distance can lead to benefits for proton radiotherapy. In this study, a reduction of secondary neutron dose equivalent was found for proton plans with a smaller target-to-nozzle distance. A greater impact was found for a head phantom with a smaller field size; however, a reduction of the target-to-nozzle distance had little effect for carbon therapy.« less
Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.
Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos
2013-09-01
To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.
NASA Astrophysics Data System (ADS)
Allisy-Roberts, P. J.; Kessler, C.; Burns, D. T.; Berlyand, V.; Berlyand, A.
2010-01-01
A new comparison of the standards for absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radiotechnical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation in 2009. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9976 for the calibration coefficients of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. This result is consistent with the earlier 2001 comparison result of 0.9967 (43). The updated degrees of equivalence for the VNIIFTRI are compared with those of the other national metrology institutes as presented in the BIPM key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Results of nDOSE and HiDOSE Experiments for Dosimetric Evaluation During STS-134 Mission
NASA Astrophysics Data System (ADS)
Pugliese, M.; Loffredo, F.; Quarto, M.; Roca, V.; Mattone, C.; Borla, O.; Zanini, A.
2014-07-01
HiDOSE (Heavy ion DOSimetry Experiment) and nDOSE (neutron DOSimetry Experiment) experiments conducted as a part of BIOKIS (Biokon in Space) payload were designed to measure the dose equivalent due to charged particles and to neutron field, on the entire energy range, during STS-134 mission. Given the complexity of the radiation field in space environment, dose measurements should be considered an asset of any space mission, and for this reason HiDOSE and nDOSE experiments represent an important contribution to the radiation environment assessment during this mission, a short duration flight. The results of these experiments, obtained using Thermo Luminescence Dosimeters (TLDs) to evaluate the charged particles dosimetry and neutron bubbles dosimeters and stack bismuth track dosimeters for neutron dosimetry, indicate that the dose equivalent rate due to space radiation exposure during the STS-134 mission is in accordance with the results obtained from long duration flights.
NASA Astrophysics Data System (ADS)
Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav
The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.
A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film
Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka
2012-01-01
The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169
Distenfeld, Carl H.
1978-01-01
A method for measuring the dose-equivalent for exposure to an unknown and/or time varing neutron flux which comprises simultaneously exposing a plurality of neutron detecting elements of different types to a neutron flux and combining the measured responses of the various detecting elements by means of a function, whose value is an approximate measure of the dose-equivalent, which is substantially independent of the energy spectra of the flux. Also, a personnel neutron dosimeter, which is useful in carrying out the above method, comprising a plurality of various neutron detecting elements in a single housing suitable for personnel to wear while working in a radiation area.
2016-08-10
Anno, et al. 2003). The asymptomatic level (0.75 Gy) is considered the lower dose threshold of the presence of symptoms from acute radiation ...high probability of acute injury due to prompt radiation (shown in yellow, > 0.75-Gy equivalent dose) and low probability of acute injury from prompt...of an urban nuclear-weapon detonation as associated with the possibility of acute , deterministic radiation effects. Equivalent-dose calculations for
Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan
2016-03-01
A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Matsui, Yusuke; Hiraki, Takao; Gobara, Hideo; Iguchi, Toshihiro; Fujiwara, Hiroyasu; Kawabata, Takahiro; Yamauchi, Takatsugu; Yamaguchi, Takuya; Kanazawa, Susumu
2016-06-01
Computed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking. Radiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator's finger skin was measured using thermoluminescent dosimeter rings. The mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator's finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA. Radiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Yusuke, E-mail: wckyh140@yahoo.co.jp; Hiraki, Takao, E-mail: takaoh@tc4.so-net.ne.jp; Gobara, Hideo, E-mail: gobara@cc.okayama-u.ac.jp
IntroductionComputed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking.Materials and MethodsRadiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator’s finger skinmore » was measured using thermoluminescent dosimeter rings.ResultsThe mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator’s finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA.ConclusionRadiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.« less
The feasibility of universal DLP-to-risk conversion coefficients for body CT protocols
NASA Astrophysics Data System (ADS)
Li, Xiang; Samei, Ehsan; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.
2011-03-01
The effective dose associated with computed tomography (CT) examinations is often estimated from dose-length product (DLP) using scanner-independent conversion coefficients. Such conversion coefficients are available for a small number of examinations, each covering an entire region of the body (e.g., head, neck, chest, abdomen and/or pelvis). Similar conversion coefficients, however, do not exist for examinations that cover a single organ or a sub-region of the body, as in the case of a multi-phase liver examination. In this study, we extended the DLP-to-effective dose conversion coefficient (k factor) to a wide range of body CT protocols and derived the corresponding DLP-to-cancer risk conversion coefficient (q factor). An extended cardiactorso (XCAT) computational model was used, which represented a reference adult male patient. A range of body CT protocols used in clinical practice were categorized based on anatomical regions examined into 10 protocol classes. A validated Monte Carlo program was used to estimate the organ dose associated with each protocol class. Assuming the reference model to be 20 years old, effective dose and risk index (an index of the total risk for cancer incidence) were then calculated and normalized by DLP to obtain the k and q factors. The k and q factors varied across protocol classes; the coefficients of variation were 28% and 9%, respectively. The small variation exhibited by the q factor suggested the feasibility of universal q factors for a wide range of body CT protocols.
A simple calculation method for determination of equivalent square field.
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-04-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakir, Y.Y.; Sayed, A.M.; Salem, M.S.
1990-06-01
The weighted monthly concentration of {sup 137}Cs equivalent (WMC) for various types of foodstuffs imported from June 1986 to December 1988 are discussed. The data presented are based on total concentration of {sup 137}Cs equivalent. The concentration was found below the disqualifying level applied in Kuwait. The radioactive contamination was higher in milk and baby milk relative to other types of foodstuffs. The calculation of Kuwait's disqualifying levels are based on the annual dose equivalent of 1 mSv (100 mrem). The measured WMC for most types of foodstuffs represents a small fraction to the annual dose limit recommended for themore » general public.« less
GASP- General Aviation Synthesis Program. Volume 3: Aerodynamics
NASA Technical Reports Server (NTRS)
Hague, D.
1978-01-01
Aerodynamics calculations are treated in routines which concern moments as they vary with flight conditions and attitude. The subroutines discussed: (1) compute component equivalent flat plate and wetted areas and profile drag; (2) print and plot low and high speed drag polars; (3) determine life coefficient or angle of attack; (4) determine drag coefficient; (5) determine maximum lift coefficient and drag increment for various flap types and flap settings; and (6) determine required lift coefficient and drag coefficient in cruise flight.
Tashiro, Atsushi; Aida, Jun; Shobugawa, Yugo; Fujiyama, Yuki; Yamamoto, Tatsuo; Saito, Reiko; Kondo, Katsunori
2017-01-01
Objectives Personal income affects dental status in older people. However, the impact of income inequality on dental status at the community level (junior high school district) is unclear. The purpose of this study was to examine the association between dental status and community level income inequity after adjust for individual socio-economic status in Japanese older adults, and to verify the relative income hypothesis, also known as the Wilkinson hypothesis.Methods We used data from the Japan Gerontological Evaluation Study (JAGES) conducted in Niigata city. JAGES is a postal survey of functionally independent adults aged 65 years or older. We enrolled 4,983 respondents (response rate 62.3%) and used data on 3,980 of them after excluding incomplete data. We evaluated health condition and socio-economic status using questionnaires. The Gini coefficient, as an indicator of income inequality, was calculated by junior high school district (57 districts) based on the data from the questionnaire. Additionally, the Pearson's coefficient of correlation was calculated to evaluate the association between the mean number of remaining teeth and the community level Gini coefficient. Then we evaluated the mean number of remaining teeth among the groups stratified by the Gini coefficient conditions. Next, we conducted a multilevel analysis using an ordinal logistic regression model. The number of remaining teeth was set as the dependent variable, while sex, age, household size, education, smoking status, diabetes treatment, current living conditions, and equivalent income were used as independent variables at the individual level. The Gini coefficient and average equivalent income in the junior high school district were used as independent variables at the community level.Results The Pearson's correlation coefficient for the relationship between the Gini coefficient and the mean number of remaining teeth in the junior high school district was -0.44 (P<0.01). Wider income disparity area (Gini coefficient≧0.35) revealed a significantly small number of remaining teeth (P<0.001). The multilevel analysis showed that a higher Gini coefficient and a lower average equivalent income at the community level were significantly associated with a lower number of remaining teeth, and with educational attainment, smoking status, current living conditions, and equivalent income at the individual level, after adjusting for sex and age. On the other hand, educational attainment at the individual level, and average equivalent income at the community level were not significant factors after adjusting for all individual level variables.Conclusion This study showed that, in addition to individual socio-economic status, income inequality at the community level was significantly associated with number of remaining teeth in Japanese older adults. Although the precise mechanism of this association is still unclear, our result supports the relative income hypothesis.
Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B
2009-12-07
The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with d(max) solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with d(max) solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Richardson, Richard B.
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.
El-Jaby, Samy; Richardson, Richard B
2015-07-01
Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Schuemann, J
Purpose: To determine the neutron contamination from the aperture in pencil beam scanning during proton therapy. Methods: A Monte Carlo based proton therapy research platform TOPAS and the UF-series hybrid pediatric phantoms were used to perform this study. First, pencil beam scanning (PBS) treatment pediatric plans with average spot size of 10 mm at iso-center were created and optimized for three patients with and without apertures. Then, the plans were imported into TOPAS. A scripting method was developed to automatically replace the patient CT with a whole body phantom positioned according to the original plan iso-center. The neutron dose equivalentmore » was calculated using organ specific quality factors for two phantoms resembling a 4- and 14-years old patient. Results: The neutron dose equivalent generated by the apertures in PBS is 4–10% of the total neutron dose equivalent for organs near the target, while roughly 40% for organs far from the target. Compared to the neutron dose equivalent caused by PBS without aperture, the results show that the neutron dose equivalent with aperture is reduced in the organs near the target, and moderately increased for those organs located further from the target. This is due to the reduction of the proton dose around the edge of the CTV, which causes fewer neutrons generated in the patient. Conclusion: Clinically, for pediatric patients, one might consider adding an aperture to get a more conformal treatment plan if the spot size is too large. This work shows the somewhat surprising fact that adding an aperture for beam scanning for facilities with large spot sizes reduces instead of increases a potential neutron background in regions near target. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less
Peripheral photon and neutron doses from prostate cancer external beam irradiation.
Bezak, Eva; Takam, Rundgham; Marcu, Loredana G
2015-12-01
Peripheral photon and neutron doses from external beam radiotherapy (EBRT) are associated with increased risk of carcinogenesis in the out-of-field organs; thus, dose estimations of secondary radiation are imperative. Peripheral photon and neutron doses from EBRT of prostate carcinoma were measured in Rando phantom. (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescence dosemeters (TLDs) were inserted in slices of a Rando phantom followed by exposure to 80 Gy with 18-MV photon four-field 3D-CRT technique. The TLDs were calibrated using 6- and 18-MV X-ray beam. Neutron dose equivalents measured with CR-39 etch-track detectors were used to derive readout-to-neutron dose conversion factor for (6)LiF:Mg,Cu,P TLDs. Average neutron dose equivalents per 1 Gy of isocentre dose were 3.8±0.9 mSv Gy(-1) for thyroid and 7.0±5.4 mSv Gy(-1) for colon. For photons, the average dose equivalents per 1 Gy of isocentre dose were 0.2±0.1 mSv Gy(-1) for thyroid and 8.1±9.7 mSv Gy(-1) for colon. Paired (6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P TLDs can be used to measure photon and neutron doses simultaneously. Organs in close proximity to target received larger doses from photons than those from neutrons whereas distally located organs received higher neutron versus photon dose. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger
2016-01-01
Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.
Kim, Miyong; Han, Hae-Ra; Phillips, Linda
2003-01-01
Metric equivalence is a quantitative way to assess cross-cultural equivalences of translated instruments by examining the patterns of psychometric properties based on cross-cultural data derived from both versions of the instrument. Metric equivalence checks at item and instrument levels can be used as a valuable tool to refine cross-cultural instruments. Korean and English versions of the Center for Epidemiological Studies-Depression Scale (CES-D) were administered to 154 Korean Americans and 151 Anglo Americans to illustrate approaches to assessing their metric equivalence. Inter-item and item-total correlations, Cronbach's alpha coefficients, and factor analysis were used for metric equivalence checks. The alpha coefficient for the Korean-American sample was 0.85 and 0.92 for the Anglo American sample. Although all items of the CES-D surpassed the desirable minimum of 0.30 in the Anglo American sample, four items did not meet the standard in the Korean American sample. Differences in average inter-item correlations were also noted between the two groups (0.25 for Korean Americans and 0.37 for Anglo Americans). Factor analysis identified two factors for both groups, and factor loadings showed similar patterns and congruence coefficients. Results of the item analysis procedures suggest the possibility of bias in certain items that may influence the sensitivity of the Korean version of the CES-D. These item biases also provide a possible explanation for the alpha differences. Although factor loadings showed similar patterns for the Korean and English versions of the CES-D, factorial similarity alone is not sufficient for testing the universality of the structure underlying an instrument.
NAIRAS aircraft radiation model development, dose climatology, and initial validation.
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-10-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-01-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway. PMID:26213513
Code of Federal Regulations, 2010 CFR
2010-07-01
... 85 dBA, or equivalently a dose of 50%, integrating all sound levels from 80 dBA to at least 130 dBA... Protection Level. A TWA8 of 105 dBA, or equivalently, a dose of 800% of that permitted by the standard, integrating all sound levels from 90 dBA to at least 140 dBA. Exchange rate. The amount of increase in sound...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 85 dBA, or equivalently a dose of 50%, integrating all sound levels from 80 dBA to at least 130 dBA... Protection Level. A TWA8 of 105 dBA, or equivalently, a dose of 800% of that permitted by the standard, integrating all sound levels from 90 dBA to at least 140 dBA. Exchange rate. The amount of increase in sound...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
The improvement of the method of equivalent cross section in HTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, J.; Li, F.
The Method of Equivalence Cross-Sections (MECS) is a combined transport-diffusion method. By appropriately adjusting the diffusion coefficient of homogenized absorber region, the diffusion theory could yield satisfactory results for the full core model with strong neutron absorber material, for example the control rod in High temperature gas cooled reactor (HTR). Original implementation of MECS based on 1-D cell transport model has some limitation on accuracy and applicability, a new implementation of MECS based on 2-D transport model are proposed and tested in this paper. This improvement can extend the MECS to the calculation of twin small absorber ball system whichmore » have a non-circular boring in graphite reflector and different radial position. A least-square algorithm for the calculation of equivalent diffusion coefficient is adopted, and special treatment for diffusion coefficient for higher energy group is proposed in the case that absorber is absent. Numerical results to adopt MECS into control rod calculation in HTR are encouraging. However, there are some problems left. (authors)« less
Development of a web-based CT dose calculator: WAZA-ARI.
Ban, N; Takahashi, F; Sato, K; Endo, A; Ono, K; Hasegawa, T; Yoshitake, T; Katsunuma, Y; Kai, M
2011-09-01
A web-based computed tomography (CT) dose calculation system (WAZA-ARI) is being developed based on the modern techniques for the radiation transport simulation and for software implementation. Dose coefficients were calculated in a voxel-type Japanese adult male phantom (JM phantom), using the Particle and Heavy Ion Transport code System. In the Monte Carlo simulation, the phantom was irradiated with a 5-mm-thick, fan-shaped photon beam rotating in a plane normal to the body axis. The dose coefficients were integrated into the system, which runs as Java servlets within Apache Tomcat. Output of WAZA-ARI for GE LightSpeed 16 was compared with the dose values calculated similarly using MIRD and ICRP Adult Male phantoms. There are some differences due to the phantom configuration, demonstrating the significance of the dose calculation with appropriate phantoms. While the dose coefficients are currently available only for limited CT scanner models and scanning options, WAZA-ARI will be a useful tool in clinical practice when development is finalised.
Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A; Sahgal, Arjun
2011-11-21
Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R² = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.
The validation of tomotherapy dose calculations in low-density lung media
NASA Astrophysics Data System (ADS)
Chaudhari, Summer R.; Pechenaya, Olga L.; Goddu, S. Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D.; Low, Daniel
2009-04-01
The dose-calculation accuracy of the tomotherapy Hi-Art II® (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values <=1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.
The validation of tomotherapy dose calculations in low-density lung media.
Chaudhari, Summer R; Pechenaya, Olga L; Goddu, S Murty; Mutic, Sasa; Rangaraj, Dharanipathy; Bradley, Jeffrey D; Low, Daniel
2009-04-21
The dose-calculation accuracy of the tomotherapy Hi-Art II(R) (Tomotherapy, Inc., Madison, WI) treatment planning system (TPS) in the presence of low-density lung media was investigated. In this evaluation, a custom-designed heterogeneous phantom mimicking the mediastinum geometry was used. Gammex LN300 and balsa wood were selected as two lung-equivalent materials with different densities. Film analysis and ionization chamber measurements were performed. Treatment plans for esophageal cancers were used in the evaluation. The agreement between the dose calculated by the TPS and the dose measured via ionization chambers was, in most cases, within 0.8%. Gamma analysis using 3% and 3 mm criteria for radiochromic film dosimetry showed that 98% and 95% of the measured dose distribution had passing gamma values < or =1 for LN300 and balsa wood, respectively. For a homogeneous water-equivalent phantom, 95% of the points passed the gamma test. It was found that for the interface between the low-density medium and water-equivalent medium, the TPS calculated the dose distribution within acceptable limits. The phantom developed for this work enabled detailed quality-assurance testing under realistic conditions with heterogeneous media.
ERIC Educational Resources Information Center
Black, Ryan A.; Yang, Yanyun; Beitra, Danette; McCaffrey, Stacey
2015-01-01
Estimation of composite reliability within a hierarchical modeling framework has recently become of particular interest given the growing recognition that the underlying assumptions of coefficient alpha are often untenable. Unfortunately, coefficient alpha remains the prominent estimate of reliability when estimating total scores from a scale with…
Organ doses from radionuclides on the ground. Part I. Simple time dependences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, P.; Paretzke, H.G.; Rosenbaum, H.
1988-06-01
Organ dose equivalents of mathematical, anthropomorphical phantoms ADAM and EVA for photon exposures from plane sources on the ground have been calculated by Monte Carlo photon transport codes and tabulated in this article. The calculation takes into account the air-ground interface and a typical surface roughness, the energy and angular dependence of the photon fluence impinging on the phantom and the time dependence of the contributions from daughter nuclides. Results are up to 35% higher than data reported in the literature for important radionuclides. This manuscript deals with radionuclides, for which the time dependence of dose equivalent rates and dosemore » equivalents may be approximated by a simple exponential. A companion manuscript treats radionuclides with non-trivial time dependences.« less
Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, D.E.
1982-01-01
This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less
Radiation exposure for manned Mars surface missions
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
Hafezi, Ladan; Arianezhad, S Marjan; Hosseini Pooya, Seyed Mahdi
2018-04-25
The value for the use of thyroid shield is one of the issues in radiation protection of patients in dental panoramic imaging. The objective of this research is to investigate the attenuation characteristics of some models of thyroid shielding in dental panoramic examinations. The effects of five different types of lead and lead-free (Pb-equivalent) shields on dose reduction of thyroid gland were investigated using implanted Thermoluminescence Dosemeters (TLDs) in head-neck parts of a Rando phantom. The results show that frontal lead and Pb-equivalent shields can reduce the thyroid dose around 50% and 19%, respectively. It can be concluded that the effective shielding area is an important parameter in thyroid gland dose reduction. Lead frontal collars with large effective shielding areas (>~300 cm 2 but not necessarily very large) are appropriate for an optimized thyroid gland dose reduction particularly for the critical patients in dental panoramic imaging. Regardless of the shape and thickness, using the Pb-equivalent shields is not justifiable in dental panoramic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y; Waldron, T; Pennington, E
Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for amore » single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.« less
High-energy neutron depth-dose distribution experiment.
Ferenci, M S; Hertel, N E
2003-01-01
A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 liquid, tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. This experiment is intended to serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.
Ionizing radiation measurements on LDEF: A0015 Free flyer biostack experiment
NASA Technical Reports Server (NTRS)
Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Frigo, L. A.
1995-01-01
This report covers the analysis of passive radiation detectors flown as part of the A0015 Free Flyer Biostack on LDEF (Long Duration Exposure Facility). LET (linear energy transfer) spectra and track density measurements were made with CR-39 and Polycarbonate plastic nuclear track detectors. Measurements of total absorbed dose were carried out using Thermoluminescent Detectors. Thermal and resonance neutron dose equivalents were measured with LiF/CR-39 detectors. High energy neutron and proton dose equivalents were measured with fission foil/CR-39 detectors.
Models of Hematopoietic Dynamics Following Burn for Use in Combined Injury Simulations
2015-04-28
distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The effects of thermal injury were incorporated into previously developed models that...per kilogram (C kg–1) absorbed dose (rad) 1 × 10–2 joule per kilogram (J kg–1§) equivalent and effective dose (rem) 1 × 10–2 joule per kilogram (J...Gy = 1 J kg–1). **The special name for the SI unit of equivalent and effective dose is the sievert (Sv). (1 Sv = 1 J kg–1). Table of Contents Table
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomic, N; Bekerat, H; Seuntjens, J
Purpose: Both kVp settings and geometric distribution of various materials lead to significant change of the HU values, showing the largest discrepancy for high-Z materials and for the lowest CT scanning kVp setting. On the other hand, the dose distributions around low-energy brachytherapy sources are highly dependent on the architecture and composition of tissue heterogeneities in and around the implant. Both measurements and Monte Carlo calculations show that improper tissue characterization may lead to calculated dose errors of 90% for low energy and around 10% for higher energy photons. We investigated the ability of dual-energy CT (DECT) to characterize moremore » accurately tissue equivalent materials. Methods: We used the RMI-467 heterogeneity phantom scanned in DECT mode with 3 different set-ups: first, we placed high electron density (ED) plugs within the outer ring of the phantom; then we arranged high ED plugs within the inner ring; and finally ED plugs were randomly distributed. All three setups were scanned with the same DECT technique using a single-source DECT scanner with fast kVp switching (Discovery CT750HD; GE Healthcare). Images were transferred to a GE Advantage workstation for DECT analysis. Spectral Hounsfield unit curves (SHUACs) were then generated from 50 to 140-keV, in 10-keV increments, for each plug. Results: The dynamic range of Hounsfield units shrinks with increased photon energy as the attenuation coefficients decrease. Our results show that the spread of HUs for the three different geometrical setups is the smallest at 80 keV. Furthermore, among all the energies and all materials presented, the largest difference appears at high Z tissue equivalent plugs. Conclusion: Our results suggest that dose calculations at both megavoltage and low photon energies could benefit in the vicinity of bony structures if the 80 keV reconstructed monochromatic CT image is used with the DECT protocol utilized in this work.« less
NASA Astrophysics Data System (ADS)
Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav
2004-08-01
Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.
NASA Astrophysics Data System (ADS)
Jenkins, Peter Anthony
A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.
Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy
2014-05-01
The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more » DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less
NASA Astrophysics Data System (ADS)
Kessler, C.; Allisy-Roberts, P. J.; Burns, D. T.; Guerra, A. S.; Laitano, R. F.; Pimpinella, M.
2010-01-01
A comparison of the standards for absorbed dose to water of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti of the Ente per le Nuove Tecnologie, l'Energia e l'Ambiente, Italy (ENEA-INMRI), and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation under the auspices of the key comparison BIPM.RI(I)-K4. The comparison result, based on the calibration coefficients for three transfer standards and expressed as a ratio of the ENEA and the BIPM standards for absorbed dose to water, is 0.9999 (0.0044). The present 2007 result replaces the earlier ENEA value in this key comparison. The degrees of equivalence between the ENEA and the other participants in this comparison have been calculated and the results are given in the form of a matrix for the ten national metrology institutes (NMIs) that have published results in this ongoing comparison for absorbed dose to water. A graphical presentation is also given. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI Section I, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).
Antolak, J A; Cundiff, J H; Ha, C S
1998-01-01
The purpose of this report is to discuss the utilization of thermoluminescent dosimetry (TLD) in total skin electron beam (TSEB) radiotherapy to: (a) compare patient dose distributions for similar techniques on different machines, (b) confirm beam calibration and monitor unit calculations, (c) provide data for making clinical decisions, and (d) study reasons for variations in individual dose readings. We report dosimetric results for 72 cases of mycosis fungoides, using similar irradiation techniques on two different linear accelerators. All patients were treated using a modified Stanford 6-field technique. In vivo TLD was done on all patients, and the data for all patients treated on both machines was collected into a database for analysis. Means and standard deviations (SDs) were computed for all locations. Scatter plots of doses vs. height, weight, and obesity index were generated, and correlation coefficients with these variables were computed. The TLD results show that our current TSEB implementation is dosimetrically equivalent to the previous implementation, and that our beam calibration technique and monitor unit calculation is accurate. Correlations with obesity index were significant at several sites. Individual TLD results allow us to customize the boost treatment for each patient, in addition to revealing patient positioning problems and/or systematic variations in dose caused by patient variability. The data agree well with previously published TLD results for similar TSEB techniques. TLD is an important part of the treatment planning and quality assurance programs for TSEB, and routine use of TLD measurements for TSEB is recommended.
A simple calculation method for determination of equivalent square field
Shafiei, Seyed Ali; Hasanzadeh, Hadi; Shafiei, Seyed Ahmad
2012-01-01
Determination of the equivalent square fields for rectangular and shielded fields is of great importance in radiotherapy centers and treatment planning software. This is accomplished using standard tables and empirical formulas. The goal of this paper is to present a formula based on analysis of scatter reduction due to inverse square law to obtain equivalent field. Tables are published by different agencies such as ICRU (International Commission on Radiation Units and measurements), which are based on experimental data; but there exist mathematical formulas that yield the equivalent square field of an irregular rectangular field which are used extensively in computation techniques for dose determination. These processes lead to some complicated and time-consuming formulas for which the current study was designed. In this work, considering the portion of scattered radiation in absorbed dose at a point of measurement, a numerical formula was obtained based on which a simple formula was developed to calculate equivalent square field. Using polar coordinate and inverse square law will lead to a simple formula for calculation of equivalent field. The presented method is an analytical approach based on which one can estimate the equivalent square field of a rectangular field and may be used for a shielded field or an off-axis point. Besides, one can calculate equivalent field of rectangular field with the concept of decreased scatter radiation with inverse square law with a good approximation. This method may be useful in computing Percentage Depth Dose and Tissue-Phantom Ratio which are extensively used in treatment planning. PMID:22557801
A generic biokinetic model for noble gases with application to radon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio
The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less
Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms
NASA Astrophysics Data System (ADS)
Tat Nguyen, Thang; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E.; Lee, Choonsik; Chung, Beom Sun
2015-11-01
The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.
Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.
Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan
2014-02-01
To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013.
Bucy, Daniel S; Brown, Mark S; Bielefeldt-Ohmann, Helle; Thompson, Jesse; Bachand, Annette M; Morges, Michelle; Elder, John H; Vandewoude, Sue; Kraft, Susan L
2011-08-01
HIV infection results in a highly prevalent syndrome of cognitive and motor disorders designated as HIV-associated dementia (HAD). Neurologic dysfunction resembling HAD has been documented in cats infected with strain PPR of the feline immunodeficiency virus (FIV), whereas another highly pathogenic strain (C36) has not been known to cause neurologic signs. Animals experimentally infected with equivalent doses of FIV-C36 or FIV-PPR, and uninfected controls were evaluated by magnetic resonance diffusion-weighted imaging (DW-MRI) and spectroscopy (MRS) at 17.5-18 weeks post-infection, as part of a study of viral clade pathogenesis in FIV-infected cats. The goals of the MR imaging portion of the project were to determine whether this methodology was capable of detecting early neuropathophysiology in the absence of outward manifestation of neurological signs and to compare the MR imaging results for the two viral strains expected to have differing degrees of neurologic effects. We hypothesized that there would be increased diffusion, evidenced by the apparent diffusion coefficient as measured by DW-MRI, and altered metabolite ratios measured by MRS, in the brains of FIV-PPR-infected cats relative to C36-infected cats and uninfected controls. Increased apparent diffusion coefficients were seen in the white matter, gray matter, and basal ganglia of both the PPR and C36-infected (asymptomatic) cats. Thalamic MRS metabolite ratios did not differ between groups. The equivalently increased diffusion by DW-MRI suggests similar indirect neurotoxicity mechanisms for the two viral genotypes. DW-MRI is a sensitive tool to detect neuropathophysiological changes in vivo that could be useful during longitudinal studies of FIV.
Assessment of out-of-field absorbed dose and equivalent dose in proton fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clasie, Ben; Wroe, Andrew; Kooy, Hanne
2010-01-15
Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector insidemore » a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth. Conclusions: The dose deposited immediately downstream of the primary field, in these cases, is dominated by internally produced neutrons; therefore, scattered and scanned fields may have similar risk of second cancer in this region. The authors confirm that there is a reduction in the out-of-field dose in active scanning but the effect decreases with depth. GEANT4 is suitable for simulating the dose deposited outside the primary field. The agreement with measurements is comparable to or better than the agreement reported for other implementations of Monte Carlo models. Depending on the position, the absorbed dose outside the primary field is dominated by contributions from primary protons that may or may not have scattered in the brass collimating devices. This is noteworthy as the quality factor of the low LET protons is well known and the relative dose risk in this region can thus be assessed accurately.« less
NASA Technical Reports Server (NTRS)
Kim, M.Y.; Cucinotta, F.A.
2005-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.
Space radiation dosimetry in low-Earth orbit and beyond.
Benton, E R; Benton, E V
2001-09-01
Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.
Rollet, S; Autischer, M; Beck, P; Latocha, M
2007-01-01
The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.
NASA Technical Reports Server (NTRS)
Richardson, A. J. (Principal Investigator)
1983-01-01
The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
Abd El-Wahab, Magda; Morsy, Zeinab; El-Faramawy, Nabil
2010-04-01
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, E eff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
Determination of naturally radioactive elements in chalk sticks by means of gamma spectroscopy
NASA Astrophysics Data System (ADS)
El-Wahab, Magda Abd; Morsy, Zeinab; El-Faramawy, Nabil
The radiation hazards due to ingestion of chalkboard dust were investigated. Sixteen samples from three different origin fabricates were used. The estimation of radiation hazard indices were based on the evaluation of the concentration activities of the natural radionuclides 238U, 232Th and 40K. The radium equivalent activity, external hazard index, internal hazard index and the annual dose equivalent associated with the radionuclides were calculated and compared with international recommended values to assess the radiation hazard. The values of internal and external radiation hazard indices were found to be less than unity. The annual effective dose rate obtained, Eeff, and the annual gonadal dose equivalent (AGDE) are found to be less than the limit of the doses recommended by the International Commission on Radiological Protection for the general public. The analytical results show that besides the main calcium content, some toxic elements, S, Mo and Pb and Ni and Pb, in the Egyptian and imported chalk stocks, respectively, existed.
Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.
Glasgow, G P; Eichling, J; Yoder, R C
1986-06-01
A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.
Water-equivalent fiber radiation dosimeter with two scintillating materials
Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed
2016-01-01
An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715
A U.S. Multicenter Study of Recorded Occupational Radiation Badge Doses in Nuclear Medicine.
Villoing, Daphnée; Yoder, R Craig; Passmore, Christopher; Bernier, Marie-Odile; Kitahara, Cari M
2018-05-01
Purpose To summarize occupational badge doses recorded for a sample of U.S. nuclear medicine technologists. Materials and Methods Nine large U.S. medical institutions identified 208 former and current nuclear medicine technologists certified after 1979 and linked these individuals to historic badge dose records maintained by a commercial dosimetry company (Landauer), yielding a total of 2618 annual dose records. The distributions of annual and cumulative occupational doses were described by using summary statistics. Results Between 1992 and 2015, the median annual personal dose equivalent per nuclear medicine technologist was 2.18 mSv (interquartile range [IQR], 1.25-3.47 mSv; mean, 2.69 mSv). Median annual personal dose equivalents remained relatively constant over this period (range, 1.40-3.30 mSv), while maximum values generally increased over time (from 8.00 mSv in 1992 to 13.9 mSv in 2015). The median cumulative personal dose equivalent was 32.9 mSv (IQR, 18.1-65.5 mSv; mean, 51.4 mSv) for 45 technologists who had complete information and remained employed through 2015. Conclusion Occupational radiation doses were well below the established occupational limits and were consistent with those observed for nuclear medicine technologists worldwide and were greater than those observed for nuclear and general medical workers in the United States These results should be informative for radiation monitoring and safety efforts in nuclear medicine departments. © RSNA, 2018 Online supplemental material is available for this article.
Koritar, Priscila; Philippi, Sonia Tucunduva; Alvarenga, Marle dos Santos; Santos, Bernardo dos
2014-08-01
The scope of this study was to show the cross-cultural adaptation and validation of the Health and Taste Attitude Scale in Portuguese. The methodology included translation of the scale; evaluation of conceptual, operational and item-based equivalence by 14 experts and 51 female undergraduates; semantic equivalence and measurement assessment by 12 bilingual women by the paired t-test, the Pearson correlation coefficient and the coefficient intraclass correlation; internal consistency and test-retest reliability by Cronbach's alpha and intraclass correlation coefficient, respectively, after application on 216 female undergraduates; assessment of discriminant and concurrent validity via the t-test and Spearman's correlation coefficient, respectively, in addition to Confirmatory Factor and Exploratory Factor Analysis. The scale was considered adequate and easily understood by the experts and university students and presented good internal consistency and reliability (µ 0.86, ICC 0.84). The results show that the scale is valid and can be used in studies with women to better understand attitudes related to taste.
NASA Technical Reports Server (NTRS)
Stevens, Joseph E.
1955-01-01
Low-lift drag data are presented herein for one 1/7.5-scale rocket-boosted model and three 1/45.85-scale equivalent-body models of the Grumman F9F-9 airplane, The data were obtained over a Reynolds number range of about 5 x 10(exp 6) to 10 x 10(exp 6) based on wing mean aerodynamic chord for the rocket model and total body length for the equivalent-body models. The rocket-boosted model showed a drag rise of about 0,037 (based on included wing area) between the subsonic level and the peak supersonic drag coefficient at the maximum Mach number of this test. The base drag coefficient measured on this model varied from a value of -0,0015 in the subsonic range to a maximum of about 0.0020 at a Mach number of 1.28, Drag coefficients for the equivalent-body models varied from about 0.125 (based on body maximum area) in the subsonic range to about 0.300 at a Mach number of 1.25. Increasing the total fineness ratio by a small amount raised the drag-rise Mach number slightly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, H.; Tabeie, F.; Saghari, M.
1995-04-01
In view of the rapid expansion of diagnostic nuclear medicine procedures in Iran, this study was undertaken to examine trends of nuclear medicine practice in the country and to determine the mean effective dose equivalent per patient and per capita. Comprehensive national data covering 93% of all nuclear medicine centers in 1985-1989 were obtained. The total number of nuclear medicine examinations inc teased by 42% during these years. The relative frequency of thyroid investigations was 84% followed by liver/spleen and bone procedures (7% and 6%, respectively). {sup 99m}Tc was the radionuclide of choice for 86% of investigation while {sup 131}Imore » alone accounted for 59% of collective effective dose equivalent. The annual average number of nuclear medicine procedures per 1,000 people was 1.9. For the thyroid, the highest number (48%) of patients investigated was in the 15-29 y age group and the lowest (3%) was in the >64 y age group. The male to female ratio of thyroid and cardiac patient was 0.18 and 3.64, respectively. The numbers of males and females studied for the remaining eight procedures were less frequent and about the same. The mean effective dose equivalent per patient and per capita was about 4.3 mSv and 8 {mu}Sv, respectively. {sup 131}I was responsible for most of collective effective dose equivalent produced by nuclear medicine. Therefore, future efforts should be concentrated on dose reduction for diagnostic {sup 131}I tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Moteabbed, M
Purpose: To determine the scattered neutron dose and the resulting risk for a fetus from proton therapy for brain tumors during pregnancy. Methods: Using the Monte Carlo platform TOPAS, the ICRP reference parameters based anthropomorphic pregnancy phantoms for three stages (3-, 6-, 9-month) were applied to evaluate the scattered neutron dose and dose equivalent. To calculate the dose equivalent, organ specific linear energy transfer (LET) based quality factor was used. Treatment plans from both passive scattering (PS) and pencil beam scanning (PBS) methods were considered in this study. Results: For pencil beam scanning, the neutron dose equivalent in the softmore » tissue of the fetus increases from 1.53x10−{sup 3} to 2.84x10−{sup 3} mSv per treatment Gy with increasing stage of gestation. This is due to scattered neutrons from the patient as the main contaminant source in PBS and a decrease in distance between the soft tissue of the fetus and GTV with increasing stage of gestation. For passive scattering, neutron dose equivalent to the soft tissue of the fetus shows a decrease from 0.17 to 0.13 mSv per treatment Gy in different stages, while the dose to the brain shows little difference around 0.18 mSv per treatment Gy because scattered neutrons from the treatment head contribute predominantly in passive scattering. Conclusion: The results show that the neutron dose to the fetus assuming a prescribed dose of 52.2 Gy is negligible for PBS, and is comparable to the scattered dose (0–10 mSv) from a head and neck CT scan for PS. It can be concluded that the dose to fetus is far lower than the thresholds of malformation, SMR and lethal death. The excess relative risk of childhood cancer induction would be increased by 0.48 and 0.103 using the Oxford Survey of Childhood Cancers and Japanese atomic model, respectively. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less
Dose measurement in heterogeneous phantoms with an extrapolation chamber
NASA Astrophysics Data System (ADS)
Deblois, Francois
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.
Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.
Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R
2015-10-01
Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.
El-Jaby, Samy
2016-06-01
A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Radiation dose equivalent to stowaways in vehicles.
Khan, Siraj M; Nicholas, Paul E; Terpilak, Michael S
2004-05-01
The U.S. Bureau of Customs and Border Protection has deployed a large number of non-intrusive inspection (NII) systems at land border crossings and seaports throughout the United States to inspect cars, trucks, and sea containers. These NII systems use x rays and gamma rays for the detection of contraband. Unfortunately, undocumented aliens infrequently stow away in these same conveyances to illegally enter the United States. It is extremely important that the radiation dose equivalent imparted to these stowaways be within acceptable limits. This paper discusses the issues involved and describes a protocol the U.S. Bureau of Customs and Border Protection has used in a study to measure and document these levels. The results of this study show that the radiation dose equivalent to the stowaways from the deployed NII systems is negligibly small and does not pose a health hazard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun
2015-02-15
Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less
SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olguin, E; Flampouri, S; Lipnharski, I
Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less
Radiation exposure of the radiologist's eye lens during CT-guided interventions.
Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther
2014-02-01
In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.
NASA Astrophysics Data System (ADS)
Hodges, M.; Barzilov, A.; Chen, Y.; Lowe, D.
2016-10-01
The bremsstrahlung photon flux from the UNLV particle accelerator (Varian M6 model) was determined using MCNP5 code for 3 MeV and 6 MeV incident electrons. Human biological equivalent dose rates due to accelerator operation were evaluated using the photon flux with the flux-to-dose conversion factors. Dose rates were computed for the accelerator facility for M6 linac use under different operating conditions. The results showed that the use of collimators and linac internal shielding significantly reduced the dose rates throughout the facility. It was shown that the walls of the facility, in addition to the earthen berm enveloping the building, provide equivalent shielding to reduce dose rates outside to below the 2 mrem/h limit.
Gingerich, W.H.; Meinertz, J.R.; Dawson, V.K.; Gofus, J.E.; Delaney, L.J.; Bunnell, P.R.
1995-01-01
The distribution and loss of radioactivity from tissues were determined in 60 juvenile channel catfish (Ictalurus punctatus) following oral dosing with the candidate fish therapeutant Sarafin® ([14C] sarafloxacin hydrochloride) at 10 mg/kg for 5 consecutive days. Twelve groups of 5 fish each were sampled at selected times ranging from 3 to 240 h after the last dose was administered, The concentration and content of sarafloxacin-equivalent activity was determined in liver, gallbladder, kidney, skin, and skinless fillet by sample oxidation and liquid scintillation counting; content of sarafloxacin-equivalent activity was determined in stomach and anterior and posterior intestines, Skinless fillet tissues were also analyzed for sarafloxacin and for potential metabolites by gradient-elution high-performance liquid chromatography (HPLC) with in-line radiometric and fluorescence detection, Loss of radioactivity from the whole body conformed to a bimodal elimination pattern with a rapid initial phase (t1/2=11 h) and a slower secondary phase (t1/2=222 h). Tissue and contents of the gastrointestinal tract (i.e. stomach and anterior and posterior intestines) were a principal depot of activity during the first four sample times (3, 6, 12, and 24 h); the combined head, skeleton, and fins (i.e. residual carcass) were the principal depot of activity in samples taken after 24 h. Of those tissues sampled 3 h after the last dose, relative sarafloxacin concentration was greatest in the liver (4.06 μg equivalents/g) and least in the residual carcass (1.13 μg equivalents/g), Intermediate concentrations were found in the kidney (2.04 μg equivalents/g), skinless fillet (1.71 μg equivalents/ g), and the skin (1.51 μg equivalents/g). Concentrations of sarafloxacin-equivalent residues in edible skinless fillet were consistently among the lowest of all tissues examined. The highest mean concentration of parent-equivalent material in the fillet tissue was found 12 h after administration of the last dose (2.27 μg equivalents/g) and declined thereafter, Sarafloxacin constituted between 80 and 90% of the extractable radioactive residues from the fillet homogenates. No other peaks were resolved in any of the fillet tissue samples analyzed by HPLC with in-line radiometric detection.
GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source
NASA Astrophysics Data System (ADS)
Shin, Jae Won; Hong, Seung-Woo; Bak, Sang-In; Kim, Do Yoon; Kim, Chong Yeal
2014-09-01
Monte Carlo simulations are performed by using the GEANT4 and the PHITS for studying the neutron-shielding abilities of several materials, such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. As a neutron source, 252Cf is considered. For the Monte Carlo simulations by using the GEANT4, high precision (G4HP) models with the G4NDL 4.2 based on ENDF/B-VII data are used. For the simulations by using the PHITS, the JENDL-4.0 library is used. The neutron-dose-equivalent rates with or without five different shielding materials are estimated and compared with the experimental values. The differences between the shielding abilities calculated by using the GEANT4 with the G4NDL 4.2 and the PHITS with the JENDL-4.0 are found not to be significant for all the cases considered in this work. The neutron-dose-equivalent rates obtained by using the GEANT4 and the PHITS are compared with experimental data and other simulation results. Our neutron-dose-equivalent rates agree well with the experimental dose-equivalent rates, within 20% errors, except for polyethylene. For polyethylene, the discrepancies between our calculations and the experiments are less than 40%, as observed in other simulation results.
Comparison of biophysical factors influencing on emphysema quantification with low-dose CT
NASA Astrophysics Data System (ADS)
Heo, Chang Yong; Kim, Jong Hyo
2014-03-01
Emphysema Index(EI) measurements in MDCT is known to be influenced by various biophysical factors such as total lung volume, and body size. We investigated the association of the four biophysical factors with emphysema index in low-dose MDCT. In particular, we attempted to identify a potentially stronger biophysical factor than total lung volume. A total of 400 low-dose MDCT volumes taken at 120kVp, 40mAs, 1mm thickness, and B30f reconstruction kernel were used. The lungs, airways, and pulmonary vessels were automatically segmented, and two Emphysema Indices, relative area below -950HU(RA950) and 15th percentile(Perc15), were extracted from the segmented lungs. The biophysical factors such as total lung volume(TLV), mode of lung attenuation(ModLA), effective body diameter(EBD), and the water equivalent body diameter(WBD) were estimated from the segmented lung and body area. The association of biophysical factors with emphysema indices were evaluated by correlation coefficients. The mean emphysema indices were 8.3±5.5(%) in RA950, and -930±18(HU) in Perc15. The estimates of biophysical factors were 4.7±1.0(L) in TLV, -901±21(HU) in ModLA, 26.9±2.2(cm) in EBD, and 25.9±2.6(cm) in WBD. The correlation coefficients of biophysical factors with RA950 were 0.73 in TLV, 0.94 in ModLA, 0.31 in EBD, and 0.18 WBD, the ones with Perc15 were 0.74 in TLV, 0.98 in ModLA, 0.29 in EBD, and 0.15 WBD. Study results revealed that two biophysical factors, TLV and ModLA, mostly affects the emphysema indices. In particular, the ModLA exhibited strongest correlation of 0.98 with Perc15, which indicating the ModLA is the most significant confounding biophysical factor in emphysema indices measurement.
A correlation study of eye lens dose and personal dose equivalent for interventional cardiologists.
Farah, J; Struelens, L; Dabin, J; Koukorava, C; Donadille, L; Jacob, S; Schnelzer, M; Auvinen, A; Vanhavere, F; Clairand, I
2013-12-01
This paper presents the dosimetry part of the European ELDO project, funded by the DoReMi Network of Excellence, in which a method was developed to estimate cumulative eye lens doses for past practices based on personal dose equivalent values, H(p)(10), measured above the lead apron at several positions at the collar, chest and waist levels. Measurement campaigns on anthropomorphic phantoms were carried out in typical interventional settings considering different tube projections and configurations, beam energies and filtration, operator positions and access routes and using both mono-tube and biplane X-ray systems. Measurements showed that eye lens dose correlates best with H(p)(10) measured on the left side of the phantom at the level of the collar, although this correlation implicates high spreads (41 %). Nonetheless, for retrospective dose assessment, H(p)(10) records are often the only option for eye dose estimates and the typically used chest left whole-body dose measurement remains useful.
Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko
2017-03-01
In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.
An analysis of interplanetary space radiation exposure for various solar cycles
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.; Wilson, J. W. (Principal Investigator)
1994-01-01
The radiation dose received by crew members in interplanetary space is influenced by the stage of the solar cycle. Using the recently developed models of the galactic cosmic radiation (GCR) environment and the energy-dependent radiation transport code, we have calculated the dose at 0 and 5 cm water depth; using a computerized anatomical man (CAM) model, we have calculated the skin, eye and blood-forming organ (BFO) doses as a function of aluminum shielding for various solar minima and maxima between 1954 and 1989. These results show that the equivalent dose is within about 15% of the mean for the various solar minima (maxima). The maximum variation between solar minimum and maximum equivalent dose is about a factor of three. We have extended these calculations for the 1976-1977 solar minimum to five practical shielding geometries: Apollo Command Module, the least and most heavily shielded locations in the U.S. space shuttle mid-deck, center of the proposed Space Station Freedom cluster and sleeping compartment of the Skylab. These calculations, using the quality factor of ICRP 60, show that the average CAM BFO equivalent dose is 0.46 Sv/year. Based on an approach that takes fragmentation into account, we estimate a calculation uncertainty of 15% if the uncertainty in the quality factor is neglected.
NASA Astrophysics Data System (ADS)
Ma, Lijun; Lee, Letitia; Barani, Igor; Hwang, Andrew; Fogh, Shannon; Nakamura, Jean; McDermott, Michael; Sneed, Penny; Larson, David A.; Sahgal, Arjun
2011-11-01
Rapid delivery of multiple shots or isocenters is one of the hallmarks of Gamma Knife radiosurgery. In this study, we investigated whether the temporal order of shots delivered with Gamma Knife Perfexion would significantly influence the biological equivalent dose for complex multi-isocenter treatments. Twenty single-target cases were selected for analysis. For each case, 3D dose matrices of individual shots were extracted and single-fraction equivalent uniform dose (sEUD) values were determined for all possible shot delivery sequences, corresponding to different patterns of temporal dose delivery within the target. We found significant variations in the sEUD values among these sequences exceeding 15% for certain cases. However, the sequences for the actual treatment delivery were found to agree (<3%) and to correlate (R2 = 0.98) excellently with the sequences yielding the maximum sEUD values for all studied cases. This result is applicable for both fast and slow growing tumors with α/β values of 2 to 20 according to the linear-quadratic model. In conclusion, despite large potential variations in different shot sequences for multi-isocenter Gamma Knife treatments, current clinical delivery sequences exhibited consistent biological target dosing that approached that maximally achievable for all studied cases.
Pediatric Phantom Dosimetry of Kodak 9000 Cone-beam Computed Tomography.
Yepes, Juan F; Booe, Megan R; Sanders, Brian J; Jones, James E; Ehrlich, Ygal; Ludlow, John B; Johnson, Brandon
2017-05-15
The purpose of the study was to evaluate the radiation dose of the Kodak 9000 cone-beam computed tomography (CBCT) device for different anatomical areas using a pediatric phantom. Absorbed doses resulting from maxillary and mandibular region three by five cm CBCT volumes of an anthropomorphic 10-year-old child phantom were acquired using optical stimulated dosimetry. Equivalent doses were calculated for radiosensitive tissues in the head and neck area, and effective dose for maxillary and mandibular examinations were calculated following the 2007 recommendations of the International Commission on Radiological Protection (ICRP). Of the mandibular scans, the salivary glands had the highest equivalent dose (1,598 microsieverts [μSv]), followed by oral mucosa (1,263 μSv), extrathoracic airway (pharynx, larynx, and trachea; 859 μSv), and thyroid gland (578 μSv). For the maxilla, the salivary glands had the highest equivalent dose (1,847 μSv), followed closely by oral mucosa (1,673 μSv), followed by the extrathoracic airway (pharynx, larynx, and trachea; 1,011 μSv) and lens of the eye (202 μSv). Compared to previous research of the Kodak 9000, completed with the adult phantom, a child receives one to three times more radiation for mandibular scans and two to 10 times more radiation for maxillary scans.
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.
2008-01-01
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
Hassan, Muhammad; Waheed, Muhammad Mohsin; Anjum, Muhammad Naeem
2016-01-01
To quantify the radiation dose enhancement in a human tissue-equivalent polymer gel impregnated with silver nanoparticles. The case-control study was conducted at the Bahawalpur Institute of Nuclear Medicine and Oncology, Bahawalpur, Pakistan, in January 2014. Silver nanoparticles used in this study were prepared by wet chemical method. Polymer gel was prepared by known quantity of gelatine, methacrylic acid, ascorbic acid, copper sulphate pentahydrate, hydroquinone and water. Different concentrations of silver nanoparticles were added to the gel during its cooling process. The gel was cooled in six plastic vials of 50ml each. Two vials were used as a control sample while four vials were impregnated with silver nanoparticles. After 22 hours, the vials were irradiated with gamma rays by aCobalt-60 unit. Radiation enhancement was assessed by taking magnetic resonance images of the vials. The images were analysed using Image J software. The dose enhancement factor was 24.17% and 40.49% for 5Gy and 10Gy dose respectively. The dose enhancement factor for the gel impregnated with 0.10mM silver nanoparticles was 32.88% and 51.98% for 5Gy and 10Gy dose respectively. The impregnation of a tissue-equivalent gel with silver nanoparticles resulted in dose enhancement and this effect was magnified up to a certain level with the increase in concentration of silver nanoparticles.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Van Baalen, Mary; Shavers, Mark R.; Semones, Edward J.; Bolch, Wesley E.
2012-02-01
Computational phantoms serve an important role in organ dosimetry and risk assessment performed at the National Aeronautics and Space Administration (NASA). A previous study investigated the impact on organ dose equivalents and effective doses from the use of the University of Florida hybrid adult male (UFHADM) and adult female (UFHADF) phantoms at differing height and weight percentiles versus those given by the two existing NASA phantoms, the computerized anatomical man (CAM) and female (CAF) (Bahadori et al 2011 Phys. Med. Biol. 56 1671-94). In the present study, the UFHADM and UFHADF phantoms of different body sizes were further altered to incorporate the effects of microgravity. Body self-shielding distributions are generated using the voxel-based ray tracer (VoBRaT), and the results are combined with depth dose data from the NASA codes BRYNTRN and HZETRN to yield organ dose equivalents and their rates for a variety of space radiation environments. It is found that while organ dose equivalents are indeed altered by the physiological effects of microgravity, the magnitude of the change in overall risk (indicated by the effective dose) is minimal for the spectra and simplified shielding configurations considered. The results also indicate, however, that UFHADM and UFHADF could be useful in designing dose reduction strategies through optimized positioning of an astronaut during encounters with solar particle events.
SU-E-T-145: Beam Characteristics of Flattening Filter Free Beams Including Low Dose Rate Setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, K; Ogata, T; Nakayama, M
2015-06-15
Purpose: In commissioning of volumetric modulated arc therapy (VMAT), it is necessary to evaluate the beam characteristics of various dose rate settings with potential to use. The aim of this study is to evaluate the beam characteristics of flattened and flattening filter free (FFF) including low dose rate setting. Methods: We used a Varian TrueBeam with Millennium 120 MLC. Both 6 and 10 MV beams with or without flattening filter were used for this study. To evaluate low-dose rate FFF beams, specially-designed leaf sequence files control out-of-field MLC leaf pair at constant dose rate ranging from 80 to 400 MU/min.more » For dose rate from 80 MU/min to the maximum usable value of all energies, beam output were measured using ionization chamber (CC04, IBA). The ionization chamber was inserted into water equivalent phantom (RT3000-New, R-tech), and the phantom was set with SAD of 100cm. The beam profiles were performed using the 2D diode array (Profiler2, Sun Nuclear). The SSD was set to 90cm and a combined 30cmx30cmx9cm phantom which consisted of solid water slabs was put on the device. All measurement were made using 100MU irradiation for 10cmx10cm jaw-defined field size with a gantry angle of 0°. Results: In all energies, the dose rate dependences with beam output and variation coefficient were within 0.2% and 0.07%, respectively. The flatness and symmetry exhibited small variations (flatness ≤0.1 point and symmetry≤0.3 point at absolute difference). Conclusion: We had studied the characteristics of flattened and FFF beam over the 80 MU/min. Our results indicated that the beam output and profiles of FFF of TrueBeam linac were highly stable at low dose rate setting.« less
Yadav, Madhav P; Singla, Suhas; Thakral, Parul; Ballal, Sanjana; Bal, Chandrasekhar
2016-07-01
Radioimmunotherapy targeting CD20 receptors in lymphoma using radiolabeled chimeric antibodies may lead to better therapeutic responses than cold anti-CD20 antibodies. This study aimed to assess the biodistribution and present reasonable estimates of normal organ doses, including red marrow using Lu-DOTA-rituximab. Patients with relapsed/refractory CD20+ B-cell non-Hodgkin's lymphoma were recruited into this prospective study. In-house labeling of Lu-DOTA-rituximab was performed and administered after quality assurance. Rituximab (375 mg/m), followed by 50 mCi (1850 MBq) of Lu-DOTA-rituximab was administered as a slow intravenous infusion and emission images were acquired. Regions of interest were drawn for kidney, liver, heart, bladder, spleen, and tumor lesions on both anterior and posterior images. Internal dose estimation was performed using OLINDA v1.0 software. The mean age of the 10 patients (eight men and two women) was 52±13 years. The uptake of radiolabeled antibody was visualized within 30 min of administration in the liver, kidneys, heart, spleen, and bladder. The coefficient of determination (R) was greater than 0.95 for organs and the whole body in all patients. The effective half-life of radioimmunoconjugate was 100±28 h (42-126 h). The critical organ in our study was the red marrow. The average total body dose, effective dose, and effective dose equivalent calculated in all 10 patients were 0.13±0.02, 0.15±0.03, and 0.22±0.04 mGy/MBq, respectively. There may be considerable interindividual differences in absorbed doses of organs and generalization or extrapolation of doses in the clinical setting at present is not feasible with Lu-DOTA-rituximab in non-Hodgkin's lymphoma patients. Patient-specific dosimetry is thus recommended to eliminate the variations and reduce the possibility of dose-limiting toxicity.
NASA Astrophysics Data System (ADS)
Devpura, S.; Siddiqui, M. S.; Chen, D.; Liu, D.; Li, H.; Kumar, S.; Gordon, J.; Ajlouni, M.; Movsas, B.; Chetty, I. J.
2014-03-01
The purpose of this study was to systematically evaluate dose distributions computed with 5 different dose algorithms for patients with lung cancers treated using stereotactic ablative body radiotherapy (SABR). Treatment plans for 133 lung cancer patients, initially computed with a 1D-pencil beam (equivalent-path-length, EPL-1D) algorithm, were recalculated with 4 other algorithms commissioned for treatment planning, including 3-D pencil-beam (EPL-3D), anisotropic analytical algorithm (AAA), collapsed cone convolution superposition (CCC), and Monte Carlo (MC). The plan prescription dose was 48 Gy in 4 fractions normalized to the 95% isodose line. Tumors were classified according to location: peripheral tumors surrounded by lung (lung-island, N=39), peripheral tumors attached to the rib-cage or chest wall (lung-wall, N=44), and centrally-located tumors (lung-central, N=50). Relative to the EPL-1D algorithm, PTV D95 and mean dose values computed with the other 4 algorithms were lowest for "lung-island" tumors with smallest field sizes (3-5 cm). On the other hand, the smallest differences were noted for lung-central tumors treated with largest field widths (7-10 cm). Amongst all locations, dose distribution differences were most strongly correlated with tumor size for lung-island tumors. For most cases, convolution/superposition and MC algorithms were in good agreement. Mean lung dose (MLD) values computed with the EPL-1D algorithm were highly correlated with that of the other algorithms (correlation coefficient =0.99). The MLD values were found to be ~10% lower for small lung-island tumors with the model-based (conv/superposition and MC) vs. the correction-based (pencil-beam) algorithms with the model-based algorithms predicting greater low dose spread within the lungs. This study suggests that pencil beam algorithms should be avoided for lung SABR planning. For the most challenging cases, small tumors surrounded entirely by lung tissue (lung-island type), a Monte-Carlo-based algorithm may be warranted.
Equivalent model and power flow model for electric railway traction network
NASA Astrophysics Data System (ADS)
Wang, Feng
2018-05-01
An equivalent model of the Cable Traction Network (CTN) considering the distributed capacitance effect of the cable system is proposed. The model can be divided into 110kV side and 27.5kV side two kinds. The 110kV side equivalent model can be used to calculate the power supply capacity of the CTN. The 27.5kV side equivalent model can be used to solve the voltage of the catenary. Based on the equivalent simplified model of CTN, the power flow model of CTN which involves the reactive power compensation coefficient and the interaction of voltage and current, is derived.
NASA Astrophysics Data System (ADS)
Ohba, Takashi; Hasegawa, Arifumi; Kohayakawa, Yoshitaka; Kondo, Hisayoshi; Suzuki, Gen
2017-09-01
To reduce uncertainty in thyroid dose estimation, residents' radiation protection behavior should be reflected in the estimation. Screening data of body surface contamination provide information on exposure levels during evacuation. Our purpose is to estimate thyroid equivalent doses based on body surface contamination levels using a new methodology. We obtained a record of 7,539 residents/evacuees. Geiger-Mueller survey meter measurement value in cpm was translated into Bq/cm2 according to the nuclides densities obtained by measuring clothing from two persons by germanium γ-spectrometer. The measurement value of body surface contamination on head was adjusted by a natural removal rate of 15 hours and radionuclides' physical half-life. Thyroid equivalent dose of 1-year-old children by inhalation was estimated by two-dimensional Monte Carlo simulation. The proportions of evacuees/residents with measurement value in cpm of Namie and Minamisoma groups were higher than those of other groups during both periods (p<0.01, Kruskal-Wallis). During 12-14 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were estimated as 2.7 and 86.0 mSv, respectively, for Namie group, and 4.2 and 17.2 mSv, respectively, for Minamisoma group, 0.1 and 1.0 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 0.2 and 2.1 mSv, respectively, for the other group. During 15- 17 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were 0.8 and 15.7 mSv, respectively, for Namie group, and 1.6 and 8.4 mSv, respectively, for Minamisoma group, 0.2 and 13.2 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 1.2 and 12.7 mSv, respectively, for the other group. It was indicated that inhalation dose was generally higher in Namie and Minamisoma groups during 12-14 March than those during 15-17 March might reflect different self-protective behavior to radioactive plumes from other groups.
NASA Astrophysics Data System (ADS)
Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E.
2007-01-01
The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, wT. ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion coefficients for newly identified radiosensitive organs—salivary glands, gall bladder, heart and prostate—were reported, as well as the brain, which was originally considered in ICRP Publication 60 as a member of the remainder category of the effective dose.
General requirements to implement the personal dose equivalent Hp(10) in Brazil
NASA Astrophysics Data System (ADS)
Gomes Lopes, Amanda; Da Silva, Francisco Cesar Augusto
2018-03-01
To update the dosimetry quantity with the international community, Brazil is changing the Individual Dose (Hx) to the Personal Dose Equivalent Hp(10). A bibliographical survey on the technical and administrative requirements of nine countries that use Hp(10) was carried out to obtain the most relevant ones. All of them follow IEC and ISO guidelines for technical requirements, but administrative requirements change from country to country. Based on countries experiences, this paper presents a list of important general requirements to implement Hp(10) and to prepare the Brazilian requirements according to the international scientific community.
Optimization of oncological {sup 18}F-FDG PET/CT imaging based on a multiparameter analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes, Vinicius O., E-mail: vinicius@radtec.com.br; Machado, Marcos A. D.; Queiroz, Cleiton C.
2016-02-15
Purpose: This paper describes a method to achieve consistent clinical image quality in {sup 18}F-FDG scans accounting for patient habitus, dose regimen, image acquisition, and processing techniques. Methods: Oncological PET/CT scan data for 58 subjects were evaluated retrospectively to derive analytical curves that predict image quality. Patient noise equivalent count rate and coefficient of variation (CV) were used as metrics in their analysis. Optimized acquisition protocols were identified and prospectively applied to 179 subjects. Results: The adoption of different schemes for three body mass ranges (<60 kg, 60–90 kg, >90 kg) allows improved image quality with both point spread functionmore » and ordered-subsets expectation maximization-3D reconstruction methods. The application of this methodology showed that CV improved significantly (p < 0.0001) in clinical practice. Conclusions: Consistent oncological PET/CT image quality on a high-performance scanner was achieved from an analysis of the relations existing between dose regimen, patient habitus, acquisition, and processing techniques. The proposed methodology may be used by PET/CT centers to develop protocols to standardize PET/CT imaging procedures and achieve better patient management and cost-effective operations.« less
NASA Astrophysics Data System (ADS)
Kato, M.; Kurosawa, T.; Saito, N.; Kadni, T. B.; Kim, I. J.; Kim, B. C.; Yi, C.-Y.; Pungkun, V.; Chu, C.-H.
2017-01-01
The supplementary comparison of absorbed dose rate in tissue for beta radiation (APMP.RI(I)-S2) was performed with five national metrology institutes in 2013 and 2014. Two commercial thin window ionization chambers were used as transfer instruments and circulated among the participants. Two of the NMIs measured the calibration coefficients of the chambers in reference fields produced from Pm-147, Kr-85 and Sr-90/Y-90, while the other three measured those only in Sr-90/Y-90 beta-particle field. The degree of equivalence for the participants was determined and this comparison verifies the calibration capabilities of the participating laboratories. In addition, most of the results of this comparison are consistent with another international comparison (EUROMET.RI(I)-S2) reported before this work. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
ORGANIC SCINTILLATOR FOR REAL-TIME NEUTRON DOSIMETRY.
Beyer, Kyle A; Di Fulvio, Angela; Stolarczyk, Liliana; Parol, Wiktor; Mojzeszek, Natalia; Kopéc, Renata; Clarke, Shaun D; Pozzi, Sara A
2017-11-15
We developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV-0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cf neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dose Calibration of the ISS-RAD Fast Neutron Detector
NASA Technical Reports Server (NTRS)
Zeitlin, C.
2015-01-01
The ISS-RAD instrument has been fabricated by Southwest Research Institute and delivered to NASA for flight to the ISS in late 2015 or early 2016. ISS-RAD is essentially two instruments that share a common interface to ISS. The two instruments are the Charged Particle Detector (CPD), which is very similar to the MSL-RAD detector on Mars, and the Fast Neutron Detector (FND), which is a boron-loaded plastic scintillator with readout optimized for the 0.5 to 10 MeV energy range. As the FND is completely new, it has been necessary to develop methodology to allow it to be used to measure the neutron dose and dose equivalent. This talk will focus on the methods developed and their implementation using calibration data obtained in quasi-monoenergetic (QMN) neutron fields at the PTB facility in Braunschweig, Germany. The QMN data allow us to determine an approximate response function, from which we estimate dose and dose equivalent contributions per detected neutron as a function of the pulse height. We refer to these as the "pSv per count" curves for dose equivalent and the "pGy per count" curves for dose. The FND is required to provide a dose equivalent measurement with an accuracy of ?10% of the known value in a calibrated AmBe field. Four variants of the analysis method were developed, corresponding to two different approximations of the pSv per count curve, and two different implementations, one for real-time analysis onboard ISS and one for ground analysis. We will show that the preferred method, when applied in either real-time or ground analysis, yields good accuracy for the AmBe field. We find that the real-time algorithm is more susceptible to chance-coincidence background than is the algorithm used in ground analysis, so that the best estimates will come from the latter.
A Methodology to Compare Insulin Dosing Recommendations in Real-Life Settings.
Groat, Danielle; Grando, Maria A; Thompson, Bithika; Neto, Pedro; Soni, Hiral; Boyle, Mary E; Bailey, Marilyn; Cook, Curtiss B
2017-11-01
We propose a methodology to analyze complex real-life glucose data in insulin pump users. Patients with type 1 diabetes (T1D) on insulin pumps were recruited from an academic endocrinology practice. Glucose data, insulin bolus (IB) amounts, and self-reported alcohol consumption and exercise events were collected for 30 days. Rules were developed to retrospectively compare IB recommendations from the insulin pump bolus calculator (IPBC) against recommendations from a proposed decision aid (PDA) and for assessing the PDA's recommendation for exercise and alcohol. Data from 15 participants were analyzed. When considering instances where glucose was below target, the PDA recommended a smaller dose in 14%, but a larger dose in 13% and an equivalent IB in 73%. For glucose levels at target, the PDA suggested an equivalent IB in 58% compared to the subject's IPBC, but higher doses in 20% and lower in 22%. In events where postprandial glucose was higher than target, the PDA suggested higher doses in 25%, lower doses in 13%, and equivalent doses in 62%. In 64% of all alcohol events the PDA would have provided appropriate advice. In 75% of exercise events, the PDA appropriately advised an IB, a carbohydrate snack, or neither. This study provides a methodology to systematically analyze real-life data generated by insulin pumps and allowed a preliminary analysis of the performance of the PDA for insulin dosing. Further testing of the methodological approach in a broader diabetes population and prospective testing of the PDA are needed.
Take, Makoto; Takeuchi, Tetsuya; Haresaku, Mitsuru; Matsumoto, Michiharu; Nagano, Kasuke; Yamamoto, Seigo; Takamura-Enya, Takeji; Fukushima, Shoji
2014-01-01
The present study investigated the time-course changes of concentration of chloroform (CHCl3) in the blood during and after exposure of male rats to CHCl3 by inhalation. Increasing the dose of CHCl3 in the inhalation exposed groups caused a commensurate increase in the concentration of CHCl3 in the blood and the area under the blood concentration-time curve (AUC). There was good correlation (r = 0.988) between the inhalation dose and the AUC/kg body weight. Based on the AUC/kg body weight-inhalation dose curve and the AUC/kg body weight after oral administration, inhalation equivalent doses of orally administered CHCl3 were calculated. Calculation of inhalation equivalent doses allows the body burden due to CHCl3 by inhalation exposure and oral exposure to be directly compared. This type of comparison facilitates risk assessment in humans exposed to CHCl3 by different routes. Our results indicate that when calculating inhalation equivalent doses of CHCl3, it is critical to include the AUC from the exposure period in addition to the AUC after the end of the exposure period. Thus, studies which measure the concentration of volatile organic compounds in the blood during the inhalation exposure period are crucial. The data reported here makes an important contribution to the physiologically based pharmacokinetic (PBPK) database of CHCl3 in rodents.
Dose estimates for the 1104 m APS storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, H.J.
1989-06-01
The estimated dose equivalent rates outside the shielded storage ring, and the estimated annual dose equivalent to members of the public due to direct radiation and skyshine from the ring, have been recalculated. The previous estimates found in LS-84 (MOE 87) and cited in the 1987 Conceptual Design Report of the APS (ANL 87) required revision because of changes in the ring circumference and in the proposed location of the ring with respect to the nearest site boundary. The values assumed for the neutron quality factors were also overestimated (by a factor of 2) in the previous computation, and themore » correct values have been used for this estimate. The methodology used to compute dose and dose rate from the storage ring is the same as that used in LS-90 (MOE 87a). The calculations assumed 80 cm thick walls of ordinary concrete (or the shielding equivalent of this) and a roof thickness of 1 meter of ordinary concrete. The circumference of the ring was increased to 1,104 m, and the closest distance to the boundary was taken as 140 m. The recalculation of the skyshine component used the same methodology as that used in LS-84.« less
NASA Astrophysics Data System (ADS)
de la Rosa, R.; Gandarias, M. L.; Bruzón, M. S.
2016-11-01
In this paper we study the generalized variable-coefficient Gardner equations of the form ut + A(t) unux + C(t) u2nux + B(t) uxxx + Q(t) u = 0 . This class broadens out many other equations previously considered: Johnpillai and Khalique (2010), Molati and Ramollo (2012) and Vaneeva et al. (2015). The use of the equivalence group of this class allows us to perform an exhaustive study and a simple and clear formulation of the results. Some conservation laws are derived for the nonlinearly self-adjoint equations by using a general theorem on conservation laws. We also construct conservation laws by applying the multipliers method.
Cancer risk coefficient for patient undergoing kyphoplasty surgery using Monte Carlo method
NASA Astrophysics Data System (ADS)
Santos, Felipe A.; Santos, William S.; Galeano, Diego C.; Cavalcante, Fernanda R.; Silva, Ademir X.; Souza, Susana O.; Júnior, Albérico B. Carvalho
2017-11-01
Kyphoplasty surgery is widely used for pain relief in patients with vertebral compression fracture (VCF). For this surgery, an X-ray emitter that provides real-time imaging is employed to guide the medical instruments and the surgical cement used to fill and strengthen the vertebra. Equivalent and effective doses related to high temporal resolution equipment has been studied to assess the damage and more recently cancer risk. For this study, a virtual scenario was prepared using MCNPX code and a pair of UF family simulators. Two projections with seven tube voltages for each one were simulated. The organ in the abdominal region were those who had higher cancer risk because they receive the primary beam. The risk of lethal cancer is on average 20% higher in AP projection than in LL projection. This study aims at estimating the risk of cancer in organs and the risk of lethal cancer for patient submitted to kyphoplasty surgery.
Schmid, T E; Canella, L; Kudejova, P; Wagner, F M; Röhrmoser, A; Schmid, E
2015-03-01
Provided that a selective accumulation of (10)B-containing compounds is introduced in tumor cells, following irradiation by thermal neutrons produces high-LET alpha-particles ((4)He) and recoiling lithium-7 ((7)Li) nuclei emitted during the capture of thermalized neutrons (0.025 eV) from (10)B. To estimate the biological effectiveness of this boron neutron capture [(10)B(n,α)(7)Li] reaction, the chromosome aberration assay and the flow cytometry apoptosis assay were applied. At the presence of the clinically used compounds BSH (sodium borocaptate) and BPA (p-boronophenylalanine), human lymphocytes were irradiated by sub-thermal neutrons. For analyzing chromosome aberrations, human lymphocytes were exposed to thermally equivalent neutron fluences of 1.82 × 10(11) cm(-2) or 7.30 × 10(11) cm(-2) (corresponding to thermal neutron doses of 0.062 and 0.248 Gy, respectively) in the presence of 0, 10, 20, and 30 ppm of BSH or BPA. Since the kerma coefficient of blood increased by 0.864 × 10(-12) Gy cm(2) per 10 ppm of (10)B, the kerma coefficients in blood increase from 0.34 × 10(-12) cm(2) (blood without BSH or BPA) up to 2.93 × 10(-12) Gy cm(2) in the presence of 30 ppm of (10)B. For the (10)B(n, α)(7)Li reaction, linear dose-response relations for dicentrics with coefficients α = 0.0546 ± 0.0081 Gy(-1) for BSH and α = 0.0654 ± 0.0075 Gy(-1) for BPA were obtained at 0.062 Gy as well as α = 0.0985 ± 0.0284 Gy(-1) for BSH and α = 0.1293 ± 0.0419 Gy(-1) for BPA at 0.248 Gy. At both doses, the corresponding (10)B(n, α)(7)Li reactions from BSH and BPA are not significantly different. A linear dose-response relation for dicentrics also was obtained for the induction of apoptosis by the (10)B(n, α)(7)Li reaction at 0.248 Gy. The linear coefficients α = 0.0249 ± 0.0119 Gy(-1) for BSH and α = 0.0334 ± 0.0064 Gy(-1) for BPA are not significantly different. Independently of the applied thermal neutron doses of 0.062 Gy or 0.248 Gy, the (10)B(n, α)(7)Li reaction from 30 ppm BSH or BPA induced an apparent RBE of about 2.2 for the production of dicentrics as compared to exposure to thermal neutrons alone. Since the apparent RBE value is defined as the product of the RBE of a thermal neutron dose alone times a boron localization factor which depends on the concentration of a (10)B-containing compound, this localization factor determines the biological effectiveness of the (10)B(n, α)(7)Li reaction.
NASA Astrophysics Data System (ADS)
Danaeifar, Mohammad; Granpayeh, Nosrat
2018-03-01
An analytical method is presented to analyze and synthesize bianisotropic metasurfaces. The equivalent parameters of metasurfaces in terms of meta-atom properties and other specifications of metasurfaces are derived. These parameters are related to electric, magnetic, and electromagnetic/magnetoelectric dipole moments of the bianisotropic media, and they can simplify the analysis of complicated and multilayer structures. A metasurface of split ring resonators is studied as an example demonstrating the proposed method. The optical properties of the meta-atom are explored, and the calculated polarizabilities are applied to find the reflection coefficient and the equivalent parameters of the metasurface. Finally, a structure consisting of two metasurfaces of the split ring resonators is provided, and the proposed analytical method is applied to derive the reflection coefficient. The validity of this analytical approach is verified by full-wave simulations which demonstrate good accuracy of the equivalent parameter method. This method can be used in the analysis and synthesis of bianisotropic metasurfaces with different materials and in different frequency ranges by considering electric, magnetic, and electromagnetic/magnetoelectric dipole moments.
Gulan, Ljiljana; Milenkovic, Biljana; Zeremski, Tijana; Milic, Gordana; Vuckovic, Biljana
2017-03-01
Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), heavy metals content and radioactivity levels were measured in 27 soil samples collected from Priština, the capital of Kosovo and Metohija. The sixteen PAHs, twelve OCPs and six PCBs congeners were determined by gas chromatography system with mass spectrometry detection. Although the use of PCBs and OCPs was prohibited decades ago residues of those compounds still existed in measurable concentrations in soils of Priština. PAHs were also present in analyzed samples but their mean concentration was significantly lower than mean concentrations of PAHs previously reported in urban areas in the world. The concentrations of heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) were determined by the EDTA extraction protocols, along with their extractable concentrations. The activity concentrations of natural radionuclides ( 226 Ra, 232 Th and 40 K) were determined by gamma spectrometry method. The Shapiro-Wilk normality test found that activity concentrations of natural radionuclides were normally distributed. Radiological risk was estimated through the annual effective dose, gonadal dose equivalent, excess lifetime cancer risk, radium equivalent activity, external and internal hazard indexes. Spearman correlation coefficient was used for analysis of correlations between physicochemical properties, heavy metal contents and radionuclide activity concentrations. Strong positive correlation between 226 Ra and 232 Th was found, as well as among pairs of As-Cd and Co-Mn. Very strong positive correlation (0.838) at the 0.01 significance level was noted for Pb-Zn pair. Strong correlations indicate common occurrence of these elements in the nature, as well as geogenic association. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bladder symptoms assessed with overactive bladder questionnaire in Parkinson's disease.
Iacovelli, Elisa; Gilio, Francesca; Meco, Giuseppe; Fattapposta, Francesco; Vanacore, Nicola; Brusa, Livia; Giacomelli, Elena; Gabriele, Maria; Rubino, Alfonso; Locuratolo, Nicoletta; Iani, Cesare; Pichiorri, Floriana; Colosimo, Carlo; Carbone, Antonio; Palleschi, Giovanni; Inghilleri, Maurizio
2010-07-15
In Parkinson's disease (PD) the urinary dysfunction manifests primarily with symptoms of overactive bladder (OAB). The OAB questionnaire (OAB-q) is a measure designed to assess the impact of OAB symptoms on health-related quality of life. In this study, we quantified the urinary symptoms in a large cohort of PD patients by using the OAB-q short form. Possible correlations between the OAB-q and clinical features were tested. Three hundred and two PD patients were enrolled in the study. Correlations between the OAB-q and sex, age, Unified Parkinson's Disease Rating Scale part III (UPDRS-III), Hoehn-Yahr (H-Y) staging, disease duration, and treatment were analyzed. Data were compared with a large cohort of 303 age-matched healthy subjects. The OAB-q yielded significantly higher scores in PD patients than in healthy subjects. In the group of PD patients, all the variables tested were similar between men and women. Pearson's coefficient showed a significant correlation between mean age, disease duration, mean OAB-q scores, UPDRS-III scores, and H-Y staging. A multiple linear regression analysis showed that OAB-q values were significantly influenced by age and UPDRS-III. No statistical correlations were found between OAB-q scores and drug therapy or the equivalent levodopa dose, whilst the items relating to the nocturia symptoms were significantly associated with the equivalent levodopa dose. Our findings suggest that bladder dysfunction assessed by OAB-q mainly correlates with UPDRS-III scores for severity of motor impairment, possibly reflecting the known role of the decline in nigrostriatal dopaminergic function in bladder dysfunction associated with PD and patients' age. Our study also suggests that the OAB-q is a simple, easily administered test that can objectively evaluate bladder function in patients with PD.
NASA Technical Reports Server (NTRS)
Childs, D. W.
1983-01-01
An improved theory for the prediction of the rotordynamic coefficients of turbulent annular seals was developed. Predictions from the theory are compared to the experimental results and an approach for the direct calculation of empirical turbulent coefficients from test data are introduced. An improved short seal solution is shown to do a better job of calculating effective stiffness and damping coefficients than either the original short seal solution or a finite length solution. However, the original short seal solution does a much better job of predicting equivalent added mass coefficient.
Marshall, Meghan; Yargeau, Viviane
2018-03-01
New treatment technologies and quality monitoring tools are needed for Contaminants of Emerging Concern (CECs) in wastewater. The purpose of this work was to assess the LuminoTox as a monitoring tool for CEC-associated toxicity in municipal wastewater during ozone treatment, and to evaluate the impact of different ozone feed concentrations at equivalent ozone doses for removing toxicity. The LuminoTox was sensitive at monitoring changes in toxicity of atrazine (ATZ) in synthetic wastewater (SWW) and in a 14 CECs mix in secondary effluent (SE) during ozone treatment. In both experiments, a decrease in toxicity was observed with increasing transferred ozone dose, which corresponded to a decrease in CEC concentration. For ATZ in SWW, a 5 ppm ozone feed showed better toxicity removal, up to 25% and 35% inhibition for LuminoTox algae biosensors SAPS I and SAPS II, respectively, for statistically equivalent ozone dose pairs of 43 mg (5 ppm ozone feed) and 36 mg (15 ppm ozone feed). The opposite was true for the 14 CECs in SE; the 15 ppm ozone feed showed better toxicity removal, up to a reduction of 37% and 40% for SAPS I and SAPS II inhibition, respectively, for statistically equivalent ozone dose pairs of 42 mg (5 ppm ozone feed) and 42 mg (15 ppm ozone feed). Different feed applications had an impact on the efficiency of toxicity removal for equivalent ozone doses; this efficiency appears to depend on the type of contaminants and/or wastewater matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.
2013-11-01
The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.
Characterization of the Radiation Shielding Properties of US andRussian EVA Suits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benton, E.R.; Benton, E.V.; Frank, A.L.
2001-10-26
Reported herein are results from the Eril Research, Inc.(ERI) participationin the NASA Johnson Space Center sponsored studycharacterizing the radiation shielding properties of the two types ofspace suit that astronauts are wearing during the EVA on-orbit assemblyof the International Space Station (ISS). Measurements using passivedetectors were carried out to assess the shielding properties of the USEMU Suit and the Russian Orlan-M suit during irradiations of the suitsand a tissue equivalent phantom to monoenergetic proton and electronbeams at the Loma Linda University Medical Center (LLUMC). Duringirradiations of 6 MeV electrons and 60 MeV protons, absorbed dose as afunction of depth was measuredmore » using TLDs exposed behind swatches of thetwo suit materials and inside the two EVA helmets. Considerable reductionin electron dosewas measured behind all suit materials in exposures to 6MeV electrons. Slowing of the proton beam in the suit materials led to anincrease in dose measured in exposures to 60 MeV protons. During 232 MeVproton irradiations, measurements were made with TLDs and CR-39 PNTDs atfive organ locations inside a tissue equivalent phantom, exposed bothwith and without the two EVA suits. The EVA helmets produce a 13 to 27percent reduction in total dose and a 0 to 25 percent reduction in doseequivalent when compared to measurements made in the phantom head alone.Differences in dose and dose equivalent between the suit and non-suitirradiations forthe lower portions of the two EVA suits tended to besmaller. Proton-induced target fragmentation was found to be asignificant source of increased dose equivalent, especially within thetwo EVA helmets, and average quality factor inside the EMU and Orlan-Mhelmets was 2 to 14 percent greater than that measured in the barephantom head.« less
Abdallah, Mohamed Abou-Elwafa; Pawar, Gopal; Harrad, Stuart
2015-11-01
Ethical and technical difficulties inherent to studies in human tissues are impeding assessment of the dermal bioavailability of brominated flame retardants (BFRs). This is further complicated by increasing restrictions on the use of animals in toxicity testing, and the uncertainties associated with extrapolating data from animal studies to humans due to inter-species variations. To overcome these difficulties, we evaluate 3D-human skin equivalents (3D-HSE) as a novel in vitro alternative to human and animal testing for assessment of dermal absorption of BFRs. The percutaneous penetration of hexabromocyclododecanes (HBCD) and tetrabromobisphenol-A (TBBP-A) through two commercially available 3D-HSE models was studied and compared to data obtained for human ex vivo skin according to a standard protocol. No statistically significant differences were observed between the results obtained using 3D-HSE and human ex vivo skin at two exposure levels. The absorbed dose was low (less than 7%) and was significantly correlated with log Kow of the tested BFR. Permeability coefficient values showed increasing dermal resistance to the penetration of γ-HBCD>β-HBCD>α-HBCD>TBBPA. The estimated long lag times (>30 min) suggests that frequent hand washing may reduce human exposure to HBCDs and TBBPA via dermal contact. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akino, Yuichi, E-mail: akino@radonc.med.osaka-u.ac.jp; Department of Radiology, Osaka University Hospital, Suita, Osaka; Yoshioka, Yasuo
2013-11-01
Purpose: The actual dose delivered to critical organs will differ from the simulated dose because of interfractional organ motion and deformation. Here, we developed a method to estimate the rectal dose in prostate intensity modulated radiation therapy with consideration to interfractional organ motion using daily megavoltage cone-beam computed tomography (MVCBCT). Methods and Materials: Under exemption status from our institutional review board, we retrospectively reviewed 231 series of MVCBCT of 8 patients with prostate cancer. On both planning CT (pCT) and MVCBCT images, the rectal contours were delineated and the CT value within the contours was replaced by the mean CTmore » value within the pelvis, with the addition of 100 Hounsfield units. MVCBCT images were rigidly registered to pCT and then nonrigidly registered using B-Spline deformable image registration (DIR) with Velocity AI software. The concordance between the rectal contours on MVCBCT and pCT was evaluated using the Dice similarity coefficient (DSC). The dose distributions normalized for 1 fraction were also deformed and summed to estimate the actual total dose. Results: The DSC of all treatment fractions of 8 patients was improved from 0.75±0.04 (mean ±SD) to 0.90 ±0.02 by DIR. Six patients showed a decrease of the generalized equivalent uniform dose (gEUD) from total dose compared with treatment plans. Although the rectal volume of each treatment fraction did not show any correlation with the change in gEUD (R{sup 2}=0.18±0.13), the displacement of the center of gravity of rectal contours in the anterior-posterior (AP) direction showed an intermediate relationship (R{sup 2}=0.61±0.16). Conclusion: We developed a method for evaluation of rectal dose using DIR and MVCBCT images and showed the necessity of DIR for the evaluation of total dose. Displacement of the rectum in the AP direction showed a greater effect on the change in rectal dose compared with the rectal volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.
2010-09-15
Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2018-04-01
Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Jing
2008-08-07
This study used the Monte-Carlo code MCNPX to determine mean absorbed doses to the embryo and foetus when the mother is exposed to external muon fields. Monoenergetic muons ranging from 20 MeV to 50 GeV were considered. The irradiation geometries include anteroposterior (AP), postero-anterior (PA), lateral (LAT), rotational (ROT), isotropic (ISO), and top-down (TOP). At each of these irradiation geometries, absorbed doses to the foetal body were calculated for the embryo of 8 weeks and the foetus of 3, 6 or 9 months, respectively. Muon fluence-to-absorbed-dose conversion coefficients were derived for the four prenatal ages. Since such conversion coefficients aremore » yet unknown, the results presented here fill a data gap.« less
Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon
NASA Astrophysics Data System (ADS)
Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.
Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.
NASA Astrophysics Data System (ADS)
Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.
2012-02-01
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.
NASA Astrophysics Data System (ADS)
Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.
2008-02-01
IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).
Pediatric Chest and Abdominopelvic CT: Organ Dose Estimation Based on 42 Patient Models
Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.
2014-01-01
Purpose To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. Materials and Methods The institutional review board approved this HIPAA–compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0–16 years; weight range, 2–80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDIvol). The relationships between CTDIvol-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. Results For organs within the image coverage, CTDIvol-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R2 > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%–32%) mainly because of the effect of overranging. Conclusion It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDIvol. These CTDIvol-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013 PMID:24126364
Tahmasebi Birgani, Mohamad J; Chegeni, Nahid; Zabihzadeh, Mansoor; Hamzian, Nima
2014-01-01
Equivalent field is frequently used for central axis depth-dose calculations of rectangular- and irregular-shaped photon beams. As most of the proposed models to calculate the equivalent square field are dosimetry based, a simple physical-based method to calculate the equivalent square field size was used as the basis of this study. The table of the sides of the equivalent square or rectangular fields was constructed and then compared with the well-known tables by BJR and Venselaar, et al. with the average relative error percentage of 2.5 ± 2.5% and 1.5 ± 1.5%, respectively. To evaluate the accuracy of this method, the percentage depth doses (PDDs) were measured for some special irregular symmetric and asymmetric treatment fields and their equivalent squares for Siemens Primus Plus linear accelerator for both energies, 6 and 18MV. The mean relative differences of PDDs measurement for these fields and their equivalent square was approximately 1% or less. As a result, this method can be employed to calculate equivalent field not only for rectangular fields but also for any irregular symmetric or asymmetric field. © 2013 American Association of Medical Dosimetrists Published by American Association of Medical Dosimetrists All rights reserved.
Development of a silicon diode detector for skin dosimetry in radiotherapy.
Vicoroski, Nikolina; Espinoza, Anthony; Duncan, Mitchell; Oborn, Bradley M; Carolan, Martin; Metcalfe, Peter; Menichelli, David; Perevertaylo, Vladimir L; Lerch, Michael L F; Rosenfeld, Anatoly B; Petasecca, Marco
2017-10-01
The aim of in vivo skin dosimetry was to measure the absorbed dose to the skin during radiotherapy, when treatment planning calculations cannot be relied on. It is of particularly importance in hypo-fractionated stereotactic modalities, where excessive dose can lead to severe skin toxicity. Currently, commercial diodes for such applications are with water equivalent depths ranging from 0.5 to 0.8 mm. In this study, we investigate a new detector for skin dosimetry based on a silicon epitaxial diode, referred to as the skin diode. The skin diode is manufactured on a thin epitaxial layer and packaged using the "drop-in" technology. It was characterized in terms of percentage depth dose, dose linearity, and dose rate dependence, and benchmarked against the Attix ionization chamber. The response of the skin diode in the build-up region of the percentage depth dose (PDD) curve of a 6 MV clinical photon beam was investigated. Geant4 radiation transport simulations were used to model the PDD in order to estimate the water equivalent measurement depth (WED) of the skin diode. Measured output factors using the skin diode were compared with the MOSkin detector and EBT3 film at 10 cm depth and at surface at isocenter of a water equivalent phantom. The intrinsic angular response of the skin diode was also quantified in charge particle equilibrium conditions (CPE) and at the surface of a solid water phantom. Finally, the radiation hardness of the skin diode up to an accumulated dose of 80 kGy using photons from a Co-60 gamma source was evaluated. The PDD curve measured with the skin diode was within 0.5% agreement of the equivalent Geant4 simulated curve. When placed at the phantom surface, the WED of the skin diode was estimated to be 0.075 ± 0.005 mm from Geant4 simulations and was confirmed using the response of a corrected Attix ionization chamber placed at water equivalent depth of 0.075 mm, with the measurement agreement to within 0.3%. The output factor measurements at 10 cm depth were within 2% of those measured with film and the MOSkin detector down to a field size of 2 × 2 cm 2 . The dose-response for all detector samples was linear and with a repeatability within 0.2%. The skin diode intrinsic angular response showed a maximum deviation of 8% at 90 degrees and from 0 to 60 degree is less than 5%. The radiation sensitivity reduced by 25% after an accumulated dose of 20 kGy but after was found to stabilize. At 60 kGy total accumulated dose the response was within 2% of that measured at 20 kGy total accumulated dose. This work characterizes an innovative detector for in vivo and real-time skin dose measurements that is based on an epitaxial silicon diode combined with the Centre for Medical Radiation Physics (CMRP) "drop-in" packaging technology. The skin diode proved to have a water equivalent depth of measurement of 0.075 ± 0.005 mm and the ability to measure doses accurately relative to reference detectors. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Yuanshui; Liu Yaxi; Zeidan, Omar
Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.« less
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Radiological protection and medical dosimetry for the Skylab crewmen
NASA Technical Reports Server (NTRS)
Bailey, J. V.; Hoffman, R. A.; English, R. A.
1977-01-01
Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.
Tume, P; Lewis, B J; Bennett, L G; Cousins, T
1998-01-01
A survey of the natural background dose equivalent received by Canadian Forces aircrew was conducted using neutron-sensitive bubble detectors (BDs) as the primary detection tool. Since this study was a new application for these detectors, the BD response to neutron dose equivalent (RD) was extended from thermal to 500 MeV in neutron energy. Based upon the extended RD, it was shown that the manufacturer's calibration can be scaled by 1.5 +/- 0.5 to give a BD sensitivity that takes into account recently recommended fluence-to-neutron dose equivalent conversion functions and the cosmogenic neutron spectrum encountered at jet altitudes. An investigation of the effects of systematic bias caused by the cabin environment (i.e., temperature, pressure and relative humidity) on the in-flight measurements was also conducted. Both simulated and actual aircraft climate tests indicated that the detectors are insensitive to the pressure and relative humidity variations encountered during routine jet aircraft operations. Long term conditioning tests also confirmed that the BD-PND model of detector is sensitive to variations in temperature to within +/- 20%. As part of the testing process, the in-flight measurements also demonstrated that the neutron dose equivalent is distributed uniformly throughout a Boeing 707 jet aircraft, indicating that both pilots and flight attendants are exposed to the same neutron field intensity to within experimental uncertainty.
Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.
Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G
2013-05-31
The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.
Carinou, Eleftheria; Ferrari, Paolo; Bjelac, Olivera Ciraj; Gingaume, Merce; Merce, Marta Sans; O'Connor, Una
2015-09-01
A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended.
Beck, P; Latocha, M; Dorman, L; Pelliccioni, M; Rollet, S
2007-01-01
As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircrafts have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at).
Galactic and solar radiation exposure to aircrew during a solar cycle.
Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M
2002-01-01
An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.
The dose from Compton backscatter screening.
Rez, Peter; Metzger, Robert L; Mossman, Kenneth L
2011-04-01
Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soref, Cheryl M.; Hacker, Timothy A.; Fahl, William E., E-mail: fahl@oncology.wisc.edu
Purpose: A new aminothiol, PrC-210, was tested for orally conferred radioprotection (rats, mice; 9.0 Gy whole-body, which was otherwise lethal to 100% of the animals) and presence of the debilitating side effects (nausea/vomiting, hypotension/fainting) that restrict use of the current aminothiol, amifostine (Ethyol, WR-2721). Methods and Materials: PrC-210 in water was administered to rats and mice at times before irradiation, and percent-survival was recorded for 60 days. Subcutaneous (SC) amifostine (positive control) or SC PrC-210 was administered to ferrets (Mustela putorius furo) and retching/emesis responses were recorded. Intraperitoneal amifostine (positive control) or PrC-210 was administered to arterial cannulated rats tomore » score drug-induced hypotension. Results: Oral PrC-210 conferred 100% survival in rat and mouse models against an otherwise 100% lethal whole-body radiation dose (9.0 Gy). Oral PrC-210, administered by gavage 30-90 min before irradiation, conferred a broad window of radioprotection. The comparison of PrC-210 and amifostine side effects was striking because there was no retching or emesis in 10 ferrets treated with PrC-210 and no induced hypotension in arterial cannulated rats treated with PrC-210. The tested PrC-210 doses were the ferret and rat equivalent doses of the 0.5 maximum tolerated dose (MTD) PrC-210 dose in mice. The human equivalent of this mouse 0.5 MTD PrC-210 dose would likely be the highest PrC-210 dose used in humans. By comparison, the mouse 0.5 MTD amifostine dose, 400 {mu}g/g body weight (equivalent to the human amifostine dose of 910 mg/m{sup 2}), when tested at equivalent ferret and rat doses in the above models produced 100% retching/vomiting in ferrets and 100% incidence of significant, progressive hypotension in rats. Conclusions: The PrC-210 aminothiol, with no detectable nausea/vomiting or hypotension side effects in these preclinical models, is a logical candidate for human drug development to use in healthy humans in a wide variety of radioprotection settings, including medical radiation, space travel, and nuclear accidents.« less
NASA Astrophysics Data System (ADS)
Cao, Zhong; Miller, L. F.; Buckner, M.
In order to accurately determine dose equivalent in radiation fields that include both neutrons and photons, it is necessary to measure the relative number of neutrons to photons and to characterize the energy dependence of the neutrons. The relationship between dose and dose equivalent begins to increase rapidly at about 100 keV; thus, it is necessary to separate neutrons from photons for neutron energies as low as about 100 keV in order to measure dose equivalent in a mixed radiation field that includes both neutrons and photons. Preceptron and back propagation neural networks that use pulse amplitude and pulse rise time information obtain separation of neutron and photons with about 5% error for neutrons with energies as low as 100 keV, and this is accomplished for neutrons with energies that range from 100 keV to several MeV. If the ratio of neutrons to photons is changed by a factor of 10, the classification error increases to about 15% for the neural networks tested. A technique that uses the output from the preceptron as a priori for a Bayesian classifier is more robust to changes in the relative number of neutrons to photons, and it obtains a 5% classification error when this ratio is changed by a factor of ten. Results from this research demonstrate that it is feasible to use commercially available instrumentation in combination with artificial intelligence techniques to develop a practical detector that will accurately measure dose equivalent in mixed neutron-photon radiation fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plataniotis, George A., E-mail: george.plataniotis@nhs.net; Dale, Roger G.
2014-03-15
Purpose: To estimate the radiation equivalent of the chemotherapy contribution to observed complete response rates in published results of 1-phase radio-chemotherapy of muscle-invasive bladder cancer. Methods and Materials: A standard logistic dose–response curve was fitted to data from radiation therapy-alone trials and then used as the platform from which to quantify the chemotherapy contribution in 1-phase radio-chemotherapy trials. Two possible mechanisms of chemotherapy effect were assumed (1) a fixed radiation-independent contribution to local control; or (2) a fixed degree of chemotherapy-induced radiosensitization. A combination of both mechanisms was also considered. Results: The respective best-fit values of the independent chemotherapy-induced completemore » response (CCR) and radiosensitization (s) coefficients were 0.40 (95% confidence interval −0.07 to 0.87) and 1.30 (95% confidence interval 0.86-1.70). Independent chemotherapy effect was slightly favored by the analysis, and the derived CCR value was consistent with reports of pathologic complete response rates seen in neoadjuvant chemotherapy-alone treatments of muscle-invasive bladder cancer. The radiation equivalent of the CCR was 36.3 Gy. Conclusion: Although the data points in the analyzed radio-chemotherapy studies are widely dispersed (largely on account of the diverse range of chemotherapy schedules used), it is nonetheless possible to fit plausible-looking response curves. The methodology used here is based on a standard technique for analyzing dose-response in radiation therapy-alone studies and is capable of application to other mixed-modality treatment combinations involving radiation therapy.« less
Glandular radiation dose in tomosynthesis of the breast using tungsten targets.
Sechopoulos, Ioannis; D'Orsi, Carl J
2008-10-24
With the advent of new detector technology, digital tomosynthesis imaging of the breast has, in the past few years, become a technique intensely investigated as a replacement for planar mammography. As with all other x-ray-based imaging methods, radiation dose is of utmost concern in the development of this new imaging technology. For virtually all development and optimization studies, knowledge of the radiation dose involved in an imaging protocol is necessary. A previous study characterized the normalized glandular dose in tomosynthesis imaging and its variation with various breast and imaging system parameters. This characterization was performed with x-ray spectra generated by molybdenum and rhodium targets. In the recent past, many preliminary patient studies of tomosynthesis imaging have been reported in which the x-ray spectra were generated with x-ray tubes with tungsten targets. The differences in x-ray distribution among spectra from these target materials make the computation of new normalized glandular dose values for tungsten target spectra necessary. In this study we used previously obtained monochromatic normalized glandular dose results to obtain spectral results for twelve different tungsten target x-ray spectra. For each imaging condition, two separate values were computed: the normalized glandular dose for the zero degree projection angle (DgN0), and the ratio of the glandular dose for non-zero projection angles to the glandular dose for the zero degree projection (the relative glandular dose, RGD(alpha)). It was found that DgN0 is higher for tungsten target x-ray spectra when compared with DgN0 values for molybdenum and rhodium target spectra of both equivalent tube voltage and first half value layer. Therefore, the DgN0 for the twelve tungsten target x-ray spectra and different breast compositions and compressed breast thicknesses simulated are reported. The RGD(alpha) values for the tungsten spectra vary with the parameters studied in a similar manner to that found for the molybdenum and rhodium target spectra. The surface fit equations and the fit coefficients for RGD(alpha) included in the previous study were also found to be appropriate for the tungsten spectra.
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
Saez Vergara, J C; Romero Gutiérrez, A M; Rodriguez Jiménez, R; Dominguez-Mompell Román, R
2004-01-01
The results from 2 years (2001-2002) of experimental measurements of in-board radiation doses received at IBERIA commercial flights are presented. The routes studied cover the most significant destinations and provide a good estimate of the route doses as required by the new Spanish regulations on air crew radiation protection. Details on the experimental procedures and calibration methods are given. The experimental measurements from the different instruments (Tissue Equivalent Proportional Counter and the combination of a high pressure ion chamber and a high-energy neutron compensated rem-counter) and their comparison with the predictions from some route-dose codes (CARI-6, EPCARD 3.2) are discussed. In contrast with the already published data, which are mainly focused on North latitudes over parallel 50, many of the data presented in this work have been obtained for routes from Spain to Central and South America.
Buddle, Bryce M; Hewinson, R Glyn; Vordermeier, H Martin; Wedlock, D Neil
2013-10-01
Vaccination of cattle with a commercial human tuberculosis (TB) vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG) Danish, at a dose equivalent to 5 human doses of BCG has protected these animals against TB in field and experimental trials. There is interest in determining whether a 10-fold-lower dose could still protect cattle but not induce a tuberculin intradermal test response. Two groups of calves (n = 9/group) were vaccinated subcutaneously with a lyophilized BCG Danish vaccine containing either 0.5 (1 × 10(5) to 4 × 10(5) CFU) or 5 (1 × 10(6) to 4 × 10(6) CFU) human doses of BCG Danish, with an additional group of 10 calves serving as nonvaccinated controls. Fifteen weeks after vaccination, these animals were challenged intratracheally with 5 × 10(3) CFU of virulent M. bovis and another 15 weeks later were slaughtered and examined for the presence of tuberculous lesions. Vaccination of the calves with either 0.5 or 5 equivalent human doses of BCG Danish induced similar levels of protection against challenge with M. bovis, with both groups showing significant reductions in the pathological and microbiological parameters compared to those for the the control group (P < 0.05). Vaccination with either of the two BCG doses induced similar numbers of animals responding to the tuberculin intradermal test at 11 weeks postvaccination. Vaccination with a 0.5 equivalent human dose of a commercial lyophilized BCG vaccine can protect cattle against challenge with M. bovis.