Skin dose from radionuclide contamination on clothing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.
1997-06-01
Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less
The Study of Natural Radiation Distribution in Soil of Sao Bernardo do Campo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, M. M.; Silveira, M. A. G.; Medina, N. H.
2008-08-07
We have studied the distribution of natural radioactivity in the soil of five sites of the city Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the radiation dose is due to the isotope {sup 40}K, with smaller contributions from the elements of the series of {sup 238}U and {sup 232}Th. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.
Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.
Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E
1997-04-01
In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.
Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.
Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun
2015-12-01
We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein
2009-09-15
Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less
NASA Astrophysics Data System (ADS)
Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo
2015-04-01
Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.
Chow, James C L; Leung, Michael K K; Islam, Mohammad K; Norrlinger, Bernhard D; Jaffray, David A
2008-01-01
The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies. An in-house graphical user interface called DOSCTP (DOSXYZnrc-based) developed using MATLAB was used to calculate the dose distributions due to a 360 degrees photon arc from the CBCT beam with the same patient CT image sets as used in Pinnacle. The two calculated dose distributions were added together by setting the CBCT doses equal to 1%, 1.5%, 2%, and 2.5% of the prescription dose of the prostate IMRT. The prostate plan and the summed dose distributions were then processed in the CERR platform to determine the dose-volume histograms (DVHs) of the regions of interest. Moreover, dose profiles along the x- and y-axes crossing the isocenter with and without addition of the CBCT dose were determined. It was found that the added doses due to CBCT are most significant at the femur heads. Higher doses were found at the bones for a relatively low energy CBCT beam such as 100 kVp. Apart from the bones, the CBCT dose was observed to be most concentrated on the anterior and posterior side of the patient anatomy. Analysis of the DVHs for the prostate and other critical tissues showed that they vary only slightly with the added CBCT dose at different beam energies. On the other hand, the changes of the DVHs for the femur heads due to the CBCT dose and beam energy were more significant than those of rectal and bladder wall. By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT.
Barnes, M P; Ebert, M A
2008-03-01
The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.
SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A; Yue, N
2016-06-15
Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less
SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Deroma, R; Borzov, E; Nevelsky, A
2015-06-15
Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less
NASA Astrophysics Data System (ADS)
Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike
2009-11-01
Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.
A method for the assessment of specific energy distribution in a model tumor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noska, M.A.
1996-12-31
Due to the short range of alpha particles in tissue, the calculation of dose from internally deposited alpha emitters requires a detailed analysis of the microscopic distribution of the radionuclide in order to determine the spatial distribution of energy emission events and, from this, the spatial distribution of dose. In the present study, the authors used quantitative autoradiography (QAR) to assess the microdistribution of a radiolabeled monoclonal antibody (MAb) fragment in human glioma xenografts in mice.
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakalyar, D; McKenney, S; Feng, W
Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution canmore » be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo
2014-07-15
Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less
Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao
2015-07-15
Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less
Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.
Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo
2017-09-01
The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.
NASA Astrophysics Data System (ADS)
Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.
2017-11-01
Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.
SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Feygelman, V; Moros, E
2016-06-15
Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less
SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popple, R; Brezovich, I; Wu, X
2014-06-01
Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantommore » containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M; Ramaseshan, R
2016-06-15
Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less
Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaniwa, T., E-mail: taku@nirs.go.jp; Kanematsu, N.; Tsuji, H.
2015-12-15
Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 casesmore » each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, M; Aldoohan, S; Sonnad, J
2015-06-15
Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harpool, K; De La Fuente Herman, T; Ahmad, S
Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
[The use of polymer gel dosimetry to measure dose distribution around metallic implants].
Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa
2014-10-01
A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamura, K; Araki, F; Ohno, T
Purpose: To investigate the difference of dose distributions with/without the effect of inter-seed attenuation and tissue compositions in prostate {sup 125}I brachytherapy dose calculations, using Monte Carlo simulations of Particle and Heavy Ion Transport code System (PHITS). Methods: The dose distributions in {sup 125}I prostate brachytherapy were calculated using PHITS for non-simultaneous and simultaneous alignments of STM1251 sources in water or prostate phantom for six patients. The PHITS input file was created from DICOM-RT file which includes source coordinates and structures for clinical target volume (CTV) and organs at risk (OARs) of urethra and rectum, using in-house Matlab software. Photonmore » and electron cutoff energies were set to 1 keV and 100 MeV, respectively. The dose distributions were calculated with the kerma approximation and the voxel size of 1 × 1 × 1 mm{sup 3}. The number of incident photon was set to be the statistical uncertainty (1σ) of less than 1%. The effect of inter-seed attenuation and prostate tissue compositions was evaluated from dose volume histograms (DVHs) for each structure, by comparing to results of the AAPM TG-43 dose calculation (without the effect of inter-seed attenuation and prostate tissue compositions). Results: The dose reduction due to the inter-seed attenuation by source capsules was approximately 2% for CTV and OARs compared to those of TG-43. In additions, by considering prostate tissue composition, the D{sub 90} and V{sub 100} of CTV reduced by 6% and 1%, respectively. Conclusion: It needs to consider the dose reduction due to the inter-seed attenuation and tissue composition in prostate {sup 125}I brachytherapy dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurkovic, I; Stathakis, S; Markovic, M
Purpose: To estimate the dose distributions delivered to the patient in each treatment fraction using deformable image registration (DIR) and assess the radiobiological impact of the inter-fraction variations due to patient deformation and setup. Methods: The work is based on the cone beam CT (CBCT) images and treatment plans of two lung cancer patients. Both patients were treated with intensity modulated radiation therapy (IMRT) to 66Gy in 2Gy/fraction. The treatment plans were exported from the treatment planning system (TPS) to the Velocity AI where DIR was performed and the same deformation matrix was used for the deformation of the plannedmore » dose distribution and organ contours to each CBCT dataset. A radiobiological analysis was performed based on the radiobiological parameters of the involved organs at risk (OARs) and planning target volume (PTV). Using the complication free tumor control probability (P+) index, differences in P+ were observed between each CBCT as well as between CBCT and planning dose distributions. Results: The optimal CBCT P? values ranged from 91.6 % to 94.8 % for patient #1 and from 88.8 % to 90.6 % for patient #2. At the dose level of the clinical prescription, the CBCT P+ values ranged from 80.3% to 80.7% for patient #1 and from 80.7% to 81.0% for the patient #2. The planning CT P+ values were 81.0% and 80.7% for the two patients, respectively. These differences emphasize the significance of using the radiobiological analysis when assessing changes in the dose distribution due to the tumor motion and lung deformations. Conclusion: Daily setup variations yield to differences in the actual dose delivered versus the planned one. The observed differences were rather small when only looking at the dosimetric comparison of the dose distributions, however the radiobiology analysis was able to detect clinically relevant differences among the studied dose distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Takayanagi, T; Fujii, Y
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less
SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, M; Kozuka, T; Oguchi, M
2014-06-15
Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A
Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less
DNA Damage Dependence on the Subcellular Distribution of Low-Energy Beta Emitters
NASA Astrophysics Data System (ADS)
Cutaia, Claudia; Alloni, Daniele; Mariotti, Luca; Friedland, Werner; Ottolenghi, Andrea
One of the main issues of low-energy internal emitters is related to the short ranges of beta particles, compared to the dimensions of the biological targets (e.g. the cell nucleus). Also depending on the chemical form, the radionuclide may be more concentrated in the cytoplasm of the target cell (in our calculations a human fibroblast in interphase) and consequently the conventional dosimetry may overestimate the dose to the nucleus; whereas if the radionuclide is more concentrated in the nuclei of the cells there is a risk of underestimating the nucleus dose. The computer code PARTRAC was modified to calculate the energy depositions in the nucleus and the DNA damage for different relative concentrations of the radionuclide in the nucleus and in the cytoplasm. The nuclides considered in the simulations were Tritium (the electrons emitted due to the β - decay have an average energy of 5.7 keV, corresponding to an average range of 0.42 µm) and Nickel-63 (the electrons emitted have an average energy of 17 keV corresponding to an average range of 5 µm). In the case of Tritium, the dose in the nucleus due the tracks generated outside this region is 15% of the average dose in the cell, whereas in the case of Nickel-63 the dose in the nucleus resulted to be 64% of the average dose in the cell. The distributions of DNA fragments as a function of the relative concentration of the nuclides in the nucleus and in the cytoplasm, were also calculated. In the same conditions, the number of complex lesions (which have a high probability of inducing lethal damage to the cells) per Gy (circa 0.5-1) and the total number of double strand breaks (DSBs) per Gy (circa 40) were also calculated. To complete the characterization of the effects of internal emitters inside the cell the distributions of DSBs per chromosome were studied for different radionuclide distributions in the cell. The results obtained from these simulations show the possible overestimation or underestimation of the risk, (particularly for Tritium intake), due to the distribution of the low energy emitters at subcellular levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, H; Jeon, H; Nam, J
Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less
Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.
Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji
2013-03-01
Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.
Dose perturbations due to in vivo dosimetry with diodes.
Alecu, R; Feldmeier, J J; Alecu, M
1997-03-01
In vivo dosimetry performed with semiconductor detectors is a reliable method for patient dose control. The purpose of this study is to evaluate the perturbations introduced in the patient's absorbed dose distribution by three types of commercially available diodes (Isorad, Sun Nuclear Corp.; model 114200, 114300 and 114400) from the same company and to present possible solutions for minimizing this side-effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
NASA Astrophysics Data System (ADS)
Fragoso, M.; Love, P. A.; Verhaegen, F.; Nalder, C.; Bidmead, A. M.; Leach, M.; Webb, S.
2004-12-01
In this study, the dose distribution delivered by low dose rate Cs-137 brachytherapy sources was investigated using Monte Carlo (MC) techniques and polymer gel dosimetry. The results obtained were compared with a commercial treatment planning system (TPS). The 20 mm and the 30 mm diameter Selectron vaginal applicator set (Nucletron) were used for this study. A homogeneous and a heterogeneous—with an air cavity—polymer gel phantom was used to measure the dose distribution from these sources. The same geometrical set-up was used for the MC calculations. Beyond the applicator tip, differences in dose as large as 20% were found between the MC and TPS. This is attributed to the presence of stainless steel in the applicator and source set, which are not considered by the TPS calculations. Beyond the air cavity, differences in dose of around 5% were noted, due to the TPS assuming a homogeneous water medium. The polymer gel results were in good agreement with the MC calculations for all the cases investigated.
SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Gautam, A; Kerr, M
2016-06-15
Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorissen, BL; Giantsoudi, D; Unkelbach, J
Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less
Bailiff, I K; Stepanenko, V F; Göksu, H Y; Jungner, H; Balmukhanov, S B; Balmukhanov, T S; Khamidova, L G; Kisilev, V I; Kolyado, I B; Kolizshenkov, T V; Shoikhet, Y N; Tsyb, A F
2004-12-01
Luminescence retrospective dosimetry techniques have been applied with ceramic bricks to determine the cumulative external gamma dose due to fallout, primarily from the 1949 test, in populated regions lying NE of the Semipalatinsk Nuclear Test Site in Altai, Russia, and the Semipalatinsk region, Kazakhstan. As part of a pilot study, nine settlements were examined, three within the regions of highest predicted dose (Dolon in Kazakshstan; Laptev Log and Leshoz Topolinskiy in Russia) and the remainder of lower predicted dose (Akkol, Bolshaya Vladimrovka, Kanonerka, and Izvestka in Kazakshstan; Rubtsovsk and Kuria in Russia) within the lateral regions of the fallout trace due to the 1949 test. The settlement of Kainar, mainly affected by the 24 September 1951 nuclear test, was also examined. The bricks from this region were found to be generally suitable for use with the luminescence method. Estimates of cumulative absorbed dose in air due to fallout for Dolon and Kanonerka in Kazakshstan and Leshoz Topolinskiy were 475 +/- 110 mGy, 240 +/- 60 mGy, and 230 +/- 70 mGy, respectively. The result obtained in Dolon village is in agreement with published calculated estimates of dose normalized to Cs concentration in soil. At all the other locations (except Kainar) the experimental values of cumulative absorbed dose obtained indicated no significant dose due to fallout that could be detected within a margin of about 25 mGy. The results demonstrate the potential suitability of the luminescence method to map variations in cumulative dose within the relatively narrow corridor of fallout distribution from the 1949 test. Such work is needed to provide the basis for accurate dose reconstruction in settlements since the predominance of short-lived radionuclides in the fallout and a high degree of heterogeneity in the distribution of fallout are problematic for the application of conventional dosimetry techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
2015-06-15
Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less
Natural Radiation from Soil using Gamma-Ray Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silveira, M. A. G.; Moreira, R. H.; Paula, A. L. C. de
2009-06-03
We have studied the distribution of natural radioactivity in the soil of Interlagos, in Sao Paulo city and Billings Reservoir, in Sao Bernardo do Campo, Sao Paulo, Brazil. The main contribution of the effective radiation dose is due to the elements of the {sup 238}Th decay series, with smaller contributions from {sup 40}K and the elements of the series of {sup 238}U. The results indicate the dose in all of the studied areas is around the average international dose due to external exposure to gamma rays (0.48 mSv/yr) proceeding from natural terrestrial elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; Schuemann, J; Dowdell, S
Purpose: For proton radiation therapy, Monte Carlo simulation (MCS) methods are recognized as the gold-standard dose calculation approach. Although previously unrealistic due to limitations in available computing power, GPU-based applications allow MCS of proton treatment fields to be performed in routine clinical use, on time scales comparable to that of conventional pencil-beam algorithms. This study focuses on validating the results of our GPU-based code (gPMC) versus fully implemented proton therapy based MCS code (TOPAS) for clinical patient cases. Methods: Two treatment sites were selected to provide clinical cases for this study: head-and-neck cases due to anatomical geometrical complexity (air cavitiesmore » and density heterogeneities), making dose calculation very challenging, and prostate cases due to higher proton energies used and close proximity of the treatment target to sensitive organs at risk. Both gPMC and TOPAS methods were used to calculate 3-dimensional dose distributions for all patients in this study. Comparisons were performed based on target coverage indices (mean dose, V90 and D90) and gamma index distributions for 2% of the prescription dose and 2mm. Results: For seven out of eight studied cases, mean target dose, V90 and D90 differed less than 2% between TOPAS and gPMC dose distributions. Gamma index analysis for all prostate patients resulted in passing rate of more than 99% of voxels in the target. Four out of five head-neck-cases showed passing rate of gamma index for the target of more than 99%, the fifth having a gamma index passing rate of 93%. Conclusion: Our current work showed excellent agreement between our GPU-based MCS code and fully implemented proton therapy based MC code for a group of dosimetrically challenging patient cases.« less
Brady, Samuel; Yoshizumi, Terry; Toncheva, Greta; Frush, Donald
2010-01-01
Purpose: The authors present a means to measure high-resolution, two-dimensional organ dose distributions in an anthropomorphic phantom of heterogeneous tissue composition using XRQA radiochromic film. Dose distributions are presented for the lungs, liver, and kidneys to demonstrate the organ volume dosimetry technique. XRQA film response accuracy was validated using thermoluminescent dosimeters (TLDs). Methods: XRQA film and TLDs were first exposed at the center of two CTDI head phantoms placed end-to-end, allowing for a simple cylindrical phantom of uniform scatter material for verification of film response accuracy and sensitivity in a computed tomography (CT) exposure geometry; the TLD and film dosimeters were exposed separately. In a similar manner, TLDs and films were placed between cross-sectional slabs of a 5 yr old anthropomorphic phantom’s thorax and abdomen regions. The anthropomorphic phantom was used to emulate real pediatric patient geometry and scatter conditions. The phantom consisted of five different tissue types manufactured to attenuate the x-ray beam within 1%–3% of normal tissues at CT beam energies. Software was written to individually calibrate TLD and film dosimeter responses for different tissue attenuation factors, to spatially register dosimeters, and to extract dose responses from film for TLD comparison. TLDs were compared to film regions of interest extracted at spatial locations corresponding to the TLD locations. Results: For the CTDI phantom exposure, the film and TLDs measured an average difference in dose response of 45% (SD±2%). Similar comparisons within the anthropomorphic phantom also indicated a consistent difference, tracking along the low and high dose regions, for the lung (28%) (SD±8%) and liver and kidneys (15%) (SD±4%). The difference between the measured film and TLD dose values was due to the lower response sensitivity of the film that arose when the film was oriented with its large surface area parallel to the main axis of the CT beam. The consistency in dose response difference allowed for a tissue specific correction to be applied. Once corrected, the average film response agreed to better than 3% (SD±2%) for the CTDI scans, and for the anthropomorphic phantom scans: 3% (SD±3%) for the lungs, 5% (SD±3%) for the liver, and 4% (SD±3%) for the kidneys. Additionally, XRQA film measured a heterogeneous dose distribution within the organ volumes. The extent of the dose distribution heterogeneity was not measurable with the TLDs due to the limitation on the number of TLDs loadable in the regions of the phantom organs. In this regard, XRQA film demonstrated an advantage over the TLD method by discovering a 15% greater maximum dose to lung in a region unmeasured by TLDs. Conclusions: The films demonstrated a lower sensitivity to absorbed dose measurements due to the geometric inefficiency of measuring dose from a beam situated end-on to the film. Once corrected, the film demonstrated equivalent dose measurement accuracy as TLD detectors with the added advantage of relatively simple measurement of high-resolution dose distributions throughout organ volumes. PMID:20964198
Radiation dose distributions due to sudden ejection of cobalt device.
Abdelhady, Amr
2016-09-01
The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A
2018-01-01
To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2006-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.
NASA Astrophysics Data System (ADS)
Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie
2013-06-01
The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.
NASA Astrophysics Data System (ADS)
España, Samuel; Paganetti, Harald
2011-07-01
Dose calculation for lung tumors can be challenging due to the low density and the fine structure of the geometry. The latter is not fully considered in the CT image resolution used in treatment planning causing the prediction of a more homogeneous tissue distribution. In proton therapy, this could result in predicting an unrealistically sharp distal dose falloff, i.e. an underestimation of the distal dose falloff degradation. The goal of this work was the quantification of such effects. Two computational phantoms resembling a two-dimensional heterogeneous random lung geometry and a swine lung were considered applying a variety of voxel sizes for dose calculation. Monte Carlo simulations were used to compare the dose distributions predicted with the voxel size typically used for the treatment planning procedure with those expected to be delivered using the finest resolution. The results show, for example, distal falloff position differences of up to 4 mm between planned and expected dose at the 90% level for the heterogeneous random lung (assuming treatment plan on a 2 × 2 × 2.5 mm3 grid). For the swine lung, differences of up to 38 mm were seen when airways are present in the beam path when the treatment plan was done on a 0.8 × 0.8 × 2.4 mm3 grid. The two-dimensional heterogeneous random lung phantom apparently does not describe the impact of the geometry adequately because of the lack of heterogeneities in the axial direction. The differences observed in the swine lung between planned and expected dose are presumably due to the poor axial resolution of the CT images used in clinical routine. In conclusion, when assigning margins for treatment planning for lung cancer, proton range uncertainties due to the heterogeneous lung geometry and CT image resolution need to be considered.
Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku
2013-03-15
Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Wonmo; Kim, Siyong; Kim, Jung-in
2012-10-15
Purpose: To investigate dose perturbations for pacemaker-implanted patients in partial breast irradiation using high dose rate (HDR) balloon brachytherapy. Methods: Monte Carlo (MC) simulations were performed to calculate dose distributions involving a pacemaker in Ir-192 HDR balloon brachytherapy. Dose perturbations by varying balloon-to-pacemaker distances (BPD = 50 or 100 mm) and concentrations of iodine contrast medium (2.5%, 5.0%, 7.5%, and 10.0% by volume) in the balloon were investigated for separate parts of the pacemaker (i.e., battery and substrate). Relative measurements using an ion-chamber were also performed to confirm MC results. Results: The MC and measured results in homogeneous media withoutmore » a pacemaker agreed with published data within 2% from the balloon surface to 100 mm BPD. Further their dose distributions with a pacemaker were in a comparable agreement. The MC results showed that doses over the battery were increased by a factor of 3, compared to doses without a pacemaker. However, there was no significant dose perturbation in the middle of substrate but up to 70% dose increase in the substrate interface with the titanium capsule. The attenuation by iodine contrast medium lessened doses delivered to the pacemaker by up to 9%. Conclusions: Due to inhomogeneity of pacemaker and contrast medium as well as low-energy photons in Ir-192 HDR balloon brachytherapy, the actual dose received in a pacemaker is different from the homogeneous medium-based dose and the external beam-based dose. Therefore, the dose perturbations should be considered for pacemaker-implanted patients when evaluating a safe clinical distance between the balloon and pacemaker.« less
A revision of the gamma-evaluation concept for the comparison of dose distributions.
Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof
2003-11-07
A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65
NASA Technical Reports Server (NTRS)
Hayashi, T.; Doke, T.; Kikuchi, J.; Takeuchi, R.; Hasebe, N.; Ogura, K.; Nagaoka, S.; Kato, M.; Badhwar, G. D.
1996-01-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
Measurement of LET distribution and dose equivalent on board the space shuttle STS-65.
Hayashi, T; Doke, T; Kikuchi, J; Takeuchi, R; Hasebe, N; Ogura, K; Nagaoka, S; Kato, M; Badhwar, G D
1996-11-01
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called "Real-time Radiation Monitoring Device (RRMD)" utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 microSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5 degrees) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15-200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.
NASA Astrophysics Data System (ADS)
Giap, Huan Bosco
Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.
Sim, GS; Ng, KH
2013-01-01
Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two‐dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three‐field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high‐dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution. PACS number: 87.55.Qr PMID:23835383
Deveau, Michael A; Gutiérrez, Alonso N; Mackie, Thomas R; Tomé, Wolfgang A; Forrest, Lisa J
2010-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5 mm (0-10.0 mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9 +/- 3.3 mm. Due to variations, a loss of equivalent uniform dose for target volumes of up to 5.6% was noted which corresponded to a potential loss in tumor control probability of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose and highest normalized dose given to 2% of the volume. Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain.
Deveau, Michael A.; Gutiérrez, Alonso N.; Mackie, Thomas R.; Tomé, Wolfgang A.; Forrest, Lisa J.
2009-01-01
Intensity-modulated radiation therapy (IMRT) can be employed to yield precise dose distributions that tightly conform to targets and reduce high doses to normal structures by generating steep dose gradients. Because of these sharp gradients, daily setup variations may have an adverse effect on clinical outcome such that an adjacent normal structure may be overdosed and/or the target may be underdosed. This study provides a detailed analysis of the impact of daily setup variations on optimized IMRT canine nasal tumor treatment plans when variations are not accounted for due to the lack of image guidance. Setup histories of ten patients with nasal tumors previously treated using helical tomotherapy were replanned retrospectively to study the impact of daily setup variations on IMRT dose distributions. Daily setup shifts were applied to IMRT plans on a fraction-by-fraction basis. Using mattress immobilization and laser alignment, mean setup error magnitude in any single dimension was at least 2.5mm (0-10.0mm). With inclusions of all three translational coordinates, mean composite offset vector was 5.9±3.3mm. Due to variations, a loss of equivalent uniform dose (EUD) for target volumes of up to 5.6% was noted which corresponded to a potential loss in TCP of 39.5%. Overdosing of eyes and brain was noted by increases in mean normalized total dose (NTDmean) and highest normalized dose given to 2% of the volume (NTD2%). Findings suggest that successful implementation of canine nasal IMRT requires daily image guidance to ensure accurate delivery of precise IMRT distributions when non-rigid immobilization techniques are utilized. Unrecognized geographical misses may result in tumor recurrence and/or radiation toxicities to the eyes and brain. PMID:20166402
Granton, Patrick V; Verhaegen, Frank
2013-05-21
Precision image-guided small animal radiotherapy is rapidly advancing through the use of dedicated micro-irradiation devices. However, precise modeling of these devices in model-based dose-calculation algorithms such as Monte Carlo (MC) simulations continue to present challenges due to a combination of very small beams, low mechanical tolerances on beam collimation, positioning and long calculation times. The specific intent of this investigation is to introduce and demonstrate the viability of a fast analytical source model (AM) for use in either investigating improvements in collimator design or for use in faster dose calculations. MC models using BEAMnrc were developed for circular and square fields sizes from 1 to 25 mm in diameter (or side) that incorporated the intensity distribution of the focal spot modeled after an experimental pinhole image. These MC models were used to generate phase space files (PSFMC) at the exit of the collimators. An AM was developed that included the intensity distribution of the focal spot, a pre-calculated x-ray spectrum, and the collimator-specific entrance and exit apertures. The AM was used to generate photon fluence intensity distributions (ΦAM) and PSFAM containing photons radiating at angles according to the focal spot intensity distribution. MC dose calculations using DOSXYZnrc in a water and mouse phantom differing only by source used (PSFMC versus PSFAM) were found to agree within 7% and 4% for the smallest 1 and 2 mm collimator, respectively, and within 1% for all other field sizes based on depth dose profiles. PSF generation times were approximately 1200 times faster for the smallest beam and 19 times faster for the largest beam. The influence of the focal spot intensity distribution on output and on beam shape was quantified and found to play a significant role in calculated dose distributions. Beam profile differences due to collimator alignment were found in both small and large collimators sensitive to shifts of 1 mm with respect to the central axis.
Björk, P; Knöös, T; Nilsson, P
2000-11-01
The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.
Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa
2016-08-01
Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee
2014-04-01
Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Pomorski, M; Agelou, M
2016-06-15
Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneru, F; Gracia, M; Gallardo, N
2015-06-15
Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert
2009-12-01
Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less
Beam Attenuators and the Risk of Unrecognized Large-Fraction Irradiation of Critical Tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luka, S.; Marks, J.E.
2015-01-15
The use of radiation beam attenuators led to radiation injury of the spinal cord in one patient and of the peripheral nerve in another due to unsuspected large-fraction irradiation. The anatomic distribution of radiation dose was reconstructed in the sagittal plane for the patient who developed radiation myelopathy and in the axial plane for the patient who developed peripheral neuropathy. The actual dose delivered to the injured structure in each patient was taken from the dose distribution and recorded along with the time, number of fractions, and dose per fraction. The patient who developed radiation myelopathy received a total ofmore » 46.5 Gy in twenty-three 2.1 Gy fractions in 31 days to the upper cervical spinal cord where the thickness of the neck was less than the central axis thickness due to cervical lordosis and absence of a posterior compensating filter. The patient who developed peripheral neuropathy received 55 Gy in twenty-five 2.2 Gy fractions in 50 days to the femoral nerve using bolus over the groins and an anterior one-half value layer Cerrobend pelvic block to bias the dose anteriorly. Compensating filters and other beam attenuators should be used with caution because they may result in unsuspected large-fraction irradiation and total doses of radiation that exceed the tolerance of critical structures.« less
Effective gamma-ray doses due to natural radiation from soils of southeastern Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silveira, M. A. G.; Moreira, R. H.; Bellini, B. S.
2010-08-04
We have used gamma-ray spectrometry to study the distribution of natural radiation from soils of southeastern Brazil: Billings reservoir, Sao Bernardo do Campo Parks, Diadema Parks, Interlagos region, Sao Paulo, and soil from Sao Paulo and Rio de Janeiro beaches. In most of the regions studied we have found that the dose due the external exposure to gamma-rays, proceeding from natural terrestrial elements, are between the values 0.3 and 0.6 mSv/year, established by the United Nations Scientific Committee on the Effects of Atomic Radiation.
Skubacz, Krystian; Wojtecki, Łukasz; Urban, Paweł
2016-10-01
In Polish underground mines, hazards caused by enhanced natural radioactivity occur. The sources of radiation exposure are short-lived radon decay products, mine waters containing radium 226 Ra and 228 Ra and the radioactive sediments that can precipitate out of these waters. For miners, the greatest exposure is usually due to short-lived radon decay products. The risk assessment is based on the measurement of the total potential alpha energy concentration (PAEC) and the evaluation of the related dose by using the dose conversion factor as recommended by relevant legal requirements. This paper presents the results of measurements of particle size distributions of ambient aerosols in an underground hard coal mine, the assessment of the radioactive particle size distribution of the short-lived radon decay products and the corresponding values of dose conversion factors. The measurements of the ambient airborne particle size distribution were performed in the range from a few nanometers to about 20 μm. The study therefore included practically the whole class of respirable particles. The results showed that the high concentration of ultrafine and fine aerosols measured can significantly affect the value of the dose conversion factors, and consequently the corresponding committed effective dose, to which the miners can be exposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Semkova, J.; Koleva, R.; Maltchev, St.; Bankov, N.; Benghin, V.; Chernykh, I.; Shurshakov, V.; Petrov, V.; Drobyshev, S.; Nikolaev, I.
2012-02-01
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6-1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.
Three-Dimensional Electron Beam Dose Calculations.
NASA Astrophysics Data System (ADS)
Shiu, Almon Sowchee
The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.
NASA Astrophysics Data System (ADS)
Yang, Zi-Yi; Tsai, Pi-En; Lee, Shao-Chun; Liu, Yen-Chiang; Chen, Chin-Cheng; Sato, Tatsuhiko; Sheu, Rong-Jiun
2017-09-01
The dose distributions from proton pencil beam scanning were calculated by FLUKA, GEANT4, MCNP, and PHITS, in order to investigate their applicability in proton radiotherapy. The first studied case was the integrated depth dose curves (IDDCs), respectively from a 100 and a 226-MeV proton pencil beam impinging a water phantom. The calculated IDDCs agree with each other as long as each code employs 75 eV for the ionization potential of water. The second case considered a similar condition of the first case but with proton energies in a Gaussian distribution. The comparison to the measurement indicates the inter-code differences might not only due to different stopping power but also the nuclear physics models. How the physics parameter setting affect the computation time was also discussed. In the third case, the applicability of each code for pencil beam scanning was confirmed by delivering a uniform volumetric dose distribution based on the treatment plan, and the results showed general agreement between each codes, the treatment plan, and the measurement, except that some deviations were found in the penumbra region. This study has demonstrated that the selected codes are all capable of performing dose calculations for therapeutic scanning proton beams with proper physics settings.
NASA Astrophysics Data System (ADS)
Lizar, J. C.; Santos, L. F.; Brandão, F. C.; Volpato, K. C.; Guimarães, F. S.; Pavoni, J. F.
2017-05-01
This study aims to evaluate the motion influence in the tridimensional dose distribution due to respiratory for IMRT breast planning technique. To simulate the breathing movement an oscillating platform was used. To simulate the breast, MAGIC-f phantoms were used. CT images of a static phantom were obtained and the IMRT treatment was planned based on them. One phantom was irradiated static in the platform and two other phantoms were irradiated while oscillating in the platform with amplitudes of 0.34 cm and 1.22 cm, the fourth phantom was used as reference in the MRI acquisition. The percentage of points approved in the 3D global gamma analyses (3%/3mm) when comparing the dose distribution of the static phantom with the oscillating ones was 91% for the 0.34cm amplitude and 62% for the 1.22 cm amplitude. Considering this result, the differences found in the dosimetric analyses for the oscillating amplitude of 0.34cm could be considered acceptable in a real treatment. The isodose distribution analyses showed a decrease of dose in the anterior breast region and an increase of dose on the posterior breast region, being these differences most pronounced for large amplitude motion.
NASA Astrophysics Data System (ADS)
Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.
2013-06-01
In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.
125I eye plaque dose distribution including penumbra characteristics.
de la Zerda, A; Chiu-Tsao, S T; Lin, J; Boulay, L L; Kanna, I; Kim, J H; Tsao, H S
1996-03-01
The two main purposes of this work are (1) to determine the penumbra characteristics for 125I eye plaque and the relative influence of the plaque and eye-air interface on the dose distribution, and (2) to initiate development of a treatment planning algorithm for clinical dose calculations. Dose was measured in a newly designed solid water eye phantom for an 125I (6711) seed at the center of a 20 mm COMS eye plaque using thermoluminescent dosimeter (TLD) "cubes" and "minichips" inside and outside the eye, in the longitudinal and transverse central planes. TLD cubes were used in most locations, except for short distances from the seed and in the penumbra region. In the presence of both the plaque and the eye-air interface, the dose along the central axis was found to be reduced by 10% at 1 cm and up to 20% at 2.5 cm, relative to the bulk homogeneous phantom case. In addition, the overall dose reduction was greater for larger off-axis coordinates at a given depth. The penumbra characteristics due to the lip collimation were quantified, particularly the dependence of penumbra center and width on depth. Only small differences were observed between the profiles in the transverse and longitudinal planes. In the bulk geometry (without the eye-air interface), the dose reduction due to the presence of the plaque alone was found to be 7% at a depth of 2.5 cm. The additional reduction of 13% observed, with the presence of eye-air interface (20% combined), can be attributed to the lack of backscattering from the air in front of the eye. The dose-reduction effect due to the anterior air interface alone became unnoticeable at a depth of 1.1 cm (1.5 cm from the eye-air interface). An analytic fit to measured data was developed for clinical dose calculations for a centrally loaded seed. The central axis values of the dose rates multiplied by distance squared, Dr2, were fitted with a double exponential function of depth. The off-axis profile of Dr2, at a given depth, was parametrized by a modified Fermi-Dirac function to model both the penumbra characteristics due the plaque lip collimation and the effect of oblique filtration by silastic.
Optimization of equivalent uniform dose using the L-curve criterion.
Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R
2007-10-07
Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.
Šubelj, Maja; Učakar, Veronika; Kraigher, Alenka; Klavs, Irena
2016-01-01
Adverse events following immunisation (AEFIs) with qHPV reported to the Slovenian AEFI Registry for the first four school years of the vaccination programme were analysed. We calculated annual reporting rates for 11-14 year-old vaccinees with AEFIs, using the number of qHPV doses distributed within the school-based vaccination programme as the denominator. Between September 2009 and August 2013, 211 AEFIs that occurred in 89 vaccinees were reported, a rate of 149.5 vaccinees with AEFI per 100,000 qHPV doses distributed. For five vaccinees, serious AEFIs (8.4 per 100,000 doses distributed) were reported. The highest reporting rates were for fatigue, headache, and fever (≥ 38.0⁰) (53.8, 40.3, and 35.3 per 100,000 qHPV doses distributed, respectively). As no AEFI resulted in permanent sequelae and they all were categorised as serious only due to the criterion of a minimum of one day of hospitalisation, this provides reassurance for the safety of our school-based HPV vaccination programme. Further AEFI surveillance is warranted to provide data for HPV vaccination programme monitoring and evaluation of its safety.
Evaluation of neutron skyshine from a cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huyashi, K.; Nakamura, T.
1984-06-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with various detectors in the environment surrounding the cyclotron of the Institute for Nuclear Study, University of Tokyo. The source neutrons were produced by stopping a 52-MeV proton beam into a carbon beam stopper and were extracted upward from the opening in the concrete shield surrounding the cyclotron and then leaked into the atmosphere through the cyclotron building. The dose distribution and the spectrum of neutrons near the beam stopper were also measured in order to get information on the skyshine source. Themore » measured skyshine neutron spectra and dose distribution were analyzed with two codes, MMCR2 and SKYSHINE-II, with the result that the calculated results are in good agreement with the experiment. Valuable characteristics of this experiment are the determination of the energy spectrum and dose distribution of source neutron and the measurement of skyshine neutrons from an actual large-scale accelerator building to the exclusion of direct neutrons transported through the air. This experiment must be useful as a kind of benchmark experiment on the skyshine phenomenon.« less
Palmer, Antony L; Bradley, David A; Nisbet, Andrew
2015-03-08
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.
Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities
NASA Astrophysics Data System (ADS)
Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.
2012-03-01
A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.
Hayashi, Naoki; Malmin, Ryan L; Watanabe, Yoichi
2014-05-01
Several tools are used for the dosimetric verification of intensity-modulated arc therapy (IMAT) treatment delivery. However, limited information is available for composite on-line evaluation of these tools. The purpose of this study was to evaluate the dosimetric verification of IMAT treatment plans using a 2D diode array detector (2D array), radiochromic film (RCF) and radiosensitive polymer gel dosimeter (RPGD). The specific verification plans were created for IMAT for two prostate cancer patients by use of the clinical treatment plans. Accordingly, the IMAT deliveries were performed with the 2D array on a gantry-mounting device, RCF in a cylindrical acrylic phantom, and the RPGD in two cylindrical phantoms. After the irradiation, the planar dose distributions from the 2D array and the RCFs, and the 3D dose distributions from the RPGD measurements were compared with the calculated dose distributions using the gamma analysis method (3% dose difference and 3-mm distance-to-agreement criterion), dose-dependent dose difference diagrams, dose difference histograms, and isodose distributions. The gamma passing rates of 2D array, RCFs and RPGD for one patient were 99.5%, 96.5% and 93.7%, respectively; the corresponding values for the second patient were 97.5%, 92.6% and 92.9%. Mean percentage differences between the RPGD measured and calculated doses in 3D volumes containing PTVs were -0.29 ± 7.1% and 0.97 ± 7.6% for the two patients, respectively. In conclusion, IMAT prostate plans can be delivered with high accuracy, although the 3D measurements indicated less satisfactory agreement with the treatment plans, mainly due to the dosimetric inaccuracy in low-dose regions of the RPGD measurements.
Linear energy transfer incorporated intensity modulated proton therapy optimization
NASA Astrophysics Data System (ADS)
Cao, Wenhua; Khabazian, Azin; Yepes, Pablo P.; Lim, Gino; Poenisch, Falk; Grosshans, David R.; Mohan, Radhe
2018-01-01
The purpose of this study was to investigate the feasibility of incorporating linear energy transfer (LET) into the optimization of intensity modulated proton therapy (IMPT) plans. Because increased LET correlates with increased biological effectiveness of protons, high LETs in target volumes and low LETs in critical structures and normal tissues are preferred in an IMPT plan. However, if not explicitly incorporated into the optimization criteria, different IMPT plans may yield similar physical dose distributions but greatly different LET, specifically dose-averaged LET, distributions. Conventionally, the IMPT optimization criteria (or cost function) only includes dose-based objectives in which the relative biological effectiveness (RBE) is assumed to have a constant value of 1.1. In this study, we added LET-based objectives for maximizing LET in target volumes and minimizing LET in critical structures and normal tissues. Due to the fractional programming nature of the resulting model, we used a variable reformulation approach so that the optimization process is computationally equivalent to conventional IMPT optimization. In this study, five brain tumor patients who had been treated with proton therapy at our institution were selected. Two plans were created for each patient based on the proposed LET-incorporated optimization (LETOpt) and the conventional dose-based optimization (DoseOpt). The optimized plans were compared in terms of both dose (assuming a constant RBE of 1.1 as adopted in clinical practice) and LET. Both optimization approaches were able to generate comparable dose distributions. The LET-incorporated optimization achieved not only pronounced reduction of LET values in critical organs, such as brainstem and optic chiasm, but also increased LET in target volumes, compared to the conventional dose-based optimization. However, on occasion, there was a need to tradeoff the acceptability of dose and LET distributions. Our conclusion is that the inclusion of LET-dependent criteria in the IMPT optimization could lead to similar dose distributions as the conventional optimization but superior LET distributions in target volumes and normal tissues. This may have substantial advantages in improving tumor control and reducing normal tissue toxicities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eley, J; Krishnan, S
2014-06-15
Purpose: The purpose of this study was to investigate the theoretical dose enhancement to a cell nucleus due to increased fluence of secondary electrons when gold nanospheres are present in the cytoplasm during proton therapy. Methods: We modeled the irradiation of prostate cancer cells using protons of variable energies when 10,000 gold nanoparticles, each with radius of 10 nm, were randomly distributed in the cytoplasm. Using simple analytical equations, we calculated the increased mean dose to the cell nucleus due to secondary electrons produced by hard collisions of 0.1, 1, 10, and 100 MeV protons with orbital electrons in gold.more » We only counted electrons with kinetic energy higher than 1 keV. In addition to calculating the increase in the mean dose to the cell nucleus, we also calculated the increase in local dose in the “shadow,” i.e., the umbra, of individual gold nanospheres due to forward scattered electrons. Results: For proton energies of 0.1, 1, 10, and 100 MeV, we calculated increases to the mean nuclear dose of 0.15, 0.09, 0.05, and 0.04%, respectively. When we considered local dose increases in the shadows of individual gold spheres, we calculated local dose increases of 5.5, 3.2, 1.9, and 1.3%, respectively. Conclusion: We found negligible, less than 0.2%, increases in the mean dose to the cell nucleus due to electrons produced by hard collisions of protons with electrons in gold nanospheres. However, we observed increases up to 5.5% in the local dose in the shadow of gold nanospheres. Considering the shadow radius of 10 nm, these local dose enhancements may have implications for slightly increased probability of clustered DNA damage when gold nanoparticles are close to the nuclear membrane.« less
Monte Carlo based electron treatment planning and cutout output factor calculations
NASA Astrophysics Data System (ADS)
Mitrou, Ellis
Electron radiotherapy (RT) offers a number of advantages over photons. The high surface dose, combined with a rapid dose fall-off beyond the target volume presents a net increase in tumor control probability and decreases the normal tissue complication for superficial tumors. Electron treatments are normally delivered clinically without previously calculated dose distributions due to the complexity of the electron transport involved and greater error in planning accuracy. This research uses Monte Carlo (MC) methods to model clinical electron beams in order to accurately calculate electron beam dose distributions in patients as well as calculate cutout output factors, reducing the need for a clinical measurement. The present work is incorporated into a research MC calculation system: McGill Monte Carlo Treatment Planning (MMCTP) system. Measurements of PDDs, profiles and output factors in addition to 2D GAFCHROMICRTM EBT2 film measurements in heterogeneous phantoms were obtained to commission the electron beam model. The use of MC for electron TP will provide more accurate treatments and yield greater knowledge of the electron dose distribution within the patient. The calculation of output factors could invoke a clinical time saving of up to 1 hour per patient.
Determination of the depth dose distribution of proton beam using PRESAGE TM dosimeter
NASA Astrophysics Data System (ADS)
Zhao, L.; Das, I. J.; Zhao, Q.; Thomas, A.; Adamovics, J.; Oldman, M.
2010-11-01
PRESAGETM dosimeter dosimeter has been proved useful for 3D dosimetry in conventional photon therapy and IMRT [1-5]. Our objective is to examine the use of PRESAGETM dosimeter for verification of depth dose distribution in proton beam therapy. Three PRESAGETM samples were irradiated with a 79 MeV un-modulated proton beam. Percent depth dose profile measured from the PRESAGETM dosimeter is compared with data obtained in a water phantom using a parallel plate Advanced Markus chamber. The Bragg-peak position determined from the PRESAGETM is within 2 mm compared to measurements in water. PRESAGETM shows a highly linear response to proton dose. However, PRESAGETM also reveals an underdosage around the Bragg peak position due to LET effects. Depth scaling factor and quenching correction factor need further investigation. Our initial result shows that PRESAGETM has promising dosimetric characteristics that could be suitable for proton beam dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, J.W.
1976-01-01
The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less
Khosravi, H; Hashemi, B; Mahdavi, S R; Hejazi, P
2015-03-01
Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions. The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiotherapy practices. A Plexiglas phantom was made representing human pelvis. The GNP shaving 15 nm in diameter and 0.1 mM concentration were synthesized using chemical reduction method. Then, a new formulation of MAGIC-f gel was synthesized. The fabricated gel was poured in the tubes located at the prostate (with and without the GNPs) and bladder locations of the phantom. The phantom was irradiated to an Ir-192 source and 18 MV beam of a Varian linac separately based on common radiotherapy procedures used for prostate cancer. After 24 hours, the irradiated gels were read using a Siemens 1.5 Tesla MRI scanner. The absolute doses at the reference points and isodose curves resulted from the experimental measurement of the gels and MC simulations following the internal and external radiotherapy practices were compared. The mean absorbed doses measured with the gel in the presence of the GNPs in prostate were 15% and 8 % higher than the corresponding values without the GNPs under the internal and external radiation therapies, respectively. MC simulations also indicated a dose increase of 14 % and 7 % due to presence of the GNPs, for the same experimental internal and external radiotherapy practices, respectively. There was a good agreement between the dose enhancement factors (DEFs) estimated with MC simulations and experiment gel measurements due to the GNPs. The results indicated that the polymer gel dosimetry method as developed and used in this study, can be recommended as a reliable method for investigating the DEF of GNPs in internal and external radiotherapy practices.
Maarouf, Mohammad; Schleicher, Ursula; Schmachtenberg, Axel; Ammon, Jürgen
2002-06-01
Aim of this study was to evaluate the advantages of electron beam irradiation compared to kilovoltage X-ray therapy in the treatment of keloids. Furthermore, the risk of developing malignancy following keloid radiotherapy was assessed. An automatic water phantom was used to evaluate the dose distribution in tissue. Furthermore, a series of measurements was done on the patients using thermoluminescence dosimeters (TLD) to estimate the doses absorbed by the organs at risk. We also report our clinical experience with electron beam radiation of 134 keloids following surgical excision. Electron beam irradiation offers a high control rate (84%) with minimal side effects for keloids. Electron irradiation provides better dose distribution in tissue, and therefore less radiation burden to the organs at risk. After a mean follow-up period of 7.2 years, no severe side effects or malignancies were observed after keloid radiotherapy. Electron radiation therapy is superior to kilovoltage irradiation for treating keloids due to better dose distribution in tissue. In agreement with the literature, no cases of malignancy were observed after keloid irradiation.
Unwrapping 3D complex hollow organs for spatial dose surface analysis.
Witztum, A; George, B; Warren, S; Partridge, M; Hawkins, M A
2016-11-01
Toxicity dose-response models describe the correlation between dose delivered to an organ and a given toxic endpoint. Duodenal toxicity is a dose limiting factor in the treatment of pancreatic cancer with radiation but the relationship between dose and toxicity in the duodenum is not well understood. While there have been limited studies into duodenal toxicity through investigations of the volume of the organ receiving dose over a specific threshold, both dose-volume and dose-surface histograms lack spatial information about the dose distribution, which may be important in determining normal tissue response. Due to the complex geometry of the duodenum, previous methods for unwrapping tubular organs for spatial modeling of toxicity are insufficient. A geometrically robust method for producing 2D dose surface maps (DSMs), specifically for the duodenum, has been developed and tested in order to characterize the spatial dose distribution. The organ contour is defined using Delaunay triangulation. The user selects a start and end coordinate in the structure and a path is found by regulating both length and curvature. This path is discretized and rays are cast from each point on the plane normal to the vector between the previous and the next point on the path and the dose at the closest perimeter point recorded. These angular perimeter slices are "unwrapped" from the edge distal to the pancreas to ensure the high dose region (proximal to the tumor) falls in the centre of the dose map. Gamma analysis is used to quantify the robustness of this method and the effect of overlapping planes. This method was used to extract DSMs for 15 duodena, with one esophagus case to illustrate the application to simpler geometries. Visual comparison indicates that a 30 × 30 map provides sufficient resolution to view gross spatial features of interest. A lookup table is created to store the area (cm 2 ) represented by each pixel in the DSMs in order to allow spatial descriptors in absolute size. The method described in this paper is robust, requires minimal human interaction, has been shown to be generalizable to simpler geometries, and uses readily available commercial software. The difference seen in DSMs due to overlapping planes is large and justifies the need for a solution that removes such planes. This is the first time 2D dose surface maps have been produced for the duodenum and provide spatial dose distribution information which can be explored to create models that may improve toxicity prediction in treatments for locally advanced pancreatic cancer.
NASA Astrophysics Data System (ADS)
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S
2015-12-07
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
Cumulative doses analysis in young trauma patients: a single-centre experience.
Salerno, Sergio; Marrale, Maurizio; Geraci, Claudia; Caruso, Giuseppe; Lo Re, Giuseppe; Lo Casto, Antonio; Midiri, Massimo
2016-02-01
Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.
Uncertainty analysis for absorbed dose from a brain receptor imaging agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, B.; Miller, L.F.; Sparks, R.B.
Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, R.; Dillehay, L.E.; Shao, Y.
The purpose of this study is to describe and evaluate a new, simple, inexpensive method for directly measuring the radiation dose and its spatial distribution generated from explanted tissues of animals previously injected with radiolabeled immunoconjugates or other agents. This technique uses the newly developed radiochromic dye medium (Gafchromic[trademark]) which responds reproducibly for therapeutic dose exposures, has high spatial resolution, does not require film processing, and is relatively insensitive to ambient light. The authors have evaluated the dose distribution from LS174T tumors and selected normal tissues in nude mice previously injected with [sup 90]Y labeled anti-carcinoembryonic antigen antibodies. Individual tissuesmore » from sacrificed animals are halved and the flat section of the tissue is placed onto the dosimetry media and then frozen. The dosimetry medium is exposed to beta and Bremsstrahlung radiation originating from the frozen tissues. The relative darkening of the dosimetry medium depends on the dose deposited in the film. The dosimetry medium is scanned with a commercial flatbed scanner and the image intensity is digitally stored and quantitatively analyzed. Isodose curves are generated and compared to the actual tissue outline. The absorbed dose distribution due to [sup 90]Y exposure show only slight gradients in the interior of the tissue, with a markedly decreasing dose near the edges of the tissue. In addition, the isodose curves follow the tissue outline except in regions having radii of curvature smaller than the range of the beta-particle (R90 = 5 mm). These results suggest that the shape of the tumor, and its curvature, are important in determining the minimum dose delivered to the tumor by radiation from [sup 90]Y monoclonal antibodies, and hence in evaluating the tumor response to the radiation. 28 refs., 8 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çatlı, Serap, E-mail: serapcatli@hotmail.com; Tanır, Güneş
2013-10-01
The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the presentmore » study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuñez-Cumplido, E., E-mail: ejnc-mccg@hotmail.com; Hernandez-Armas, J.; Perez-Calatayud, J.
2015-08-15
Purpose: In clinical practice, specific air kerma strength (S{sub K}) value is used in treatment planning system (TPS) permanent brachytherapy implant calculations with {sup 125}I and {sup 103}Pd sources; in fact, commercial TPS provide only one S{sub K} input value for all implanted sources and the certified shipment average is typically used. However, the value for S{sub K} is dispersed: this dispersion is not only due to the manufacturing process and variation between different source batches but also due to the classification of sources into different classes according to their S{sub K} values. The purpose of this work is tomore » examine the impact of S{sub K} dispersion on typical implant parameters that are used to evaluate the dose volume histogram (DVH) for both planning target volume (PTV) and organs at risk (OARs). Methods: The authors have developed a new algorithm to compute dose distributions with different S{sub K} values for each source. Three different prostate volumes (20, 30, and 40 cm{sup 3}) were considered and two typical commercial sources of different radionuclides were used. Using a conventional TPS, clinically accepted calculations were made for {sup 125}I sources; for the palladium, typical implants were simulated. To assess the many different possible S{sub K} values for each source belonging to a class, the authors assigned an S{sub K} value to each source in a randomized process 1000 times for each source and volume. All the dose distributions generated for each set of simulations were assessed through the DVH distributions comparing with dose distributions obtained using a uniform S{sub K} value for all the implanted sources. The authors analyzed several dose coverage (V{sub 100} and D{sub 90}) and overdosage parameters for prostate and PTV and also the limiting and overdosage parameters for OARs, urethra and rectum. Results: The parameters analyzed followed a Gaussian distribution for the entire set of computed dosimetries. PTV and prostate V{sub 100} and D{sub 90} variations ranged between 0.2% and 1.78% for both sources. Variations for the overdosage parameters V{sub 150} and V{sub 200} compared to dose coverage parameters were observed and, in general, variations were larger for parameters related to {sup 125}I sources than {sup 103}Pd sources. For OAR dosimetry, variations with respect to the reference D{sub 0.1cm{sup 3}} were observed for rectum values, ranging from 2% to 3%, compared with urethra values, which ranged from 1% to 2%. Conclusions: Dose coverage for prostate and PTV was practically unaffected by S{sub K} dispersion, as was the maximum dose deposited in the urethra due to the implant technique geometry. However, the authors observed larger variations for the PTV V{sub 150}, rectum V{sub 100}, and rectum D{sub 0.1cm{sup 3}} values. The variations in rectum parameters were caused by the specific location of sources with S{sub K} value that differed from the average in the vicinity. Finally, on comparing the two sources, variations were larger for {sup 125}I than for {sup 103}Pd. This is because for {sup 103}Pd, a greater number of sources were used to obtain a valid dose distribution than for {sup 125}I, resulting in a lower variation for each S{sub K} value for each source (because the variations become averaged out statistically speaking)« less
Thompson, Gary A.; Solomon, Gail; Albrecht, Helmut H.; Reitberg, Donald P.
2016-01-01
Abstract This study characterized guaifenesin pharmacokinetics in children aged 2 to 17 years (n = 40) who received a single oral dose of guaifenesin (age‐based doses of 100‐400 mg) 2 hours after breakfast. Plasma samples were obtained before and for 8 hours after dosing and analyzed for guaifenesin using liquid chromatography‐tandem mass spectrometry. Pharmacokinetic parameters were estimated using noncompartmental methods, relationships with age were assessed using linear regression, and dose proportionality was assessed on 95% confidence intervals. Based on the upper dose recommended in the monograph (for both children and adolescents), area under the curve from time zero to infinity and maximum plasma concentration both increased with age. However, when comparing the upper dose for children aged 2 to 11 years with the lower dose for adolescents aged 12 to 17 years, similar systemic exposure was observed. As expected due to increasing body size, oral clearance (CLo) and terminal volume of distribution (Vz/F) increased with age. Due to a larger increase in Vz/F than CLo, an increase in terminal exponential half‐life was also observed. Allometric scaling indicated no maturation‐related changes in CLo and Vz/F. PMID:26632082
Bassler, Niels; Kantemiris, Ioannis; Karaiskos, Pantelis; Engelke, Julia; Holzscheiter, Michael H; Petersen, Jørgen B
2010-04-01
Antiprotons have been suggested as a possibly superior modality for radiotherapy, due to the energy released when antiprotons annihilate, which enhances the Bragg peak and introduces a high-LET component to the dose. However, concerns are expressed about the inferior lateral dose distribution caused by the annihilation products. We use the Monte Carlo code FLUKA to generate depth-dose kernels for protons, antiprotons, and carbon ions. Using these we then build virtual treatment plans optimized according to ICRU recommendations for the different beam modalities, which then are recalculated with FLUKA. Dose-volume histograms generated from these plans can be used to compare the different irradiations. The enhancement in physical and possibly biological dose from annihilating antiprotons can significantly lower the dose in the entrance channel; but only at the expense of a diffuse low dose background from long-range secondary particles. Lateral dose distributions are improved using active beam delivery methods, instead of flat fields. Dose-volume histograms for different treatment scenarios show that antiprotons have the potential to reduce the volume of normal tissue receiving medium to high dose, however, in the low dose region antiprotons are inferior to both protons and carbon ions. This limits the potential usage to situations where dose to normal tissue must be reduced as much as possible. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu
2006-02-01
Dolon village, located about 60 km from the border of the Semipalatinsk Nuclear Test Site, is known to be heavily contaminated by local fallout from the first USSR atomic bomb test in 1949. External radiation in Dolon was evaluated based on recent 137Cs data in soil and calculation of temporal change in the fission product composition. After fitting a log-normal distribution to the soil data, a 137Cs deposition of 32 kBq m-2, which corresponds to the 90th-percentile of the distribution, was tentatively chosen as a value to evaluate the radiation situation in 1949. Our calculation indicated that more than 95% of the cumulative dose for 50 y had been delivered within 1 y after the deposition. The resulting cumulative dose for 1 y after the deposition, normalized to the initial contamination containing 1 kBq m-2 of 137Cs, was 15.6 mGy, assuming a fallout arrival time of 3 h and a medium level of fractionation. Finally, 0.50 Gy of absorbed dose in air was derived as our tentative estimate for 1-year cumulative external dose in Dolon due to local fallout from the first USSR test in 1949.
Robust optimization based upon statistical theory.
Sobotta, B; Söhn, M; Alber, M
2010-08-01
Organ movement is still the biggest challenge in cancer treatment despite advances in online imaging. Due to the resulting geometric uncertainties, the delivered dose cannot be predicted precisely at treatment planning time. Consequently, all associated dose metrics (e.g., EUD and maxDose) are random variables with a patient-specific probability distribution. The method that the authors propose makes these distributions the basis of the optimization and evaluation process. The authors start from a model of motion derived from patient-specific imaging. On a multitude of geometry instances sampled from this model, a dose metric is evaluated. The resulting pdf of this dose metric is termed outcome distribution. The approach optimizes the shape of the outcome distribution based on its mean and variance. This is in contrast to the conventional optimization of a nominal value (e.g., PTV EUD) computed on a single geometry instance. The mean and variance allow for an estimate of the expected treatment outcome along with the residual uncertainty. Besides being applicable to the target, the proposed method also seamlessly includes the organs at risk (OARs). The likelihood that a given value of a metric is reached in the treatment is predicted quantitatively. This information reveals potential hazards that may occur during the course of the treatment, thus helping the expert to find the right balance between the risk of insufficient normal tissue sparing and the risk of insufficient tumor control. By feeding this information to the optimizer, outcome distributions can be obtained where the probability of exceeding a given OAR maximum and that of falling short of a given target goal can be minimized simultaneously. The method is applicable to any source of residual motion uncertainty in treatment delivery. Any model that quantifies organ movement and deformation in terms of probability distributions can be used as basis for the algorithm. Thus, it can generate dose distributions that are robust against interfraction and intrafraction motion alike, effectively removing the need for indiscriminate safety margins.
Proposed linear energy transfer areal detector for protons using radiochromic film.
Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro
2015-04-01
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.
Bradley, David A.; Nisbet, Andrew
2015-01-01
This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film‐measured doses with treatment planning system‐calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple‐channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single‐channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier‐type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat‐film scanning. This effect has been overlooked to date in the literature. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:26103181
SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.
Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S
2012-06-01
With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J; Keller, Brian M; Presutti, Joseph; Sharpe, Michael
2006-05-21
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 microm are generated for field size below 2 x 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
NASA Astrophysics Data System (ADS)
O'Malley, Lauren; Pignol, Jean-Philippe; Beachey, David J.; Keller, Brian M.; Presutti, Joseph; Sharpe, Michael
2006-05-01
Using efficient immobilization and dedicated beam collimation devices, stereotactic radiosurgery ensures highly conformal treatment of small tumours with limited microscopic extension. One contribution to normal tissue irradiation remains the radiological penumbra. This work aims at demonstrating that intermediate energy photons (IEP), above orthovoltage but below megavoltage, improve dose distribution for stereotactic radiosurgery for small irradiation field sizes due to a dramatic reduction of radiological penumbra. Two different simulation systems were used: (i) Monte Carlo simulation to investigate the dose distribution of monoenergetic IEP between 100 keV and 1 MeV in water phantom; (ii) the Pinnacle3 TPS including a virtual IEP unit to investigate the dosimetry benefit of treating with 11 non-coplanar beams a 2 cm tumour in the middle of a brain adjacent to a 1 mm critical structure. Radiological penumbrae below 300 µm are generated for field size below 2 × 2 cm2 using monoenergetic IEP beams between 200 and 400 keV. An 800 kV beam generated in a 0.5 mm tungsten target maximizes the photon intensity in this range. Pinnacle3 confirms the dramatic reduction in penumbra size. DVHs show for a constant dose distribution conformality, improved dose distribution homogeneity and better sparing of critical structures using a 800 kV beam compared to a 6 MV beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uilkema, S; Heide, U; Nijkamp, J
Purpose: The purpose of this planning study is to investigate the influence of the ERE on the day-to-day dose distribution in rectal cancer patients, where changes in gas-pockets frequently occur. Methods: Daily CT scans of 5 patients treated neo-adjuvant with 5x5Gy for rectal cancer were used. We optimized two plans on the planning CT (Monaco, 1 mm3 dosegrid), a conventional 7-field 6MV IMRT plan (Dconv) and a plan in the presence of a 1.5T field (Dmrl). We recalculated the plans on all repeat-CT scans and evaluated under/over-dosage of the daily CTVs. Changes of more than 1% were considered significant. Inmore » the bowel area, we investigated the relative dose changes due to the ERE, where the contribution of the ERE was separated from other effects such as attenuation. Results: Both plans were comparable and compliant with ICRU 62 for all patients. For 2 fractions in one patient under-dosage in the CTV was significant, due to a disappearing gas-pocket. Here the V95 was 96.82 and 97.36% in in Dmrl compared to 98.85 and 98.66% in Dconv, respectively. For 3 fractions in another patient appearing gas-pockets resulted in significant over-dosage of the CTV. In these fractions the V107 was 1.88–2.68% in Dmrl compared to 0.33–1.27% in Dconv. In the bowel area the dose changes attributable to the ERE were approximately ± 5% in 1cc, at low dose levels. Conclusion: We were able to calculate acceptable treatment plans with and without a magnetic field. The ERE was present in the Dmrl, but the volumetric effect within the CTV was limited. Outside the CTV relative dose differences were similar, but on small volumes at lower, less relevant dose levels. This suggests that there is no clinical relevant ERE on dose distributions in rectal cancer patients on a 1.5T MR-Linac.« less
Translating Pharmacokinetic and Pharmacodynamic Data into Practice.
Visser, Marike
2018-05-01
Pharmacokinetic (PK) and pharmacodynamic (PD) publications provide scientific evidence for incorporation in evidence-based veterinary medicine, aiding the clinician in selecting doses and dosing intervals. PK and PD studies have reported wide variations within exotic species, due to physiologic differences in absorption, distribution, metabolism, and excretion. PK studies offer species-specific data to help tailor doses and dosing routes to individual patients, minimize toxicity, and provide a cornerstone for PD studies to determine drug efficacy. This article reviews the application of PK parameters and the challenges in determining the PD activity of drugs, with a particular emphasis on exotic species. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lund, Matthew Lawrence
The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.
Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack
2010-07-01
Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.
Nedaie, H A; Ghahraman, A R; Bolouri, B; Arbabi, A
2012-07-01
Recently, radiation sensitive polymer gels are being used as a reliable dosimetry method for three-dimensional (3D) verification of radiation doses in clinical use. Some properties of gel dosimeters have made them useful in verifying complex situations in electron therapy. The aim of this study was to experimentally evaluate the influence of tissue inhomogeneities on electron beam dose distributions by use of polymer gel dosimetry. Another purpose was to evaluate the appropriateness of polymer gels for electron beam dosimetry applications. A cylindrical phantom filled with MAGIC polymer gel with a polyacrilic wall (ρ = 1.18 g.cm -3 ) was placed in a Perspex water-filled tank exactly underneath the bone inhomogeneity region .Then, the slab phantom was irradiated with a dose of 5Gy of 8MeV electrons to measure the dose distribution beyond the heterogeneity region. Afterwards, another cylindrical gel phantom similar to the above was used and irradiated with the same dose of 15 MeV electrons to measure the dose distribution beyond the same heterogeneity region. The same mentioned setup was repeated for measurement of the dose distribution beneath the air heterogeneity and homogenous phantom. The results of gel dosimetry under bone inhomogeneity have shown a reduction in dose. This is related to the high mass stopping and mass scattering powers of bone tissue. In addition, dose enhancement is seen laterally near the bone-tissue interface, due to increased side scattering of electrons. Hot and cold scatter lobes under heterogeneity regions are other effects that can be seen. The results of gel dosimetry under the air inhomogeneity have shown an increase in dose. This is related to the low mass stopping and mass scattering powers of the air cavity. When a high energy beam passes through a low-density medium or an air cavity, electronic equilibrium is lost along the central axis of the beam .The dose rebuild up is a consequence of this electronic disequilibrium. An overall good agreement was found between measurements with gel and with a diode detector for the single beam experiment. Electron dose distributions are significantly altered in the presence of tissue inhomogeneities such as bone and air cavities which are related to mass stopping and mass scattering powers of heterogeneous materials. © 2012 American Association of Physicists in Medicine.
Haidari, Leila A.; Wahl, Brian; Brown, Shawn T.; Privor-Dumm, Lois; Wallman-Stokes, Cecily; Gorham, Katie; Connor, Diana L.; Wateska, Angela R.; Schreiber, Benjamin; Dicko, Hamadou; Jaillard, Philippe; Avella, Melanie; Lee, Bruce Y.
2015-01-01
BACKGROUND While the size and type of a vaccine container (i.e., primary container) can have many implications on the safety and convenience of a vaccination session, another important but potentially overlooked consideration is how the design of the primary container may affect the distribution of the vaccine, its resulting cost, and whether the vial is ultimately opened. METHODS Using our HERMES software platform, we developed a simulation model of the World Health Organization Expanded Program on Immunization supply chain for the Republic of Benin and used the model to explore the effects of different primary containers for various vaccine antigens. RESULTS Replacing vaccines with presentations containing fewer doses per vial reduced vaccine availability (proportion of people arriving for vaccines who are successfully immunized) by as much as 13% (from 73% at baseline) and raised logistics costs by up to $0.06 per dose administered (from $0.25 at baseline) due to increased bottlenecks, while reducing total costs by as much as $0.15 per dose administered (from $2.52 at baseline) due to lower open vial wastage. Primary containers with a greater number of doses per vial each improved vaccine availability by 19% and reduced logistics costs by $0.05 per dose administered, while raising the total costs by up to $0.25 per dose administered due to greater vaccine procurement needs. Changes in supply chain performance were more extreme in departments with greater constraints. Implementing a vial opening threshold reversed the direction of many of these effects. CONCLUSIONS Our results show that one size may not fit all when choosing a primary vaccine container. Rather, the choice depends on characteristics of the vaccine, the vaccine supply chain, immunization session size, and goals of decision-makers. In fact, the optimal vial size may vary among locations within a country. Simulation modeling can help identify tailored approaches to improve availability and efficiency. PMID:25889160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauweloa, K; Gutierrez, A; Bergamo, A
Purpose: There is growing interest about biological effective dose (BED) and its application in treatment plan evaluation due to its stronger correlation with treatment outcome. An approximate biological effective dose (BEDA) equation was introduced to simplify BED calculations by treatment planning systems in multi-phase treatments. The purpose of this work is to reveal its mathematical properties relative to the true, multi-phase BED (BEDT) equation. Methods: The BEDT equation was derived and used to reveal the mathematical properties of BEDA. MATLAB (MathWorks, Natick, MA) was used to simulate and analyze common and extreme clinical multi-phase cases. In those cases, percent errormore » (Perror) and Bland-Altman analysis were used to study the significance of the inaccuracies of BEDA for different combinations of total doses, numbers of fractions, doses per fractions and α over β values. All the calculations were performed on a voxel-basis in order to study how dose distributions would affect the accuracy of BEDA. Results: When the voxel dose-per-fractions (DPF) delivered by both phases are equal, BEDA and BEDT are equal. In heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the imprecision of BEDA is greater. It was shown that as the α over β ratio increased the accuracy of BEDA would improve. Examining twenty-four cases, it was shown that the range of DPF ratios for a 3 Perror varied from 0.32 to 7.50Gy, whereas for Perror of 1 the range varied from 0.50 to 2.96Gy. Conclusion: The DPF between the different phases should be equal in order to render BEDA accurate. OARs typically receive heterogeneous dose distributions hence the probability of equal DPFs is low. Consequently, the BEDA equation should only be used for targets or OARs that receive uniform or very similar dose distributions by the different treatment phases.« less
Crotty, Dominic J; Brady, Samuel L; Jackson, D'Vone C; Toncheva, Greta I; Anderson, Colin E; Yoshizumi, Terry T; Tornai, Martin P
2011-06-01
A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging.
Crotty, Dominic J.; Brady, Samuel L.; Jackson, D’Vone C.; Toncheva, Greta I.; Anderson, Colin E.; Yoshizumi, Terry T.; Tornai, Martin P.
2011-01-01
Purpose: A dual modality SPECT-CT prototype system dedicated to uncompressed breast imaging (mammotomography) has been developed. The computed tomography subsystem incorporates an ultrathick K-edge filtration technique producing a quasi-monochromatic x-ray cone beam that optimizes the dose efficiency of the system for lesion imaging in an uncompressed breast. Here, the absorbed dose in various geometric phantoms and in an uncompressed and pendant cadaveric breast using a normal tomographic cone beam imaging protocol is characterized using both thermoluminescent dosimeter (TLD) measurements and ionization chamber-calibrated radiochromic film. Methods: Initially, two geometric phantoms and an anthropomorphic breast phantom are filled in turn with oil and water to simulate the dose to objects that mimic various breast shapes having effective density bounds of 100% fatty and glandular breast compositions, respectively. Ultimately, an excised human cadaver breast is tomographically scanned using the normal tomographic imaging protocol, and the dose to the breast tissue is evaluated and compared to the earlier phantom-based measurements. Results: Measured trends in dose distribution across all breast geometric and anthropomorphic phantom volumes indicate lower doses in the medial breast and more proximal to the chest wall, with consequently higher doses near the lateral peripheries and nipple regions. Measured doses to the oil-filled phantoms are consistently lower across all volume shapes due to the reduced mass energy-absorption coefficient of oil relative to water. The mean measured dose to the breast cadaver, composed of adipose and glandular tissues, was measured to be 4.2 mGy compared to a mean whole-breast dose of 3.8 and 4.5 mGy for the oil- and water-filled anthropomorphic breast phantoms, respectively. Conclusions: Assuming rotational symmetry due to the tomographic acquisition exposures, these results characterize the 3D dose distributions in an uncompressed human breast tissue volume for this dedicated breast imaging device and illustrate advantages of using the novel ultrathick K-edge filtered beam to minimize the dose to the breast during fully-3D imaging. PMID:21815398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
New method for generating breast models featuring glandular tissue spatial distribution
NASA Astrophysics Data System (ADS)
Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.
2016-02-01
Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Watts, J. W., Jr.; Parnell, T. A.; Akatov, Yu. A.; Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.
1995-01-01
Significant absorbed dose levels exceeding 1.0 Gy day(exp -1) have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLD's) made in U.S.S.R. and U.S.A. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.A.
1996-06-01
This manual describes a dose assessment system used to estimate the population or collective dose commitments received via both airborne and waterborne pathways by persons living within a 2- to 80-kilometer region of a commercial operating power reactor for a specific year of effluent releases. Computer programs, data files, and utility routines are included which can be used in conjunction with an IBM or compatible personal computer to produce the required dose commitments and their statistical distributions. In addition, maximum individual airborne and waterborne dose commitments are estimated and compared to 10 CFR Part 50, Appendix 1, design objectives. Thismore » supplement is the last report in the NUREG/CR-2850 series.« less
Depth distribution of absorbed dose on the external surface of Cosmos 1887 biosatellite
NASA Technical Reports Server (NTRS)
Dudkin, V. E.; Kovalev, E. E.; Benton, E. V.; Frank, A. L.; Watts, J. W. Jr; Parnell, T. A.
1990-01-01
Significant absorbed dose levels exceeding 1.0 Gy day-1 have been measured on the external surface of the Cosmos 1887 biosatellite as functions of depth in stacks of thin thermoluminescent detectors (TLDs) of U.S.S.R. and U.S.A. manufacture. The dose was found to decrease rapidly with increasing absorber thickness, thereby indicating the presence of intensive fluxes of low-energy particles. Comparison between the U.S.S.R. and U.S.A. results and calculations based on the Vette Model environment are in satisfactory agreement. The major contribution to the dose under thin shielding thickness is shown to be from electrons. The fraction of the dose due to protons and heavier charged particles increases with shielding thickness.
Space radiation absorbed dose distribution in a human phantom
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.
2002-01-01
The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less
Radon Exposure and the Definition of Low Doses-The Problem of Spatial Dose Distribution.
Madas, Balázs G
2016-07-01
Investigating the health effects of low doses of ionizing radiation is considered to be one of the most important fields in radiological protection research. Although the definition of low dose given by a dose range seems to be clear, it leaves some open questions. For example, the time frame and the target volume in which absorbed dose is measured have to be defined. While dose rate is considered in the current system of radiological protection, the same cancer risk is associated with all exposures, resulting in a given amount of energy absorbed by a single target cell or distributed among all the target cells of a given organ. However, the biological effects and so the health consequences of these extreme exposure scenarios are unlikely to be the same. Due to the heterogeneous deposition of radon progeny within the lungs, heterogeneous radiation exposure becomes a practical issue in radiological protection. While the macroscopic dose is still within the low dose range, local tissue doses on the order of Grays can be reached in the most exposed parts of the bronchial airways. It can be concluded that progress in low dose research needs not only low dose but also high dose experiments where small parts of a biological sample receive doses on the order of Grays, while the average dose over the whole sample remains low. A narrow interpretation of low dose research might exclude investigations with high relevance to radiological protection. Therefore, studies important to radiological protection should be performed in the frame of low dose research even if the applied doses do not fit in the dose range used for the definition of low doses.
Parsai, E Ishmael; Zhang, Zhengdong; Feldmeier, John J
2009-01-01
The commercially available brachytherapy treatment-planning systems today, usually neglects the attenuation effect from stainless steel (SS) tube when Fletcher-Suit-Delclos (FSD) is used in treatment of cervical and endometrial cancers. This could lead to potential inaccuracies in computing dwell times and dose distribution. A more accurate analysis quantifying the level of attenuation for high-dose-rate (HDR) iridium 192 radionuclide ((192)Ir) source is presented through Monte Carlo simulation verified by measurement. In this investigation a general Monte Carlo N-Particles (MCNP) transport code was used to construct a typical geometry of FSD through simulation and compare the doses delivered to point A in Manchester System with and without the SS tubing. A quantitative assessment of inaccuracies in delivered dose vs. the computed dose is presented. In addition, this investigation expanded to examine the attenuation-corrected radial and anisotropy dose functions in a form parallel to the updated AAPM Task Group No. 43 Report (AAPM TG-43) formalism. This will delineate quantitatively the inaccuracies in dose distributions in three-dimensional space. The changes in dose deposition and distribution caused by increased attenuation coefficient resulted from presence of SS are quantified using MCNP Monte Carlo simulations in coupled photon/electron transport. The source geometry was that of the Vari Source wire model VS2000. The FSD was that of the Varian medical system. In this model, the bending angles of tandem and colpostats are 15 degrees and 120 degrees , respectively. We assigned 10 dwell positions to the tandem and 4 dwell positions to right and left colpostats or ovoids to represent a typical treatment case. Typical dose delivered to point A was determined according to Manchester dosimetry system. Based on our computations, the reduction of dose to point A was shown to be at least 3%. So this effect presented by SS-FSD systems on patient dose is of concern.
Inaniwa, T; Kanematsu, N
2015-01-07
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm(3) was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Inaniwa, T.; Kanematsu, N.
2015-01-01
In scanned carbon-ion (C-ion) radiotherapy, some primary C-ions undergo nuclear reactions before reaching the target and the resulting particles deliver doses to regions at a significant distance from the central axis of the beam. The effects of these particles on physical dose distribution are accounted for in treatment planning by representing the transverse profile of the scanned C-ion beam as the superposition of three Gaussian distributions. In the calculation of biological dose distribution, however, the radiation quality of the scanned C-ion beam has been assumed to be uniform over its cross-section, taking the average value over the plane at a given depth (monochrome model). Since these particles, which have relatively low radiation quality, spread widely compared to the primary C-ions, the radiation quality of the beam should vary with radial distance from the central beam axis. To represent its transverse distribution, we propose a trichrome beam model in which primary C-ions, heavy fragments with atomic number Z ≥ 3, and light fragments with Z ≤ 2 are assigned to the first, second, and third Gaussian components, respectively. Assuming a realistic beam-delivery system, we performed computer simulations using Geant4 Monte Carlo code for analytical beam modeling of the monochrome and trichrome models. The analytical beam models were integrated into a treatment planning system for scanned C-ion radiotherapy. A target volume of 20 × 20 × 40 mm3 was defined within a water phantom. A uniform biological dose of 2.65 Gy (RBE) was planned for the target with the two beam models based on the microdosimetric kinetic model (MKM). The plans were recalculated with Geant4, and the recalculated biological dose distributions were compared with the planned distributions. The mean target dose of the recalculated distribution with the monochrome model was 2.72 Gy (RBE), while the dose with the trichrome model was 2.64 Gy (RBE). The monochrome model underestimated the RBE within the target due to the assumption of no radial variations in radiation quality. Conversely, the trichrome model accurately predicted the RBE even in a small target. Our results verify the applicability of the trichrome model for clinical use in C-ion radiotherapy treatment planning.
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Lin, Wei-Ting; Shiau, An-Cheng; Chie, Yu-Huang
2014-11-01
In radiotherapy of the head and neck, metal dentures or implants will increase the risk of complications such as mucositis and osteoradionecrosis. The aim of this study is to explore the back scatter effect of commercially available dental metal alloys on the mucosa and bone under 6 MV LINAC irradiation. The Monte Carlo method has been employed to calculate the dose distribution in the heterogeneous media of the designed oral phantom based on the oral cavity geometry. Backscatter dose increases up to a maximum of 53%, and is primarily dependent on the physical density and electron density of the metal crown alloy. Ceramic metal crowns have been quantified to increase backscatter dose up to 10% on mucosa. Ceramic serves as an inherent shield of mucosa. The backscatter dose will be greater for a small field size if the tumor is located at a deeper region. Titanium implants will increase the backscatter dose by 13% to bone but will not affect the mucosa. QC-20 (polystyrene resin) is recommended as a shield material (3 mm) to eliminate the backscatter dose on mucosa due to the high density metals.
Thompson, Gary A; Solomon, Gail; Albrecht, Helmut H; Reitberg, Donald P; Guenin, Eric
2016-07-01
This study characterized guaifenesin pharmacokinetics in children aged 2 to 17 years (n = 40) who received a single oral dose of guaifenesin (age-based doses of 100-400 mg) 2 hours after breakfast. Plasma samples were obtained before and for 8 hours after dosing and analyzed for guaifenesin using liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were estimated using noncompartmental methods, relationships with age were assessed using linear regression, and dose proportionality was assessed on 95% confidence intervals. Based on the upper dose recommended in the monograph (for both children and adolescents), area under the curve from time zero to infinity and maximum plasma concentration both increased with age. However, when comparing the upper dose for children aged 2 to 11 years with the lower dose for adolescents aged 12 to 17 years, similar systemic exposure was observed. As expected due to increasing body size, oral clearance (CLo ) and terminal volume of distribution (Vz /F) increased with age. Due to a larger increase in Vz /F than CLo , an increase in terminal exponential half-life was also observed. Allometric scaling indicated no maturation-related changes in CLo and Vz /F. © 2016, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
Algorithm of pulmonary emphysema extraction using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Omatsu, H.; Tominaga, K.; Eguchi, K.; Moriyama, N.
2006-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to 100 thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
NASA Technical Reports Server (NTRS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.;
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ballarini, F.; Biaggi, M.; De Biaggi, L.; Ferrari, A.; Ottolenghi, A.; Panzarasa, A.; Paretzke, H. G.; Pelliccioni, M.; Sala, P.; Scannicchio, D.; Zankl, M.
2004-01-01
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes - such as FLUKA - yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy -1 Da -1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm 2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.
Proposed linear energy transfer areal detector for protons using radiochromic film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Rulon; Lin, Liyong; Fager, Marcus
2015-04-15
Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured atmore » a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%–10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%–15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.« less
Lee, Carol M; Tannock, Ian F
2010-06-03
Poor distribution of some anticancer drugs in solid tumors may limit their anti-tumor activity. Here we used immunohistochemistry to quantify the distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab in relation to blood vessels and to regions of hypoxia in human tumor xenografts. The antibodies were injected into mice implanted with human epidermoid carcinoma A431 or human breast carcinoma MDA-MB-231 transfected with ERBB2 (231-H2N) that express high levels of ErbB1 and ErbB2 respectively, or wild-type MDA-MB-231, which expresses intermediate levels of ErbB1 and low levels of ErbB2. The distribution of cetuximab in A431 xenografts and trastuzumab in 231-H2N xenografts was time and dose dependent. At early intervals after injection of 1 mg cetuximab into A431 xenografts, the concentration of cetuximab decreased with increasing distance from blood vessels, but became more uniformly distributed at later times; there remained however limited distribution and binding in hypoxic regions of tumors. Injection of lower doses of cetuximab led to heterogeneous distributions. Similar results were observed with trastuzumab in 231-H2N xenografts. In MDA-MB-231 xenografts, which express lower levels of ErbB1, homogeneity of distribution of cetuximab was achieved more rapidly. Cetuximab and trastuzumab distribute slowly, but at higher doses achieve a relatively uniform distribution after about 24 hours, most likely due to their long half-lives in the circulation. There remains poor distribution within hypoxic regions of tumors.
DOSE-DEPENDENT DISTRIBUTION AND ELIMINATION OF CIS- AND TRANS-PERMETHRIN IN THE RAT
Pyrethroids are neurotoxic insecticides used in a variety of agricultural and household activities. Due to the phase-out of organophosphate pesticides, use of pyrethroids has increased. The potential for increased human exposure to pyrethroids has prompted pharmacokinetic resea...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.
Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less
Modality comparison for small animal radiotherapy: A simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.
Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less
NASA Astrophysics Data System (ADS)
Palmer, A. L.; Nisbet, A.; Bradley, D. A.
2013-06-01
There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.
NASA Astrophysics Data System (ADS)
Yepes, Pablo P.; Eley, John G.; Liu, Amy; Mirkovic, Dragan; Randeniya, Sharmalee; Titt, Uwe; Mohan, Radhe
2016-04-01
Monte Carlo (MC) methods are acknowledged as the most accurate technique to calculate dose distributions. However, due its lengthy calculation times, they are difficult to utilize in the clinic or for large retrospective studies. Track-repeating algorithms, based on MC-generated particle track data in water, accelerate dose calculations substantially, while essentially preserving the accuracy of MC. In this study, we present the validation of an efficient dose calculation algorithm for intensity modulated proton therapy, the fast dose calculator (FDC), based on a track-repeating technique. We validated the FDC algorithm for 23 patients, which included 7 brain, 6 head-and-neck, 5 lung, 1 spine, 1 pelvis and 3 prostate cases. For validation, we compared FDC-generated dose distributions with those from a full-fledged Monte Carlo based on GEANT4 (G4). We compared dose-volume-histograms, 3D-gamma-indices and analyzed a series of dosimetric indices. More than 99% of the voxels in the voxelized phantoms describing the patients have a gamma-index smaller than unity for the 2%/2 mm criteria. In addition the difference relative to the prescribed dose between the dosimetric indices calculated with FDC and G4 is less than 1%. FDC reduces the calculation times from 5 ms per proton to around 5 μs.
SU-E-T-756: Tissue Inhomogeneity Corrections in Intra-Operative Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, A; Chinsky, B; Gros, S
Purpose: Investigate the impact of tissue inhomogeneities on dose distributions produced by low-energy X-rays in intra-operative radiotherapy (IORT). Methods: A 50-kV INTRABEAM X-ray device with superficial (Flat and Surface) applicators was commissioned at our institution. For each applicator, percent depth-dose (PDD), dose-profiles (DP) and output factors (OF) were obtained. Calibrated GaFchromic (EBT3) films were used to measure dose distributions in solid water phantom at various depths (2, 5, 10, and 15 mm). All recommended precautions for film-handling, film-exposure and scanning were observed. The effects of tissue inhomogeneities on dose distributions were examined by placing air-cavities and bone and tissue equivalentmore » materials of different density (ρ), atomic number (Z), and thickness (t = 0–4mm) between applicator and film detector. All inhomogeneities were modeled as a cylindrical cavity (diameter 25 mm). Treatment times were calculated to deliver 1Gy dose at 5mm depth. Film results were verified by repeat measurements with a thin-window parallel plate ion-chamber (PTW 34013A) in a water tank. Results: For a Flat-4cm applicator, the measured dose rate at 5mm depth in solid water was 0.35 Gy/min. Introduction of a cylindrical air-cavity resulted in an increased dose past the inhomogeneity. Compared to tissue equivalent medium, dose enhancement due to 1mm, 2mm, 3mm and 4mm air cavities was 10%, 16%, 24%, and 35% respectively. X-ray attenuation by 2mm thick cortical bone resulted in a significantly large (58%) dose decrease. Conclusion: IORT dose calculations assume homogeneous tissue equivalent medium. However, soft X-rays are easily affected by non-tissue equivalent materials. The results of this study may be used to estimate and correct IORT dose delivered in the presence of tissue inhomogeneities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feygelman, Vladimir; Department of Physics, University of Manitoba, Winnipeg, MB; Mandelzweig, Yuri
2015-01-15
Matching electron beams without secondary collimators (applicators) were used for treatment of extensive, recurrent chest-wall carcinoma. Due to the wide penumbra of such beams, the homogeneity of the dose distribution at and around the junction point is clinically acceptable and relatively insensitive to positional errors. Specifically, dose around the junction point is homogeneous to within ±4% as calculated from beam profiles, while the positional error of 1 cm leaves this number essentially unchanged. The experimental isodose distribution in an anthropomorphic phantom supports this conclusion. Two electron beams with wide penumbra were used to cover the desired treatment area with satisfactorymore » dose homogeneity. The technique is relatively simple yet clinically useful and can be considered a viable alternative for treatment of extensive chest-wall disease. The steps are suggested to make this technique more universal.« less
Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.
Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank
2016-05-01
To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.
Dose evaluation of an NIPAM polymer gel dosimeter using gamma index
NASA Astrophysics Data System (ADS)
Chang, Yuan-Jen; Lin, Jing-Quan; Hsieh, Bor-Tsung; Yao, Chun-Hsu; Chen, Chin-Hsing
2014-11-01
An N-isopropylacrylamide (NIPAM) polymer gel dosimeter has great potential in clinical applications. However, its three-dimensional dose distribution must be assessed. In this work, a quantitative evaluation of dose distributions was performed to evaluate the NIPAM polymer gel dosimeter using gamma analysis. A cylindrical acrylic phantom filled with NIPAM gel measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by a 4×4 cm2 square light field. The irradiated gel phantom was scanned using an optical computed tomography (optical CT) scanner (OCTOPUS™, MGS Research, Inc., Madison, CT, USA) at 1 mm resolution. The projection data were transferred to an image reconstruction program, which was written using MATLAB (The MathWorks, Natick, MA, USA). The program reconstructed the image of the optical density distribution using the algorithm of a filter back-projection. Three batches of replicated gel phantoms were independently measured. The average uncertainty of the measurements was less than 1%. The gel was found to have a high degree of spatial uniformity throughout the dosimeter and good temporal stability. A comparison of the line profiles of the treatment planning system and of the data measured by optical CT showed that the dose was overestimated in the penumbra region because of two factors. The first is light scattering due to changes in the refractive index at the edge of the irradiated field. The second is the edge enhancement caused by free radical diffusion. However, the effect of edge enhancement on the NIPAM gel dosimeter is not as significant as that on the BANG gel dosimeter. Moreover, the dose uncertainty is affected by the inaccuracy of the gel container positioning process. To reduce the uncertainty of 3D dose distribution, improvements in the gel container holder must be developed.
Environmental dose rate distribution along the Romanian Black Sea shore
NASA Astrophysics Data System (ADS)
Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin
2013-04-01
The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, R; Ding, C; Jiang, S
Purpose Spine SRS/SAbR treatment plans typically require very steep dose gradients to meet spinal cord constraints and it is crucial that the dose distribution be accurate. However, these plans are typically calculated on helical free-breathing CT scans, which often contain motion artifacts. While the spine itself doesn’t exhibit very much intra-fraction motion, tissues around the spine, particularly the liver, do move with respiration. We investigated the dosimetric effect of liver motion on dose distributions calculated on helical free-breathing CT scans for spine SAbR delivered to the T and L spine. Methods We took 5 spine SAbR plans and used densitymore » overrides to simulate an average reconstruction CT image set, which would more closely represent the patient anatomy during treatment. The value used for the density override was 0.66 g/cc. All patients were planned using our standard beam arrangement, which consists of 13 coplanar step and shoot IMRT beams. The original plan was recalculated with the same MU on the “average” scan and target coverage and spinal cord dose were compared to the original plan. Results The average changes in minimum PTV dose, PTV coverage, max cord dose and volume of cord receiving 10 Gy were 0.6%, 0.8%, 0.3% and 4.4% (0.012 cc), respectively. Conclusion SAbR spine plans are surprisingly robust relative to surrounding organ motion due to respiration. Motion artifacts in helical planning CT scans do not cause clinically significant differences when these plans are re-calculated on pseudo-average CT reconstructions. This is likely due to the beam arrangement used because only three beams pass through the liver and only one beam passes completely through the density override. The effect of the respiratory motion on VMAT plans for spine SAbR is being evaluated.« less
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann
2015-11-01
Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J
1999-09-01
The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.
Quantifying the interplay effect in prostate IMRT delivery using a convolution-based method.
Li, Haisen S; Chetty, Indrin J; Solberg, Timothy D
2008-05-01
The authors present a segment-based convolution method to account for the interplay effect between intrafraction organ motion and the multileaf collimator position for each particular segment in intensity modulated radiation therapy (IMRT) delivered in a step-and-shoot manner. In this method, the static dose distribution attributed to each segment is convolved with the probability density function (PDF) of motion during delivery of the segment, whereas in the conventional convolution method ("average-based convolution"), the static dose distribution is convolved with the PDF averaged over an entire fraction, an entire treatment course, or even an entire patient population. In the case of IMRT delivered in a step-and-shoot manner, the average-based convolution method assumes that in each segment the target volume experiences the same motion pattern (PDF) as that of population. In the segment-based convolution method, the dose during each segment is calculated by convolving the static dose with the motion PDF specific to that segment, allowing both intrafraction motion and the interplay effect to be accounted for in the dose calculation. Intrafraction prostate motion data from a population of 35 patients tracked using the Calypso system (Calypso Medical Technologies, Inc., Seattle, WA) was used to generate motion PDFs. These were then convolved with dose distributions from clinical prostate IMRT plans. For a single segment with a small number of monitor units, the interplay effect introduced errors of up to 25.9% in the mean CTV dose compared against the planned dose evaluated by using the PDF of the entire fraction. In contrast, the interplay effect reduced the minimum CTV dose by 4.4%, and the CTV generalized equivalent uniform dose by 1.3%, in single fraction plans. For entire treatment courses delivered in either a hypofractionated (five fractions) or conventional (> 30 fractions) regimen, the discrepancy in total dose due to interplay effect was negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg
2013-08-15
Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less
Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard
2013-08-01
Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedam, S.; Docef, A.; Fix, M.
2005-06-15
The synchronization of dynamic multileaf collimator (DMLC) response with respiratory motion is critical to ensure the accuracy of DMLC-based four dimensional (4D) radiation delivery. In practice, however, a finite time delay (response time) between the acquisition of tumor position and multileaf collimator response necessitates predictive models of respiratory tumor motion to synchronize radiation delivery. Predicting a complex process such as respiratory motion introduces geometric errors, which have been reported in several publications. However, the dosimetric effect of such errors on 4D radiation delivery has not yet been investigated. Thus, our aim in this work was to quantify the dosimetric effectsmore » of geometric error due to prediction under several different conditions. Conformal and intensity modulated radiation therapy (IMRT) plans for a lung patient were generated for anterior-posterior/posterior-anterior (AP/PA) beam arrangements at 6 and 18 MV energies to provide planned dose distributions. Respiratory motion data was obtained from 60 diaphragm-motion fluoroscopy recordings from five patients. A linear adaptive filter was employed to predict the tumor position. The geometric error of prediction was defined as the absolute difference between predicted and actual positions at each diaphragm position. Distributions of geometric error of prediction were obtained for all of the respiratory motion data. Planned dose distributions were then convolved with distributions for the geometric error of prediction to obtain convolved dose distributions. The dosimetric effect of such geometric errors was determined as a function of several variables: response time (0-0.6 s), beam energy (6/18 MV), treatment delivery (3D/4D), treatment type (conformal/IMRT), beam direction (AP/PA), and breathing training type (free breathing/audio instruction/visual feedback). Dose difference and distance-to-agreement analysis was employed to quantify results. Based on our data, the dosimetric impact of prediction (a) increased with response time, (b) was larger for 3D radiation therapy as compared with 4D radiation therapy, (c) was relatively insensitive to change in beam energy and beam direction, (d) was greater for IMRT distributions as compared with conformal distributions, (e) was smaller than the dosimetric impact of latency, and (f) was greatest for respiration motion with audio instructions, followed by visual feedback and free breathing. Geometric errors of prediction that occur during 4D radiation delivery introduce dosimetric errors that are dependent on several factors, such as response time, treatment-delivery type, and beam energy. Even for relatively small response times of 0.6 s into the future, dosimetric errors due to prediction could approach delivery errors when respiratory motion is not accounted for at all. To reduce the dosimetric impact, better predictive models and/or shorter response times are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinoza, I; Peschke, P; Karger, C
Purpose: In radiotherapy, it is important to predict the response of tumour to irradiation prior to the treatment. Mathematical modelling of tumour control probability (TCP) based on the dose distribution, medical imaging and other biological information may help to improve this prediction and to optimize the treatment plan. The aim of this work is to develop an image based 3D multiscale radiobiological model, which describes the growth and the response to radiotherapy of hypoxic tumors. Methods: The computer model is based on voxels, containing tumour, normal (including capillary) and dead cells. Killing of tumour cells due to irradiation is calculatedmore » by the Linear Quadratic Model (extended for hypoxia), and the proliferation and resorption of cells are modelled by exponential laws. The initial shape of the tumours is taken from CT images and the initial vascular and cell density information from PET and/or MR images. Including the fractionation regime and the physical dose distribution of the radiation treatment, the model simulates the spatial-temporal evolution of the tumor. Additionally, the dose distribution may be biologically optimized. Results: The model describes the appearance of hypoxia during tumour growth and the reoxygenation processes during radiotherapy. Among other parameters, the TCP is calculated for different dose distributions. The results are in accordance with published results. Conclusion: The simulation model may contribute to the understanding of the influence of biological parameters on tumor response during treatment, and specifically on TCP. It may be used to implement dose-painting approaches. Experimental and clinical validation is needed. This study is supported by a grant from the Ministry of Education of Chile, Programa Mece Educacion Superior (2)« less
A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.
2016-03-01
The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.
NASA Astrophysics Data System (ADS)
Barbosa, N. A.; da Rosa, L. A. R.; Facure, A.; Braz, D.
2014-02-01
Concave eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are usually used in brachytherapy for the treatment of superficial intraocular tumors as uveal melanoma with thickness up to 5 mm. The aim of this work consisted in using the Monte Carlo code MCNPX to calculate the 3D dose distribution on a mathematical model of the human eye, considering 90Sr/90Y and 160Ru/160Rh beta-ray eye applicators, in order to treat a posterior uveal melanoma with a thickness 3.8 mm from the choroid surface. Mathematical models were developed for the two ophthalmic applicators, CGD produced by BEBIG Company and SIA.6 produced by the Amersham Company, with activities 1 mCi and 4.23 mCi respectively. They have a concave form. These applicators' mathematical models were attached to the eye model and the dose distributions were calculated using the MCNPX *F8 tally. The average doses rates were determined in all regions of the eye model. The *F8 tally results showed that the deposited energy due to the applicator with the radionuclide 106Ru/106Rh is higher in all eye regions, including tumor. However the average dose rate in the tumor region is higher for the applicator with 90Sr/90Y, due to its high activity. Due to the dosimetric characteristics of these applicators, the PDD value for 3 mm water is 73% for the 106Ru/106Rh applicator and 60% for 90Sr/90Y applicator. For a better choice of the applicator type and radionuclide it is important to know the thickness of the tumor and its location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D; MacDonald, S; Paganetti, H
2014-06-01
Purpose: To compare the linear energy transfer (LET) distributions between passive scattering and pencil beam scanning proton radiation therapy techniques for medulloblastoma patients and study the potential radiobiological implications. Methods: A group of medulloblastoma patients, previously treated with passive scattering (PS) proton craniospinal irradiation followed by prosterior fossa or involved field boost, were selected from the patient database of our institution. Using the beam geometry and planning computed tomography (CT) image sets of the original treatment plans, pencil beam scanning (PBS) treatment plans were generated for the cranial treatment for each patient, with average beam spot size of 8mm (sigmamore » in air at isocenter). 3-dimensional dose and LET distributions were calculated by Monte Carlo methods (TOPAS) both for the original passive scattering and new pencil beam scanning treatment plans. LET volume histograms were calculated for the target and OARs and compared for the two delivery methods. Variable RBE weighted dose distributions and volume histograms were also calculated using a variable dose and LET-based model. Results: Better dose conformity was achieved with PBS planning compared to PS, leading to increased dose coverage for the boost target area and decreased average dose to the structures adjacent to it and critical structures outside the whole brain treatment field. LET values for the target were lower for PBS plans. Elevated LET values for OARs close to the boosted target areas were noticed, due to end of range of proton beams falling inside these structures, resulting in higher RBE weighted dose for these structures compared to the clinical RBE value of 1.1. Conclusion: Transitioning from passive scattering to pencil beam scanning proton radiation treatment can be dosimetrically beneficial for medulloblastoma patients. LET–guided treatment planning could contribute to better decision making for these cases, especially for critical structures at close proximity to the boosted target area.« less
NASA Astrophysics Data System (ADS)
Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.
2017-09-01
Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.
Ultraviolet B radiation (UV-B) has increased globally over the last several decades due to reduction of stratospheric ozone. UV-B may also increase when climate change alters cloud cover, rainfall, and distributions of vegetation. In aquatic systems, these factors can also intera...
Text message reminders to promote human papillomavirus vaccination.
Kharbanda, Elyse Olshen; Stockwell, Melissa S; Fox, Harrison W; Andres, Raquel; Lara, Marcos; Rickert, Vaughn I
2011-03-21
To implement and evaluate text message reminders for the second (HPV2) and third (HPV3) vaccine doses. Site-based intervention. Nine pediatric sites (5 academic and 4 private) located in New York City. Parents of adolescents 9-20 years who received HPV1 or HPV2 during the intervention period, January-June 2009. Parents who enrolled received up to three weekly text message reminders that their daughter was due for her next vaccine dose. On-time receipt of the next vaccine dose, within one month of its due date. During the intervention period, of 765 eligible HPV vaccine events, 434 enrollment instructions were distributed to parents (56.7% of doses). Parents of 124 adolescent girls (28.6% of those handed instructions) activated text message reminders. Comparing children of parents who enrolled versus those who did not, on-time receipt of next HPV vaccine dose occurred among 51.6% (95% CI 42.8-60.4%) versus 35.0% (95% CI 29.6-40.2%) of adolescents (p=.001). Similarly, among a historical cohort of adolescents, receiving HPV1 or HPV2 in the six months prior to the intervention period, on-time receipt of next vaccine dose was noted for 38.1% (95% CI 35.2-41.0%) (p=.003). Increases in receipt of next vaccine dose among intervention subjects were sustained at 4 months following the vaccine due date. Using a logistic regression model, after controlling for insurance and site of care, intervention subjects were significantly more likely than either control population to receive their next HPV vaccine dose on-time. Among those choosing to enroll, text message reminders were an effective intervention to increase on-time receipt of HPV2 or HPV3. Copyright © 2011 Elsevier Ltd. All rights reserved.
SU-F-T-389: Validation in 4D Dosimetry Using Dynamic Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
2016-06-15
Purpose: Tumor motion due to respiration causes the uncertainties during the radiotherapy. This study aims to find the differences between planning dose by treatment planning and the received dose using dynamic phantom. Methods: Respiratory motion was simulated by the DYNAMIC THORAX PHANTOM (Model 008A). 4D-CT scans and maximum intensity projection (MIP) images for GTV were acquired for analysis. The amplitude of craniocaudal tumor motion including 2mm, 5mm, 10mm and 20mm with 3cm2 tumor size were performed in this study. The respiratory cycles of 4-seconds and 6-seconds were included as the different breathing modes. IMRT, VAMT, and Tomotherapy were utilized formore » treatment planning. Ion chamber and EBT3 were used to measure the point dose and planar dose. Dose distributions with different amplitudes, respiratory cycles, and planning techniques were all measured and compared to calculations. Results: The variations between the does measurements and calculation dose by treatment planning system were found in both point dose and dose distribution. The 0.83% and 5.46 % differences in dose average were shown on phantom with motions using 2mm amplitude in 4 second respiratory cycle, and 20mm amplitude in 4 second respiratory cycle, respectively. The most point dose overestimation as compared of the calculations was shown the plan generated by Tomotherapy. The underestimations of planar dose as compared of calculations was found in the 100% coverage doses for GTV. Conclusion: The loss of complete (100%) GTV coverage was the predominant effect of respiratory motion observed in this study. Motion amplitude and treatment planning system were the major factors leading the dose measurement variation as compared of planning calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dréan, Gaël; Acosta, Oscar, E-mail: Oscar.Acosta@univ-rennes1.fr; Simon, Antoine
2016-06-15
Purpose: Recent studies revealed a trend toward voxelwise population analysis in order to understand the local dose/toxicity relationships in prostate cancer radiotherapy. Such approaches require, however, an accurate interindividual mapping of the anatomies and 3D dose distributions toward a common coordinate system. This step is challenging due to the high interindividual variability. In this paper, the authors propose a method designed for interindividual nonrigid registration of the rectum and dose mapping for population analysis. Methods: The method is based on the computation of a normalized structural description of the rectum using a Laplacian-based model. This description takes advantage of themore » tubular structure of the rectum and its centerline to be embedded in a nonrigid registration-based scheme. The performances of the method were evaluated on 30 individuals treated for prostate cancer in a leave-one-out cross validation. Results: Performance was measured using classical metrics (Dice score and Hausdorff distance), along with new metrics devised to better assess dose mapping in relation with structural deformation (dose-organ overlap). Considering these scores, the proposed method outperforms intensity-based and distance maps-based registration methods. Conclusions: The proposed method allows for accurately mapping interindividual 3D dose distributions toward a single anatomical template, opening the way for further voxelwise statistical analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, G; Lee, H; Alqathami, M
Purpose: To demonstrate the capability of 3D radiochromic PRESAGE and Fricke-type dosimeters to measure the influence of magnetic fields on dose distribution, including the electron return effect (ERE), for MR-guided radiation therapy applications. Methods: Short cylindrical 3D dosimeters with PRESAGE and Fricke-type formulations were created in-house prior to irradiations in a 1.5T/7MV MR-linac. Each dosimeter was prepared with a concentric cylindrical air cavity with diameters of 1.5 cm and 2.5 cm, and the diameters of the dosimeters were 7.2 cm and 8.8 cm for PRESAGE and Fricke-type respectively. The dosimeters were irradiated within the bore of the MR-linac with themore » flat face of the dosimeters perpendicular to the magnetic field. Dosimeters were irradiated to approximately 9 Gy and 29 Gy to the center of dosimeters with a 15×15 cm{sup 2} field. The PRESAGE dosimeter was scanned using an optical-CT 2 hours post-irradiation; the Fricke-type dosimeter was immediately imaged with the MR component of the MR-linac post-irradiation. Results: Axial slices of the dose distributions show a clear demonstration of the dose enhancement due to the ERE above the cavity and the region of reduced dose below the cavity. The regions of increased and reduced dose are rotated with respect to the radiation beam axis due to the average directional change of the electrons. Measurements from line profiles show the dose enhanced up to ∼0.5 cm around the cavity by up to a factor of 1.3 and 1.4 for PRESAGE and Fricke-type dosimeters respectively. Conclusion: PRESAGE and Fricke-type dosimeters are able to qualitatively measure the ERE with good agreement with previously published simulation and 2D dosimetry demonstrations of the ERE. Further investigation of these 3D dosimeters as promising candidates for quality assurance of MR-guided radiation therapy systems is encouraged to assess changes in response and measurement accuracy due to the magnetic field.« less
Study of the impact of artificial articulations on the dose distribution under medical irradiation
NASA Astrophysics Data System (ADS)
Buffard, E.; Gschwind, R.; Makovicka, L.; Martin, E.; Meunier, C.; David, C.
2005-02-01
Perturbations due to the presence of high density heterogeneities in the body are not correctly taken into account in the Treatment Planning Systems currently available for external radiotherapy. For this reason, the accuracy of the dose distribution calculations has to be improved by using Monte Carlo simulations. In a previous study, we established a theoretical model by using the Monte Carlo code EGSnrc [I. Kawrakow, D.W.O. Rogers, The EGSnrc code system: MC simulation of electron and photon transport. Technical Report PIRS-701, NRCC, Ottawa, Canada, 2000] in order to obtain the dose distributions around simple heterogeneities. These simulations were then validated by experimental results obtained with thermoluminescent dosemeters and an ionisation chamber. The influence of samples composed of hip prostheses materials (titanium alloy and steel) and a substitute of bone were notably studied. A more complex model was then developed with the Monte Carlo code BEAMnrc [D.W.O. Rogers, C.M. MA, G.X. Ding, B. Walters, D. Sheikh-Bagheri, G.G. Zhang, BEAMnrc Users Manual. NRC Report PPIRS 509(a) rev F, 2001] in order to take into account the hip prosthesis geometry. The simulation results were compared to experimental measurements performed in a water phantom, in the case of a standard treatment of a pelvic cancer for one of the beams passing through the implant. These results have shown the great influence of the prostheses on the dose distribution.
Changes in prescribed doses for the Seattle neutron therapy system
NASA Astrophysics Data System (ADS)
Popescu, A.
2008-06-01
From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, Wouter, E-mail: wouter.crijns@uzleuven.be; Depuydt, Tom; Haustermans, Karin
Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3more » films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback of both the geometric and dosimetric tracking was a reduced MLC blocking caused by the rotational component of the MLC aperture corrections. Because of the used CTV to PTV margins and the high doses in the considered fractionation schemes, the TCP differed less than 0.02 from the planned value for all targets and all correction methods. The rectal NTCP constraints, however, could not be realized using any of these methods. Conclusions: The geometric and dosimetric tracking use only a limited input, but they deposit the dose distribution with higher geometric accuracy than the clinical practice. The latter case has boost dose errors up to 10%. The increased accuracy has a modest impact [Δ(NT)CP < 0.02] because of the applied margins and the high dose levels used. To allow further margin reduction tracking methods are vital. The proposed methodology could further be improved by implementing a rotational correction using collimator rotations.« less
Severgnini, Mara; de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-08
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose-optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off-line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%.
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Tian, Z; Song, T
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less
SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, D; Liu, W; Park, P
2014-06-01
Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less
SU-F-T-659: Nanoparticle-Aided Eye Plaque Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, J; Ngwa, W
Purpose: Eye plaque brachytherapy is one of the approaches for radiotherapy treatment for ocular cancers: retinoblastoma and choroidal melanoma. This study, investigates the potential benefits of using gold nanoparticles to enhance therapeutic efficacy during eye plaque brachytherapy. Methods: The EYE PHYSICS Inc. Plaque Simulator program distributed by IsoAid, LLC, Port Richey, Florida was used. It is based on the superposition of dose contributions from individual seeds following the TG–43 formalism. Dose enhancement factor (DEF) values for feasible nanoparticle concentrations from previous studies was used to investigate the benefit of using nanoparticles to enhance dose to tumour or reduce dose tomore » healthy tissue. The dose enhancement factor (DEF) represents the ratio of the dose deposited in tumour with nanoparticles divided by dose deposited in the tumour without nanoparticles. The investigation was done for I–125 and Pd–103 typical sources employed for eye plaque brachytherapy. The prescription dose used is 85 Gy. Results: Lower dose enhancement values were obtained for Pd–103. With DEF of 2 due to gold nanoparticles, critical structure doses reduce by a factor of 2. Optic disc dose is 6.69 Gy and 4.571 Gy, opposite retina dose is 4.064 and 2.484 Gy, lens dose is 12.66 Gy and 9.870 Gy, and fovea dose is 9.85 Gy and 7.275 Gy. With DEF of 3 due to gold nanoparticles, critical structure doses reduce by a factor of 3. Optic disc dose is 4.352 Gy and 2.975 Gy, opposite retina dose is 2.644 Gy and 1.618 Gy, lens dose is 8.322 Gy and 6.427 Gy, and fovea dose is 4.815 Gy and 4.737 Gy. Conclusion: The results of this research predict that using gold nanoparticles will lead to major sparing of dose to critical structures. The finding provides more impetus for the development of nanoparticle–aided brachytherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Algan, O; Ahmad, S
Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less
Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki
2017-02-01
This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heczko, S; McAuley, GA; Slater, JM
Purpose: To evaluate the impact of titanium and surgical stainless steel implants on the microscopic dose distribution in proton treatment plans Methods: Geant4 Monte Carlo simulations were used to analyze the microdosimetric distribution of proton radiation in the vicinity of 3.1 mm thick CP Grade 4 titanium (Ti) or 316 stainless steel (SS316) plates in a water phantom. Additional simulations were performed using either water, or water with a density equivalent to the respective metals (Tiwater, SS316water) (to reflect common practice in treatment planning). Implants were placed at the COM of SOBPs of 157 MeV (range of ∼15 cm inmore » water) protons with 30 or 60 mm modulation. Primary and secondary particle dose and fluence, frequency-weighted and dose-weighted average lineal energy, average radiation quality factor, dose equivalent and energy deposition histograms in the plate vicinity were compared. Results: Preliminary results show frequency-weighted (yf) and dose-weighted lineal energy (yd) was increased downstream of the Ti plate (yf = 3.1 keV/µm; yd = 5.5 keV/µm) and Tiwater (yf = 4.1 keV/µm; yd = 6.8 keV/µm) compared to that of water (ie, the absence of a plate) (yf = 2.5 keV/µm; yd = 4.5 keV/µm). In addition, downstream proton dose deposition was also elevated due to the presence of the Ti plate or Tiwater. The additional dose deposited at higher lineal energy implies that tissues downstream of the plate will receive a higher dose equivalent. Detailed analyses of the Ti, Tiwater, SS316, and SS316 water simulations will be presented. Conclusion: The presence of high-density materials introduces changes in the spatial distribution of radiation in the vicinity of an implant. Further work quantifying these effects could be incorporated into future treatment planning systems resulting in more accurate treatment plans. This project was sponsored with funding from the Department of Defense (DOD # W81XWH-10-2-0192).« less
Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments
NASA Technical Reports Server (NTRS)
Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.
2011-01-01
The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.
SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devic, S; Tomic, N; DeBlois, F
2016-06-15
Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less
Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami
2014-05-01
Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.
In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.
de Denaro, Mario; Bortul, Marina; Vidali, Cristiana; Beorchia, Aulo
2014-01-01
Intraoperative electron radiation therapy (IOERT) cannot usually benefit, as conventional external radiotherapy, from software systems of treatment planning based on computed tomography and from common dose verify procedures. For this reason, in vivo film dosimetry (IVFD) proves to be an effective methodology to evaluate the actual radiation dose delivered to the target. A practical method for IVFD during breast IOERT was carried out to improve information on the dose actually delivered to the tumor target and on the alignment of the shielding disk with respect to the electron beam. Two EBT3 GAFCHROMIC films have been positioned on the two sides of the shielding disk in order to obtain the dose maps at the target and beyond the disk. Moreover the postprocessing analysis of the dose distribution measured on the films provides a quantitative estimate of the misalignment between the collimator and the disk. EBT3 radiochromic films have been demonstrated to be suitable dosimeters for IVD due to their linear dose‐optical density response in a narrow range around the prescribed dose, as well as their capability to be fixed to the shielding disk without giving any distortion in the dose distribution. Off‐line analysis of the radiochromic film allowed absolute dose measurements and this is indeed a very important verification of the correct exposure to the target organ, as well as an estimate of the dose to the healthy tissue underlying the shielding. These dose maps allow surgeons and radiation oncologists to take advantage of qualitative and quantitative feedback for setting more accurate treatment strategies and further optimized procedures. The proper alignment using elastic bands has improved the absolute dose accuracy and the collimator disk alignment by more than 50%. PACS number: 87.55.kh
Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.
Belz, Regina G; Patama, Marjo; Sinkkonen, Aki
2018-08-01
Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.
A procedure to determine the planar integral spot dose values of proton pencil beam spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald
2012-02-15
Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeVmore » energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koger, Brandon; Kirkby, Charles
2016-08-15
Introduction: Gold nanoparticles (GNPs) can enhance radiation therapy within a tumour, increasing local energy deposition under irradiation, but experimental evidence suggests the enhancement is not as large as predicted by dose enhancement alone. Many studies neglect to account for surface coatings that are frequently used to optimize GNP uptake and biological distribution. This study uses Monte Carlo methods to investigate the consequences on local dose enhancement due to including these surface coatings. Methods: Using the PENELOPE Monte Carlo code system, GNP irradiation was simulated both with and without surface coatings of polyethylene glycol (PEG) of various molecular weights. Dose wasmore » scored to the gold, coating, and surrounding water, and the dosimetric differences between these scenarios were examined. Results: The simulated PEG coating absorbs a large portion of the energy that would otherwise be deposited in the medium. The mean dose to water was reduced by up to 2.5, 3.5, and 4.5% for GNPs of diameters 50, 20, and 10 nm, respectively. This effect was more pronounced for smaller GNPs, thicker coatings, and low photon source energies where the enhancement due to GNPs is the greatest. The molecular weight of the coating material did not have a significant impact on the dose. Conclusions: The inclusion of a coating material in GNP enhanced radiation may reduce the dose enhancement due to the nanoparticles. Both the composition and size of the coating play a role in the level of this reduction and should be considered carefully.« less
Field-size dependence of doses of therapeutic carbon beams.
Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa
2007-10-01
To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.
NASA Astrophysics Data System (ADS)
Doucet, R.; Olivares, M.; DeBlois, F.; Podgorsak, E. B.; Kawrakow, I.; Seuntjens, J.
2003-08-01
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 × 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid WaterTM (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Doucet, R; Olivares, M; DeBlois, F; Podgorsak, E B; Kawrakow, I; Seuntjens, J
2003-08-07
Calculations of dose distributions in heterogeneous phantoms in clinical electron beams, carried out using the fast voxel Monte Carlo (MC) system XVMC and the conventional MC code EGSnrc, were compared with measurements. Irradiations were performed using the 9 MeV and 15 MeV beams from a Varian Clinac-18 accelerator with a 10 x 10 cm2 applicator and an SSD of 100 cm. Depth doses were measured with thermoluminescent dosimetry techniques (TLD 700) in phantoms consisting of slabs of Solid Water (SW) and bone and slabs of SW and lung tissue-equivalent materials. Lateral profiles in water were measured using an electron diode at different depths behind one and two immersed aluminium rods. The accelerator was modelled using the EGS4/BEAM system and optimized phase-space files were used as input to the EGSnrc and the XVMC calculations. Also, for the XVMC, an experiment-based beam model was used. All measurements were corrected by the EGSnrc-calculated stopping power ratios. Overall, there is excellent agreement between the corrected experimental and the two MC dose distributions. Small remaining discrepancies may be due to the non-equivalence between physical and simulated tissue-equivalent materials and to detector fluence perturbation effect correction factors that were calculated for the 9 MeV beam at selected depths in the heterogeneous phantoms.
Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J
2012-09-01
To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications.
Hedin, Emma; Bäck, Anna
2013-09-06
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose-volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient-specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm-specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction-based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman-Kutcher-Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm-specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types.
Wiklund, Kristin; Olivera, Gustavo H; Brahme, Anders; Lind, Bengt K
2008-07-01
To speed up dose calculation, an analytical pencil-beam method has been developed to calculate the mean radial dose distributions due to secondary electrons that are set in motion by light ions in water. For comparison, radial dose profiles calculated using a Monte Carlo technique have also been determined. An accurate comparison of the resulting radial dose profiles of the Bragg peak for (1)H(+), (4)He(2+) and (6)Li(3+) ions has been performed. The double differential cross sections for secondary electron production were calculated using the continuous distorted wave-eikonal initial state method (CDW-EIS). For the secondary electrons that are generated, the radial dose distribution for the analytical case is based on the generalized Gaussian pencil-beam method and the central axis depth-dose distributions are calculated using the Monte Carlo code PENELOPE. In the Monte Carlo case, the PENELOPE code was used to calculate the whole radial dose profile based on CDW data. The present pencil-beam and Monte Carlo calculations agree well at all radii. A radial dose profile that is shallower at small radii and steeper at large radii than the conventional 1/r(2) is clearly seen with both the Monte Carlo and pencil-beam methods. As expected, since the projectile velocities are the same, the dose profiles of Bragg-peak ions of 0.5 MeV (1)H(+), 2 MeV (4)He(2+) and 3 MeV (6)Li(3+) are almost the same, with about 30% more delta electrons in the sub keV range from (4)He(2+)and (6)Li(3+) compared to (1)H(+). A similar behavior is also seen for 1 MeV (1)H(+), 4 MeV (4)He(2+) and 6 MeV (6)Li(3+), all classically expected to have the same secondary electron cross sections. The results are promising and indicate a fast and accurate way of calculating the mean radial dose profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Wang, X; Li, H
Purpose: Proton therapy is more sensitive to uncertainties than photon treatments due to protons’ finite range depending on the tissue density. Worst case scenario (WCS) method originally proposed by Lomax has been adopted in our institute for robustness analysis of IMPT plans. This work demonstrates that WCS method is sufficient enough to take into account of the uncertainties which could be encountered during daily clinical treatment. Methods: A fast and approximate dose calculation method is developed to calculate the dose for the IMPT plan under different setup and range uncertainties. Effects of two factors, inversed square factor and range uncertainty,more » are explored. WCS robustness analysis method was evaluated using this fast dose calculation method. The worst-case dose distribution was generated by shifting isocenter by 3 mm along x,y and z directions and modifying stopping power ratios by ±3.5%. 1000 randomly perturbed cases in proton range and x, yz directions were created and the corresponding dose distributions were calculated using this approximated method. DVH and dosimetric indexes of all 1000 perturbed cases were calculated and compared with the result using worst case scenario method. Results: The distributions of dosimetric indexes of 1000 perturbed cases were generated and compared with the results using worst case scenario. For D95 of CTVs, at least 97% of 1000 perturbed cases show higher values than the one of worst case scenario. For D5 of CTVs, at least 98% of perturbed cases have lower values than worst case scenario. Conclusion: By extensively calculating the dose distributions under random uncertainties, WCS method was verified to be reliable in evaluating the robustness level of MFO IMPT plans of H&N patients. The extensively sampling approach using fast approximated method could be used in evaluating the effects of different factors on the robustness level of IMPT plans in the future.« less
NASA Astrophysics Data System (ADS)
Baptista, M.; Teles, P.; Cardoso, G.; Vaz, P.
2014-11-01
Over the last decade, there was a substantial increase in the number of interventional cardiology procedures worldwide, and the corresponding ionizing radiation doses for both the medical staff and patients became a subject of concern. Interventional procedures in cardiology are normally very complex, resulting in long exposure times. Also, these interventions require the operator to work near the patient and, consequently, close to the primary X-ray beam. Moreover, due to the scattered radiation from the patient and the equipment, the medical staff is also exposed to a non-uniform radiation field that can lead to a significant exposure of sensitive body organs and tissues, such as the eye lens, the thyroid and the extremities. In order to better understand the spatial variation of the dose and dose rate distributions during an interventional cardiology procedure, the dose distribution around a C-arm fluoroscopic system, in operation in a cardiac cath lab at Portuguese Hospital, was estimated using both Monte Carlo (MC) simulations and dosimetric measurements. To model and simulate the cardiac cath lab, including the fluoroscopic equipment used to execute interventional procedures, the state-of-the-art MC radiation transport code MCNPX 2.7.0 was used. Subsequently, Thermo-Luminescent Detector (TLD) measurements were performed, in order to validate and support the simulation results obtained for the cath lab model. The preliminary results presented in this study reveal that the cardiac cath lab model was successfully validated, taking into account the good agreement between MC calculations and TLD measurements. The simulated results for the isodose curves related to the C-arm fluoroscopic system are also consistent with the dosimetric information provided by the equipment manufacturer (Siemens). The adequacy of the implemented computational model used to simulate complex procedures and map dose distributions around the operator and the medical staff is discussed, in view of the optimization principle (and the associated ALARA objective), one of the pillars of the international system of radiological protection.
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Tobias, R; Pankuch, M
Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less
In vivo proton range verification: a review
NASA Astrophysics Data System (ADS)
Knopf, Antje-Christin; Lomax, Antony
2013-08-01
Protons are an interesting modality for radiotherapy because of their well defined range and favourable depth dose characteristics. On the other hand, these same characteristics lead to added uncertainties in their delivery. This is particularly the case at the distal end of proton dose distributions, where the dose gradient can be extremely steep. In practice however, this gradient is rarely used to spare critical normal tissues due to such worries about its exact position in the patient. Reasons for this uncertainty are inaccuracies and non-uniqueness of the calibration from CT Hounsfield units to proton stopping powers, imaging artefacts (e.g. due to metal implants) and anatomical changes of the patient during treatment. In order to improve the precision of proton therapy therefore, it would be extremely desirable to verify proton range in vivo, either prior to, during, or after therapy. In this review, we describe and compare state-of-the art in vivo proton range verification methods currently being proposed, developed or clinically implemented.
Schlesinger, David J; Nordström, Håkan; Lundin, Anders; Xu, Zhiyuan; Sheehan, Jason P
2016-12-01
OBJECTIVE Patients with arteriovenous malformations (AVMs) treated with Gamma Knife radiosurgery (GKRS) subsequent to embolization suffer from elevated local failure rates and differences in adverse radiation effects. Onyx is a common embolic material for AVMs. Onyx is formulated with tantalum, a high atomic number (Z = 73) element that has been investigated as a source of dosimetric uncertainty contributing to the less favorable clinical results. However, prior studies have not modeled the complicated anatomical and beam geometries characteristic of GKRS. This study investigated the magnitude of dose perturbation that can occur due to Onyx embolization using clinically realistic anatomical and Gamma Knife beam models. METHODS Leksell GammaPlan (LGP) was used to segment the AVM nidus and areas of Onyx from postcontrast stereotactic MRI for 7 patients treated with GKRS postembolization. The resulting contours, skull surface, and clinically selected dose distributions were exported from LGP in DICOM-RT (Digital Imaging and Communications in Medicine-radiotherapy) format. Isocenter locations and dwell times were recorded from the LGP database. Contours were converted into 3D mesh representations using commercial and in-house mesh-editing software. The resulting data were imported into a Monte Carlo (MC) dose calculation engine (Pegasos, Elekta Instruments AB) with a beam geometry for the Gamma Knife Perfexion. The MC-predicted dose distributions were calculated with Onyx assigned manufacturer-reported physical constants (MC-Onyx), and then compared with corresponding distributions in which Onyx was reassigned constants for water (MC-water). Differences in dose metrics were determined, including minimum, maximum, and mean dose to the AVM nidus; selectivity index; and target coverage. Combined differences in dose magnitude and distance to agreement were calculated as 3D Gamma analysis passing rates using tolerance criteria of 0.5%/0.5 mm, 1.0%/1.0 mm, and 3.0%/3.0 mm. RESULTS Overall, the mean percentage differences in dose metrics for MC-Onyx relative to MC-water were as follows; all data are reported as mean (SD): minimum dose to AVM = -0.7% (1.4%), mean dose to AVM = 0.1% (0.2%), maximum dose to AVM = 2.9% (5.0%), selectivity = 0.1% (0.2%), and coverage = -0.0% (0.2%). The mean percentage of voxels passing at each Gamma tolerance were as follows: 99.7% (0.1%) for 3.0%/3.0 mm, 98.2% (0.7%) for 1.0%/1.0 mm, and 52.1% (4.4%) for 0.5%/0.5 mm. CONCLUSIONS Onyx embolization appears to have a detectable effect on the delivered dose distribution. However, the small changes in dose metrics and high Gamma passing rates at 1.0%/1.0 mm tolerance suggest that these changes are unlikely to be clinically significant. Additional sources of delivery and biological uncertainty should be investigated to determine the root cause of the observed less favorable postembolization GKRS outcomes.
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
Manchado de Sola, Francisco; Vilches, Manuel; Prezado, Yolanda; Lallena, Antonio M
2018-05-15
The purpose of this study was to assess the effects of brain movements induced by heartbeat on dose distributions in synchrotron micro- and minibeam radiation therapy and to develop a model to help guide decisions and planning for future clinical trials. The Monte Carlo code PENELOPE was used to simulate the irradiation of a human head phantom with a variety of micro- and minibeam arrays, with beams narrower than 100 μm and above 500 μm, respectively, and with radiation fields of 1 × 2 cm and 2 × 2 cm. The dose in the phantom due to these beams was calculated by superposing the dose profiles obtained for a single beam of 1 μm × 2 cm. A parameter δ, accounting for the total displacement of the brain during the irradiation and due to the cardiosynchronous pulsation, was used to quantify the impact on peak-to-valley dose ratios and the full width at half maximum. The difference between the maximum (at the phantom entrance) and the minimum (at the phantom exit) values of the peak-to-valley dose ratio reduces when the parameter δ increases. The full width at half maximum remains almost constant with depth for any δ value. Sudden changes in the two quantities are observed at the interfaces between the various tissues (brain, skull, and skin) present in the head phantom. The peak-to-valley dose ratio at the center of the head phantom reduces when δ increases, remaining above 70% of the static value only for minibeams and δ smaller than ∼200 μm. Optimal setups for brain treatments with synchrotron radiation micro- and minibeam combs depend on the brain displacement due to cardiosynchronous pulsation. Peak-to-valley dose ratios larger than 90% of the maximum values obtained in the static case occur only for minibeams and relatively large dose rates. © 2018 American Association of Physicists in Medicine.
Ferretti, A; Martignano, A; Simonato, F; Paiusco, M
2014-02-01
The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Warmington, Leighton L; Gopishankar, N; Broadhurst, John H; Watanabe, Yoichi
2016-12-01
To investigate the feasibility of three-dimensional (3D) dose measurements near thin high-Z materials placed in a water-like medium by using a polymer gel dosimeter (PGD) when the medium was irradiated with high energy photon beams. PGD is potentially a useful tool for this application because it can record the dose around a small object made of a high-Z material in a continuous 3D medium. In this study, the authors manufactured a methacrylic acid-based normoxic PGD, nMAG. Two 0.5 mm thick lead foils (1 × 1 cm) were placed in foil supports with 0.7 cm separation in a 1000 ml polystyrene container filled with nMAG. The authors used two foil configurations, i.e., orthogonal and parallel. In the orthogonal configuration, two foils were placed in the direction orthogonal to the beam axis. The parallel configuration had two foils arranged in parallel to the beam axis. The phantom was irradiated with an 18 MV photon beam of 5 × 5 cm field size. It was imaged with a three-Tesla (3 T) magnetic resonance imaging (MRI) scanned using the Car-Purcell-Meiboom-Gill pulse sequence. The spin-spin relaxation time (R2) to-dose calibration data were obtained by using small vials filled with nMAG and exposing to known doses. The DOSXYZnrc Monte Carlo (MC) code was used to get the expected dose distributions. More than 35 × 10 6 of histories were simulated so that the average error was less than 1%. An in-house matlab-based software was used to obtain the dose distributions from the measured R2 data as well as to compare the measurements and the MC predictions. The dose change due to the presence of the foils was studied by comparing the dose distributions with and without foils (or the reference). For the orthogonal configuration, the measured dose along the beam axis showed an increase in the upstream side of the first foil, between the foils, and on the downstream side of the second foil. The range of increased dose area was 1.1 cm in the upstream of the first foil. However, in the downstream of the second foil, it was 0.2 cm, beyond which the dose fell below the reference dose by 10%. The dose profile between the foils showed a well-like shape with the minimum dose still larger than the reference dose by 1.8%. The minimum dose point was closer to the first foil than to the second foil. For the parallel configuration, the dose between foils was the largest at the center. The increased dose area opposite to the gap between foils extended outward to 1 cm. The spatial dose distributions of PGD and MC showed the same geometrical patterns except for the points inside the foils for both orthogonal and parallel foil arrangements. The authors demonstrated that the nMAG PGD with MRI could be used to measure the 3D dosimetric structures at the mm-scale in the vicinity of the foil. The current study provided more accurate 3D spatial dose distribution than the previous studies. Furthermore, the measurements were validated by the MC simulation.
Haidari, Leila A; Wahl, Brian; Brown, Shawn T; Privor-Dumm, Lois; Wallman-Stokes, Cecily; Gorham, Katie; Connor, Diana L; Wateska, Angela R; Schreiber, Benjamin; Dicko, Hamadou; Jaillard, Philippe; Avella, Melanie; Lee, Bruce Y
2015-06-22
While the size and type of a vaccine container (i.e., primary container) can have many implications on the safety and convenience of a vaccination session, another important but potentially overlooked consideration is how the design of the primary container may affect the distribution of the vaccine, its resulting cost, and whether the vial is ultimately opened. Using our HERMES software platform, we developed a simulation model of the World Health Organization Expanded Program on Immunization supply chain for the Republic of Benin and used the model to explore the effects of different primary containers for various vaccine antigens. Replacing vaccines with presentations containing fewer doses per vial reduced vaccine availability (proportion of people arriving for vaccines who are successfully immunized) by as much as 13% (from 73% at baseline) and raised logistics costs by up to $0.06 per dose administered (from $0.25 at baseline) due to increased bottlenecks, while reducing total costs by as much as $0.15 per dose administered (from $2.52 at baseline) due to lower open vial wastage. Primary containers with a greater number of doses per vial each improved vaccine availability by 19% and reduced logistics costs by $0.05 per dose administered, while reducing the total costs by up to $0.25 per dose administered. Changes in supply chain performance were more extreme in departments with greater constraints. Implementing a vial opening threshold reversed the direction of many of these effects. Our results show that one size may not fit all when choosing a primary vaccine container. Rather, the choice depends on characteristics of the vaccine, the vaccine supply chain, immunization session size, and goals of decision makers. In fact, the optimal vial size may vary among locations within a country. Simulation modeling can help identify tailored approaches to improve availability and efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Miyamoto, G; Sasabe, H
1984-01-01
The pharmacokinetics of 3, 4-dihydro-6-[4-(3,4- dimethoxybenzoyl )-1-piperazinyl]-2(1H)- quin olinone ( OPC -8212) were studied after the administration of 14C- OPC -8212 or OPC -8212 to animals of different species. After oral doses of 10 mg/kg of 14C- OPC -8212 to rats and beagle dogs, the Tmax, Cmax and T1/2 values of OPC -8212 were 4 h, 2995 ng eq/ml, and 3-4 h in rats and 1 h, 2244 ng eq/ml and 5-6 h in beagle dogs, respectively. After oral doses of 10 mg/kg of 14C- OPC -8212 to rats, the radioactivity was distributed comparatively widely in the tissues. However, there was no evidence of accumulation of radioactivity in the tissues due to repeated oral doses of 10 mg/kg of 14C- OPC -8212 once a day for 21 days. After oral doses of 10 mg/kg of 14C- OPC -8212, the amounts of radioactivity excreted in the urine and feces in the first 72 h accounted for 29.25% and 60.24% of the dose in rats and 35.53% and 63.18% of the dose in beagle dogs, respectively. There were no apparent changes in the urinary and fecal excretions of radioactivity due to repeated oral doses of 10 mg/kg of 14C- OPC -8212 once a day for 21 days in rats. Biliary excretion of radioactivity was 22.41% of the dose after oral doses of 10 mg/kg 14C- OPC -8212 in rats. Enterohepatic circulation was 22.04% of the dose after an intraduodenal dose in rats.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Marrale, Maurizio; Longo, Anna; Russo, Giorgio; Casarino, Carlo; Candiano, Giuliana; Gallo, Salvatore; Carlino, Antonio; Brai, Maria
2015-09-01
In this work a comparison between the response of alanine and Markus ionization chamber was carried out for measurements of the output factors (OF) of electron beams produced by a linear accelerator used for Intra-Operative Radiation Therapy (IORT). Output factors (OF) for conventional high-energy electron beams are normally measured using ionization chamber according to international dosimetry protocols. However, the electron beams used in IORT have characteristics of dose per pulse, energy spectrum and angular distribution quite different from beams usually used in external radiotherapy, so the direct application of international dosimetry protocols may introduce additional uncertainties in dosimetric determinations. The high dose per pulse could lead to an inaccuracy in dose measurements with ionization chamber, due to overestimation of ks recombination factor. Furthermore, the electron fields obtained with IORT-dedicated applicators have a wider energy spectrum and a wider angular distribution than the conventional fields, due to the presence of electrons scattered by the applicator's wall. For this reason, a dosimetry system should be characterized by a minimum dependence from the beam energy and from angle of incidence of electrons. This become particularly critical for small and bevelled applicators. All of these reasons lead to investigate the use of detectors different from the ionization chamber for measuring the OFs. Furthermore, the complete characterization of the radiation field could be accomplished also by the use of Monte Carlo simulations which allows to obtain detailed information on dose distributions. In this work we compare the output factors obtained by means of alanine dosimeters and Markus ionization chamber. The comparison is completed by the Monte Carlo calculations of OFs determined through the use of the Geant4 application "iort _ therapy" . The results are characterized by a good agreement of response of alanine pellets and Markus ionization chamber and Monte Carlo results (within about 3%) for both flat and bevelled applicators.
Wong, J H D; Fuduli, I; Carolan, M; Petasecca, M; Lerch, M L F; Perevertaylo, V L; Metcalfe, P; Rosenfeld, A B
2012-05-01
Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. The prototype MP is an 11 × 11 detector array based on thin (50 μm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.
Hrycushko, Brian A.; Li, Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande
2011-01-01
Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods:99mTc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, 186Re∕188Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy∕MBq (318.2 Gy∕mCi) and 5.7 Gy∕MBq (209.1 Gy∕mCi) could be delivered with this protocol of radiation delivery for 186Re∕188Re liposomes, respectively, and 37–92 MBq (1–2.5 mCi)∕g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating radionuclides with higher energy beta emissions, dose escalation through increased specific activity, and increasing the number of direct tumor infusion sites improve tumor control. For larger tumors, the use of multiple infusion locations was modeled to be much more efficient, in terms of activity usage, at improving EUD and TCP to achieve a tumoricidal effect. Conclusions: Direct intratumoral infusion of beta-emitting radionuclide encapsulated liposomes shows promise for cancer therapy by achieving large focally delivered tumor doses. However, the results of this work also indicate that average tumor dose may underestimate tumoricidal effect due to substantial heterogeneity in intratumoral liposomal radionuclide distributions. The resulting intratumoral distribution of liposomes following infusion should be taken into account in treatment planning and evaluation in a clinical setting for an optimal cancer therapy. PMID:21520844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrycushko, Brian A.; Li Shihong; Goins, Beth
2011-03-15
Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts inmore » nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating radionuclides with higher energy beta emissions, dose escalation through increased specific activity, and increasing the number of direct tumor infusion sites improve tumor control. For larger tumors, the use of multiple infusion locations was modeled to be much more efficient, in terms of activity usage, at improving EUD and TCP to achieve a tumoricidal effect. Conclusions: Direct intratumoral infusion of beta-emitting radionuclide encapsulated liposomes shows promise for cancer therapy by achieving large focally delivered tumor doses. However, the results of this work also indicate that average tumor dose may underestimate tumoricidal effect due to substantial heterogeneity in intratumoral liposomal radionuclide distributions. The resulting intratumoral distribution of liposomes following infusion should be taken into account in treatment planning and evaluation in a clinical setting for an optimal cancer therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah
2011-11-15
Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less
Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy
NASA Astrophysics Data System (ADS)
Yang, C.; Bromma, Kyle; Chithrani, B. D.
2018-02-01
Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.
Determination of MLC model parameters for Monaco using commercial diode arrays.
Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian
2016-07-08
Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors
NASA Astrophysics Data System (ADS)
Korir, Geoffrey; Wambani, Jeska; Korir, Ian
2011-04-01
This study details the distribution and trends of doses due to occupational radiation exposure among radiation workers from participating medical institutions in Kenya, where monthly dose measurements were collected for a period of one year ranging from January to December in 2007. A total of 367 medical radiation workers were monitored using thermoluminescent dosemeters. They included radiologists (27%), oncologists (2%), dentists (4%), Physicists (5%), technologists (45%), nurses (4%), film processor technicians (3%), auxiliary staff (4%), and radiology office staff (5%). The average annual effective dose of all categories of staff was found to range from 1.19 to 2.52 mSv. This study formed the initiation stage of wider, comprehensive and more frequent monitoring of occupational radiation exposures and long-term investigations into its accumulation patterns in our country.
WE-G-BRE-03: Dose Painting by Numbers Using Targeted Gold Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altundal, Y; Sajo, E; Korideck, H
Purpose: Homogeneous dose enhancement in tumor cells of lung cancer patients treated with conventional dose of 60–66 Gy in five fractions is limited due to increased risk of toxicity to normal structures. Dose painting by numbers (DPBN) is the prescription of a non-uniform radiation dose distribution in the tumor for each voxel based on the intensity level of that voxel obtained from the tumor image. The purpose of this study is to show that DPBN using targeted gold nanoparticles (GNPs) could enhance conventional doses in the more resistant tumor areas. Methods: Cone beam computed tomography (CBCT) images of GNPs aftermore » intratumoral injection into human tumor were taken at 0, 48, 144 and 160 hours. The dose enhancement in the tumor voxels by secondary electrons from the GNPs was calculated based on analytical microdosimetry methods. The dose enhancement factor (DEF) is the ratio of the doses to the tumor with and without the presence of GNPs. The DEF was calculated for each voxel of the images based on the GNP concentration in the tumor sub-volumes using 6-MV photon spectra obtained using Monte Carlo simulations at 5 cm depth (10×10 cm2 field). Results: The results revealed DEF values of 1.05–2.38 for GNPs concentrations of 1–30 mg/g which corresponds to 12.60 – 28.56 Gy per fraction for delivering 12 Gy per fraction homogenously to lung tumor region. Conclusion: Our preliminary results verify that DPBN could be achieved using GNPs to enhance conventional doses to high risk tumor sub-volumes. In practice, DPBN using GNPs could be achieved due to diffusion of targeted GNPs sustainably released in-situ from radiotherapy biomaterials (e.g. fiducials) coated with polymer film containing the GNPs.« less
The Mayak Worker Dosimetry System (MWDS-2013): Implementation of the Dose Calculations.
Zhdanov, А; Vostrotin, V; Efimov, А; Birchall, A; Puncher, M
2016-07-15
The calculation of internal doses for the Mayak Worker Dosimetry System (MWDS-2013) involved extensive computational resources due to the complexity and sheer number of calculations required. The required output consisted of a set of 1000 hyper-realizations: each hyper-realization consists of a set (1 for each worker) of probability distributions of organ doses. This report describes the hardware components and computational approaches required to make the calculation tractable. Together with the software, this system is referred to here as the 'PANDORA system'. It is based on a commercial SQL server database in a series of six work stations. A complete run of the entire Mayak worker cohort entailed a huge amount of calculations in PANDORA and due to the relatively slow speed of writing the data into the SQL server, each run took about 47 days. Quality control was monitored by comparing doses calculated in PANDORA with those in a specially modified version of the commercial software 'IMBA Professional Plus'. Suggestions are also made for increasing calculation and storage efficiency for future dosimetry calculations using PANDORA. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A comparison study on various low energy sources in interstitial prostate brachytherapy
Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.
2016-01-01
Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200
A comparison study on various low energy sources in interstitial prostate brachytherapy.
Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S
2016-02-01
Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.
A method to estimate the effect of deformable image registration uncertainties on daily dose mapping
Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin
2012-01-01
Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766
Brodin, N. Patrik; Chen, Yong; Yaparpalvi, Ravindra; Guha, Chandan; Tomé, Wolfgang A.
2015-01-01
Shielded 137Cs irradiators are routinely used in pre-clinical radiation research to perform in vitro or in vivo investigations. Without appropriate dosimetry and irradiation protocols in place, there can be large uncertainty in the delivered dose of radiation between irradiated subjects that could lead to inaccurate and possibly misleading results. Here, a dosimetric evaluation of the JL Shepard Mark I-68A 137Cs irradiator and an irradiation technique for whole-body irradiation of small animals that allows one to limit the between subject variation in delivered dose to ±3% are provided. Mathematical simulation techniques and Gafchromic EBT film were used to describe the region within the irradiation cavity with homogeneous dose distribution (100% ±5%), the dosimetric impact of varying source-to-subject distance, and the variation in attenuation thickness due to turntable rotation. Furthermore, an irradiation protocol and dosimetry formalism that allows calculation of irradiation time for whole-body irradiation of small animals is proposed, that is designed to ensure a more consistent dose delivery between irradiated subjects. To compare this protocol with the conventional irradiation protocol suggested by the vendor, high-resolution film dosimetry measurements evaluating the dose difference between irradiation subjects and the dose distribution throughout subjects was performed, using phantoms resembling small animals. Based on these results, there can be considerable variation in the delivered dose of > ±5% using the conventional irradiation protocol for whole-body irradiation doses below 5 Gy. Using the proposed irradiation protocol this variability can be reduced to within ±3% and the dosimetry formalism allows for more accurate calculation of the irradiation time in relation to the intended prescription dose. PMID:26710162
HDR {sup 192}Ir source speed measurements using a high speed video camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio
Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulatingmore » the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.« less
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1998-01-01
A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.
Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik
2017-05-01
To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Robatjazi, Mostafa; Baghani, Hamid Reza; Mahdavic, Seied Rabi; Felici, Giuseppe
2018-05-01
A shielding disk is used for IOERT procedures to absorb radiation behind the target and protect underlying healthy tissues. Setup variation of shielding disk can affect the corresponding in-vivo dose distribution. In this study, the changes of dosimetric parameters due to the disk setup variations is evaluated using EGSnrc Monte Carlo (MC) code. The results can help treatment team to decide about the level of accuracy in the setup procedure and delivered dose to the target volume during IOERT. Copyright © 2018 Elsevier Ltd. All rights reserved.
TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, S; Nazareth, D; Bellor, M
Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less
QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
Nilsen, Vegard; Wyller, John
2016-01-01
Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting, E-mail: yutingl188@gmail.com; Paganetti, Harald; Schuemann, Jan
2015-10-15
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photonmore » beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.« less
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J; Schuemann, Jan
2015-10-01
The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Lin, Yuting; Paganetti, Harald; McMahon, Stephen J.; Schuemann, Jan
2015-01-01
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 μm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 μm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor. PMID:26429263
Hadad, K; Zohrevand, M; Faghihi, R; Sedighi Pashaki, A
2015-03-01
HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry.
Hadad, K.; Zohrevand, M.; Faghihi, R.; Sedighi Pashaki, A.
2015-01-01
Background HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS) is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dose-volume histograms (DVH) was plotted and compared with Oncentra™ TPS DVHs. Results The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry. PMID:25973408
External dose assessment in the Ukraine following the Chernobyl accident
NASA Astrophysics Data System (ADS)
Frazier, Remi Jordan Lesartre
While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).
NASA Astrophysics Data System (ADS)
Antoni, Rodolphe; Bourgois, Laurent
2017-12-01
In this work, the calculation of specific dose distribution in water is evaluated in MCNP6.1 with the regular condensed history algorithm the "detailed electron energy-loss straggling logic" and the new electrons transport algorithm proposed the "single event algorithm". Dose Point Kernel (DPK) is calculated with monoenergetic electrons of 50, 100, 500, 1000 and 3000 keV for different scoring cells dimensions. A comparison between MCNP6 results and well-validated codes for electron-dosimetry, i.e., EGSnrc or Penelope, is performed. When the detailed electron energy-loss straggling logic is used with default setting (down to the cut-off energy 1 keV), we infer that the depth of the dose peak increases with decreasing thickness of the scoring cell, largely due to combined step-size and boundary crossing artifacts. This finding is less prominent for 500 keV, 1 MeV and 3 MeV dose profile. With an appropriate number of sub-steps (ESTEP value in MCNP6), the dose-peak shift is almost complete absent to 50 keV and 100 keV electrons. However, the dose-peak is more prominent compared to EGSnrc and the absorbed dose tends to be underestimated at greater depths, meaning that boundaries crossing artifact are still occurring while step-size artifacts are greatly reduced. When the single-event mode is used for the whole transport, we observe the good agreement of reference and calculated profile for 50 and 100 keV electrons. Remaining artifacts are fully vanished, showing a possible transport treatment for energies less than a hundred of keV and accordance with reference for whatever scoring cell dimension, even if the single event method initially intended to support electron transport at energies below 1 keV. Conversely, results for 500 keV, 1 MeV and 3 MeV undergo a dramatic discrepancy with reference curves. These poor results and so the current unreliability of the method is for a part due to inappropriate elastic cross section treatment from the ENDF/B-VI.8 library in those energy ranges. Accordingly, special care has to be taken in setting choice for calculating electron dose distribution with MCNP6, in particular with regards to dosimetry or nuclear medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leney, M; Nalichowski, A; Patel, S
Purpose: To determine the effects of patient separation on absolute dose and dose distribution in patients undergoing pelvic radiotherapy on TomoTherapy. Methods: An Alderson RANDO phantom with 4cm of bolus was imaged on a CT simulator and the resulting scans were contoured as a whole pelvic case. Using TomoTherapy Planning Station, the plan was designed to give 45 Gy to 95% of the treatment volume in 25 fractions. TomoTherapy MVCT scans were performed on the RANDO phantom with 2cm and 4cm of bolus removed to simulate visible changes in a patient’s anatomy. The MVCT images were rigidly registered with planningmore » CT images on TomoTherapy Planned Adaptive. The original fluence was recalculated on the MVCT images and changes in dose distribution due to patient separation were quantified by the changes in DVHs for the target volume and the organs at risk. Results: Patient separation difference equivalent to 2cm and 4cm in anterior-posterior direction resulted in an increase of the PTV D50 and maximum PTV dose of 5.6%, 6.2% for 2cm and 7.7%, 10.4% for 4cm, respectively. For the 2cm change, D50 and maximum doses to organs at risk increased by 6.5%, 7.1% in the bladder, 4.9%, 4.8% in the rectum, and 5.3%, 6.6% in the bowel. For the 4cm change, D50 and maximum doses increased by 10.7%, 12.2% in the bladder, 5.9%, 6.1% in the rectum, and 7.7%, 10.1% in the bowel. Conclusion: This research indicates that, without any changes to the structures, patient separation in the anterior-posterior direction can affect the dose distribution for the PTV and organs at risk. These results can assist physicians in determining if obtaining a new CT simulation set and replanning is necessary for pelvic patients on TomoTherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S; Cao, Y; Jolly, S
2014-06-15
Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muralidhar, K Raja; Pangam, S; Kolla, J
2015-06-15
Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less
Lee, F K-H; Chan, C C-L; Law, C-K
2009-02-01
Contrast enhanced computed tomography (CECT) has been used for delineation of treatment target in radiotherapy. The different Hounsfield unit due to the injected contrast agent may affect radiation dose calculation. We investigated this effect on intensity modulated radiotherapy (IMRT) of nasopharyngeal carcinoma (NPC). Dose distributions of 15 IMRT plans were recalculated on CECT. Dose statistics for organs at risk (OAR) and treatment targets were recorded for the plain CT-calculated and CECT-calculated plans. Statistical significance of the differences was evaluated. Correlations were also tested, among magnitude of calculated dose difference, tumor size and level of enhancement contrast. Differences in nodal mean/median dose were statistically significant, but small (approximately 0.15 Gy for a 66 Gy prescription). In the vicinity of the carotid arteries, the difference in calculated dose was also statistically significant, but only with a mean of approximately 0.2 Gy. We did not observe any significant correlation between the difference in the calculated dose and the tumor size or level of enhancement. The results implied that the calculated dose difference was clinically insignificant and may be acceptable for IMRT planning.
NASA Astrophysics Data System (ADS)
Costa, Filipa; Doran, Simon J.; Hanson, Ian M.; Nill, Simeon; Billas, Ilias; Shipley, David; Duane, Simon; Adamovics, John; Oelfke, Uwe
2018-03-01
Dosimetric quality assurance (QA) of the new Elekta Unity (MR-linac) will differ from the QA performed of a conventional linac due to the constant magnetic field, which creates an electron return effect (ERE). In this work we aim to validate PRESAGE® dosimetry in a transverse magnetic field, and assess its use to validate the research version of the Monaco TPS of the MR-linac. Cylindrical samples of PRESAGE® 3D dosimeter separated by an air gap were irradiated with a cobalt-60 unit, while placed between the poles of an electromagnet at 0.5 T and 1.5 T. This set-up was simulated in EGSnrc/Cavity Monte Carlo (MC) code and relative dose distributions were compared with measurements using 1D and 2D gamma criteria of 3% and 1.5 mm. The irradiation conditions were adapted for the MR-linac and compared with Monaco TPS simulations. Measured and EGSnrc/Cavity simulated profiles showed good agreement with a gamma passing rate of 99.9% for 0.5 T and 99.8% for 1.5 T. Measurements on the MR-linac also compared well with Monaco TPS simulations, with a gamma passing rate of 98.4% at 1.5 T. Results demonstrated that PRESAGE® can accurately measure dose and detect the ERE, encouraging its use as a QA tool to validate the Monaco TPS of the MR-linac for clinically relevant dose distributions at tissue-air boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Suh, T; Chung, J
2015-06-15
Purpose: To verify the dose accuracy of Acuros XB (AXB) dose calculation algorithm at air-tissue interface using inhomogeneous phantom for 6-MV flattening filter-free (FFF) beams. Methods: An inhomogeneous phantom included air cavity was manufactured for verifying dose accuracy at the air-tissue interface. The phantom was composed with 1 and 3 cm thickness of air cavity. To evaluate the central axis doses (CAD) and dose profiles of the interface, the dose calculations were performed for 3 × 3 and 4 × 4 cm{sup 2} fields of 6 MV FFF beams with AAA and AXB in Eclipse treatment plainning system. Measurements inmore » this region were performed with Gafchromic film. The root mean square errors (RMSE) were analyzed with calculated and measured dose profile. Dose profiles were divided into inner-dose profile (>80%) and penumbra (20% to 80%) region for evaluating RMSE. To quantify the distribution difference, gamma evaluation was used and determined the agreement with 3%/3mm criteria. Results: The percentage differences (%Diffs) between measured and calculated CAD in the interface, AXB shows more agreement than AAA. The %Diffs were increased with increasing the thickness of air cavity size and it is similar for both algorithms. In RMSEs of inner-profile, AXB was more accurate than AAA. The difference was up to 6 times due to overestimation by AAA. RMSEs of penumbra appeared to high difference for increasing the measurement depth. Gamma agreement also presented that the passing rates decreased in penumbra. Conclusion: This study demonstrated that the dose calculation with AXB shows more accurate than with AAA for the air-tissue interface. The 2D dose distributions with AXB for both inner-profile and penumbra showed better agreement than with AAA relative to variation of the measurement depths and air cavity sizes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesan, B; Prakasarao, A; Singaravelu, G
Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap.more » To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.« less
Ćujić, Mirjana; Dragović, Snežana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan
2015-07-01
Primordial radionuclides, (238)U, (232)Th and (40)K were determined in soil samples collected at two depths (0-10 and 10-20 cm) in the vicinity of the largest coal-fired power plant in Serbia, and their spatial distribution was analysed using ordinary kriging. Mean values of activity concentrations for these depths were 50.7 Bq kg(-1) for (238)U, 48.7 Bq kg(-1) for (232)Th and 560 Bq kg(-1) for (40)K. Based on the measured activity concentrations, the radiological hazard due to naturally occurring radionuclides in soil was assessed. The value of the mean total absorbed dose rate was 76.3 nGy h(-1), which is higher than the world average. The annual effective dose due to these radionuclides ranged from 51.4 to 114.2 μSv. Applying cluster analysis, correlations between radionuclides and soil properties were determined. The distribution pattern of natural radionuclides in the environment surrounding the coal-fired power plant and their enrichment in soil at some sampling sites were in accordance with dispersion models of fly ash emissions. From the results obtained, it can be concluded that operation of the coal-fired power plant has no significant negative impact on the surrounding environment with regard to the content of natural radionuclides.
Matching of electron beams for conformal therapy of target volumes at moderate depths.
Zackrisson, B; Karlsson, M
1996-06-01
The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.
Wang, L; Xing, L; Le, Q
2012-06-01
In H&N cancer patients, the development of oral mucositis is related closely to the radiation dose to the oral cavity. It is generally presumed that the existence of metallic dental implants makes it worse due to the scattering effect of the metal. This study investigates the effects of the dental implants on radiation doses to PTV, tongue mucosa, and other structures for IMRT H&N cancer patients by Monte Carlo (MC) dose calculations. Two H&N cancer patients who have dental implant and are treated by IMRT technique are selected for the purpose. The BEAMnrc/DOSXYZnrc MC codes are employed for the CT-image based dose calculations. The radiation sources are the validated Varian phase-space files for 6MV linac beams. The CT image artifacts caused by the dental fillings are replaced by tissue material. Two sets of MC calculations for each patient are performed at a calculation statistics of 1%: one treats all dental implants as bones, the other substitutes the implants by metal of either titanium or gold with correct density. Doses in PTV and various tissue structures are compared for the two scenarios. With titanium implant, there is no significant difference in doses to PTV and tongue mucosa from that when treating implant as bone. With gold implant, the mean dose to PTV is slightly lowered by 1%; the mean dose to tongue mucosa is reduced by less than 0.5%, although the maximum dose is increased by 5%. The scattering dose from titanium implants is not of concern for H&N patients irradiated by 6MV IMRT beams. For gold implants, the scattering dose to tongue mucosa is not as severe as presumed; and the dose to PTV could be slightly compromised due to the attenuation effect of the metal. This work was supported in part by Varian Medical Systems. © 2012 American Association of Physicists in Medicine.
Monte Carlo modeling of ultrasound probes for image guided radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena, E-mail: bazalova@uvic.ca; Schlosser, Jeffrey; Chen, Josephine
2015-10-15
Purpose: To build Monte Carlo (MC) models of two ultrasound (US) probes and to quantify the effect of beam attenuation due to the US probes for radiation therapy delivered under real-time US image guidance. Methods: MC models of two Philips US probes, an X6-1 matrix-array transducer and a C5-2 curved-array transducer, were built based on their megavoltage (MV) CT images acquired in a Tomotherapy machine with a 3.5 MV beam in the EGSnrc, BEAMnrc, and DOSXYZnrc codes. Mass densities in the probes were assigned based on an electron density calibration phantom consisting of cylinders with mass densities between 0.2 andmore » 8.0 g/cm{sup 3}. Beam attenuation due to the US probes in horizontal (for both probes) and vertical (for the X6-1 probe) orientation was measured in a solid water phantom for 6 and 15 MV (15 × 15) cm{sup 2} beams with a 2D ionization chamber array and radiographic films at 5 cm depth. The MC models of the US probes were validated by comparison of the measured dose distributions and dose distributions predicted by MC. Attenuation of depth dose in the (15 × 15) cm{sup 2} beams and small circular beams due to the presence of the probes was assessed by means of MC simulations. Results: The 3.5 MV CT number to mass density calibration curve was found to be linear with R{sup 2} > 0.99. The maximum mass densities in the X6-1 and C5-2 probes were found to be 4.8 and 5.2 g/cm{sup 3}, respectively. Dose profile differences between MC simulations and measurements of less than 3% for US probes in horizontal orientation were found, with the exception of the penumbra region. The largest 6% dose difference was observed in dose profiles of the X6-1 probe placed in vertical orientation, which was attributed to inadequate modeling of the probe cable. Gamma analysis of the simulated and measured doses showed that over 96% of measurement points passed the 3%/3 mm criteria for both probes placed in horizontal orientation and for the X6-1 probe in vertical orientation. The X6-1 probe in vertical orientation caused the highest attenuation of the 6 and 15 MV beams, which at 10 cm depth accounted for 33% and 43% decrease compared to the respective (15 × 15) cm{sup 2} open fields. The C5-2 probe in horizontal orientation, on the other hand, caused a dose increase of 10% and 53% for the 6 and 15 MV beams, respectively, in the buildup region at 0.5 cm depth. For the X6-1 probe in vertical orientation, the dose at 5 cm depth for the 3-cm diameter 6 MV and 5-cm diameter 15 MV beams was attenuated compared to the corresponding open fields to a greater degree by 65% and 43%, respectively. Conclusions: MC models of two US probes used for real-time image guidance during radiotherapy have been built. Due to the high beam attenuation of the US probes, the authors generally recommend avoiding delivery of treatment beams that intersect the probe. However, the presented MC models can be effectively integrated into US-guided radiotherapy treatment planning in cases for which beam avoidance is not practical due to anatomy geometry.« less
Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N
2000-05-01
We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Nikolaev, Igor; Kartsev, Ivan; Tolochek, Raisa; Lyagushin, Vladimir
The tissue-equivalent spherical phantom (32 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been used on board the ISS in Matroshka-R experiment for more than 10 years. Both passive and active space radiation detectors can be located inside the phantom and on its surface. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a human body. Originally the spherical phantom was installed in the star board crew cabin of the ISS Service Module, then in the Piers-1, MIM-2, and MIM-1 modules of the ISS Russian segment, and finally in JAXA Kibo module. Total duration of the detector exposure is more than 2000 days in 9 sessions of the space experiment. In the first phase of the experiment with the spherical phantom the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. After each session the passive detectors are returned to the ground. The results obtained show the dose difference on the phantom surface as much as a factor of 2, the highest dose being usually observed close to the outer wall of the compartment, and the lowest dose being in the opposite location along the phantom diameter. However, because of the ISS module shielding properties an inverse dose distribution in a human body can be observed when the dose rate maximum is closer to the geometrical center of the module. Maximum dose rate measured in the phantom is obviously due to the action of two radiation sources, namely, galactic cosmic rays (GCR) and Earth’ radiation belts. Minimum dose rate is produced mainly by the strongly penetrating GCR particles and is mostly observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the ISS compartments are also estimated with the spherical phantom data. The estimated effective dose rate is found to be from 10 % to 15 % lower than the averaged dose on the phantom surface as dependent on the attitude of the critical organs. If compared with the anthropomorphic phantom Rando used inside and outside the ISS earlier, the Matroshka-R space experiment spherical phantom has lower mass, smaller size, and requires less crew time for the detector installation/retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. New sessions with the two tissue-equivalent phantoms are of great interest. Development of modified passive and active detector sets is in progress for the future ISS expeditions. Both the spherical and Rando-type phantoms proved their effectiveness to measure the critical organ doses and effective doses in-flight and if supplied with modernized dosimeters can be recommended for future exploratory manned missions to monitor continuously the crew exposure to space radiation.
Brachytherapy devices and methods employing americium-241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L. A.
1985-04-16
Sources and methods for radiation therapy, particularly brachytherapy, employing americium-241 (60 keV gamma emission and 433 year half-life) provide major advantages for radiotherapy, including simplified radiation protection, dose reduction to healthy tissue, increased dose to tumor, and improved dose distributions. A number of apparent drawbacks and unfavorable considerations including low gamma factor, high self-absorption, increased activity required and alpha-particle generation leading to helium gas pressure buildup and potential neutron contamination in the generated radiation are all effectively dealt with and overcome through recognition of subtle favorable factors unique to americium-241 among brachytherapy sources and through suitable constructional techniques. Due tomore » an additional amount of radiation, in the order of 50%, provided primarily to nearby regions as a result of Compton scatter in tissue and water, higher dose rates occur than would be predicted by conventional calculations.« less
Healthy individuals' immune response to the Bulgarian Crimean-Congo hemorrhagic fever virus vaccine.
Mousavi-Jazi, Mehrdad; Karlberg, Helen; Papa, Anna; Christova, Iva; Mirazimi, Ali
2012-09-28
Crimean-Congo hemorrhagic fever virus (CCHFV) poses a great threat to public health due to its high mortality and transmission rate and wide geographical distribution. There is currently no specific antiviral therapy for CCHF. This study provides the first in-depth analysis of the cellular and humoral immune response in healthy individuals following injection of inactivated Bulgarian vaccine, the only CCHFV vaccine available at present. Vaccinated individuals developed robust, anti-CCHFV-specific T-cell activity as measured by IFN-γ ELISpot assay. The frequency of IFN-γ secreting T-cells was 10-fold higher in individuals after vaccination with four doses than after one single dose. High levels of CCHFV antibodies were observed following the first dose, but repeated doses were required to achieve antibodies with neutralizing activity against CCHFV. However, the neutralizing activity in these groups was low. Copyright © 2012 Elsevier Ltd. All rights reserved.
Realistic dosimetry for studies on biological responses to X-rays and γ-rays
Shahmohammadi Beni, Mehrdad; Krstic, Dragana; Nikezic, Dragoslav
2017-01-01
ABSTRACT A calibration coefficient R (= DA/DE) for photons was employed to characterize the photon dose in radiobiological experiments, where DA was the actual dose delivered to cells and DE was the dose recorded by an ionization chamber. R was determined using the Monte Carlo N-Particle version 5 (MCNP-5) code. Photons with (i) discrete energies, and (ii) continuous-energy distributions under different beam conditioning were considered. The four studied monoenergetic photons had energies E = 0.01, 0.1, 1 and 2 MeV. Photons with E = 0.01 MeV gave R values significantly different from unity, while those with E > 0.1 MeV gave R ≈ 1. Moreover, R decreased monotonically with increasing thickness of water medium above the cells for E = 0.01, 1 or 2 MeV due to energy loss of photons in the medium. For E = 0.1 MeV, the monotonic pattern no longer existed due to the dose delivered to the cells by electrons created through the photoelectric effect close to the medium–cell boundary. The continuous-energy distributions from the X-Rad 320 Biological Irradiator (voltage = 150 kV) were also studied under three different beam conditions: (a) F0: no filter used, (b) F1: using a 2 mm-thick Al filter, and (c) F2: using a filter made of (1.5 mm Al + 0.25 mm Cu + 0.75 mm Sn), giving mean output photon energies of 47.4, 57.3 and 102 keV, respectively. R varied from ~1.04 to ~1.28 for F0, from ~1.13 to ~1.21 for F1, and was very close to unity for F2. PMID:28444359
Petrović, Jelena; Ćujić, Mirjana; Đorđević, Milan; Dragović, Ranko; Gajić, Boško; Miljanić, Šćepan; Dragović, Snežana
2013-06-01
In this study, the specific activity of (137)Cs was determined by gamma-ray spectrometry in 72 surface soil samples and 11 soil profiles collected from the territory of Belgrade 25 years after the Chernobyl accident. Based on the data obtained the external effective gamma dose rates due to (137)Cs were assessed and geographically mapped. The influence of pedogenic factors (pH, specific electrical conductivity, cation exchange capacity, organic matter content, soil particle size and carbonate content) on the spatial and vertical distribution of (137)Cs in soil was estimated through Pearson correlations. The specific activity of (137)Cs in surface soil samples ranged from 1.00 to 180 Bq kg(-1), with a mean value of 29.9 Bq kg(-1), while in soil profiles they ranged from 0.90 to 58.0 Bq kg(-1), with a mean value of 15.3 Bq kg(-1). The mean external effective gamma dose at 1 m above the ground due to (137)Cs in the soil was calculated to be 1.96 nSv h(-1). Geographic mapping of the external effective gamma dose rates originating from (137)Cs revealed much higher dose rates in southern parts of Belgrade city and around the confluence of the Sava and Danube. Negative Pearson correlation coefficients were found between pH, cation exchange capacity and (137)Cs specific activity in surface soil. There were positive correlations between organic matter and (137)Cs specific activity in surface soil; and between specific electrical conductivity, organic matter, silt content and (137)Cs specific activity in soil profiles.
Pharmacokinetics of warfarin in rats: role of serum protein binding and tissue distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, W.K.
The purpose of this study was to explore the role of serum protein binding and tissue distribution in the non-linear pharmacokinetics of warfarin in rats. The first phase of the research was an attempt to elucidate the causes of intersubject differences in serum protein binding of warfarin in rats. It was found that the distribution of S-warfarin between blood and liver, kidneys, muscle, or fatty tissue was non-linear. Based on the tissue distribution data obtained, a physiologically-based pharmacokinetic model was developed to describe the time course of S-warfarin concentrations in the serum and tissues of rats. The proposed model wasmore » able to display the dose-dependent pharmacokinetics of warfarin in rats. Namely a lower clearance and a smaller apparent volume of distribution with increasing dose, which appear to be due to the presence of capacity-limited, high-affinity binding sites for warfarin in various tissues. To determine if the binding of warfarin to the high-affinity binding sites in the liver of rats is reversible, concentrations of S-warfarin in the liver and serum of rats were monitored for a very long time after an intravenous injection of a 1 mg/kg dose. In another study in rats, non-radioactive warfarin was found to be able to displace tissue-bound C/sup 14/-warfarin which was administered about 200 hours before the i.v. injection of the non-radioactive warfarin, showing that the binding of warfarin to the high-affinity binding sites in the body is persistent and reversible.« less
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
Bergin, Ingrid L.; Wilding, Laura A.; Morishita, Masako; Walacavage, Kim; Ault, Andrew P.; Axson, Jessica L.; Stark, Diana I.; Hashway, Sara A.; Capracotta, Sonja S.; Leroueil, Pascale R.; Maynard, Andrew D.; Philbert, Martin A.
2015-01-01
Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411
Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor
NASA Astrophysics Data System (ADS)
Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.
2015-11-01
Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
Neutron skyshine from intense 14-MeV neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T.; Hayashi, K.; Takahashi, A.
1985-07-01
The dose distribution and the spectrum variation of neutrons due to the skyshine effect have been measured with the high-efficiency rem counter, the multisphere spectrometer, and the NE-213 scintillator in the environment surrounding an intense 14-MeV neutron source facility. The dose distribution and the energy spectra of neutrons around the facility used as a skyshine source have also been measured to enable the absolute evaluation of the skyshine effect. The skyshine effect was analyzed by two multigroup Monte Carlo codes, NIMSAC and MMCR-2, by two discrete ordinates S /sub n/ codes, ANISN and DOT3.5, and by the shield structure designmore » code for skyshine, SKYSHINE-II. The calculated results show good agreement with the measured results in absolute values. These experimental results should be useful as benchmark data for shyshine analysis and for shielding design of fusion facilities.« less
Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia
2015-01-01
Determining ionizing radiation in a geographic area serves to assess its effects on a population’s health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h−1. At the same sites, 48 soil samples were taken to obtain the activity concentrations of 226Ra, 232Th and 40K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h−1. Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg−1, for 226Ra, 232Th and 40K, respectively. From the analysis, the spatial distribution of 232Th, 226Ra and 40K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize. PMID:26437425
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifter, F; Dhou, S; Lewis, J
2015-06-15
Purpose: To calculate the effect of lack of backscatter from air and attenuation of bone on dose distributions in brachytherapy surface treatment of head. Existing treatment planning systems based on TG43 do not account for heterogeneities, and thus may overestimate the dose to the brain. While brachytherapy generally has rapid dose falloff, the dose to the deeper tissues (in this case, the brain) can become significant when treating large curved surfaces. Methods: Applicator geometries representing a range of clinical cases were simulated in MCNP5. An Ir-192 source was modeled using the energy spectrum presented by TG-43. The head phantom wasmore » modeled as a 7.5-cm radius water sphere, with a 7 -mm thick skull embedded 5-mm beneath the surface. Dose values were calculated at 20 points inside the head, in which 10 of them were on the central axis and the other 10 on the axis connecting the central of the phantom with the second to last source from the applicator edge. Results: Central and peripheral dose distributions for a range of applicator and head sizes are presented. The distance along the central axis at which the dose falls to 80% of the prescribed dose (D80) was 7 mm for a representative small applicator and 9 mm for a large applicator. Corresponding D50 and D30 for the same small applicator were 17 mm and 32 mm respectively. D50 and D30 for the larger applicator were 32 mm and 60 mm respectively. These results reflect the slower falloff expected for larger applicators on a curved surface. Conclusion: Our results can provide guidance for clinicians to calculate the dose reduction effect due to bone attenuation and the lack of backscatter from air to estimate the brain dose for the HDR treatments of surface lesions.« less
Luevano-Gurrola, Sergio; Perez-Tapia, Angelica; Pinedo-Alvarez, Carmelo; Carrillo-Flores, Jorge; Montero-Cabrera, Maria Elena; Renteria-Villalobos, Marusia
2015-09-30
Determining ionizing radiation in a geographic area serves to assess its effects on a population's health. The aim of this study was to evaluate the spatial distribution of the background environmental outdoor gamma dose rates in Chihuahua City. This study also estimated the annual effective dose and the lifetime cancer risks of the population of this city. To determine the outdoor gamma dose rate in air, the annual effective dose and the lifetime cancer risk, 48 sampling points were randomly selected in Chihuahua City. Outdoor gamma dose rate measurements were carried out by using a Geiger-Müller counter. Outdoor gamma dose rates ranged from 113 to 310 nGy·h(-1). At the same sites, 48 soil samples were taken to obtain the activity concentrations of (226)Ra, (232)Th and (40)K and to calculate their terrestrial gamma dose rates. Radioisotope activity concentrations were determined by gamma spectrometry. Calculated gamma dose rates ranged from 56 to 193 nGy·h(-1). Results indicated that the lifetime effective dose of the inhabitants of Chihuahua City is on average 19.8 mSv, resulting in a lifetime cancer risk of 0.001. In addition, the mean of the activity concentrations in soil were 52, 73 and 1097 Bq·kg(-1), for (226)Ra, (232)Th and (40)K, respectively. From the analysis, the spatial distribution of (232)Th, (226)Ra and (40)K is to the north, to the north-center and to the south of city, respectively. In conclusion, the natural background gamma dose received by the inhabitants of Chihuahua City is high and mainly due to the geological characteristics of the zone. From the radiological point of view, this kind of study allows us to identify the importance of manmade environments, which are often highly variable and difficult to characterize.
A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uilkema, Sander, E-mail: s.uilkema@nki.nl; Heide, Uulke van der; Sonke, Jan-Jakob
2015-12-15
Purpose: MRI guidance during radiotherapy has the potential to enable more accurate dose delivery, optimizing the balance between local control and treatment related toxicity. However, the presence of a permanent magnetic field influences the dose delivery, especially around air cavities. Here, electrons are able to return to the surface through which they entered the air cavity (electron return effect, ERE) locally resulting in dose hot- and cold-spots. Where RT of rectal cancer patients might benefit from MRI guidance for margin reduction, air cavities in and around the target volume are frequently present. The purpose of this research is to evaluatemore » the impact of the presence of a 1.5 T transverse magnetic field on dose delivery in patients with rectal cancer. Methods: Ten patients treated with 5 × 5 Gy RT having large changes in pelvic air content were selected out of a cohort of 33 patients. On the planning CT, a 1.5 T, 6 MV, 7-field intensity modulated radiotherapy (IMRT) plan was created. This plan was subsequently recalculated on daily CT scans. For each daily CT, the CTV V{sub 95%} and V{sub 107%} and bowel area V{sub 5Gy}, V{sub 10Gy}, V{sub 15Gy}, V{sub 20Gy}, and V{sub 25Gy} were calculated to evaluate the changes in dose distribution from fraction to fraction. For comparison, the authors repeated this procedure for the 0 T situation. To study the effect of changing air cavities separate from other anatomical changes, the authors also generated artificial air cavities in the CTV of one patient (2 and 5 cm diameter), in the high dose gradient region (2 cm), and in the low dose area (2 cm). Treatment plans were optimized without and with each simulated air cavity. For appearing and disappearing air cavities, the CTV V{sub 95%} and V{sub 107%} were evaluated. The authors also evaluated the ERE separate from attenuation changes locally around appearing gas pockets. Results: For the ten patients, at 1.5 T, the V{sub 95%} was influenced by both appearing and disappearing air, and dropped to <98% in 2 out of 50 fractions due a disappearing air cavity of 150 cm{sup 3}. V{sub 95%} differences between 0 and 1.5 T were all within 2%. The V{sub 107%} was below 1% in 46 out of 50 fractions, and increased to 3% in the remaining fractions due to appearing air of around 120 cm{sup 3}. For comparison, V{sub 107%} was <1% at 0 T for all fractions. In the bowel area, the V{sub 15Gy} varied strongest from fraction to fraction, but differences between 1.5 and 0 T were minimal with an average difference of 2.3 cm{sup 3} (SD = 18.7 cm{sup 3}, p = 0.38). For the simulated air cavities, the ERE resulted in cold-spots maximally 5% lower than prescribed and hot-spots maximally 6% higher than prescribed. Conclusions: The presence of a 1.5 T magnetic field has an impact on the dose distribution when the air content changes of within a few percent in these selected rectal cancer patients. The authors consider this influence of the transverse magnetic field on the dose distribution in IMRT for rectal cancer patients clinically acceptable.« less
Kumar, Deepak; Singh, Anshuman; Jha, Rishi Kumar
2018-04-21
Investigation of presence of Uranium (U) in groundwater/drinking water is an active are of research due to its chemical and radiological toxicity as well as long-term health effects. The current study had the objective of estimating U as a naturally occurring radioactive element in groundwater samples and assessment of ingestion dose, when groundwater is the source of drinking water. The random sampling method was chosen for the collection of samples based on population density. The estimation of U was done using LED fluorimeter. Statistical tools were applied to analyze the data and its spatial distribution. The U concentrations in three blocks of urban Patna were well below the permissible limits suggested by different health agencies of the world. A correlation test was performed to analyze the association of U with other physiochemical parameters of water samples. It was found that the sulfate, chloride, calcium, hardness, alkalinity, TDS, salinity, and ORP were positively correlated, whereas fluoride, phosphate, magnesium, dissolved oxygen, and pH were negatively correlated with U concentrations. The ingestion dose due to U, occurring in groundwater, was found to vary from 0.2-27.0 μSv y -1 with a mean of 4.2 μSv y - 1 , which was well below the recommended limit of 0.1 mSv (WHO WHO Chron 38:104-108, 2012).Therefore, the water in this region is fit for drinking purposes.
Petit, Caroline; Samson, Adeline; Morita, Satoshi; Ursino, Moreno; Guedj, Jérémie; Jullien, Vincent; Comets, Emmanuelle; Zohar, Sarah
2018-06-01
The number of trials conducted and the number of patients per trial are typically small in paediatric clinical studies. This is due to ethical constraints and the complexity of the medical process for treating children. While incorporating prior knowledge from adults may be extremely valuable, this must be done carefully. In this paper, we propose a unified method for designing and analysing dose-finding trials in paediatrics, while bridging information from adults. The dose-range is calculated under three extrapolation options, linear, allometry and maturation adjustment, using adult pharmacokinetic data. To do this, it is assumed that target exposures are the same in both populations. The working model and prior distribution parameters of the dose-toxicity and dose-efficacy relationships are obtained using early-phase adult toxicity and efficacy data at several dose levels. Priors are integrated into the dose-finding process through Bayesian model selection or adaptive priors. This calibrates the model to adjust for misspecification, if the adult and pediatric data are very different. We performed a simulation study which indicates that incorporating prior adult information in this way may improve dose selection in children.
Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M
2005-01-01
Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.
Osei, Ernest; Barnett, Rob
2015-01-01
The aim of this study is to provide guidelines for the selection of external‐beam radiation therapy target margins to compensate for target motion in the lung during treatment planning. A convolution model was employed to predict the effect of target motion on the delivered dose distribution. The accuracy of the model was confirmed with radiochromic film measurements in both static and dynamic phantom modes. 502 unique patient breathing traces were recorded and used to simulate the effect of target motion on a dose distribution. A 1D probability density function (PDF) representing the position of the target throughout the breathing cycle was generated from each breathing trace obtained during 4D CT. Changes in the target D95 (the minimum dose received by 95% of the treatment target) due to target motion were analyzed and shown to correlate with the standard deviation of the PDF. Furthermore, the amount of target D95 recovered per millimeter of increased field width was also shown to correlate with the standard deviation of the PDF. The sensitivity of changes in dose coverage with respect to target size was also determined. Margin selection recommendations that can be used to compensate for loss of target D95 were generated based on the simulation results. These results are discussed in the context of clinical plans. We conclude that, for PDF standard deviations less than 0.4 cm with target sizes greater than 5 cm, little or no additional margins are required. Targets which are smaller than 5 cm with PDF standard deviations larger than 0.4 cm are most susceptible to loss of coverage. The largest additional required margin in this study was determined to be 8 mm. PACS numbers: 87.53.Bn, 87.53.Kn, 87.55.D‐, 87.55.Gh
Ahmad, M; Nath, R
2001-02-20
The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.
Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio; Conti, Marcelo Enrique; Pino, Anna; Mattei, Daniela; Bocca, Beatrice; Alimonti, Alessandro
2012-01-01
Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure. PMID:22942873
Monte Carlo calculations in support of the commissioning of the Northeast Proton Therapy Center.
Flanz, J; Paganetti, H
2003-12-01
Monte Carlo studies were conducted related to the design of the Northeast Proton Therapy Center (NPTC). These studies were also helpful for commissioning the beam delivery performance of the facility. The calculations included preventing proton leakage from the beam delivery nozzle, anomalies in the dose distributions and studies, which could influence future beam delivery techniques. Using simulations it was possible to reduce the proton leakage by over an order of magnitude, while minimizing the weight of the assembly. Interestingly, the thickness of the brass shielding has no influence on the secondary neutron radiation since the number of generated neutrons is almost independent of the amount of brass if the primary beam is completely stopped. Monte Carlo simulations are able to study the effect of small beam misalignments with respect to apertures in the nozzle. Such tolerances are very difficult to define experimentally. Studying the effects of nuclear interactions we showed that, if the dose distributions would be optimized theoretically using the primary proton dose alone, there would be about a 5 % dose increase at the proximal end of a SOBP. In radiobiology studies we found that the RBE at beam entrance increases due to the build-up of the secondary particle fluence.
Analysis of Mass Averaged Tissue Doses in CAM, CAF, MAX, and FAX
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Qualls, Garry D.; Clowdsley, Martha S.; Blattnig, Steve R.; Simonsen, Lisa C.; Walker, Steven A.; Singleterry, Robert C.
2009-01-01
To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manem, V; Paganetti, H
Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a functionmore » of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.« less
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events
NASA Technical Reports Server (NTRS)
Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu
2016-01-01
Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.
Frelin, A M; Fontbonne, J M; Ban, G; Colin, J; Labalme, M; Batalla, A; Vela, A; Boher, P; Braud, M; Leroux, T
2008-05-01
New radiation therapy techniques such as IMRT present significant efficiency due to their highly conformal dose distributions. A consequence of the complexity of their dose distributions (high gradients, small irradiation fields, low dose distribution, ...) is the requirement for better precision quality assurance than in classical radiotherapy in order to compare the conformation of the delivered dose with the planned dose distribution and to guarantee the quality of the treatment. Currently this control is mostly performed by matrices of ionization chambers, diode detectors, dosimetric films, portal imaging, or dosimetric gels. Another approach is scintillation dosimetry, which has been developed in the last 15 years mainly through scintillating fiber devices. Despite having many advantages over other methods it is still at an experimental level for routine dosimetry because the Cerenkov radiation produced under irradiation represents an important stem effect. A new 2D water equivalent scintillating dosimeter, the DosiMap, and two different Cerenkov discrimination methods were developed with the collaboration of the Laboratoire de Physique Corpusculaire of Caen, the Comprehensive Cancer Center François Baclesse, and the ELDIM Co., in the frame of the MAESTRO European project. The DosiMap consists of a plastic scintillating sheet placed inside a transparent polystyrene phantom. The light distribution produced under irradiation is recorded by a CCD camera. Our first Cerenkov discrimination technique is subtractive. It uses a chessboard pattern placed in front of the scintillator, which provides a background signal containing only Cerenkov light. Our second discrimination technique is colorimetric. It performs a spectral analysis of the light signal, which allows the unfolding of the Cerenkov radiation and the scintillation. Tests were carried out with our DosiMap prototype and the performances of the two discrimination methods were assessed. The comparison of the dose measurements performed with the DosiMap and with dosimetric films for three different irradiation configurations showed discrepancies smaller than 3.5% for a 2 mm spatial resolution. Two innovative discrimination solutions were demonstrated to separate the scintillation from the Cerenkov radiation. It was also shown that the DosiMap, which is water equivalent, fast, and user friendly, is a very promising tool for radiotherapy quality assurance.
Jókay, Ágnes; Farkas, Árpád; Füri, Péter; Horváth, Alpár; Tomisa, Gábor; Balásházy, Imre
2016-06-10
Asthma is a serious global health problem with rising prevalence and treatment costs. Due to the growing number of different types of inhalation devices and aerosol drugs, physicians often face difficulties in choosing the right medication for their patients. The main objectives of this study are (i) to elucidate the possibility and the advantages of the application of numerical modeling techniques in aerosol drug and device selection, and (ii) to demonstrate the possibility of the optimization of inhalation modes in asthma therapy with a numerical lung model by simulating patient-specific drug deposition distributions. In this study we measured inhalation parameter values of 25 healthy adult volunteers when using Foster(®) NEXThaler(®) and Seretide(®) Diskus(®). Relationships between emitted doses and patient-specific inhalation flow rates were established. Furthermore, individualized emitted particle size distributions were determined applying size distributions at measured flow rates. Based on the measured breathing parameter values, we calculated patient-specific drug deposition distributions for the active components (steroid and bronchodilator) of both drugs by the help of a validated aerosol lung deposition model adapted to therapeutic aerosols. Deposited dose fractions and deposition densities have been computed in the entire respiratory tract, in distinct anatomical regions of the airways and at the level of airway generations. We found that Foster(®) NEXThaler(®) deposits more efficiently in the lungs (average deposited steroid dose: 42.32±5.76% of the nominal emitted dose) than Seretide(®) Diskus(®) (average deposited steroid dose: 24.33±2.83% of the nominal emitted dose), but the variance of the deposition values of different individuals in the lung is significant. In addition, there are differences in the required minimal flow rates, therefore at certain patients Seretide(®) Diskus(®) or pMDIs could be a better choice. Our results show that validated computer deposition models could be useful tools in providing valuable deposition data and assisting health professionals in the personalized drug selection and delivery optimization. Patient-specific modeling could open a new horizon in the treatment of asthma towards a more effective personalized medicine in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Huggins, A
Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heilemann, G., E-mail: gerd.heilemann@meduniwien.ac.at; Kostiukhina, N.; Nesvacil, N.
2015-10-15
Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore,more » dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.« less
Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy.
Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C; Lomax, Antony J; Zhang, Ye
2018-03-01
The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6[Formula: see text] layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with [Formula: see text]5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.
Experimental validation of a deforming grid 4D dose calculation for PBS proton therapy
NASA Astrophysics Data System (ADS)
Krieger, Miriam; Klimpki, Grischa; Fattori, Giovanni; Hrbacek, Jan; Oxley, David; Safai, Sairos; Weber, Damien C.; Lomax, Antony J.; Zhang, Ye
2018-03-01
The aim of this study was to verify the temporal accuracy of the estimated dose distribution by a 4D dose calculation (4DDC) in comparison to measurements. A single-field plan (0.6 Gy), optimised for a liver patient case (CTV volume: 403cc), was delivered to a homogeneous PMMA phantom and measured by a high resolution scintillating-CCD system at two water equivalent depths. Various motion scenarios (no motion and motions with amplitude of 10 mm and two periods: 3.7 s and 4.4 s) were simulated using a 4D Quasar phantom and logged by an optical tracking system in real-time. Three motion mitigation approaches (single delivery, 6× layered and volumetric rescanning) were applied, resulting in 10 individual measurements. 4D dose distributions were retrospectively calculated in water by taking into account the delivery log files (retrospective) containing information on the actually delivered spot positions, fluences, and time stamps. Moreover, in order to evaluate the sensitivity of the 4DDC inputs, the corresponding prospective 4DDCs were performed as a comparison, using the estimated time stamps of the spot delivery and repeated periodical motion patterns. 2D gamma analyses and dose-difference-histograms were used to quantify the agreement between measurements and calculations for all pixels with > 5% of the maximum calculated dose. The results show that a mean gamma score of 99.2% with standard deviation 1.0% can be achieved for 3%/3 mm criteria and all scenarios can reach a score of more than 95%. The average area with more than 5% dose difference was 6.2%. Deviations due to input uncertainties were obvious for single scan deliveries but could be smeared out once rescanning was applied. Thus, the deforming grid 4DDC has been demonstrated to be able to predict the complex patterns of 4D dose distributions for PBS proton therapy with high dosimetric and geometric accuracy, and it can be used as a valid clinical tool for 4D treatment planning, motion mitigation selection, and eventually 4D optimisation applications if the correct temporal information is available.
Construction of new skin models and calculation of skin dose coefficients for electron exposures
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi
2016-08-01
The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, Jose P. P.
2008-08-07
The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performedmore » according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.« less
NASA Technical Reports Server (NTRS)
Plante, Ianik; Cucinotta, Francis A.
2010-01-01
Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.
Differential pencil beam dose computation model for photons.
Mohan, R; Chui, C; Lidofsky, L
1986-01-01
Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, R; Motegi, K; Hotta, K
Purpose: Delivered doses in an anthropomorphic phantom were evaluated by using the RADPOS system for proton beam therapy. Methods: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing simultaneous online measurements of dose and spatial position. Through the RADPOS system, dose evaluation points can be determined. In vivo proton dosimetry was evaluated by using the RADPOS system and anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared to the treatment plan values that were calculated by a simplified Monte Carlo (SMC) method. Although the MOSFET responsemore » depends strongly on the linear energy transfer (LET) of proton beam, the MOSFET responses to proton beams were corrected with the SMC. Here, the SMC calculated only dose deposition determined by the experimental depth–dose distribution and lateral displacement of protons due to both multiple scattering effect in materials and incident angle. As a Result, the SMC could quickly calculate accurate doses in even heterogeneities. Results: In vivo dosimetry by using the RADPOS, as well as the MOSFET doses agreed in comparison with calculations by the SMC in the range of −3.0% to 8.3%. Most measurement errors occurred because of the uncertainties of dose calculations due to the position error of 1 mm. Conclusion: We evaluated the delivered doses in the anthropomorphic phantom by using the RADPOS system for proton beam therapy. The MOSFET doses agreed in comparison with calculations by the SMC within the measurement error. Therefore, we could successfully control the uncertainties of the measurement positions by using the RADPOS system within 1 mm in in vivo proton dosimetry. We aim for the clinical application of in vivo proton dosimetry with this RADPOS system.« less
Influence of different dose calculation algorithms on the estimate of NTCP for lung complications
Bäck, Anna
2013-01-01
Due to limitations and uncertainties in dose calculation algorithms, different algorithms can predict different dose distributions and dose‐volume histograms for the same treatment. This can be a problem when estimating the normal tissue complication probability (NTCP) for patient‐specific dose distributions. Published NTCP model parameters are often derived for a different dose calculation algorithm than the one used to calculate the actual dose distribution. The use of algorithm‐specific NTCP model parameters can prevent errors caused by differences in dose calculation algorithms. The objective of this work was to determine how to change the NTCP model parameters for lung complications derived for a simple correction‐based pencil beam dose calculation algorithm, in order to make them valid for three other common dose calculation algorithms. NTCP was calculated with the relative seriality (RS) and Lyman‐Kutcher‐Burman (LKB) models. The four dose calculation algorithms used were the pencil beam (PB) and collapsed cone (CC) algorithms employed by Oncentra, and the pencil beam convolution (PBC) and anisotropic analytical algorithm (AAA) employed by Eclipse. Original model parameters for lung complications were taken from four published studies on different grades of pneumonitis, and new algorithm‐specific NTCP model parameters were determined. The difference between original and new model parameters was presented in relation to the reported model parameter uncertainties. Three different types of treatments were considered in the study: tangential and locoregional breast cancer treatment and lung cancer treatment. Changing the algorithm without the derivation of new model parameters caused changes in the NTCP value of up to 10 percentage points for the cases studied. Furthermore, the error introduced could be of the same magnitude as the confidence intervals of the calculated NTCP values. The new NTCP model parameters were tabulated as the algorithm was varied from PB to PBC, AAA, or CC. Moving from the PB to the PBC algorithm did not require new model parameters; however, moving from PB to AAA or CC did require a change in the NTCP model parameters, with CC requiring the largest change. It was shown that the new model parameters for a given algorithm are different for the different treatment types. PACS numbers: 87.53.‐j, 87.53.Kn, 87.55.‐x, 87.55.dh, 87.55.kd PMID:24036865
Effects of dose scaling on delivery quality assurance in tomotherapy
Nalichowski, Adrian; Burmeister, Jay
2012-01-01
Delivery quality assurance (DQA) of tomotherapy plans is routinely performed with silver halide film which has a limited range due to the effects of saturation. DQA plans with dose values exceeding this limit require the dose of the entire plan to be scaled downward if film is used, to evaluate the dose distribution in two dimensions. The potential loss of fidelity between scaled and unscaled DQA plans as a function of dose scaling is investigated. Three treatment plans for 12 Gy fractions designed for SBRT of the lung were used to create DQA procedures that were scaled between 100% and 10%. The dose was measured with an ionization chamber array and compared to values from the tomotherapy treatment planning system. Film and cylindrical ion chamber measurements were also made for one patient for scaling factors of 50% to 10% to compare with the ionization chamber array measurements. The array results show the average gamma pass rate is ≥99% from 100% to 30% scaling. The average gamma pass rate falls to 93.6% and 51.1% at 20% and 10% scaling, respectively. Film analysis yields similar pass rates. Cylindrical ion chambers did not exhibit significant variation with dose scaling, but only represent points in the low gradient region of the dose distribution. Scaling the dose changes the mechanics of the radiation delivery, as well as the signal‐to‐noise ratio. Treatment plans which exhibit parameters that differ significantly from those common to DQA plans studied in this paper may exhibit different behavior. Dose scaling should be limited to the smallest degree possible. Planar information, such as that from film or a detector array, is required. The results show that it is not necessary to perform both a scaled and unscaled DQA plan for the treatment plans considered here. PACS numbers: 87.55.km, 87.55.Qr PMID:22231213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.
NASA Astrophysics Data System (ADS)
Koontz, Craig
Breast cancer is the most prevalent cancer for women with more than 225,000 new cases diagnosed in the United States in 2012 (ACS, 2012). With the high prevalence, comes an increased emphasis on researching new techniques to treat this disease. Accelerated partial breast irradiation (APBI) has been used as an alternative to whole breast irradiation (WBI) in order to treat occult disease after lumpectomy. Similar recurrence rates have been found using ABPI after lumpectomy as with mastectomy alone, but with the added benefit of improved cosmetic and psychological results. Intracavitary brachytherapy devices have been used to deliver the APBI prescription. However, inability to produce asymmetric dose distributions in order to avoid overdosing skin and chest wall has been an issue with these devices. Multi-lumen devices were introduced to overcome this problem. Of these, the Strut-Adjusted Volume Implant (SAVI) has demonstrated the greatest ability to produce an asymmetric dose distribution, which would have greater ability to avoid skin and chest wall dose, and thus allow more women to receive this type of treatment. However, SAVI treatments come with inherent heterogeneities including variable backscatter due to the proximity to the tissue-air and tissue-lung interfaces and variable contents within the cavity created by the SAVI. The dose calculation protocol based on TG-43 does not account for heterogeneities and thus will not produce accurate dosimetry; however Acuros, a model-based dose calculation algorithm manufactured by Varian Medical Systems, claims to accurately account for heterogeneities. Monte Carlo simulation can calculate the dosimetry with high accuracy. In this thesis, a model of the SAVI will be created for Monte Carlo, specifically using MCNP code, in order to explore the affects of heterogeneities on the dose distribution. This data will be compared to TG-43 and Acuros calculated dosimetry to explore their accuracy.
SU-G-TeP4-04: An Automated Monte Carlo Based QA Framework for Pencil Beam Scanning Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Jee, K; Clasie, B
2016-06-15
Purpose: Prior to treating new PBS field, multiple (three) patient-field-specific QA measurements are performed: two 2D dose distributions at shallow depth (M1) and at the tumor depth (M2) with treatment hardware at zero gantry angle; one 2D dose distribution at iso-center (M3) without patient specific devices at the planned gantry angle. This patient-specific QA could be simplified by the use of MC model. The results of MC model commissioning for a spot-scanning system and the fully automated TOPAS/MC-based QA framework will be presented. Methods: We have developed in-house MC interface to access a TPS (Astroid) database from a computer clustermore » remotely. Once a plan is identified, the interface downloads information for the MC simulations, such as patient images, apertures points, and fluence maps and initiates calculations in both the patient and QA geometries. The resulting calculations are further analyzed to evaluate the TPS dose accuracy and the PBS delivery. Results: The Monte Carlo model of our system was validated within 2.0 % accuracy over the whole range of the dose distribution (proximal/shallow part, as well as target dose part) due to the location of the measurements. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. Conclusion: As M1 depths range typically from 1 cm to 4 cm from the phantom surface, The Monte Carlo model of our system was validated within +− 2.0 % in absolute dose level over a whole treatment range. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. This work was supported by NIH/NCI under CA U19 21239.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambson, K; Lafata, K; Miles, D
Purpose: To validate the use of a PRESAGE dosimeter as a method to quantitatively measure dose distributions of injectable brachytherapy based on elastin-like polypeptide (ELP) nanoparticles. PRESAGE is a solid, transparent polyurethane-based dosimeter whose dose is proportional to a change in optical density, making it useful for visualizing the dose from a radionuclide-tagged-ELP injection. Methods: A PRESAGE dosimeter was designed to simulate an ELP injection. To calibrate, cuvette samples from the batch of PRESAGE were exposed to varying levels of radiation from 0–35.9Gy applied via a linear accelerator, then placed into a spectrophotometer to obtain the optical density change asmore » a function of dose. A pre-optical-CT scan was acquired of the phantom to obtain a baseline tomographic optical density. A 1cc saline solution of I-125 tagged-ELP with and activity concentration of 1mCi/cc was injected into the phantom and left for five days. After five days, the ELP was removed and the cavity cleaned of all remaining radioactive material. Post tomographic optical images were acquired to obtain a differential optical density dataset. Results: Initial results after the 5-day exposure revealed an opaque white film that resembled the volume of the ELP solution injected into the phantom. We think this is possibly due to the saline solution diffusing into the PRESAGE and causing a change in the index of refraction at this shallow depth. Therefore, initially the optical scanner yielded inconclusive results. After several more days, the saline seemed to have evaporated out of the injection site and the ELP dose distribution was visible via color change in the dosimeter. Conclusion: We have created the first experimental design to measure the dose distribution of I-125-tagged-ELP. The PRESAGE formulation proves to be a feasible option for such measurements. Future experimental measurements need to be obtained to further characterize ELP dosimetry.« less
A practical three-dimensional dosimetry system for radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Pengyi; Adamovics, John; Oldham, Mark
2006-10-15
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less
Upper bound dose values for meson radiation in heavy-ion therapy.
Rabin, C; Gonçalves, M; Duarte, S B; González-Sprinberg, G A
2018-06-01
Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.
Dolovich, M A
2000-06-01
A number of studies in the literature support the use of fine aerosols of drug, inhaled at low IFRs to target peripheral airways, with the objective of improving clinical responses to inhaled therapy (Fig. 8). Attempts have been made to separate response due to changes in total administered dose or the surface concentration of the dose from response due to changes in site of deposition--both are affected by the particle size of the aerosol, with IFR additionally influencing the latter. The tools for measuring dose and distribution have improved over the last 10-15 years, and thus we should expect greater accuracy in these measurements for assessing drug delivery to the lung. There are still issues, though, in producing radiolabeled (99m)technetium aerosols that are precise markers for the pharmaceutical product being tested and in quantitating absolute doses deposited in the lung. PET isotopes may provide the means for directly labelling a drug and perhaps can offer an alternative for making these measurements in the future, but deposition measurements should not be used in isolation; protocols should incorporate clinical tests to provide parallel therapeutic data in response to inhalation of the drug by the various patient populations being studied.
Shielding implications for secondary neutrons and photons produced within the patient during IMPT.
DeMarco, J; Kupelian, P; Santhanam, A; Low, D
2013-07-01
Intensity modulated proton therapy (IMPT) uses a combination of computer controlled spot scanning and spot-weight optimized planning to irradiate the tumor volume uniformly. In contrast to passive scattering systems, secondary neutrons and photons produced from inelastic proton interactions within the patient represent the major source of emitted radiation during IMPT delivery. Various published studies evaluated the shielding considerations for passive scattering systems but did not directly address secondary neutron production from IMPT and the ambient dose equivalent on surrounding occupational and nonoccupational work areas. Thus, the purpose of this study was to utilize Monte Carlo simulations to evaluate the energy and angular distributions of secondary neutrons and photons following inelastic proton interactions within a tissue-equivalent phantom for incident proton spot energies between 70 and 250 MeV. Monte Carlo simulation methods were used to calculate the ambient dose equivalent of secondary neutrons and photons produced from inelastic proton interactions in a tissue-equivalent phantom. The angular distribution of emitted neutrons and photons were scored as a function of incident proton energy throughout a spherical annulus at 1, 2, 3, 4, and 5 m from the phantom center. Appropriate dose equivalent conversion factors were applied to estimate the total ambient dose equivalent from secondary neutrons and photons. A reference distance of 1 m from the center of the patient was used to evaluate the mean energy distribution of secondary neutrons and photons and the resulting ambient dose equivalent. For an incident proton spot energy of 250 MeV, the total ambient dose equivalent (3.6 × 10(-3) mSv per proton Gy) was greatest along the direction of the incident proton spot (0°-10°) with a mean secondary neutron energy of 71.3 MeV. The dose equivalent decreased by a factor of 5 in the backward direction (170°-180°) with a mean energy of 4.4 MeV. An 8 × 8 × 8 cm(3) volumetric spot distribution (5 mm FWHM spot size, 4 mm spot spacing) optimized to produce a uniform dose distribution results in an ambient dose equivalent of 4.5 × 10(-2) mSv per proton Gy in the forward direction. This work evaluated the secondary neutron and photon emission due to monoenergetic proton spots between 70 and 250 MeV, incident on a tissue equivalent phantom. Example calculations were performed to estimate concrete shield thickness based upon appropriate workload and shielding design assumptions. Although lower than traditional passive scattered proton therapy systems, the ambient dose equivalent from secondary neutrons produced by the patient during IMPT can be significant relative to occupational and nonoccupational workers in the vicinity of the treatment vault. This work demonstrates that Monte Carlo simulations are useful as an initial planning tool for studying the impact of the treatment room and maze design on surrounding occupational and nonoccupational work areas.
A method to determine the planar dose distributions in patient undergone radiotherapy
NASA Astrophysics Data System (ADS)
Cilla, S.; Viola, P.; Augelli, B. G.; D'Onofrio, G.; Grimaldi, L.; Craus, M.; Digesù, C.; Deodato, F.; Macchia, G.; Morganti, A. G.; Fidanzio, A.; Azario, L.; Piermattei, A.
2008-06-01
A 2D-array equipped with 729 vented plane parallel ion-chambers has been calibrated as a portal dose detector for radiotherapy in vivo measurements. The array has been positioned by a radiographic film stand at 120 cm from the source orthogonal to the radiotherapy beam delivered with the gantry angle at 180°. The collision between the 2D-array and the patient's couch have been avoided. In this work, using the measurements of the portal detector, we present a method to reconstruct the dose variations in the patient treated with step and shoot intensity-modulated beams (IMRT) for head-neck tumours. For this treatment morphological changes often occur during the fractionated therapy. In a first step an in-house software supplied the comparison between the measured portal dose and the one computed by a commercial treatment planning system within the field of view of the computed tomography (CT) scanner. For each patient, the percentage Pγ of chambers, where the comparison is in agreement within a selected acceptance criteria, was determined 8 times. At the first radiotherapy fraction the γ-index analysis supplied Pγ values of about 95%, within acceptance criteria in terms of dose-difference, ΔD, and distance-agreement, Δd, that was equal to 5% and 4 mm, respectively. These acceptance criteria were taken into account for small errors in the patient's set-up reproducibility and for the accuracy of the portal dose calculated by the treatment planning system (TPS) in particular when the beam was attenuated by inhomogeneous tissues and the shape of the head-neck body contours were irregular. During the treatment, some patients showed a reduction of the Pγ below 90% because due to radiotherapy treatment there was a change of the patient's morphology. In a second step a method, based on dosimetric measurements that used standard phantoms, supplied the percentage dose variations in a coronal plane of the patient using the percentage dose variations measured by the 2D-array portal detector. The results showed that the dose variations due to the change of the patient's morphology reached 15% and such discrepancies were displayed on the digitally reconstructed radiography of the patient. The dose discrepancies were confirmed by the hybrid plan obtained by the treatment planning system. The good results here reported show that once it is possible to have the portal dose distributions even for other gantry angles, these tests could be introduced in the clinical protocol to have major support to decide when to repeat the patient's CT scan and to re-plan the new IMRT dose calculation.
Influence of solar flare X-rays on the habitability on the Mars
NASA Astrophysics Data System (ADS)
Jain, Rajmal; Awasthi, Arun K.; Tripathi, Sharad C.; Bhatt, Nipa J.; Khan, Parvaiz A.
2012-08-01
We probe the lethality of X-rays from solar flares to organisms on Mars based on the observations of 10 solar flares. We, firstly, estimate the doses produced by the strong flares observed by the RHESSI and GOES missions during the descending phase of sunspot cycle 23. Next, in order to realize the dependence of dose on flux and steepness of spectra, we model the incident spectra over a wide range of spectral index to estimate dose values and compare them with the observed doses. We calculate the distribution of surficial spectra visible to organisms on the martian surface by employing attenuation of X-rays due to CO2 column densities distribution over the South Pole. The surficial flux distribution after folding with the opacity of water enables us to estimate the dose distribution over the South Pole. The dose measured from the surficial spectrum produced by the observed 10 flares corresponding to the latitudes 50-60°, 60-70°, 70-80° and 80-90°S varies in the range of 6.39 × 10-9-1.80 × 10-6; 4.89 × 10-10-5.21 × 10-8; 5.10 × 10-11-5.20 × 10-9 and 4.42 × 10-10-4.89 × 10-12 gray (1 gray = 104 erg/g) respectively. Comparing the measured as well as the modeled doses with those proposed to be lethal for various organisms by Smith and Scalo (Smith, D.S., Scalo, J. [2007]. Planet. Space Sci. 55, 517-527); we report that the habitability of life on the South Pole remains unaffected even by the strongest solar flare occurred during descending phase of solar cycle 23. Further, the monthly integrated energy released by the solar flares in the most productive month viz. October 2003 and January 2005 from the GOES soft X-ray observations is estimated to be 8.43 and 3.32 × 1032 ergs respectively, which is almost equal in order to the typical energy released by a single strong X-class flare. Therefore, we propose the life near the South Pole region on the Mars remain uninfluenced by X-ray emission even during monster phenomena of energy release on the Sun and/or Star.
Optimization of Monte Carlo dose calculations: The interface problem
NASA Astrophysics Data System (ADS)
Soudentas, Edward
1998-05-01
High energy photon beams are widely used for radiation treatment of deep-seated tumors. The human body contains many types of interfaces between dissimilar materials that affect dose distribution in radiation therapy. Experimentally, significant radiation dose perturbations has been observed at such interfaces. The EGS4 Monte Carlo code was used to calculate dose perturbations at boundaries between dissimilar materials (such as bone/water) for 60Co and 6 MeV linear accelerator beams using a UNIX workstation. A simple test of the reliability of a random number generator was also developed. A systematic study of the adjustable parameters in EGS4 was performed in order to minimize calculational artifacts at boundaries. Calculations of dose perturbations at boundaries between different materials showed that there is a 12% increase in dose at water/bone interface, and a 44% increase in dose at water/copper interface. with the increase mainly due to electrons produced in water and backscattered from the high atomic number material. The dependence of the dose increase on the atomic number was also investigated. The clinically important case of using two parallel opposed beams for radiation therapy was investigated where increased doses at boundaries has been observed. The Monte Carlo calculations can provide accurate dosimetry data under conditions of electronic non-equilibrium at tissue interfaces.
Electron beam therapy with coil-generated magnetic fields.
Nardi, Eran; Barnea, Gideon; Ma, Chang-Ming
2004-06-01
This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail.
Dose in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Kalender, Willi A.
2014-02-01
Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.
Application of real-time radiation dosimetry using a new silicon LET sensor
NASA Technical Reports Server (NTRS)
Doke, T.; Hayashi, T.; Kikuchi, J.; Nagaoka, S.; Nakano, T.; Sakaguchi, T.; Terasawa, K.; Badhwar, G. D.
1999-01-01
A new type of real-time radiation monitoring device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs), has been developed and tested on-board the Space Shuttle mission STS-84. The test succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2 keV/micrometer to 600 keV/micrometer for 178 h. The Shuttle cruised at an altitude of 300 to 400 km and an inclination angle of 51.6 degrees for 221.3 h, which is equivalent to the International Space Station orbit. The LET distribution obtained for particles was investigated by separating it into galactic cosmic ray (GCR) particles and trapped particles in the South Atlantic Anomaly (SAA) region. The result shows that the contribution in dose-equivalent due to GCR particles is almost equal to that from trapped particles. The total absorbed dose rate during the mission was 0.611 mGy/day; the effective quality factor, 1.64; and the dose equivalent rate, 0.998 mSv/day. The average absorbed dose rates are 0.158 mGy/min for GCR particles and 3.67 mGy/min for trapped particles. The effective quality factors are 2.48 for GCR particles and 1.19 for trapped particles. The absorbed doses obtained by the RRMD-III and a conventional method using TLD (Mg(2)SiO(4)), which was placed around the RRMD-III were compared. It was found that the TLDs showed a lower efficiency, just 58% of absorbed dose registered by the RRMD-III.
Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application
Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.
2015-01-01
Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543
[Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].
Terahara, A; Nakano, T; Tsujii, H
1998-01-01
Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan; Eckerman, Keith F; Karagiannis, Harriet
This paper describes the characterization of radiation doses to the hands of nuclear medicine technicians resulting from the handling of radiopharmaceuticals. Radiation monitoring using ring dosimeters indicates that finger dosimeters that are used to show compliance with applicable regulations may overestimate or underestimate radiation doses to the skin depending on the nature of the particular procedure and the radionuclide being handled. To better understand the parameters governing the absorbed dose distributions, a detailed model of the hands was created and used in Monte Carlo simulations of selected nuclear medicine procedures. Simulations of realistic configurations typical for workers handling radiopharmaceuticals weremore » performedfor a range of energies of the source photons. The lack of charged-particle equilibrium necessitated full photon-electron coupled transport calculations. The results show that the dose to different regions of the fingers can differ substantially from dosimeter readings when dosimeters are located at the base of the finger. We tried to identify consistent patterns that relate the actual dose to the dosimeter readings. These patterns depend on the specific work conditions and can be used to better assess the absorbed dose to different regions of the exposed skin.« less
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
Sutherland, J G H; Miksys, N; Furutani, K M; Thomson, R M
2014-01-01
To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxel and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for (125)I, (103)Pd, and (131)Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for (103)Pd seeds and smallest but still considerable differences for (131)Cs seeds. Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.
Nitrogen Dioxide Exposure and Airway Responsiveness in ...
Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mwidu, U; Devic, S; Shehadeh, M
Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less
Salinger, D H; Mundle, S; Regi, A; Bracken, H; Winikoff, B; Vicini, P; Easterling, T
2013-06-01
To compare magnesium sulphate concentrations achieved by intramuscular and intravenous regimens used for the prevention of eclampsia. Low-resource obstetric hospitals in Nagpur and Vellore, India. Pregnant women at risk for eclampsia due to hypertensive disease. A pharmacokinetic study was performed as part of a randomised trial that enrolled 300 women comparing intramuscular and intravenous maintenance regimens of magnesium dosing. Data from 258 enrolled women were analysed in the pharmacokinetic study. A single sample was drawn per woman with the expectation of using samples in a pooled data analysis. Pharmacokinetic parameters of magnesium distribution and clearance. Magnesium clearance was estimated to be 48.1 dl/hour, volume of distribution to be 156 dl and intramuscular bioavailability to be 86.2%. The intramuscular regimen produced higher initial serum concentrations, consistent with a substantially larger loading dose. At steady state, magnesium concentrations in the intramuscular and intravenous groups were comparable. With either regimen, a substantial number of women would be expected to have serum concentrations lower than those generally held to be therapeutic. Clinical implications were that a larger loading dose for the intravenous regimen should be considered; where feasible, individualised dosing of magnesium sulphate would reduce the variability in serum concentrations and might result in more women with clinically effective magnesium concentrations; and lower dose magnesium sulphate regimens should be considered with caution. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.
Image-guided high dose rate endorectal brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devic, Slobodan; Vuong, Te; Moftah, Belal
2007-11-15
Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison ofmore » a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.« less
Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing
NASA Astrophysics Data System (ADS)
Tang, Grace; Earl, Matthew A.; Yu, Cedric X.
2009-11-01
Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.
[Basic principles and results of brachytherapy in gynecological oncology].
Kanaev, S V; Turkevich, V G; Baranov, S B; Savel'eva, V V
2014-01-01
The fundamental basics of contact radiation therapy (brachytherapy) for gynecological cancer are presented. During brachytherapy the principles of conformal radiotherapy should be implemented, the aim of which is to sum the maximum possible dose of radiation to the tumor and decrease the dose load in adjacent organs and tissues, which allows reducing the frequency of radiation damage at treatment of primary tumors. It is really feasible only on modern technological level, thanks to precision topometry preparation, optimal computer dosimetrical and radiobiological planning of each session and radiotherapy in general. Successful local and long-term results of the contact radiation therapy for cancer of cervix and endometrium are due to optimal anatomical and topometrical ratio of the tumor localization, radioactive sources, and also physical and radiobiological laws of distribution and effects of ionizing radiation, the dose load accounting rules.
Failure-probability driven dose painting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.
Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). Themore » total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.« less
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
DMLC tracking and gating can improve dose coverage for prostate VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006
2014-09-15
Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Kantor, M; Zhu, X
2014-06-01
Purpose: To evaluate the dosimetric accuracy for proton therapy patients with metal implants in CT using metal deletion technique (MDT) artifacts reduction. Methods: Proton dose accuracies under CT metal artifacts were first evaluated using a water phantom with cylindrical inserts of different materials (titanium and steel). Ranges and dose profiles along different beam angles were calculated using treatment planning system (Eclipse version 8.9) on uncorrected CT, MDT CT, and manually-corrected CT, where true Hounsfield units (water) were assigned to the streak artifacts. In patient studies, the treatment plans were developed on manually-corrected CTs, then recalculated on MDT and uncorrected CTs.more » DVH indices were compared between the dose distributions on all the CTs. Results: For water phantom study with 1/2 inch titanium insert, the proton range differences estimated by MDT CT were with 1% for all beam angles, while the range error can be up to 2.6% for uncorrected CT. For the study with 1 inch stainless steel insert, the maximum range error calculated by MDT CT was 1.09% among all the beam angles compared with maximum range error with 4.7% for uncorrected CT. The dose profiles calculated on MDT CTs for both titanium and steel inserts showed very good agreements with the ones calculated on manually-corrected CTs, while large dose discrepancies calculated using uncorrected CTs were observed in the distal end region of the proton beam. The patient study showed similar dose distribution and DVHs for organs near the metal artifacts recalculated on MDT CT compared with the ones calculated on manually-corrected CT, while the differences between uncorrected and corrected CTs were much pronounced. Conclusion: In proton therapy, large dose error could occur due to metal artifact. The MDT CT can be used for proton dose calculation to achieve similar dose accuracy as the current clinical practice using manual correction.« less
TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz
2017-07-01
This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy × cm)-1, a large linear dose range of >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, F; Chofor, N; Schoenfeld, A
2016-06-15
Purpose: In the steep dose gradients in the vicinity of a radiation source and due to the properties of the changing photon spectra, dose measurements in Brachytherapy usually have large uncertainties. Working group DIN 6803-3 is presently discussing recommendations for practical brachytherapy dosimetry incorporating recent theoretical developments in the description of brachytherapy radiation fields as well as new detectors and phantom materials. The goal is to prepare methods and instruments to verify dose calculation algorithms and for clinical dose verification with reduced uncertainties. Methods: After analysis of the distance dependent spectral changes of the radiation field surrounding brachytherapy sources, themore » energy dependent response of typical brachytherapy detectors was examined with Monte Carlo simulations. A dosimetric formalism was developed allowing the correction of their energy dependence as function of source distance for a Co-60 calibrated detector. Water equivalent phantom materials were examined with Monte Carlo calculations for their influence on brachytherapy photon spectra and for their water equivalence in terms of generating equivalent distributions of photon spectra and absorbed dose to water. Results: The energy dependence of a detector in the vicinity of a brachytherapy source can be described by defining an energy correction factor kQ for brachytherapy in the same manner as in existing dosimetry protocols which incorporates volume averaging and radiation field distortion by the detector. Solid phantom materials were identified which allow precise positioning of a detector together with small correctable deviations from absorbed dose to water. Recommendations for the selection of detectors and phantom materials are being developed for different measurements in brachytherapy. Conclusion: The introduction of kQ for brachytherapy sources may allow more systematic and comparable dose measurements. In principle, the corrections can be verified or even determined by measurement in a water phantom and comparison with dose distributions calculated using the TG43 dosimetry formalism. Project is supported by DIN Deutsches Institut fuer Normung.« less
Comparison of the secondary electrons produced by proton and electron beams in water
NASA Astrophysics Data System (ADS)
Kia, Mohammad Reza; Noshad, Houshyar
2016-05-01
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.
Comparison of the secondary electrons produced by proton and electron beams in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar
The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less
Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.
Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert
2018-03-01
Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Evaluation of 2 possible further developments of the UK in-flight radiation warning meter for SSTS
NASA Technical Reports Server (NTRS)
Wilson, I. J.; Eustace, R. C.
1972-01-01
A mass reduction of the moderator and the response to the nucleon flux, responsible for the tissue-star component of the total-dose equivalent rate using a high atomic number material, are discussed. Radiation situations at SST cruising altitudes (approximately 20 km) due to solar proton flares were simulated in the stratosphere and on the ground. Actual stratospheric situations due to galactic cosmic radiation with a limited range of quality factor values (2-4) were encountered during slow ascents by balloons to 36 km. Synthetic situations obtained from high and low energy acclerator radiations were used to obtain radiation distributions having a larger range of quality factor values (11/2-9) than experienced in the stratosphere. The measurements made in these simulations related to the directly ionizing, neutron and tissue-star components of dose-equivalent rate. Due to the restricted range of neutron spectra encountered in the stratosphere, a significant mass reduction of the moderator by 4 kg was made, with the moderator clad with cadmium or some other slow neutron absorber.
NASA Astrophysics Data System (ADS)
Richter, Daniel; Immo Lehmann, H.; Eichhorn, Anna; Constantinescu, Anna M.; Kaderka, Robert; Prall, Matthias; Lugenbiel, Patrick; Takami, Mitsuru; Thomas, Dierk; Bert, Christoph; Durante, Marco; Packer, Douglas L.; Graeff, Christian
2017-09-01
Noninvasive ablation of cardiac arrhythmia by scanned particle radiotherapy is highly promising, but especially challenging due to cardiac and respiratory motion. Irradiations for catheter-free ablation in intact pigs were carried out at the GSI Helmholtz Center in Darmstadt using scanned carbon ions. Here, we present real-time electrocardiogram (ECG) data to estimate time-resolved (4D) delivered dose. For 11 animals, surface ECGs and temporal structure of beam delivery were acquired during irradiation. R waves were automatically detected from surface ECGs. Pre-treatment ECG-triggered 4D-CT phases were synchronized to the R-R interval. 4D-dose calculation was performed using GSI’s in-house 4D treatment planning system. Resulting dose distributions were assessed with respect to coverage (D95 and V95), heterogeneity (HI = D5-D95) and normal tissue exposure. Final results shown here were performed offline, but first calculations were started shortly after irradiation The D95 for TV and PTV was above 95% for 10 and 8 out of 11 animals, respectively. HI was reduced for PTV versus TV volumes, especially for some of the animals targeted at the atrioventricular junction, indicating residual interplay effects due to cardiac motion. Risk structure exposure was comparable to static and 4D treatment planning simulations. ECG-based 4D-dose reconstruction is technically feasible in a patient treatment-like setting. Further development of the presented approach, such as real-time dose calculation, may contribute to safe, successful treatments using scanned ion beams for cardiac arrhythmia ablation.
Naqvi, Shahid A; D'Souza, Warren D
2005-04-01
Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.
Shuttle radiation dose measurements in the International Space Station orbits
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.
2002-01-01
The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.
Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.
2011-01-01
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326
Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates.
Li, Yongrui; Li, Ye; Jackson, Alan; Li, Xiaodong; Huang, Ning; Guo, Chunjie; Zhang, Huimao
2017-01-01
To assess the effect of varying iodine flow rate (IFR) and iodine concentration on the quality of virtual unenhanced (VUE) images of the abdomen obtained with dual-energy CT. 94 subjects underwent unenhanced and triphasic contrast-enhanced CT scan of the abdomen, including arterial phase, portal venous phase, and delayed phase using dual-energy CT. Patients were randomized into 4 groups with different IFRs or iodine concentrations. VUE images were generated at 70 keV. The CT values, image noise, SNR and CNR of aorta, portal vein, liver, liver lesion, pancreatic parenchyma, spleen, erector spinae, and retroperitoneal fat were recorded. Dose-length product and effective dose for an examination with and without plain phase scan were calculated to assess the potential dose savings. Two radiologists independently assessed subjective image quality using a five-point scale. The Kolmogorov-Smirnov test was used first to test for normal distribution. Where data conformed to a normal distribution, analysis of variance was used to compare mean HU values, image noise, SNRs and CNRs for the 4 image sets. Where data distribution was not normal, a nonparametric test (Kruskal-Wallis test followed by stepwise step-down comparisons) was used. The significance level for all tests was 0.01 (two-sided) to allow for type 2 errors due to multiple testing. The CT numbers (HU) of VUE images showed no significant differences between the 4 groups (p > 0.05) or between different phases within the same group (p > 0.05). VUE images had equal or higher SNR and CNR than true unenhanced images. VUE images received equal or lower subjective image quality scores than unenhanced images but were of acceptable quality for diagnostic use. Calculated dose-length product and estimated dose showed that the use of VUE images in place of unenhanced images would be associated with a dose saving of 25%. VUE images can replace conventional unenhanced images. VUE images are not affected by varying iodine flow rates and iodine concentrations, and diagnostic examinations could be acquired with a potential dose saving of 25%.
NASA Technical Reports Server (NTRS)
Zapp, E. N.; Townsend, L. W.; Cucinotta, F. A.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to critical body organs of spacecraft crews from energetic space radiation require accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through the spacecraft and overlying tissue. When estimating astronaut radiation organ doses and dose equivalents it is customary to use the Computerized Anatomical Man (CAM) model of human geometry to account for body self-shielding. Usually, the distribution for the 50th percentile man (175 cm height; 70 kg mass) is used. Most male members of the U.S. astronaut corps are taller and nearly all have heights that deviate from the 175 cm mean. In this work, estimates of critical organ doses and dose equivalents for interplanetary crews exposed to an event similar to the October 1989 solar particle event are presented for male body sizes that vary from the 5th to the 95th percentiles. Overall the results suggest that calculations of organ dose and dose equivalent may vary by as much as approximately 15% as body size is varied from the 5th to the 95th percentile in the population used to derive the CAM model data. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Balosso, Jacques
2017-01-01
Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995
Monaco and film dosimetry of 3D CRT, IMRT and VMAT cases in a realistic pelvic prosthetic phantom
NASA Astrophysics Data System (ADS)
Ade, Nicholas; du Plessis, F. C. P.
2018-04-01
The dosimetry of patients with metallic hip implants during irradiation of pelvic lesions is challenging due to dose distortions caused by implants. This work presents a dosimetric comparison of various multi-field photon-beam dose distributions in the presence of unilateral hip titanium prosthesis (UHTiP) embedded in a unique pelvic phantom made out of water-equivalent nylon slices. The impact of the UHTiP on the accuracy of dose calculations from a Monaco TPS (treatment planning system) using the X-ray voxel Monte Carlo (XVMC) algorithm was benchmarked against measured dose data using Gafchromic EBT3 film. Multi-field beam arrangements including a 4-field box, 5-field 3DCRT (three-dimensional conformal radiation therapy), 6-field IMRT (intensity modulated radiation therapy) and a single-arc VMAT (volumetric modulated arc therapy) plan were set up for 6 MV and 15 MV beams. These plans were generated for the pelvic phantom that contains the prosthesis with film inserted. Compared to Monaco TPS dose calculations, film measurements showed enhanced dose in the prosthesis which was not predicted by Monaco due to its limitation in relative density assignment. The enhanced prosthesis dose increased with increase in beam energy and decreased with the complexity of the treatment plans, with VMAT giving the least escalated dose. The dose increased between 5% and 19% for 6 MV and between 6% and 21% for 15 MV. A gamma index analysis showed that 70-92% of dose points (excluding the prosthesis) were within 3% discrepancy. Increasing the number of treatment fields increases target dose coverage and improves the agreement between film and Monaco. When the relative electron density (RED) in the prosthesis was varied between 3.72 and 15 the dose discrepancy between film and Monaco increased from 30% to 57% for 6 MV and from 30% to 50% for 15 MV. The study indicates that beam weights for fields that pass through the prosthesis should be minimised and its RED must be correct for accurate dose calculation on Monaco.
Dietary intake of 210Po and 210Pb in the environment of Goa of south-west Coast of India.
Avadhani, D N; Mahesh, H M; Karunakara, N; Narayana, Y; Somashekarappa, H M; Siddappa, K
2001-10-01
This paper deals with the distribution and activity intake of 210Po and 210Pb in food, diet, and potable water samples of the Goa region and the estimated committed effective dose due to ingestion of these radionuclides. The activity concentrations of 210Po and 210Pb were determined in about 30 food and diet samples from different places of Goa in order to know the distribution and intake of these radionuclides. The activity concentration of 210Po in fish and prawn samples were significantly higher than concentrations found in vegetable and rice samples. Higher concentrations of 210Po and 210Pb were observed in leafy vegetables than in non-leafy vegetables. Among the diet samples the activity concentrations of 210Po and 210Pb in non-vegetarian meal samples were relatively higher than in vegetarian meal and breakfast samples. The committed effective dose due to annual intake of 210Po was found to be 94.6 microSv, 49.1 microSv, 10.5 microSv, and 2.2 microSv and that of 210Pb found to be 81.6 microSv, 59.9 microSv, 14.6 microSv, and 2.0 microSv for the ingestion of non-vegetarian meal, vegetarian meal, breakfast, and potable water, respectively.
Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok
2013-03-26
The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse
2008-08-07
The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less
Omori, Yasutaka; Prasad, Ganesh; Sorimachi, Atsuyuki; Sahoo, Sarata Kumar; Ishikawa, Tetsuo; Vidya Sagar, Devulapalli; Ramola, Rakesh Chand; Tokonami, Shinji
2016-10-01
The Chhatrapur placer deposit is found in a high background radiation area which has been recently identified on the southeastern coast of India. Previously, some geochemical studies of this area were carried out to assess external dose from radionuclides-bearing heavy mineral sands. In this study, radon, thoron and thoron progeny concentrations were measured in about 100 dwellings during three seasons (autumn-winter, summer, and rainy) in a 10- to 12-month period and annual doses due to inhalation of them were evaluated. The measurements were made by passive-type radon-thoron discriminative detectors and thoron progeny detectors in which solid state nuclear track detectors were deployed. The results show that radon and thoron concentrations differ by one order of magnitude depending on exposure periods, while thoron progeny concentration is nearly constant throughout the year. Since thorium-rich sand is distributed in the studied area, exposure to thoron is equal to, or exceeds, exposure to radon and is not negligible for dose evaluation. Based on the measurements, doses due to inhalation of radon and thoron are evaluated as 0.1-1.6 mSv y -1 and 0.2-3.8 mSv y -1 , respectively. The total dose is 0.8-4.6 mSv y -1 , which is the same order of magnitude as the worldwide value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Terasaki, Kento; Fujibuchi, Toshioh; Toyoda, Takatoshi; Yoshida, Yutaka; Akasaka, Tsutomu; Nohtomi, Akihiro; Morishita, Junji
2016-12-01
The ionisation chamber for computed tomography (CT) is an instrument that is most commonly used to measure the computed tomography dose index. However, it has been reported that the 10 cm effective detection length of the ionisation chamber is insufficient due to the extent of the dose distribution outside the chamber. The purpose of this study was to estimate the basic characteristics of a plastic scintillating fibre (PSF) detector with a long detection length of 50 cm in CT radiation fields. The authors investigated position dependence using diagnostic X-ray equipment and dependencies for energy, dose rate and slice thickness using an X-ray CT system. The PSF detector outputs piled up at a count rate of 10 000 counts ms -1 in dose rate dependence study. With calibration, this detector may be useful as a CT dosemeter with a long detection length except for the measurement at high dose rate. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Salimi, E.; Rahighi, J.; Sardari, D.; Mahdavi, S. R.; Lamehi Rachti, M.
2014-12-01
Gas bremsstrahlung is generated in high energy electron storage rings through interaction of the electron beam with the residual gas molecules in vacuum chamber. In this paper, Monte Carlo calculation has been performed to evaluate radiation hazard due to gas bremsstrahlung in the Iranian Light Source Facility (ILSF) insertion devices. Shutter/stopper dimensions is determined and dose rate from the photoneutrons via the giant resonance photonuclear reaction which takes place inside the shutter/stopper is also obtained. Some other characteristics of gas bremsstrahlung such as photon fluence, energy spectrum, angular distribution and equivalent dose in tissue equivalent phantom have also been investigated by FLUKA Monte Carlo code.
The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.
Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J
2003-02-01
The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candela-Juan, C., E-mail: ccanjuan@gmail.com; Niatsetski, Y.; Laarse, R. van der
Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times.more » Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.« less
Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).
Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara
2014-11-12
Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prior, P; Chen, X; Schultz, C
Purpose: The advent of the MR-Linac enables real-time and high soft tissue contrast image guidance in radiation therapy (RT) delivery. Potential hot-spots at air-tissue interfaces, such as the sphenoid sinus, in RT for head and neck cancer (HNC), could potentially occur due to the electron return effect (ERE). In this study, we investigate the dosimetric effects of ERE on the dose distribution at air-tissues interfaces in HNC IMRT treatment planning. Methods: IMRT plans were generated based on planning CT’s acquired for HNC cases (nasopharynx, base of skull and paranasal sinus) using a research planning system (Monaco, v5.09.06, Elekta) employing Montemore » Carlo dose calculations with or without the presence of a transverse magnetic field (TMF). The dose in the air cavity was calculated in a 1 & 2 mm thick tissue layer, while the dose to the skin was calculated in a 1, 3 and 5 mm thick tissue layer. The maximum dose received in 1 cc volume, D1cc, were collected at different TMF strengths. Plan qualities generated with or without TMF or with increasing TMF were compared in terms of commonly-used dose-volume parameters (DVPs). Results: Variations in DVPs between plans with and without a TMF present were found to be within 5% of the planning CT. The presence of a TMF results in <5% changes in sinus air tissue interface. The largest skin dose differences with and without TMF were found within 1 mm of the skin surface Conclusion: The presence of a TMF results in practically insignificant changes in HNC IMRT plan quality, except for skin dose. Planning optimization with skin DV constraints could reduce the skin doses. This research was partially supported by Elekta Inc. (Crowley, U.K.)« less
Paudel, N; Shvydka, D; Parsai, E
2012-06-01
Gold nanoparticles (AuNP) have been proposed to be utilized for local dose enhancement in radiation therapy. Due to a very sharp spatial fall-off of the effect, the dosimetry associated with such an approach is difficult to implement in a direct measurement. This study is aimed at establishing a micro-dosimetry technique for experimental verification of dose enhancement in the vicinity of gold-tissue interface. The spatial distribution of the dose enhancement near the gold-tissue interface is modeled with Monte Carlo (MC) package MCNP5 in a 1-dimentional approach of a thin gold slab placed in an ICRU-4 component tissue phantom. The model is replicating the experiment, where the dose enhancement due to gold foils having thicknesses of 1, 10, and 100μm and areas of 12.5×25mm 2 are placed at a short distance from clinical HDR brachytherapy (Ir-192) source. The measurements are carried out with a thin-film CdTe-based photodetector, having thickness <10μm, allowing for high spatial resolution at progressively increasing distances from the foil. Our MC simulation results indicate that for Ir-192 energy spectrum the dose enhancement region extends over ∼1 mm distance from the foil, changing from several hundred at the interface to just a few percent. The trend in the measured dose enhancement closely follows the results obtained from MC simulations. AuNP's have been established as promising candidates for dose enhancement in nanoparticle-aided radiation therapy, particularly, in the energy range relevant to brachytherapy applications. Most researchers study the dose enhancement with MC simulations, or experimental approaches involving biological systems, where achievable dose enhancements are difficult to quantify. Successful development of micro-dosimetry approaches will pave a way for direct assessment of the dose in experiments on biological models, shedding some light on apparent discrepancy between physical dose enhancement and biological effect established in studies of AuNP-aided radiation therapy. No conflict of interest. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lah, J; Son, J; Kim, G
Purpose: To evaluate the possibility of a fiber-optic Cerenkov radiation sensor (FCRS) for in vivo dose verification in proton therapy. Methods: The Cerenkov radiation due to the proton beam was measured using a homemade phantom, consisting of a plastic optical fiber (POF, PGSCD1001-13-E, Toray, Tokyo, Japan) connected to each channel of a multianode photomultiplier tube (MAPMT:H7546, Hamamatsu Photonics, Shizuoka, Japan). Data were acquired using a multi-anode photomultiplier tube with the NI-DAQ system (National Instruments Texas, USA). The real-time monitoring graphic user interface was programmed using Labview. The FCRS was analyzed for its dosimetrics characteristic in proton beam. To determine themore » accuracy of the FCRS in proton dose measurements, we compared the ionization chamber dose measurements using a water phantom. We investigated the feasibility of the FCRS for the measurement of dose distributions near the superficial region for proton plans with a varying separation between the target volume and the surface of 3 patients using a humanoid phantom. Results: The dose-response has good linearity. Dose-rate and energy dependence were found to be within 1%. Depth-dose distributions in non-modulated proton beams obtained with the FCRS was in good agreement with the depth-dose measurements from the ionization chamber. To evaluate the dosimetric accuracy of the FCRS, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the FCRS was within 3%. With in vivo dosimetry using the humanoid phantom, the calculated surface doses overestimated measurements by 4%–8% using FCRS. Conclusion: In previous study, our results indicate that the performance of the array-type FCRS was comparable to that of the currently used a multi-layer ion chamber system. In this study, we also believe that the fiber-optic Cerenkov radiation sensor has considerable potential for use with in vivo patient proton dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moteabbed, M; Trofimov, A; Testa, M
2014-06-01
Purpose: With the anticipated introduction of in vivo range verification methods, the use of anterior fields for proton therapy of prostate cancer may become an attractive treatment option, and improve upon the dose distributions achievable with conventional lateral-opposed fields. This study aimed to evaluate and compare the planned dose accuracy for lateral versus anterior oblique field arrangements. Methods: Four patients with low/intermediate risk prostate cancer, participating in a clinical trial at our institution, were selected for this study. All patients were treated using lateral-opposed fields (LAT). The clinical target volume (CTV) received a total dose of 79.2 Gy in 44more » fractions. Anterior oblique research plans (ANT) were created using the clinical planning system, and featured beams with ±35-degree gantry angle, 1.2 cm aperture margins, 3-mm range compensator smearing and no range uncertainty margins. Monte Carlo (MC) simulations were performed for both beam arrangements using TOPAS. Dose volume histograms were analyzed and compared for planned and MC dose distributions. Differences between MC and planned DVH parameters were computed as a percentage of the total prescribed dose. Results: For all patients, CTV dose was systematically lower (∼2–2.5%) for MC than the plan. This discrepancy was slightly larger (∼0.5%) for LAT compared to ANT plans for all cases. Although the dose differences for bladder and anterior rectal wall remained within 0.7% for all LAT cases, they were slightly larger for ANT plans, especially for case 3 due to larger patient size and MC-plan range difference. The EUD difference for femoral heads was within 0.6% for both LAT and ANT cases. Conclusion: The dose calculated by the treatment planning system using pencil beam algorithm agrees with MC to within 2.5% and is comparable for lateral and anterior scenarios. The dose agreement in the anterior rectal wall is range- and hence, patient-dependent for ANT treatments.« less
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less
Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.
NASA Astrophysics Data System (ADS)
Maheras, Steven James
Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.
Sakurai, H
1994-01-01
Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133
VARIAN CLINAC 6 MeV Photon Spectra Unfolding using a Monte Carlo Meshed Model
NASA Astrophysics Data System (ADS)
Morató, S.; Juste, B.; Miró, R.; Verdú, G.
2017-09-01
Energy spectrum is the best descriptive function to determine photon beam quality of a Medical Linear Accelerator (LinAc). The use of realistic photon spectra in Monte Carlo simulations has a great importance to obtain precise dose calculations in Radiotherapy Treatment Planning (RTP). Reconstruction of photon spectra emitted by medical accelerators from measured depth dose distributions in a water cube is an important tool for commissioning a Monte Carlo treatment planning system. Regarding this, the reconstruction problem is an inverse radiation transport function which is ill conditioned and its solution may become unstable due to small perturbations in the input data. This paper presents a more stable spectral reconstruction method which can be used to provide an independent confirmation of source models for a given machine without any prior knowledge of the spectral distribution. Monte Carlo models used in this work are built with unstructured meshes to simulate with realism the linear accelerator head geometry.
UVPROM dosimetry, microdosimetry and applications to SEU and extreme value theory
NASA Astrophysics Data System (ADS)
Scheick, Leif Zebediah
A new method is described for characterizing a device in terms of the statistical distribution of first failures. The method is based on the erasure of a commercial Ultra- Violet erasable Programmable Read Only Memory (UVPROM). The method of readout would be used on a spacecraft or in other restrictive radiation environments. The measurement of the charge remaining on the floating gate is used to determine absorbed dose. The method of determining dose does not require the detector to be destroyed or erased nor does it effect the ability for taking further measurements. This is compared to extreme value theory applied to the statistical distributions that apply to this device. This technique predicts the threshold of Single Event Effects (SEE), like anomalous changes in erasure time in programmable devices due to high microdose energy-deposition events. This technique also allows for advanced non-destructive, screening of a single microelectronic devices for predictable response in a stressful, i.e. radiation, environments.
"SABER": A new software tool for radiotherapy treatment plan evaluation.
Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay
2010-11-01
Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.
Dose distribution for dental cone beam CT and its implication for defining a dose index
Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R
2012-01-01
Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, J; Sintay, B; Varchena, V
2015-06-15
Purpose: Comprehensive quality assurance (QA) of a single isocenter technique for the simultaneous treatment of multiple brain metastases is presently impractical due to the time consuming nature of measuring each lesion’s dose on film or with a micro-chamber. Three dimensional diode array and full field film measurements are sometimes used to evaluate these plans, but gamma analysis may not reveal local errors that have significant effects on one or a few of several targets. This work aimed to design, build and test a phantom to simplify comprehensive measurement and evaluation. Methods: A phantom was designed with 28 stackable slabs. Themore » top and bottom slabs are 1.5 centimeters (cm) in thickness, and central 26 slabs are 0.5 cm thick. When assembled with radiochromic film in all 27 gaps, the phantom measures 16.5 x 15 x 19 cm. Etchings were designed to aide in identification of specific film planes on computed tomography (CT) images and correlation of individual PTVs with closest bisecting planes. Patient verification plans with a total of 16 PTVs were calculated on the phantom CT, and test deliveries both with and without couch kicks were performed to test the ability to identify correct film placements and subsequent PTV specific dose distributions on the films. Results: Bisecting planes corresponding to PTV locations were easily identified, and PTV specific dose distributions were clear for all 16 targets. For deliveries with couch kicks, the phantom PTV dose distributions closely approximated those calculated on the patient’s CT. For deliveries without couch kicks, PTV specific dosimetry was also possible, although the distributions had ‘ghosts’ equaling the number of couch kicks, with distance between ghosts increasing with distance from the isocenter. Conclusion: A new phantom facilitates fast comprehensive commissioning validation and PTV specific dosimetry for a single isocenter technique for treating multiple brain metastases. This work was partially funded by CIRS, Inc.« less
γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments.
Calusi, Silvia; Noferini, Linhsia; Marrazzo, Livia; Casati, Marta; Arilli, Chiara; Compagnucci, Antonella; Talamonti, Cinzia; Scoccianti, Silvia; Greto, Daniela; Bordi, Lorenzo; Livi, Lorenzo; Pallotta, Stefania
2017-11-01
We present the γTools, a new phantom designed to assess geometric and dosimetric accuracy in Gamma Knife treatments, together with first tests and results of applications. The phantom is composed of two modules: the imaging module, a regular grid of 1660 control points to evaluate image distortions and image registration result and the dosimetry module for delivered dose distribution measurements. The phantom is accompanied by a MatLab routine for image distortions quantification. Dose measurement are performed with Gafchromic films fixed between two inserts and placed in various positions and orientations inside the dosimetry module thus covering a volume comparable to the full volume of a head. Tests performed to assess the accuracy and precision of the imaging module demonstrated sub-millimetric values. As an example of possible applications, the phantom was employed to measure image distortions of two MRI scanners and to perform dosimetric studies of single shots delivered to homogeneous and heterogeneous materials. Due to the phantom material, the measured absolute dose do not correspond to the planned dose; doses comparisons are thus carried out between normalized dose distributions. Finally, an end-to-end test was carried out in the treatment of a neuroma-like target which resulted in a 100% gamma passing rate (2% local, 2 mm) and a distance between the real target perimeter and the prescription isodose centroids of about 1 mm. The tests demonstrate that the proposed phantom is suitable to assess both the geometrical and relative dosimetric accuracy of Gamma Knife radiosurgery treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J; Hu, W; Xing, Y
Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less
Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard
2009-10-01
The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard
2009-10-15
Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: Inmore » order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.« less
Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine
Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less
Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi
2009-10-01
To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.
NASA Astrophysics Data System (ADS)
Montanari, Davide; Scolari, Enrica; Silvestri, Chiara; Jiang Graves, Yan; Yan, Hao; Cervino, Laura; Rice, Roger; Jiang, Steve B.; Jia, Xun
2014-03-01
Cone beam CT (CBCT) has been widely used for patient setup in image-guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are (1) to commission a graphics processing unit (GPU)-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and (2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. Twenty-five brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1-3 times higher than the mean dose depending on the organ, and is up to eight times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
Reconstruction of doses and deposition in the western trace from the Chernobyl accident.
Sikkeland, T; Skuterud, L; Goltsova, N I; Lindmo, T
1997-05-01
A model is presented for the explosive cloud of particulates that produced the western trace of high radioactive ground contamination in the Chernobyl accident on 26 April 1986. The model was developed to reproduce measured dose rates and nuclide contamination and to relate estimated doses to observed changes in: (1) infrared emission from the foliage and (2) morphological and histological structures of individual pines. Dominant factors involved in ground contamination were initial cloud shape, particle size distribution, and rate of particle fallout. At time of formation, the cloud was assumed to be parabolical and to contain a homogeneous distribution of spherically shaped fuel particulates having a log-normal size distribution. The particulates were dispersed by steady winds and diffusion that produced a straight line deposition path. The analysis indicates that two clouds, denoted by Cloud I and Cloud II, were involved. Fallout from the former dominated the far field region and fallout from latter the region near the reactor. At formation they had a full width at half maximum of 1800 m and 500 m, respectively. For wind velocities of 5-10 m s(-1) the particulates' radial distribution at formation had a standard deviation and mode of 1.8 microm and 0.5 microm, respectively. This distribution corresponds to a release of 390 GJ in the runaway explosion. The clouds' height and mass are not uniquely determined but are coupled together. For an initial height of 3,600 m, Cloud I contained about 400 kg fuel. For Cloud II the values were, respectively, 1,500 m and 850 kg. Loss of activities from the clouds is found to be small. Values are obtained for the rate of radionuclide migration from the deposit. Various types of biological damage to pines, as reported in the literature, are shown to be mainly due to ionizing radiation from the deposit by Cloud II. A formula is presented for the particulate size distribution in the trace area.
Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A
2015-10-01
Workers in repair shops of vehicles (cars, buses, truck, etc.) clean carburetors, check fuel distribution, and perform oil changes and greasing. To explore the exposure pathway of (238)U and (232)Th and its decay products to the skin of mechanic workers, these radionuclides were measured inside petrol, gas-oil, and lubricant material samples by means of CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs), and corresponding annual committed equivalent doses to skin were determined. The maximum total equivalent effective dose to skin due to the (238)U and (232)Th series from the application of different petrol, gas-oil, and lubricant samples by mechanic workers was found equal to 1.2 mSv y(-1) cm(-2).
Mayer, Sabine; Boschung, Markus; Butterweck, Gernot; Assenmacher, Frank; Hohmann, Eike
2016-09-01
Since 2008 the Paul Scherrer Institute (PSI) has been using a microscope-based automatic scanning system for assessing personal neutron doses with a dosemeter based on PADC. This scanning system, known as TASLImage, includes a comprehensive characterisation of tracks. The distributions of several specific track characteristics such as size, shape and optical density are compared with a reference set to discriminate tracks of alpha particles and non-track background. Due to the dosemeter design at PSI, it is anticipated that radon should not significantly contribute to the creation of additional tracks in the PADC detector. The present study tests the stability of the neutron dose determination algorithm of the personal neutron dosemeter system in operation at PSI at different radon gas exposures. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Weber, Damien C; Ares, Carmen; Lomax, Antony J; Kurtz, John M
2006-01-01
Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered. PMID:16857055
Pérez-Cebrián, M; Font-Noguera, I; Doménech-Moral, L; Bosó-Ribelles, V; Romero-Boyero, P; Poveda-Andrés, J L
2011-01-01
To assess the efficacy of a new quality control strategy based on daily randomised sampling and monitoring a Sentinel Surveillance System (SSS) medication cart, in order to identify medication errors and their origin at different levels of the process. Prospective quality control study with one year follow-up. A SSS medication cart was randomly selected once a week and double-checked before dispensing medication. Medication errors were recorded before it was taken to the relevant hospital ward. Information concerning complaints after receiving medication and 24-hour monitoring were also noted. Type and origin error data were assessed by a Unit Dose Quality Control Group, which proposed relevant improvement measures. Thirty-four SSS carts were assessed, including 5130 medication lines and 9952 dispensed doses, corresponding to 753 patients. Ninety erroneous lines (1.8%) and 142 mistaken doses (1.4%) were identified at the Pharmacy Department. The most frequent error was dose duplication (38%) and its main cause inappropriate management and forgetfulness (69%). Fifty medication complaints (6.6% of patients) were mainly due to new treatment at admission (52%), and 41 (0.8% of all medication lines), did not completely match the prescription (0.6% lines) as recorded by the Pharmacy Department. Thirty-seven (4.9% of patients) medication complaints due to changes at admission and 32 matching errors (0.6% medication lines) were recorded. The main cause also was inappropriate management and forgetfulness (24%). The simultaneous recording of incidences due to complaints and new medication coincided in 33.3%. In addition, 433 (4.3%) of dispensed doses were returned to the Pharmacy Department. After the Unit Dose Quality Control Group conducted their feedback analysis, 64 improvement measures for Pharmacy Department nurses, 37 for pharmacists, and 24 for the hospital ward were introduced. The SSS programme has proven to be useful as a quality control strategy to identify Unit Dose Distribution System errors at initial, intermediate and final stages of the process, improving the involvement of the Pharmacy Department and ward nurses. Copyright © 2009 SEFH. Published by Elsevier Espana. All rights reserved.
SU-E-T-268: Proton Radiosurgery End-To-End Testing Using Lucy 3D QA Phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, D; Gordon, I; Ghebremedhin, A
2014-06-01
Purpose: To check the overall accuracy of proton radiosurgery treatment delivery using ready-made circular collimator inserts and fixed thickness compensating boluses. Methods: Lucy 3D QA phantom (Standard Imaging Inc. WI, USA) inserted with GaFchromicTM film was irradiated with laterally scattered and longitudinally spread-out 126.8 MeV proton beams. The tests followed every step in the proton radiosurgery treatment delivery process: CT scan (GE Lightspeed VCT), target contouring, treatment planning (Odyssey 5.0, Optivus, CA), portal calibration, target localization using robotic couch with image guidance and dose delivery at planned gantry angles. A 2 cm diameter collimator insert in a 4 cm diametermore » radiosurgery cone and a 1.2 cm thick compensating flat bolus were used for all beams. Film dosimetry (RIT114 v5.0, Radiological Imaging Technology, CO, USA) was used to evaluate the accuracy of target localization and relative dose distributions compared to those calculated by the treatment planning system. Results: The localization accuracy was estimated by analyzing the GaFchromic films irradiated at gantry 0, 90 and 270 degrees. We observed 0.5 mm shift in lateral direction (patient left), ±0.9 mm shift in AP direction and ±1.0 mm shift in vertical direction (gantry dependent). The isodose overlays showed good agreement (<2mm, 50% isodose lines) between measured and calculated doses. Conclusion: Localization accuracy depends on gantry sag, CT resolution and distortion, DRRs from treatment planning computer, localization accuracy of image guidance system, fabrication of ready-made aperture and cone housing. The total deviation from the isocenter was 1.4 mm. Dose distribution uncertainty comes from distal end error due to bolus and CT density, in addition to localization error. The planned dose distribution was well matched (>90%) to the measured values 2%/2mm criteria. Our test showed the robustness of our proton radiosurgery treatment delivery system using ready-made collimator inserts and fixed thickness compensating boluses.« less
An empirical model for calculation of the collimator contamination dose in therapeutic proton beams
NASA Astrophysics Data System (ADS)
Vidal, M.; De Marzi, L.; Szymanowski, H.; Guinement, L.; Nauraye, C.; Hierso, E.; Freud, N.; Ferrand, R.; François, P.; Sarrut, D.
2016-02-01
Collimators are used as lateral beam shaping devices in proton therapy with passive scattering beam lines. The dose contamination due to collimator scattering can be as high as 10% of the maximum dose and influences calculation of the output factor or monitor units (MU). To date, commercial treatment planning systems generally use a zero-thickness collimator approximation ignoring edge scattering in the aperture collimator and few analytical models have been proposed to take scattering effects into account, mainly limited to the inner collimator face component. The aim of this study was to characterize and model aperture contamination by means of a fast and accurate analytical model. The entrance face collimator scatter distribution was modeled as a 3D secondary dose source. Predicted dose contaminations were compared to measurements and Monte Carlo simulations. Measurements were performed on two different proton beam lines (a fixed horizontal beam line and a gantry beam line) with divergent apertures and for several field sizes and energies. Discrepancies between analytical algorithm dose prediction and measurements were decreased from 10% to 2% using the proposed model. Gamma-index (2%/1 mm) was respected for more than 90% of pixels. The proposed analytical algorithm increases the accuracy of analytical dose calculations with reasonable computation times.
Depth dose and off-axis characteristics of TLD in therapeutic pion beams.
Hogstrom, K R; Irifune, T
1980-07-01
The thermoluminescent (TL) response of LiF (TLD-100, TLD-600, TLD-700) and Li2B4O7 (TLD-800) has been measured as a function of depth and off-axis position in a therapeutic negative-pion beam in order to evaluate their usefulness in pion radiotherapy. TLD-100, TLD-600, and TLD-800 have been shown to be of little use as in vivo dosemeters because the neutron kerma relative to that in tissue changes grossly with depth. The neutron source comes primarily from pion absorption in the lead-alloy collimator. The 200 degrees C TLD-700 response agrees well with the depth dose spectra, except for small changes due to the varying linear energy transfer (LET) distributions. This variation can be partially accounted for by incorporating the known LET response of LiF. The 260 degrees C peak of TLD-700 has been found to be approximately four times more sensitive than the 200 degrees C peak to high LET dose. Using a simple model of the LET responses, the measured 200 degrees C and 260 degrees C peaks predict total dose within +/- 4% and high LET dose within +/- 50%, therefore indicating TLD-700 to be a good in vivo dosemeter for total dose but only an indicator of high LET dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T; Adamovics, J; Oldham, M
Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less
Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang
The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff = 7.56) versus water (Z eff = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redler, G; Templeton, A; Turian, J
Purpose: The portability of Xoft Axxent Electronic Brachytherapy (EBx) System has made it a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low energy (50kVp) of the X-ray source makes the shielding easy, but also means its dose distribution is sensitive to the medium’s composition. Current treatment planning systems (TPS) typically assume homogenous water for brachytherapy dose calculations, including the pre-calculated atlas plans for the Xoft IORT cases. However, Xoft recommends using saline to fill the balloon applicator. This study investigates the dosimetric difference due to the increased effective atomic number (Zeff) from water (7.42)more » to saline (7.56). Methods: The diameter of the balloon applicators ranges from 3–6cm, with 4cm being most frequently used. For the 4-cm and 6-cm diameter applicators, MCNP Monte Carlo program was used to calculate the dose at the surface (Ds) of the middle section of the balloon and 1 cm away (D1cm) for water- and saline-filled balloons: one plan with a single dwell at the center and another with multiple dwells as in the atlas plans. The single dwell plan is a simple estimation of the dosimetry, while the atlas plan is representative of the actual dose distribution. Results: The single-dwell plan showed a 5.1% and 6.1% decrease in Ds for the 4- and 6-cm applicators, respectively, due to the saline. The atlas plan showed similar Results: 4.8% and 6.4% decrease, respectively. The decrease in D1cm is 4.3%–5.2% and 3.3%–5.3s% in the single-dwell and atlas plans, respectively, for the 4- and 6-cm applicator. Conclusion: The dosimetric effect introduced by saline is on the order of 5%. This effect should be taken into account during both treatment planning and patient outcome studies.« less
SU-E-T-41: Analysis of GI Dose Variability Due to Intrafraction Setup Variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, J; Wolfgang, J
2014-06-01
Purpose: Proton SBRT (stereotactic body radiation therapy) can be an effective modality for treatment of gastrointestinal tumors, but limited in practice due to sensitivity with respect to variation in the RPL (radiological path length). Small, intrafractional shifts in patient anatomy can lead to significant changes in the dose distribution. This study describes a tool designed to visualize uncertainties in radiological depth in patient CT's and aid in treatment plan design. Methods: This project utilizes the Shadie toolkit, a GPU-based framework that allows for real-time interactive calculations for volume visualization. Current SBRT simulation practice consists of a serial CT acquisition formore » the assessment of inter- and intra-fractional motion utilizing patient specific immobilization systems. Shadie was used to visualize potential uncertainties, including RPL variance and changes in gastric content. Input for this procedure consisted of two patient CT sets, contours of the desired organ, and a pre-calculated dose. In this study, we performed rigid registrations between sets of 4DCT's obtained from a patient with varying setup conditions. Custom visualizations are written by the user in Shadie, permitting one to create color-coded displays derived from a calculation along each ray. Results: Serial CT data acquired on subsequent days was analyzed for variation in RPB and gastric content. Specific shaders were created to visualize clinically relevant features, including RPL (radiological path length) integrated up to organs of interest. Using pre-calculated dose distributions and utilizing segmentation masks as additional input allowed us to further refine the display output from Shadie and create tools suitable for clinical usage. Conclusion: We have demonstrated a method to visualize potential uncertainty for intrafractional proton radiotherapy. We believe this software could prove a useful tool to guide those looking to design treatment plans least insensitive to motion for patients undergoing proton SBRT in the GI tract.« less
Derivation of mean dose tolerances for new fractionation schemes and treatment modalities
NASA Astrophysics Data System (ADS)
Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan
2018-02-01
Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perko, Z; Bortfeld, T; Hong, T
Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less
SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imae, T; Haga, A; Saotome, N
Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less
Zavgorodni, S F
2001-09-01
With modern urbanization trends, situations occur where a general-purpose multi-storey building would have to be constructed adjacent to a radiotherapy facility. In cases where the building would not be in the primary x-ray beam, "skyshine" radiation is normally accounted for. The radiation scattered from the roof side-wise towards the building can also be a major contributing factor. However, neither the NCRP reports nor recently published literature considered this. The current paper presents a simple formula to calculate the dose contribution from scattered radiation in such circumstances. This equation includes workload, roof thickness, field size, distance to the reference point and a normalized angular photon distribution function f(theta), where theta is the angle between central axis of the primary beam and photon direction. The latter was calculated by the Monte Carlo method (EGS4 code) for each treatment machine in our department. For angles theta exceeding approximately 20 degrees (i.e., outside the primary beam and its penumbra) the angular distribution function f(theta) was found to have little dependence on the shielding barrier thickness and the beam energy. An analytical approximation of this function has been obtained. Measurements have been performed to verify this calculation technique. An agreement within 40% was found between calculated and measured dose rates. The latter combined the scattered radiation and the dose from "skyshine" radiation. Some overestimation of the dose resulted from uncertainties in the radiotherapy building drawings and in evaluation of the "skyshine" contribution.
NASA Astrophysics Data System (ADS)
Haneda, K.
2016-04-01
The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.
Thomadsen, Bruce; Nath, Ravinder; Bateman, Fred B; Farr, Jonathan; Glisson, Cal; Islam, Mohammad K; LaFrance, Terry; Moore, Mary E; George Xu, X; Yudelev, Mark
2014-11-01
External-beam radiation therapy mostly uses high-energy photons (x-rays) produced by medical accelerators, but many facilities now use proton beams, and a few use fast-neutron beams. High-energy photons offer several advantages over lower-energy photons in terms of better dose distributions for deep-seated tumors, lower skin dose, less sensitivity to tissue heterogeneities, etc. However, for beams operating at or above 10 MV, some of the materials in the accelerator room and the radiotherapy patient become radioactive due primarily to photonuclear reactions and neutron capture, exposing therapy staff and patients to unwanted radiation dose. Some recent advances in radiotherapy technology require treatments using a higher number of monitor units and monitor-unit rates for the same delivered dose, and compared to the conventional treatment techniques and fractionation schemes, the activation dose to personnel can be substantially higher. Radiotherapy treatments with proton and neutron beams all result in activated materials in the treatment room. In this report, the authors review critically the published literature on radiation exposures from induced radioactivity in radiotherapy. They conclude that the additional exposure to the patient due to induced radioactivity is negligible compared to the overall radiation exposure as a part of the treatment. The additional exposure to the staff due to induced activity from photon beams is small at an estimated level of about 1 to 2 mSv y. This is well below the allowed occupational exposure limits. Therefore, the potential hazard to staff from induced radioactivity in the use of high-energy x-rays is considered to be low, and no specific actions are considered necessary or mandatory. However, in the spirit of the "As Low as Reasonably Achievable (ALARA)" program, some reasonable steps are recommended that can be taken to reduce this small exposure to an even lower level. The dose reduction strategies suggested should be followed only if these actions are considered reasonable and practical in the individual clinics. Therapists working with proton beam and neutron beam units handle treatment devices that do become radioactive, and they should wear extremity monitors and make handling apertures and boluses their last task upon entering the room following treatment. Personnel doses from neutron-beam units can approach regulatory limits depending on the number of patients and beams, and strategies to reduce doses should be followed.
In vivo dose verification method in catheter based high dose rate brachytherapy.
Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas
2017-12-01
In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J
2014-01-06
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
NASA Astrophysics Data System (ADS)
Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.
2014-01-01
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, S. A. M.; Ansbacher, W.; Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 3P6
2013-01-15
Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are usedmore » to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements support the dose perturbations demonstrated by Monte Carlo and Acuros XB data. Conclusions: Acuros XB is shown to perform as well as Monte Carlo methods and better than existing clinical algorithms for dose calculations involving high-density volumes.« less
Dosage and Distribution in Morphosyntax Intervention: Current Evidence and Future Needs
ERIC Educational Resources Information Center
Proctor-Williams, Kerry
2009-01-01
This article reviews the effectiveness of dose forms and the efficacy of dosage and distribution in morphosyntax intervention for children. Dose forms include the commonly used techniques, procedures, and intervention contexts that constitute teaching episodes; dosage includes the quantitative measures of dose, dose frequency, total intervention…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J. G. H.; Miksys, N.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca
2014-01-15
Purpose: To investigate methods of generating accurate patient-specific computational phantoms for the Monte Carlo calculation of lung brachytherapy patient dose distributions. Methods: Four metallic artifact mitigation methods are applied to six lung brachytherapy patient computed tomography (CT) images: simple threshold replacement (STR) identifies high CT values in the vicinity of the seeds and replaces them with estimated true values; fan beam virtual sinogram replaces artifact-affected values in a virtual sinogram and performs a filtered back-projection to generate a corrected image; 3D median filter replaces voxel values that differ from the median value in a region of interest surrounding the voxelmore » and then applies a second filter to reduce noise; and a combination of fan beam virtual sinogram and STR. Computational phantoms are generated from artifact-corrected and uncorrected images using several tissue assignment schemes: both lung-contour constrained and unconstrained global schemes are considered. Voxel mass densities are assigned based on voxel CT number or using the nominal tissue mass densities. Dose distributions are calculated using the EGSnrc user-code BrachyDose for{sup 125}I, {sup 103}Pd, and {sup 131}Cs seeds and are compared directly as well as through dose volume histograms and dose metrics for target volumes surrounding surgical sutures. Results: Metallic artifact mitigation techniques vary in ability to reduce artifacts while preserving tissue detail. Notably, images corrected with the fan beam virtual sinogram have reduced artifacts but residual artifacts near sources remain requiring additional use of STR; the 3D median filter removes artifacts but simultaneously removes detail in lung and bone. Doses vary considerably between computational phantoms with the largest differences arising from artifact-affected voxels assigned to bone in the vicinity of the seeds. Consequently, when metallic artifact reduction and constrained tissue assignment within lung contours are employed in generated phantoms, this erroneous assignment is reduced, generally resulting in higher doses. Lung-constrained tissue assignment also results in increased doses in regions of interest due to a reduction in the erroneous assignment of adipose to voxels within lung contours. Differences in dose metrics calculated for different computational phantoms are sensitive to radionuclide photon spectra with the largest differences for{sup 103}Pd seeds and smallest but still considerable differences for {sup 131}Cs seeds. Conclusions: Despite producing differences in CT images, dose metrics calculated using the STR, fan beam + STR, and 3D median filter techniques produce similar dose metrics. Results suggest that the accuracy of dose distributions for permanent implant lung brachytherapy is improved by applying lung-constrained tissue assignment schemes to metallic artifact corrected images.« less
White, Shane A; Landry, Guillaume; Fonseca, Gabriel Paiva; Holt, Randy; Rusch, Thomas; Beaulieu, Luc; Verhaegen, Frank; Reniers, Brigitte
2014-06-01
The recently updated guidelines for dosimetry in brachytherapy in TG-186 have recommended the use of model-based dosimetry calculations as a replacement for TG-43. TG-186 highlights shortcomings in the water-based approach in TG-43, particularly for low energy brachytherapy sources. The Xoft Axxent is a low energy (<50 kV) brachytherapy system used in accelerated partial breast irradiation (APBI). Breast tissue is a heterogeneous tissue in terms of density and composition. Dosimetric calculations of seven APBI patients treated with Axxent were made using a model-based Monte Carlo platform for a number of tissue models and dose reporting methods and compared to TG-43 based plans. A model of the Axxent source, the S700, was created and validated against experimental data. CT scans of the patients were used to create realistic multi-tissue/heterogeneous models with breast tissue segmented using a published technique. Alternative water models were used to isolate the influence of tissue heterogeneity and backscatter on the dose distribution. Dose calculations were performed using Geant4 according to the original treatment parameters. The effect of the Axxent balloon applicator used in APBI which could not be modeled in the CT-based model, was modeled using a novel technique that utilizes CAD-based geometries. These techniques were validated experimentally. Results were calculated using two dose reporting methods, dose to water (Dw,m) and dose to medium (Dm,m), for the heterogeneous simulations. All results were compared against TG-43-based dose distributions and evaluated using dose ratio maps and DVH metrics. Changes in skin and PTV dose were highlighted. All simulated heterogeneous models showed a reduced dose to the DVH metrics that is dependent on the method of dose reporting and patient geometry. Based on a prescription dose of 34 Gy, the average D90 to PTV was reduced by between ~4% and ~40%, depending on the scoring method, compared to the TG-43 result. Peak skin dose is also reduced by 10%-15% due to the absence of backscatter not accounted for in TG-43. The balloon applicator also contributed to the reduced dose. Other ROIs showed a difference depending on the method of dose reporting. TG-186-based calculations produce results that are different from TG-43 for the Axxent source. The differences depend strongly on the method of dose reporting. This study highlights the importance of backscatter to peak skin dose. Tissue heterogeneities, applicator, and patient geometries demonstrate the need for a more robust dose calculation method for low energy brachytherapy sources.
Dose assessment in environmental radiological protection: State of the art and perspectives.
Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G
2017-09-01
Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Impact of the Grid Size on TomoTherapy for Prostate Cancer
Kawashima, Motohiro; Kawamura, Hidemasa; Onishi, Masahiro; Takakusagi, Yosuke; Okonogi, Noriyuki; Okazaki, Atsushi; Sekihara, Tetsuo; Ando, Yoshitaka; Nakano, Takashi
2017-01-01
Discretization errors due to the digitization of computed tomography images and the calculation grid are a significant issue in radiation therapy. Such errors have been quantitatively reported for a fixed multifield intensity-modulated radiation therapy using traditional linear accelerators. The aim of this study is to quantify the influence of the calculation grid size on the dose distribution in TomoTherapy. This study used ten treatment plans for prostate cancer. The final dose calculation was performed with “fine” (2.73 mm) and “normal” (5.46 mm) grid sizes. The dose distributions were compared from different points of view: the dose-volume histogram (DVH) parameters for planning target volume (PTV) and organ at risk (OAR), the various indices, and dose differences. The DVH parameters were used Dmax, D2%, D2cc, Dmean, D95%, D98%, and Dmin for PTV and Dmax, D2%, and D2cc for OARs. The various indices used were homogeneity index and equivalent uniform dose for plan evaluation. Almost all of DVH parameters for the “fine” calculations tended to be higher than those for the “normal” calculations. The largest difference of DVH parameters for PTV was Dmax and that for OARs was rectal D2cc. The mean difference of Dmax was 3.5%, and the rectal D2cc was increased up to 6% at the maximum and 2.9% on average. The mean difference of D95% for PTV was the smallest among the differences of the other DVH parameters. For each index, whether there was a significant difference between the two grid sizes was determined through a paired t-test. There were significant differences for most of the indices. The dose difference between the “fine” and “normal” calculations was evaluated. Some points around high-dose regions had differences exceeding 5% of the prescription dose. The influence of the calculation grid size in TomoTherapy is smaller than traditional linear accelerators. However, there was a significant difference. We recommend calculating the final dose using the “fine” grid size. PMID:28974860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X; Gao, H; Schuemann, J
2015-06-15
Purpose: The Monte Carlo (MC) method is a gold standard for dose calculation in radiotherapy. However, it is not a priori clear how many particles need to be simulated to achieve a given dose accuracy. Prior error estimate and stopping criterion are not well established for MC. This work aims to fill this gap. Methods: Due to the statistical nature of MC, our approach is based on one-sample t-test. We design the prior error estimate method based on the t-test, and then use this t-test based error estimate for developing a simulation stopping criterion. The three major components are asmore » follows.First, the source particles are randomized in energy, space and angle, so that the dose deposition from a particle to the voxel is independent and identically distributed (i.i.d.).Second, a sample under consideration in the t-test is the mean value of dose deposition to the voxel by sufficiently large number of source particles. Then according to central limit theorem, the sample as the mean value of i.i.d. variables is normally distributed with the expectation equal to the true deposited dose.Third, the t-test is performed with the null hypothesis that the difference between sample expectation (the same as true deposited dose) and on-the-fly calculated mean sample dose from MC is larger than a given error threshold, in addition to which users have the freedom to specify confidence probability and region of interest in the t-test based stopping criterion. Results: The method is validated for proton dose calculation. The difference between the MC Result based on the t-test prior error estimate and the statistical Result by repeating numerous MC simulations is within 1%. Conclusion: The t-test based prior error estimate and stopping criterion are developed for MC and validated for proton dose calculation. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlsson Tedgren, A; Persson, M; Nilsson, J
Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less
Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit
2017-02-01
To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.
Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki
2017-11-01
Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Freudenberg, Robert; Wendisch, Maria; Runge, Roswitha; Wunderlich, Gerd; Kotzerke, Jörg
2012-12-01
Cellular radionuclide uptake increases the heterogeneity of absorbed dose to biological structures. Dose increase depends on uptake yield and emission characteristics of radioisotopes. We used an in vitro model to compare the impact of cellular uptake of (188)Re-perrhenate and (99m)Tc-pertechnetate on cellular survival. Rat thyroid PC Cl3 cells in culture were incubated with (188)Re or (99m)Tc in the presence or absence of perchlorate for 1 hour. Clonogenic cell survival was measured by colony formation. In addition, intracellular radionuclide uptake was quantified. Dose effect curves were established for (188)Re and (99m)Tc for various extra- and intracellular distributions of the radioactivity. In the presence of perchlorate, no uptake of radionuclides was detected and (188)Re reduced cell survival more efficiently than (99m)Tc. A(37), the activity that is necessary to yield 37% cell survival was 14 MBq/ml for (188)Re and 480 MBq/ml for (99m)Tc. In the absence of perchlorate, both radionuclides showed similar uptakes; however, A(37) was reduced by 30% for the beta-emitter and by 95% for (99m)Tc. The dose D(37) that yields 37% cell survival was between 2.3 and 2.8 Gy for both radionuclides. Uptake of (188)Re and (99m)Tc decreased cell survival. Intracellular (99m)Tc yielded a dose increase that was higher compared to (188)Re due to emitted Auger and internal conversion-electrons. Up to 5 Gy there was no difference in radiotoxicity of (188)Re and (99m)Tc. At doses higher than 5 Gy intracellular (99m)Tc became less radiotoxic than (188)Re, probably due to a non-uniform lognormal radionuclide uptake.
SU-E-T-465: Dose Calculation Method for Dynamic Tumor Tracking Using a Gimbal-Mounted Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, S; Inoue, T; Kurokawa, C
Purpose: Dynamic tumor tracking using the gimbal-mounted linac (Vero4DRT, Mitsubishi Heavy Industries, Ltd., Japan) has been available when respiratory motion is significant. The irradiation accuracy of the dynamic tumor tracking has been reported to be excellent. In addition to the irradiation accuracy, a fast and accurate dose calculation algorithm is needed to validate the dose distribution in the presence of respiratory motion because the multiple phases of it have to be considered. A modification of dose calculation algorithm is necessary for the gimbal-mounted linac due to the degrees of freedom of gimbal swing. The dose calculation algorithm for the gimbalmore » motion was implemented using the linear transformation between coordinate systems. Methods: The linear transformation matrices between the coordinate systems with and without gimbal swings were constructed using the combination of translation and rotation matrices. The coordinate system where the radiation source is at the origin and the beam axis along the z axis was adopted. The transformation can be divided into the translation from the radiation source to the gimbal rotation center, the two rotations around the center relating to the gimbal swings, and the translation from the gimbal center to the radiation source. After operating the transformation matrix to the phantom or patient image, the dose calculation can be performed as the no gimbal swing. The algorithm was implemented in the treatment planning system, PlanUNC (University of North Carolina, NC). The convolution/superposition algorithm was used. The dose calculations with and without gimbal swings were performed for the 3 × 3 cm{sup 2} field with the grid size of 5 mm. Results: The calculation time was about 3 minutes per beam. No significant additional time due to the gimbal swing was observed. Conclusions: The dose calculation algorithm for the finite gimbal swing was implemented. The calculation time was moderate.« less
Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael
2016-09-08
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial. We use an in-house-built inexpensive thin-film Cadmium Telluride (CdTe) photodetector to study this effect at the gold-tissue interface and verify our experimental results with Monte Carlo (MC) modeling. Three-micron thick thin-film CdTe photodetectors were fabricated in our lab. One-, ten- or one hundred-micron thick gold foils placed in a tissue-equivalent-phantom were irradiated with a clinical Ir-192 high-dose-rate (HDR) source and current measured with a CdTe detector in each case was compared with the current measured for all uniform tissue-equivalent phantom. Percentage signal enhancement (PSE) due to each gold foil was then compared against MC modeled percentage dose enhancement (PDE), obtained from the geometry mimicking the experimental setup. The experimental PSEs due to 1, 10, and 100 μm thick gold foils at the closest measured distance of 12.5μm from the interface were 42.6 ± 10.8 , 137.0 ± 11.9, and 203.0 ± 15.4, respectively. The corresponding MC modeled PDEs were 38.1 ± 1, 164 ± 1, and 249 ± 1, respectively. The experimental and MC modeled values showed a closer agreement at the larger distances from the interface. The dose enhancement in the vicinity of gold-tissue interface was successfully measured using an in-house-built, high-resolution CdTe-based photodetector and validated with MC simulations. A close agreement between experimental and the MC modeled results shows that CdTe detector can be utilized for mapping interface dose distribution encountered in the application of ionizing radiation. © 2016 The Authors.
Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.
Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A
1999-08-01
BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.
Is there a place for quantitative risk assessment?
Hall, Eric J
2009-06-01
The use of ionising radiations is so well established, especially in the practice of medicine, that it is impossible to imagine contemporary life without them. At the same time, ionising radiations are a known and proven human carcinogen. Exposure to radiation in some contexts elicits fear and alarm (nuclear power for example) while in other situations, until recently at least, it was accepted with alacrity (diagnostic x-rays for example). This non-uniform reaction to the potential hazards of radiation highlights the importance of quantitative risk estimates, which are necessary to help put things into perspective. Three areas will be discussed where quantitative risk estimates are needed and where uncertainties and limitations are a problem. First, the question of diagnostic x-rays. CT usage over the past quarter of a century has increased about 12 fold in the UK and more than 20 fold in the US. In both countries, more than 90% of the collective population dose from diagnostic x-rays comes from the few high dose procedures, such as interventional radiology, CT scans, lumbar spine x-rays and barium enemas. These all involve doses close to the lower limit at which there are credible epidemiological data for an excess cancer incidence. This is a critical question; what is the lowest dose at which there is good evidence of an elevated cancer incidence? Without low dose risk estimates the risk-benefit ratio of diagnostic procedures cannot be assessed. Second, the use of new techniques in radiation oncology. IMRT is widely used to obtain a more conformal dose distribution, particularly in children. It results in a larger total body dose, due to an increased number of monitor units and to the application of more radiation fields. The Linacs used today were not designed for IMRT and are based on leakage standards that were decided decades ago. It will be difficult and costly to reduce leakage from treatment machines, and a necessary first step is to refine the available radiation risks at the fractionated high doses characteristic of radiotherapy. The dose response for carcinogenesis is known for single doses up to about 2 Sv from the A-bomb data, but the shape at higher fractionated doses is uncertain. Third, the proliferation of proton facilities. The improved dose distribution made possible by charged particle beams has created great interest and led to the design and building of many expensive proton centres. However, due to technical problems, most facilities use passive scattering, rather than spot scanning, to spread the pencil beam to cover realistic target volumes. This process, together with the methods used of final collimation, results in substantial total body doses of neutrons. The relative biological effectiveness of these neutrons is not well known, and the risk estimates are therefore uncertain. Unless and until the risks are known with more certainty, it is difficult to know how much effort and cost should be directed towards reducing, or eliminating, the neutron doses. These three examples, where uncertainties in quantitative risk estimates result in important practical problems, will be discussed.
NASA Astrophysics Data System (ADS)
Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.
2014-05-01
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
Hälg, R A; Besserer, J; Boschung, M; Mayer, S; Lomax, A J; Schneider, U
2014-05-21
In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.
MCNP-based computational model for the Leksell gamma knife.
Trnka, Jiri; Novotny, Josef; Kluson, Jaroslav
2007-01-01
We have focused on the usage of MCNP code for calculation of Gamma Knife radiation field parameters with a homogenous polystyrene phantom. We have investigated several parameters of the Leksell Gamma Knife radiation field and compared the results with other studies based on EGS4 and PENELOPE code as well as the Leksell Gamma Knife treatment planning system Leksell GammaPlan (LGP). The current model describes all 201 radiation beams together and simulates all the sources in the same time. Within each beam, it considers the technical construction of the source, the source holder, collimator system, the spherical phantom, and surrounding material. We have calculated output factors for various sizes of scoring volumes, relative dose distributions along basic planes including linear dose profiles, integral doses in various volumes, and differential dose volume histograms. All the parameters have been calculated for each collimator size and for the isocentric configuration of the phantom. We have found the calculated output factors to be in agreement with other authors' works except the case of 4 mm collimator size, where averaging over the scoring volume and statistical uncertainties strongly influences the calculated results. In general, all the results are dependent on the choice of the scoring volume. The calculated linear dose profiles and relative dose distributions also match independent studies and the Leksell GammaPlan, but care must be taken about the fluctuations within the plateau, which can influence the normalization, and accuracy in determining the isocenter position, which is important for comparing different dose profiles. The calculated differential dose volume histograms and integral doses have been compared with data provided by the Leksell GammaPlan. The dose volume histograms are in good agreement as well as integral doses calculated in small calculation matrix volumes. However, deviations in integral doses up to 50% can be observed for large volumes such as for the total skull volume. The differences observed in treatment of scattered radiation between the MC method and the LGP may be important in this case. We have also studied the influence of differential direction sampling of primary photons and have found that, due to the anisotropic sampling, doses around the isocenter deviate from each other by up to 6%. With caution about the details of the calculation settings, it is possible to employ the MCNP Monte Carlo code for independent verification of the Leksell Gamma Knife radiation field properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; Devpura, S; Feghali, K
2016-06-15
Purpose: To investigate correlation of normal lung CT density changes with dose accuracy and outcome after SBRT for patients with early stage lung cancer. Methods: Dose distributions for patients originally planned and treated using a 1-D pencil beam-based (PB-1D) dose algorithm were retrospectively recomputed using algorithms: 3-D pencil beam (PB-3D), and model-based Methods: AAA, Acuros XB (AXB), and Monte Carlo (MC). Prescription dose was 12 Gy × 4 fractions. Planning CT images were rigidly registered to the followup CT datasets at 6–9 months after treatment. Corresponding dose distributions were mapped from the planning to followup CT images. Following the methodmore » of Palma et al .(1–2), Hounsfield Unit (HU) changes in lung density in individual, 5 Gy, dose bins from 5–45 Gy were assessed in the peri-tumor region, defined as a uniform, 3 cm expansion around the ITV(1). Results: There is a 10–15% displacement of the high dose region (40–45 Gy) with the model-based algorithms, relative to the PB method, due to the electron scattering of dose away from the tumor into normal lung tissue (Fig.1). Consequently, the high-dose lung region falls within the 40–45 Gy dose range, causing an increase in HU change in this region, as predicted by model-based algorithms (Fig.2). The patient with the highest HU change (∼110) had mild radiation pneumonitis, and the patient with HU change of ∼80–90 had shortness of breath. No evidence of pneumonitis was observed for the 3 patients with smaller CT density changes (<50 HU). Changes in CT densities, and dose-response correlation, as computed with model-based algorithms, are in excellent agreement with the findings of Palma et al. (1–2). Conclusion: Dose computed with PB (1D or 3D) algorithms was poorly correlated with clinically relevant CT density changes, as opposed to model-based algorithms. A larger cohort of patients is needed to confirm these results. This work was supported in part by a grant from Varian Medical Systems, Palo Alto, CA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, C; Schultheiss, T
Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less
Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R
2018-06-01
This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.
Lee, Tae Kyu; Sandison, George A
2003-01-21
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, chi, in the algorithm to be determined in advance of calculation.
Duch, M A; Ginjaume, M; Chakkor, H; Ortega, X; Jornet, N; Ribas, M
1998-06-01
In total body irradiation (TBI) treatments in vivo dosimetry is recommended because it makes it possible to ensure the accuracy and quality control of dose delivery. The aim of this work is to set up an in vivo thermoluminescence dosimetry (TLD) system to measure the dose distribution during the TBI technique used prior to bone marrow transplant. Some technical problems due to the presence of lung shielding blocks are discussed. Irradiations were performed in the Hospital de la Santa Creu i Sant Pau by means of a Varian Clinac-1800 linear accelerator with 18 MV X-ray beams. Different TLD calibration experiments were set up to optimize in vivo dose assessment and to analyze the influence on dose measurement of shielding blocks. An algorithm to estimate midplane doses from entrance and exit doses is proposed and the estimated dose in critical organs is compared to internal dose measurements performed in an Alderson anthropomorphic phantom. The predictions of the dose algorithm, even in heterogeneous zones of the body such as the lungs, are in good agreement with the experimental results obtained with and without shielding blocks. The differences between measured and predicted values are in all cases lower than 2%. The TLD system described in this work has been proven to be appropriate for in vivo dosimetry in TBI irradiations. The described calibration experiments point out the difficulty of calibrating an in vivo dosimetry system when lung shielding blocks are used.
The energy-dependent electron loss model: backscattering and application to heterogeneous slab media
NASA Astrophysics Data System (ADS)
Lee, Tae Kyu; Sandison, George A.
2003-01-01
Electron backscattering has been incorporated into the energy-dependent electron loss (EL) model and the resulting algorithm is applied to predict dose deposition in slab heterogeneous media. This algorithm utilizes a reflection coefficient from the interface that is computed on the basis of Goudsmit-Saunderson theory and an average energy for the backscattered electrons based on Everhart's theory. Predictions of dose deposition in slab heterogeneous media are compared to the Monte Carlo based dose planning method (DPM) and a numerical discrete ordinates method (DOM). The slab media studied comprised water/Pb, water/Al, water/bone, water/bone/water, and water/lung/water, and incident electron beam energies of 10 MeV and 18 MeV. The predicted dose enhancement due to backscattering is accurate to within 3% of dose maximum even for lead as the backscattering medium. Dose discrepancies at large depths beyond the interface were as high as 5% of dose maximum and we speculate that this error may be attributed to the EL model assuming a Gaussian energy distribution for the electrons at depth. The computational cost is low compared to Monte Carlo simulations making the EL model attractive as a fast dose engine for dose optimization algorithms. The predictive power of the algorithm demonstrates that the small angle scattering restriction on the EL model can be overcome while retaining dose calculation accuracy and requiring only one free variable, χ, in the algorithm to be determined in advance of calculation.
NASA Astrophysics Data System (ADS)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2018-03-01
Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).
On the nuclear halo of a proton pencil beam stopping in water.
Gottschalk, Bernard; Cascio, Ethan W; Daartz, Juliane; Wagner, Miles S
2015-07-21
The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose energy according to the Beth-Bloch formula. If that is correct, it is no longer necessary to measure T(w), and the dominant role played by the 'Bragg peak chamber' vanishes. For mathematical and other details we will refer to Gottschalk et al (2014, arXiv: 1409.1938v1), a long technical report of this project.
On the nuclear halo of a proton pencil beam stopping in water
NASA Astrophysics Data System (ADS)
Gottschalk, Bernard; Cascio, Ethan W.; Daartz, Juliane; Wagner, Miles S.
2015-07-01
The dose distribution of a proton beam stopping in water has components due to basic physics and may have others from beam contamination. We propose the concise terms core for the primary beam, halo (see Pedroni et al 2005 Phys. Med. Biol. 50 541-61) for the low dose region from charged secondaries, aura for the low dose region from neutrals, and spray for beam contamination. We have measured the dose distribution in a water tank at 177 MeV under conditions where spray, therefore radial asymmetry, is negligible. We used an ADCL calibrated thimble chamber and a Faraday cup calibrated integral beam monitor so as to obtain immediately the absolute dose per proton. We took depth scans at fixed distances from the beam centroid rather than radial scans at fixed depths. That minimizes the signal range for each scan and better reveals the structure of the core and halo. Transitions from core to halo to aura are already discernible in the raw data. The halo has components attributable to coherent and incoherent nuclear reactions. Due to elastic and inelastic scattering by the nuclear force, the Bragg peak persists to radii larger than can be accounted for by Molière single scattering. The radius of the incoherent component, a dose bump around midrange, agrees with the kinematics of knockout reactions. We have fitted the data in two ways. The first is algebraic or model dependent (MD) as far as possible, and has 25 parameters. The second, using 2D cubic spline regression, is model independent. Optimal parameterization for treatment planning will probably be a hybrid of the two, and will of course require measurements at several incident energies. The MD fit to the core term resembles that of the PSI group (Pedroni et al 2005), which has been widely emulated. However, we replace their T(w), a mass stopping power which mixes electromagnetic (EM) and nuclear effects, with one that is purely EM, arguing that protons that do not undergo hard single scatters continue to lose energy according to the Beth-Bloch formula. If that is correct, it is no longer necessary to measure T(w), and the dominant role played by the ‘Bragg peak chamber’ vanishes. For mathematical and other details we will refer to Gottschalk et al (2014, arXiv: 1409.1938v1), a long technical report of this project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter
Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2} approaches normal tissue levels, the therapeutic effect is improved so that the normal tissue absorbed doses can be decreased by more than 95%, while retaining TCP, in the most favorable scenario and by up to about 80% with oxygen levels previously achieved in vivo, when the least favourable oxygenation case is used as starting point. The major difference occurs in poorly oxygenated cells. This is also where the pO{sub 2}-dependence of the oxygen enhancement ratio is maximal. Conclusions: Improved tumor oxygenation together with increased radionuclide uptake show great potential for optimising treatment strategies, leaving room for successive treatments, or lowering absorbed dose to normal tissues, due to increased tumor response. Further studies of the concomitant use of antiangiogenic drugs and radionuclide therapy therefore appear merited.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeonov, Y; Penchev, P; Ringbaek, T Printz
2016-06-15
Purpose: Active raster scanning in particle therapy results in highly conformal dose distributions. Treatment time, however, is relatively high due to the large number of different iso-energy layers used. By using only one energy and the so called 3D range-modulator irradiation times of a few seconds only can be achieved, thus making delivery of homogeneous dose to moving targets (e.g. lung cancer) more reliable. Methods: A 3D range-modulator consisting of many pins with base area of 2.25 mm2 and different lengths was developed and manufactured with rapid prototyping technique. The form of the 3D range-modulator was optimised for a sphericalmore » target volume with 5 cm diameter placed at 25 cm in a water phantom. Monte Carlo simulations using the FLUKA package were carried out to evaluate the modulating effect of the 3D range-modulator and simulate the resulting dose distribution. The fine and complicated contour form of the 3D range-modulator was taken into account by a specially programmed user routine. Additionally FLUKA was extended with the capability of intensity modulated scanning. To verify the simulation results dose measurements were carried out at the Heidelberg Ion Therapy Center (HIT) with a 400.41 MeV 12C beam. Results: The high resolution measurements show that the 3D range-modulator is capable of producing homogeneous 3D conformal dose distributions, simultaneously reducing significantly irradiation time. Measured dose is in very good agreement with the previously conducted FLUKA simulations, where slight differences were traced back to minor manufacturing deviations from the perfect optimised form. Conclusion: Combined with the advantages of very short treatment time the 3D range-modulator could be an alternative to treat small to medium sized tumours (e.g. lung metastasis) with the same conformity as full raster-scanning treatment. Further simulations and measurements of more complex cases will be conducted to investigate the full potential of the 3D range-modulator.« less
NASA Astrophysics Data System (ADS)
Reed, Joshua L.
Permanent implants of low-energy photon-emitting brachytherapy sources are used to treat a variety of cancers. Individual source models must be separately characterized due to their unique geometry, materials, and radionuclides, which all influence their dose distributions. Thermoluminescent dosimeters (TLDs) are often used for dose measurements around low-energy photon-emitting brachytherapy sources. TLDs are typically calibrated with higher energy sources such as 60Co, which requires a correction for the change in the response of the TLDs as a function of photon energy. These corrections have historically been based on TLD response to x ray bremsstrahlung spectra instead of to brachytherapy sources themselves. This work determined the TLD intrinsic energy dependence for 125I and 103Pd sources relative to 60Co, which allows for correction of TLD measurements of brachytherapy sources with factors specific to their energy spectra. Traditional brachytherapy sources contain mobile internal components and large amounts of high-Z material such as radio-opaque markers and titanium encapsulations. These all contribute to perturbations and uncertainties in the dose distribution around the source. The CivaString is a new elongated 103Pd brachytherapy source with a fixed internal geometry, polymer encapsulation, and lengths ranging from 1 to 6 cm, which offers advantages over traditional source designs. This work characterized the CivaString source and the results facilitated the formal approval of this source for use in clinical treatments. Additionally, the accuracy of a superposition technique for dose calculation around the sources with lengths >1 cm was verified. Advances in diagnostic techniques are paving the way for focal brachytherapy in which the dose is intentionally modulated throughout the target volume to focus on subvolumes that contain cancer cells. Brachytherapy sources with variable longitudinal strength (VLS) are a promising candidate for use in focal brachytherapy treatments given their customizable activity distributions, although they are not yet commercially available. This work characterized five prototype VLS sources, developed methods for clinical calibration and verification of these sources, and developed an analytical dose calculation algorithm that scales with both source length and VLS.
Palache, A; Abelin, A; Hollingsworth, R; Cracknell, W; Jacobs, C; Tsai, T; Barbosa, P
2017-08-24
There is no global monitoring system for influenza vaccination coverage, making it difficult to assess progress towards the 2003 World Health Assembly (WHA) vaccination coverage target. In 2008, the IFPMA Influenza Vaccine Supply International Task Force (IVS) developed a survey method to assess the global distribution of influenza vaccine doses as a proxy for vaccination coverage rates. The latest dose distribution data for 2014 and 2015 was used to update previous analyses. Data were confidentially collected and aggregated by the IFPMA Secretariat, and combined with previous IFPMA IVS survey data (2004-2013). Data were available from 201 countries over the 2004-2015 period. A "hurdle" rate was defined as the number of doses required to reach 15.9% of the population in 2008. Overall, the number of distributed doses progressively increased between 2004 and 2011, driven by a 150% increase in AMRO, then plateaued. One percent fewer doses were distributed in 2015 than in 2011. Twenty-three countries were above the hurdle rate in 2015, compared to 15 in 2004, but distribution was highly uneven in and across all WHO regions. Three WHO regions (AMRO, EURO and WPRO) accounted for about 95% of doses distributed. But in EURO and WPRO, distribution rates in 2015 were only marginally higher than in 2004, and in EURO there was an overall downward trend in dose distribution. The vast majority of countries cannot meet the 2003WHA coverage targets and are inadequately prepared for a global influenza pandemic. With only 5% of influenza vaccine doses being distributed to 50% of the world's population, there is urgency to redress the gross inequities in disease prevention and in pandemic preparedness. The 2003WHA resolution must be reviewed and revised and a call issued for the renewed commitment of Member States to influenza vaccination coverage targets. Copyright © 2017. Published by Elsevier Ltd.
Continuing education: online monitoring of haemodialysis dose.
Vartia, Aarne
2018-01-25
Kt/V urea reflects the efficacy of haemodialysis scaled to patient size (urea distribution volume). The guidelines recommend monthly Kt/V measurements based on blood samples. Modern haemodialysis machines are equipped with accessories monitoring the dose online at every session without extra costs, blood samples and computers. To describe the principles, devices, benefits and shortcomings of online monitoring of haemodialysis dose. A critical literature overview and discussion. UV absorbance methods measure Kt/V, ionic dialysance Kt (product of clearance and treatment time; cleared volume without scaling). Both are easy and useful methods, but comparison is difficult due to problems in scaling of the dialysis dose to the patient's size. The best dose estimation method is the one which predicts the quality of life and survival most accurately. There is some evidence on the predictive value of ionic dialysance Kt, but more documentation is required on the UV method. Online monitoring is a useful tool in everyday quality assurance, but blood samples are still required for more accurate kinetic modelling. After reading this article the reader should be able to: Understand the elements of the Kt/V equation for dialysis dose. Compare and contrast different methods of measurement of dialysis dose. Reflect on the importance of adequate dialysis dose for patient survival and life quality. © 2018 European Dialysis and Transplant Nurses Association/European Renal Care Association.
The importance of applicator design for intraluminal brachytherapy of rectal cancer.
Hansen, Johnny Witterseh; Jakobsen, Anders
2006-09-01
An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintended off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multi-channel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.
The importance of applicator design for intraluminal brachytherapy of rectal cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Johnny Witterseh; Jakobsen, Anders; Department of Oncology, Hospital of Vejle, DK-7100 Vejle
2006-09-15
An important aspect of designing an applicator for radiation treatment of rectal cancer is the ability to minimize dose to the mucosa and noninvolved parts of the rectum wall. For this reason we investigated a construction of a flexible multichannel applicator with several channels placed along the periphery of a cylinder and a construction of a rigid cylinder with a central channel and interchangeable shields. Calculations of the dose gradient, dose homogeneity in the tumor, and shielding ability were performed for the two applicators in question. Furthermore, the influence on dose distribution around a flexible multichannel applicator from an unintendedmore » off-axis positioning of the source inside a bent channel was investigated by film measurements on a single bent catheter. Calculations showed that a single-channel applicator with interchangeable shields yields a higher degree of shielding and has a better dose homogeneity in the tumor volume than that of a multichannel applicator. A single-channel applicator with interchangeable shields was manufactured, and the influence of different size of shield angle on dose rate in front of and behind the shields was measured. While dose rate in front of the shield and shielding ability are closely independent of the size of the shield angle when measured 1 cm from the applicator surface, dose rate in more distant volumes will to some extent be influenced by shield angle due to volume scatter conditions.« less
Proton depth dose distribution: 3-D calculation of dose distributions from solar flare irradiation
NASA Astrophysics Data System (ADS)
Leavitt, Dennis D.
1990-11-01
Relative depth dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2 to 19 percent, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.
The effect of dose heterogeneity on radiation risk in medical imaging.
Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert
2013-06-01
The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.
Development of probabilistic internal dosimetry computer code
NASA Astrophysics Data System (ADS)
Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki
2017-02-01
Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.
Real-time dose calculation and visualization for the proton therapy of ocular tumours
NASA Astrophysics Data System (ADS)
Pfeiffer, Karsten; Bendl, Rolf
2001-03-01
A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.
Clewell, H J; Gearhart, J M; Gentry, P R; Covington, T R; VanLandingham, C B; Crump, K S; Shipp, A M
1999-08-01
An analysis of the uncertainty in guidelines for the ingestion of methylmercury (MeHg) due to human pharmacokinetic variability was conducted using a physiologically based pharmacokinetic (PBPK) model that describes MeHg kinetics in the pregnant human and fetus. Two alternative derivations of an ingestion guideline for MeHg were considered: the U.S. Environmental Protection Agency reference dose (RfD) of 0.1 microgram/kg/day derived from studies of an Iraqi grain poisoning episode, and the Agency for Toxic Substances and Disease Registry chronic oral minimal risk level (MRL) of 0.5 microgram/kg/day based on studies of a fish-eating population in the Seychelles Islands. Calculation of an ingestion guideline for MeHg from either of these epidemiological studies requires calculation of a dose conversion factor (DCF) relating a hair mercury concentration to a chronic MeHg ingestion rate. To evaluate the uncertainty in this DCF across the population of U.S. women of child-bearing age, Monte Carlo analyses were performed in which distributions for each of the parameters in the PBPK model were randomly sampled 1000 times. The 1st and 5th percentiles of the resulting distribution of DCFs were a factor of 1.8 and 1.5 below the median, respectively. This estimate of variability is consistent with, but somewhat less than, previous analyses performed with empirical, one-compartment pharmacokinetic models. The use of a consistent factor in both guidelines of 1.5 for pharmacokinetic variability in the DCF, and keeping all other aspects of the derivations unchanged, would result in an RfD of 0.2 microgram/kg/day and an MRL of 0.3 microgram/kg/day.
Ding, George X; Malcolm, Arnold W
2013-09-07
There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.
NASA Astrophysics Data System (ADS)
Ding, George X.; Malcolm, Arnold W.
2013-09-01
There is a growing interest in patient exposure resulting from an x-ray imaging procedure used in image-guided radiation therapy. This study explores a feasibility to use a commercially available optically stimulated luminescence (OSL) dosimeter, nanoDot, for estimating imaging radiation exposure to patients. The kilovoltage x-ray sources used for kV-cone-beam CT (CBCT) imaging acquisition procedures were from a Varian on-board imager (OBI) image system. An ionization chamber was used to determine the energy response of nanoDot dosimeters. The chamber calibration factors for x-ray beam quality specified by half-value layer were obtained from an Accredited Dosimetry Calibration Laboratory. The Monte Carlo calculated dose distributions were used to validate the dose distributions measured by using the nanoDot dosimeters in phantom and in vivo. The range of the energy correction factors for the nanoDot as a function of photon energy and bow-tie filters was found to be 0.88-1.13 for different kVp and bow-tie filters. Measurement uncertainties of nanoDot were approximately 2-4% after applying the energy correction factors. The tests of nanoDot placed on a RANDO phantom and on patient's skin showed consistent results. The nanoDot is suitable dosimeter for in vivo dosimetry due to its small size and manageable energy dependence. The dosimeter placed on a patient's skin has potential to serve as an experimental method to monitor and to estimate patient exposure resulting from a kilovoltage x-ray imaging procedure. Due to its large variation in energy response, nanoDot is not suitable to measure radiation doses resulting from mixed beams of megavoltage therapeutic and kilovoltage imaging radiations.
Assessment of potential advantages of relevant ions for particle therapy: a model based study.
Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita; Scholz, Michael
2015-02-01
Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ((12)C), helium ((4)He), and protons ((1)H) for different treatment scenarios. A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PERPHY S), the RBE (PERRBE), and the RBE-weighted dose (PERBIO) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PERRBE for the analyzed configurations. Due to the fact that protons show a somewhat better PERPHY S compared to helium and carbon ions whereas helium shows a higher PERRBE compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PERRBE with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PERBIO is observed when using an orthogonal field configuration for carbon ions as compared to opposing fields. In contrast, for protons, the PERBIO is almost independent on the field configuration. Concerning the artificial lateral OAR, the volume receiving 20% of the prescribed RBE-weighted dose (V20) was reduced by over 35% using helium ions and by over 40% using carbon ions compared to protons. The analysis of the patient plan showed that protons, helium, and carbon ions are similar in terms of target coverage whereas the dose to the surrounding tissue is increasing from carbon ions toward protons. The mean dose to the brain stem can be reduced by more than 55% when using helium ions and by further 25% when using carbon ions instead of protons. The comparison of the PERRBE and PERPHY S of the three ion types suggests a strong dependence of the advantages of the three ions on the dose-level, tissue type, and field configuration. In terms of conformity, i.e., dose to the normal tissue, a clear gain is expected using carbon or helium ions compared to protons.
Loucas, Bradford D; Durante, Marco; Bailey, Susan M; Cornforth, Michael N
2013-01-01
We irradiated normal human lymphocytes and fibroblasts with (137)Cs γ rays, 3.5 MeV α particles and 1 GeV/amu (56)Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally.
Loucas, Bradford D.; Durante, Marco; Bailey, Susan M.; Cornforth, Michael N.
2013-01-01
We irradiated normal human lymphocytes and fibroblasts with 137Cs γ rays, 3.5 MeV α particles and 1 GeV/amu 56Fe ions and measured the subsequent formation of chromosome-type aberrations by mFISH at the first mitosis following irradiation. This was done for the purposes of characterizing the shape of dose-response relationships and determining the frequency distribution of various aberration types with respect to the parameters of dose, radiation quality and cell type. Salient results and conclusions include the following. For low-LET γ rays, lymphocytes showed a more robust dose response for overall damage and a higher degree of upward curvature compared to fibroblasts. For both sources of high-LET radiation, and for both cell types, the response for simple and complex exchanges was linear with dose. Independent of all three parameters considered, the most likely damage outcome was the formation of a simple exchange event involving two breaks. However, in terms of the breakpoints making up exchange events, the majority of damage registered following HZE particle irradiation was due to complex aberrations involving multiple chromosomes. This adds a decidedly nonlinear component to the overall breakpoint response, giving it a significant degree of positive curvature, which we interpret as being due to interaction between ionizations of the primary HZE particle track and long-range δ rays produced by other nearby tracks. While such track interaction had been previously theorized, to the best of our knowledge, it has never been demonstrated experimentally. PMID:23198992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeslbagg, Y. Ue.; Kuecuekoemeroglu, A.; Kurnaz, A.
Indoor radon studies have been conducted in Artvin, Eastern alack sea region of Turkey using SSNTD type nuclear track detector (CR-39). Radon measurements were done for 4 seasons in 73 dwellings, selected as uniformly distributed as possible. The radon concentrations vary from 21 aq m{sup -3} to 321 aq m{sup -3} with the annual mean concentration of 132 aq m{sup -3} for Artvin. Seasonal variation indoor radon shows high in winter low values in summer. The resulting estimated annual effective dose-equivalent due to inhalation of radon for inhabitants is 3.32 mSv y{sup -1} and the total annual effective dose liesmore » in the range of the action level (3-10 mSv y{sup -1}) recommended by the ICRP.« less
Vodovatov, A V; Balonov, M I; Golikov, V Yu; Shatsky, I G; Chipiga, L A; Bernhardsson, C
2017-04-01
In 2009-2014, dose surveys aimed to collect adult patient data and parameters of most common radiographic examinations were performed in six Russian regions. Typical patient doses were estimated for the selected examinations both in entrance surface dose and in effective dose. 75%-percentiles of typical patient effective dose distributions were proposed as preliminary regional diagnostic reference levels (DRLs) for radiography. Differences between the 75%-percentiles of regional typical patient dose distributions did not exceed 30-50% for the examinations with standardized clinical protocols (skull, chest and thoracic spine) and a factor of 1.5 for other examinations. Two different approaches for establishing national DRLs were evaluated: as a 75%-percentile of a pooled regional sample of patient typical doses (pooled method) and as a median of 75%-percentiles of regional typical patient dose distributions (median method). Differences between pooled and median methods for effective dose did not exceed 20%. It was proposed to establish Russian national DRLs in effective dose using a pooled method. In addition, the local authorities were granted an opportunity to establish regional DRLs if the local radiological practice and typical patient dose distributions are significantly different. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.
2014-03-01
Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less
Radiation exposure assessment for portsmouth naval shipyard health studies.
Daniels, R D; Taulbee, T D; Chen, P
2004-01-01
Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.
Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses
NASA Astrophysics Data System (ADS)
Rutkowska, Eva; Baker, Colin; Nahum, Alan
2010-04-01
A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.
2004-03-31
We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less
Giantsoudi, Drosoula; Schuemann, Jan; Jia, Xun; Dowdell, Stephen; Jiang, Steve; Paganetti, Harald
2015-03-21
Monte Carlo (MC) methods are recognized as the gold-standard for dose calculation, however they have not replaced analytical methods up to now due to their lengthy calculation times. GPU-based applications allow MC dose calculations to be performed on time scales comparable to conventional analytical algorithms. This study focuses on validating our GPU-based MC code for proton dose calculation (gPMC) using an experimentally validated multi-purpose MC code (TOPAS) and compare their performance for clinical patient cases. Clinical cases from five treatment sites were selected covering the full range from very homogeneous patient geometries (liver) to patients with high geometrical complexity (air cavities and density heterogeneities in head-and-neck and lung patients) and from short beam range (breast) to large beam range (prostate). Both gPMC and TOPAS were used to calculate 3D dose distributions for all patients. Comparisons were performed based on target coverage indices (mean dose, V95, D98, D50, D02) and gamma index distributions. Dosimetric indices differed less than 2% between TOPAS and gPMC dose distributions for most cases. Gamma index analysis with 1%/1 mm criterion resulted in a passing rate of more than 94% of all patient voxels receiving more than 10% of the mean target dose, for all patients except for prostate cases. Although clinically insignificant, gPMC resulted in systematic underestimation of target dose for prostate cases by 1-2% compared to TOPAS. Correspondingly the gamma index analysis with 1%/1 mm criterion failed for most beams for this site, while for 2%/1 mm criterion passing rates of more than 94.6% of all patient voxels were observed. For the same initial number of simulated particles, calculation time for a single beam for a typical head and neck patient plan decreased from 4 CPU hours per million particles (2.8-2.9 GHz Intel X5600) for TOPAS to 2.4 s per million particles (NVIDIA TESLA C2075) for gPMC. Excellent agreement was demonstrated between our fast GPU-based MC code (gPMC) and a previously extensively validated multi-purpose MC code (TOPAS) for a comprehensive set of clinical patient cases. This shows that MC dose calculations in proton therapy can be performed on time scales comparable to analytical algorithms with accuracy comparable to state-of-the-art CPU-based MC codes.
Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki
Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less
Degradation of the Bragg peak due to inhomogeneities.
Urie, M; Goitein, M; Holley, W R; Chen, G T
1986-01-01
The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.
Shalgunov, Vladimir; Zaytseva-Zotova, Daria; Zintchenko, Arkadi; Levada, Tatiana; Shilov, Yuri; Andreyev, Dmitry; Dzhumashev, Dzhangar; Metelkin, Evgeny; Urusova, Alexandra; Demin, Oleg; McDonnell, Kevin; Troiano, Greg; Zale, Stephen; Safarovа, Elmira
2017-09-10
Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice. Nanoparticle formulations differed by surface PEG coverage and by release kinetics of the encapsulated model active pharmaceutical ingredient (API). Increase in PEG coverage prolonged nanoparticle circulation half-life up to ~20h in rats and ~10h in mice and decreased retention in liver, spleen and lungs. Circulation half-life of the encapsulated API grew monotonously as the release rate slowed down. Plasma and tissue pharmacokinetics was dose-linear for inactive nanoparticles, but markedly dose-dependent for the model therapeutic formulation, presumably because of the toxic effects of released API. A mathematical model of API distribution calibrated on the data for inactive nanoparticles and conventional API form correctly predicted the distribution of the model therapeutic formulation at the lowest investigated dose, but for higher doses the toxic action of the released API had to be explicitly modelled. Our results provide a coherent illustration of the ability of controllable-release PLA-PEG nanoparticles to serve as an effective drug delivery platform to alter API biodistribution. They also underscore the importance of physiological effects of released drug in determining the biodistribution of therapeutic drug formulations at doses approaching tolerability limits. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
MO-FG-CAMPUS-IeP1-03: Establishment of Provincial Diagnostic Reference Levels in Pediatric Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkopi, E; Queen Elizabeth II Health Sciences Ctr; O’Brien, K
Purpose: To establish provincial diagnostic reference levels (DRLs) in pediatric general radiography and computed tomography (CT) as a tool for the optimization of exposure parameters. Methods: Patient dose survey was conducted in the only pediatric hospital in the province of Nova Scotia. The DRLs were established as the 75th percentile of patient dose distributions in different age groups. For routine radiography projections the DRLs were determined in terms of entrance surface dose (ESD) calculated from the radiation output measurements and the tube current-exposure time product (mAs) recorded for each examination. Patient thickness was measured by the technologist during the examination.more » The CR and DR systems, employing respectively a fixed technique and phototiming, were evaluated separately; a two-tailed Student’s t-test was used to determine the significance of differences between the means of dose distributions. The CT studies included routine head, chest, abdomen/pelvis, and chest/abdomen/pelvis. The volume CT dose index (CTDIvol) and dose-length product (DLP) values were extracted retrospectively from PACS. The correction factors based on the effective diameter of the patient were applied to the CT dosimetry metrics based on the standard phantoms. Results: The provincial DRLs were established in the following age groups: newborn, 1, 5, 10, and 15 year olds. In general radiography the DR systems demonstrated slightly lower dose than the CR for all views, however the differences were not statistically significant (p > 0.05) for all examinations. In CT the provincial DRLs were lower than the published data, except for head DLPs in all age categories. This might be due to the small patient sample size in the survey. Future work will include additional CT data collection over an extended period of time. Conclusion: Provincial DRLs were established in the dedicated children’s hospital to provide guidance for the other facilities in examinations of pediatric patients.« less
Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.
Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro
2015-07-01
To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.
NASA Astrophysics Data System (ADS)
Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam
2015-09-01
Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.
WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, M F; Yukihara, E; Schnell, E
Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flatmore » field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr. Eduardo G. Yukihara also would like to thank the Alexander von Humboldt Foundation for his support at the DKFZ.« less
Oshima, Shunji; Haseba, Takeshi; Masuda, Chiaki; Kakimi, Ema; Kitagawa, Yasushi; Ohno, Youkichi
2013-06-01
It is said that blood alcohol concentrations (BAG) are higher in female than in male due to the smaller distribution volume of alcohol in female, whereas the rate of alcohol metabolism is faster in female than in males due to a higher activity of liver alcohol dehydrogenase (ADH) in female. However, it is also known that alcohol metabolism varies depending on drinking conditions. In this study, we evaluated the dose effect of alcohol on sex differences in alcohol metabolism in daily drinking conditions, where young adults (16 males, 15 females) with ALDH2*1/1 genotype drunk beer at a dose of 0.32g or 1.0g ethanol/kg body weight with a test meal (460kcal). This study was conducted using a randomized cross-over design. In the considerable drinking condition (1.0g/kg), BAG was significantly higher in females than in males, whereas the rate of alcohol metabolism (beta) was higher in female than in male. In the moderate drinking condition (0.32g/kg), however, no sex differences in alcohol metabolism including BAG were seen. These results suggest that an increased first pass metabolism through liver ADH in female, which may be caused by the reduction of gastric emptying rate due to the meal intake, contribute to the vanishing of sex difference in BAC in the moderate drinking condition.
Rajaram, S; Brindha, J Thulasi; Sreedevi, K R; Manu, Anitha; Thilakavathi, A; Ramkumar, S; Santhanakrishnan, V; Balagurunathan, M R; Jesan, T; Kannan, V; Hegde, A G
2010-12-01
The Environmental Survey Laboratory at Kalpakkam, India carries out elaborate monitoring programme involving atmospheric, terrestrial and aquatic samples for radioactivity to evaluate the impact of operating two pressurised heavy water reactors. This paper presents the evaluation of 25 y (1983-2008) data. Statistical analysis of the environmental data for different radionuclides showed that the data best fits log-normal distribution. The data analysed showed that fission products such as (137)Cs, (90)Sr and (131)I were due to global fallout only. A ratio of 0.2 was obtained for (90)Sr to (137)Cs in air filter samples, only during Chernobyl accident period. The transfer factor of (137)Cs and (90)Sr for rice was computed to be 0.23 and 0.03 and vegetables 0.25 and 0.10, respectively. Activation products (3)H and (41)Ar are the only radionuclides that are related to MAPS operation. A strong correlation (r = 0.9) was observed between (3)H activity in air and (3)H discharged to the atmosphere. A similar correlation (r = 0.8) was observed in (3)H concentration in seawater and (3)H discharged in the liquid waste. The annual internal dose due to (3)H and annual external dose due to (41)Ar evaluated in the last 25 y show that the members of the public received less than 2 % of the dose limit (1 mSv y(-1)) set by ICRP 72.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, A; Underwood, T; Wo, J
2016-06-15
Purpose: Anal cancer patients treated using a posterior proton beam may be at risk of vaginal wall injury due to the increased linear energy transfer (LET) and relative biological effectiveness (RBE) at the beam distal edge. We investigate the vaginal dose received. Methods: Five patients treated for anal cancer with proton pencil beam scanning were considered, all treated to a prescription dose of 54 Gy(RBE) over 28–30 fractions. Dose and LET distributions were calculated using the Monte Carlo simulation toolkit TOPAS. In addition to the standard assumption of a fixed RBE of 1.1, variable RBE was considered via the applicationmore » of published models. Dose volume histograms (DVHs) were extracted for the planning treatment volume (PTV) and vagina, the latter being used to calculate the vaginal normal tissue complication probability (NTCP). Results: Compared to the assumption of a fixed RBE of 1.1, the variable RBE model predicts a dose increase of approximately 3.3 ± 1.7 Gy at the end of beam range. NTCP parameters for the vagina are incomplete in the current literature, however, inferring value ranges from the existing data we use D{sub 50} = 50 Gy and LKB model parameters a=1–2 and m=0.2–0.4. We estimate the NTCP for the vagina to be 37–48% and 42–47% for the fixed and variable RBE cases, respectively. Additionally, a difference in the dose distribution was observed between the analytical calculation and Monte Carlo methods. We find that the target dose is overestimated on average by approximately 1–2%. Conclusion: For patients treated with posterior beams, the vaginal wall may coincide with the distal end of the proton beam and may receive a substantial increase in dose if variable RBE models are applied compared to using the current clinical standard of RBE equal to 1.1. This could potentially lead to underestimating toxicities when treating with protons.« less
de Campos, Tarcisio Passos Ribeiro; Nogueira, Luciana Batista; Trindade, Bruno; Cuperschmid, Ethel Mizrahy
2016-01-01
To provide a comparative dosimetric analysis of permanent implants of Ho(166)-seeds and temporary HDR Ir(192)-brachytherapy through computational simulation. Brachytherapy with Ir(192)-HDR or LDR based on temporary wires or permanent radioactive seed implants can be used as dose reinforcement for breast radiation therapy. Permanent breast implants have not been a practical clinical routine; although, I(125) and Pd(103)-seeds have already been reported. Biodegradable Ho(166)-ceramic-seeds have been addressed recently. Simulations of implants of nine Ho(166)-seeds and equivalent with HDR Ir(192)-brachytherapy were elaborated in MCNP5, shaped in a computational multivoxel simulator which reproduced a female thorax phantom. Spatial dose rate distributions and dose-volume histograms were generated. Protocol's analysis involving exposure time, seed's activities and dose were performed. Permanent Ho(166)-seed implants presented a maximum dose rate per unit of contained activity (MDR) of 1.1601 μGy h(-1) Bq(-1); and, a normalized MDR in standard points (8 mm, equidistant to 03-seeds - SP1, 10 mm - SP2) of 1.0% (SP1) and 0.5% (SP2), respectively. Ir(192)-brachytherapy presented MDR of 4.3945 × 10(-3) μGy h(-1) Bq(-1); and, 30% (SP1), and 20% (SP2). Therefore, seed's implant activities of 333 MBq (Ho(166)) and 259 GBq (Ir(192)) produced prescribed doses of 58 Gy (SP1; 5d) and 56 Gy (SP1, 5 fractions, 6 min), respectively. Breast Ho(166)-implants of 37-111 MBq are attractive due to the high dose rate near 6-10 mm from seeds, equivalent to Ir(192)-brachytherapy of 259 GBq (3 fractions, 6 min) providing similar dose in standard points at a week; however, with spatial dose distribution better confined. The seed positioning can be adjusted for controlling the breast tumor, in stages I and II, in flat and deep tumors, without any breast volumetric limitation.
Sherwin, Jennifer; Heath, Travis; Watt, Kevin
2016-09-01
Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass device that is used to temporarily support the most critically ill of patients with respiratory and/or cardiac failure. Infection and its sequelae may be an indication for ECMO or infections may be acquired while on ECMO and are associated with a mortality >50%. Effective therapy requires optimal dosing. However, optimal dosing can be different in patients on ECMO because the ECMO circuit can alter drug pharmacokinetics. This review assessed the current literature for pharmacokinetic data and subsequent dosing recommendations for anti-infective drugs in patients on ECMO. We searched the PubMed and Embase databases (1965 to February 2016) and included case reports, case series, or studies that provided pharmacokinetic data for anti-infective drugs including antibiotics, antifungals, and antivirals being used to treat patients of all age groups on ECMO. Pharmacokinetic parameters and dosing recommendations based on these data are presented. The majority of data on this topic comes from neonatal studies of antibiotics from the 1980s and 1990s. These studies generally demonstrate a larger volume of distribution due to ECMO and therefore higher doses are needed initially. More adult data are now emerging, but with a predominance of case reports and case series without comparison with critically ill controls. The available pharmacokinetic analyses do suggest that volume of distribution and clearance are unchanged in the adult population, and therefore dosing recommendations largely remain unchanged. There is a lack of data on children older than 1 year of age. The data support the importance of therapeutic drug monitoring when available in this population of patients. This review found reasonably robust dosing recommendations for some drugs and scant or no data for other important anti-infectives. In order to better determine optimal dosing for patients on ECMO, a systematic approach is needed. Approaches that combine ex vivo ECMO experiments, animal studies, specialized pharmacokinetic modeling, and human clinical trials are being developed. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.
Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L
2012-06-01
To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.
Li, Fang; Nandy, Partha; Chien, Shuchean; Noel, Gary J; Tornoe, Christoffer W
2010-01-01
Levofloxacin was recently (May 2008) approved by the U.S. Food and Drug Administration as a treatment for children following inhalational exposure to anthrax. Given that no clinical trials to assess the efficacy of a chosen dose was conducted, the basis for the dose recommendation was based upon pharmacometric analyses. The objective of this paper is to describe the basis of the chosen pediatric dose recommended for the label. Pharmacokinetic (PK) data from 90 pediatric patients receiving 7 mg/kg of body weight levofloxacin and two studies of 47 healthy adults receiving 500 and 750 mg/kg levofloxacin were used for the pharmacometric analyses. Body weight was found to be a significant covariate for levofloxacin clearance and the volume of distribution. Consistently with developmental physiology, clearance also was found to be reduced in pediatric patients under 2 years of age due to immature renal function. Different dosing regimens were simulated to match adult exposure (area under the concentration-time curve from 0 to 24 h at steady state, maximum concentration of drug in serum at steady state, and minimum concentration of drug in serum at steady state) following the approved adult dose of 500 mg once a day. The recommended dose of 8 mg/kg twice a day was found to match the exposure of the dose approved for adults in a manner that permitted confidence that this dose in children would achieve efficacy comparable to that of adults.
[Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].
Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min
2003-06-01
To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.
Carinou, Eleutheria; Stamatelatos, Ion Evangelos; Kamenopoulou, Vassiliki; Georgolopoulou, Paraskevi; Sandilos, Panayotis
The development of a computational model for the treatment head of a medical electron accelerator (Elekta/Philips SL-18) by the Monte Carlo code mcnp-4C2 is discussed. The model includes the major components of the accelerator head and a pmma phantom representing the patient body. Calculations were performed for a 14 MeV electron beam impinging on the accelerator target and a 10 cmx10 cm beam area at the isocentre. The model was used in order to predict the neutron ambient dose equivalent at the isocentre level and moreover the neutron absorbed dose distribution within the phantom. Calculations were validated against experimental measurements performed by gold foil activation detectors. The results of this study indicated that the equivalent dose at tissues or organs adjacent to the treatment field due to photoneutrons could be up to 10% of the total peripheral dose, for the specific accelerator characteristics examined. Therefore, photoneutrons should be taken into account when accurate dose calculations are required to sensitive tissues that are adjacent to the therapeutic X-ray beam. The method described can be extended to other accelerators and collimation configurations as well, upon specification of treatment head component dimensions, composition and nominal accelerating potential.
NASA Astrophysics Data System (ADS)
Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio
2018-05-01
The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.
Konold, Timm; Arnold, Mark E; Austin, Anthony R; Cawthraw, Saira; Hawkins, Steve A C; Stack, Michael J; Simmons, Marion M; Sayers, A Robin; Dawson, Michael; Wilesmith, John W; Wells, Gerald A H
2012-12-05
To provide information on dose-response and aid in modelling the exposure dynamics of the BSE epidemic in the United Kingdom groups of cattle were exposed orally to a range of different doses of brainstem homogenate of known infectious titre from clinical cases of classical bovine spongiform encephalopathy (BSE). Interim data from this study was published in 2007. This communication documents additional BSE cases, which occurred subsequently, examines possible influence of the bovine prion protein gene on disease incidence and revises estimates of effective oral exposure. Following interim published results, two further cattle, one dosed with 100 mg and culled at 127 months post exposure and the other dosed with 10 mg and culled at 110 months post exposure, developed BSE. Both had a similar pathological phenotype to previous cases. Based on attack rate and incubation period distribution according to dose, the dose estimate at which 50% of confirmed cases would be clinically affected was revised to 0.15 g of the brain homogenate used in the experiment, with a 95% confidence interval of 0.03-0.79 g. Neither the full open reading frame nor the promoter region of the prion protein gene of dosed cattle appeared to influence susceptibility to BSE, but this may be due to the sample size. Oral exposure of cattle to a large range of doses of a BSE brainstem homogenate produced disease in all dose groups. The pathological presentation resembled natural disease. The attack rate and incubation period were dependent on the dose.
NASA Astrophysics Data System (ADS)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2017-03-01
Cone-beam CT (CBCT) images are routinely acquired to verify patient position in radiotherapy (RT), but are typically not calibrated in Hounsfield Units (HU) and feature non-uniformity due to X-ray scatter and detector persistence effects. This prevents direct use of CBCT for re-calculation of RT delivered dose. We previously developed a prior-image based correction method to restore HU values and improve uniformity of CBCT images. Here we validate the accuracy with which corrected CBCT can be used for dosimetric assessment of RT delivery, using CBCT images and RT plans for 45 patients including pelvis, lung and head sites. Dose distributions were calculated based on each patient's original RT plan and using CBCT image values for tissue heterogeneity correction. Clinically relevant dose metrics were calculated (e.g. median and minimum target dose, maximum organ at risk dose). Accuracy of CBCT based dose metrics was determined using an "override ratio" method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the image is assumed to be constant for each patient, allowing comparison to "gold standard" CT. For pelvis and head images the proportion of dose errors >2% was reduced from 40% to 1.3% after applying shading correction. For lung images the proportion of dose errors >3% was reduced from 66% to 2.2%. Application of shading correction to CBCT images greatly improves their utility for dosimetric assessment of RT delivery, allowing high confidence that CBCT dose calculations are accurate within 2-3%.
Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study
NASA Astrophysics Data System (ADS)
Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia
2010-02-01
We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saleh, H; Ferjani, S; Masssey, V
Purpose: Perform dosimetric comparison between planned and delivered dose in the junction area, measure daily dose variation in the arc junction area for pediatric patients treated for medulloblastoma using Craniospinal axis irradiation(CSI) Material and methods Dose comparison in the junction area, daily dose variation in the arc junction area for a Rando Phantom and 5 pediatric patients treated using CSI technique were analyzed. Plans were created using the Eclipse treatment planning system. Two arcs for cranium and 1 arc for spine region were used. Planar dose matrix was created by projecting phantom and patient plan into the ArcCheck phantom. EBT3more » film was placed in the middle of ArcCheck plug to measure dose distribution in the junction areaDuring patient treatment, strip of EBT3 film was placed daily at each junction area for verification. EBT3 films were scanned using a flatbed scanner, Epson Expression 10000 XL. Film QA pro software was used to analyze film. Scanning and analysis was performed according to vendor recommendations and AAPM TG-55 report. Films were scanned and analyzed daily after each treatment and at the end of treatment course. Planar dose distributions from films were compared with planar dose distribution from treatment planning system. Results: Comparison of planned vs. measured dose distributions for patients have passing rates of 90%–100% with 3% and 3 mm gamma analysis. In some of the treatment fractions, daily setup film showed variation in dose distribution in the junction area. Conclusion: It is critical to measure dose distribution in the arc junction area and use additional quality assurance measures to verify daily setup for CSI patient where one or more junctions are present. EBT3 film prove to be a good tool to achieve this task considering flexibility associated with the film such as symmetry, self-developing and ease of use.« less
Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe
2007-11-15
To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.
Algorithm of pulmonary emphysema extraction using thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki
2007-03-01
Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.
NASA Astrophysics Data System (ADS)
Flynn, Ryan
2007-12-01
The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Jung, H
Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Kim, G; Ji, Y
Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less
PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.
Pshenichnov, Igor; Larionov, Alexei; Mishustin, Igor; Greiner, Walter
2007-12-21
We study the spatial distributions of beta(+)-activity produced by therapeutic beams of (3)He and (12)C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for heavy-ion therapy (MCHIT) based on the GEANT4 toolkit. The contributions from positron-emitting nuclei with T(1/2) > 10 s, namely (10,11)C, (13)N, (14,15)O, (17,18)F and (30)P, were calculated and compared with experimental data obtained during and after irradiation, where available. Positron-emitting nuclei are created by a (12)C beam in fragmentation reactions of projectile and target nuclei. This leads to a beta(+)-activity profile characterized by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. This can be used for dose monitoring in carbon-ion therapy of cancer. In contrast, as most of the positron-emitting nuclei are produced by a (3)He beam in target fragmentation reactions, the calculated total beta(+)-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the presence of (13)N, (14)O, (17,18)F created in charge-transfer reactions by low-energy (3)He ions close to the end of their range in several tissue-like media. The time evolution of beta(+)-activity profiles was investigated for both kinds of beams. We found that due to the production of (18)F nuclides the beta(+)-activity profile measured 2 or 3 h after irradiation with (3)He ions will have a distinct peak correlated with the maximum of depth-dose distribution. We also found certain advantages of low-energy (3)He beams over low-energy proton beams for reliable PET monitoring during particle therapy of shallow-located tumours. In this case the distal edge of beta(+)-activity distribution from (17)F nuclei clearly marks the range of (3)He in tissues.
Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro
2017-01-01
A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.
WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryal, P; Molloy, JA; Rivard, MJ
Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, W; Zaghian, M; Lim, G
2015-06-15
Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less
Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad
2018-05-17
This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.
Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney
2014-01-01
Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.
2012-10-15
Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnosticmore » cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, H; Brindle, J; Hepel, J
2015-06-15
Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less
Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus
2015-01-01
Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532
Rollet, S; Autischer, M; Beck, P; Latocha, M
2007-01-01
The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.
NASA Astrophysics Data System (ADS)
Camarlinghi, N.; Sportelli, G.; Battistoni, G.; Belcari, N.; Cecchetti, M.; Cirrone, G. A. P.; Cuttone, G.; Ferretti, S.; Kraan, A.; Retico, A.; Romano, F.; Sala, P.; Straub, K.; Tramontana, A.; Del Guerra, A.; Rosso, V.
2014-04-01
Ion therapy allows the delivery of highly conformal dose taking advantage of the sharp depth-dose distribution at the Bragg-peak. However, patient positioning errors and anatomical uncertainties can cause dose distortions. To exploit the full potential of ion therapy, an accurate monitoring system of the ion range is needed. Among the proposed methods to monitor the ion range, Positron Emission Tomography (PET) has proven to be the most mature technique, allowing to reconstruct the β+ activity generated in the patient by the nuclear interaction of the ions, that can be acquired during or after the treatment. Taking advantages of the spatial correlation between positron emitters created along the ions path and the dose distribution, it is possible to reconstruct the ion range. Due to the high single rates generated during the beam extraction, the acquisition of the β+ activity is typically performed after the irradiation (cyclotron) or in between the synchrotron spills. Indeed the single photon rate can be one or more orders of magnitude higher than normal for cyclotron. Therefore, acquiring the activity during the beam irradiation requires a detector with a very short dead time. In this work, the DoPET detector, capable of sustaining the high event rate generated during the cyclotron irradiation, is presented. The capability of the system to acquire data during and after the irradiation will be demonstrated by showing the reconstructed activity for different PMMA irradiations performed using clinical dose rates and the 62 MeV proton beam at the CATANA-LNS-INFN. The reconstructed activity widths will be compared with the results obtained by simulating the proton beam interaction with the FLUKA Monte Carlo. The presented data are in good agreement with the FLUKA Monte Carlo.
Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer.
Tommasino, Francesco; Fellin, Francesco; Lorentini, Stefano; Farace, Paolo
2018-06-01
Proton therapy for the treatment of breast cancer is acquiring increasing interest, due to the potential reduction of radiation-induced side effects such as cardiac and pulmonary toxicity. While several in silico studies demonstrated the gain in plan quality offered by pencil beam scanning (PBS) compared to passive scattering techniques, the related dosimetric uncertainties have been poorly investigated so far. Five breast cancer patients were planned with Raystation 6 analytical pencil beam (APB) and Monte Carlo (MC) dose calculation algorithms. Plans were optimized with APB and then MC was used to recalculate dose distribution. Movable snout and beam splitting techniques (i.e. using two sub-fields for the same beam entrance, one with and the other without the use of a range shifter) were considered. PTV dose statistics were recorded. The same planning configurations were adopted for the experimental benchmark. Dose distributions were measured with a 2D array of ionization chambers and compared to APB and MC calculated ones by means of a γ analysis (agreement criteria 3%, 3 mm). Our results indicate that, when using proton PBS for breast cancer treatment, the Raystation 6 APB algorithm does not allow obtaining sufficient accuracy, especially with large air gaps. On the contrary, the MC algorithm resulted into much higher accuracy in all beam configurations tested and has to be recommended. Centers where a MC algorithm is not yet available should consider a careful use of APB, possibly combined with a movable snout system or in any case with strategies aimed at minimizing air gaps. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Pappas, Eleftherios P; Peppa, Vasiliki; Hourdakis, Costas J; Karaiskos, Pantelis; Papagiannis, Panagiotis
2018-01-01
To evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application. Two identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared. Apart from a region close to the container's neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively. TrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic
Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk
2011-01-01
This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786
NASA Astrophysics Data System (ADS)
Malins, A.; Sakuma, K.; Nakanishi, T.; Kurikami, H.; Machida, M.; Kitamura, A.; Yamada, S.
2015-12-01
The radioactive 134Cs and 137Cs isotopes deposited over Fukushima Prefecture by the Fukushima Daiichi nuclear disaster are the predominant radiological concern for the years following the accident. This is because the energetic gamma radiation they emit on decay constitutes the majority of the elevated air dose rates that now afflict the region. Therefore, we developed a tool for calculating air dose rates from arbitrary radiocesium spatial distributions across the land surface and depth profiles within the ground. As cesium is strongly absorbed by clay soils, its primary redistribution mechanism within Fukushima Prefecture is by soil erosion and water-borne sediment transport. Each year between 0.1~1% of the total radiocesium inventory in the river basins neighboring Fukushima Daiichi is eroded from the land surface and enters into water courses, predominantly during typhoon storms. Although this is a small amount in relative terms, in absolute terms it corresponds to terabecquerels of 134Cs and 137Cs redistribution each year and this can affect the air dose rate at locations of high erosion and sediment deposition. This study inputs the results of sediment redistribution simulations into the dose rate evaluation tool to calculate the locations and magnitude of air dose rate changes due to radiocesium redistribution. The dose rate calculations are supported by handheld survey instrument results taken within the Prefecture.
Zink, F E; McCollough, C H
1994-08-01
The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.
Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.
Kron, T
1995-03-01
Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).
Dosimetric uncertainty in prostate cancer proton radiotherapy.
Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder
2008-11-01
The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the magnitude of maximal doses to the RW by 2% compared to the alternate option utilizing the same block margin of 7 mm. The dose to 0.1 cc of the femoral head on the distal side of the lateral-posterior oblique beam is increased by 25 CGE for a patient with 25 cc of rectal gas. Variation in the rectal and bladder wall DVHs due to uncertainty in the position of the organs relative to the location of sharp dose falloff gradients should be accounted for when evaluating treatment plans. The proton beam delivery option producing a sharper penumbra reduces maximal doses to the rectal wall. Lateral-posterior oblique beams should be avoided in patients prone to develop a large amount of rectal gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. R.; Poenisch, F.; Lii, M.
2013-04-15
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm{sup 2}/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateralmore » dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.« less
Zhu, X. R.; Poenisch, F.; Lii, M.; Sawakuchi, G. O.; Titt, U.; Bues, M.; Song, X.; Zhang, X.; Li, Y.; Ciangaru, G.; Li, H.; Taylor, M. B.; Suzuki, K.; Mohan, R.; Gillin, M. T.; Sahoo, N.
2013-01-01
Purpose: To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). Methods: The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm2/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. Results: We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. Conclusions: We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future. PMID:23556893
Zhu, X R; Poenisch, F; Lii, M; Sawakuchi, G O; Titt, U; Bues, M; Song, X; Zhang, X; Li, Y; Ciangaru, G; Li, H; Taylor, M B; Suzuki, K; Mohan, R; Gillin, M T; Sahoo, N
2013-04-01
To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.
do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi
2015-01-01
Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis
2016-07-01
A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro
2016-03-01
The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.
Silverman, Jeffrey A; Deitcher, Steven R
2013-03-01
Vincristine (VCR) is a mainstay of treatment of hematologic malignancies and solid tumors due to its well-defined mechanism of action, demonstrated anticancer activity and its ability to be combined with other agents. VCR is an M-phase cell cycle-specific anticancer drug with activity that is concentration and exposure duration dependent. The pharmacokinetic profile of standard VCR is described by a bi-exponential elimination pattern with a very fast initial distribution half-life followed by a longer elimination half-life. VCR also has a large volume of distribution, suggesting diffuse distribution and tissue binding. These properties may limit optimal drug exposure and delivery to target tissues as well as clinical utility as a single agent or as an effective component of multi-agent regimens. Vincristine sulfate liposome injection (VSLI), Marqibo(®), is a sphingomyelin and cholesterol-based nanoparticle formulation of VCR that was designed to overcome the dosing and pharmacokinetic limitations of standard VCR. VSLI was developed to increase the circulation time, optimize delivery to target tissues and facilitate dose intensification without increasing toxicity. In xenograft studies in mice, VSLI had a higher maximum tolerated dose, superior antitumor activity and delivered higher amounts of active drug to target tissues compared to standard VCR. VSLI recently received accelerated FDA approval for use in adults with advanced, relapsed and refractory Philadelphia chromosome-negative ALL and is in development for untreated adult ALL, pediatric ALL and untreated aggressive NHL. Here, we summarize the nonclinical data for VSLI that support its continued clinical development and recent approval for use in adult ALL.
Rapid Acute Dose Assessment Using MCNP6
NASA Astrophysics Data System (ADS)
Owens, Andrew Steven
Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.
Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene
2018-05-19
Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Papagiannis, P; Karaiskos, P; Kozicki, M; Rosiak, J M; Sakelliou, L; Sandilos, P; Seimenis, I; Torrens, M
2005-05-07
This work seeks to verify multi-shot clinical applications of stereotactic radiosurgery with a Leksell Gamma Knife model C unit employing a polymer gel-MRI based experimental procedure, which has already been shown to be capable of verifying the precision and accuracy of dose delivery in single-shot gamma knife applications. The treatment plan studied in the present work resembles a clinical treatment case of pituitary adenoma using four 8 mm and one 14 mm collimator helmet shots to deliver a prescription dose of 15 Gy to the 50% isodose line (30 Gy maximum dose). For the experimental dose verification of the treatment plan, the same criteria as those used in the clinical treatment planning evaluation were employed. These included comparison of measured and GammaPlan calculated data, in terms of percentage isodose contours on axial, coronal and sagittal planes, as well as 3D plan evaluation criteria such as dose-volume histograms for the target volume, target coverage and conformity indices. Measured percentage isodose contours compared favourably with calculated ones despite individual point fluctuations at low dose contours (e.g., 20%) mainly due to the effect of T2 measurement uncertainty on dose resolution. Dose-volume histogram data were also found in a good agreement while the experimental results for the percentage target coverage and conformity index were 94% and 1.17 relative to corresponding GammaPlan calculations of 96% and 1.12, respectively. Overall, polymer gel results verified the planned dose distribution within experimental uncertainties and uncertainty related to the digitization process of selected GammaPlan output data.
Liu, Lianke; Ni, Fang; Zhang, Jianchao; Wang, Chunyu; Lu, Xiang; Guo, Zhirui; Yao, Shaowei; Shu, Yongqian; Xu, Ruizhi
2011-12-01
Hyperthermia incorporating magnetic nanoparticles (MNPs) is a hopeful therapy to cancers and steps into clinical tests at present. However, the clinical plan of MNPs deposition in tumors, especially applied for directly multipoint injection hyperthermia (DMIH), and the information of temperature rise in tumors by DMIH is lack of studied. In this paper, we mainly discussed thermal distributions induced by MNPs in the rat brain tumors during DMIH. Due to limited experimental measurement for detecting thermal dose of tumors, and in order to acquire optimized results of temperature distributions clinically needed, we designed the thermal model in which three types of MNPs injection for hyperthermia treatments were simulated. The simulated results showed that MNPs injection plan played an important role in determining thermal distribution, as well as the overall dose of MNPs injected. We found that as injected points enhanced, the difference of temperature in the whole tumor volume decreased. Moreover, from temperature detecting data by Fiber Optic Temperature Sensors (FOTSs) in glioma bearing rats during MNPs hyperthermia, we found the temperature errors by FOTSs reduced as the number of points injected enhanced. Finally, the results showed that the simulations are preferable and the optimized plans of the numbers and spatial positions of MNPs points injected are essential during direct injection hyperthermia.
Induction prednisone dosing for childhood nephrotic syndrome: how low should we go?
Sibley, Matthew; Roshan, Abishek; Alshami, Alanoud; Catapang, Marisa; Jöbsis, Jasper J; Kwok, Trevor; Polderman, Nonnie; Sibley, Jennifer; Matsell, Douglas G; Mammen, Cherry
2018-05-22
Historically, children with nephrotic syndrome (NS) across British Columbia (BC), Canada have been cared for without formal standardization of induction prednisone dosing. We hypothesized that local historical practice variation in induction dosing was wide and that children treated with lower doses had worse relapsing outcomes. This retrospective cohort study included 92 NS patients from BC Children's Hospital (1990-2010). We excluded secondary causes of NS, age < 1 year at diagnosis, steroid resistance, and incomplete induction due to early relapse. We explored cumulative induction dose and defined dosing quartiles. Relapsing outcomes above and below each quartile threshold were compared including total relapses in 2 years, time to first relapse, and proportions developing frequently relapsing NS (FRNS) or starting a steroid-sparing agent (SSA). Cumulative prednisone was widely distributed with approximated median, 1st, and 3rd quartile doses of 2500, 2000, and 3000 mg/m 2 respectively. Doses ≤ 2000 mg/m 2 showed significantly higher relapses (4.2 vs 2.7), shorter time to first relapse (61 vs 175 days), and higher SSA use (36 vs 14%) compared to higher doses. Doses ≤ 2500 mg/m 2 also showed significantly more relapses (3.9 vs 2.2), quicker first relapse (79 vs 208 days), and higher FRNS (37 vs 17%) and SSA use (28 vs 11%). Relapsing outcomes lacked statistical difference in ≤ 3000 vs > 3000 mg/m 2 doses. Results strongly justify our development of a standardized, province-wide NS clinical pathway to reduce practice variation and minimize under-treatment. The lowest induction prednisone dosing threshold to minimize future relapsing risks is likely between 2000 and 2500 mg/m 2 . Further prospective studies are warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
2016-12-01
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
Multiple comparisons permutation test for image based data mining in radiotherapy.
Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel
2013-12-23
: Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke
Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mijnheer, B; Mans, A; Olaciregui-Ruiz, I
Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less
Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko
2017-03-01
In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.
Assessment of radiation doses from residential smoke detectors that contain americium-241
NASA Astrophysics Data System (ADS)
Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.
1981-10-01
External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young K., E-mail: Young.Lee@rmh.nhs.uk; McVey, Gerard P.; South, Chris P.
2013-07-01
Dose distributions for prostate radiotherapy are difficult to predict in patients with bilateral hip prostheses in situ, due to image distortions and difficulty in dose calculation. The feasibility of delivering curative doses to prostate using intensity-modulated radiotherapy (IMRT) in patients with bilateral hip prostheses was evaluated. Planning target volumes for prostate only (PTV1) and pelvic nodes (PTV2) were generated from data on 5 patients. PTV1 and PTV2 dose prescriptions were 70 Gy and 60 Gy, respectively, in 35 fractions, and an additional nodal boost of 65 Gy was added for 1 plan. Rectum, bladder, and bowel were also delineated. Beammore » angles and segments were chosen to best avoid entering through the prostheses. Dose-volume data were assessed with respect to clinical objectives. The plans achieved the required prescription doses to the PTVs. Five-field IMRT plans were adequate for patients with relatively small prostheses (head volumes<60 cm{sup 3}) but 7-field plans were required for patients with larger prostheses. Bowel and bladder doses were clinically acceptable for all patients. Rectal doses were deemed clinically acceptable, although the V{sub 50} {sub Gy} objective was not met for 4/5 patients. We describe an IMRT solution for patients with bilateral hip prostheses of varying size and shape, requiring either localized or whole pelvic radiotherapy for prostate cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allard, Aurore; Haddy, Nadia; Le Deley, Marie-Cecile
2010-12-01
Purpose: The purpose of this study was to estimate the risk of secondary leukemia as a function of radiation dose, taking into account heterogeneous radiation dose distribution. Methods and Materials: We analyzed a case-control study that investigated the risk of secondary leukemia and myelodysplasia after a solid tumor in childhood; it included 61 patients with leukemia matched with 196 controls. Complete clinical, chemotherapy, and radiotherapy histories were recorded for each patient in the study. Average radiation dose to each of seven bone marrow components for each patient was incorporated into the models, and corresponding risks were summed up. Conditional maximummore » likelihood methods were used to estimate risk parameters. Results: Whatever the model, we failed to evidence a role for the radiation dose to active bone marrow in the risk of later leukemia, myelodysplasia, or myeloproliferative syndrome, when adjusting for epipodophyllotoxin and anthracycline doses. This result was confirmed when fitting models that included total dose of radiation delivered during radiotherapy, when fitting models taking into account dose per fraction, and when restricting the analysis to acute myeloid leukemia. Conclusions: In contrast to results found in similar studies that included children treated before the use of epipodophyllotoxins, this study failed to show a role for radiotherapy in the risk of secondary leukemia after childhood cancer in children treated between 1980 and 1999. This discrepancy was probably due to a competitive mechanism between these two carcinogens.« less
Take, Makoto; Takeuchi, Tetsuya; Haresaku, Mitsuru; Matsumoto, Michiharu; Nagano, Kasuke; Yamamoto, Seigo; Takamura-Enya, Takeji; Fukushima, Shoji
2014-01-01
The present study investigated the time-course changes of concentration of chloroform (CHCl3) in the blood during and after exposure of male rats to CHCl3 by inhalation. Increasing the dose of CHCl3 in the inhalation exposed groups caused a commensurate increase in the concentration of CHCl3 in the blood and the area under the blood concentration-time curve (AUC). There was good correlation (r = 0.988) between the inhalation dose and the AUC/kg body weight. Based on the AUC/kg body weight-inhalation dose curve and the AUC/kg body weight after oral administration, inhalation equivalent doses of orally administered CHCl3 were calculated. Calculation of inhalation equivalent doses allows the body burden due to CHCl3 by inhalation exposure and oral exposure to be directly compared. This type of comparison facilitates risk assessment in humans exposed to CHCl3 by different routes. Our results indicate that when calculating inhalation equivalent doses of CHCl3, it is critical to include the AUC from the exposure period in addition to the AUC after the end of the exposure period. Thus, studies which measure the concentration of volatile organic compounds in the blood during the inhalation exposure period are crucial. The data reported here makes an important contribution to the physiologically based pharmacokinetic (PBPK) database of CHCl3 in rodents.
Kaiser, M F; Aziz, A M; Ghieth, B M
2014-11-01
High-resolution airborne gamma ray spectrometry, conducted in 2003, was used to estimate radioactive elements spatial abundance along the Rosetta coastal zone area. It was noticed that both Uranium and Thorium are concentrated in the black sand deposits along the beach. In contrary, Potassium was observed in high level abundance at the cultivated Nile Delta lands due to the accumulated usage of fertilizers. Exposure Rate (ER), Absorbed Dose Rate (ADR) and Annual Effective Dose Rate (AEDR) were calculated to evaluate the radiation background influence in human. Results indicated that the human body in the study sites is subjected to radiation hazards exceeds the accepted limit for long duration exposure. In addition, the areas covered by the highest concentration of Uranium and Thorium show the highest level of radiogenic heat production. Detection the environmental hazards of the radioactive black sands in the study site encouraged this research to monitor the spatial and temporal distribution of these sediments. The Landsat Thematic Mapper images acquired in 1990, 2003 and 2013 were analyzed using remote sensing image processing techniques. Image enhancements, classification and changes detection indicated a positive significant relationship between the patterns of coastline changes and distribution of the radioactive black sand in the study sites. The radioactive black sands are usually concentrated in the eroded areas. Therefore, in 1990 high concentration of the radioactive black sands were observed along the eastern and western flanks of the Rosetta promontory. Distribution of these sediments decreased due to the construction of the protective sea walls. Most of the radioactive black sands are transported toward the east in Abu Khashaba bay under the effect of the longshore currents and toward the west in Alexandria and Abu Quir bay under the action of the seasonal reverse currents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Methadone adverse reaction presenting with large increase in plasma methadone binding: a case series
2011-01-01
Introduction The use of methadone as an analgesic is on the increase, but it is widely recognized that the goal of predictable and reproducible dosing is confounded by considerable variability in methadone pharmacokinetics, and unpredictable side effects that include sedation, respiratory depression and cardiac arrhythmias. The mechanisms underlying these unpredictable effects are frequently unclear. Here, to the best of our knowledge we present the first report of an association between accidental methadone overexposure and increased plasma protein binding, a new potential mechanism for drug interactions with methadone. Case presentation We describe here the cases of two patients who experienced markedly different responses to the same dose of methadone during co-administration of letrozole. Both patients were post-menopausal Caucasian women who were among healthy volunteers participating in a clinical trial. Under the trial protocol both patients received 6 mg of intravenous methadone before and then after taking letrozole for seven days. One woman (aged 59) experienced symptoms consistent with opiate overexposure after the second dose of methadone that were reversed by naloxone, while the other (aged 49) did not. To understand the etiology of this event, we measured methadone pharmacokinetics in both patients. In our affected patient only, a fourfold to eightfold increase in methadone plasma concentrations after letrozole treatment was observed. Detailed pharmacokinetic analysis indicated no change in metabolism or renal elimination in our patient, but the percentage of unbound methadone in the plasma decreased 3.7-fold. As a result, the volume of distribution of methadone decreased approximately fourfold. The increased plasma binding in our affected patient was consistent with observed increases in plasma protein concentrations. Conclusions The marked increase in the total plasma methadone concentration observed in our patient, and the enhanced pharmacodynamic effect, appear primarily due to a reduced volume of distribution. The extent of plasma methadone binding may help to explain the unpredictability of its pharmacokinetics. Changes in volume of distribution due to plasma binding may represent important causes of clinically meaningful drug interactions. PMID:21985665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
2016-06-15
Purpose: To develop a new IMRT treatment planning methodology suitable for the new generation of MR-linear accelerator machines. The pipeline is able to deliver Pareto-optimal plans and can be utilized for conventional treatments as well as for inter- and intrafraction plan adaptation based on real-time MR-data. Methods: A Pareto-optimal plan is generated using the automated multicriterial optimization approach Erasmus-iCycle. The resulting dose distribution is used as input to the second part of the pipeline, an iterative process which generates deliverable segments that target the latest anatomical state and gradually converges to the prescribed dose. This process continues until a certainmore » percentage of the dose has been delivered. Under a conventional treatment, a Segment Weight Optimization (SWO) is then performed to ensure convergence to the prescribed dose. In the case of inter- and intrafraction adaptation, post-processing steps like SWO cannot be employed due to the changing anatomy. This is instead addressed by transferring the missing/excess dose to the input of the subsequent fraction. In this work, the resulting plans were delivered on a Delta4 phantom as a final Quality Assurance test. Results: A conventional static SWO IMRT plan was generated for two prostate cases. The sequencer faithfully reproduced the input dose for all volumes of interest. For the two cases the mean relative dose difference of the PTV between the ideal input and sequenced dose was 0.1% and −0.02% respectively. Both plans were delivered on a Delta4 phantom and passed the clinical Quality Assurance procedures by achieving 100% pass rate at a 3%/3mm gamma analysis. Conclusion: We have developed a new sequencing methodology capable of online plan adaptation. In this work, we extended the pipeline to support Pareto-optimal input and clinically validated that it can accurately achieve these ideal distributions, while its flexible design enables inter- and intrafraction plan adaptation. This research is financially supported by Elekta AB, Stockholm, Sweden.« less
A 3D isodose manipulation tool for interactive dose shaping
NASA Astrophysics Data System (ADS)
Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.
2014-03-01
The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.
Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro
2017-01-01
A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382
Geletneky, Karsten; Leoni, Anne-Laure; Pohlmeyer-Esch, Gabriele; Loebhard, Stephanie; Baetz, Andrea; Leuchs, Barbara; Roscher, Mandy; Hoefer, Constance; Jochims, Karin; Dahm, Michael; Huber, Bernard; Rommelaere, Jean; Krebs, Ottheinz; Hajda, Jacek
2015-01-01
Parvovirus H1 (H1PV) is an autonomous parvovirus that is transmitted in rodent populations. Its natural host is rats. H1PV infection is nonpathogenic except in rat and hamster fetuses and newborns. H1PV infection of human cancer cells caused strong oncolytic effects in preclinical models. For a clinical trial of H1PV in patients with brain tumors, clinical-grade H1PV was produced according to Good Manufacturing Practices. This report focuses on results obtained after a single high-dose intravenous injection of highly purified H1PV in 30 rats and multiple (n = 17) intravenous injections at 3 dose levels in 223 rats. In both studies, no virus-related mortality or macroscopic organ changes related to H1PV occurred. Histopathology after multiple virus injections revealed minimal diffuse bile duct hyperplasia in livers of animals of the highest dose group and germinal center development in spleens of animals from the high-dose group. Liver changes were reversible within a 2-wk recovery period after the last injection. Hematology, blood chemistry, and coagulation analyses did not reveal significant toxicologic changes due to H1PV. Virus injection stimulated the production of IgG antibodies but did not alter mononuclear cell function or induce cytokine release. PCR analysis showed dose-dependent levels of viral genomes in all organs tested. The virus was excreted primarily through feces. These data provide important information regarding H1PV infection in its natural host. Due to the confirmation of the favorable safety profile of H1PV in a permissive animal model, a phase I/IIa clinical trial of H1PV in brain tumor patients could be initiated. PMID:25730754
Lin, Wen; Hong, Jin-Liern; Shen, Guoxiang; Wu, Rachel T; Wang, Yuwen; Huang, Mou-Tuan; Newmark, Harold L; Huang, Qingrong; Khor, Tin Oo; Heimbach, Tycho; Kong, Ah-Ng
2011-03-01
The pharmacokinetic disposition of a dietary cancer chemopreventive compound dibenzoylmethane (DBM) was studied in male Sprague-Dawley rats after intravenous (i.v.) and oral (p.o.) administrations. Following a single i.v. bolus dose, the mean plasma clearance (CL) of DBM was low compared with the hepatic blood flow. DBM displayed a high volume of distribution (Vss). The elimination terminal t1/2 was long. The mean CL, Vss and AUC0-∞/dose were similar between the i.v. 10 and 10 mg/kg doses. After single oral doses (10, 50 and 250 mg/kg), the absolute oral bioavailability (F*) of DBM was 7.4%-13.6%. The increase in AUC was not proportional to the oral doses, suggesting non-linearity. In silico prediction of oral absorption also demonstrated low DBM absorption in vivo. An oil-in-water nanoemulsion containing DBM was formulated to potentially overcome the low F* due to poor water solubility of DBM, with enhanced oral absorption. Finally, to examine the role of Nrf2 on the pharmacokinetics of DBM, since DBM activates the Nrf2-dependent detoxification pathways, Nrf2 wild-type (+/+) mice and Nrf2 knockout (-/-) mice were utilized. There was an increased systemic plasma exposure of DBM in Nrf2 (-/-) mice, suggesting that the Nrf2 genotype could also play a role in the pharmacokinetic disposition of DBM. Taken together, the results show that DBM has low oral bioavailability which could be due in part to poor water solubility and this could be overcome by a nanotechnology-based drug delivery system and furthermore the Nrf2 genotype could also play a role in the pharmacokinetics of DBM. Copyright © 2010 John Wiley & Sons, Ltd.
Abraham, Sara A; Kearfott, Kimberlee J
2018-06-15
Optically stimulated luminescent dosimeters are devices that, when stimulated with light, emit light in proportion to the integrated ionizing radiation dose. The stimulation of optically stimulated luminescent material results in the loss of a small fraction of signal stored within the dosimetric traps. Previous studies have investigated the signal loss due to readout stimulation and the optical annealing of optically stimulated luminescent dosimeters. This study builds on former research by examining the behavior of optically stimulated luminescent signals after annealing, exploring the functionality of a previously developed signal loss model, and comparing uncertainties for dosimeters reused with or without annealing. For a completely annealed dosimeter, the minimum signal level was 56 ± 8 counts, and readings followed a Gaussian distribution. For dosimeters above this signal level, the fractional signal loss due to the reading process has a linear relationship with the calculated signal. At low signal levels (below 20,000 counts) in this optically stimulated luminescent dosimeter system, calculated signal percent errors increase significantly but otherwise are on average 0.72 ± 0.27%, 0.40 ± 0.19%, 0.33 ± 0.12%, and 0.24 ± 0.07% for 30, 75, 150, and 300 readings, respectively. Theoretical calculations of uncertainties showed that annealing before reusing dosimeters allows for dose errors below 1% with as few as 30 readings. Reusing dosimeters multiple times increases the dose errors especially with low numbers of readouts, so theoretically around 300 readings would be necessary to achieve errors around 1% or below in most scenarios. Note that these dose errors do not include the error associated with the signal-to-dose conversion factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J; Perko, Z; Wolfgang, J
Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less
SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, R; Sun, B; Zhao, T
Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less
NASA Astrophysics Data System (ADS)
Özdemir, Tonguç
2017-06-01
Radioactive waste generated from the nuclear industry and non-power applications should carefully be treated, conditioned and disposed according to the regulations set by the competent authority(ies). Bisphenol-a polycarbonate (BPA-PC), a very widely used polymer, might be considered as a potential candidate material for low level radioactive waste encapsulation. In this work, the dose rate distribution in the radioactive waste drum (containing radioactive waste and the BPA-PC polymer matrix) was determined using Monte Carlo simulations. Moreover, the change of mechanical properties of BPA-PC was estimated and their variation within the waste drum was determined for the periods of 15, 30 and 300 years after disposal to the final disposal site. The change of the dose rate within the waste drum with different contents of bismuth-III oxide were also simulated. It was concluded that addition of bismuth-III oxide filler decreases the dose delivered to the polymeric matrix due to photoelectric effect.
Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.
Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S
2011-07-01
South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).