Sample records for dose distributions multiple

  1. Quantitative evaluation of local pulmonary distribution of TiO2 in rats following single or multiple intratracheal administrations of TiO2 nanoparticles using X-ray fluorescence microscopy.

    PubMed

    Zhang, Guihua; Shinohara, Naohide; Kano, Hirokazu; Senoh, Hideki; Suzuki, Masaaki; Sasaki, Takeshi; Fukushima, Shoji; Gamo, Masashi

    2016-10-01

    Uneven pulmonary nanoparticle (NP) distribution has been described when using single-dose intratracheal administration tests. Multiple-dose intratracheal administrations with small quantities of NPs are expected to improve the unevenness of each dose. The differences in local pulmonary NP distribution (called microdistribution) between single- and multiple-dose administrations may cause differential pulmonary responses; however, this has not been evaluated. Here, we quantitatively evaluated the pulmonary microdistribution (per mesh: 100 μm × 100 μm) of TiO2 in lung sections from rats following one, two, three, or four doses of TiO2 NPs at a same total dosage of 10 mg kg(-1) using X-ray fluorescence microscopy. The results indicate that: (i) multiple-dose administrations show lower variations in TiO2 content (ng mesh(-1) ) for sections of each lobe; (ii) TiO2 appears to be deposited more in the right caudal and accessory lobes located downstream of the administration direction of NP suspensions, and less so in the right middle lobes, irrespective of the number of doses; (iii) there are not prominent differences in the pattern of pulmonary TiO2 microdistribution between rats following single and multiple doses of TiO2 NPs. Additionally, the estimation of pulmonary TiO2 deposition for multiple-dose administrations imply that every dose of TiO2 would be randomly deposited only in part of the fixed 30-50% of lung areas. The evidence suggests that multiple-dose administrations do not offer remarkable advantages over single-dose administration on the pulmonary NP microdistribution, although multiple-dose administrations may reduce variations in the TiO2 content for each lung lobe. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Multiple comparisons permutation test for image based data mining in radiotherapy.

    PubMed

    Chen, Chun; Witte, Marnix; Heemsbergen, Wilma; van Herk, Marcel

    2013-12-23

    : Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy.

  3. Pharmacokinetics of sulfamethoxazole and trimethoprim in Pacific white shrimp, Litopenaeus vannamei, after oral administration of single-dose and multiple-dose.

    PubMed

    Ma, Rongrong; Wang, Yuan; Zou, Xiong; Hu, Kun; Sun, Beibei; Fang, Wenhong; Fu, Guihong; Yang, Xianle

    2017-06-01

    The tissue distribution and depletion of sulfamethoxazole (SMZ) and trimethoprim (TMP) were studied in Pacific white shrimp, Litopenaeus vannamei, after single-dose and multiple-dose oral administration of SMZ-TMP (5:1) via medicated feed. In single-dose oral administration, shrimps were fed once at a dose of 100 mg/kg (drug weight/body weight). In multiple-dose oral administration, shrimps were fed three times a day for three consecutive days at a dose of 100mg/kg. The results showed the kinetic characteristic of SMZ was different from TMP in Pacific white shrimp. In the single-dose administration, the SMZ was widely distributed in the tissues, while TMP was highly concentrated in the hepatopancreas. The t 1/2z values of SMZ were larger and persist longer than TMP in Pacific white shrimp. In the multiple-dose administration, SMZ accumulated well in the tissues, and reached steady state level after successive administrations, while TMP did not. TMP concentration even appeared the downward trend with the increase of drug times. Compared with the single dose, the t 1/2z values of SMZ in hepatopancreas (8.22-11.33h) and muscle (6.53-10.92h) of Pacific white shrimps rose, but the haemolymph dropped (13.76-11.03) in the multiple-dose oral administration. Meanwhile, the corresponding values of TMP also rose in hepatopancreas (4.53-9.65h) and muscle (2.12-2.71h), and declined in haemolymph (7.38-5.25h) following single-dose and multiple-dose oral administration in Pacific white shrimps. In addition, it is worth mentioning that the ratios of SMZ and TMP were unusually larger than the general aim ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multiple comparisons permutation test for image based data mining in radiotherapy

    PubMed Central

    2013-01-01

    Comparing incidental dose distributions (i.e. images) of patients with different outcomes is a straightforward way to explore dose-response hypotheses in radiotherapy. In this paper, we introduced a permutation test that compares images, such as dose distributions from radiotherapy, while tackling the multiple comparisons problem. A test statistic Tmax was proposed that summarizes the differences between the images into a single value and a permutation procedure was employed to compute the adjusted p-value. We demonstrated the method in two retrospective studies: a prostate study that relates 3D dose distributions to failure, and an esophagus study that relates 2D surface dose distributions of the esophagus to acute esophagus toxicity. As a result, we were able to identify suspicious regions that are significantly associated with failure (prostate study) or toxicity (esophagus study). Permutation testing allows direct comparison of images from different patient categories and is a useful tool for data mining in radiotherapy. PMID:24365155

  5. A case study of radiotherapy planning for Intensity Modulation Radiation Therapy for the whole scalp with matching electron treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponseller, Patricia, E-mail: sponselp@uw.edu; Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA; Paravathaneni, Upendra

    2013-07-01

    The purpose of this report is to communicate a technique to match an electron field to the dose distribution of an Intensity-Modulated Radiation Therapy (IMRT) plan. A patient with multiple areas of squamous cell carcinoma over the scalp was treated using 60 Gy in 2.0-Gy fractions to the entire scalp and first echelon nodes with multiple 6-MV photon fields. To deliver an adequate dose to the scalp, a custom 1.0-cm bolus helmet was fashioned using a solid piece of aquaplast. Along with the IMRT scalp treatment, a left zygoma area was treated with electrons matching the anterior border of themore » IMRT dose distribution. The border was matched by creating a left lateral field with the multileaf collimator shaped to the IMRT dose distribution. The result indicated an adequate dose to the skin match between the IMRT plan and the electron field. Results were confirmed using optically stimulated luminescence placed at the skin match area, so that the dose matched the prescription within 10%.« less

  6. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  7. SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harpool, K; De La Fuente Herman, T; Ahmad, S

    Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered bymore » an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less

  8. Helical Tomotherapy for Whole-Brain Irradiation With Integrated Boost to Multiple Brain Metastases: Evaluation of Dose Distribution Characteristics and Comparison With Alternative Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegrün, Sabine, E-mail: sabine.levegruen@uni-due.de; Pöttgen, Christoph; Wittig, Andrea

    2013-07-15

    Purpose: To quantitatively evaluate dose distribution characteristics achieved with helical tomotherapy (HT) for whole-brain irradiation (WBRT) with integrated boost (IB) to multiple brain metastases in comparison with alternative techniques. Methods and Materials: Dose distributions for 23 patients with 81 metastases treated with WBRT (30 Gy/10 fractions) and IB (50 Gy) were analyzed. The median number of metastases per patient (N{sub mets}) was 3 (range, 2-8). Mean values of the composite planning target volume of all metastases per patient (PTV{sub mets}) and of the individual metastasis planning target volume (PTV{sub ind} {sub met}) were 8.7 ± 8.9 cm{sup 3} (range, 1.3-35.5more » cm{sup 3}) and 2.5 ± 4.5 cm{sup 3} (range, 0.19-24.7 cm{sup 3}), respectively. Dose distributions in PTV{sub mets} and PTV{sub ind} {sub met} were evaluated with respect to dose conformity (conformation number [CN], RTOG conformity index [PITV]), target coverage (TC), and homogeneity (homogeneity index [HI], ratio of maximum dose to prescription dose [MDPD]). The dependence of dose conformity on target size and N{sub mets} was investigated. The dose distribution characteristics were benchmarked against alternative irradiation techniques identified in a systematic literature review. Results: Mean ± standard deviation of dose distribution characteristics derived for PTV{sub mets} amounted to CN = 0.790 ± 0.101, PITV = 1.161 ± 0.154, TC = 0.95 ± 0.01, HI = 0.142 ± 0.022, and MDPD = 1.147 ± 0.029, respectively, demonstrating high dose conformity with acceptable homogeneity. Corresponding numbers for PTV{sub ind} {sub met} were CN = 0.708 ± 0.128, PITV = 1.174 ± 0.237, TC = 0.90 ± 0.10, HI = 0.140 ± 0.027, and MDPD = 1.129 ± 0.030, respectively. The target size had a statistically significant influence on dose conformity to PTV{sub mets} (CN = 0.737 for PTV{sub mets} ≤4.32 cm{sup 3} vs CN = 0.848 for PTV{sub mets} >4.32 cm{sup 3}, P=.006), in contrast to N{sub mets}. The achieved dose conformity to PTV{sub mets}, assessed by both CN and PITV, was in all investigated volume strata well within the best quartile of the values reported for alternative irradiation techniques. Conclusions: HT is a well-suited technique to deliver WBRT with IB to multiple brain metastases, yielding high-quality dose distributions. A multi-institutional prospective randomized phase 2 clinical trial to exploit efficacy and safety of the treatment concept is currently under way.« less

  9. Modeling Rabbit Responses to Single and Multiple Aerosol ...

    EPA Pesticide Factsheets

    Journal Article Survival models are developed here to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple dose dataset to predict the probability of death through specifying dose-response functions and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) has an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed employ different underlying dose-response functions and use the assumption that, in a multiple dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this paper. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit datasets. More accurate survival models depend upon future development of dose-response datasets specifically designed to assess potential multiple dose effects on response and time-to-response. The process used in this paper to dev

  10. Non-linear relationship of cell hit and transformation probabilities in a low dose of inhaled radon progenies.

    PubMed

    Balásházy, Imre; Farkas, Arpád; Madas, Balázs Gergely; Hofmann, Werner

    2009-06-01

    Cellular hit probabilities of alpha particles emitted by inhaled radon progenies in sensitive bronchial epithelial cell nuclei were simulated at low exposure levels to obtain useful data for the rejection or support of the linear-non-threshold (LNT) hypothesis. In this study, local distributions of deposited inhaled radon progenies in airway bifurcation models were computed at exposure conditions characteristic of homes and uranium mines. Then, maximum local deposition enhancement factors at bronchial airway bifurcations, expressed as the ratio of local to average deposition densities, were determined to characterise the inhomogeneity of deposition and to elucidate their effect on resulting hit probabilities. The results obtained suggest that in the vicinity of the carinal regions of the central airways the probability of multiple hits can be quite high, even at low average doses. Assuming a uniform distribution of activity there are practically no multiple hits and the hit probability as a function of dose exhibits a linear shape in the low dose range. The results are quite the opposite in the case of hot spots revealed by realistic deposition calculations, where practically all cells receive multiple hits and the hit probability as a function of dose is non-linear in the average dose range of 10-100 mGy.

  11. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Pangam, S; Kolla, J

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence ofmore » beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.« less

  12. Characterisation of mega-voltage electron pencil beam dose distributions: viability of a measurement-based approach.

    PubMed

    Barnes, M P; Ebert, M A

    2008-03-01

    The concept of electron pencil-beam dose distributions is central to pencil-beam algorithms used in electron beam radiotherapy treatment planning. The Hogstrom algorithm, which is a common algorithm for electron treatment planning, models large electron field dose distributions by the superposition of a series of pencil beam dose distributions. This means that the accurate characterisation of an electron pencil beam is essential for the accuracy of the dose algorithm. The aim of this study was to evaluate a measurement based approach for obtaining electron pencil-beam dose distributions. The primary incentive for the study was the accurate calculation of dose distributions for narrow fields as traditional electron algorithms are generally inaccurate for such geometries. Kodak X-Omat radiographic film was used in a solid water phantom to measure the dose distribution of circular 12 MeV beams from a Varian 21EX linear accelerator. Measurements were made for beams of diameter, 1.5, 2, 4, 8, 16 and 32 mm. A blocked-field technique was used to subtract photon contamination in the beam. The "error function" derived from Fermi-Eyges Multiple Coulomb Scattering (MCS) theory for corresponding square fields was used to fit resulting dose distributions so that extrapolation down to a pencil beam distribution could be made. The Monte Carlo codes, BEAM and EGSnrc were used to simulate the experimental arrangement. The 8 mm beam dose distribution was also measured with TLD-100 microcubes. Agreement between film, TLD and Monte Carlo simulation results were found to be consistent with the spatial resolution used. The study has shown that it is possible to extrapolate narrow electron beam dose distributions down to a pencil beam dose distribution using the error function. However, due to experimental uncertainties and measurement difficulties, Monte Carlo is recommended as the method of choice for characterising electron pencil-beam dose distributions.

  13. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku

    2013-03-15

    Purpose: Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Methods: Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity andmore » energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCR{sub L}) and phase-controlled volumetric rescanning (PCR{sub V}) were compared. Results: For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1 Multiplication-Sign PCR{sub L} and 1 Multiplication-Sign PCR{sub V}) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4 Multiplication-Sign PCR{sub L} or more significantly and consistently improved dose distribution. PCR{sub V} showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCR{sub L}/PCR{sub V} with a sweep direction perpendicular to motion direction showed large hot/cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI/AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax/Dmin, homogeneity index) were improved with an increasing number of PCR{sub L}/PCR{sub V}, but with PCR{sub L} being more robust. Conclusions: PCR{sub L} requires a longer treatment time than PCR{sub V} for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.« less

  14. SU-E-T-540: Volumetric Modulated Total Body Irradiation Using a Rotational Lazy Susan-Like Immobilization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X; Hrycushko, B; Lee, H

    2014-06-01

    Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less

  15. TH-C-19A-01: Analytic Design Method to Make a 2D Planar, Segmented Ion Chamber Water-Equivalent for Proton Dose Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Hollebeek, R; Teo, B

    2014-06-15

    Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensionalmore » segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.« less

  16. Cumulative effective dose associated with radiography and CT of adolescents with spinal injuries.

    PubMed

    Lemburg, Stefan P; Peters, Soeren A; Roggenland, Daniela; Nicolas, Volkmar; Heyer, Christoph M

    2010-12-01

    The purpose of this study was to analyze the quantity and distribution of cumulative effective doses in diagnostic imaging of adolescents with spinal injuries. At a level 1 trauma center from July 2003 through June 2009, imaging procedures during initial evaluation and hospitalization and after discharge of all patients 10-20 years old with spinal fractures were retrospectively analyzed. The cumulative effective doses for all imaging studies were calculated, and the doses to patients with spinal injuries who had multiple traumatic injuries were compared with the doses to patients with spinal injuries but without multiple injuries. The significance level was set at 5%. Imaging studies of 72 patients (32 with multiple injuries; average age, 17.5 years) entailed a median cumulative effective dose of 18.89 mSv. Patients with multiple injuries had a significantly higher total cumulative effective dose (29.70 versus 10.86 mSv, p < 0.001) mainly owing to the significantly higher CT-related cumulative effective dose to multiple injury patients during the initial evaluation (18.39 versus 2.83 mSv, p < 0.001). Overall, CT accounted for 86% of the total cumulative effective dose. Adolescents with spinal injuries receive a cumulative effective dose equal to that of adult trauma patients and nearly three times that of pediatric trauma patients. Areas of focus in lowering cumulative effective dose should be appropriate initial estimation of trauma severity and careful selection of CT scan parameters.

  17. Skin contamination dosimeter

    DOEpatents

    Hamby, David M [Corvallis, OR; Farsoni, Abdollah T [Corvallis, OR; Cazalas, Edward [Corvallis, OR

    2011-06-21

    A technique and device provides absolute skin dosimetry in real time at multiple tissue depths simultaneously. The device uses a phoswich detector which has multiple scintillators embedded at different depths within a non-scintillating material. A digital pulse processor connected to the phoswich detector measures a differential distribution (dN/dH) of count rate N as function of pulse height H for signals from each of the multiple scintillators. A digital processor computes in real time from the differential count-rate distribution for each of multiple scintillators an estimate of an ionizing radiation dose delivered to each of multiple depths of skin tissue corresponding to the multiple scintillators embedded at multiple corresponding depths within the non-scintillating material.

  18. Glucuronidation and Sulfation Kinetics of Diflunisal in Man.

    NASA Astrophysics Data System (ADS)

    Loewen, Gordon Rapheal

    Diflunisal is a nonsteroidal anti-inflammatory drug used in the treatment of arthritis and musculoskeletal pain. Diflunisal exhibits concentration- and dose-dependent kinetics, the mechanism of which has not been determined. The purpose of this study was to determine the mechanism(s) responsible for non-linear disposition of diflunisal and to examine environmental factors which may affect the elimination of diflunisal. The metabolites of diflunisal, including a new metabolite, the sulphate conjugate, were purified by column and semi-preparative high pressure liquid chromatography. Assays for the quantitation of diflunisal and conjugates in urine and diflunisal in plasma were developed. Plasma protein binding of diflunisal in blank plasma and in plasma obtained following multiple doses of diflunisal was determined by equilibrium dialysis. Total body clearance of diflunisal decreased when dose increased from 100 to 750 mg. Total clearance increased when dose increased from 750 to 1000 mg. The percent of recovered dose eliminated as the acyl glucuronide decreased and the percent eliminated as the sulphate increased with increasing dose of diflunisal. Plasma protein binding of diflunisal was concentration dependent over a range of diflunisal plasma concentrations of 3 to 257 mug/ml. Total clearance, and to a lesser degree, unbound clearance of diflunisal were decreased following multiple dose administration of 250 and 500 mg diflunisal. Percent of recovered dose eliminated as the acyl glucuronide decreased and percent eliminated as the sulphate conjugate increased following multiple dosing. Plasma protein binding of diflunisal was similar in blank plasma and plasma obtained at steady state. Unbound clearance of diflunisal exceeded liver plasma flow. Frequency distributions of the elimination of the conjugates of diflunisal were normally distributed. Sex, smoking, and use of vitamins or oral contraceptives were identified as factors which may affect the elimination of diflunisal.

  19. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.

    PubMed

    Bao, Ande; Zhao, Xia; Phillips, William T; Woolley, F Ross; Otto, Randal A; Goins, Beth; Hevezi, James M

    2005-01-01

    Radioimmunotherapy of hematopoeitic cancers and micrometastases has been shown to have significant therapeutic benefit. The treatment of solid tumors with radionuclide therapy has been less successful. Previous investigations of intratumoral activity distribution and studies on intratumoral drug delivery suggest that a probable reason for the disappointing results in solid tumor treatment is nonuniform intratumoral distribution coupled with restricted intratumoral drug penetrance, thus inhibiting antineoplastic agents from reaching the tumor's center. This paper describes a nonuniform intratumoral activity distribution identified by limited radiolabeled tracer diffusion from tumor surface to tumor center. This activity was simulated using techniques that allowed the absorbed dose distributions to be estimated using different intratumoral diffusion capabilities and calculated for tumors of varying diameters. The influences of these absorbed dose distributions on solid tumor radionuclide therapy are also discussed. The absorbed dose distribution was calculated using the dose point kernel method that provided for the application of a three-dimensional (3D) convolution between a dose rate kernel function and an activity distribution function. These functions were incorporated into 3D matrices with voxels measuring 0.10 x 0.10 x 0.10 mm3. At this point fast Fourier transform (FFT) and multiplication in frequency domain followed by inverse FFT (iFFT) were used to effect this phase of the dose calculation process. The absorbed dose distribution for tumors of 1, 3, 5, 10, and 15 mm in diameter were studied. Using the therapeutic radionuclides of 131I, 186Re, 188Re, and 90Y, the total average dose, center dose, and surface dose for each of the different tumor diameters were reported. The absorbed dose in the nearby normal tissue was also evaluated. When the tumor diameters exceed 15 mm, a much lower tumor center dose is delivered compared with tumors between 3 and 5 mm in diameter. Based on these findings, the use of higher beta-energy radionuclides, such as 188Re and 90Y is more effective in delivering a higher absorbed dose to the tumor center at tumor diameters around 10 mm.

  20. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits.

    PubMed

    Daull, Philippe; Lallemand, Frédéric; Philips, Betty; Lambert, Grégory; Buggage, Ronald; Garrigue, Jean-Sébastien

    2013-03-01

    The aim of this study was to compare the ocular and systemic distribution of cyclosporine A (CsA) in rabbits after the instillation of preservative-free CsA cationic and anionic emulsions. For the single-dose pharmacokinetic (PK) study, rabbits were instilled with 50 μL of the test material. For the multiple-dose PK study, rabbits were instilled twice daily with Restasis or once daily with NOVA22007 for 10 days. At each time point, the cornea, conjunctiva, and whole blood were harvested for CsA quantification. Ocular and systemic distribution were determined after 4 times daily instillations with 50 μL of 3H-CsA cationic and anionic emulsions for 7 days. Restasis was used as a reference in all studies. Single-dose PK data demonstrated that NOVA22007 0.1% and 0.05% delivered higher CsA concentrations to the cornea than Restasis [concentration maximum (C max): 2692, 1372, and 748 ng/g, respectively] and have a better exposition (area under the curve). Conjunctival Cmax values were 1914, 696, and 849 ng/g and area under the curve values were 3984, 2796, and 2515 ng/g · h, for either dose of the cationic emulsions and Restasis, respectively. The multiple-dose PK and the 3H-CsA distribution data demonstrated that the systemic distribution after repeated instillations was low and comparable for all emulsions. These data demonstrate that the CsA cationic emulsions were more effective than Restasis at delivering CsA to target tissues, thus confirming the potential advantage of cationic emulsions over anionic emulsions as vehicle for ocular drug delivery for the treatment of ocular surface diseases.

  1. SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C; Mah, D

    2015-06-15

    Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18more » measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA.« less

  2. Pharmacokinetics and Safety of Intravenous Murepavadin Infusion in Healthy Adult Subjects Administered Single and Multiple Ascending Doses.

    PubMed

    Wach, Achim; Dembowsky, Klaus; Dale, Glenn E

    2018-04-01

    Murepavadin is the first in class of the outer membrane protein-targeting antibiotics (OMPTA) and a pathogen-specific peptidomimetic antibacterial with a novel, nonlytic mechanism of action targeting Pseudomonas aeruginosa Murepavadin is being developed for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP). The pharmacokinetics (PK) and safety of single and multiple doses of murepavadin were investigated in healthy male subjects. Part A of the study was a double-blind, randomized, placebo-controlled, single-ascending-dose investigation in 10 sequential cohorts where each cohort comprised 6 healthy male subjects; 4 subjects were randomized to murepavadin, and 2 subjects were randomized to placebo. Part B was a double-blind, randomized, placebo-controlled, multiple-ascending-dose investigation in 3 sequential cohorts. After a single dose of murepavadin, the geometric mean half-life (2.52 to 5.30 h), the total clearance (80.1 to 114 ml/h/kg), and the volume of distribution (415 to 724 ml/kg) were consistent across dose levels. The pharmacokinetics of the dosing regimens evaluated were dose proportional and linear. Murepavadin was well tolerated, adverse events were transient and generally mild, and no dose-limiting toxicity was identified. Copyright © 2018 American Society for Microbiology.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorissen, BL; Giantsoudi, D; Unkelbach, J

    Purpose: Cell survival experiments suggest that the relative biological effectiveness (RBE) of proton beams depends on linear energy transfer (LET), leading to higher RBE near the end of range. With intensity-modulated proton therapy (IMPT), multiple treatment plans that differ in the dose contribution per field may yield a similar physical dose distribution, but the RBE-weighted dose distribution may be disparate. RBE models currently do not have the required predictive power to be included in an optimization model due to the variations in experimental data. We propose an LET-based planning method that guides IMPT optimization models towards plans with reduced RBE-weightedmore » dose in surrounding organs at risk (OARs) compared to inverse planning based on physical dose alone. Methods: Optimization models for physical dose are extended with a term for dose times LET (doseLET). Monte Carlo code is used to generate the physical dose and doseLET distribution of each individual pencil beam. The method is demonstrated for an atypical meningioma patient where the target volume abuts the brainstem and partially overlaps with the optic nerve. Results: A reference plan optimized based on physical dose alone yields high doseLET values in parts of the brainstem and optic nerve. Minimizing doseLET in these critical structures as an additional planning goal reduces the risk of high RBE-weighted dose. The resulting treatment plan avoids the distal fall-off of the Bragg peaks for shaping the dose distribution in front of critical stuctures. The maximum dose in the OARs evaluated with RBE models from literature is reduced by 8–14\\% with our method compared to conventional planning. Conclusion: LET-based inverse planning for IMPT offers the ability to reduce the RBE-weighted dose in OARs without sacrificing target dose. This project was in part supported by NCI - U19 CA 21239.« less

  4. Current practice of antibiotic prophylaxis for surgical fixation of closed long bone fractures: a survey of 297 members of the Orthopaedic Trauma Association.

    PubMed

    Gans, Itai; Jain, Amit; Sirisreetreerux, Norachart; Haut, Elliott R; Hasenboehler, Erik A

    2017-01-01

    The risk of postoperative surgical site infection after long bone fracture fixation can be decreased with appropriate antibiotic use. However, there is no agreement on the superiority of a single- or multiple-dose perioperative regimen of antibiotic prophylaxis. The purpose of this study is to determine the following: 1) What are the current practice patterns of orthopaedic trauma surgeons in using perioperative antibiotics for closed long bone fractures? 2) What is the current knowledge of published antibiotic prophylaxis guidelines among orthopaedic trauma surgeons? 3) Are orthopaedic surgeons willing to change their current practices? A questionnaire was distributed via email between September and December 2015 to 955 Orthopaedic Trauma Association members, of whom 297 (31%) responded. Most surgeons (96%) use cefazolin as first-line infection prophylaxis. Fifty-nine percent used a multiple-dose antibiotic regimen, 39% used a single-dose regimen, and 2% varied this decision according to patient factors. Thirty-six percent said they were unfamiliar with Centers for Disease Control and Prevention (CDC) antibiotic prophylaxis guidelines; only 30% were able to select the correct CDC recommendation from a multiple-choice list. However, 44% of surgeons said they followed CDC recommendations. Fifty-six percent answered that a single-dose antibiotic prophylaxis regimen was not inferior to a multiple-dose regimen. If a level-I study comparing a single preoperative dose versus multiple perioperative antibiotic dosing regimen for treatment of closed long bone fractures were published, most respondents (64%) said they would fully follow these guidelines, and 22% said they would partially change their practice to follow these guidelines. There is heterogeneity in the use of single- versus multiple-dose antibiotic prophylaxis for surgical repair of closed long bone fractures. Many surgeons were unsure of current evidence-based recommendations regarding perioperative antibiotic use. Most respondents indicated they would be receptive to high-level evidence regarding the single- versus multiple-dose perioperative prophylactic antibiotics for the treatment of closed long bone fractures.

  5. Whole-body voxel-based personalized dosimetry: Multiple voxel S-value approach for heterogeneous media with non-uniform activity distributions.

    PubMed

    Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung

    2017-12-14

    Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and organ-based dosimetry. Errors at the organ-level were -6.71%, 2.17%, and 227.46% for the single VSV, multiple VSV, and organ-based dosimetry, respectively. Conclusion: The multiple VSV approach for heterogeneous media with non-uniform activity distributions offers fast personalized dosimetry at whole-body level, yielding results comparable to those of the direct Monte Carlo approach. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  7. Double-blind evaluation of the safety and pharmacokinetics of multiple oral once-daily 750-milligram and 1-gram doses of levofloxacin in healthy volunteers.

    PubMed

    Chien, S C; Wong, F A; Fowler, C L; Callery-D'Amico, S V; Williams, R R; Nayak, R; Chow, A T

    1998-04-01

    The safety and pharmacokinetics of once-daily oral levofloxacin in 16 healthy male volunteers were investigated in a randomized, double-blind, placebo-controlled study. Subjects were randomly assigned to the treatment (n = 10) or placebo group (n = 6). In study period 1, 750 mg of levofloxacin or a placebo was administered orally as a single dose on day 1, followed by a washout period on days 2 and 3; dosing resumed for days 4 to 10. Following a 3-day washout period, 1 g of levofloxacin or a placebo was administered in a similar fashion in period 2. Plasma and urine levofloxacin concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were estimated by model-independent methods. Levofloxacin was rapidly absorbed after single and multiple once-daily 750-mg and 1-g doses with an apparently large volume of distribution. Peak plasma levofloxacin concentration (Cmax) values were generally attained within 2 h postdose. The mean values of Cmax and area under the concentration-time curve from 0 to 24 h (AUC0-24) following a single 750-mg dose were 7.1 microg/ml and 71.3 microg x h/ml, respectively, compared to 8.6 microg/ml and 90.7 microg x h/ml, respectively, at steady state. Following the single 1-g dose, mean Cmax and AUC0-24 values were 8.9 microg/ml and 95.4 microg x h/ml, respectively; corresponding values at steady state were 11.8 microg/ml and 118 microg x h/ml. These Cmax and AUC0-24 values indicate modest and similar degrees of accumulation upon multiple dosing at the two dose levels. Values of apparent total body clearance (CL/F), apparent volume of distribution (Vss/F), half-life (t1/2), and renal clearance (CL[R]) were similar for the two dose levels and did not vary from single to multiple dosing. Mean steady-state values for CL/F, Vss/F, t1/2, and CL(R) following 750 mg of levofloxacin were 143 ml/min, 100 liters, 8.8 h, and 116 ml/min, respectively; corresponding values for the 1-g dose were 146 ml/min, 105 liters, 8.9 h, and 105 ml/min. In general, the pharmacokinetics of levofloxacin in healthy subjects following 750-mg and 1-g single and multiple once-daily oral doses appear to be consistent with those found in previous studies of healthy volunteers given 500-mg doses. Levofloxacin was well tolerated at either high dose level. The most frequently reported drug-related adverse events were nausea and headache.

  8. Double-Blind Evaluation of the Safety and Pharmacokinetics of Multiple Oral Once-Daily 750-Milligram and 1-Gram Doses of Levofloxacin in Healthy Volunteers

    PubMed Central

    Chien, Shu-Chean; Wong, Frank A.; Fowler, Cynthia L.; Callery-D’Amico, Susan V.; Williams, R. Rex; Nayak, Ramchandra; Chow, Andrew T.

    1998-01-01

    The safety and pharmacokinetics of once-daily oral levofloxacin in 16 healthy male volunteers were investigated in a randomized, double-blind, placebo-controlled study. Subjects were randomly assigned to the treatment (n = 10) or placebo group (n = 6). In study period 1, 750 mg of levofloxacin or a placebo was administered orally as a single dose on day 1, followed by a washout period on days 2 and 3; dosing resumed for days 4 to 10. Following a 3-day washout period, 1 g of levofloxacin or a placebo was administered in a similar fashion in period 2. Plasma and urine levofloxacin concentrations were measured by high-pressure liquid chromatography. Pharmacokinetic parameters were estimated by model-independent methods. Levofloxacin was rapidly absorbed after single and multiple once-daily 750-mg and 1-g doses with an apparently large volume of distribution. Peak plasma levofloxacin concentration (Cmax) values were generally attained within 2 h postdose. The mean values of Cmax and area under the concentration-time curve from 0 to 24 h (AUC0–24) following a single 750-mg dose were 7.1 μg/ml and 71.3 μg · h/ml, respectively, compared to 8.6 μg/ml and 90.7 μg · h/ml, respectively, at steady state. Following the single 1-g dose, mean Cmax and AUC0–24 values were 8.9 μg/ml and 95.4 μg · h/ml, respectively; corresponding values at steady state were 11.8 μg/ml and 118 μg · h/ml. These Cmax and AUC0–24 values indicate modest and similar degrees of accumulation upon multiple dosing at the two dose levels. Values of apparent total body clearance (CL/F), apparent volume of distribution (Vss/F), half-life (t1/2), and renal clearance (CLR) were similar for the two dose levels and did not vary from single to multiple dosing. Mean steady-state values for CL/F, Vss/F, t1/2, and CLR following 750 mg of levofloxacin were 143 ml/min, 100 liters, 8.8 h, and 116 ml/min, respectively; corresponding values for the 1-g dose were 146 ml/min, 105 liters, 8.9 h, and 105 ml/min. In general, the pharmacokinetics of levofloxacin in healthy subjects following 750-mg and 1-g single and multiple once-daily oral doses appear to be consistent with those found in previous studies of healthy volunteers given 500-mg doses. Levofloxacin was well tolerated at either high dose level. The most frequently reported drug-related adverse events were nausea and headache. PMID:9559801

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unkelbach, J; Perko, Z; Wolfgang, J

    Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less

  10. Inter-patient image registration algorithms to disentangle regional dose bioeffects.

    PubMed

    Monti, Serena; Pacelli, Roberto; Cella, Laura; Palma, Giuseppe

    2018-03-20

    Radiation therapy (RT) technological advances call for a comprehensive reconsideration of the definition of dose features leading to radiation induced morbidity (RIM). In this context, the voxel-based approach (VBA) to dose distribution analysis in RT offers a radically new philosophy to evaluate local dose response patterns, as an alternative to dose-volume-histograms for identifying dose sensitive regions of normal tissue. The VBA relies on mapping patient dose distributions into a single reference case anatomy which serves as anchor for local dosimetric evaluations. The inter-patient elastic image registrations (EIRs) of the planning CTs provide the deformation fields necessary for the actual warp of dose distributions. In this study we assessed the impact of EIR on the VBA results in thoracic patients by identifying two state-of-the-art EIR algorithms (Demons and B-Spline). Our analysis demonstrated that both the EIR algorithms may be successfully used to highlight subregions with dose differences associated with RIM that substantially overlap. Furthermore, the inclusion for the first time of covariates within a dosimetric statistical model that faces the multiple comparison problem expands the potential of VBA, thus paving the way to a reliable voxel-based analysis of RIM in datasets with strong correlation of the outcome with non-dosimetric variables.

  11. SU-E-T-224: Considerations for the Proper Treatment of Multiple Cranial Metastases with Single Isocenter Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audet, C; Poffenbarger, B; Hwang, A

    2015-06-15

    Purpose: To investigate some limitations of single isocenter VMAT for cranial multiple met cases. Methods: A single isocenter VMAT plan (Varian, Eclipse AAA10 commissioned down to 1 cm) was designed for two 7mm diameter spherical targets in a rectangular Solid Water (Gammex) phantom. The targets were separated by a distance of 6cm and the isocenter was centered in one of the targets. The plan was delivered (Varian, Truebeam STx) three separate times with different artificial couch angle errors of 0, 0.5 and 1 degree. The coronal dose distributions were measured with calibrated EBT3 film placed at mid-phantom. EBT3 film dosimetrymore » was also performed on the delivery of separate multiple arc vmat plans to targets below 6mm in diameter. Results: Measurements of the sup/inf dose profiles through the high dose distributions show no movement of the central axis high dose region and shifts of the high dose region intended for the off-axis target. For the 1 degree rotation error, the high dose region was shifted 1.04mm from the target. This corresponds to the shift expected from triangulation (60mmxTan(1deg)=1.047mm). Furthermore, a streak of 10% interleaf leakage dose was observed and is likely a Result of the off axis target traveling a wide path such that a long length of MLC is exposed for the whole arc. The calculated dose was about 10% to 15% low compared to that measured on film for a 5mm diameter target. Conclusion: Judicious use of additional margin for off axis targets or limits on the span of multiple mets treated with one isocenter is recommended. The magnitude of the margin should be based on the rotational errors evaluated for the positioning system and the distance of the target from the isocenter. A lower limit of lesion size that can be accurately treated with VMAT should be determined.« less

  12. Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

    2016-01-01

    The air dose rate in an environment contaminated with (134)Cs and (137)Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. This finding is insensitive to the choice for modeling the activity depth distribution in the ground using activity measurements of collected soil layers, or by using exponential and hyperbolic secant fits to the measurement data. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate. These two strategies are more effective than reverse tillage to invert and mix the topsoil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pharmacokinetics of multiple doses of transdermal flunixin meglumine in adult Holstein dairy cows.

    PubMed

    Kleinhenz, M D; Gorden, P J; Smith, J S; Schleining, J A; Kleinhenz, K E; Wulf, L L; Sidhu, P K; Rea, D; Coetzee, J F

    2018-06-01

    A transdermal formulation of the nonsteroidal anti-inflammatory drug, flunixin meglumine, has been approved in the United States and Canada for single-dose administration. Transdermal flunixin meglumine was administered to 10 adult Holstein cows in their second or third lactation at the label dose of 3.33 mg/kg every 24 hr for three total treatments. Plasma flunixin concentrations were determined using high-pressure liquid chromatography with mass spectroscopy (HPLC-MS). Pharmacokinetic analysis was completed on each individual animal with noncompartmental methods using computer software. The time to maximum drug concentration (Tmax) was 2.81 hr, and the maximum drug concentration was 1.08 μg/ml. The mean terminal half-life (T½) was determined to be 5.20 hr. Clearance per fraction absorbed (Cl/F) was calculated to be 0.294 L/hr kg -1 , and volume of distribution of fraction (Vz/F) absorbed was 2.20 L/kg. The mean accumulation factor was 1.10 after three doses. This indicates changes in dosing may not be required when giving multiple doses of flunixin transdermal. Further work is required to investigate the clinical efficacy of transdermal flunixin after multiple daily doses. © 2018 John Wiley & Sons Ltd.

  14. SU-E-T-52: A New Device for Quality Assurance of a Single Isocenter Technique for the Simultaneous Treatment of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, J; Sintay, B; Varchena, V

    2015-06-15

    Purpose: Comprehensive quality assurance (QA) of a single isocenter technique for the simultaneous treatment of multiple brain metastases is presently impractical due to the time consuming nature of measuring each lesion’s dose on film or with a micro-chamber. Three dimensional diode array and full field film measurements are sometimes used to evaluate these plans, but gamma analysis may not reveal local errors that have significant effects on one or a few of several targets. This work aimed to design, build and test a phantom to simplify comprehensive measurement and evaluation. Methods: A phantom was designed with 28 stackable slabs. Themore » top and bottom slabs are 1.5 centimeters (cm) in thickness, and central 26 slabs are 0.5 cm thick. When assembled with radiochromic film in all 27 gaps, the phantom measures 16.5 x 15 x 19 cm. Etchings were designed to aide in identification of specific film planes on computed tomography (CT) images and correlation of individual PTVs with closest bisecting planes. Patient verification plans with a total of 16 PTVs were calculated on the phantom CT, and test deliveries both with and without couch kicks were performed to test the ability to identify correct film placements and subsequent PTV specific dose distributions on the films. Results: Bisecting planes corresponding to PTV locations were easily identified, and PTV specific dose distributions were clear for all 16 targets. For deliveries with couch kicks, the phantom PTV dose distributions closely approximated those calculated on the patient’s CT. For deliveries without couch kicks, PTV specific dosimetry was also possible, although the distributions had ‘ghosts’ equaling the number of couch kicks, with distance between ghosts increasing with distance from the isocenter. Conclusion: A new phantom facilitates fast comprehensive commissioning validation and PTV specific dosimetry for a single isocenter technique for treating multiple brain metastases. This work was partially funded by CIRS, Inc.« less

  15. A Characterization of the Radiation from a Rod-Pinch Diode

    NASA Astrophysics Data System (ADS)

    Swanekamp, Stephen B.; Allen, Raymond J.; Hinshelwood, David D.; Mosher, David; Schumer, Joseph W.

    2002-12-01

    Coupled PIC-Monte-Carlo simulations of the electron-flow and radiation production in a rod-pinch diode show that multiple scatterings in the rod produce incident electron energies that ranging from zero to slightly higher than the applied voltage. It is speculated that those electrons that gain energy do so by remaining in phase with a rapidly varying electric field near the tip of the rod. The simulations also show that multiple passes in the rod produce a wide spread in incident electron angles. For diode voltages of V=2 MV, the angular distribution of electrons incident on the rod is broad and peaked near 90° to the axis of the rod with a larger fraction of electrons striking the rod at angles less than 90°. The electron angular distribution for V=4 MV is narrower and peaked at 105° with a larger fraction of electrons incident on the rod with angles greater than 90°. The photon distributions are peaked along the direction of the high-energy electrons. For V=2 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 90° and is 1.8 times higher than the forward-directed [0°] dose. For V=4 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 120° and is 2.3 times higher than the forward-directed dose. Similar angular variation of the dose has been observed on the 4-MV Asterix accelerator [2] and on 1-2 MV accelerators at the Atomic Weapons Establishment [8].

  16. Impact of treatment planning with deformable image registration on dose distribution for carbon-ion beam lung treatment using a fixed irradiation port and rotating couch.

    PubMed

    Kumagai, M; Mori, S; Yamamoto, N

    2015-06-01

    When using a fixed irradiation port, treatment couch rotation is necessary to increase beam angle selection. We evaluated dose variations associated with positional morphological changes to organs. We retrospectively chose the data sets of ten patients with lung cancer who underwent respiratory-gated CT at three different couch rotation angles (0°, 20° and -20°). The respective CT data sets are referred to as CT0, CT20 and CT-20. Three treatment plans were generated as follows: in Plan 1, all compensating bolus designs and dose distributions were calculated using CT0. To evaluate the rotation effect without considering morphology changes, in Plan 2, the compensating boli designed using CT0 were applied to the CT±20 images. Plan 3 involved compensating boli designed using the CT±20 images. The accumulated dose distributions were calculated using deformable image registration (DIR). A sufficient prescribed dose was calculated for the planning target volume (PTV) in Plan 1 [minimum dose received by a volume ≥95% (D95) > 95.8%]. By contrast, Plan 2 showed degraded dose conformation to the PTV (D95 > 90%) owing to mismatch of the bolus design to the morphological positional changes in the respective CT. The dose assessment results of Plan 3 were very close to those of Plan 1. Dose distribution is significantly affected by whether or not positional organ morphology changes are factored into dose planning. In treatment planning using multiple CT scans with different couch positions, it is mandatory to calculate the accumulated dose using DIR.

  17. SU-F-T-349: Dosimetric Comparison of Three Different Simultaneous Integrated Boost Irradiation Techniques for Multiple Brain Metastases: Intensity-Modulatedradiotherapy, Hybrid Intensity-Modulated Radiotherapy and Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, X; Sun, T; Yin, Y

    Purpose: To study the dosimetric impact of intensity-modulated radiotherapy (IMRT), hybrid intensity-modulated radiotherapy (h-IMRT) and volumetric modulated arc therapy(VMAT) for whole-brain radiotherapy (WBRT) with simultaneous integrated boost in patients with multiple brain metastases. Methods: Ten patients with multiple brain metastases were included in this analysis. The prescribed dose was 45 Gy to the whole brain (PTVWBRT) and 55 Gy to individual brain metastases (PTVboost) delivered simultaneously in 25 fractions. Three treatment techniques were designed: the 7 equal spaced fields IMRT plan, hybrid IMRT plan and VMAT with two 358°arcs. In hybrid IMRT plan, two fields(90°and 270°) were planned to themore » whole brain. This was used as a base dose plan. Then 5 fields IMRT plan was optimized based on the two fields plan. The dose distribution in the target, the dose to the organs at risk and total MU in three techniques were compared. Results: For the target dose, conformity and homogeneity in PTV, no statistically differences were observed in the three techniques. For the maximum dose in bilateral lens and the mean dose in bilateral eyes, IMRT and h-IMRT plans showed the highest and lowest value respectively. No statistically significant differences were observed in the dose of optic nerve and brainstem. For the monitor units, IMRT and VMAT plans showed the highest and lowest value respectively. Conclusion: For WBRT with simultaneous integrated boost in patients with multiple brain metastases, hybrid IMRT could reduce the doses to lens and eyes. It is feasible for patients with brain metastases.« less

  18. Evaluation of volumetric modulated arc therapy for cranial radiosurgery using multiple noncoplanar arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audet, Chantal; Poffenbarger, Brett A.; Chang, Pauling

    2011-11-15

    Purpose: To evaluate a commercial volumetric modulated arc therapy (VMAT), using multiple noncoplanar arcs, for linac-based cranial radiosurgery, as well as evaluate the combined accuracy of the VMAT dose calculations and delivery. Methods: Twelve patients with cranial lesions of variable size (0.1-29 cc) and two multiple metastases patients were planned (Eclipse RapidArc AAA algorithm, v8.6.15) using VMAT (1-6 noncoplanar arcs), dynamic conformal arc (DCA, {approx}4 arcs), and IMRT (nine static fields). All plans were evaluated according to a conformity index (CI), healthy brain tissue doses and volumes, and the dose to organs at risk. A 2D dose distribution was measuredmore » (Varian Novalis Tx, HD120 MLC, 1000 MU/min, 6 MV beam) for the {approx}4 arc VMAT treatment plans using calibrated film dosimetry. Results: The CI (0-1 best) average for all plans was best for {approx}4 noncoplanar arc VMAT at 0.86 compared with {approx}0.78 for IMRT and a single arc VMAT and 0.68 for DCA. The volumes of healthy brain receiving 50% of the prescribed target coverage dose or more (V{sub 50%}) were lowest for the four arc VMAT [RA(4)] and DCA plans. The average ratio of the V{sub 50%} for the other plans to the RA(4) V{sub 50%} were 1.9 for a single noncoplanar arc VMAT [RA(1nc)], 1.4 for single full coplanar arc VMAT [RA(1f)] and 1.3 for IMRT. The V{sub 50%} improved significantly for single isocenter multiple metastases plan when two noncoplanar VMAT arcs were added to a full single coplanar one. The maximum dose to 5 cc of the outer 1 cm rim of healthy brain which one may want to keep below nonconsequential doses of 300-400 cGy, was 2-3 times greater for IMRT, RA(1nc) and RA(1f) plans compared with the multiple noncoplanar arc DCA and RA(4) techniques. Organs at risk near (0-4 mm) to targets were best spared by (i) single noncoplanar arcs when the targets are lateral to the organ at risk and (ii) by skewed nonvertical planes of IMRT fields when the targets are not lateral to the organ at risk. The highest dose gradient observed between an organ at risk and a target at the edge of a VMAT arc plane or plane of IMRT fields was 17%/mm. The average absolute percent difference between the measured and calculated central axis dose for all the VMAT plans was 3.6 {+-} 2.2%. The measured perpendicular profile widths and shifts were on average within 0.5 mm of planned values. The average total MUs for VMAT plans was double the DCA average and similar to the IMRT average. Conclusions: For the aforementioned planning and delivery system and cranial lesions greater than 7 mm in diameter, multiple noncoplanar arc VMAT consistently provides accurate and high quality cranial radiosurgery dose distributions with low doses to healthy brain tissue and high dose conformity to the target. These qualities may make multiple noncoplanar arc VMAT suitable for a greater range of prescription doses or larger and more irregular lesions. For smaller and/or rounder lesions there are other clinically acceptable treatment techniques that may involve fewer couch angles or arcs and reduce treatment times.« less

  19. Viscerotropic and neurotropic disease following vaccination with the 17D yellow fever vaccine, ARILVAX.

    PubMed

    Kitchener, Scott

    2004-06-02

    Yellow fever vaccine associated viscerotropic (YFV-AVD) and neurotropic (YFV-AND) diseases have been recently identified in various countries. Previously post-vaccination multiple organ system failure was recognised as a rare serious adverse event of yellow fever vaccination and 21 cases of post-vaccinal (YFV) encephalitis had been recorded. Incidence data is not available. On investigation of vaccine surveillance reports from Europe following distribution of more than 3 million doses of ARILVAX trade mark, four cases each of YFV-AVD and YFV-AND were found (each 1.3 cases per million doses distributed) for the period 1991 to 2003. The incidence for each is higher after 1996 (2.5 cases per million doses distributed). The incidence of these adverse events appears to be very low with ARILVAX trade mark. Similar incidence data is required from other countries for comparison.

  20. Geometric parameter analysis to predetermine optimal radiosurgery technique for the treatment of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mestrovic, Ante; Clark, Brenda G.; Department of Medical Physics, British Columbia Cancer Agency, Vancouver, British Columbia

    2005-11-01

    Purpose: To develop a method of predicting the values of dose distribution parameters of different radiosurgery techniques for treatment of arteriovenous malformation (AVM) based on internal geometric parameters. Methods and Materials: For each of 18 previously treated AVM patients, four treatment plans were created: circular collimator arcs, dynamic conformal arcs, fixed conformal fields, and intensity-modulated radiosurgery. An algorithm was developed to characterize the target and critical structure shape complexity and the position of the critical structures with respect to the target. Multiple regression was employed to establish the correlation between the internal geometric parameters and the dose distribution for differentmore » treatment techniques. The results from the model were applied to predict the dosimetric outcomes of different radiosurgery techniques and select the optimal radiosurgery technique for a number of AVM patients. Results: Several internal geometric parameters showing statistically significant correlation (p < 0.05) with the treatment planning results for each technique were identified. The target volume and the average minimum distance between the target and the critical structures were the most effective predictors for normal tissue dose distribution. The structure overlap volume with the target and the mean distance between the target and the critical structure were the most effective predictors for critical structure dose distribution. The predicted values of dose distribution parameters of different radiosurgery techniques were in close agreement with the original data. Conclusions: A statistical model has been described that successfully predicts the values of dose distribution parameters of different radiosurgery techniques and may be used to predetermine the optimal technique on a patient-to-patient basis.« less

  1. SU-E-T-812: Volumetric Modulated Arc Therapy-Total Body Irradiation (VMAT-TBI) V.s. Conventional Extended SSD-TBI (cTBI): A Dosimetric Comparisom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, L; Folkerts, M; Lee, H

    2015-06-15

    Purpose: To perform a dosimetric evaluation on a new developed volumetric modulated arc therapy based total body irradiation (VMAT-TBI). Methods: Three patients were CT scanned with an indexed rotatable body frame to get whole body CT images. Concatenated CT images were imported in Pinnacle treatment planning system and whole body and lung were contoured as PTV and organ at risk, respectively. Treatment plans were generated by matching multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. For each plan, 1200 cGy in 8 fractions was prescribed to the wholemore » body volume and the lung dose was constrained to a mean dose of 750 cGy. Such a two-level dose plan was achieved by inverse planning of the torso VMAT fields. For comparison, conventional standing TBI (cTBI) plans were generated on the same whole body CT images at an extended SSD (550cm).The shape of compensators and lung blocks are simulated using body segments and lung contours Compensation was calculated based on the patient CT images, in mimic of the standing TBI treatment. The whole body dose distribution of cTBI plans were calculated with a home-developed GPU Monte Carlo dose engine. Calculated cTBI dose distribution was prescribed to the mid-body point at umbilical level. Results: The VMAT-TBI treatment plans of three patients’ plans achieved 80.2%±5.0% coverage of the total body volume within ±10% of the prescription dose, while cTBI treatment plans achieved 72.2%±4.0% coverage of the total body volume. The averaged mean lung dose of all three patients is lower for VMAT-TBI (7.48 cGy) than for cTBI (8.96 cGy). Conclusion: The proposed patient comfort-oriented VMAT-TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less

  2. An optimized computational method for determining the beta dose distribution using a multiple-element thermoluminescent dosimeter system.

    PubMed

    Shen, L; Levine, S H; Catchen, G L

    1987-07-01

    This paper describes an optimization method for determining the beta dose distribution in tissue, and it describes the associated testing and verification. The method uses electron transport theory and optimization techniques to analyze the responses of a three-element thermoluminescent dosimeter (TLD) system. Specifically, the method determines the effective beta energy distribution incident on the dosimeter system, and thus the system performs as a beta spectrometer. Electron transport theory provides the mathematical model for performing the optimization calculation. In this calculation, parameters are determined that produce calculated doses for each of the chip/absorber components in the three-element TLD system. The resulting optimized parameters describe an effective incident beta distribution. This method can be used to determine the beta dose specifically at 7 mg X cm-2 or at any depth of interest. The doses at 7 mg X cm-2 in tissue determined by this method are compared to those experimentally determined using an extrapolation chamber. For a great variety of pure beta sources having different incident beta energy distributions, good agreement is found. The results are also compared to those produced by a commonly used empirical algorithm. Although the optimization method produces somewhat better results, the advantage of the optimization method is that its performance is not sensitive to the specific method of calibration.

  3. Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases.

    PubMed

    Ziemer, Benjamin P; Sanghvi, Parag; Hattangadi-Gluth, Jona; Moore, Kevin L

    2017-10-01

    Single-isocenter, volumetric-modulated arc therapy (VMAT) stereotactic radiosurgery (SRS) for multiple brain metastases (multimets) can deliver highly conformal dose distributions and reduce overall patient treatment time compared to other techniques. However, treatment planning for multimet cases is highly complex due to variability in numbers and sizes of brain metastases, as well as their relative proximity to organs-at-risk (OARs). The purpose of this study was to automate the VMAT planning of multimet cases through a knowledge-based planning (KBP) approach that adapts single-target SRS dose predictions to multiple target predictions. Using a previously published artificial neural network (ANN) KBP system trained on single-target, linac-based SRS plans, 3D dose distribution predictions for multimet patients were obtained by treating each brain lesion as a solitary target and subsequently combining individual dose predictions into a single distribution. Spatial dose distributions di(r→) for each of the i = 1…N lesions were merged using the combination function d(r→)=∑iNdin(r→)1/n. The optimal value of n was determined by minimizing root-mean squared (RMS) difference between clinical multimet plans and predicted dose per unit length along the line profile joining each lesion in the clinical cohort. The gradient measure GM=[3/4π]1/3V50%1/3-V100%1/3 is the primary quality metric for SRS plan evaluation at our institution and served as the main comparative metric between clinical plans and the KBP results. A total of 41 previously treated multimet plans, with target numbers ranging from N = 2-10, were used to validate the ANN predictions and subsequent KBP auto-planning routine. Fully deliverable KBP plans were developed by converting predicted dose distribution into patient-specific optimization objectives for the clinical treatment planning system (TPS). Plan parity was maintained through identical arc configuration and target normalization. Overall plan quality improvements were quantified by calculating the difference between SRS quality metrics (QMs): ΔQM = QM clinical  - QM KBP . In addition to GM, investigated QMs were: volume of brain receiving ≥ 10 Gy (V 10 Gy ), volume of brain receiving ≥ 5 Gy (ΔV 5 Gy ), heterogeneity index (HI), dose to 0.1 cc of the brainstem (D 0.1 cc ), dose to 1% of the optic chiasm (D 1% ), and interlesion dose (D IL ). In addition to this quantitative analysis, overall plan quality was assessed via blinded plan comparison of the manual and KBP treatment plans by SRS-specializing physicians. A dose combination factor of n = 8 yielded an integrated dose profile RMS difference of 2.9% across the 41-patient cohort. Multimet dose predictions exhibited ΔGM = 0.07 ± 0.10 cm against the clinical sample, implying either further normal tissue sparing was possible or that dose predictions were slightly overestimating achievable dose gradients. The latter is the more likely explanation, as this bias vanished when dose predictions were converted to deliverable KBP plans ΔGM = 0.00 ± 0.08 cm. Remaining QMs were nearly identical or showed modest improvements in the KBP sample. Equivalent QMs included: ΔV 10 Gy  = 0.37 ± 3.78 cc, ΔHI = 0.02 ± 0.08 and ΔD IL  = -2.22 ± 171.4 cGy. The KBP plans showed a greater degree of normal tissue sparing as indicated by brain ΔV 5 Gy  = 4.11± 24.05 cc, brainstem ΔD 0.1 cc  = 42.8 ± 121.4 cGy, and chiasm ΔD 1%  = 50.8 ± 83.0 cGy. In blinded review by SRS-specializing physicians, KBP-generated plans were deemed equivalent or superior in 32/41(78.1%) of the cases. Heuristic KBP-driven automated planning in linac-based, single-isocenter treatments for multiple brain metastases maintained or exceeded overall plan quality. © 2017 American Association of Physicists in Medicine.

  4. SU-E-T-504: Intensity-Modulated Radiosurgery Treatments Derived by Optimizing Delivery of Sphere Packing Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermansen, M; Bova, F; John, T St.

    2015-06-15

    Purpose To minimize the number of monitor units required to deliver a sphere packing stereotactic radiosurgery (SRS) plan by eliminating overlaps of individual beam projections. Methods An algorithm was written in C{sup ++} to calculate SRS treatment doses using sphere packing. Three fixed beams were used to approximate each arc in a typical SRS treatment plan. For cases involving multiple isocenters, at each gantry and table angle position beams directed to individual spheres overlap to produce regions of high dose, resulting in intensity modulated beams. These high dose regions were dampened by post-processing of the combined beam profile. The post-processmore » dampening involves removing the excess overlapping fluence from all but the highest contributing beam. The dampened beam profiles at each table and gantry angle position were then summed to produce the new total dose distribution. Results Delivery times for even the most complex multiple sphere plans can be reduced to consistent times of about 20 to 30 minutes. The total MUs required to deliver the plan can also be reduced by as much as 85% of the original plan’s MUs. Conclusion Regions of high dose are removed. Dampening overlapping radiation fluence can produce the new beam profiles that have more uniform dose distributions using less MUs. This results in a treatment that requires significantly fewer intensity values than traditional IMRT or VAMT planning.« less

  5. New approach based on tetrahedral-mesh geometry for accurate 4D Monte Carlo patient-dose calculation

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Yeom, Yeon Soo; Kim, Chan Hyeong; Kim, Seonghoon; Sohn, Jason W.

    2015-02-01

    In the present study, to achieve accurate 4D Monte Carlo dose calculation in radiation therapy, we devised a new approach that combines (1) modeling of the patient body using tetrahedral-mesh geometry based on the patient’s 4D CT data, (2) continuous movement/deformation of the tetrahedral patient model by interpolation of deformation vector fields acquired through deformable image registration, and (3) direct transportation of radiation particles during the movement and deformation of the tetrahedral patient model. The results of our feasibility study show that it is certainly possible to construct 4D patient models (= phantoms) with sufficient accuracy using the tetrahedral-mesh geometry and to directly transport radiation particles during continuous movement and deformation of the tetrahedral patient model. This new approach not only produces more accurate dose distribution in the patient but also replaces the current practice of using multiple 3D voxel phantoms and combining multiple dose distributions after Monte Carlo simulations. For routine clinical application of our new approach, the use of fast automatic segmentation algorithms is a must. In order to achieve, simultaneously, both dose accuracy and computation speed, the number of tetrahedrons for the lungs should be optimized. Although the current computation speed of our new 4D Monte Carlo simulation approach is slow (i.e. ~40 times slower than that of the conventional dose accumulation approach), this problem is resolvable by developing, in Geant4, a dedicated navigation class optimized for particle transportation in tetrahedral-mesh geometry.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Paul M., E-mail: Paul.medin@utsouthwestern.ed; Boike, Thomas P.

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat hasmore » demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.« less

  7. A single-gradient junction technique to replace multiple-junction shifts for craniospinal irradiation treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu

    2014-01-01

    Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less

  8. Positron Emission Tomography for Pre-Clinical Sub-Volume Dose Escalation

    NASA Astrophysics Data System (ADS)

    Bass, Christopher Paul

    Purpose: This dissertation focuses on establishment of pre-clinical methods facilitating the use of PET imaging for selective sub-volume dose escalation. Specifically the problems addressed are 1.) The difficulties associated with comparing multiple PET images, 2.) The need for further validation of novel PET tracers before their implementation in dose escalation schema and 3.) The lack of concrete pre-clinical data supporting the use of PET images for guidance of selective sub-volume dose escalations. Methods and materials: In order to compare multiple PET images the confounding effects of mispositioning and anatomical change between imaging sessions needed to be alleviated. To mitigate the effects of these sources of error, deformable image registration was employed. A deformable registration algorithm was selected and the registration error was evaluated via the introduction of external fiducials to the tumor. Once a method for image registration was established, a procedure for validating the use of novel PET tracers with FDG was developed. Nude mice were used to perform in-vivo comparisons of the spatial distributions of two PET tracers, FDG and FLT. The spatial distributions were also compared across two separate tumor lines to determine the effects of tumor morphology on spatial distribution. Finally, the research establishes a method for acquiring pre-clinical data supporting the use of PET for image-guidance in selective dose escalation. Nude mice were imaged using only FDG PET/CT and the resulting images were used to plan PET-guided dose escalations to a 5 mm sub-volume within the tumor that contained the highest PET tracer uptake. These plans were then delivered using the Small Animal Radiation Research Platform (SARRP) and the efficacy of the PET-guided plans was observed. Results and Conclusions: The analysis of deformable registration algorithms revealed that the BRAINSFit B-spline deformable registration algorithm available in SLICER3D was capable of registering small animal PET/CT data sets in less than 5 minutes with an average registration error of .3 mm. The methods used in chapter 3 allowed for the comparison of the spatial distributions of multiple PET tracers imaged at different times. A comparison of FDG and FLT showed that both are positively correlated but that tumor morphology does significantly affect the correlation between the two tracers. An overlap analysis of the high intensity PET regions of FDG and FLT showed that FLT offers additional spatial information to that seen with FDG. In chapter 4 the SARRP allowed for the delivery of planned PET-guided selective dose escalations to a pre-clinical tumor model. This will facilitate future research validating the use of PET for clinical selective dose escalation.

  9. Three-Dimensional Electron Beam Dose Calculations.

    NASA Astrophysics Data System (ADS)

    Shiu, Almon Sowchee

    The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry. A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems.

  10. Cumulative doses analysis in young trauma patients: a single-centre experience.

    PubMed

    Salerno, Sergio; Marrale, Maurizio; Geraci, Claudia; Caruso, Giuseppe; Lo Re, Giuseppe; Lo Casto, Antonio; Midiri, Massimo

    2016-02-01

    Multidetector computed tomography (MDCT) represents the main source of radiation exposure in trauma patients. The radiation exposure of young patients is a matter of considerable medical concern due to possible long-term effects. Multiple MDCT studies have been observed in the young trauma population with an increase in radiation exposure. We have identified 249 young adult patients (178 men and 71 women; age range 14-40 years) who had received more than one MDCT study between June 2010 and June 2014. According to the International Commission on Radiological Protection publication, we have calculated the cumulative organ dose tissue-weighting factors by using CT-EXPO software(®). We have observed a mean cumulative dose of about 27 mSv (range from 3 to 297 mSv). The distribution analysis is characterised by low effective dose, below 20 mSv, in the majority of the patients. However, in 29 patients, the effective dose was found to be higher than 20 mSv. Dose distribution for the various organs analysed (breasts, ovaries, testicles, heart and eye lenses) shows an intense peak for lower doses, but in some cases high doses were recorded. Even though cumulative doses may have long-term effects, which are still under debate, high doses are observed in this specific group of young patients.

  11. Practical aspects and uncertainty analysis of biological effective dose (BED) regarding its three-dimensional calculation in multiphase radiotherapy treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauweloa, Kevin I., E-mail: Kauweloa@livemail.uthscsa.edu; Gutierrez, Alonso N.; Bergamo, Angelo

    2014-07-15

    Purpose: There is a growing interest in the radiation oncology community to use the biological effective dose (BED) rather than the physical dose (PD) in treatment plan evaluation and optimization due to its stronger correlation with radiobiological effects. Radiotherapy patients may receive treatments involving a single only phase or multiple phases (e.g., primary and boost). Since most treatment planning systems cannot calculate the analytical BED distribution in multiphase treatments, an approximate multiphase BED expression, which is based on the total physical dose distribution, has been used. The purpose of this paper is to reveal the mathematical properties of the approximatemore » BED formulation, relative to the true BED. Methods: The mathematical properties of the approximate multiphase BED equation are analyzed and evaluated. In order to better understand the accuracy of the approximate multiphase BED equation, the true multiphase BED equation was derived and the mathematical differences between the true and approximate multiphase BED equations were determined. The magnitude of its inaccuracies under common clinical circumstances was also studied. All calculations were performed on a voxel-by-voxel basis using the three-dimensional dose matrices. Results: Results showed that the approximate multiphase BED equation is accurate only when the dose-per-fractions (DPFs) in both the first and second phases are equal, which occur when the dose distribution does not significantly change between the phases. In the case of heterogeneous dose distributions, which significantly vary between the phases, there are fewer occurrences of equal DPFs and hence the inaccuracy of the approximate multiphase BED is greater. These characteristics are usually seen in the dose distributions being delivered to organs at risk rather than to targets. Conclusions: The finding of this study indicates that the true multiphase BED equation should be implemented in the treatment planning systems due to the inconsistent accuracy of the approximate multiphase BED equation in most of the clinical situations.« less

  12. Pharmacokinetic study of single- and multiple-dosing with metolazone tablets in healthy Chinese population.

    PubMed

    Li, Xueqing; Wang, Rutao; Liu, Yang; Liu, Yun; Zheng, Heng; Feng, Yabo; Zhao, Na; Geng, Hongbin; Zhang, Wanzhi; Wen, Aidong

    2017-11-16

    Metolazone is a diuretic, saluretic and antihypertensive chemical compound from the quinazoline category that possesses medicinal features similar to those of other thiazide diuretic drugs. However, the pharmacokinetics of metolazone in the Chinese population has rarely been studied. This study aimed to examine the pharmacokinetic characteristics, safety characteristic, and tolerability of metolazone in healthy Chinese subjects after single and multiple doses taken orally as well as the effects that food and gender have on oral metolazone pharmacokinetic parameters. An open-label, randomized, and single- and multiple-dosing investigation was performed in healthy Chinese subjects. The investigation included 3 study groups: the 0.5 mg, 1 mg and 2 mg dose groups were the single-dose study groups in the first stage. Eligible volunteers were randomly and orally administered a single 0.5 mg, 1 mg, or 2 mg metolazone tablet. The 0.5 mg dose group was also part of the multiple-dose study group, and the 1 mg dose group was the food-effect study group in the second stage. Human plasma samples were gathered pre-dosing and up to 48 h after dosing. The human plasma sample concentration of metolazone was quantified using a validated liquid chromatography tandem mass spectrometry method. Pharmacokinetic data were calculated by a noncompartmental analysis method using WinNonlin version 6.4. Tolerability was evaluated based on adverse events, medical examination, 12-lead ECG, and other clinical laboratory exams. Thirty eligible subjects (15 men and 15 women) were registered in our investigation and completed all of the study stages. The AUC and C max showed dose proportionality after a single dose based on the linear-regression analysis. A comparison of the pharmacokinetic data revealed that the differences between the male and female groups were not statistically significant. The t max of metolazone was increased by approximately 100% in the fed condition. Metolazone was well tolerated at the tested dose, and no adverse effects were observed. Single dosing with 0.5 mg, 1 mg, or 2 mg metolazone yielded linear plasma pharmacokinetic properties in healthy Chinese subjects. Multiple oral doses of metolazone did not display significantly different distributions or elimination characteristics from those observed for a single dose. Gender factors did not appear to influence the pharmacokinetic parameter variation of metolazone. The t max of metolazone increased in the fed condition. Metolazone was well tolerated at the tested dose in this study. This investigation is retrospectively registered at chictr.org.cn (ChiCTR-IIR-17012929, October 09 2017).

  13. TH-CD-201-08: Flexible Dosimeter Bands for Whole-Body Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T; Fahimian, B; Pratx, G

    Purpose: The two commonly used radiotherapy techniques are total body irradiation (TBI) and the total skin irradiation (TSI). In order to ensure the accuracy of the prescription beams, the dose received throughout the entire body must be checked using dosimetry. However, the available number of data points is limited as the dosimeters are manually placed on the patient. We developed a flexible and wearable dosimeter that can collect 1D continuous dose information around the peripheral of the patients’ body, including areas obscured from the beam path. Methods: The flexible dosimeter bands are fabricated by embedding storage phosphor powders in amore » thin layer of non-toxic silicone based elastomer (PDMS). An additional elastomer layer is formed on top of the phosphor layer to provide additional mechanical support for the dosimeter. Once the curing process is complete, the dosimeter is cut into multiple bands and rolled into spools prior to use. Results: The dose responses are tested using a preclinical cabinet X-ray system, where the readout is performed with a storage phosphor reader. Results show that the dose calibration factor is ∼1400 (A.U./Gy) from the beam center. Also, 1-D dose distribution experiment was performed in water phantoms, where preliminary results demonstrate that the dose in water is indeed attenuated compared to in air. Conclusion: Dose response and high-resolution 1-D dosimetry is demonstrated using the flexible dosimeters. By providing a detailed spatial description of the beam dose profile, we expect that the dosimeter bands may aid in enhancing the current existing modality in dosimetry. Since the dosimeter is flexible (can retract back to its original length), they can be comfortably worn around the patient. Potentially, multiple 1-D dose information can be stitched together and extrapolated to provide a coarse 3-D image of the dose distribution. This work was supported by funding from the Cutaneous Lymphoma Foundation under the CLARIONS grant.« less

  14. SYMPOSIUM SESSION PROPOSAL: INCORPORATION OF MODE OF ACTION INTO MECHANISTICALLY-BASED QUANTITATIVE MODELS

    EPA Science Inventory

    The biological processes by which environmental pollutants induce adverse health effects is most likely regulated by complex interactions dependent upon the route of exposure, dose, kinetics of distribution, and multiple cellular responses. To further complicate deciphering thes...

  15. An airport community noise-impact assessment model

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1980-01-01

    A computer model was developed to assess the noise impact of an airport on the community which it serves. Assessments are made using the Fractional Impact Method by which a single number describes the community aircraft noise environment in terms of exposed population and multiple event noise level. The model is comprised of three elements: a conventional noise footprint model, a site specific population distribution model, and a dose response transfer function. The footprint model provides the noise distribution for a given aircraft operating scenario. This is combined with the site specific population distribution obtained from a national census data base to yield the number of residents exposed to a given level of noise. The dose response relationship relates noise exposure levels to the percentage of individuals highly annoyed by those levels.

  16. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  17. What happens when spins meet for ionizing radiation dosimetry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, Juliana F.; Baffa, Oswaldo, E-mail: baffa@usp.br; Neves-Junior, Wellington F. P.

    2016-07-07

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom tomore » validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.« less

  18. What happens when spins meet for ionizing radiation dosimetry?

    NASA Astrophysics Data System (ADS)

    Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo

    2016-07-01

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  19. Proof of concept and dose estimation with binary responses under model uncertainty.

    PubMed

    Klingenberg, B

    2009-01-30

    This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.

  20. Intrathecal Baclofen Dosing Regimens: A Retrospective Chart Review.

    PubMed

    Clearfield, Jacob S; Nelson, Mary Elizabeth S; McGuire, John; Rein, Lisa E; Tarima, Sergey

    2016-08-01

    To examine dosing patterns in patients receiving baclofen via intrathecal baclofen pumps to assess for common patterns by diagnosis, ambulation ability, and affected limbs distribution. This trial study included 25 patients with baclofen pumps selected from the 356 patients enrolled in our center's baclofen pump program. Selection was done by splitting all patients into diagnostic categories of stroke, multiple sclerosis, traumatic/anoxic brain injury, cerebral palsy, and spinal cord injury, and then, five patients were randomly selected from each diagnosis.A systematic chart review was then conducted for each patient from Jan 1, 2008, through September 16, 2013, to look at factors including mean daily dose at end of study, and among those implanted during the study mean initial stable dose and time to initial stable dose. Analysis of mean daily dose across diagnoses found significant differences, with brain injury, cerebral palsy, and spinal cord injury patients having higher doses while multiple sclerosis and stroke patients required lower doses. Nonambulatory patients strongly trended to have higher daily doses than ambulatory patients. Similar trends of mean initial stable dose being higher in a similar pattern as that of end mean daily dose were seen according to diagnoses and ambulatory status, although statistical significance could not be achieved with the small sample size. Significant differences in dosing were found between diagnoses and trended to differ by ambulatory status at the end of the study, and similar trends could be observed in achieving initial stable dose. © 2015 International Neuromodulation Society.

  1. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min-1 and 12 Gy min-1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min-1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  2. Atomoxetine pharmacokinetics in healthy Chinese subjects and effect of the CYP2D6*10 allele.

    PubMed

    Cui, Yi M; Teng, Choo H; Pan, Alan X; Yuen, Eunice; Yeo, Kwee P; Zhou, Ying; Zhao, Xia; Long, Amanda J; Bangs, Mark E; Wise, Stephen D

    2007-10-01

    To characterize atomoxetine pharmacokinetics, explore the effect of the homozygous CYP2D6*10 genotype on atomoxetine pharmacokinetics and evaluate the tolerability of atomoxetine, in healthy Chinese subjects. Twenty-four subjects, all CYP2D6 extensive metabolizers (EM), were randomized to receive atomoxetine (40 mg qd for 3 days, then 80 mg qd for 7 days) or matching placebo (2 : 1 ratio) in a double-blind fashion. Atomoxetine serum concentrations were measured following single (40 mg) and multiple (80 mg) doses. Adverse events, clinical safety laboratory data and vital signs were assessed during the study. Atomoxetine was rapidly absorbed with median time to maximum serum concentrations of approximately 1.5 h after single and multiple doses. Atomoxetine concentrations appeared to decrease monoexponentially with a mean apparent terminal half-life (t(1/2)) of approximately 4 h. The apparent clearance, apparent volume of distribution and t(1/2) following single and multiple doses were similar, suggesting linear pharmacokinetics with respect to time. Homozygous CYP2D6*10 subjects had 50% lower clearances compared with other EM subjects, resulting in twofold higher mean exposures. No clinically significant changes or abnormalities were noted in laboratory data and vital signs. The pharmacokinetics of atomoxetine in healthy Chinese subjects appears comparable to other ethnic populations. Multiple dosing of 80 mg qd atomoxetine was well tolerated in this study.

  3. Pharmacokinetics and brain distribution of tetrahydropalmatine and tetrahydroberberine after oral administration of DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun

    2015-01-01

    DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.

  4. Intra-tumor distribution of PEGylated liposome upon repeated injection: No possession by prior dose.

    PubMed

    Nakamura, Hiroyuki; Abu Lila, Amr S; Nishio, Miho; Tanaka, Masao; Ando, Hidenori; Kiwada, Hiroshi; Ishida, Tatsuhiro

    2015-12-28

    Liposomes have proven to be a viable means for the delivery of chemotherapeutic agents to solid tumors. However, significant variability has been detected in their intra-tumor accumulation and distribution, resulting in compromised therapeutic outcomes. We recently examined the intra-tumor accumulation and distribution of weekly sequentially administered oxaliplatin (l-OHP)-containing PEGylated liposomes. In that study, the first and second doses of l-OHP-containing PEGylated liposomes were distributed diversely and broadly within tumor tissues, resulting in a potent anti-tumor efficacy. However, little is known about the mechanism underlying such a diverse and broad liposome distribution. Therefore, in the present study, we investigated the influence of dosage interval on the intra-tumor accumulation and distribution of "empty" PEGylated liposomes. Intra-tumor distribution of sequentially administered "empty" PEGylated liposomes was altered in a dosing interval-dependent manner. In addition, the intra-tumor distribution pattern was closely related to the chronological alteration of tumor blood flow as well as vascular permeability in the growing tumor tissue. These results suggest that the sequential administrations of PEGylated liposomes in well-spaced intervals might allow the distribution to different areas and enhance the total bulk accumulation within tumor tissue, resulting in better therapeutic efficacy of the encapsulated payload. This study may provide useful information for a better design of therapeutic regimens involving multiple administrations of nanocarrier drug delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. SU-F-T-157: Physics Considerations Regarding Dosimetric Accuracy of Analytical Dose Calculations for Small Field Proton Therapy: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Daartz, J

    Purpose: To evaluate the accuracy of dose calculations by analytical dose calculation methods (ADC) for small field proton therapy in a gantry based passive scattering facility. Methods: 50 patients with intra-cranial disease were evaluated in the study. Treatment plans followed standard prescription and optimization procedures of proton stereotactic radiosurgery. Dose distributions calculated with the Monte Carlo (MC) toolkit TOPAS were used to represent delivered treatments. The MC dose was first adjusted using the output factor (OF) applied clinically. This factor is determined from the field size and the prescribed range. We then introduced a normalization factor to measure the differencemore » in mean dose between the delivered dose (MC dose with OF) and the dose calculated by ADC for each beam. The normalization was determined by the mean dose of the center voxels of the target area. We compared delivered dose distributions and those calculated by ADC in terms of dose volume histogram parameters and beam range distributions. Results: The mean target dose for a whole treatment is generally within 5% comparing delivered dose (MC dose with OF) and ADC dose. However, the differences can be as great as 11% for shallow and small target treated with a thick range compensator. Applying the normalization factor to the MC dose with OF can reduce the mean dose difference to less than 3%. Considering range uncertainties, the generally applied margins (3.5% of the prescribed range + 1mm) to cover uncertainties in range might not be sufficient to guarantee tumor coverage. The range difference for R90 (90% distal dose falloff) is affected by multiple factors, such as the heterogeneity index. Conclusion: This study indicates insufficient accuracy calculating proton doses using ADC. Our results suggest that uncertainties of target doses are reduced using MC techniques, improving the dosimetric accuracy for proton stereotactic radiosurgery. The work was supported by NIH/NCI under CA U19 021239. CG was partially supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087).« less

  6. The pharmacokinetics of methocarbamol and guaifenesin after single intravenous and multiple-dose oral administration of methocarbamol in the horse.

    PubMed

    Rumpler, M J; Colahan, P; Sams, R A

    2014-02-01

    A simple LC/MSMS method has been developed and fully validated to determine concentrations and characterize the concentration vs. time course of methocarbamol (MCBL) and guaifenesin (GGE) in plasma after a single intravenous dose and multiple oral dose administrations of MCBL to conditioned Thoroughbred horses. The plasma concentration-time profiles for MCBL after a single intravenous dose of 15 mg/kg of MCBL were best described by a three-compartment model. Mean extrapolated peak (C0 ) plasma concentrations were 23.2 (± 5.93) μg/mL. Terminal half-life, volume of distribution at steady-state, mean residence time, and systemic clearance were characterized by a median (range) of 2.96 (2.46-4.71) h, 1.05 (0.943-1.21) L/kg, 1.98 (1.45-2.51) h, and 8.99 (6.68-10.8) mL/min/kg, respectively. Oral dose of MCBL was characterized by a median (range) terminal half-life, mean transit time, mean absorption time, and apparent oral clearance of 2.89 (2.21-4.88) h, 2.67 (1.80-2.87) h, 0.410 (0.350-0.770) h, and 16.5 (13.0-20) mL/min/kg. Bioavailability of orally administered MCBL was characterized by a median (range) of 54.4 (43.2-72.8)%. Guaifenesin plasma concentrations were below the limit of detection in all samples collected after the single intravenous dose of MCBL whereas they were detected for up to 24 h after the last dose of the multiple-dose oral regimen. This difference may be attributed to first-pass metabolism of MCBL to GGE after oral administration and may provide a means of differentiating the two routes of administration. © 2013 John Wiley & Sons Ltd.

  7. MRI-based treatment planning with pseudo CT generated through atlas registration.

    PubMed

    Uh, Jinsoo; Merchant, Thomas E; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-05-01

    To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787-0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%-98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs.

  8. MRI-based treatment planning with pseudo CT generated through atlas registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Hua, Chiaho

    2014-05-15

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration ofmore » conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. Conclusions: MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs.« less

  9. MRI-based treatment planning with pseudo CT generated through atlas registration

    PubMed Central

    Uh, Jinsoo; Merchant, Thomas E.; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-01-01

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the percentage of volume receiving at least 95% of the prescription dose in the planning target volume differed from the original values by less than 2% of the prescription dose (root-mean-square, RMS < 1%). The PRGP scheme did not perform better than the arithmetic mean process with the same number of atlases. Increasing the number of atlases from 6 to 12 often resulted in improvements, but statistical significance was not always found. Conclusions: MRI-based treatment planning with pseudo CTs generated through atlas registration is feasible for pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs, showing dosimetric accuracy within 2% for the PTV when multiple atlases were used. The arithmetic mean process may be a reasonable choice over PRGP for the synthesis scheme considering performance and computational costs. PMID:24784377

  10. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  11. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  12. Standard and Nonstandard Craniospinal Radiotherapy Using Helical TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, William, E-mail: william@medphys.mcgill.c; Brodeur, Marylene; Roberge, David

    2010-07-01

    Purpose: To show the advantages of planning and delivering craniospinal radiotherapy with helical TomoTherapy (TomoTherapy Inc., Madison, WI) by presenting 4 cases treated at our institution. Methods and Materials: We first present a standard case of craniospinal irradiation in a patient with recurrent myxopapillary ependymoma (MPE) and follow this with 2 cases requiring differential dosing to multiple target volumes. One of these, a patient with recurrent medulloblastoma, required a lower dose to be delivered to the posterior fossa because the patient had been previously irradiated to the full dose, and the other required concurrent boosts to leptomeningeal metastases as partmore » of his treatment for newly diagnosed MPE. The final case presented is a patient with pronounced scoliosis who required spinal irradiation for recurrent MPE. Results: The four cases presented were planned and treated successfully with Helical Tomotherapy. Conclusions: Helical TomoTherapy delivers continuous arc-based intensity-modulated radiotherapy that gives high conformality and excellent dose homogeneity for the target volumes. Increased healthy tissue sparing is achieved at higher doses albeit at the expense of larger volumes of tissue receiving lower doses. Helical TomoTherapy allows for differential dosing of multiple targets, resulting in very elegant dose distributions. Daily megavoltage computed tomography imaging allows for precision of patient positioning, permitting a reduction in planning margins and increased healthy tissue sparing in comparison with standard techniques.« less

  13. Characterization of the disposition of fostamatinib in Japanese subjects including pharmacokinetic assessment in dry blood spots: results from two phase I clinical studies.

    PubMed

    Martin, Paul; Cheung, S Y Amy; Yen, Mark; Han, David; Gillen, Michael

    2016-01-01

    The aims of the present study were to characterize the pharmacokinetics of fostamatinib in two phase I studies in healthy Japanese subjects after single- and multiple-dose administration, and to evaluate the utility of dried blood spot (DBS) sampling. In study A, 40 Japanese and 16 white subjects were randomized in a double-blind parallel group study consisting of seven cohorts, which received either placebo or a fostamatinib dose between 50 and 200 mg after single and multiple dosing. Pharmacokinetics of R406 (active metabolite of fostamatinib) in plasma and urine was assessed, and safety was intensively monitored. Study B was an open-label study that assessed fostamatinib 100 and 200 mg in 24 Japanese subjects. In addition to plasma and urine sampling (as for study A), pharmacokinetics was also assessed in blood. Mean maximum plasma concentration (C max) and area under total plasma concentration–time curve (AUC) increased with increasing dose in Japanese subjects. Steady state was achieved in 5–7 days for all doses. C max and AUC were both higher in Japanese subjects administered a 150-mg single dose than in white subjects. This difference was maintained for steady state exposure by day 10. Overall, R406 blood concentrations were consistent and ∼2.5-fold higher than in plasma. Minimal (<0.1 %) R406 was excreted in urine. Fostamatinib was well tolerated at all doses. Fostamatinib pharmacokinetics following single- and multiple-dose administration was approximately dose proportional at all doses ≤150 mg and greater than dose proportional at 200 mg in Japanese subjects. Japanese subjects administered fostamatinib 150 mg had higher exposure than white subjects. R406 could be measured in DBS samples and distributed into red blood cells, and DBS sampling was a useful method for assessing R406 pharmacokinetics.

  14. SU-E-T-799: Verification of a Simultaneous Treatment of Multiple Brain Metastases Using VMAT Technique by a Composite Alanine-Gel Dosimeter Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, J; Silveira, M; Filho, O Baffa

    Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less

  15. Low-dose PDT on breast cancer spheroids

    NASA Astrophysics Data System (ADS)

    Campos, C. P.; Inada, N. M.; Kurachi, C.

    2018-02-01

    Photodynamic therapy (PDT) has been investigated in clinical studies as a treatment method for breast cancer chest wall recurrences. Complete response percentage in these studies is not 100% in most patients, indicating the presence of a remaining tumor after PDT. Some in vitro studies show that tumor cells present distinct threshold dose, suggesting that the remaining tumor in vivo could require higher doses or different PDT strategies. There is still a lot of controversy of the multiple PDT sessions effect on bulky tumors. The purpose of this study is to investigate low-dose PDT parameters in 3D cultures of breast cancer cells grown by the magnetic levitation method. PDT was performed with Photodithazine® (PDZ) and LED irradiation at 660 nm. Two concentrations of PDZ were investigated and the 50 μg/mL concentration, which showed a superficial distribution, was used in the PDT. Partial damage was observed in the tumors and the viability test showed a small percentage of cell death. This outcome is favorable for the investigation of PDT effects in the remaining tumor. Multiple PDT sections could provide more noticeable alterations in cell morphology and metabolism.

  16. The effect of systematic set-up deviations on the absorbed dose distribution for left-sided breast cancer treated with respiratory gating

    NASA Astrophysics Data System (ADS)

    Edvardsson, A.; Ceberg, S.

    2013-06-01

    The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

  17. Improved-resolution real-time skin-dose mapping for interventional fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2014-03-01

    We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution.

  18. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de; Wiedenmann, Nicole; Fels, Franziska

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individualmore » brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.« less

  19. Optimal sampling theory and population modelling - Application to determination of the influence of the microgravity environment on drug distribution and elimination

    NASA Technical Reports Server (NTRS)

    Drusano, George L.

    1991-01-01

    The optimal sampling theory is evaluated in applications to studies related to the distribution and elimination of several drugs (including ceftazidime, piperacillin, and ciprofloxacin), using the SAMPLE module of the ADAPT II package of programs developed by D'Argenio and Schumitzky (1979, 1988) and comparing the pharmacokinetic parameter values with results obtained by traditional ten-sample design. The impact of the use of optimal sampling was demonstrated in conjunction with NONMEM (Sheiner et al., 1977) approach, in which the population is taken as the unit of analysis, allowing even fragmentary patient data sets to contribute to population parameter estimates. It is shown that this technique is applicable in both the single-dose and the multiple-dose environments. The ability to study real patients made it possible to show that there was a bimodal distribution in ciprofloxacin nonrenal clearance.

  20. SU-F-J-59: Assessment of Dose Response Distribution in Individual Human Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, D; Chen, S; Krauss, D

    Purpose: To fulfill precision radiotherapy via adaptive dose painting by number, voxel-by-voxel dose response or radio-sensitivity in individual human tumor needs to be determined in early treatment to guide treatment adaptation. In this study, multiple FDG PET images obtained pre- and weekly during the treatment course were utilized to determine the distribution/spectrum of dose response parameters in individual human tumors. Methods: FDG PET/CT images of 18 HN cancer patients were used in the study. Spatial parametric image of tumor metabolic ratio (dSUV) was created following voxel by voxel deformable image registration. Each voxel value in dSUV was a function ofmore » pre-treatment baseline SUV and treatment delivered dose, and used as a surrogate of tumor survival fraction (SF). Regression fitting with break points was performed using the LQ-model with tumor proliferation for the control and failure group of tumors separately. The distribution and spectrum of radiation sensitivity and growth in individual tumors were determined and evaluated. Results: Spectrum of tumor dose-sensitivity and proliferation in the controlled group was broad with α in tumor survival LQ-model from 0.17 to 0.8. It was proportional to the baseline SUV. Tlag was about 21∼25 days, and Tpot about 0.56∼1.67 days respectively. Commonly tumor voxels with high radio-sensitivity or larger α had small Tlag and Tpot. For the failure group, the radio-sensitivity α was low within 0.05 to 0.3, but did not show clear Tlag. In addition, tumor voxel radio-sensitivity could be estimated during the early treatment weeks. Conclusion: Dose response distribution with respect to radio-sensitivity and growth in individual human tumor can be determined using FDG PET imaging based tumor metabolic ratio measured in early treatment course. The discover is critical and provides a potential quantitative objective to implement tumor specific precision radiotherapy via adaptive dose painting by number.« less

  1. SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Z; Jiang, S; Yang, Z

    2014-06-01

    Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs groupmore » real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing the large target margin and avoiding dose dead zones for prostate cancer treatment. 1) National Natural Science Foundation of People's Republic of China (No. 51175373); 2) New Century Educational Talents Plan of Chinese Education Ministry (NCET-10-0625); 3) Scientific and Technological Major Project, Tianjin (No. 12ZCDZSY10600)« less

  2. SU-E-J-71: Spatially Preserving Prior Knowledge-Based Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H; Xing, L

    2015-06-15

    Purpose: Prior knowledge-based treatment planning is impeded by the use of a single dose volume histogram (DVH) curve. Critical spatial information is lost from collapsing the dose distribution into a histogram. Even similar patients possess geometric variations that becomes inaccessible in the form of a single DVH. We propose a simple prior knowledge-based planning scheme that extracts features from prior dose distribution while still preserving the spatial information. Methods: A prior patient plan is not used as a mere starting point for a new patient but rather stopping criteria are constructed. Each structure from the prior patient is partitioned intomore » multiple shells. For instance, the PTV is partitioned into an inner, middle, and outer shell. Prior dose statistics are then extracted for each shell and translated into the appropriate Dmin and Dmax parameters for the new patient. Results: The partitioned dose information from a prior case has been applied onto 14 2-D prostate cases. Using prior case yielded final DVHs that was comparable to manual planning, even though the DVH for the prior case was different from the DVH for the 14 cases. Solely using a single DVH for the entire organ was also performed for comparison but showed a much poorer performance. Different ways of translating the prior dose statistics into parameters for the new patient was also tested. Conclusion: Prior knowledge-based treatment planning need to salvage the spatial information without transforming the patients on a voxel to voxel basis. An efficient balance between the anatomy and dose domain is gained through partitioning the organs into multiple shells. The use of prior knowledge not only serves as a starting point for a new case but the information extracted from the partitioned shells are also translated into stopping criteria for the optimization problem at hand.« less

  3. Pergolide: multiple-dose pharmacokinetics in patients with mild to moderate Parkinson disease.

    PubMed

    Thalamas, Claire; Rajman, Iris; Kulisevsky, Jaime; Lledó, Alberto; Mackie, Alison E; Blin, Olivier; Gillespie, Todd A; Seger, Mary; Rascol, Olivier

    2005-01-01

    The primary objective of this study was to describe the pharmacokinetics of oral pergolide in patients with mild to moderate Parkinson disease using a new high-performance liquid chromatography-tandem mass spectrometry assay. A secondary objective was to investigate the relationship between plasma concentrations and efficacy. Fourteen patients with a diagnosis of Parkinson disease completed this multicenter, open-label, dose-escalating study. Pergolide was administered for 58 days, using increasing daily doses from 0.05 mg daily up to 1 mg three times daily and then tapering the dose. The steady-state pharmacokinetic profile and motor score were determined at dose levels of 0.25, 0.5, and 1 mg three times a day and during elimination after the last dose. Pergolide was absorbed with a median time to maximum concentration of 2 to 3 hours across the dose range. Systemic exposure appeared to increase proportionally with dose over the range of 0.25 to 1 mg three times daily within a patient, but there was a large variability in exposures between patients (interpatient coefficients of variation were 56.4% for the area under the curve). Pergolide was widely distributed (volume of distribution, approximately 14,000 L) and was eliminated with a mean half-life of 21 hours. Motor scores improved as both peak plasma pergolide concentrations and exposure increased. No unexpected safety concerns were identified. Pergolide is absorbed relatively quickly into the systemic circulation, has a large apparent volume of distribution, and has a relatively long half-life (mean, 21 hours). This prolonged half-life is of particular interest, given the current hypothesis that more continuous dopaminergic receptor stimulation may reduce motor complications in patients with Parkinson disease.

  4. An accurate model for the computation of the dose of protons in water.

    PubMed

    Embriaco, A; Bellinzona, V E; Fontana, A; Rotondi, A

    2017-06-01

    The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters. The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling. To this e.m. contribution the nuclear proton-nucleus interaction is added with a simple two-parameter model. Then, the non gaussian lateral profile is used to calculate the radial dose distribution with a method that assumes the cylindrical symmetry of the distribution. The results, obtained with a fast C++ based computational code called MONET (MOdel of ioN dosE for Therapy), are in very good agreement with the FLUKA MC code, within a few percent in the worst case. This study provides a new tool for fast dose calculation or verification, possibly for clinical use. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Pharmacokinetic Properties and Tolerability of Cycloserine Following Oral Administration in Healthy Chinese Volunteers: A Randomized, Open-Label, Single- and Multiple-Dose 3-Way Crossover Study.

    PubMed

    Zhou, Huili; Wu, Guolan; Hu, Xingjiang; Zhu, Meixiang; Zhai, You; Liu, Jian; Shentu, Jianzhong; Wu, Lihua

    2015-06-01

    A new generic formulation of cycloserine has been developed in China but the pharmacokinetic properties of cycloserine in the Chinese population have not been reported. The aim of our study was to evaluate the pharmacokinetic properties and tolerability of single and multiple oral administrations of cycloserine capsules in healthy Chinese volunteers. This open-label, single- and multiple-dose 3-way crossover study was conducted in healthy Chinese volunteers. Subjects were randomized to receive a single dose of cycloserine (250, 500, or 1000 mg) in separate trial periods, with a 1-week washout between periods. Those allocated to the 250-mg dose continued into the multiple-dose phase, in which they received 250 mg BID for 5 consecutive days. During the single-dose phase, blood samples were collected at regular intervals from 0 to 72 hours after drug administration and the concentrations of cycloserine were determined using LC-MS/MS. During the multiple-dose phase, blood samples were obtained before drug administration on Days 4, 5, and 6 to determine the Cmin at steady state. On Day 6, blood samples were also collected from 0 to 72 hours after drug administration. Pharmacokinetic parameters were estimated using noncompartmental methods. Tolerability was determined using clinical evaluation and monitoring of adverse events. The study enrolled 12 healthy Chinese volunteers (6 men: mean [SD] age = 23.0 [2.6] years, weight = 60.2 [6.2] kg, height = 170.0 [3.0] cm, and body mass index = 20.7 [1.7]; 6 women: mean [SD] age = 25.3 [1.4] years, weight = 51.5 [3.3] kg, height = 160.0 [4.0] cm, and body mass index = 20.1 [0.9]). After administration of a single dose, cycloserine was rapidly absorbed, reaching peak plasma concentrations approximately 0.84 hours after oral administration, and t½ in plasma was about 13.0 hours. The geometric mean (SD) Cmax value increased in proportion to cycloserine dose, from 19.42 (5.89) to 84.76 (21.74) mg/L, and the geometric mean (SD) AUC0-72h value increased from 264.16 (133.37) to 1153.87 (522.16) mg·h/L in the range of a 250- to 1000-mg dose. After administration of multiple doses of cycloserine 250 mg BID, the mean (SD) t½ was 13.56 (4.38) hours, the apparent total clearance of the drug from plasma after oral administration was 1.02 (0.42) L/h, and the apparent volume of distribution was 18.22 (5.25) L, which were comparable with those after single dosing. The accumulation index was 2.19 (0.51), and the fluctuation was 1.05 (0.35). Results of the t tests of Cmax and AUC found no significant differences between the male and female groups. No serious adverse events were reported, and there were no discontinuations due to adverse events. The pharmacokinetic properties of cycloserine were linear at doses from 250 mg to 1000 mg. After multiple doses, the pharmacokinetic properties of cycloserine were consistent with those after single doses. At the doses studied, cycloserine appears to be well tolerated in these healthy volunteers. Chinese Clinical Trials registration: ChiCTR-TTRCC-13003982. Copyright © 2015. Published by Elsevier Inc.

  6. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  7. Multiple oral dosing of ketoconazole influences pharmacokinetics of quinidine after intravenous and oral administration in beagle dogs.

    PubMed

    Kuroha, M; Shirai, Y; Shimoda, M

    2004-10-01

    In this study, we investigated the effect of multiple oral dosing of ketoconazole (KTZ) on pharmacokinetics of quinidine (QN), a CYP3A substrate with low hepatic clearance, after i.v. and oral administration in beagle dogs. Four dogs were given p.o. KTZ for 20 days (200 mg, b.i.d.). QN was administered either i.v. (1 mg/kg) or p.o. (100 mg) 10 and 20 days before the KTZ treatment and 10 and 20 days after start of KTZ treatment. Multiple oral dosing of KTZ decreased significantly alpha and beta, whereas increased t(1/2beta), V(1), and k(a). The KTZ treatment also decreased significantly both total body clearance (Cl(tot)) and oral clearance (Cl(oral)). No significant change in bioavailability was observed in the presence of KTZ. Co-administration of KTZ increased C(max) of QN to about 1.5-fold. Mean resident time after i.v. administration (MRT(i.v.)), and after oral administration (MRT(p.o.)) of QN were prolonged to about twofold, whereas mean absorption time (MAT) was decreased to 50%. Volume of distribution at steady state (V(d(ss))) of QN was unchanged in the presence of KTZ. These alterations may be because of a decrease in metabolism of QN by inhibition of KTZ on hepatic CYP3A activity. In conclusion, multiple oral dosing of KTZ affected largely pharmacokinetics of QN after i.v. and oral administration in beagle dogs. Therefore, KTZ at a clinical dosing regimen may markedly change the pharmacokinetics of drugs primarily metabolized by CYP3A with low hepatic clearance in dogs. In clinical use, much attention should be paid to concomitant administration of KTZ with the drug when given either p.o. or i.v.

  8. Nandrolone decanoate induces genetic damage in multiple organs of rats.

    PubMed

    Pozzi, Renan; Fernandes, Kelly Rosseti; de Moura, Carolina Foot Gomes; Ferrari, Raquel Agnelli Mesquita; Fernandes, Kristianne Porta Santos; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2013-04-01

    To evaluate the impact potential of nandrolone decanoate on DNA damage in multiple organs of Wistar rats by means of single-cell gel (comet) assay and micronucleus test. A total of 15 animals were distributed into three groups of five animals each as follows: control group = animal not exposed to nandrolone decanoate; experimental group = animals exposed to nandrolone decanoate for 24 h at 5 mg/kg subcutaneously; and experimental group = animals exposed to nandrolone decanoate for 24 h at 15 mg/kg subcutaneously. Significant statistical differences (p < 0.05) were noted in peripheral blood, liver, and heart cells exposed to nandrolone decanoate at the two doses evaluated. A clear dose-response relationship was observed between groups. Kidney cells showed genetic damage at only the highest dose (15 mg/kg) used. However, micronucleus data did not show remarkable differences among groups. In conclusion, the present study indicates that nandrolone decanoate induces genetic damage in rat blood, liver, heart, and kidney cells as shown by single-cell gel (comet) assay results.

  9. Validation of total skin electron irradiation (TSEI) technique dosimetry data by Monte Carlo simulation

    PubMed Central

    Borzov, Egor; Daniel, Shahar; Bar‐Deroma, Raquel

    2016-01-01

    Total skin electron irradiation (TSEI) is a complex technique which requires many nonstandard measurements and dosimetric procedures. The purpose of this work was to validate measured dosimetry data by Monte Carlo (MC) simulations using EGSnrc‐based codes (BEAMnrc and DOSXYZnrc). Our MC simulations consisted of two major steps. In the first step, the incident electron beam parameters (energy spectrum, FWHM, mean angular spread) were adjusted to match the measured data (PDD and profile) at SSD=100 cm for an open field. In the second step, these parameters were used to calculate dose distributions at the treatment distance of 400 cm. MC simulations of dose distributions from single and dual fields at the treatment distance were performed in a water phantom. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. MC calculations were compared to the available set of measurements used in clinical practice. For one direct field, MC calculated PDDs agreed within 3%/1 mm with the measurements, and lateral profiles agreed within 3% with the measured data. For the OF, the measured and calculated results were within 2% agreement. The optimal angle of 17° was confirmed for the dual field setup. Dose distribution from the full treatment with six dual fields was simulated in a CT‐based anthropomorphic phantom. The MC‐calculated multiplication factor (B12‐factor), which relates the skin dose for the whole treatment to the dose from one calibration field, for setups with and without degrader was 2.9 and 2.8, respectively. The measured B12‐factor was 2.8 for both setups. The difference between calculated and measured values was within 3.5%. It was found that a degrader provides more homogeneous dose distribution. The measured X‐ray contamination for the full treatment was 0.4%; this is compared to the 0.5% X‐ray contamination obtained with the MC calculation. Feasibility of MC simulation in an anthropomorphic phantom for a full TSEI treatment was proved and is reported for the first time in the literature. The results of our MC calculations were found to be in general agreement with the measurements, providing a promising tool for further studies of dose distribution calculations in TSEI. PACS number(s): 87.10. Rt, 87.55.K, 87.55.ne PMID:27455502

  10. Comparison of organ dose and dose equivalent using ray tracing of male and female Voxel phantoms to space flight phantom torso data

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  11. Comparison of Organ Dose and Dose Equivalent Using Ray Tracing of Male and Female Voxel Phantoms to Space Flight Phantom Torso Data

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.

    2008-01-01

    Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.

  12. Multiple scattering of 13 and 20 MeV electrons by thin foils: a Monte Carlo study with GEANT, Geant4, and PENELOPE.

    PubMed

    Vilches, M; García-Pareja, S; Guerrero, R; Anguiano, M; Lallena, A M

    2009-09-01

    In this work, recent results from experiments and simulations (with EGSnrc) performed by Ross et al. [Med. Phys. 35, 4121-4131 (2008)] on electron scattering by foils of different materials and thicknesses are compared to those obtained using several Monte Carlo codes. Three codes have been used: GEANT (version 3.21), Geant4 (version 9.1, patch03), and PENELOPE (version 2006). In the case of PENELOPE, mixed and fully detailed simulations have been carried out. Transverse dose distributions in air have been obtained in order to compare with measurements. The detailed PENELOPE simulations show excellent agreement with experiment. The calculations performed with GEANT and PENELOPE (mixed) agree with experiment within 3% except for the Be foil. In the case of Geant4, the distributions are 5% narrower compared to the experimental ones, though the agreement is very good for the Be foil. Transverse dose distribution in water obtained with PENELOPE (mixed) is 4% wider than those calculated by Ross et al. using EGSnrc and is 1% narrower than the transverse dose distributions in air, as considered in the experiment. All the codes give a reasonable agreement (within 5%) with the experimental results for all the material and thicknesses studied.

  13. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.

    PubMed

    Kendal, W S

    2000-04-01

    To illustrate how probability-generating functions (PGFs) can be employed to derive a simple probabilistic model for clonogenic survival after exposure to ionizing irradiation. Both repairable and irreparable radiation damage to DNA were assumed to occur by independent (Poisson) processes, at intensities proportional to the irradiation dose. Also, repairable damage was assumed to be either repaired or further (lethally) injured according to a third (Bernoulli) process, with the probability of lethal conversion being directly proportional to dose. Using the algebra of PGFs, these three processes were combined to yield a composite PGF that described the distribution of lethal DNA lesions in irradiated cells. The composite PGF characterized a Poisson distribution with mean, chiD+betaD2, where D was dose and alpha and beta were radiobiological constants. This distribution yielded the conventional linear-quadratic survival equation. To test the composite model, the derived distribution was used to predict the frequencies of multiple chromosomal aberrations in irradiated human lymphocytes. The predictions agreed well with observation. This probabilistic model was consistent with single-hit mechanisms, but it was not consistent with binary misrepair mechanisms. A stochastic model for radiation survival has been constructed from elementary PGFs that exactly yields the linear-quadratic relationship. This approach can be used to investigate other simple probabilistic survival models.

  14. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  15. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  16. 2D dosimetry in a proton beam with a scintillating GEM detector

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M. R.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.

    2009-06-01

    A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for pre-treatment verification of dose distributions in particle therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two gas electron multiplier (GEM) structures are mounted (Seravalli et al 2008b Med. Phys. Biol. 53 4651-65). Photons emitted by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD camera system. The intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the characterization of the scintillating GEM detector in terms of those properties that are of particular importance in relative dose measurements, e.g. response reproducibility, dose dependence, dose rate dependence, spatial and time response, field size dependence, response uniformity. The experiments were performed in a 150 MeV proton beam. We found that the detector response is very stable for measurements performed in succession (σ = 0.6%) and its response reproducibility over 2 days is about 5%. The detector response was found to be linear with the dose in the range 0.05-19 Gy. No dose rate effects were observed between 1 and 16 Gy min-1 at the shallow depth of a water phantom and 2 and 38 Gy min-1 at the Bragg peak depth. No field size effects were observed in the range 120-3850 mm2. A signal rise and fall time of 2 µs was recorded and a spatial response of <=1 mm was measured.

  17. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at; Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe.« less

  18. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    PubMed Central

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-01-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. PMID:25186386

  19. Graded-threshold parametric response maps: towards a strategy for adaptive dose painting

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To modify the single-threshold parametric response map (ST-PRM) method for predicting treatment outcomes in order to facilitate its use for guidance of adaptive dose painting in intensity-modulated radiotherapy. Methods: Multiple graded thresholds were used to extend the ST-PRM method (Nat. Med. 2009;15(5):572-576) such that the full functional change distribution within tumours could be represented with respect to multiple confidence interval estimates for functional changes in similar healthy tissue. The ST-PRM and graded-threshold PRM (GT-PRM) methods were applied to functional imaging scans of 5 patients treated for hepatocellular carcinoma. Pre and post-radiotherapy arterial blood flow maps (ABF) were generated from CT-perfusion scans of each patient. ABF maps were rigidly registered based on aligning tumour centres of mass. ST-PRM and GT-PRM analyses were then performed on overlapping tumour regions within the registered ABF maps. Main findings: The ST-PRMs contained many disconnected clusters of voxels classified as having a significant change in function. While this may be useful to predict treatment response, it may pose challenges for identifying boost volumes or for informing dose-painting by numbers strategies. The GT-PRMs included all of the same information as ST-PRMs but also visualized the full tumour functional change distribution. Heterogeneous clusters in the ST-PRMs often became more connected in the GT-PRMs by voxels with similar functional changes. Conclusions: GT-PRMs provided additional information which helped to visualize relationships between significant functional changes identified by ST-PRMs. This may enhance ST-PRM utility for guiding adaptive dose painting.

  20. Comparisons between GRNTRN simulations and beam measurements of proton lateral broadening distributions

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John

    Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.

  1. mBAND Analysis of Early and Late Damages in the Chromosome of Human Lymphocytes after Exposures to Gamma Rays and Fe Ions

    NASA Technical Reports Server (NTRS)

    Sunagawa, Mayumi; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2013-01-01

    Stable type chromosome aberrations that survive multiple generations of cell division include translocation and inversions. An efficient method to detect an inversion is multi-color banding fluorescent in situ hybridization (mBAND) which allows identification of both inter- and intrachromosome aberrations simultaneously. Post irradiation, chromosome aberrations may also arise after multiple cell divisions as a result of genomic instability. To investigate the stable or late-arising chromosome aberrations induced after radiation exposure, we exposed human lymphocytes to gamma rays and Fe ions ex vivo, and cultured the cells for multiple generations. Chromosome aberrations were analyzed in cells collected at first mitosis and at several time intervals during the culture period post irradiation. With gamma irradiation, about half of the damages observed at first mitosis remained after 7 day- and 14 day- culture, suggesting the transmissibility of damages to the surviving progeny. At the doses that produced similar frequencies of gamma-induced chromosome aberrations as observed at first mitosis, a significantly lower yield of aberrations remained at the same population doublings after Fe ion exposure. At these equitoxic doses, more complex type aberrations were observed for Fe ions, indicating that Fe ion-induced initial chromosome damages are more severe and may lead to cell death. Detailed analysis of breaks participating in total chromosome exchanges within the first cell cycle post irradiation revealed a common hotspot located in the 3p21 region, which is a known fragile site corresponding to the band 6 in the mBand analysis. The breakpoint distribution in chromosomes collected at 7 days, but not at 14 days, post irradiation appeared similar to the distribution in cells collected within the first cell cycle post irradiation. The breakpoint distribution for human lymphocytes after radiation exposure was different from the previously published distribution for human mammary epithelial cells, indicating that interphase chromatin folding structures play a role in the distribution of radiation-induced breaks.

  2. MO-FG-CAMPUS-TeP1-04: Pseudo-In-Vivo Dose Verification of a New Mono-Isocentric Technique for the Treatment of Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, E P; Makris, D; Lahanas, V

    2016-06-15

    Purpose: To validate dose calculation and delivery accuracy of a recently introduced mono-isocentric technique for the treatment of multiple brain metastases in a realistic clinical case. Methods: Anonymized CT scans of a patient were used to model a hollow phantom that duplicates anatomy of the skull. A 3D printer was used to construct the phantom of a radiologically bone-equivalent material. The hollow phantom was subsequently filled with a polymer gel 3D dosimeter which also acted as a water-equivalent material. Irradiation plan consisted of 5 targets and was identical to the one delivered to the specific patient except for the prescriptionmore » dose which was optimized to match the gel dose-response characteristics. Dose delivery was performed using a single setup isocenter dynamic conformal arcs technique. Gel dose read-out was carried out by a 1.5 T MRI scanner. All steps of the corresponding patient’s treatment protocol were strictly followed providing an end-to-end quality assurance test. Pseudo-in-vivo measured 3D dose distribution and calculated one were compared in terms of spatial agreement, dose profiles, 3D gamma indices (5%/2mm, 20% dose threshold), DVHs and DVH metrics. Results: MR-identified polymerized areas and calculated high dose regions were found to agree within 1.5 mm for all targets, taking into account all sources of spatial uncertainties involved (i.e., set-up errors, MR-related geometric distortions and registration inaccuracies). Good dosimetric agreement was observed in the vast majority of the examined profiles. 3D gamma index passing rate reached 91%. DVH and corresponding metrics comparison resulted in a satisfying agreement between measured and calculated datasets within targets and selected organs-at-risk. Conclusion: A novel, pseudo-in-vivo QA test was implemented to validate spatial and dosimetric accuracy in treatment of multiple metastases. End-to-end testing demonstrated that our gel dosimetry phantom is suited for such QA procedures, allowing for 3D analysis of both targeting placement and dose.« less

  3. The MONET code for the evaluation of the dose in hadrontherapy

    NASA Astrophysics Data System (ADS)

    Embriaco, A.

    2018-01-01

    The MONET is a code for the computation of the 3D dose distribution for protons in water. For the lateral profile, MONET is based on the Molière theory of multiple Coulomb scattering. To take into account also the nuclear interactions, we add to this theory a Cauchy-Lorentz function, where the two parameters are obtained by a fit to a FLUKA simulation. We have implemented the Papoulis algorithm for the passage from the projected to a 2D lateral distribution. For the longitudinal profile, we have implemented a new calculation of the energy loss that is in good agreement with simulations. The inclusion of the straggling is based on the convolution of energy loss with a Gaussian function. In order to complete the longitudinal profile, also the nuclear contributions are included using a linear parametrization. The total dose profile is calculated in a 3D mesh by evaluating at each depth the 2D lateral distributions and by scaling them at the value of the energy deposition. We have compared MONET with FLUKA in two cases: a single Gaussian beam and a lateral scan. In both cases, we have obtained a good agreement for different energies of protons in water.

  4. Evaluation of material heterogeneity dosimetric effects using radiochromic film for COMS eye plaques loaded with {sup 125}I seeds (model I25.S16)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail

    Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less

  5. Multiple anatomy optimization of accumulated dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, W. Tyler, E-mail: watkinswt@virginia.edu; Siebers, Jeffrey V.; Moore, Joseph A.

    Purpose: To investigate the potential advantages of multiple anatomy optimization (MAO) for lung cancer radiation therapy compared to the internal target volume (ITV) approach. Methods: MAO aims to optimize a single fluence to be delivered under free-breathing conditions such that the accumulated dose meets the plan objectives, where accumulated dose is defined as the sum of deformably mapped doses computed on each phase of a single four dimensional computed tomography (4DCT) dataset. Phantom and patient simulation studies were carried out to investigate potential advantages of MAO compared to ITV planning. Through simulated delivery of the ITV- and MAO-plans, target dosemore » variations were also investigated. Results: By optimizing the accumulated dose, MAO shows the potential to ensure dose to the moving target meets plan objectives while simultaneously reducing dose to organs at risk (OARs) compared with ITV planning. While consistently superior to the ITV approach, MAO resulted in equivalent OAR dosimetry at planning objective dose levels to within 2% volume in 14/30 plans and to within 3% volume in 19/30 plans for each lung V20, esophagus V25, and heart V30. Despite large variations in per-fraction respiratory phase weights in simulated deliveries at high dose rates (e.g., treating 4/10 phases during single fraction beams) the cumulative clinical target volume (CTV) dose after 30 fractions and per-fraction dose were constant independent of planning technique. In one case considered, however, per-phase CTV dose varied from 74% to 117% of prescription implying the level of ITV-dose heterogeneity may not be appropriate with conventional, free-breathing delivery. Conclusions: MAO incorporates 4DCT information in an optimized dose distribution and can achieve a superior plan in terms of accumulated dose to the moving target and OAR sparing compared to ITV-plans. An appropriate level of dose heterogeneity in MAO plans must be further investigated.« less

  6. SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D; Feygelman, V; Moros, E

    2016-06-15

    Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less

  7. Straightening Beta: Overdispersion of Lethal Chromosome Aberrations following Radiotherapeutic Doses Leads to Terminal Linearity in the Alpha–Beta Model

    PubMed Central

    Shuryak, Igor; Loucas, Bradford D.; Cornforth, Michael N.

    2017-01-01

    Recent technological advances allow precise radiation delivery to tumor targets. As opposed to more conventional radiotherapy—where multiple small fractions are given—in some cases, the preferred course of treatment may involve only a few (or even one) large dose(s) per fraction. Under these conditions, the choice of appropriate radiobiological model complicates the tasks of predicting radiotherapy outcomes and designing new treatment regimens. The most commonly used model for this purpose is the venerable linear-quadratic (LQ) formalism as it applies to cell survival. However, predictions based on the LQ model are frequently at odds with data following very high acute doses. In particular, although the LQ predicts a continuously bending dose–response relationship for the logarithm of cell survival, empirical evidence over the high-dose region suggests that the survival response is instead log-linear with dose. Here, we show that the distribution of lethal chromosomal lesions among individual human cells (lymphocytes and fibroblasts) exposed to gamma rays and X rays is somewhat overdispersed, compared with the Poisson distribution. Further, we show that such overdispersion affects the predicted dose response for cell survival (the fraction of cells with zero lethal lesions). This causes the dose response to approximate log-linear behavior at high doses, even when the mean number of lethal lesions per cell is well fitted by the continuously curving LQ model. Accounting for overdispersion of lethal lesions provides a novel, mechanistically based explanation for the observed shapes of cell survival dose responses that, in principle, may offer a tractable and clinically useful approach for modeling the effects of high doses per fraction. PMID:29312888

  8. SU-F-T-192: Study of Robustness Analysis Method of Multiple Field Optimized IMPT Plans for Head & Neck Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Wang, X; Li, H

    Purpose: Proton therapy is more sensitive to uncertainties than photon treatments due to protons’ finite range depending on the tissue density. Worst case scenario (WCS) method originally proposed by Lomax has been adopted in our institute for robustness analysis of IMPT plans. This work demonstrates that WCS method is sufficient enough to take into account of the uncertainties which could be encountered during daily clinical treatment. Methods: A fast and approximate dose calculation method is developed to calculate the dose for the IMPT plan under different setup and range uncertainties. Effects of two factors, inversed square factor and range uncertainty,more » are explored. WCS robustness analysis method was evaluated using this fast dose calculation method. The worst-case dose distribution was generated by shifting isocenter by 3 mm along x,y and z directions and modifying stopping power ratios by ±3.5%. 1000 randomly perturbed cases in proton range and x, yz directions were created and the corresponding dose distributions were calculated using this approximated method. DVH and dosimetric indexes of all 1000 perturbed cases were calculated and compared with the result using worst case scenario method. Results: The distributions of dosimetric indexes of 1000 perturbed cases were generated and compared with the results using worst case scenario. For D95 of CTVs, at least 97% of 1000 perturbed cases show higher values than the one of worst case scenario. For D5 of CTVs, at least 98% of perturbed cases have lower values than worst case scenario. Conclusion: By extensively calculating the dose distributions under random uncertainties, WCS method was verified to be reliable in evaluating the robustness level of MFO IMPT plans of H&N patients. The extensively sampling approach using fast approximated method could be used in evaluating the effects of different factors on the robustness level of IMPT plans in the future.« less

  9. SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W; Farr, J

    2015-06-15

    Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less

  10. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system.

    PubMed

    Rana, V K; Rudin, S; Bednarek, D R

    2016-09-01

    Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.

  11. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    PubMed Central

    Rana, V. K.; Rudin, S.; Bednarek, D. R.

    2016-01-01

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries. PMID:27587043

  12. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, V. K., E-mail: vkrana@buffalo.edu

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, amore » data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.« less

  13. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects.

    PubMed

    Gerig, L H; Niedbala, M; Nyiri, B J

    2010-01-01

    To measure the effect of the treatment couch on dose distributions and to investigate the ability of a modern planning system to accurately model these effects. This work measured the dose perturbation at depth and in the dose buildup region when one of two treatment couches, CIVCO (formerly MED-TEC) or Medical Intelligence, was placed between a photon beam source (6, 10, and 18 MV) and the phantom. Beam attenuation was measured in the center of a cylindrical acrylic phantom with a Farmer type ion chamber at multiple gantry angles. Dose buildup was measured in Solid Water with plane parallel ion chambers (NACP-02 and PTW Markus) with the beam normal to both the phantom and couch surfaces. The effective point of measurement method as described [M. R. McEwen et al. "The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams," Med. Phys. 35(3), 950-958 (2008)] was employed to calculate dose in the buildup region. Both experiments were modeled in XiO. Images of the treatment couches were merged with images of the phantoms such that they were included as part of the "patient" image. Dose distributions calculated with superposition and fast superposition algorithms were compared to measurement. The two treatment couches have different radiological signatures and dissimilar water equivalent thicknesses (4.2 vs 6.3 mm.) Maximum attenuation was 7%. Both couches caused significant loss of skin sparing, the worst case showing an increase in surface dose from 17% (no couch) to 88% (with couch). The TPS accurately predicted the surface dose (+/-3%) and the attenuation at depth when the phantom was in contact with the couch. For the open beam the TPS was less successful in the buildup region. The treatment couch is not radio-transparent. Its presence between the patient and beam source significantly alters dose in the patient. For the most part, a modern treatment planning system can adequately predict the altered dose distribution.

  14. Defining unnecessary disinfection procedures for single-dose and multiple-dose vials.

    PubMed

    Buckley, T; Dudley, S M; Donowitz, L G

    1994-11-01

    Recommendations in the literature conflict on the necessity of disinfecting single-use vials prior to aspiration of fluid. Interventions to disinfect the stopper surface on multiple-dose vials vary considerably. To determine the necessity of alcohol disinfection of the stopper on single-dose vials and to compare povidone-iodine and alcohol versus alcohol-only disinfection of the stopper prior to each needle penetration on multiple-dose vials. The rubber stopper surfaces of 100 single-dose vials were cultured for the presence of bacteria. To determine the efficacy of two procedures for disinfection of multiple-dose vials, 87 stopper surfaces routinely disinfected with both povidone-iodine and alcohol were cultured for bacteria. After a change in practice, 100 multiple-dose vials routinely disinfected with alcohol only were cultured for the presence of bacteria. Of the cultures done on single-dose vial stoppers, 99% were sterile. A comparison of the two disinfection techniques for multiple-dose vials revealed that 83 (95%) of the 87 vials prepped with both povidone-iodine and alcohol were sterile, compared with all stoppers disinfected with alcohol only. This study shows the lack of necessity of any disinfection procedure on the rubber stopper of single-dose vials and the efficacy of alcohol only for disinfecting the stopper of multiple-dose vials.

  15. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbiere, J; Napoli, J; Ndlovu, A

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dosemore » matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.« less

  16. Scatter correction, intermediate view estimation and dose characterization in megavoltage cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Sramek, Benjamin Koerner

    The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.

  17. Compartmental Pharmacokinetics of the Antifungal Echinocandin Caspofungin (MK-0991) in Rabbits

    PubMed Central

    Groll, Andreas H.; Gullick, Bryan M.; Petraitiene, Ruta; Petraitis, Vidmantas; Candelario, Myrna; Piscitelli, Stephen C.; Walsh, Thomas J.

    2001-01-01

    The pharmacokinetics of the antifungal echinocandin-lipopeptide caspofungin (MK-0991) in plasma were studied in groups of three healthy rabbits after single and multiple daily intravenous administration of doses of 1, 3, and 6 mg/kg of body weight. Concentrations were measured by a validated high-performance liquid chromatography method and fitted into a three-compartment open pharmacokinetic model. Across the investigated dosage range, caspofungin displayed dose-independent pharmacokinetics. Following administration over 7 days, the mean peak concentration in plasma (Cmax) ± standard error of the mean increased from 16.01 ± 0.61 μg/ml at the 1-mg/kg dose to 105.52 ± 8.92 μg/ml at the 6-mg/kg dose; the mean area under the curve from 0 h to infinity rose from 13.15 ± 2.37 to 158.43 ± 15.58 μg · h/ml, respectively. The mean apparent volume of distribution at steady state (Vdss) was 0.299 ± 0.011 liter/kg at the 1-mg/kg dose and 0.351 ± 0.016 liter/kg at the 6-mg/kg dose (not significant [NS]). Clearance (CL) ranged from 0.086 ± 0.017 liter/kg/h at the 1-mg/kg dose to 0.043 ± 0.004 liter/kg/h at the 6-mg/kg dose (NS), and the mean terminal half-life was between 30 and 34 h (NS). Except for a trend towards an increased Vdss, there were no significant differences in pharmacokinetic parameters in comparison to those after single-dose administration. Caspofungin was well tolerated, displayed linear pharmacokinetics that fit into a three-compartment pharmacokinetic model, and achieved sustained concentrations in plasma that were multiple times in excess of reported MICs for susceptible opportunistic fungi. PMID:11158761

  18. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  19. FW-CADIS Method for Global and Semi-Global Variance Reduction of Monte Carlo Radiation Transport Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C; Peplow, Douglas E.; Mosher, Scott W

    2014-01-01

    This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is an extension of the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for more than a decade to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development ofmore » an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain more uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented and demonstrated within the MAVRIC sequence of SCALE and the ADVANTG/MCNP framework. Application of the method to representative, real-world problems, including calculation of dose rate and energy dependent flux throughout the problem space, dose rates in specific areas, and energy spectra at multiple detectors, is presented and discussed. Results of the FW-CADIS method and other recently developed global variance reduction approaches are also compared, and the FW-CADIS method outperformed the other methods in all cases considered.« less

  20. Geometrical correction of the e-beam proximity effect for raster scan systems

    NASA Astrophysics Data System (ADS)

    Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas

    1999-06-01

    Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.

  1. Rationale of technical requirements for NRG-BR001: The first NCI-sponsored trial of SBRT for the treatment of multiple metastases.

    PubMed

    Al-Hallaq, Hania A; Chmura, Steven; Salama, Joseph K; Winter, Kathryn A; Robinson, Clifford G; Pisansky, Thomas M; Borges, Virginia; Lowenstein, Jessica R; McNulty, Susan; Galvin, James M; Followill, David S; Timmerman, Robert D; White, Julia R; Xiao, Ying; Matuszak, Martha M

    In 2014, the NRG Oncology Group initiated the first National Cancer Institute-sponsored, phase 1 clinical trial of stereotactic body radiation therapy (SBRT) for the treatment of multiple metastases in multiple organ sites (BR001; NCT02206334). The primary endpoint is to test the safety of SBRT for the treatment of 2 to 4 multiple lesions in several anatomic sites in a multi-institutional setting. Because of the technical challenges inherent to treating multiple lesions as their spatial separation decreases, we present the technical requirements for NRG-BR001 and the rationale for their selection. Patients with controlled primary tumors of breast, non-small cell lung, or prostate are eligible if they have 2 to 4 metastases distributed among 7 extracranial anatomic locations throughout the body. Prescription and organ-at-risk doses were determined by expert consensus. Credentialing requirements include (1) irradiation of the Imaging and Radiation Oncology Core phantom with SBRT, (2) submitting image guided radiation therapy case studies, and (3) planning the benchmark. Guidelines for navigating challenging planning cases including assessing composite dose are discussed. Dosimetric planning to multiple lesions receiving differing doses (45-50 Gy) and fractionation (3-5) while irradiating the same organs at risk is discussed, particularly for metastases in close proximity (≤5 cm). The benchmark case was selected to demonstrate the planning tradeoffs required to satisfy protocol requirements for 2 nearby lesions. Examples of passing benchmark plans exhibited a large variability in plan conformity. NRG-BR001 was developed using expert consensus on multiple issues from the dose fractionation regimen to the minimum image guided radiation therapy guidelines. Credentialing was tied to the task rather than the anatomic site to reduce its burden. Every effort was made to include a variety of delivery methods to reflect current SBRT technology. Although some simplifications were adopted, the successful completion of this trial will inform future designs of both national and institutional trials and would allow immediate clinical adoption of SBRT trials for oligometastases. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.

  3. Monte Carlo dosimetry for {sup 103}Pd, {sup 125}I, and {sup 131}Cs ocular brachytherapy with various plaque models using an eye phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesperance, Marielle; Martinov, M.; Thomson, R. M., E-mail: rthomson@physics.carleton.ca

    Purpose: To investigate dosimetry for ocular brachytherapy for a range of eye plaque models containing{sup 103}Pd, {sup 125}I, or {sup 131}Cs seeds with model-based dose calculations. Methods: Five representative plaque models are developed based on a literature review and are compared to the standardized COMS plaque, including plaques consisting of a stainless steel backing and acrylic insert, and gold alloy backings with: short collimating lips and acrylic insert, no lips and silicone polymer insert, no lips and a thin acrylic layer, and individual collimating slots for each seed within the backing and no insert. Monte Carlo simulations are performed usingmore » the EGSnrc user-code BrachyDose for single and multiple seed configurations for the plaques in water and within an eye model (including nonwater media). Simulations under TG-43 assumptions are also performed, i.e., with the same seed configurations in water, neglecting interseed and plaque effects. Maximum and average doses to ocular structures as well as isodose contours are compared for simulations of each radionuclide within the plaque models. Results: The presence of the plaque affects the dose distribution substantially along the plaque axis for both single seed and multiseed simulations of each plaque design in water. Of all the plaque models, the COMS plaque generally has the largest effect on the dose distribution in water along the plaque axis. Differences between doses for single and multiple seed configurations vary between plaque models and radionuclides. Collimation is most substantial for the plaque with individual collimating slots. For plaques in the full eye model, average dose in the tumor region differs from those for the TG-43 simulations by up to 10% for{sup 125}I and {sup 131}Cs, and up to 17% for {sup 103}Pd, and in the lens region by up to 29% for {sup 125}I, 34% for {sup 103}Pd, and 28% for {sup 131}Cs. For the same prescription dose to the tumor apex, the lowest doses to critical ocular structures are generally delivered with plaques containing {sup 103}Pd seeds. Conclusions: The combined effects of ocular and plaque media on dose are significant and vary with plaque model and radionuclide, suggesting the importance of model-based dose calculations employing accurate ocular and plaque media and geometries for eye plaque brachytherapy.« less

  4. Matching of electron beams for conformal therapy of target volumes at moderate depths.

    PubMed

    Zackrisson, B; Karlsson, M

    1996-06-01

    The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.

  5. SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichay, T; Mayville, A

    2016-06-15

    Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less

  6. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    PubMed Central

    Hrycushko, Brian A.; Li, Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-01-01

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods:99mTc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, 186Re∕188Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy∕MBq (318.2 Gy∕mCi) and 5.7 Gy∕MBq (209.1 Gy∕mCi) could be delivered with this protocol of radiation delivery for 186Re∕188Re liposomes, respectively, and 37–92 MBq (1–2.5 mCi)∕g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating radionuclides with higher energy beta emissions, dose escalation through increased specific activity, and increasing the number of direct tumor infusion sites improve tumor control. For larger tumors, the use of multiple infusion locations was modeled to be much more efficient, in terms of activity usage, at improving EUD and TCP to achieve a tumoricidal effect. Conclusions: Direct intratumoral infusion of beta-emitting radionuclide encapsulated liposomes shows promise for cancer therapy by achieving large focally delivered tumor doses. However, the results of this work also indicate that average tumor dose may underestimate tumoricidal effect due to substantial heterogeneity in intratumoral liposomal radionuclide distributions. The resulting intratumoral distribution of liposomes following infusion should be taken into account in treatment planning and evaluation in a clinical setting for an optimal cancer therapy. PMID:21520844

  7. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycushko, Brian A.; Li Shihong; Goins, Beth

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts inmore » nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating radionuclides with higher energy beta emissions, dose escalation through increased specific activity, and increasing the number of direct tumor infusion sites improve tumor control. For larger tumors, the use of multiple infusion locations was modeled to be much more efficient, in terms of activity usage, at improving EUD and TCP to achieve a tumoricidal effect. Conclusions: Direct intratumoral infusion of beta-emitting radionuclide encapsulated liposomes shows promise for cancer therapy by achieving large focally delivered tumor doses. However, the results of this work also indicate that average tumor dose may underestimate tumoricidal effect due to substantial heterogeneity in intratumoral liposomal radionuclide distributions. The resulting intratumoral distribution of liposomes following infusion should be taken into account in treatment planning and evaluation in a clinical setting for an optimal cancer therapy.« less

  8. GEANT4 distributed computing for compact clusters

    NASA Astrophysics Data System (ADS)

    Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.

    2014-11-01

    A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakir, H.; Gaede, S.; Mulligan, M.

    Purpose: To design a versatile, nonhomogeneous insert for the dose verification phantom ArcCHECK{sup Trade-Mark-Sign} (Sun Nuclear Corp., FL) and to demonstrate its usefulness for the verification of dose distributions in inhomogeneous media. As an example, we demonstrate it can be used clinically for routine quality assurance of two volumetric modulated arc therapy (VMAT) systems for lung stereotactic body radiation therapy (SBRT): SmartArc{sup Registered-Sign} (Pinnacle{sup 3}, Philips Radiation Oncology Systems, Fitchburg, WI) and RapidArc{sup Registered-Sign} (Eclipse{sup Trade-Mark-Sign }, Varian Medical Systems, Palo Alto, CA). Methods: The cylindrical detector array ArcCHECK{sup Trade-Mark-Sign} has a retractable homogeneous acrylic insert. In this work, wemore » designed and manufactured a customized heterogeneous insert with densities that simulate soft tissue, lung, bone, and air. The insert offers several possible heterogeneity configurations and multiple locations for point dose measurements. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT were generated and copied to ArcCHECK{sup Trade-Mark-Sign} for each inhomogeneity configuration. Dose delivery was done on a Varian 2100 ix linac. The evaluation of dose distributions was based on gamma analysis of the diode measurements and point doses measurements at different positions near the inhomogeneities. Results: The insert was successfully manufactured and tested with different measurements of VMAT plans. Dose distributions measured with the homogeneous insert showed gamma passing rates similar to our clinical results ({approx}99%) for both treatment-planning systems. Using nonhomogeneous inserts decreased the passing rates by up to 3.6% in the examples studied. Overall, SmartArc{sup Registered-Sign} plans showed better gamma passing rates for nonhomogeneous measurements. The discrepancy between calculated and measured point doses was increased up to 6.5% for the nonhomogeneous insert depending on the inhomogeneity configuration and measurement location. SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans had similar plan quality but RapidArc{sup Registered-Sign} plans had significantly higher monitor units (up to 70%). Conclusions: A versatile, nonhomogeneous insert was developed for ArcCHECK{sup Trade-Mark-Sign} for an easy and quick evaluation of dose calculations with nonhomogeneous media and for comparison of different treatment planning systems. The device was tested for SmartArc{sup Registered-Sign} and RapidArc{sup Registered-Sign} plans for lung SBRT, showing the uncertainties of dose calculations with inhomogeneities. The new insert combines the convenience of the ArcCHECK{sup Trade-Mark-Sign} and the possibility of assessing dose distributions in inhomogeneous media.« less

  10. SU-E-T-67: A Quality Assurance Procedure for VMAT Delivery Technique with Multiple Verification Metric Using TG-119 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Kadoya, N; Shimizu, E

    2015-06-15

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator shapes. The purpose of this research is to construct routine QA protocol which focuses on VMAT delivery technique and to obtain a baseline including dose error, fluence distribution and mechanical accuracy during VMAT. Methods: The mock prostate, head and neck (HN) cases supplied from AAPM were used in this study. A VMAT plans were generated in Monaco TPS according to TG-119 protocol. Plans were created using 6 MV and 10 MV photon beams for each case. The phantom based measurement, fluence measurement andmore » log files analysis were performed. The dose measurement was performed using 0.6 cc ion chamber, which located at isocenter. The fluence distribution were acquired using the MapCHECK2 mounted in the MapPHAN. The trajectory log files recorded inner 20 leaf pairs and gantry angle positions at every 0.25 sec interval were exported to in-house software developed by MATLAB and determined those RMS values. Results: The dose difference is expressed as a ratio of the difference between measured and planned doses. The dose difference for 6 MV was 0.91%, for 10 MV was 0.67%. In turn, the fluence distribution using gamma criteria of 2%/2 mm with a 50% minimum dose threshold for 6 MV was 98.8%, for 10 MV was 97.5%, respectively. The RMS values of MLC for 6 MV and 10 MV were 0.32 mm and 0.37 mm, of gantry were 0.33 degree and 0.31 degree. Conclusion: In this study, QA protocol to assess VMAT delivery accuracy is constructed and results acquired in this study are used as a baseline of VMAT delivery performance verification.« less

  11. Results From the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator.

    PubMed

    Tran, Jonathan Q; Hartung, Jeffrey P; Peach, Robert J; Boehm, Marcus F; Rosen, Hugh; Smith, Heather; Brooks, Jennifer L; Timony, Gregg A; Olson, Allan D; Gujrathi, Sheila; Frohna, Paul A

    2017-08-01

    The sphingosine-1-phosphate 1 receptor (S1P 1R ) is expressed by lymphocytes, dendritic cells, and vascular endothelial cells and plays a role in the regulation of chronic inflammation and lymphocyte egress from peripheral lymphoid organs. Ozanimod is an oral selective modulator of S1P 1R and S1P 5R receptors in clinical development for the treatment of chronic immune-mediated, inflammatory diseases. This first-in-human study characterized the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of ozanimod in 88 healthy volunteers using a range of single and multiple doses (7 and 28 days) and a dose-escalation regimen. Ozanimod was generally well tolerated up to a maximum single dose of 3 mg and multiple doses of 2 mg/d, with no severe adverse events (AEs) and no dose-limiting toxicities. The most common ozanimod-related AEs included headache, somnolence, dizziness, nausea, and fatigue. Ozanimod exhibited linear PK, high steady-state volume of distribution (73-101 L/kg), moderate oral clearance (204-227 L/h), and an elimination half-life of approximately 17 to 21 hours. Ozanimod produced a robust dose-dependent reduction in total peripheral lymphocytes, with a median decrease of 65% to 68% observed after 28 days of dosing at 1 and 1.5 mg/d, respectively. Ozanimod selectivity affected lymphocyte subtypes, causing marked decreases in cells expressing CCR7 and variable decreases in subsets lacking CCR7. A dose-dependent negative chronotropic effect was observed following the first dose, with the dose-escalation regimen attenuating the first-dose negative chronotropic effect. Ozanimod safety, PK, and PD properties support the once-daily regimens under clinical investigation. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  12. A new treatment planning formalism for catheter-based beta sources used in intravascular brachytherapy.

    PubMed

    Patel, N S; Chiu-Tsao, S T; Tsao, H S; Harrison, L B

    2001-01-01

    Intravascular brachytherapy (IVBT) is an emerging modality for the treatment of atherosclerotic lesions in the artery. As part of the refinement in this rapidly evolving modality of treatment, the current simplistic dosimetry approach based on a fixed-point prescription must be challenged by future rigorous dosimetry method employing image-based three-dimensional (3D) treatment planning. The goals of 3D IVBT treatment planning calculations include (1) achieving high accuracy in a slim cylindrical region of interest, (2) accounting for the edge effect around the source ends, and (3) supporting multiple dwell positions. The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for gamma sources, as well as short beta sources with lengths less than twice the beta particle range. However, for the elongated beta sources and/or seed trains with lengths greater than twice the beta range, a new formalism is required to handle their distinctly different dose characteristics. Specifically, these characteristics consist of (a) flat isodose curves in the central region, (b) steep dose gradient at the source ends, and (c) exponential dose fall-off in the radial direction. In this paper, we present a novel formalism that evolved from TG-60 in maintaining the dose rate as a product of four key quantities. We propose to employ cylindrical coordinates (R, Z, phi), which are more natural and suitable to the slim cylindrical shape of the volume of interest, as opposed to the spherical coordinate system (r, theta, phi) used in the TG-60 formalism. The four quantities used in this formalism include (1) the distribution factor, H(R, Z), (2) the modulation function, M(R, Z), (3) the transverse dose function, h(R), and (4) the reference dose rate at 2 mm along the perpendicular bisector, D(R0=2 mm, Z0=0). The first three are counterparts of the geometry factor, the anisotropy function and the radial dose function in the TG-60 formalism, respectively. The reference dose rate is identical to that recommended by TG-60. The distribution factor is intended to resemble the dose profile due to the spatial distribution of activity in the elongated beta source, and it is a modified Fermi-Dirac function in mathematical form. The utility of this formalism also includes the slow-varying nature of the modulation function, allowing for more accurate treatment planning calculations based on interpolation. The transverse dose function describes the exponential fall-off of the dose in the radial direction, and an exponential or a polynomial can fit it. Simultaneously, the decoupling nature of these dose-related quantities facilitates image-based 3D treatment planning calculations for long beta sources used in IVBT. The new formalism also supports the dosimetry involving multiple dwell positions required for lesions longer than the source length. An example of the utilization of this formalism is illustrated for a 90Y coil source in a carbon dioxide-filled balloon. The pertinent dosimetric parameters were generated and tabulated for future use.

  13. Analysis of Mass Averaged Tissue Doses in CAM, CAF, MAX, and FAX

    NASA Technical Reports Server (NTRS)

    Slaba, Tony C.; Qualls, Garry D.; Clowdsley, Martha S.; Blattnig, Steve R.; Simonsen, Lisa C.; Walker, Steven A.; Singleterry, Robert C.

    2009-01-01

    To estimate astronaut health risk due to space radiation, one must have the ability to calculate exposure-related quantities averaged over specific organs and tissue types. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various tissues to the reference values specified by the International Commission on Radiological Protection (ICRP). Major discrepancies are found between the CAM and CAF tissue masses and the ICRP reference data for almost all of the tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN to compute mass averaged exposure quantities. A numerical algorithm is used to generate multiple point distributions for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses.

  14. Clinical Pharmacokinetics and Pharmacodynamics of Febuxostat.

    PubMed

    Kamel, Bishoy; Graham, Garry G; Williams, Kenneth M; Pile, Kevin D; Day, Richard O

    2017-05-01

    Febuxostat is a xanthine oxidoreductase inhibitor that has been developed to treat chronic gout. In healthy subjects, the pharmacokinetic parameters of febuxostat after multiple oral dose administration include an oral availability of about 85 %, an apparent oral clearance (CL/F) of 10.5 ± 3.4 L/h and an apparent volume of distribution at steady state (V ss /F) of 48 ± 23 L. The time course of plasma concentrations follows a two-compartment model. The initial half-life (t ½ ) is approximately 2 h and the terminal t ½ determined at daily doses of 40 mg or more is 9.4 ± 4.9 h. Febuxostat is administered once daily. The maximum (peak) plasma concentrations are approximately 100-fold greater than the trough concentrations. Consequently, there is no significant accumulation of the drug during multiple dose administration. There are few data on the pharmacokinetics of febuxostat in patients with gout. While the pharmacokinetic parameters are not affected by mild to moderate hepatic impairment, there is no consensus on whether renal impairment has any effect on the pharmacokinetics of febuxostat. Febuxostat is extensively metabolised by oxidation (approximately 35 %) and acyl glucuronidation (up to 40 %); febuxostat acyl glucuronides are cleared by the kidney. In healthy subjects treated with multiple doses of febuxostat 10-240 mg, the concentrations of serum urate are reduced by a maximum of about 80 %. The percentage reduction in the concentrations of serum urate is slightly less in gouty patients than in healthy subjects.

  15. Predictions of Leukemia Risks to Astronauts from Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Atwell, W.; Kim, M. Y.; George, K. A.; Ponomarev, A.; Nikjoo, H.; Wilson, J. W.

    2006-01-01

    Leukemias consisting of acute and chronic myeloid leukemia and acute lymphatic lymphomas represent the earliest cancers that appear after radiation exposure, have a high lethality fraction, and make up a significant fraction of the overall fatal cancer risk from radiation for adults. Several considerations impact the recommendation of a preferred model for the estimation of leukemia risks from solar particle events (SPE's): The BEIR VII report recommends several changes to the method of calculation of leukemia risk compared to the methods recommended by the NCRP Report No. 132 including the preference of a mixture model with additive and multiplicative components in BEIR VII compared to the additive transfer model recommended by NCRP Report No. 132. Proton fluences and doses vary considerably across marrow regions because of the characteristic spectra of primary solar protons making the use of an average dose suspect. Previous estimates of bone marrow doses from SPE's have used an average body-shielding distribution for marrow based on the computerized anatomical man model (CAM). We have developed an 82-point body-shielding distribution that faithfully reproduces the mean and variance of SPE doses in the active marrow regions (head and neck, chest, abdomen, pelvis and thighs) allowing for more accurate estimation of linear- and quadratic-dose components of the marrow response. SPE's have differential dose-rates and a pseudo-quadratic dose response term is possible in the peak-flux period of an event. Also, the mechanistic basis for leukemia risk continues to improve allowing for improved strategies in choosing dose-rate modulation factors and radiation quality descriptors. We make comparisons of the various choices of the components in leukemia risk estimates in formulating our preferred model. A major finding is that leukemia could be the dominant risk to astronauts for a major solar particle event.

  16. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  17. Reliability of dose volume constraint inference from clinical data.

    PubMed

    Lutz, C M; Møller, D S; Hoffmann, L; Knap, M M; Alber, M

    2017-04-21

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an 'ideal' cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a 'non-ideal' cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >[Formula: see text] were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  18. Reliability of dose volume constraint inference from clinical data

    NASA Astrophysics Data System (ADS)

    Lutz, C. M.; Møller, D. S.; Hoffmann, L.; Knap, M. M.; Alber, M.

    2017-04-01

    Dose volume histogram points (DVHPs) frequently serve as dose constraints in radiotherapy treatment planning. An experiment was designed to investigate the reliability of DVHP inference from clinical data for multiple cohort sizes and complication incidence rates. The experimental background was radiation pneumonitis in non-small cell lung cancer and the DVHP inference method was based on logistic regression. From 102 NSCLC real-life dose distributions and a postulated DVHP model, an ‘ideal’ cohort was generated where the most predictive model was equal to the postulated model. A bootstrap and a Cohort Replication Monte Carlo (CoRepMC) approach were applied to create 1000 equally sized populations each. The cohorts were then analyzed to establish inference frequency distributions. This was applied to nine scenarios for cohort sizes of 102 (1), 500 (2) to 2000 (3) patients (by sampling with replacement) and three postulated DVHP models. The Bootstrap was repeated for a ‘non-ideal’ cohort, where the most predictive model did not coincide with the postulated model. The Bootstrap produced chaotic results for all models of cohort size 1 for both the ideal and non-ideal cohorts. For cohort size 2 and 3, the distributions for all populations were more concentrated around the postulated DVHP. For the CoRepMC, the inference frequency increased with cohort size and incidence rate. Correct inference rates  >85 % were only achieved by cohorts with more than 500 patients. Both Bootstrap and CoRepMC indicate that inference of the correct or approximate DVHP for typical cohort sizes is highly uncertain. CoRepMC results were less spurious than Bootstrap results, demonstrating the large influence that randomness in dose-response has on the statistical analysis.

  19. Intermittent Drug Dosing Intervals Guided by the Operational Multiple Dosing Half Lives for Predictable Plasma Accumulation and Fluctuation

    PubMed Central

    Grover, Anita; Benet, Leslie Z.

    2013-01-01

    Intermittent drug dosing intervals are usually initially guided by the terminal pharmacokinetic half life and are dependent on drug formulation. For chronic multiple dosing and for extended release dosage forms, the terminal half life often does not predict the plasma drug accumulation or fluctuation observed. We define and advance applications for the operational multiple dosing half lives for drug accumulation and fluctuation after multiple oral dosing at steady-state. Using Monte Carlo simulation, our results predict a way to maximize the operational multiple dosing half lives relative to the terminal half life by using a first-order absorption rate constant close to the terminal elimination rate constant in the design of extended release dosage forms. In this way, drugs that may be eliminated early in the development pipeline due to a relatively short half life can be formulated to be dosed at intervals three times the terminal half life, maximizing compliance, while maintaining tight plasma concentration accumulation and fluctuation ranges. We also present situations in which the operational multiple dosing half lives will be especially relevant in the determination of dosing intervals, including for drugs that follow a direct PKPD model and have a narrow therapeutic index, as the rate of concentration decrease after chronic multiple dosing (that is not the terminal half life) can be determined via simulation. These principles are illustrated with case studies on valproic acid, diazepam, and anti-hypertensives. PMID:21499748

  20. BMDExpress Data Viewer: A Visualization Tool to Analyze ...

    EPA Pesticide Factsheets

    Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure in human risk assessments. BMDExpress applies BMD modeling to transcriptomics datasets and groups genes to biological processes and pathways for rapid assessment of doses at which biological perturbations occur. However, graphing and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-based application, BMDExpress Data Viewer, for visualization and graphical analyses of BMDExpress output files. The software application consists of two main components: ‘Summary Visualization Tools’ and ‘Dataset Exploratory Tools’. We demonstrate through two case studies that the ‘Summary Visualization Tools’ can be used to examine and assess the distributions of probe and pathway BMD outputs, as well as derive a potential regulatory BMD through the modes or means of the distributions. The ‘Functional Enrichment Analysis’ tool presents biological processes in a two-dimensional bubble chart view. By applying filters of pathway enrichment p-value and minimum number of significant genes, we showed that the Functional Enrichment Analysis tool can be applied to select pathways that are potentially sensitive to chemical perturbations. The ‘Multiple Dataset Comparison’ tool enables comparison of BMDs across multiple experiments (e.g., across time points, tissues, or organisms, etc.). The ‘BMDL-BM

  1. Equalizing access to pandemic influenza vaccines through optimal allocation to public health distribution points.

    PubMed

    Huang, Hsin-Chan; Singh, Bismark; Morton, David P; Johnson, Gregory P; Clements, Bruce; Meyers, Lauren Ancel

    2017-01-01

    Vaccines are arguably the most important means of pandemic influenza mitigation. However, as during the 2009 H1N1 pandemic, mass immunization with an effective vaccine may not begin until a pandemic is well underway. In the U.S., state-level public health agencies are responsible for quickly and fairly allocating vaccines as they become available to populations prioritized to receive vaccines. Allocation decisions can be ethically and logistically complex, given several vaccine types in limited and uncertain supply and given competing priority groups with distinct risk profiles and vaccine acceptabilities. We introduce a model for optimizing statewide allocation of multiple vaccine types to multiple priority groups, maximizing equal access. We assume a large fraction of available vaccines are distributed to healthcare providers based on their requests, and then optimize county-level allocation of the remaining doses to achieve equity. We have applied the model to the state of Texas, and incorporated it in a Web-based decision-support tool for the Texas Department of State Health Services (DSHS). Based on vaccine quantities delivered to registered healthcare providers in response to their requests during the 2009 H1N1 pandemic, we find that a relatively small cache of discretionary doses (DSHS reserved 6.8% in 2009) suffices to achieve equity across all counties in Texas.

  2. Development of a scintillating G-GEM detector for a 6-MeV X-band Linac for medical applications

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Tanaka, S.; Mitsuya, Y.; Takahashi, H.; Tagi, K.; Kusano, J.; Tanabe, E.; Yamamoto, M.; Nakamura, N.; Dobashi, K.; Tomita, H.; Uesaka, M.

    2013-12-01

    We recently developed glass gas electron multipliers (G-GEMs) with an entirely new process using photo-etchable glass. The photo-etchable glass used for the substrate is called PEG3 (Hoya Corporation). Taking advantage of low outgassing material, we have envisioned a medical application of G-GEMs. A two-dimensional position-sensitive dosimetry system based on a scintillating gas detector is being developed for real-time dose distribution monitoring in X-ray radiation therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside of which G-GEM structures are mounted. Photons produced by the excited Ar/CF4 gas molecules during the gas multiplication in the GEM holes are detected by a mirror-lens-CCD-camera system. We found that the intensity distribution of the measured light spot is proportional to the 2D dose distribution. In this work, we report on the first results from a scintillating G-GEM detector for a position-sensitive X-ray beam dosimeter.

  3. SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branco, D; Taylor, P; Frank, S

    2016-06-15

    Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsulesmore » were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.« less

  4. WE-F-16A-03: 3D Printer Application in Proton Therapy: A Novel Method to Deliver Passive-Scattering Proton Beams with a Fixed Range and Modulation for SRS and SRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, X; Witztum, A; Liang, X

    2014-06-15

    Purpose: To present a novel technique to deliver passive-scattering proton beam with fixed range and modulation using a 3D printed patient-specific bolus for proton stereotactic radiosurgery and radiotherapy. Methods: A CIRS head phantom was used to simulate a patient with a small brain lesion. A custom bolus was created in the Eclipse Treatment Planning System (TPS) to compensate for the different water equivalent depths from the patient surface to the target from multiple beam directions. To simulate arc therapy, a plan was created on the initial CT using three passive-scattering proton beams with a fixed range and modulations irradiating frommore » different angles. The DICOM-RT structure file of the bolus was exported from the TPS and converted to STL format for 3D printing. The phantom was rescanned with the printed custom bolus and head cup to verify the dose distribution comparing to the initial plan. EBT3 films were placed in the sagital plane of the target to verify the delivered dose distribution. The relative stopping power of the printing material(ABSplus-P430) was measured using the Zebra multi-plate ion chamber. Results: The relative stopping power of the 3D printing material, ABSplus-P430 was 1.05 which is almost water equivalent. The dose difference between verification CT and Initial CT is almost negligible. Film measurement also confirmed the accuracy for this new proton delivery technique. Conclusion: Our method using 3D printed range modifiers simplify the treatment delivery of multiple passive-scattering beams in treatment of small lesion in brain. This technique makes delivery of multiple beam more efficient and can be extended to allow arc therapy with proton beams. The ability to create and construct complex patient specific bolus structures provides a new dimension in creating optimized quality treatment plans not only for proton therapy but also for electron and photon therapy.« less

  5. SU-E-T-551: PTV Is the Worst-Case of CTV in Photon Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, D; Liu, W; Park, P

    2014-06-01

    Purpose: To examine the supposition of the static dose cloud and adequacy of the planning target volume (PTV) dose distribution as the worst-case representation of clinical target volume (CTV) dose distribution for photon therapy in head and neck (H and N) plans. Methods: Five diverse H and N plans clinically delivered at our institution were selected. Isocenter for each plan was shifted positively and negatively in the three cardinal directions by a displacement equal to the PTV expansion on the CTV (3 mm) for a total of six shifted plans per original plan. The perturbed plan dose was recalculated inmore » Eclipse (AAA v11.0.30) using the same, fixed fluence map as the original plan. The dose distributions for all plans were exported from the treatment planning system to determine the worst-case CTV dose distributions for each nominal plan. Two worst-case distributions, cold and hot, were defined by selecting the minimum or maximum dose per voxel from all the perturbed plans. The resulting dose volume histograms (DVH) were examined to evaluate the worst-case CTV and nominal PTV dose distributions. Results: Inspection demonstrates that the CTV DVH in the nominal dose distribution is indeed bounded by the CTV DVHs in the worst-case dose distributions. Furthermore, comparison of the D95% for the worst-case (cold) CTV and nominal PTV distributions by Pearson's chi-square test shows excellent agreement for all plans. Conclusion: The assumption that the nominal dose distribution for PTV represents the worst-case dose distribution for CTV appears valid for the five plans under examination. Although the worst-case dose distributions are unphysical since the dose per voxel is chosen independently, the cold worst-case distribution serves as a lower bound for the worst-case possible CTV coverage. Minor discrepancies between the nominal PTV dose distribution and worst-case CTV dose distribution are expected since the dose cloud is not strictly static. This research was supported by the NCI through grant K25CA168984, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, and by the Fraternal Order of Eagles Cancer Research Fund, the Career Development Award Program at Mayo Clinic.« less

  6. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-03-04

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.

  7. [Continuous insulin therapy versus multiple insulin injections in the management of type 1 diabetes: a longitutinal study].

    PubMed

    Ribeiro, Maria Estela Bellini; Del Roio Liberatore Junior, Raphael; Custodio, Rodrigo; Martinelli Junior, Carlos Eduardo

    2016-01-01

    To compare multiple doses of insulin and continuous insulin infusion therapy as treatment for type 1 diabetes melito. 40 patients with type 1 diabetes melito (21 female) with ages between 10 and 20 years (mean=14.2) and mean duration of diabetes of 7 years used multiple doses of insulin for at least 6 months and after that, continuous insulin infusion therapy for at least 6 months. Each one of the patients has used multiple doses of insulin and continuous insulin infusion therapy. For analysis of HbA1c, mean glycated hemoglobin levels (mHbA1c) were obtained during each treatment period (multiple doses of insulin and continuous insulin infusion therapy period). Although mHbA1c levels were lower during continuous insulin infusion therapy the difference was not statistically significant. During multiple doses of insulin, 14.2% had mHbA1c values below 7.5% vs. 35.71% while on continuous insulin infusion therapy; demonstrating better glycemic control with the use of continuous insulin infusion therapy. During multiple doses of insulin, 15-40 patients have severe hypoglycemic events versus 5-40 continuous insulin infusion therapy. No episodes of ketoacidosis events were recorded. This is the first study with this design comparing multiple doses of insulin and continuous insulin infusion therapy in Brazil showing no significant difference in HbA1c; hypoglycemic events were less frequent during continuous insulin infusion therapy than during multiple doses of insulin and the percentage of patients who achieved a HbA1c less than 7.5% was greater during continuous insulin infusion therapy than multiple doses of insulin therapy. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  8. MO-G-201-04: Knowledge-Based Planning for Single-Isocenter Stereotactic Radiosurgery to Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemer, B; Shiraishi, S; Hattangadi-Gluth, J

    Purpose: Single-isocenter, linac-based SRS for multiple brain metastases (multi-mets) can deliver highly conformal radiation doses and reduce overall patient treatment time compared to other therapy techniques. This study aims to quantify the dosimetric benefits of knowledge-based planning (KBP) for multi-met treatments. Methods: Using a previously-published KBP methodology (an artificial neural network (ANN) trained on single-target linac-based SRS plans), 3D dose distribution predictions for multi-met patients were obtained by treating each brain lesion as a solitary target and subsequently combining individual predictions into a single distribution using a dose-weighted geometric averaging to obtain the best results in the inter-target space. 17more » previously-treated multi-met plans, with target numbers ranging from N=2–5, were used to validate the ANN predictions and subsequent KBP auto-planning routine. The fully-deliverable KBP plans were developed by converting dose distribution predictions into patient-specific optimization objectives while maintaining identical target normalizations (typically PTV V100%=D98%). Plan quality improvements were quantified by the difference between SRS quality metrics (QMs): δdQM=QM(clinical)-QM(KBP). QMs of interest were: gradient measure (GM), conformity index (CI), brain V10 and V5, brainstem D0.1cc and heterogeneity index (HI). Finally, overall plan quality was judged via blinded plan comparison by SRS-specializing physicians. Results: Two clinical plans were found to be significant outliers wherein plan quality was dramatically worse than KBP. Despite indicating KBP superiority, these were removed from the QM analysis to prevent skewing the results. In the remaining cases, clinical and KBP QMs were nearly identical with modest improvements in the KBP sample: δGM=0.12±0.56mm, δCI=−0.01±0.04, Brain δV10=0.8±2.6cc, brain δV5=6.3 ±10.7cc, brainstem δD0.1cc=0.06±1.19Gy and δHI= −0.04±0.05. Ultimately, 13/17 KBP plans were deemed superior to the manual plans in blinded physician review. Conclusion: The results demonstrate that KBP-driven automated planning in linac-based single-isocenter treatments for multiple brain metastases is indistinguishable from, or even better than, traditional manual planning. J. Hattangadi: Research Grant; Varian Medical Systems; K.L. Moore: Research Grant: Varian Medical Systems.« less

  9. SU-F-J-133: Adaptive Radiation Therapy with a Four-Dimensional Dose Calculation Algorithm That Optimizes Dose Distribution Considering Breathing Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Algan, O; Ahmad, S

    Purpose: To model patient motion and produce four-dimensional (4D) optimized dose distributions that consider motion-artifacts in the dose calculation during the treatment planning process. Methods: An algorithm for dose calculation is developed where patient motion is considered in dose calculation at the stage of the treatment planning. First, optimal dose distributions are calculated for the stationary target volume where the dose distributions are optimized considering intensity-modulated radiation therapy (IMRT). Second, a convolution-kernel is produced from the best-fitting curve which matches the motion trajectory of the patient. Third, the motion kernel is deconvolved with the initial dose distribution optimized for themore » stationary target to produce a dose distribution that is optimized in four-dimensions. This algorithm is tested with measured doses using a mobile phantom that moves with controlled motion patterns. Results: A motion-optimized dose distribution is obtained from the initial dose distribution of the stationary target by deconvolution with the motion-kernel of the mobile target. This motion-optimized dose distribution is equivalent to that optimized for the stationary target using IMRT. The motion-optimized and measured dose distributions are tested with the gamma index with a passing rate of >95% considering 3% dose-difference and 3mm distance-to-agreement. If the dose delivery per beam takes place over several respiratory cycles, then the spread-out of the dose distributions is only dependent on the motion amplitude and not affected by motion frequency and phase. This algorithm is limited to motion amplitudes that are smaller than the length of the target along the direction of motion. Conclusion: An algorithm is developed to optimize dose in 4D. Besides IMRT that provides optimal dose coverage for a stationary target, it extends dose optimization to 4D considering target motion. This algorithm provides alternative to motion management techniques such as beam-gating or breath-holding and has potential applications in adaptive radiation therapy.« less

  10. Pharmacokinetic Study of Intravenous Acetaminophen Administered to Critically Ill Multiple-Trauma Patients at the Usual Dosage and a New Proposal for Administration.

    PubMed

    Fuster-Lluch, Oscar; Zapater-Hernández, Pedro; Gerónimo-Pardo, Manuel

    2017-10-01

    The pharmacokinetic profile of intravenous acetaminophen administered to critically ill multiple-trauma patients was studied after 4 consecutive doses of 1 g every 6 hours. Eleven blood samples were taken (predose and 15, 30, 45, 60, 90, 120, 180, 240, 300, and 360 minutes postdose), and urine was collected (during 6-hour intervals between doses) to determine serum and urine acetaminophen concentrations. These were used to calculate the following pharmacokinetic parameters: maximum and minimum concentrations, terminal half-life, area under serum concentration-time curve from 0 to 6 hours, mean residence time, volume of distribution, and serum and renal clearance of acetaminophen. Daily doses of acetaminophen required to obtain steady-state minimum (bolus dosing) and average plasma concentrations (continuous infusion) of 10 μg/mL were calculated (10 μg/mL is the presumed lower limit of the analgesic range). Data are expressed as median [interquartile range]. Twenty-two patients were studied, mostly young (age 44 [34-64] years) males (68%), not obese (weight 78 [70-84] kg). Acetaminophen concentrations and pharmacokinetic parameters were these: maximum concentration 33.6 [25.7-38.7] μg/mL and minimum concentration 0.5 [0.2-2.3] μg/mL, all values below 10 μg/mL and 8 below the detection limit; half-life 1.2 [1.0-1.9] hours; area under the curve for 6 hours 34.7 [29.7-52.7] μg·h/mL; mean residence time 1.8 [1.3-2.6] hours; steady-state volume of distribution 50.8 [42.5-66.5] L; and serum and renal clearance 28.8 [18.9-33.7] L/h and 15 [11-19] mL/min, respectively. Theoretically, daily doses for a steady-state minimum concentration of 10 μg/mL would be 12.2 [7.8-16.4] g/day (166 [112-202] mg/[kg·day]); for an average steady-state concentration of 10 μg/mL, they would be 6.9 [4.5-8.1] g/day (91 [59-111] mg/[kg·day]). In conclusion, administration of acetaminophen at the recommended dosage of 1 g per 6 hours to critically ill multiple-trauma patients yields serum concentrations below 10 μg/mL due to increased elimination. To reach the 10 μg/mL target, and from a strictly pharmacokinetic point of view, continuous infusion may be more feasible than bolus dosing. Such a change in dosing strategy requires appropriate, pharmacokinetic-pharmacodynamic and specific safety study. © 2017, The American College of Clinical Pharmacology.

  11. Influence of Al³⁺ addition on the flocculation and sedimentation of activated sludge: comparison of single and multiple dosing patterns.

    PubMed

    Wen, Yue; Zheng, Wanlin; Yang, Yundi; Cao, Asheng; Zhou, Qi

    2015-05-15

    In this study, the flocculation and sedimentation performance of activated sludge (AS) with single and multiple dosing of trivalent aluminum (Al(3+)) were studied. The AS samples were cultivated in sequencing batch reactors at 22 °C. The dosages of Al(3+) were 0.00, 0.125, 0.5, 1.0, and 1.5 meq/L for single dosing, and 0.1 meq/L for multiple dosing. Under single dosing conditions, as Al(3+) dosage increased, the zeta potential, total interaction energy, and effluent turbidity decreased, whereas the sludge volume index (SVI) increased, indicating that single Al(3+) dosing could enhance sludge flocculation, but deteriorate sedimentation. By comparison, adding an equal amount of Al(3+) through multiple dosing achieved a similar reduction in turbidity, but the zeta potential was higher, while the loosely bound extracellular polymeric substances (LB-EPS) content and SVI remarkably declined. Although the difference in the flocculation performances between the two dosing patterns was not significant, the underlying mechanisms were quite distinct: the interaction energy played a more important role under single dosing conditions, whereas multiple dosing was more effective in reducing the EPS content. Multiple dosing, which allows sufficient time for sludge restructuring and floc aggregation, could simultaneously optimize sludge flocculation and sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.

    2004-01-01

    The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.

  13. The dose response relation for rat spinal cord paralysis analyzed in terms of the effective size of the functional subunit

    NASA Astrophysics Data System (ADS)

    Adamus-Górka, Magdalena; Mavroidis, Panayiotis; Brahme, Anders; Lind, Bengt K.

    2008-11-01

    Radiobiological models for estimating normal tissue complication probability (NTCP) are increasingly used in order to quantify or optimize the clinical outcome of radiation therapy. A good NTCP model should fulfill at least the following two requirements: (a) it should predict the sigmoid shape of the corresponding dose-response curve and (b) it should accurately describe the probability of a specified response for arbitrary non-uniform dose delivery for a given endpoint as accurately as possible, i.e. predict the volume dependence. In recent studies of the volume effect of a rat spinal cord after irradiation with narrow and broad proton beams the authors claim that none of the existing NTCP models is able to describe their results. Published experimental data have been used here to try to quantify the change in the effective dose (D50) causing 50% response for different field sizes. The present study was initiated to describe the induction of white matter necrosis in a rat spinal cord after irradiation with narrow proton beams in terms of the mean dose to the effective volume of the functional subunit (FSU). The physically delivered dose distribution was convolved with a function describing the effective size or, more accurately, the sensitivity distribution of the FSU to obtain the effective mean dose deposited in it. This procedure allows the determination of the mean D50 value of the FSUs of a certain size which is of interest for example if the cell nucleus of the oligodendrocyte is the sensitive target. Using the least-squares method to compare the effective doses for different sizes of the functional subunits with the experimental data the best fit was obtained with a length of about 9 mm. For the non-uniform dose distributions an effective FSU length of 8 mm gave the optimal fit with the probit dose-response model. The method could also be used to interpret the so-called bath and shower experiments where the heterogeneous dose delivery was used in the convolution process. The assumption of an effective FSU size is consistent with most of the effects seen when different portions of the rat spinal cord are irradiated to different doses. The effective FSU length from these experiments is about 8.5 ± 0.5 mm. This length could be interpreted as an effective size of the functional subunits in a rat spinal cord, where multiple myelin sheaths are connected by a single oligodendrocyte and repair is limited by the range of oligodendrocyte progenitor cell diffusion. It was even possible to suggest a more likely than uniform effective FSU sensitivity distribution from the experimental data.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulff, J; Huggins, A

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less

  15. Safety, Tolerability, and Pharmacokinetic Properties of Intravenous Delafloxacin After Single and Multiple Doses in Healthy Volunteers.

    PubMed

    Hoover, Randall; Hunt, Thomas; Benedict, Michael; Paulson, Susan K; Lawrence, Laura; Cammarata, Sue; Sun, Eugene

    2016-01-01

    The objective of this report was to determine the pharmacokinetic properties, safety, and tolerability of single and multiple doses of intravenous delafloxacin. In addition, the absolute bioavailability (BA) of the 450-mg tablet formulation of delafloxacin was determined. Three clinical trials are summarized. The first study was a randomized, double-blind, placebo-controlled, single- (300, 450, 600, 750, 900, and 1200 mg) ascending-dose study of IV delafloxacin in 62 (52 active, 10 placebo) healthy volunteers. The second study was a randomized, double-blind, placebo-controlled study of IV delafloxacin (300 mg) given as a single dose on day 1, followed by twice-daily dosing on days 2 through 14; 12 (8 active, 4 placebo) healthy volunteers were enrolled. The third study was an open-label, randomized, 2-period, 2-sequence crossover study in which 56 healthy volunteers were randomly assigned to 1 of 2 sequences of a single oral dose of delafloxacin (450-mg tablet) or IV delafloxacin (300 mg). Serial blood samples were collected, and plasma pharmacokinetic parameters of delafloxacin were calculated. Delafloxacin Cmax values increased proportionally with increasing single IV dose for the dose range of 300 to 1200 mg, whereas the AUC values increased more than proportionally to dose for the same dose range. The mean terminal half-life of delafloxacin was approximately 12 hours (ranging from 8 to 17 hours). The volume of distribution (Vd) at steady state was approximately 35 L, which is similar to the volume of total body water. There was minimal accumulation of delafloxacin after twice-daily IV administration of 300 mg with an accumulation ratio of 1.09. The delafloxacin total exposure after a single 1-hour IV infusion of 300 mg and a single oral dose of a 450-mg tablet were equivalent with geometric least square mean ratio (90% CI) of 0.8768 (0.8356-0.9200) for AUC0-∞ and 0.8445 (0.8090-0.8815) for AUC0-t, respectively. The Cmax values of delafloxacin were not equivalent for the 2 formulations with a ratio (90% CI) of 0.5516 (0.5150-0.5908), respectively. The mean absolute bioavailability of delafloxacin was 58.8%. Delafloxacin was well tolerated in healthy volunteers after single and multiple IV doses. The total systemic exposure to IV (300 mg) and oral (450 mg) delafloxacin is comparable, supporting that a switch between the 2 formulations is appropriate. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Field-size dependence of doses of therapeutic carbon beams.

    PubMed

    Kusano, Yohsuke; Kanai, Tatsuaki; Yonai, Shunsuke; Komori, Masataka; Ikeda, Noritoshi; Tachikawa, Yuji; Ito, Atsushi; Uchida, Hirohisa

    2007-10-01

    To estimate the physical dose at the center of spread-out Bragg peaks (SOBP) for various conditions of the irradiation system, a semiempirical approach was applied. The dose at the center of the SOBP depends on the field size because of large-angle scattering particles in the water phantom. For a small field of 5 x 5 cm2, the dose was reduced to 99.2%, 97.5%, and 96.5% of the dose used for the open field in the case of 290, 350, and 400 MeV/n carbon beams, respectively. Based on the three-Gaussian form of the lateral dose distributions of the carbon pencil beam, which has previously been shown to be effective for describing scattered carbon beams, we reconstructed the dose distributions of the SOBP beam. The reconstructed lateral dose distribution reproduced the measured lateral dose distributions very well. The field-size dependencies calculated using the reconstructed lateral dose distribution of the therapeutic carbon beam agreed with the measured dose dependency very well. The reconstructed beam was also used for irregularly shaped fields. The resultant dose distribution agreed with the measured dose distribution. The reconstructed beams were found to be applicable to the treatment-planning system.

  17. Multidimensional dosimetry of {sup 106}Ru eye plaques using EBT3 films and its impact on treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilemann, G., E-mail: gerd.heilemann@meduniwien.ac.at; Kostiukhina, N.; Nesvacil, N.

    2015-10-15

    Purpose: The purpose of this study was to establish a method to perform multidimensional radiochromic film measurements of {sup 106}Ru plaques and to benchmark the resulting dose distributions against Monte Carlo simulations (MC), microdiamond, and diode measurements. Methods: Absolute dose rates and relative dose distributions in multiple planes were determined for three different plaque models (CCB, CCA, and COB), and three different plaques per model, using EBT3 films in an in-house developed polystyrene phantom and the MCNP6 MC code. Dose difference maps were generated to analyze interplaque variations for a specific type, and for comparing measurements against MC simulations. Furthermore,more » dose distributions were validated against values specified by the manufacturer (BEBIG) and microdiamond and diode measurements in a water scanning phantom. Radial profiles were assessed and used to estimate dosimetric margins for a given combination of representative tumor geometry and plaque size. Results: Absolute dose rates at a reference depth of 2 mm on the central axis of the plaque show an agreement better than 5% (10%) when comparing film measurements (MCNP6) to the manufacturer’s data. The reproducibility of depth-dose profile measurements was <7% (2 SD) for all investigated detectors and plaque types. Dose difference maps revealed minor interplaque deviations for a specific plaque type due to inhomogeneities of the active layer. The evaluation of dosimetric margins showed that for a majority of the investigated cases, the tumor was not completely covered by the 100% isodose prescribed to the tumor apex if the difference between geometrical plaque size and tumor base ≤4 mm. Conclusions: EBT3 film dosimetry in an in-house developed phantom was successfully used to characterize the dosimetric properties of different {sup 106}Ru plaque models. The film measurements were validated against MC calculations and other experimental methods and showed a good agreement with data from BEBIG well within published tolerances. The dosimetric information as well as interplaque comparison can be used for comprehensive quality assurance and for considerations in the treatment planning of ophthalmic brachytherapy.« less

  18. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  19. Grenz ray-induced nonmelanoma skin cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frentz, G.

    1989-09-01

    In 28 patients, nonmelanoma skin cancers developed in areas previously exposed to grenz rays. In 17 patients who did not have psoriasis, no other relevant carcinogenic exposure could be incriminated. Women were more often affected than men. Most of the tumors were basal cell cancers, and most of the patients had multiple tumors. No threshold dose could be established. The distribution of the latency time among patients without psoriasis was strictly normal (median 18 years). These observations suggest that usual therapeutic doses of grenz rays, as a single agent, are capable of causing skin cancer, but only in those personsmore » who are abnormally sensitive to x-rays. 9 references.« less

  20. MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP).

    PubMed

    Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian

    2015-01-01

    Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose.

  1. MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP)

    PubMed Central

    Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian

    2015-01-01

    Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose. PMID:26633302

  2. Population Pharmacokinetic Model-Based Evaluation of Standard Dosing Regimens for Cefuroxime Used in Coronary Artery Bypass Graft Surgery with Cardiopulmonary Bypass.

    PubMed

    Alqahtani, Saeed A; Alsultan, Abdullah S; Alqattan, Hussain M; Eldemerdash, Ahmed; Albacker, Turki B

    2018-04-01

    The purpose of this study was to investigate the population pharmacokinetics (PK) of cefuroxime in patients undergoing coronary artery bypass graft (CABG) surgery. In this observational pharmacokinetic study, multiple blood samples were collected over a 48-h interval of intravenous cefuroxime administration. The samples were analyzed by using a validated high-performance liquid chromatography (HPLC) method. Population pharmacokinetic models were developed using Monolix (version 4.4) software. Pharmacokinetic-pharmacodynamic (PD) simulations were performed to explore the ability of different dosage regimens to achieve the pharmacodynamic targets. A total of 468 blood samples from 78 patients were analyzed. The PK for cefuroxime were best described by a two-compartment model with between-subject variability on clearance, the volume of distribution of the central compartment, and the volume of distribution of the peripheral compartment. The clearance of cefuroxime was related to creatinine clearance (CL CR ). Dosing simulations showed that standard dosing regimens of 1.5 g could achieve the PK-PD target of the percentage of the time that the free concentration is maintained above the MIC during a dosing interval ( fT MIC ) of 65% for an MIC of 8 mg/liter in patients with a CL CR of 30, 60, or 90 ml/min, whereas this dosing regimen failed to achieve the PK-PD target in patients with a CL CR of ≥125 ml/min. In conclusion, administration of standard doses of 1.5 g three times daily provided adequate antibiotic prophylaxis in patients undergoing CABG surgery. Lower doses failed to achieve the PK-PD target. Patients with high CL CR values required either higher doses or shorter intervals of cefuroxime dosing. On the other hand, lower doses (1 g three times daily) produced adequate target attainment for patients with low CL CR values (≤30 ml/min). Copyright © 2018 American Society for Microbiology.

  3. SU-G-TeP4-04: An Automated Monte Carlo Based QA Framework for Pencil Beam Scanning Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J; Jee, K; Clasie, B

    2016-06-15

    Purpose: Prior to treating new PBS field, multiple (three) patient-field-specific QA measurements are performed: two 2D dose distributions at shallow depth (M1) and at the tumor depth (M2) with treatment hardware at zero gantry angle; one 2D dose distribution at iso-center (M3) without patient specific devices at the planned gantry angle. This patient-specific QA could be simplified by the use of MC model. The results of MC model commissioning for a spot-scanning system and the fully automated TOPAS/MC-based QA framework will be presented. Methods: We have developed in-house MC interface to access a TPS (Astroid) database from a computer clustermore » remotely. Once a plan is identified, the interface downloads information for the MC simulations, such as patient images, apertures points, and fluence maps and initiates calculations in both the patient and QA geometries. The resulting calculations are further analyzed to evaluate the TPS dose accuracy and the PBS delivery. Results: The Monte Carlo model of our system was validated within 2.0 % accuracy over the whole range of the dose distribution (proximal/shallow part, as well as target dose part) due to the location of the measurements. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. Conclusion: As M1 depths range typically from 1 cm to 4 cm from the phantom surface, The Monte Carlo model of our system was validated within +− 2.0 % in absolute dose level over a whole treatment range. The averaged range difference after commissioning was 0.25 mm over entire treatment ranges, e.g., 6.5 cm to 31.6 cm. This work was supported by NIH/NCI under CA U19 21239.« less

  4. Commissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data

    NASA Astrophysics Data System (ADS)

    Mortuza, Md Firoz; Lepore, Luigi; Khedkar, Kalpana; Thangam, Saravanan; Nahar, Arifatun; Jamil, Hossen Mohammad; Bandi, Laxminarayan; Alam, Md Khorshed

    2018-03-01

    Characterization of a 90 kCi (3330 TBq), semi-industrial, cobalt-60 gamma irradiator was performed by commissioning dosimetry and in-situ dose mapping experiments with Ceric-cerous and Fricke dosimetry systems. Commissioning dosimetry was carried out to determine dose distribution pattern of absorbed dose in the irradiation cell and products. To determine maximum and minimum absorbed dose, overdose ratio and dwell time of the tote boxes, homogeneous dummy product (rice husk) with a bulk density of 0.13 g/cm3 were used in the box positions of irradiation chamber. The regions of minimum absorbed dose of the tote boxes were observed in the lower zones of middle plane and maximum absorbed doses were found in the middle position of front plane. Moreover, as a part of dose mapping, dose rates in the wall positions and some selective strategic positions were also measured to carry out multiple irradiation program simultaneously, especially for low dose research irradiation program. In most of the cases, Monte Carlo simulation data, using Monte Carlo N-Particle eXtended code version MCNPX 2.7., were found to be in congruence with experimental values obtained from Ceric-cerous and Fricke dosimetry; however, in close proximity positions from the source, the dose rate variation between chemical dosimetry and MCNP was higher than distant positions.

  5. SU-F-T-273: Using a Diode Array to Explore the Weakness of TPS DoseCalculation Algorithm for VMAT and Sliding Window Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Lu, B; Yan, G

    Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less

  6. Prediction of Drug-Drug Interactions with Crizotinib as the CYP3A Substrate Using a Physiologically Based Pharmacokinetic Model.

    PubMed

    Yamazaki, Shinji; Johnson, Theodore R; Smith, Bill J

    2015-10-01

    An orally available multiple tyrosine kinase inhibitor, crizotinib (Xalkori), is a CYP3A substrate, moderate time-dependent inhibitor, and weak inducer. The main objectives of the present study were to: 1) develop and refine a physiologically based pharmacokinetic (PBPK) model of crizotinib on the basis of clinical single- and multiple-dose results, 2) verify the crizotinib PBPK model from crizotinib single-dose drug-drug interaction (DDI) results with multiple-dose coadministration of ketoconazole or rifampin, and 3) apply the crizotinib PBPK model to predict crizotinib multiple-dose DDI outcomes. We also focused on gaining insights into the underlying mechanisms mediating crizotinib DDIs using a dynamic PBPK model, the Simcyp population-based simulator. First, PBPK model-predicted crizotinib exposures adequately matched clinically observed results in the single- and multiple-dose studies. Second, the model-predicted crizotinib exposures sufficiently matched clinically observed results in the crizotinib single-dose DDI studies with ketoconazole or rifampin, resulting in the reasonably predicted fold-increases in crizotinib exposures. Finally, the predicted fold-increases in crizotinib exposures in the multiple-dose DDI studies were roughly comparable to those in the single-dose DDI studies, suggesting that the effects of crizotinib CYP3A time-dependent inhibition (net inhibition) on the multiple-dose DDI outcomes would be negligible. Therefore, crizotinib dose-adjustment in the multiple-dose DDI studies could be made on the basis of currently available single-dose results. Overall, we believe that the crizotinib PBPK model developed, refined, and verified in the present study would adequately predict crizotinib oral exposures in other clinical studies, such as DDIs with weak/moderate CYP3A inhibitors/inducers and drug-disease interactions in patients with hepatic or renal impairment. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Poster — Thur Eve — 35: The impact of intensity- and energy-modulated photon radiotherapy (XMRT) optimization on a variety of organ geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeachy, P.; Villarreal-Barajas, J. E.; Khan, R.

    2014-08-15

    We previously reported on a novel, modulated in both energy and intensity; photon radiotherapy (XMRT) optimization technique. The purpose of this investigation was to test this XMRT optimization against conventional intensity modulated radiotherapy (IMRT) optimization on four different organ test geometries. All geometries mimicked clinically relevant scenarios. Both IMRT and XMRT were based on a linear programming approach where the objective function was the mean dose to healthy organs and organ-specific linear dose-point constraints were used. For IMRT, the beam energy was fixed to 6 MV while XMRT optimized in terms of both 6 and 18 MV beams. All plansmore » consisted of a seven beam coplanar arrangement. All organ geometries were contoured on a 25cm diameter cylindrical water phantom in open source radiotherapy research software known as CERR. Solutions for both IMRT and XMRT were obtained for each geometry using a numerical solver Gurobi. Analyzing the quality of the solutions was done by comparing dose distributions and dose volume histograms calculated using CERR. For all four geometries, IMRT and XMRT solutions were comparable in terms of target coverage. For two of the geometries, IMRT provided an advantage in terms of reduced dose to the healthy structures. XMRT showed improved dose reduction to healthy organs for one geometry and a comparable dose distribution to IMRT for the remaining geometry. The inability to exploit the benefits of using multiple energies may be attributed to limited water phantom diameter and having the majority of the organs in close proximity to the transverse axis.« less

  8. Contact radiotherapy using a 50 kV X-ray system: Evaluation of relative dose distribution with the Monte Carlo code PENELOPE and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Croce, Olivier; Hachem, Sabet; Franchisseur, Eric; Marcié, Serge; Gérard, Jean-Pierre; Bordy, Jean-Marc

    2012-06-01

    This paper presents a dosimetric study concerning the system named "Papillon 50" used in the department of radiotherapy of the Centre Antoine-Lacassagne, Nice, France. The machine provides a 50 kVp X-ray beam, currently used to treat rectal cancers. The system can be mounted with various applicators of different diameters or shapes. These applicators can be fixed over the main rod tube of the unit in order to deliver the prescribed absorbed dose into the tumor with an optimal distribution. We have analyzed depth dose curves and dose profiles for the naked tube and for a set of three applicators. Dose measurements were made with an ionization chamber (PTW type 23342) and Gafchromic films (EBT2). We have also compared the measurements with simulations performed using the Monte Carlo code PENELOPE. Simulations were performed with a detailed geometrical description of the experimental setup and with enough statistics. Results of simulations are made in accordance with experimental measurements and provide an accurate evaluation of the dose delivered. The depths of the 50% isodose in water for the various applicators are 4.0, 6.0, 6.6 and 7.1 mm. The Monte Carlo PENELOPE simulations are in accordance with the measurements for a 50 kV X-ray system. Simulations are able to confirm the measurements provided by Gafchromic films or ionization chambers. Results also demonstrate that Monte Carlo simulations could be helpful to validate the future applicators designed for other localizations such as breast or skin cancers. Furthermore, Monte Carlo simulations could be a reliable alternative for a rapid evaluation of the dose delivered by such a system that uses multiple designs of applicators.

  9. Polyamine Analogues as Novel Anti-HER Family Agents in Human Breast Cancer

    DTIC Science & Technology

    2007-09-01

    Davidson NE, & Casero RA Jr. Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase PAO, is the primary source of cytotoxic H2O2 in polyamine...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Elevated levels of all three naturally occurring polyamines, spermine , spermidine and...protein in multiple human breast cancer cell lines. This suppression is both time and dose dependent. A relationship between oligoamine structure , growth

  10. Tolrestat kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D.R.; Kraml, M.; Cayen, M.N.

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total /sup 14/C were measured after dosing normal subjects and subjects with diabetes with /sup 14/C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of /sup 14/C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the samemore » in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate.« less

  11. SU-E-T-248: An Extended Generalized Equivalent Uniform Dose Accounting for Dose-Range Dependency of Radio-Biological Parameters.

    PubMed

    Troeller, A; Soehn, M; Yan, D

    2012-06-01

    Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way it is commonly done for the gEUD. © 2012 American Association of Physicists in Medicine.

  12. Urinary symptoms following external beam radiotherapy of the prostate: Dose-symptom correlates with multiple-event and event-count models.

    PubMed

    Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; House, Michael J; Kennedy, Angel; Joseph, David J; Denham, James W

    2015-11-01

    This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events. Urinary symptoms (dysuria, haematuria, incontinence and frequency) from 754 participants from TROG 03.04-RADAR trial were analysed. Relative (R1-R75 Gy) and absolute (A60-A75Gy) bladder dose-surface area receiving more than a threshold dose and equivalent uniform dose using exponent a (range: a ∈[1 … 100]) were derived. The dose-symptom correlates were analysed using; peak-symptom (logistic), multiple-event (generalised estimating equation) and event-count (negative binomial regression) models. Stronger dose-symptom correlates were found for incontinence and frequency using multiple-event and/or event-count models. For dysuria and haematuria, similar or better relationships were found using peak-symptom models. Dysuria, haematuria and high grade (⩾ 2) incontinence were associated to high dose (R61-R71 Gy). Frequency and low grade (⩾ 1) incontinence were associated to low and intermediate dose-surface parameters (R13-R41Gy). Frequency showed a parallel behaviour (a=1) while dysuria, haematuria and incontinence showed a more serial behaviour (a=4 to a ⩾ 100). Relative dose-surface showed stronger dose-symptom associations. For certain endpoints, the multiple-event and event-count models provide stronger correlates over peak-symptom models. Accounting for multiple events may be advantageous for a more complete understanding of urinary dose-symptom relationships. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Dose to the Developing Dentition During Therapeutic Irradiation: Organ at Risk Determination and Clinical Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Reid F., E-mail: Reid.Thompson@uphs.upenn.edu; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania; Schneider, Ralf A., E-mail: ralf.schneider@psi.ch

    Purpose: Irradiation of pediatric facial structures can cause severe impairment of permanent teeth later in life. We therefore focused on primary and permanent teeth as organs at risk, investigating the ability to identify individual teeth in children and infants and to correlate dose distributions with subsequent dental toxicity. Methods and Materials: We retrospectively reviewed 14 pediatric patients who received a maximum dose >20 Gy(relative biological effectiveness, RBE) to 1 or more primary or permanent teeth between 2003 and 2009. The patients (aged 1-16 years) received spot-scanning proton therapy with 46 to 66 Gy(RBE) in 23 to 33 daily fractions formore » a variety of tumors, including rhabdomyosarcoma (n=10), sarcoma (n=2), teratoma (n=1), and carcinoma (n=1). Individual teeth were contoured on axial slices from planning computed tomography (CT) scans. Dose-volume histogram data were retrospectively obtained from total calculated delivered treatments. Dental follow-up information was obtained from external care providers. Results: All primary teeth and permanent incisors, canines, premolars, and first and second molars were identifiable on CT scans in all patients as early as 1 year of age. Dose-volume histogram analysis showed wide dose variability, with a median 37 Gy(RBE) per tooth dose range across all individuals, and a median 50 Gy(RBE) intraindividual dose range across all teeth. Dental follow-up revealed absence of significant toxicity in 7 of 10 patients but severe localized toxicity in teeth receiving >20 Gy(RBE) among 3 patients who were all treated at <4 years of age. Conclusions: CT-based assessment of dose distribution to individual teeth is feasible, although delayed calcification may complicate tooth identification in the youngest patients. Patterns of dental dose exposure vary markedly within and among patients, corresponding to rapid dose falloff with protons. Severe localized dental toxicity was observed in a few patients receiving the largest doses of radiation at the youngest ages; however, multiple factors including concurrent chemotherapy confounded the dose-effect relationship. Further studies with larger cohorts and appropriate controls will be required.« less

  14. Dosimetric and Clinical Analysis of Spatial Distribution of the Radiation Dose in Gamma Knife Radiosurgery for Vestibular Schwannoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massager, Nicolas, E-mail: nmassage@ulb.ac.be; Neurosurgery-Department, Hospital Erasme, Brussels; Lonneville, Sarah

    2011-11-15

    Objectives: We investigated variations in the distribution of radiation dose inside (dose inhomogeneity) and outside (dose falloff) the target volume during Gamma Knife (GK) irradiation of vestibular schwannoma (VS). We analyzed the relationship between some parameters of dose distribution and the clinical and radiological outcome of patients. Methods and Materials: Data from dose plans of 203 patients treated for a vestibular schwannoma by GK C using same prescription dose (12 Gy at the 50% isodose) were collected. Four different dosimetric indexes were defined and calculated retrospectively in all plannings on the basis of dose-volume histograms: Paddick conformity index (PI), gradientmore » index (GI), homogeneity index (HI), and unit isocenter (UI). The different measures related to distribution of the radiation dose were compared with hearing and tumor outcome of 203 patients with clinical and radiological follow-up of minimum 2 years. Results: Mean, median, SD, and ranges of the four indexes of dose distribution analyzed were calculated; large variations were found between dose plans. We found a high correlation between the target volume and PI, GI, and UI. No significant association was found between the indexes of dose distribution calculated in this study and tumor control, tumor volume shrinkage, hearing worsening, loss of functional hearing, or complete hearing loss at last follow-up. Conclusions: Parameters of distribution of the radiation dose during GK radiosurgery for VS can be highly variable between dose plans. The tumor and hearing outcome of patients treated is not significantly related to these global indexes of dose distribution inside and around target volume. In GK radiosurgery for VS, the outcome seems more to be influenced by local radiation dose delivered to specific structures or volumes than by global dose gradients.« less

  15. Impact of multiple-dose versus single-dose inhaler devices on COPD patients’ persistence with long-acting β2-agonists: a dispensing database analysis

    PubMed Central

    van Boven, Job FM; van Raaij, Joost J; van der Galiën, Ruben; Postma, Maarten J; van der Molen, Thys; Dekhuijzen, PN Richard; Vegter, Stefan

    2014-01-01

    Background: With a growing availability of different devices and types of medication, additional evidence is required to assist clinicians in prescribing the optimal medication in relation to chronic obstructive pulmonary disease (COPD) patients’ persistence with long-acting β2-agonists (LABAs). Aims: To assess the impact of the type of inhaler device (multiple-dose versus single-dose inhalers) on 1-year persistence and switching patterns with LABAs. Methods: A retrospective observational cohort study was performed comparing a cohort of patients initiating multiple-dose inhalers and a cohort initiating single-dose inhalers. The study population consisted of long-acting bronchodilator naive COPD patients, initiating inhalation therapy with mono-LABAs (formoterol, indacaterol or salmeterol). Analyses were performed using pharmacy dispensing data from 1994 to 2012, obtained from the IADB.nl database. Study outcomes were 1-year persistence and switching patterns. Results were adjusted for initial prescriber, initial medication, dosing regimen and relevant comorbidities. Results: In all, 575 patients initiating LABAs were included in the final study cohort. Among them, 475 (83%) initiated a multiple-dose inhaler and 100 (17%) a single-dose inhaler. Further, 269 (47%) initiated formoterol, 9 (2%) indacaterol and 297 (52%) salmeterol. There was no significant difference in persistence between users of multiple-dose or single-dose inhalers (hazard ratio: 0.98, 95% confidence interval: 0.76–1.26, P=0.99). Over 80% re-started or switched medication. Conclusions: There seems no impact of inhaler device (multiple-dose versus single-dose inhalers) on COPD patients’ persistence with LABAs. Over 80% of patients who initially seemed to discontinue LABAs, re-started their initial medication or switched inhalers or medication within 1 year. PMID:25274453

  16. Measuring dose from radiotherapy treatments in the vicinity of a cardiac pacemaker.

    PubMed

    Peet, Samuel C; Wilks, Rachael; Kairn, Tanya; Crowe, Scott B

    2016-12-01

    This study investigated the dose absorbed by tissues surrounding artificial cardiac pacemakers during external beam radiotherapy procedures. The usefulness of out-of-field reference data, treatment planning systems, and skin dose measurements to estimate the dose in the vicinity of a pacemaker was also examined. Measurements were performed by installing a pacemaker onto an anthropomorphic phantom, and using radiochromic film and optically stimulated luminescence dosimeters to measure the dose in the vicinity of the device during the delivery of square fields and clinical treatment plans. It was found that the dose delivered in the vicinity of the cardiac device was unevenly distributed both laterally and anteroposteriorly. As the device was moved distally from the square field, the dose dropped exponentially, in line with out-of-field reference data in the literature. Treatment planning systems were found to substantially underestimate the dose for volumetric modulated arc therapy, helical tomotherapy, and 3D conformal treatments. The skin dose was observed to be either greater or lesser than the dose received at the depth of the device, depending on the treatment site, and so care should be if skin dose measurements are to be used to estimate the dose to a pacemaker. Square field reference data may be used as an upper estimate of absorbed dose per monitor unit in the vicinity of a cardiac device for complex treatments involving multiple gantry angles. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Proton Lateral Broadening Distribution Comparisons Between GRNTRN, MCNPX, and Laboratory Beam Measurements

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Moyers, Michael F.; Walker, Steven A.; Tweed, John

    2010-01-01

    Recent developments in NASA s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.

  18. 76 FR 20513 - Revision of the Requirements for Constituent Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... in multiple-dose containers must contain a preservative, except that a preservative need not be added... contamination of multiple-dose containers of vaccines that did not contain a preservative.\\2\\ As discussed... Workshop on Thimerosal Vaccines,'' p. 24, August 11, 1999. Preservatives in multiple-dose containers have a...

  19. Applications of amorphous track models in radiation biology

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; Goodhead, D. T.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    The average or amorphous track model uses the response of a system to gamma-rays and the radial distribution of dose about an ion's path to describe survival and other cellular endpoints from proton, heavy ion, and neutron irradiation. This model has been used for over 30 years to successfully fit many radiobiology data sets. We review several extensions of this approach that address objections to the original model, and consider applications of interest in radiobiology and space radiation risk assessment. In the light of present views of important cellular targets, the role of target size as manifested through the relative contributions from ion-kill (intra-track) and gamma-kill (inter-track) remains a critical question in understanding the success of the amorphous track model. Several variations of the amorphous model are discussed, including ones that consider the radial distribution of event-sizes rather than average electron dose, damage clusters rather than multiple targets, and a role for repair or damage processing.

  20. Pharmacokinetic profiles of repaglinide in elderly subjects with type 2 diabetes.

    PubMed

    Hatorp, V; Huang, W C; Strange, P

    1999-04-01

    Pharmacokinetic profiles of single- and multiple-dose regimens of repaglinide were evaluated in 12 elderly subjects with type 2 diabetes. On day 1, following a 10-hour fast, subjects received a single 2-mg dose of repaglinide. Starting on day 2 and continuing for 7 days, each subject received a 2-mg dose of repaglinide 15 minutes before each of the three main meals. On day 9, subjects received a single 2-mg dose of repaglinide. Pharmacokinetic profiles, including area under the curve (AUC), log(AUC), maximal concentration (Cmax), log(Cmax), time to maximal concentration (Tmax), and half-life (T(1/2)), were determined at completion of the single- and multiple-dose regimens (days 1 and 9, respectively). Trough repaglinide values were collected on days 2 through 7. The mean log(AUC) values after multiple dosing were significantly higher than the values obtained after a single dose. The mean values for log(Cmax), and Tmax were comparable after each dosing regimen. The T(1/2) of repaglinide after multiple dosing was 1.7 hours. The trough values for repaglinide were low. No hypoglycemic events were reported. The pharmacokinetic profiles of repaglinide after single- and multiple-dose regimens were similar, and repaglinide was well tolerated by elderly subjects with type 2 diabetes.

  1. Dose escalation of the hypoxic cell sensitizer etanidazole combined with ifosfamide, carboplatin, etoposide, and autologous hematopoietic stem cell support.

    PubMed

    Elias, A D; Wheeler, C; Ayash, L J; Schwartz, G; Ibrahim, J; Mills, L; McCauley, M; Coleman, N; Warren, D; Schnipper, L; Antman, K H; Teicher, B A; Frei, E

    1998-06-01

    Multiple mechanisms of drug resistance contribute to treatment failure. Although high-dose therapy attempts to overwhelm these defenses pharmacologically, this approach is only successful in a fraction of treated patients. Many drug resistance mechanisms are shared between malignant and normal cells, but the expression of various drug resistance mechanisms associated with hypoxia is largely confined to tumor tissue. Thus, reversal of this mechanism is likely to provide a therapeutic advantage to the host. This study was designed to define the dose-limiting toxicities and maximum tolerated dose of etanidazole when it is given concurrently with high-dose ifosfamide, carboplatin, and etoposide (ICE), with hematopoietic stem cell support. The maximum tolerated doses of high-dose ICE were administered concurrently with dose escalations of etanidazole, a hypoxic cell sensitizer. All agents were given by 96-h continuous i.v. infusion beginning on day -7. Mesna uroprotection was provided. Autologous marrow and cytokine mobilized peripheral blood progenitor cells were reinfused on day 0. Granulocyte colony-stimulating factor was administered following reinfusion until the granulocytes recovered to > 1000/microliter. Fifty-five adults with advanced malignancies were enrolled in cohorts of five to nine patients. Four dose levels of etanidazole between 3 and 5.5 g/m2/day (12, 16, 20, and 22 g/m2 total doses) and two doses of carboplatin (1600 and 1800 mg/m2 total doses) were evaluated. Seven patients died of organ toxicity (13%); two each from veno-occlusive disease of liver and sepsis; and one each from sudden death, renal failure, and refractory thrombocytopenic hemorrhage. Five deaths occurred at the top dose level. One additional patient suffered a witnessed cardiorespiratory arrest from ventricular fibrillation and was resuscitated. Dose-dependent and largely reversible peripheral neuropathy was observed consisting of two syndromes: severe cramping myalgic/neuralgic pain, predominantly in stocking glove distribution, occurring between day -3 and day 0, and a sensory peripheral neuropathy with similar distribution peaking around day +60. The maximal achievable dose of etanidazole (16 g/m2 dose level) resulted in a mean serum level of 38 micrograms/ml (25-55 micrograms/ml). Etanidazole significantly enhanced host toxicity of high-dose ICE. Effective modulatory doses of etanidazole could not be given with acceptable toxicity using this schedule.

  2. Effect of Patient Set-up and Respiration motion on Defining Biological Targets for Image-Guided Targeted Radiotherapy

    NASA Astrophysics Data System (ADS)

    McCall, Keisha C.

    Identification and monitoring of sub-tumor targets will be a critical step for optimal design and evaluation of cancer therapies in general and biologically targeted radiotherapy (dose-painting) in particular. Quantitative PET imaging may be an important tool for these applications. Currently radiotherapy planning accounts for tumor motion by applying geometric margins. These margins create a motion envelope to encompass the most probable positions of the tumor, while also maintaining the appropriate tumor control and normal tissue complication probabilities. This motion envelope is effective for uniform dose prescriptions where the therapeutic dose is conformed to the external margins of the tumor. However, much research is needed to establish the equivalent margins for non-uniform fields, where multiple biological targets are present and each target is prescribed its own dose level. Additionally, the size of the biological targets and close proximity make it impractical to apply planning margins on the sub-tumor level. Also, the extent of high dose regions must be limited to avoid excessive dose to the surrounding tissue. As such, this research project is an investigation of the uncertainty within quantitative PET images of moving and displaced dose-painting targets, and an investigation of the residual errors that remain after motion management. This included characterization of the changes in PET voxel-values as objects are moved relative to the discrete sampling interval of PET imaging systems (SPECIFIC AIM 1). Additionally, the repeatability of PET distributions and the delineating dose-painting targets were measured (SPECIFIC AIM 2). The effect of imaging uncertainty on the dose distributions designed using these images (SPECIFIC AIM 3) has also been investigated. This project also included analysis of methods to minimize motion during PET imaging and reduce the dosimetric impact of motion/position-induced imaging uncertainty (SPECIFIC AIM 4).

  3. Results From the First‐in‐Human Study With Ozanimod, a Novel, Selective Sphingosine‐1‐Phosphate Receptor Modulator

    PubMed Central

    Hartung, Jeffrey P.; Peach, Robert J.; Boehm, Marcus F.; Rosen, Hugh; Smith, Heather; Brooks, Jennifer L.; Timony, Gregg A.; Olson, Allan D.; Gujrathi, Sheila; Frohna, Paul A.

    2017-01-01

    Abstract The sphingosine‐1‐phosphate 1 receptor (S1P1R) is expressed by lymphocytes, dendritic cells, and vascular endothelial cells and plays a role in the regulation of chronic inflammation and lymphocyte egress from peripheral lymphoid organs. Ozanimod is an oral selective modulator of S1P1R and S1P5R receptors in clinical development for the treatment of chronic immune‐mediated, inflammatory diseases. This first‐in‐human study characterized the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of ozanimod in 88 healthy volunteers using a range of single and multiple doses (7 and 28 days) and a dose‐escalation regimen. Ozanimod was generally well tolerated up to a maximum single dose of 3 mg and multiple doses of 2 mg/d, with no severe adverse events (AEs) and no dose‐limiting toxicities. The most common ozanimod‐related AEs included headache, somnolence, dizziness, nausea, and fatigue. Ozanimod exhibited linear PK, high steady‐state volume of distribution (73–101 L/kg), moderate oral clearance (204–227 L/h), and an elimination half‐life of approximately 17 to 21 hours. Ozanimod produced a robust dose‐dependent reduction in total peripheral lymphocytes, with a median decrease of 65% to 68% observed after 28 days of dosing at 1 and 1.5 mg/d, respectively. Ozanimod selectivity affected lymphocyte subtypes, causing marked decreases in cells expressing CCR7 and variable decreases in subsets lacking CCR7. A dose‐dependent negative chronotropic effect was observed following the first dose, with the dose‐escalation regimen attenuating the first‐dose negative chronotropic effect. Ozanimod safety, PK, and PD properties support the once‐daily regimens under clinical investigation. PMID:28398597

  4. Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

    PubMed Central

    Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani

    2012-01-01

    Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, S; Kuo, L; Happersett, L

    Purpose: To commission a custom 6MV-SRS-AAA Eclipse beam model for VMAT multiple lesions cranial SRS treatment on a Varian TrueBeam STx. Methods: Six clinical plans were created using a customized beam model with dosimetric-leaf-gap(DLG) optimized for clinical treatments. Each plan had 4–6 non-isocentric targets with size from 0.2 to 7.1cc. All fields were measured with EBT3 film in the coronal plane in a solid water phantom and with an AS1000 EPID using gantry rotation. In addition, an end-to-end test was performed with coronal and sagittal films in an anthropomorphic phantom verifying dosimetry and localization accuracy. Portal dose distributions were generatedmore » with a custom portal dosimetry algorithm(PDIP). Measured dose distributions were compared with calculations using average dose difference (DD), and gamma function, γ. Using a 1.25mm grid, the γ criteria, local DD ≤ 3% and 2mm distance-to-agreement, were applied in regions with dose 50% of maximum. Results: The respective DD and γ for all films were <±2% and >94.2%. The portal dose γ scores for all the plans were >94.9%. However, local regions with underdose >10%, were observed when targets were treated with the 5mm leaves. The same plans re-optimized with two isocenters such that all lesions were under the 2.5mm leaves did not show this effect. The DD and localization error of the end-to-end test were within 3.4% and 1.0mm respectively. Conclusion: The custom AAA beam model is capable of calculating acceptable dosimetry for targets using only the 2.5 mm leaves. This restricts lesions to within ±4cm of isocenter. The observed underdose beneath the 5mm leaves is attributed to a limitation in Eclipse that uses a single DLG representing the DLG’s of both 2.5mm and 5mm leaves. If lesions are >4cm from isocenter, a multiple isocenter technique should be considered to allow the use of only the 2.5mm leaves.« less

  6. Quality assurance of proton beams using a multilayer ionization chamber system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used tomore » measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements.Conclusions: Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.« less

  7. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered with a different dose rate, extra mode-up time (xMOT) was needed between the transitions of the successive sectors during delivery. On average, the delivery times of the CDR plans were approximately less than 1 min longer than the treatment times of the VDR plans, with an average of about 0.33 min of xMOT per sector transition. The results have shown that VDR may not be necessary for single-arc IMAT. Using variable angular spacing, VDR RapidArc plans can be implemented into the clinics that are not equipped with the new VDR-enabled machines without compromising the plan quality or treatment efficiency. With a prospective optimization approach using variable angular spacing, CDR delivery times can be further minimized while maintaining the high delivery efficiency of single-arc IMAT treatment.

  8. Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates.

    PubMed

    Li, Yongrui; Li, Ye; Jackson, Alan; Li, Xiaodong; Huang, Ning; Guo, Chunjie; Zhang, Huimao

    2017-01-01

    To assess the effect of varying iodine flow rate (IFR) and iodine concentration on the quality of virtual unenhanced (VUE) images of the abdomen obtained with dual-energy CT. 94 subjects underwent unenhanced and triphasic contrast-enhanced CT scan of the abdomen, including arterial phase, portal venous phase, and delayed phase using dual-energy CT. Patients were randomized into 4 groups with different IFRs or iodine concentrations. VUE images were generated at 70 keV. The CT values, image noise, SNR and CNR of aorta, portal vein, liver, liver lesion, pancreatic parenchyma, spleen, erector spinae, and retroperitoneal fat were recorded. Dose-length product and effective dose for an examination with and without plain phase scan were calculated to assess the potential dose savings. Two radiologists independently assessed subjective image quality using a five-point scale. The Kolmogorov-Smirnov test was used first to test for normal distribution. Where data conformed to a normal distribution, analysis of variance was used to compare mean HU values, image noise, SNRs and CNRs for the 4 image sets. Where data distribution was not normal, a nonparametric test (Kruskal-Wallis test followed by stepwise step-down comparisons) was used. The significance level for all tests was 0.01 (two-sided) to allow for type 2 errors due to multiple testing. The CT numbers (HU) of VUE images showed no significant differences between the 4 groups (p > 0.05) or between different phases within the same group (p > 0.05). VUE images had equal or higher SNR and CNR than true unenhanced images. VUE images received equal or lower subjective image quality scores than unenhanced images but were of acceptable quality for diagnostic use. Calculated dose-length product and estimated dose showed that the use of VUE images in place of unenhanced images would be associated with a dose saving of 25%. VUE images can replace conventional unenhanced images. VUE images are not affected by varying iodine flow rates and iodine concentrations, and diagnostic examinations could be acquired with a potential dose saving of 25%.

  9. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.

    PubMed

    Nilsen, Vegard; Wyller, John

    2016-01-01

    Spatial and/or temporal clustering of pathogens will invalidate the commonly used assumption of Poisson-distributed pathogen counts (doses) in quantitative microbial risk assessment. In this work, the theoretically predicted effect of spatial clustering in conventional "single-hit" dose-response models is investigated by employing the stuttering Poisson distribution, a very general family of count distributions that naturally models pathogen clustering and contains the Poisson and negative binomial distributions as special cases. The analysis is facilitated by formulating the dose-response models in terms of probability generating functions. It is shown formally that the theoretical single-hit risk obtained with a stuttering Poisson distribution is lower than that obtained with a Poisson distribution, assuming identical mean doses. A similar result holds for mixed Poisson distributions. Numerical examples indicate that the theoretical single-hit risk is fairly insensitive to moderate clustering, though the effect tends to be more pronounced for low mean doses. Furthermore, using Jensen's inequality, an upper bound on risk is derived that tends to better approximate the exact theoretical single-hit risk for highly overdispersed dose distributions. The bound holds with any dose distribution (characterized by its mean and zero inflation index) and any conditional dose-response model that is concave in the dose variable. Its application is exemplified with published data from Norovirus feeding trials, for which some of the administered doses were prepared from an inoculum of aggregated viruses. The potential implications of clustering for dose-response assessment as well as practical risk characterization are discussed. © 2016 Society for Risk Analysis.

  10. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.

    PubMed

    Vilches, Manuel; García-Pareja, Salvador; Guerrero, Rafael; Anguiano, Marta; Lallena, Antonio M

    2008-01-01

    Results obtained from Monte Carlo simulations of the transport of electrons in thin slabs of dense material media and air slabs with different widths are analyzed. Various general purpose Monte Carlo codes have been used: PENELOPE, GEANT3, GEANT4, EGSNRC, MCNPX. Non-negligible differences between the angular and radial distributions after the slabs have been found. The effects of these differences on the depth doses measured in water are also discussed.

  11. Predicting the Toxicity of Adjuvant Breast Cancer Drug Combination Therapy

    DTIC Science & Technology

    2012-09-01

    diarrhea and interstitial lung disease/pneumonitis. From largest to smallest, our multiple dose (1,250 mg q24 h) model-predicted ratios of lapatinib...1977) A model for the kinetics of distribution of actinomycin-D in the beagle dog . J Pharmacol Exp Ther 200(3):469–478 31. Collins JM, Dedrick RL, King...a single agent for various tumor types (n = 2045), nausea (39%), diarrhea (39%) and vomiting (22%) were observed; other gastrointestinal events

  12. Predicting the Toxicity of Adjuvant Breast Cancer Drug Combination Therapy

    DTIC Science & Technology

    2013-03-01

    diarrhea and interstitial lung disease/pneumonitis. From largest to smallest, our multiple dose (1,250 mg q24 h) model-predicted ratios of lapatinib...1977) A model for the kinetics of distribution of actinomycin-D in the beagle dog . J Pharmacol Exp Ther 200(3):469–478 31. Collins JM, Dedrick RL, King...as a single agent for various tumor types (n = 2045), nausea (39%), diarrhea (39%) and vomiting (22%) were observed; other gastrointestinal events

  13. A photon source model based on particle transport in a parameterized accelerator structure for Monte Carlo dose calculations.

    PubMed

    Ishizawa, Yoshiki; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Takahito; Takayama, Yoshiki; Sato, Kiyokazu; Takeda, Ken

    2018-05-17

    An accurate source model of a medical linear accelerator is essential for Monte Carlo (MC) dose calculations. This study aims to propose an analytical photon source model based on particle transport in parameterized accelerator structures, focusing on a more realistic determination of linac photon spectra compared to existing approaches. We designed the primary and secondary photon sources based on the photons attenuated and scattered by a parameterized flattening filter. The primary photons were derived by attenuating bremsstrahlung photons based on the path length in the filter. Conversely, the secondary photons were derived from the decrement of the primary photons in the attenuation process. This design facilitates these sources to share the free parameters of the filter shape and be related to each other through the photon interaction in the filter. We introduced two other parameters of the primary photon source to describe the particle fluence in penumbral regions. All the parameters are optimized based on calculated dose curves in water using the pencil-beam-based algorithm. To verify the modeling accuracy, we compared the proposed model with the phase space data (PSD) of the Varian TrueBeam 6 and 15 MV accelerators in terms of the beam characteristics and the dose distributions. The EGS5 Monte Carlo code was used to calculate the dose distributions associated with the optimized model and reference PSD in a homogeneous water phantom and a heterogeneous lung phantom. We calculated the percentage of points passing 1D and 2D gamma analysis with 1%/1 mm criteria for the dose curves and lateral dose distributions, respectively. The optimized model accurately reproduced the spectral curves of the reference PSD both on- and off-axis. The depth dose and lateral dose profiles of the optimized model also showed good agreement with those of the reference PSD. The passing rates of the 1D gamma analysis with 1%/1 mm criteria between the model and PSD were 100% for 4 × 4, 10 × 10, and 20 × 20 cm 2 fields at multiple depths. For the 2D dose distributions calculated in the heterogeneous lung phantom, the 2D gamma pass rate was 100% for 6 and 15 MV beams. The model optimization time was less than 4 min. The proposed source model optimization process accurately produces photon fluence spectra from a linac using valid physical properties, without detailed knowledge of the geometry of the linac head, and with minimal optimization time. © 2018 American Association of Physicists in Medicine.

  14. Single- and multiple-dose pharmacokinetics of dapoxetine hydrochloride, a novel agent for the treatment of premature ejaculation.

    PubMed

    Modi, Nishit B; Dresser, Mark J; Simon, Mary; Lin, Denise; Desai, Dhaval; Gupta, Suneel

    2006-03-01

    Dapoxetine is a serotonin transporter inhibitor currently in development for the treatment of premature ejaculation. This randomized, 2-sequence, 2-treatment crossover study assessed the single- and multiple-dose pharmacokinetics of dapoxetine following once-daily administration of dapoxetine 30 mg and 60 mg to healthy male volunteers. Dapoxetine was rapidly absorbed following oral administration, with peak plasma concentrations reached approximately 1 hour after dosing; plasma concentrations after single doses of dapoxetine decreased rapidly to approximately 5% of peak concentrations by 24 hours. Elimination was biphasic, with an initial half-life of approximately 1.4 hours and a terminal half-life of approximately 20 hours. Dapoxetine showed time-invariant pharmacokinetics and dose proportionality between doses, and its pharmacokinetics was unaffected by multiple dosing. The pharmacokinetics of dapoxetine metabolites, desmethyldapoxetine and dapoxetine-N-oxide, was similarly unaffected by multiple dosing. There were no serious adverse events; the most commonly reported adverse events were diarrhea, dizziness, and nausea.

  15. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta.

    PubMed

    Wynn, Daniel; Kaufman, Michael; Montalban, Xavier; Vollmer, Timothy; Simon, Jack; Elkins, Jacob; O'Neill, Gilmore; Neyer, Lauri; Sheridan, James; Wang, Chungchi; Fong, Alice; Rose, John W

    2010-04-01

    Daclizumab, a humanised monoclonal antibody, reduced multiple sclerosis disease activity in previous non-randomised studies. We aimed to assess whether daclizumab reduces disease activity in patients with active relapsing multiple sclerosis who are receiving interferon beta treatment. We did a phase 2, randomised, double-blind, placebo-controlled study at 51 centres in the USA, Canada, Germany, Italy, and Spain. Patients with active relapsing multiple sclerosis who were taking interferon beta were randomly assigned to receive add-on subcutaneous daclizumab 2 mg/kg every 2 weeks (interferon beta and high-dose daclizumab group), daclizumab 1 mg/kg every 4 weeks (interferon beta and low-dose daclizumab group), or interferon beta and placebo for 24 weeks. The randomisation scheme was generated by Facet Biotech. All patients and assessors were masked to treatment with the exception of Facet Biotech bioanalysts who prepared data for the data safety monitoring board or generated pharmacokinetic or pharmacodynamic data, a drug accountability auditor, and the site pharmacist. The primary endpoint was total number of new or enlarged gadolinium contrast-enhancing lesions measured on brain MRI scans every 4 weeks between weeks 8 and 24. Effects of daclizumab on prespecified subsets of lymphocytes and quantitative T-cell proliferative response were assessed in an exploratory pharmacodynamic substudy. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00109161. From May, 2005, to March, 2006, 288 patients were assessed for eligibility, and 230 were randomly assigned to receive interferon beta and high-dose daclizumab (n=75), interferon beta and low-dose daclizumab (n=78), or interferon beta and placebo (n=77). The adjusted mean number of new or enlarged gadolinium contrast-enhancing lesions was 4.75 in the interferon beta and placebo group compared with 1.32 in the interferon beta and high-dose daclizumab group (difference 72%, 95% CI 34% to 88%; p=0.004) and 3.58 in the interferon beta and low-dose daclizumab group (25%, -76% to 68%; p=0.51). In the pharmacodynamic substudy, daclizumab was not associated with significant changes in absolute numbers of T cells, B cells, or natural killer cells, or T-cell proliferative response compared with interferon beta alone. The number of CD56(bright) natural killer cells was seven to eight times higher in both daclizumab groups than in the interferon beta and placebo group (interferon beta and low-dose daclizumab group p=0.002; interferon beta and high-dose daclizumab group p<0.0001). Common adverse events were equally distributed across groups. Add-on daclizumab treatment reduced the number of new or enlarged gadolinium contrast-enhancing lesions compared with interferon beta alone and might reduce multiple sclerosis disease activity to a greater extent than interferon beta alone. Facet Biotech and Biogen Idec. 2010 Elsevier Ltd. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  17. Modality comparison for small animal radiotherapy: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCTmore » scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by the SARRP plan due to the sensitivity of the lower energy microCT beam to target heterogeneities and image noise. Conclusions: The two treatment planning examples demonstrate that modern small animal radiotherapy techniques employing image guidance, variable collimation, and multiple beam angles deliver superior dose distributions to small animal tumors as compared to conventional treatments using a single-field irradiator. For deep-seated mouse tumors, however, higher-energy conformal radiotherapy could result in higher doses to critical organs compared to lower-energy conformal radiotherapy. Treatment planning optimization for small animal radiotherapy should therefore be developed to take full advantage of the novel conformal systems.« less

  18. The intracellular responses of frog eggs to novel orientations to gravity

    NASA Technical Reports Server (NTRS)

    Radice, G. P.; Neff, A. W.; Malacinski, G. M.

    1982-01-01

    It is found that multiple short doses of ultraviolet light are as effective as a single large dose in producing neural defects. In addition, 180 deg rotation (inversion) of irradiated eggs reduces the ultraviolet effect. Since yolk platelets may be the gravity sensing mechanism, their size, density, and distribution in normal and inverted eggs are investigated. Large platelets are denser and for the most part are in a distinct zone in the vegetal hemisphere, whereas small platelets are less dense and occur in the animal hemisphere. When inverted, the large platelets flow into the animal hemisphere as a coherent mass and partially displace the small platelets. Inversion is thought to rearrange cytoplasmic components necessary for later neural development into an appropriate configuration.

  19. Effects of ethanol on methyl mercury toxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamashiro, H.; Arakaki, M.; Akagi, H.

    1986-01-01

    This study was designed to investigate the effect of different doses of ethanol on the morbidity, mortality, and distribution of mercury in the tissues of groups of rats treated orally once daily with methyl mercury chloride (MMC: 5 mg/kg d) for 10 consecutive days. Ethanol potentiated the toxicity of methyl mercury in terms of neurological manifestations (hindleg crossings and abnormal gait) and mortality. The magnitude of effect depended on the concentration of ethanol administered. The concentration of mercury in the kidney and brain also increased with the dose of ethanol given. These findings indicate that epidemiologic studies designed to evaluatemore » methyl mercury toxicity must take into account the multiple environmental burdens that can affect the population cumulatively and simultaneously.« less

  20. Safety and Pharmacokinetics of Multiple Dose myo-Inositol in Preterm Infants

    PubMed Central

    Phelps, Dale L.; Ward, Robert M.; Williams, Rick L.; Nolen, Tracy L.; Watterberg, Kristi L.; Oh, William; Goedecke, Michael; Ehrenkranz, Richard A.; Fennell, Timothy; Poindexter, Brenda B.; Cotten, C. Michael; Hallman, Mikko; Frantz, Ivan D.; Faix, Roger G.; Zaterka-Baxter, Kristin M.; Das, Abhik; Ball, M. Bethany; Lacy, Conra Backstrom; Walsh, Michele C.; Carlo, Waldemar A.; Sánchez, Pablo J.; Bell, Edward F.; Shankaran, Seetha; Carlton, David P.; Chess, Patricia R.; Higgins, Rosemary D.

    2016-01-01

    BACKGROUND Preterm infants with RDS given inositol had reduced BPD, death and severe ROP. We assessed the safety and pharmacokinetics(PK) of daily inositol to select a dose providing serum levels previously associated with benefit, and to learn if accumulation occurred when administered throughout the normal period of retinal vascularization. METHODS Infants ≤29wks GA (n=122, 14 centers) were randomized and treated with placebo or inositol at 10, 40 or 80mg/kg/day. Intravenous administration converted to enteral when feedings were established, and continued to the first of 10 weeks, 34weeks PMA or discharge. Serum collection employed a sparse sampling population PK design. Inositol urine losses and feeding intakes were measured. Safety was prospectively monitored. RESULTS At 80mg/kg/day mean serum levels reached 140mg/L, similar to Hallman’s findings. Levels declined after 2 weeks, converging in all groups by 6 wks. Analyses showed a mean volume of distribution 0.657 L/kg, clearance 0.058 L/kg/hr, and half-life 7.90 hr. Adverse events and co-morbidities were fewer in the inositol groups, but not significantly so. CONCLUSIONS Multiple dose inositol at 80mg/kg/day was not associated with increased adverse events, achieves previously effective serum levels, and is appropriate for investigation in a Phase 3 trial. PMID:27074126

  1. A pharmacokinetic and residual study of sulfadiazine/trimethoprim in mandarin fish (Siniperca chuatsi) with single- and multiple-dose oral administrations.

    PubMed

    Wang, W; Luo, L; Xiao, H; Zhang, R; Deng, Y; Tan, A; Jiang, L

    2016-06-01

    A pharmacokinetic and tissue residue study of sulfadiazine combined with trimethoprim (SDZ/TMP = 5/1) was conducted in Siniperca chuatsi after single- (120 mg/kg) or multiple-dose (an initial dose of 120 mg/kg followed by a 5-day consecutive dose of 60 mg/kg) oral administrations at 28 °C. The absorption half-life (t1/2α ), elimination half-life (t1/2β ), volume of distribution (Vd /F), and the total body clearance (ClB /F) for SDZ and TMP were 4.3 ± 1.7 to 6.3 ± 1.8 h and 2.4 ± 1.0 to 3.9 ± 0.9 h, 25.9 ± 4.5 to 53.0 ± 5.6 h and 11.8 ± 3.5 to 17.1 ± 3.4 h, 2.34 ± 0.78 to 3.67 ± 0.99 L/kg and 0.39 ± 0.01 to 1.33 ± 0.57 L/kg, and 0.03 ± 0.01 to 0.06 ± 0.01 L/kg·h and 0.02 ± 0.01 to 0.05 ± 0.01 L/kg·h, respectively, after the single dose. The elimination half-life (t1/2β ) and mean residue time (MRT) for SDZ and TMP were 68.8 ± 7.8 to 139.8 ± 12.3 h and 34.0 ± 5.5 to 56.1 ± 6.8 h, and 99.3 ± 6.1 to 201.7 ± 11.5 h and 49.1 ± 3.5 to 81.0 ± 5.1 h, respectively, after the multiple-dose administration. The daily oral SDZ/TMP administration might cause a high tissue concentration and long t1/2β , thereby affecting antibacterial activity. The withdrawal time for this oral SDZ/TMP formulation (according to the accepted guidelines in Europe for maximum residue limits, <0.1 mg/kg of tissues for sulfonamides, and <0.05 mg/kg for TMP) should not be <36 days for fish. © 2015 John Wiley & Sons Ltd.

  2. 21 CFR 320.27 - Guidelines on the design of a multiple-dose in vivo bioavailability study.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vivo bioavailability study. 320.27 Section 320.27 Food and Drugs FOOD AND DRUG ADMINISTRATION... Guidelines on the design of a multiple-dose in vivo bioavailability study. (a) Basic principles. (1) In... labeling of the test product. (3) A multiple-dose study may be required to determine the bioavailability of...

  3. A phase I study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray.

    PubMed

    Stott, C G; White, L; Wright, S; Wilbraham, D; Guy, G W

    2013-05-01

    A Phase I study to assess the single and multipledose pharmacokinetics (PKs) and safety and tolerability of oromucosally administered Δ(9)-tetrahydrocannabinol (THC)/cannabidiol (CBD) spray, an endocannabinoid system modulator, in healthy male subjects. Subjects received either single doses of THC/CBD spray as multiple sprays [2 (5.4 mg THC and 5.0 mg CBD), 4 (10.8 mg THC and 10.0 mg CBD) or 8 (21.6 mg THC and 20.0 mg CBD) daily sprays] or multiple doses of THC/CBD spray (2, 4 or 8 sprays once daily) for nine consecutive days, following fasting for a minimum of 10 h overnight prior to each dosing. Plasma samples were analyzed by gas chromatography-mass spectrometry for CBD, THC, and its primary metabolite 11-hydroxy-THC, and various PK parameters were investigated. Δ(9)-Tetrahydrocannabinol and CBD were rapidly absorbed following single-dose administration. With increasing single and multiple doses of THC/CBD spray, the mean peak plasma concentration (Cmax) increased for all analytes. There was evidence of dose-proportionality in the single but not the multiple dosing data sets. The bioavailability of THC was greater than CBD at single and multiple doses, and there was no evidence of accumulation for any analyte with multiple dosing. Inter-subject variability ranged from moderate to high for all PK parameters in this study. The time to peak plasma concentration (Tmax) was longest for all analytes in the eight spray group, but was similar in the two and four spray groups. THC/CBD spray was well-tolerated in this study and no serious adverse events were reported. The mean Cmax values (<12 ng/mL) recorded in this study were well below those reported in patients who smoked/inhaled cannabis, which is reassuring since elevated Cmax values are linked to significant psychoactivity. There was also no evidence of accumulation on repeated dosing.

  4. SU-F-T-383: Robustness for Patient Setup Error in Total Body Irradiation Using Volumetric Modulated Arc Therapy (VMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Y; National Cancer Center, Kashiwa, Chiba; Tachibana, H

    Purpose: Total body irradiation (TBI) and total marrow irradiation (TMI) using Tomotherapy have been reported. A gantry-based linear accelerator uses one isocenter during one rotational irradiation. Thus, 3–5 isocenter points should be used for a whole plan of TBI-VMAT during smoothing out the junctional dose distribution. IGRT provides accurate and precise patient setup for the multiple junctions, however it is evident that some setup errors should occur and affect accuracy of dose distribution in the area. In this study, we evaluated the robustness for patient’s setup error in VMAT-TBI. Methods: VMAT-TBI Planning was performed in an adult whole-body human phantommore » using Eclipse. Eight full arcs with four isocenter points using 6MV-X were used to cover the entire whole body. Dose distribution was optimized using two structures of patient’s body as PTV and lung. The two arcs were shared with one isocenter and the two arcs were 5 cm-overlapped with the other two arcs. Point absolute dose using ionization-chamber and planer relative dose distribution using film in the junctional regions were performed using water-equivalent slab phantom. In the measurements, several setup errors of (+5∼−5mm) were added. Results: The result of the chamber measurement shows the deviations were within ±3% when the setup errors were within ±3 mm. In the planer evaluation, the pass ratio of gamma evaluation (3%/2mm) shows more than 90% if the errors within ±3 mm. However, there were hot/cold areas in the edge of the junction even with acceptable gamma pass ratio. 5 mm setup error caused larger hot and cold areas and the dosimetric acceptable areas were decreased in the overlapped areas. Conclusion: It can be clinically acceptable for VMAT-TBI when patient setup error is within ±3mm. Averaging effects from patient random error would be helpful to blur the hot/cold area in the junction.« less

  5. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mousemore » lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No accumulation of hgd40 was observed after multiple treatments. • Pharmacokinetic properties of hgd40 support convenient dose administration regimen.« less

  6. Generation of uniformly distributed dose points for anatomy-based three-dimensional dose optimization methods in brachytherapy.

    PubMed

    Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N

    2000-05-01

    We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.

  7. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  8. Efficacy of multiple exposure with low level He-Ne laser dose on acute wound healing: a pre-clinical study

    NASA Astrophysics Data System (ADS)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.

  9. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study.

    PubMed

    Lublin, Fred D; Bowen, James D; Huddlestone, John; Kremenchutzky, Marcelo; Carpenter, Adam; Corboy, John R; Freedman, Mark S; Krupp, Lauren; Paulo, Corri; Hariri, Robert J; Fischkoff, Steven A

    2014-11-01

    Infusion of PDA-001, a preparation of mesenchymal-like cells derived from full-term human placenta, is a new approach in the treatment of patients with multiple sclerosis. This safety study aimed to rule out the possibility of paradoxical exacerbation of disease activity by PDA-001 in patients with multiple sclerosis. This was a phase 1b, multicenter, randomized, double-blind, placebo-controlled, 2-dose ranging study including patients with relapsing-remitting multiple sclerosis or secondary progressive multiple sclerosis. The study was conducted at 6 sites in the United States and 2 sites in Canada. Patients were randomized 3:1 to receive 2 low-dose infusions of PDA-001 (150×10(6) cells) or placebo, given 1 week apart. After completing this cohort, subsequent patients received high-dose PDA-001 (600×10(6) cells) or placebo. Monthly brain magnetic resonance imaging scans were performed. The primary end point was ruling out the possibility of paradoxical worsening of MS disease activity. This was monitored using Cutter׳s rule (≥5 new gadolinium lesions on 2 consecutive scans) by brain magnetic resonance imaging on a monthly basis for six months and also the frequency of multiple sclerosis relapse. Ten patients with relapsing-remitting multiple sclerosis and 6 with secondary progressive multiple sclerosis were randomly assigned to treatment: 6 to low-dose PDA-001, 6 to high-dose PDA-001, and 4 to placebo. No patient met Cutter׳s rule. One patient receiving high-dose PDA-001 had an increase in T2 and gadolinium lesions and in Expanded Disability Status Scale score during a multiple sclerosis flare 5 months after receiving PDA-001. No other patient had an increase in Expanded Disability Status Scale score>0.5, and most had stable or decreasing Expanded Disability Status Scale scores. With high-dose PDA-001, 1 patient experienced a grade 1 anaphylactoid reaction and 1 had grade 2 superficial thrombophlebitis. Other adverse events were mild to moderate and included headache, fatigue, infusion site reactions, and urinary tract infection. PDA-001 infusions were safe and well tolerated in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis patients. No paradoxical worsening of lesion counts was noted with either dose. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Population pharmacokinetics of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in patients with type 2 diabetes.

    PubMed

    Riggs, Matthew M; Staab, Alexander; Seman, Leo; MacGregor, Thomas R; Bergsma, Timothy T; Gastonguay, Marc R; Macha, Sreeraj

    2013-10-01

    Data from five randomized, placebo-controlled, multiple oral dose studies of empagliflozin in patients with type 2 diabetes mellitus (T2DM; N = 974; 1-100 mg q.d.; ≤12 weeks) were used to develop a population pharmacokinetic (PK) model for empagliflozin. The model consisted of two-compartmental disposition, lagged first-order absorption and first-order elimination, and incorporated appropriate covariates. Population estimates (interindividual variance, CV%) of oral apparent clearance, central and peripheral volumes of distribution, and inter-compartmental clearance were 9.87 L/h (26.9%), 3.02 L, 60.4 L (30.8%), and 5.16 L/h, respectively. An imposed allometric weight effect was the most influential PK covariate effect, with a maximum effect on exposure of ±30%, using 2.5th and 97.5th percentiles of observed weights, relative to the median observed weight. Sex and race did not lend additional description to PK variability beyond allometric weight effects, other than ∼25% greater oral absorption rate constant for Asian patients. Age, total protein, and smoking/alcohol history did not affect PK parameters. Predictive check plots were consistent with observed data, implying an adequate description of empagliflozin PKs following multiple dosing in patients with T2DM. The lack of marked covariate effects, including weight, suggests that no exposure-based dose adjustments were required within the study population and dose range. © The Author(s) 2013 John Wiley & Sons, Ltd.

  11. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  12. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.

    PubMed

    Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J

    2014-01-06

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  13. Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences

    NASA Astrophysics Data System (ADS)

    Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.

    2014-01-01

    The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.

  14. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    PubMed

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  15. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    PubMed

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.

  16. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  17. Commissioning a CT-compatible LDR tandem and ovoid applicator using Monte Carlo calculation and 3D dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, Justus; Newton, Joseph; Yang Yun

    2012-07-15

    Purpose: To determine the geometric and dose attenuation characteristics of a new commercially available CT-compatible LDR tandem and ovoid (T and O) applicator using Monte Carlo calculation and 3D dosimetry. Methods: For geometric characterization, we quantified physical dimensions and investigated a systematic difference found to exist between nominal ovoid angle and the angle at which the afterloading buckets fall within the ovoid. For dosimetric characterization, we determined source attenuation through asymmetric gold shielding in the buckets using Monte Carlo simulations and 3D dosimetry. Monte Carlo code MCNP5 was used to simulate 1.5 Multiplication-Sign 10{sup 9} photon histories from a {supmore » 137}Cs source placed in the bucket to achieve statistical uncertainty of 1% at a 6 cm distance. For 3D dosimetry, the distribution about an unshielded source was first measured to evaluate the system for {sup 137}Cs, after which the distribution was measured about sources placed in each bucket. Cylindrical PRESAGE{sup Registered-Sign} dosimeters (9.5 cm diameter, 9.2 cm height) with a central channel bored for source placement were supplied by Heuris Inc. The dosimeters were scanned with the Duke Large field of view Optical CT-Scanner before and after delivering a nominal dose at 1 cm of 5-8 Gy. During irradiation the dosimeter was placed in a water phantom to provide backscatter. Optical CT scan time lasted 15 min during which 720 projections were acquired at 0.5 Degree-Sign increments, and a 3D distribution was reconstructed with a (0.05 cm){sup 3} isotropic voxel size. The distributions about the buckets were used to calculate a 3D distribution of transmission rate through the bucket, which was applied to a clinical CT-based T and O implant plan. Results: The systematic difference in bucket angle relative to the nominal ovoid angle (105 Degree-Sign ) was 3.1 Degree-Sign -4.7 Degree-Sign . A systematic difference in bucket angle of 1 Degree-Sign , 5 Degree-Sign , and 10 Degree-Sign caused a 1%{+-} 0.1%, 1.7%{+-} 0.4%, and 2.6%{+-} 0.7% increase in rectal dose, respectively, with smaller effect to dose to Point A, bladder, sigmoid, and bowel. For 3D dosimetry, 90.6% of voxels had a 3D {gamma}-index (criteria = 0.1 cm, 3% local signal) below 1.0 when comparing measured and expected dose about the unshielded source. Dose transmission through the gold shielding at a radial distance of 1 cm was 85.9%{+-} 0.2%, 83.4%{+-} 0.7%, and 82.5%{+-} 2.2% for Monte Carlo, and measurement for left and right buckets, respectively. Dose transmission was lowest at oblique angles from the bucket with a minimum of 56.7%{+-} 0.8%, 65.6%{+-} 1.7%, and 57.5%{+-} 1.6%, respectively. For a clinical T and O plan, attenuation from the buckets leads to a decrease in average Point A dose of {approx}3.2% and decrease in D{sub 2cc} to bladder, rectum, bowel, and sigmoid of 5%, 18%, 6%, and 12%, respectively. Conclusions: Differences between dummy and afterloading bucket position in the ovoids is minor compared to effects from asymmetric ovoid shielding, for which rectal dose is most affected. 3D dosimetry can fulfill a novel role in verifying Monte Carlo calculations of complex dose distributions as are common about brachytherapy sources and applicators.« less

  18. Analysis of outcomes in radiation oncology: An integrated computational platform

    PubMed Central

    Liu, Dezhi; Ajlouni, Munther; Jin, Jian-Yue; Ryu, Samuel; Siddiqui, Farzan; Patel, Anushka; Movsas, Benjamin; Chetty, Indrin J.

    2009-01-01

    Radiotherapy research and outcome analyses are essential for evaluating new methods of radiation delivery and for assessing the benefits of a given technology on locoregional control and overall survival. In this article, a computational platform is presented to facilitate radiotherapy research and outcome studies in radiation oncology. This computational platform consists of (1) an infrastructural database that stores patient diagnosis, IMRT treatment details, and follow-up information, (2) an interface tool that is used to import and export IMRT plans in DICOM RT and AAPM/RTOG formats from a wide range of planning systems to facilitate reproducible research, (3) a graphical data analysis and programming tool that visualizes all aspects of an IMRT plan including dose, contour, and image data to aid the analysis of treatment plans, and (4) a software package that calculates radiobiological models to evaluate IMRT treatment plans. Given the limited number of general-purpose computational environments for radiotherapy research and outcome studies, this computational platform represents a powerful and convenient tool that is well suited for analyzing dose distributions biologically and correlating them with the delivered radiation dose distributions and other patient-related clinical factors. In addition the database is web-based and accessible by multiple users, facilitating its convenient application and use. PMID:19544785

  19. Dietary toxicity of field-contaminated invertebrates to marine fish: effects of metal doses and subcellular metal distribution.

    PubMed

    Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong

    2012-09-15

    There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Pharmacokinetics of the B-Cell Lymphoma 2 (Bcl-2) Inhibitor Venetoclax in Female Subjects with Systemic Lupus Erythematosus.

    PubMed

    Minocha, Mukul; Zeng, Jiewei; Medema, Jeroen K; Othman, Ahmed A

    2018-01-15

    Venetoclax is an oral selective Bcl-2 inhibitor approved for the treatment of patients with chronic lymphocytic leukemia with 17p deletion. Mechanistic and preclinical evidence warranted evaluation of venetoclax for the treatment of systemic lupus erythematosus (SLE). This work characterized the pharmacokinetics of venetoclax in female subjects with SLE. Single (10-500 mg) and multiple (30-600 mg) escalating doses of venetoclax or matching placebo were evaluated using randomized, double-blind, placebo-controlled designs (6 active and 2 placebo per dose with 73 unique SLE patients enrolled, 25 of whom enrolled twice). The multiple-dose evaluation consisted of two cycles, each with once-daily dosing for 7 days followed by a 21-day washout. Non-compartmental and population pharmacokinetic analyses of venetoclax serial plasma concentrations were conducted. Venetoclax exhibited approximately dose-proportional exposures, with peak concentrations observed 4-8 h post-dose. Venetoclax steady-state exposures were achieved by day 4 of dosing, and the median area under the plasma concentration-time curve (AUC) accumulation ratio ranged from 1.1 to 1.5. A two-compartment model with first-order absorption and elimination described venetoclax pharmacokinetics. The estimates (95% bootstrap confidence interval) for venetoclax apparent clearance, central and peripheral volumes of distribution, intercompartmental clearance, absorption rate constant, and lag time were 16.3 L/h (14.6-17.9), 37 L (26-57), 122 L (98-183), 3.7 L/h (2.6-5.0), 0.13 h -1 (0.11-0.17), and 1.6 h (1.6-1.7), respectively. The population estimate for venetoclax terminal-phase elimination half-life was approximately 28 h. In female subjects with SLE, venetoclax displayed pharmacokinetic characteristics consistent with previous observations in subjects with hematologic malignancies. CLINICALTRIALS. NCT01686555.

  1. Three-dimensional radiotherapy of head and neck and esophageal carcinomas: a monoisocentric treatment technique to achieve improved dose distributions.

    PubMed

    Ahmad, M; Nath, R

    2001-02-20

    The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.

  2. Preclinical Pharmacokinetics, Tissue Distribution, and Plasma Protein Binding of Sodium (±)-5-Bromo-2-(α-Hydroxypentyl) Benzoate (BZP), an Innovative Potent Anti-ischemic Stroke Agent.

    PubMed

    Tian, Xin; Li, Hong-Meng; Wei, Jing-Yao; Liu, Bing-Jie; Zhang, Yu-Hai; Wang, Gao-Ju; Chang, Jun-Biao; Qiao, Hai-Ling

    2016-01-01

    Sodium (±)-5-bromo-2-(α-hydroxypentyl) benzoate (BZP) is a potential cardiovascular drug and exerts potent neuroprotective effect against transient and long-term ischemic stroke in rats. BZP could convert into 3-butyl-6-bromo-1(3H)-isobenzofuranone (Br-NBP) in vitro and in vivo. However, the pharmacokinetic profiles of BZP and Br-NBP still have not been evaluated. For the purpose of investigating the pharmacokinetic profiles, tissue distribution, and plasma protein binding of BZP and Br-NBP, a rapid, sensitive, and specific method based on liquid chromatography coupled to mass spectrometry (LC-MS/MS) has been developed for determination of BZP and Br-NBP in biological samples. The results indicated that BZP and Br-NBP showed a short elimination half-life, and pharmacokinetic profile in rats (3, 6, and 12 mg/kg; i.v.) and beagle dogs (1, 2, and 4 mg/kg; i.v.gtt) were obtained after single dosing of BZP. After multiple dosing of BZP, there was no significant accumulation of BZP and Br-NBP in the plasma of rats and beagle dogs. Following i.v. single dose (6 mg/kg) of BZP to rats, BZP and Br-NBP were distributed rapidly into all tissues examined, with the highest concentrations of BZP and Br-NBP in lung and kidney, respectively. The brain distribution of Br-NBP in middle cerebral artery occlusion (MCAO) rats was more than in normal rats (P < 0.05). The plasma protein binding degree of BZP at three concentrations (8000, 20,000, and 80,000 ng/mL) from rat, beagle dog, and human plasma were 98.1-98.7, 88.9-92.7, and 74.8-83.7% respectively. In conclusion, both BZP and Br-NBP showed short half-life, good dose-linear pharmacokinetic profile, wide tissue distribution, and different degree protein binding to various species plasma. This was the first preclinical pharmacokinetic investigation of BZP and Br-NBP in both rats and beagle dogs, which provided vital guidance for further preclinical research and the subsequent clinical trials.

  3. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  4. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively).

  5. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    PubMed

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  6. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Sydes, Matthew R.; Dearnaley, David P.; Partridge, Mike

    2009-11-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  7. Osimertinib Western and Asian clinical pharmacokinetics in patients and healthy volunteers: implications for formulation, dose, and dosing frequency in pivotal clinical studies.

    PubMed

    Planchard, David; Brown, Kathryn H; Kim, Dong-Wan; Kim, Sang-We; Ohe, Yuichiro; Felip, Enriqueta; Leese, Philip; Cantarini, Mireille; Vishwanathan, Karthick; Jänne, Pasi A; Ranson, Malcolm; Dickinson, Paul A

    2016-04-01

    Osimertinib (AZD9291) 80 mg once daily is approved by the US FDA for the treatment of patients with metastatic EGFR T790M-positive NSCLC whose disease has previously progressed on EGFR-TKI therapy. Osimertinib PK was evaluated to define the dose and dosing interval, whether a fixed-dosing approach can be used globally, and the impact of formulation and food on exposure. AURA (NCT01802632): single- and multiple-dose PK of osimertinib (20-240 mg daily) was determined in patients with advanced NSCLC. Bioavailability study (NCT01951599): single-dose PK of osimertinib (20 mg) was determined in healthy volunteers with administration of capsule, solution, or tablet formulations fasted, and as a tablet in the fed and fasted state. Osimertinib was slowly absorbed and displayed dose-proportional increases in exposure from 20 to 240 mg. Distribution was extensive and clearance low to moderate, resulting in a mean half-life of 48.3 h. Steady state was achieved by 15 days of dosing, consistent with single-dose PK, with a peak-to-trough ratio of 1.6. Two active metabolites circulated at ~10 % of osimertinib exposure. Ethnicity did not appear to affect exposure. Osimertinib PK profiles in healthy volunteers were similar to those in patients and were unaffected by formulation. Food caused a clinically insignificant increase in exposure. Osimertinib PK supports once-daily dosing; the same dose for Asian and non-Asian populations; a fixed-dosing approach; a minimal effect of food on exposure; and a switch to tablet formulation without alteration to dose or schedule. Osimertinib plasma concentrations are sustained throughout the dosing period, which is considered optimal for efficacy.

  8. A product of independent beta probabilities dose escalation design for dual-agent phase I trials.

    PubMed

    Mander, Adrian P; Sweeting, Michael J

    2015-04-15

    Dual-agent trials are now increasingly common in oncology research, and many proposed dose-escalation designs are available in the statistical literature. Despite this, the translation from statistical design to practical application is slow, as has been highlighted in single-agent phase I trials, where a 3 + 3 rule-based design is often still used. To expedite this process, new dose-escalation designs need to be not only scientifically beneficial but also easy to understand and implement by clinicians. In this paper, we propose a curve-free (nonparametric) design for a dual-agent trial in which the model parameters are the probabilities of toxicity at each of the dose combinations. We show that it is relatively trivial for a clinician's prior beliefs or historical information to be incorporated in the model and updating is fast and computationally simple through the use of conjugate Bayesian inference. Monotonicity is ensured by considering only a set of monotonic contours for the distribution of the maximum tolerated contour, which defines the dose-escalation decision process. Varied experimentation around the contour is achievable, and multiple dose combinations can be recommended to take forward to phase II. Code for R, Stata and Excel are available for implementation. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  9. Pathology, Organ Distribution, and Immune Response after Single and Repeated Intravenous Injection of Rats with Clinical-Grade Parvovirus H1

    PubMed Central

    Geletneky, Karsten; Leoni, Anne-Laure; Pohlmeyer-Esch, Gabriele; Loebhard, Stephanie; Baetz, Andrea; Leuchs, Barbara; Roscher, Mandy; Hoefer, Constance; Jochims, Karin; Dahm, Michael; Huber, Bernard; Rommelaere, Jean; Krebs, Ottheinz; Hajda, Jacek

    2015-01-01

    Parvovirus H1 (H1PV) is an autonomous parvovirus that is transmitted in rodent populations. Its natural host is rats. H1PV infection is nonpathogenic except in rat and hamster fetuses and newborns. H1PV infection of human cancer cells caused strong oncolytic effects in preclinical models. For a clinical trial of H1PV in patients with brain tumors, clinical-grade H1PV was produced according to Good Manufacturing Practices. This report focuses on results obtained after a single high-dose intravenous injection of highly purified H1PV in 30 rats and multiple (n = 17) intravenous injections at 3 dose levels in 223 rats. In both studies, no virus-related mortality or macroscopic organ changes related to H1PV occurred. Histopathology after multiple virus injections revealed minimal diffuse bile duct hyperplasia in livers of animals of the highest dose group and germinal center development in spleens of animals from the high-dose group. Liver changes were reversible within a 2-wk recovery period after the last injection. Hematology, blood chemistry, and coagulation analyses did not reveal significant toxicologic changes due to H1PV. Virus injection stimulated the production of IgG antibodies but did not alter mononuclear cell function or induce cytokine release. PCR analysis showed dose-dependent levels of viral genomes in all organs tested. The virus was excreted primarily through feces. These data provide important information regarding H1PV infection in its natural host. Due to the confirmation of the favorable safety profile of H1PV in a permissive animal model, a phase I/IIa clinical trial of H1PV in brain tumor patients could be initiated. PMID:25730754

  10. Modeling Freedom From Progression for Standard-Risk Medulloblastoma: A Mathematical Tumor Control Model With Multiple Modes of Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodin, N. Patrik, E-mail: nils.patrik.brodin@rh.dk; Niels Bohr Institute, University of Copenhagen, Copenhagen; Vogelius, Ivan R.

    2013-10-01

    Purpose: As pediatric medulloblastoma (MB) is a relatively rare disease, it is important to extract the maximum information from trials and cohort studies. Here, a framework was developed for modeling tumor control with multiple modes of failure and time-to-progression for standard-risk MB, using published pattern of failure data. Methods and Materials: Outcome data for standard-risk MB published after 1990 with pattern of relapse information were used to fit a tumor control dose-response model addressing failures in both the high-dose boost volume and the elective craniospinal volume. Estimates of 5-year event-free survival from 2 large randomized MB trials were used tomore » model the time-to-progression distribution. Uncertainty in freedom from progression (FFP) was estimated by Monte Carlo sampling over the statistical uncertainty in input data. Results: The estimated 5-year FFP (95% confidence intervals [CI]) for craniospinal doses of 15, 18, 24, and 36 Gy while maintaining 54 Gy to the posterior fossa was 77% (95% CI, 70%-81%), 78% (95% CI, 73%-81%), 79% (95% CI, 76%-82%), and 80% (95% CI, 77%-84%) respectively. The uncertainty in FFP was considerably larger for craniospinal doses below 18 Gy, reflecting the lack of data in the lower dose range. Conclusions: Estimates of tumor control and time-to-progression for standard-risk MB provides a data-driven setting for hypothesis generation or power calculations for prospective trials, taking the uncertainties into account. The presented methods can also be applied to incorporate further risk-stratification for example based on molecular biomarkers, when the necessary data become available.« less

  11. Multiple-dose pharmacokinetics and safety of an ibuprofen-pseudoephedrine cold suspension in children.

    PubMed

    Gelotte, Cathy K; Prior, Mary Jane; Pendley, Charles; Zimmerman, Brenda; Lavins, Bernard J

    2010-07-01

    Two studies were conducted to characterize multiple-dose pharmacokinetics and potential drug interactions of ibuprofen and pseudoephedrine combined in a suspension and to evaluate safety of this combination in children with common cold, flu, or sinusitis. In the pharmacokinetic study, 24 healthy children aged 4-11 years were administered ibuprofen -pseudoephedrine suspension at 7.5 and 1.125 mg/kg, respectively, every 6 hours for 5 doses. Serial blood samples were drawn over 6 hours after final dose for assessment of steady-state pharmacokinetics. In the open-label, multicenter safety study, more than 100 children aged 2-11 years experiencing symptomatic rhinitis were enrolled. Ibuprofen -pseudoephedrine suspension was administered as needed at similar mg/kg doses every 6-8 hours for up to 3 days. Subjects enrolled in the pharmacokinetic study showed no accumulation of either drug; their weight-adjusted clearances were independent of age, and results were comparable with those from previous single-ingredient studies. For ibuprofen, oral clearance (Cl/F) was 77.5 + or - 16.4 mL/kg/h and volume of distribution (Vd/F) was 0.147 + or - 0.037 L/kg. For pseudoephedrine, Cl/F was 12.3 + or - 2.2 mL/kg/min and Vd/F was 2.52 + or - 0.47 L/kg. In the safety study, adverse events were reported for 18.4% of subjects; most were mild to moderate intensity. There was little difference in incidence of adverse events among different age and weight groups. In conclusion, administration of combined ibuprofen and pseudoephedrine in children demonstrated similar pharmacokinetics when compared with reports of the pharmacokinetics for the single-ingredient products, consistent with no apparent drug interactions. The combination suspension was generally well tolerated.

  12. Differential pencil beam dose computation model for photons.

    PubMed

    Mohan, R; Chui, C; Lidofsky, L

    1986-01-01

    Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.

  13. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.

  14. SU-E-I-15: Quantitative Evaluation of Dose Distributions From Axial, Helical and Cone-Beam CT Imaging by Measurement Using a Two-Dimensional Diode-Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chacko, M; Aldoohan, S; Sonnad, J

    2015-06-15

    Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less

  15. The effects of small field dosimetry on the biological models used in evaluating IMRT dose distributions

    NASA Astrophysics Data System (ADS)

    Cardarelli, Gene A.

    The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.

  16. SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gawad, M Abdel; Elgohary, M; Hassaan, M

    Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less

  17. Optimization of combined electron and photon beams for breast cancer

    NASA Astrophysics Data System (ADS)

    Xiong, W.; Li, J.; Chen, L.; Price, R. A.; Freedman, G.; Ding, M.; Qin, L.; Yang, J.; Ma, C.-M.

    2004-05-01

    Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.

  18. Recalculation of dose for each fraction of treatment on TomoTherapy.

    PubMed

    Thomas, Simon J; Romanchikova, Marina; Harrison, Karl; Parker, Michael A; Bates, Amy M; Scaife, Jessica E; Sutcliffe, Michael P F; Burnet, Neil G

    2016-01-01

    The VoxTox study, linking delivered dose to toxicity requires recalculation of typically 20-37 fractions per patient, for nearly 2000 patients. This requires a non-interactive interface permitting batch calculation with multiple computers. Data are extracted from the TomoTherapy(®) archive and processed using the computational task-management system GANGA. Doses are calculated for each fraction of radiotherapy using the daily megavoltage (MV) CT images. The calculated dose cube is saved as a digital imaging and communications in medicine RTDOSE object, which can then be read by utilities that calculate dose-volume histograms or dose surface maps. The rectum is delineated on daily MV images using an implementation of the Chan-Vese algorithm. On a cluster of up to 117 central processing units, dose cubes for all fractions of 151 patients took 12 days to calculate. Outlining the rectum on all slices and fractions on 151 patients took 7 h. We also present results of the Hounsfield unit (HU) calibration of TomoTherapy MV images, measured over an 8-year period, showing that the HU calibration has become less variable over time, with no large changes observed after 2011. We have developed a system for automatic dose recalculation of TomoTherapy dose distributions. This does not tie up the clinically needed planning system but can be run on a cluster of independent machines, enabling recalculation of delivered dose without user intervention. The use of a task management system for automation of dose calculation and outlining enables work to be scaled up to the level required for large studies.

  19. In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy.

    PubMed

    Puvanakrishnan, Priyaveena; Park, Jaesook; Chatterjee, Deyali; Krishnan, Sunil; Tunnell, James W

    2012-01-01

    Gold nanoparticles (GNPs) have gained significant interest as nanovectors for combined imaging and photothermal therapy of tumors. Delivered systemically, GNPs preferentially accumulate at the tumor site via the enhanced permeability and retention effect, and when irradiated with near infrared light, produce sufficient heat to treat tumor tissue. The efficacy of this process strongly depends on the targeting ability of the GNPs, which is a function of the particle's geometric properties (eg, size) and dosing strategy (eg, number and amount of injections). The purpose of this study was to investigate the effect of GNP type and dosing strategy on in vivo tumor targeting. Specifically, we investigated the in vivo tumor-targeting efficiency of pegylated gold nanoshells (GNSs) and gold nanorods (GNRs) for single and multiple dosing. We used Swiss nu/nu mice with a subcutaneous tumor xenograft model that received intravenous administration for a single and multiple doses of GNS and GNR. We performed neutron activation analysis to quantify the gold present in the tumor and liver. We performed histology to determine if there was acute toxicity as a result of multiple dosing. Neutron activation analysis results showed that the smaller GNRs accumulated in higher concentrations in the tumor compared to the larger GNSs. We observed a significant increase in GNS and GNR accumulation in the liver for higher doses. However, multiple doses increased targeting efficiency with minimal effect beyond three doses of GNPs. These results suggest a significant effect of particle type and multiple doses on increasing particle accumulation and on tumor targeting ability.

  20. Multiple Fentanyl Overdoses - New Haven, Connecticut, June 23, 2016.

    PubMed

    Tomassoni, Anthony J; Hawk, Kathryn F; Jubanyik, Karen; Nogee, Daniel P; Durant, Thomas; Lynch, Kara L; Patel, Rushaben; Dinh, David; Ulrich, Andrew; D'Onofrio, Gail

    2017-02-03

    On the evening of June 23, 2016, a white powder advertised as cocaine was purchased off the streets from multiple sources and used by an unknown number of persons in New Haven, Connecticut. During a period of less than 8 hours, 12 patients were brought to the emergency department (ED) at Yale New Haven Hospital, experiencing signs and symptoms consistent with opioid overdose. The route of intoxication was not known, but presumed to be insufflation ("snorting") in most cases. Some patients required doses of the opioid antidote naloxone exceeding 4 mg (usual initial dose = 0.1-0.2 mg intravenously), and several patients who were alert after receiving naloxone subsequently developed respiratory failure. Nine patients were admitted to the hospital, including four to the intensive care unit (ICU); three required endotracheal intubation, and one required continuous naloxone infusion. Three patients died. The white powder was determined to be fentanyl, a drug 50 times more potent than heroin, and it included trace amounts of cocaine. The episode triggered rapid notification of public health and law enforcement agencies, interviews of patients and their family members to trace and limit further use or distribution of the fentanyl, immediate naloxone resupply and augmentation for emergency medical services (EMS) crews, public health alerts, and plans to accelerate naloxone distribution to opioid users and their friends and families. Effective communication and timely, coordinated, collaborative actions of community partners reduced the harm caused by this event and prevented potential subsequent episodes.

  1. [Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].

    PubMed

    Terahara, A; Nakano, T; Tsujii, H

    1998-01-01

    Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.

  2. Three-dimensional Čerenkov tomography of energy deposition from ionizing radiation beams.

    PubMed

    Glaser, Adam K; Voigt, William H A; Davis, Scott C; Zhang, Rongxiao; Gladstone, David J; Pogue, Brian W

    2013-03-01

    Since its discovery during the 1930s the Čerenkov effect (light emission from charged particles traveling faster than the local speed of light in a dielectric medium) has been paramount in the development of high-energy physics research. The ability of the emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, to our knowledge, all applications of the process to date have focused on the identification of particles themselves, rather than their effect upon the surroundings through which they travel. Here we explore a novel application of the Čerenkov effect for the recovery of the spatial distribution of ionizing radiation energy deposition in a medium and apply it to the issue of dose determination in medical physics. By capturing multiple projection images of the Čerenkov light induced by a medical linear accelerator x-ray photon beam, we demonstrate the successful three-dimensional tomographic reconstruction of the imparted dose distribution.

  3. The measurement of radiation dose profiles for electron-beam computed tomography using film dosimetry.

    PubMed

    Zink, F E; McCollough, C H

    1994-08-01

    The unique geometry of electron-beam CT (EBCT) scanners produces radiation dose profiles with widths which can be considerably different from the corresponding nominal scan width. Additionally, EBCT scanners produce both complex (multiple-slice) and narrow (3 mm) radiation profiles. This work describes the measurement of the axial dose distribution from EBCT within a scattering phantom using film dosimetry methods, which offer increased convenience and spatial resolution compared to thermoluminescent dosimetry (TLD) techniques. Therapy localization film was cut into 8 x 220 mm strips and placed within specially constructed light-tight holders for placement within the cavities of a CT Dose Index (CTDI) phantom. The film was calibrated using a conventional overhead x-ray tube with spectral characteristics matched to the EBCT scanner (130 kVp, 10 mm A1 HVL). The films were digitized at five samples per mm and calibrated dose profiles plotted as a function of z-axis position. Errors due to angle-of-incidence and beam hardening were estimated to be less than 5% and 10%, respectively. The integral exposure under film dose profiles agreed with ion-chamber measurements to within 15%. Exposures measured along the radiation profile differed from TLD measurements by an average of 5%. The film technique provided acceptable accuracy and convenience in comparison to conventional TLD methods, and allowed high spatial-resolution measurement of EBCT radiation dose profiles.

  4. Thermoluminescence dosimetry and its applications in medicine--Part 2: History and applications.

    PubMed

    Kron, T

    1995-03-01

    Thermoluminescence dosimetry (TLD) has been available for dosimetry of ionising radiation for nearly 100 years. The variety of materials and their different physical forms allow the determination of different radiation qualities over a wide range of absorbed dose. This makes TL dosimeters useful in radiation protection where dose levels of microGy are monitored as well as in radiotherapy where doses up to several Gray are to be measured. The major advantages of TL detectors are their small physical size and that no cables or auxiliary equipment is required during the dose assessment. Therefore TLD is a good method for point dose measurements in phantoms as well as for in vivo dosimetry on patients during radiotherapy treatment. As an integrative dosimetric technique, it can be applied to personal dosimetry and it lends itself to the determination of dose distributions due to multiple or moving radiation sources (e.g. conformal and dynamic radiotherapy, computed tomography). In addition, TL dosimeters are easy to transport, and they can be mailed. This makes them well suited for intercomparison of doses delivered in different institutions. The present article aims at describing the various applications TLD has found in medicine by taking into consideration the physics and practice of TLD measurements which have been discussed in the first part of this review (Australas. Phys. Eng. Sci. Med. 17: 175-199, 1994).

  5. ASSESSING POPULATION EXPOSURES TO MULTIPLE AIR POLLUTANTS USING A MECHANISTIC SOURCE-TO-DOSE MODELING FRAMEWORK

    EPA Science Inventory

    The Modeling Environment for Total Risks studies (MENTOR) system, combined with an extension of the SHEDS (Stochastic Human Exposure and Dose Simulation) methodology, provide a mechanistically consistent framework for conducting source-to-dose exposure assessments of multiple pol...

  6. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.

  7. WE-AB-BRB-08: Progress Towards a 2D OSL Dosimetry System Using Al2O3:C Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M F; Yukihara, E; Schnell, E

    Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flatmore » field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr. Eduardo G. Yukihara also would like to thank the Alexander von Humboldt Foundation for his support at the DKFZ.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwidu, U; Devic, S; Shehadeh, M

    Purpose: A retrospective comparison of dose distributions achievable by High dose rate brachytherapy (HDRBT), Helical TomoTherapy (TOMO), CyberKnife (CK) and RapidArc (RA) in locally advanced inoperable cervical cancer patients is presented. Methods: Five patients with advanced stage cervical carcinoma were selected for this study after a full course of external beam radiotherapy (EBRT), chemotherapy and HDR Brachytherapy. To highlight any significant similarities/differences in dose distributions, high-risk clinical target volume (HRCTV) coverage, organs at risk (OAR) sparing, and machine specific delivery limitations, we used D90 (dose received by 90% of the volume) as the parameter for HRCTV coverage as recommended bymore » the GEC-ESTRO Working Group. We also compared both integral and differential dose volume histograms (DVH) between different dose distributions treatment modalities for HRCTV and OAR. Results: TOMO and RA provided the most conformal dose distributions to HRCTV. Median doses (in Gy) to organs at risk were; for rectal wall: 1.7±0.6, 2.5±0.6,1.2±0.3, and 1.5±0.6, and for bladder wall: 1.6±0.1, 2.4±0.4, 0.8±0.6, and 1.5±0.5, for HDRBT, TOMO, CK, and RA, respectively. Conclusion: Contemporary EBRT modalities might be able to replace brachytherapy treatments for cervix cancer. While brachytherapy dose distributions feature high dose gradients, EBRT modalities provide highly conformal dose distributions to the target. However, it is still not clear whether a highly conformal dose or high gradient dose is more clinically relevant for the HRCTV in cervix cancer patients.« less

  9. SU-F-T-380: Comparing the Effect of Respiration On Dose Distribution Between Conventional Tangent Pair and IMRT Techniques for Adjuvant Radiotherapy in Early Stage Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Ramaseshan, R

    2016-06-15

    Purpose: In this project, we compared the conventional tangent pair technique to IMRT technique by analyzing the dose distribution. We also investigated the effect of respiration on planning target volume (PTV) dose coverage in both techniques. Methods: In order to implement IMRT technique a template based planning protocol, dose constrains and treatment process was developed. Two open fields with optimized field weights were combined with two beamlet optimization fields in IMRT plans. We compared the dose distribution between standard tangential pair and IMRT. The improvement in dose distribution was measured by parameters such as conformity index, homogeneity index and coveragemore » index. Another end point was the IMRT technique will reduce the planning time for staff. The effect of patient’s respiration on dose distribution was also estimated. The four dimensional computed tomography (4DCT) for different phase of breathing cycle was used to evaluate the effect of respiration on IMRT planned dose distribution. Results: We have accumulated 10 patients that acquired 4DCT and planned by both techniques. Based on the preliminary analysis, the dose distribution in IMRT technique was better than conventional tangent pair technique. Furthermore, the effect of respiration in IMRT plan was not significant as evident from the 95% isodose line coverage of PTV drawn on all phases of 4DCT. Conclusion: Based on the 4DCT images, the breathing effect on dose distribution was smaller than what we expected. We suspect that there are two reasons. First, the PTV movement due to respiration was not significant. It might be because we used a tilted breast board to setup patients. Second, the open fields with optimized field weights in IMRT technique might reduce the breathing effect on dose distribution. A further investigation is necessary.« less

  10. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  11. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.

  12. Whole-Brain Radiotherapy With Simultaneous Integrated Boost to Multiple Brain Metastases Using Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerwaard, Frank J.; Hoorn, Elles A.P. van der; Verbakel, Wilko

    2009-09-01

    Purpose: Volumetric modulated arc therapy (RapidArc [RA]; Varian Medical Systems, Palo Alto, CA) allows for the generation of intensity-modulated dose distributions by use of a single gantry rotation. We used RA to plan and deliver whole-brain radiotherapy (WBRT) with a simultaneous integrated boost in patients with multiple brain metastases. Methods and Materials: Composite RA plans were generated for 8 patients, consisting of WBRT (20 Gy in 5 fractions) with an integrated boost, also 20 Gy in 5 fractions, to Brain metastases, and clinically delivered in 3 patients. Summated gross tumor volumes were 1.0 to 37.5 cm{sup 3}. RA plans weremore » measured in a solid water phantom by use of Gafchromic films (International Specialty Products, Wayne, NJ). Results: Composite RA plans could be generated within 1 hour. Two arcs were needed to deliver the mean of 1,600 monitor units with a mean 'beam-on' time of 180 seconds. RA plans showed excellent coverage of planning target volume for WBRT and planning target volume for the boost, with mean volumes receiving at least 95% of the prescribed dose of 100% and 99.8%, respectively. The mean conformity index was 1.36. Composite plans showed much steeper dose gradients outside Brain metastases than plans with a conventional summation of WBRT and radiosurgery. Comparison of calculated and measured doses showed a mean gamma for double-arc plans of 0.30, and the area with a gamma larger than 1 was 2%. In-room times for clinical RA sessions were approximately 20 minutes for each patient. Conclusions: RA treatment planning and delivery of integrated plans of WBRT and boosts to multiple brain metastases is a rapid and accurate technique that has a higher conformity index than conventional summation of WBRT and radiosurgery boost.« less

  13. Failure-probability driven dose painting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogelius, Ivan R.; Håkansson, Katrin; Due, Anne K.

    Purpose: To demonstrate a data-driven dose-painting strategy based on the spatial distribution of recurrences in previously treated patients. The result is a quantitative way to define a dose prescription function, optimizing the predicted local control at constant treatment intensity. A dose planning study using the optimized dose prescription in 20 patients is performed.Methods: Patients treated at our center have five tumor subvolumes from the center of the tumor (PET positive volume) and out delineated. The spatial distribution of 48 failures in patients with complete clinical response after (chemo)radiation is used to derive a model for tumor control probability (TCP). Themore » total TCP is fixed to the clinically observed 70% actuarial TCP at five years. Additionally, the authors match the distribution of failures between the five subvolumes to the observed distribution. The steepness of the dose–response is extracted from the literature and the authors assume 30% and 20% risk of subclinical involvement in the elective volumes. The result is a five-compartment dose response model matching the observed distribution of failures. The model is used to optimize the distribution of dose in individual patients, while keeping the treatment intensity constant and the maximum prescribed dose below 85 Gy.Results: The vast majority of failures occur centrally despite the small volumes of the central regions. Thus, optimizing the dose prescription yields higher doses to the central target volumes and lower doses to the elective volumes. The dose planning study shows that the modified prescription is clinically feasible. The optimized TCP is 89% (range: 82%–91%) as compared to the observed TCP of 70%.Conclusions: The observed distribution of locoregional failures was used to derive an objective, data-driven dose prescription function. The optimized dose is predicted to result in a substantial increase in local control without increasing the predicted risk of toxicity.« less

  14. Measurement of relative depth-dose distribution in radiochromic film dosimeters irradiated with 43-70 keV electron beam for industrial application

    NASA Astrophysics Data System (ADS)

    Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka

    2018-05-01

    The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.

  15. A multiscale Bayesian data integration approach for mapping air dose rates around the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Chen, Jinsong; Saito, Kimiaki

    2017-02-01

    This paper presents a multiscale data integration method to estimate the spatial distribution of air dose rates in the regional scale around the Fukushima Daiichi Nuclear Power Plant. We integrate various types of datasets, such as ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. The Bayesian method allows us to quantify the uncertainty in the estimates, and to provide the confidence intervals that are critical for robust decision-making. Although this approach is primarily data-driven, it has great flexibility to include mechanistic models for representing radiation transport or other complex correlations. We demonstrate our approach using three types of datasets collected at the same time over Fukushima City in Japan: (1) coarse-resolution airborne surveys covering the entire area, (2) car surveys along major roads, and (3) walk surveys in multiple neighborhoods. Results show that the method can successfully integrate three types of datasets and create an integrated map (including the confidence intervals) of air dose rates over the domain in high resolution. Moreover, this study provides us with various insights into the characteristics of each dataset, as well as radiocaesium distribution. In particular, the urban areas show high heterogeneity in the contaminant distribution due to human activities as well as large discrepancy among different surveys due to such heterogeneity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection

    PubMed Central

    Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.

    2017-01-01

    Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522

  17. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp; Yamaguchi, Hajime; Kizaki, Hisao

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV,more » spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.« less

  18. DMLC tracking and gating can improve dose coverage for prostate VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvill, E.; Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW 2065; School of Physics, University of Sydney, NSW 2006

    2014-09-15

    Purpose: To assess and compare the dosimetric impact of dynamic multileaf collimator (DMLC) tracking and gating as motion correction strategies to account for intrafraction motion during conventionally fractionated prostate radiotherapy. Methods: A dose reconstruction method was used to retrospectively assess the dose distributions delivered without motion correction during volumetric modulated arc therapy fractions for 20 fractions of five prostate cancer patients who received conventionally fractionated radiotherapy. These delivered dose distributions were compared with the dose distributions which would have been delivered had DMLC tracking or gating motion correction strategies been implemented. The delivered dose distributions were constructed by incorporating themore » observed prostate motion with the patient's original treatment plan to simulate the treatment delivery. The DMLC tracking dose distributions were constructed using the same dose reconstruction method with the addition of MLC positions from Linac log files obtained during DMLC tracking simulations with the observed prostate motions input to the DMLC tracking software. The gating dose distributions were constructed by altering the prostate motion to simulate the application of a gating threshold of 3 mm for 5 s. Results: The delivered dose distributions showed that dosimetric effects of intrafraction prostate motion could be substantial for some fractions, with an estimated dose decrease of more than 19% and 34% from the planned CTVD{sub 99%} and PTV D{sub 95%} values, respectively, for one fraction. Evaluation of dose distributions for DMLC tracking and gating deliveries showed that both interventions were effective in improving the CTV D{sub 99%} for all of the selected fractions to within 4% of planned value for all fractions. For the delivered dose distributions the difference in rectum V{sub 65%} for the individual fractions from planned ranged from −44% to 101% and for the bladder V{sub 65%} the range was −61% to 26% from planned. The application of tracking decreased the maximum rectum and bladder V{sub 65%} difference to 6% and 4%, respectively. Conclusions: For the first time, the dosimetric impact of DMLC tracking and gating to account for intrafraction motion during prostate radiotherapy has been assessed and compared with no motion correction. Without motion correction intrafraction prostate motion can result in a significant decrease in target dose coverage for a small number of individual fractions. This is unlikely to effect the overall treatment for most patients undergoing conventionally fractionated treatments. Both DMLC tracking and gating demonstrate dose distributions for all assessed fractions that are robust to intrafraction motion.« less

  19. Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.

    2017-03-01

    Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

  20. Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia

    PubMed Central

    Huang, Lianyan; Hayes, Scott; Yang, Guang

    2016-01-01

    Anesthetic agents are often administered in the neonatal period, a time of rapid brain development and synaptogenesis. Mounting evidence suggests that anesthetics can disrupt neurocognitive development, particularly in cases of multiple or prolonged anesthetic exposure. Previous studies have shown that administering multiple doses of ketamine-xylazine (KX) anesthesia to neonatal mice can induce long-term changes to synaptic plasticity in the cortex, but the effect on neurocognitive function remains unclear. In this study, we exposed neonatal mice to single dose and multiple doses of KX anesthesia in the neonatal period (postnatal days 7, 9, 11), and conducted a series of behavioral tests in young adulthood (1 month of age). Mice receiving multiple doses of KX anesthesia showed deficits in novel object recognition, sociability, preference for social novelty and contextual fear response, but no effect on auditory-cued fear response. Single dose of KX anesthesia had no effect on these behaviors except for contextual fear response. We also observed that multiple exposures to KX anesthesia were associated with decreased CaMKII phosphorylation, which is known to play a role in synapse development and long-term potentiation, likely contributing to learning impairment. PMID:27622724

  1. Evaluation of dose delivery accuracy of gamma knife using MRI polymer gel dosimeter in an inhomogeneous phantom

    NASA Astrophysics Data System (ADS)

    Pourfallah T, A.; Alam N, Riahi; M, Allahverdi; M, Ay; M, Zahmatkesh

    2009-05-01

    Polymer gel dosimetry is still the only dosimetry method for directly measuring three-dimensional dose distributions. MRI Polymer gel dosimeters are tissue equivalent and can act as a phantom material. Because of high dose response sensitivity, the MRI was chosen as readout device. In this study dose profiles calculated with treatment-planning software (LGP) and measurements with the MR polymer gel dosimeter for single-shot irradiations were compared. A custom-built 16 cm diameter spherical plexiglas head phantom was used in this study. Inside the phantom, there is a cubic cutout for insertion of gel phantoms and another cutout for inserting the inhomogeneities. The phantoms were scanned with a 1.5T MRI (Siemens syngo MR 2004A 4VA25A) scanner. The multiple spin-echo sequence with 32 echoes was used for the MRI scans. Calibration relations between the spin-spin relaxation rate and the absorbed dose were obtained by using small cylindrical vials, which were filled with the PAGAT polymer gel from the same batch as for the spherical phantom. 1D and 2D data obtained using gel dosimeter for homogeneous and inhomogeneous phantoms were compared with dose obtained using LGP calculation. The distance between relative isodose curves obtained for homogeneous phantom and heterogeneous phantoms exceed the accepted total positioning error (>±2mm). The findings of this study indicate that dose measurement using PAGAT gel dosimeter can be used for verifying dose delivering accuracy in GK unit in presence of inhomogeneities.

  2. Pharmacokinetics of Intravenous Finafloxacin in Healthy Volunteers

    PubMed Central

    Chiesa, Joseph; Lückermann, Mark; Fischer, Carsten; Dalhoff, Axel; Fuhr, Uwe

    2017-01-01

    ABSTRACT Finafloxacin is a novel fluoroquinolone exhibiting enhanced activity under acidic conditions and a broad-spectrum antibacterial profile. The present study assessed the pharmacokinetic properties and the safety and tolerability of finafloxacin following intravenous infusions. In this mixed-parallel-group, crossover study, healthy male and female volunteers received single ascending doses (18 volunteers, 200 to 1,000 mg) or multiple ascending doses (40 volunteers, 600 to 1,000 mg) of finafloxacin or placebo. Plasma and urine samples were collected by a dense sampling scheme to determine the pharmacokinetics of finafloxacin using a noncompartmental approach. Standard safety and tolerability data were documented. Finafloxacin had a volume of distribution of 90 to 127 liters (range) at steady state and 446 to 550 liters at pseudoequilibrium, indicating the elimination of a large fraction before pseudoequilibrium was reached. Areas under the concentration-time curves and maximum plasma concentrations (geometric means) increased slightly more than proportionally (6.73 to 45.9 μg · h/ml and 2.56 to 20.2 μg/ml, respectively), the terminal elimination half-life increased (10.6 to 17.1 h), and the urinary recovery decreased (44.2% to 31.7%) with increasing finafloxacin doses (single doses of 200 to 1,000 mg). The pharmacokinetic profiles suggested multiphasic elimination by both glomerular filtration and saturable tubular secretion. The values of the parameters were similar for single and multiple administrations. The coefficient of variation for the between-subject variability of exposure ranged from 10% (≤600 mg) to 38% (>600 mg). Adverse events were mild and nonspecific, with no dependence of adverse events on dose or treatment (including placebo) being detected. Despite a relatively high interindividual variability at higher doses, the level of exposure following intravenous administration of finafloxacin appears to be predictable. Individual elimination processes should be evaluated in more detail. Finafloxacin exhibited a favorable safety and tolerability profile. (This study has been registered at ClinicalTrials.gov under registration no. NCT01910883.) PMID:28784673

  3. Acute Biological Effects of Simulating the Whole-Body Radiation Dose Distribution from a Solar Particle Event Using a Porcine Model

    PubMed Central

    Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.

    2011-01-01

    In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326

  4. Pharmacokinetics of voriconazole after oral administration of single and multiple doses in Hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Sanchez-Migallon Guzman, David; Flammer, Keven; Papich, Mark G; Grooters, Amy M; Shaw, Shannon; Applegate, Jeff; Tully, Thomas N

    2010-04-01

    To determine the pharmacokinetics and safety of voriconazole administered orally in single and multiple doses in Hispaniolan Amazon parrots (Amazona ventralis). 15 clinically normal adult Hispaniolan Amazon parrots. Single doses of voriconazole (12 or 24 mg/kg) were administered orally to 15 and 12 birds, respectively; plasma voriconazole concentrations were determined at intervals via high-pressure liquid chromatography. In a multiple-dose trial, voriconazole (18 mg/kg) or water was administered orally to 6 and 4 birds, respectively, every 8 hours for 11 days (beginning day 0); trough plasma voriconazole concentrations were evaluated on 3 days. Birds were monitored daily, and clinicopathologic variables were evaluated before and after the trial. Voriconazole elimination half-life was short (0.70 to 1.25 hours). In the single-dose experiments, higher drug doses yielded proportional increases in the maximum plasma voriconazole concentration (C(max)) and area under the curve (AUC). In the multiple-dose trial, C(max), AUC, and plasma concentrations at 2 and 4 hours were decreased on day 10, compared with day 0 values; however, there was relatively little change in terminal half-life. With the exception of 1 voriconazole-treated parrot that developed polyuria, adverse effects were not evident. In Hispaniolan Amazon parrots, oral administration of voriconazole was associated with proportional kinetics following administration of single doses and a decrease in plasma concentration following administration of multiple doses. Oral administration of 18 mg of voriconazole/kg every 8 hours would require adjustment to maintain therapeutic concentrations during long-term treatment. Safety and efficacy of voriconazole treatment in this species require further investigation.

  5. Pharmacokinetics of opicapone, a third-generation COMT inhibitor, after single and multiple oral administration: A comparative study in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Daniela

    Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n = 8 per group) were orally treated with single (30, 60 or 90 mg/kg) or multiple (30 mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24 h post-dosing through amore » cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration ≤ 2 h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30–90 mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58–4.50 h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen. - Highlights: • Opicapone is relatively rapid absorbed after oral administration to rats. • Systemic exposure to opicapone increases approximately in a dose-proportional manner. • Opicapone and BIA 9-1079 show a small systemic accumulation after multiple-dosing.« less

  6. Agreement between gamma passing rates using computed tomography in radiotherapy and secondary cancer risk prediction from more advanced dose calculated models

    PubMed Central

    Balosso, Jacques

    2017-01-01

    Background During the past decades, in radiotherapy, the dose distributions were calculated using density correction methods with pencil beam as type ‘a’ algorithm. The objectives of this study are to assess and evaluate the impact of dose distribution shift on the predicted secondary cancer risk (SCR), using modern advanced dose calculation algorithms, point kernel, as type ‘b’, which consider change in lateral electrons transport. Methods Clinical examples of pediatric cranio-spinal irradiation patients were evaluated. For each case, two radiotherapy treatment plans with were generated using the same prescribed dose to the target resulting in different number of monitor units (MUs) per field. The dose distributions were calculated, respectively, using both algorithms types. A gamma index (γ) analysis was used to compare dose distribution in the lung. The organ equivalent dose (OED) has been calculated with three different models, the linear, the linear-exponential and the plateau dose response curves. The excess absolute risk ratio (EAR) was also evaluated as (EAR = OED type ‘b’ / OED type ‘a’). Results The γ analysis results indicated an acceptable dose distribution agreement of 95% with 3%/3 mm. Although, the γ-maps displayed dose displacement >1 mm around the healthy lungs. Compared to type ‘a’, the OED values from type ‘b’ dose distributions’ were about 8% to 16% higher, leading to an EAR ratio >1, ranged from 1.08 to 1.13 depending on SCR models. Conclusions The shift of dose calculation in radiotherapy, according to the algorithm, can significantly influence the SCR prediction and the plan optimization, since OEDs are calculated from DVH for a specific treatment. The agreement between dose distribution and SCR prediction depends on dose response models and epidemiological data. In addition, the γ passing rates of 3%/3 mm does not translate the difference, up to 15%, in the predictions of SCR resulting from alternative algorithms. Considering that modern algorithms are more accurate, showing more precisely the dose distributions, but that the prediction of absolute SCR is still very imprecise, only the EAR ratio could be used to rank radiotherapy plans. PMID:28811995

  7. Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supe, Sanjay S.; Bijina, T.K.; Varatharaj, C.

    2009-04-01

    Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of thismore » study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome points were higher for the apex model compared with the non-apex model. Mean doses to the optimization points for both the cylinder models and all the cylinder diameters were 6 Gy, matching with the prescription dose of 6 Gy. Iterative optimization routine resulted in the highest dose to apex point and dome points. The mean dose for optimization point was 6.01 Gy for iterative optimization and was much higher than 5.74 Gy for geometric and equal times routines. Step size of 1 cm gave the highest dose to the apex point. This step size was superior in terms of mean dose to optimization points. Selection of dose optimization points for the derivation of optimized dose distributions for vaginal cylinders affects the dose distributions.« less

  8. Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels

    PubMed Central

    Hyun, Seung Won; Wong, Weng Kee

    2016-01-01

    We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs. PMID:26565557

  9. Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels.

    PubMed

    Hyun, Seung Won; Wong, Weng Kee

    2015-11-01

    We construct an optimal design to simultaneously estimate three common interesting features in a dose-finding trial with possibly different emphasis on each feature. These features are (1) the shape of the dose-response curve, (2) the median effective dose and (3) the minimum effective dose level. A main difficulty of this task is that an optimal design for a single objective may not perform well for other objectives. There are optimal designs for dual objectives in the literature but we were unable to find optimal designs for 3 or more objectives to date with a concrete application. A reason for this is that the approach for finding a dual-objective optimal design does not work well for a 3 or more multiple-objective design problem. We propose a method for finding multiple-objective optimal designs that estimate the three features with user-specified higher efficiencies for the more important objectives. We use the flexible 4-parameter logistic model to illustrate the methodology but our approach is applicable to find multiple-objective optimal designs for other types of objectives and models. We also investigate robustness properties of multiple-objective optimal designs to mis-specification in the nominal parameter values and to a variation in the optimality criterion. We also provide computer code for generating tailor made multiple-objective optimal designs.

  10. Multiple-, But Not Single-, Dose of Parecoxib Reduces Shoulder Pain after Gynecologic Laparoscopy

    PubMed Central

    Zhang, Hufei; Shu, Haihua; Yang, Lu; Cao, Minghui; Zhang, Jingjun; Liu, Kexuan; Xiao, Liangcan; Zhang, Xuyu

    2012-01-01

    Background: The aim of this study was to investigate effect of single- and multiple-dose of parecoxib on shoulder pain after gynecologic laparoscopy. Methods: 126 patients requiring elective gynecologic laparoscopy were randomly allocated to three groups. Group M (multiple-dose): receiving parecoxib 40mg at 30min before the end of surgery, at 8 and 20hr after surgery, respectively; Group S (single-dose): receiving parecoxib 40mg at 30min before the end of surgery and normal saline at the corresponding time points; Group C (control): receiving normal saline at the same three time points. The shoulder pain was evaluated, both at rest and with motion, at postoperative 6, 24 and 48hr. The impact of shoulder pain on patients' recovery (activity, mood, walking and sleep) was also evaluated. Meanwhile, rescue analgesics and complications were recorded. Results: The overall incidence of shoulder pain in group M (37.5%) was lower than that in group C (61.9%) (difference=-24.4%; 95% CI: 3.4~45.4%; P=0.023). Whereas, single-dose regimen (61.0%) showed no significant reduction (difference with control=-0.9%; 95% CI: -21.9~20.0%; P=0.931). Moreover, multiple-dose regimen reduced the maximal intensity of shoulder pain and the impact for activity and mood in comparison to the control. Multiple-dose of parecoxib decreased the consumption of rescue analgesics. The complications were similar among all groups and no severe complications were observed. Conclusions: Multiple-, but not single-, dose of parecoxib may attenuate the incidence and intensity of shoulder pain and thereby improve patients' quality of recovery following gynecologic laparoscopy. PMID:23136538

  11. Analysis of the Body Distribution of Absorbed Dose in the Organs of Three Species of Fish from Sepetiba Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse

    2008-08-07

    The body distribution of Polonium-210 in three fishes from the Sepetiba Bay (Macrodon ancylodon, Micropogonias furnieri and Mugil curema) has been studied under the approach of the Department of Energy of the United States of America (DOE) that set the limit of absorbed dose rate in biota equal to 3.5x10{sup 3} {mu}Gy/y, and that also established the relation between dose rate (D) and radionuclide concentration (c) on a fish muscle fresh weight basis, as follows: D = 5.05 ExNxC, assuming that the radionuclide distribution is homogenous among organs. Two hypotheses were tested here, using statistical tools: 1) is the bodymore » distribution of absorbed dose homogenous among organs? and 2) is the body distribution of absorbed dose identical among studied fishes? It was concluded, as expected, that the distribution among organs is heterogeneous; but, unexpectedly, that the three fishes display identical body distribution pattern, although they belong to different trophic levels. Hence, concerning absorbed dose calculation, the statement that data distribution is homogenous must be understood merely as an approximation, at least in the case of Polonium-210.« less

  12. Total marrow irradiation using Helical TomoTherapy

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, Lourdes Maria

    Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when the PTV length exceeds the bed travel distance. In this work, the dosimetric challenges associated with junctioning longitudinally adjacent PTVs with HT were analyzed and the feasibility of PTV junctioning was demonstrated. The benefits of spatially dividing or splitting the treatment into a few sub-treatments along the longitudinal direction were also investigated.

  13. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene.

    PubMed

    Valcke, Mathieu; Haddad, Sami

    2015-01-01

    The objective of this study was to compare the magnitude of interindividual variability in internal dose for inhalation exposure to single versus multiple chemicals. Physiologically based pharmacokinetic models for adults (AD), neonates (NEO), toddlers (TODD), and pregnant women (PW) were used to simulate inhalation exposure to "low" (RfC-like) or "high" (AEGL-like) air concentrations of benzene (Bz) or dichloromethane (DCM), along with various levels of toluene alone or toluene with ethylbenzene and xylene. Monte Carlo simulations were performed and distributions of relevant internal dose metrics of either Bz or DCM were computed. Area under the blood concentration of parent compound versus time curve (AUC)-based variability in AD, TODD, and PW rose for Bz when concomitant "low" exposure to mixtures of increasing complexities occurred (coefficient of variation (CV) = 16-24%, vs. 12-15% for Bz alone), but remained unchanged considering DCM. Conversely, AUC-based CV in NEO fell (15 to 5% for Bz; 12 to 6% for DCM). Comparable trends were observed considering production of metabolites (AMET), except for NEO's CYP2E1-mediated metabolites of Bz, where an increased CV was observed (20 to 71%). For "high" exposure scenarios, Cmax-based variability of Bz and DCM remained unchanged in AD and PW, but decreased in NEO (CV= 11-16% to 2-6%) and TODD (CV= 12-13% to 7-9%). Conversely, AMET-based variability for both substrates rose in every subpopulation. This study analyzed for the first time the impact of multiple exposures on interindividual variability in toxicokinetics. Evidence indicates that this impact depends upon chemical concentrations and biochemical properties, as well as the subpopulation and internal dose metrics considered.

  14. Comparative pharmacokinetics of oxytetracycline in blunt-snout bream (Megalobrama amblycephala) with single and multiple-dose oral administration.

    PubMed

    Li, Ru-Qin; Ren, Yu-Wei; Li, Jing; Huang, Can; Shao, Jun-Hui; Chen, Xiao-Xuan; Wu, Zhi-Xin

    2015-06-01

    Research into the pharmacokinetics and residue elimination of oxytetracycline (OTC) is important both to determine the optimal dosage regimens and to establish a safe withdrawal time in fish. A depletion study is presented here for OTC in Megalobrama amblycephala with a single-dose (100 mg/kg) and multiple-dose (100 mg/kg for five consecutive days) oral administration. The study was conducted at 25 °C. As a result, a one-compartment model was developed. For the single dose, the absorption half-life was 5.79, 9.40, 6.96, and 8.06 h in the plasma, liver, kidney, and muscle, respectively. However, the absorption half-life was 3.62, 7.33, 4.59, and 6.02 h with multiple-dose oral administration. The elimination half-time in the plasma, liver, kidney, and muscle was 58.63, 126.43, 65.1, and 58.85 h when M. amblycephala was treated with a single dose. However, the elimination half-time changed to 91.75, 214.87, 126.22, and 135.84 h with multiple-dose oral administration.

  15. SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, M; Kozuka, T; Oguchi, M

    2014-06-15

    Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder.more » By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of the scattered light.« less

  16. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, A L; University of Surrey, Guildford, Surrey; Bradley, D A

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy.more » Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film dosimetry and gamma comparison to DICOM RTDose files has been demonstrated as suitable to fulfil this need.« less

  17. Time-to-event continual reassessment method incorporating treatment cycle information with application to an oncology phase I trial.

    PubMed

    Huang, Bo; Kuan, Pei Fen

    2014-11-01

    Delayed dose limiting toxicities (i.e. beyond first cycle of treatment) is a challenge for phase I trials. The time-to-event continual reassessment method (TITE-CRM) is a Bayesian dose-finding design to address the issue of long observation time and early patient drop-out. It uses a weighted binomial likelihood with weights assigned to observations by the unknown time-to-toxicity distribution, and is open to accrual continually. To avoid dosing at overly toxic levels while retaining accuracy and efficiency for DLT evaluation that involves multiple cycles, we propose an adaptive weight function by incorporating cyclical data of the experimental treatment with parameters updated continually. This provides a reasonable estimate for the time-to-toxicity distribution by accounting for inter-cycle variability and maintains the statistical properties of consistency and coherence. A case study of a First-in-Human trial in cancer for an experimental biologic is presented using the proposed design. Design calibrations for the clinical and statistical parameters are conducted to ensure good operating characteristics. Simulation results show that the proposed TITE-CRM design with adaptive weight function yields significantly shorter trial duration, does not expose patients to additional risk, is competitive against the existing weighting methods, and possesses some desirable properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.

    PubMed

    Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J

    2003-02-01

    The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.

  19. Pharmacokinetics interaction between imatinib and genistein in rats.

    PubMed

    Wang, Zhe; Wang, Li; Xia, Meng-Ming; Sun, Wei; Huang, Cheng-Ke; Cui, Xiao; Hu, Guo-Xin; Lian, Qing-Quan; Wang, Zeng-Shou

    2015-01-01

    The objective of this work was to investigate the effect of orally administered genistein on the pharmacokinetics of imatinib and N-desmethyl imatinib in rats. Twenty-five healthy male SD (Sprague-Dawley) rats were randomly divided into five groups: A group (control group), B group (multiple dose of 100 mg/kg genistein for consecutive 15 days), C group (multiple dose of 50 mg/kg genistein for consecutive 15 days), D group (a single dose of 100 mg/kg genistein), and E group (a single dose of 50 mg/kg genistein). A single dose of imatinib is administered orally 30 min after administration of genistein (100 mg/kg or 50 mg/kg). The pharmacokinetic parameters of imatinib and N-desmethyl imatinib were calculated by DAS 3.0 software. The multiple dose of 100 mg/kg or 50 mg/kg genistein significantly (P < 0.05) decreased the AUC0-t and C max of imatinib. AUC0-t and the C max of N-desmethyl imatinib were also increased, but without any significant difference. However, the single dose of 100 mg/kg or 50 mg/kg genistein has no effect on the pharmacokinetics of imatinib and N-desmethyl imatinib. Those results indicated that multiple dose of genistein (100 mg/kg or 50 mg/kg) induces the metabolism of imatinib, while single dose of genistein has no effect.

  20. Statistical strategies for averaging EC50 from multiple dose-response experiments.

    PubMed

    Jiang, Xiaoqi; Kopp-Schneider, Annette

    2015-11-01

    In most dose-response studies, repeated experiments are conducted to determine the EC50 value for a chemical, requiring averaging EC50 estimates from a series of experiments. Two statistical strategies, the mixed-effect modeling and the meta-analysis approach, can be applied to estimate average behavior of EC50 values over all experiments by considering the variabilities within and among experiments. We investigated these two strategies in two common cases of multiple dose-response experiments in (a) complete and explicit dose-response relationships are observed in all experiments and in (b) only in a subset of experiments. In case (a), the meta-analysis strategy is a simple and robust method to average EC50 estimates. In case (b), all experimental data sets can be first screened using the dose-response screening plot, which allows visualization and comparison of multiple dose-response experimental results. As long as more than three experiments provide information about complete dose-response relationships, the experiments that cover incomplete relationships can be excluded from the meta-analysis strategy of averaging EC50 estimates. If there are only two experiments containing complete dose-response information, the mixed-effects model approach is suggested. We subsequently provided a web application for non-statisticians to implement the proposed meta-analysis strategy of averaging EC50 estimates from multiple dose-response experiments.

  1. SU-F-BRD-15: Quality Correction Factors in Scanned Or Broad Proton Therapy Beams Are Indistinguishable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve

    2015-06-15

    Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less

  2. Design and characterization of a new high-dose-rate brachytherapy Valencia applicator for larger skin lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Niatsetski, Y.; Laarse, R. van der

    Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a {sup 192}Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water. Methods: The PENELOPE2008 MC code was used to optimize dwell positions and dwell times.more » Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated. Finally, MC data were validated experimentally for a {sup 192}Ir mHDR-v2 source by measuring (i) dose distributions with radiochromic EBT3 films (ISP); (ii) percentage depth–dose (PDD) curve with the parallel-plate ionization chamber Advanced Markus (PTW); and (iii) absolute dose rate with EBT3 films and the PinPoint T31016 (PTW) ionization chamber. Results: The new applicator is made of tungsten alloy (Densimet) and consists of a set of interchangeable collimators. Three catheters are used to allocate the source at prefixed dwell positions with preset weights to produce a homogenous dose distribution at the typical prescription depth of 3 mm in water. The same plan is used for all available collimators. PDD, absolute dose rate per unit of air kerma strength, and off-axis profiles in a cylindrical water phantom are reported. These data can be used for treatment planning. Leakage around the applicator was also scored. The dose distributions, PDD, and absolute dose rate calculated agree within experimental uncertainties with the doses measured: differences of MC data with chamber measurements are up to 0.8% and with radiochromic films are up to 3.5%. Conclusions: The new applicator and the dosimetric data provided here will be a valuable tool in clinical practice, making treatment of large skin lesions simpler, faster, and safer. Also the dose to surrounding healthy tissues is minimal.« less

  3. Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara

    2014-11-12

    Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Novel microbiological and spatial statistical methods to improve strength of epidemiological evidence in a community-wide waterborne outbreak.

    PubMed

    Jalava, Katri; Rintala, Hanna; Ollgren, Jukka; Maunula, Leena; Gomez-Alvarez, Vicente; Revez, Joana; Palander, Marja; Antikainen, Jenni; Kauppinen, Ari; Räsänen, Pia; Siponen, Sallamaari; Nyholm, Outi; Kyyhkynen, Aino; Hakkarainen, Sirpa; Merentie, Juhani; Pärnänen, Martti; Loginov, Raisa; Ryu, Hodon; Kuusi, Markku; Siitonen, Anja; Miettinen, Ilkka; Santo Domingo, Jorge W; Hänninen, Marja-Liisa; Pitkänen, Tarja

    2014-01-01

    Failures in the drinking water distribution system cause gastrointestinal outbreaks with multiple pathogens. A water distribution pipe breakage caused a community-wide waterborne outbreak in Vuorela, Finland, July 2012. We investigated this outbreak with advanced epidemiological and microbiological methods. A total of 473/2931 inhabitants (16%) responded to a web-based questionnaire. Water and patient samples were subjected to analysis of multiple microbial targets, molecular typing and microbial community analysis. Spatial analysis on the water distribution network was done and we applied a spatial logistic regression model. The course of the illness was mild. Drinking untreated tap water from the defined outbreak area was significantly associated with illness (RR 5.6, 95% CI 1.9-16.4) increasing in a dose response manner. The closer a person lived to the water distribution breakage point, the higher the risk of becoming ill. Sapovirus, enterovirus, single Campylobacter jejuni and EHEC O157:H7 findings as well as virulence genes for EPEC, EAEC and EHEC pathogroups were detected by molecular or culture methods from the faecal samples of the patients. EPEC, EAEC and EHEC virulence genes and faecal indicator bacteria were also detected in water samples. Microbial community sequencing of contaminated tap water revealed abundance of Arcobacter species. The polyphasic approach improved the understanding of the source of the infections, and aided to define the extent and magnitude of this outbreak.

  5. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers

    PubMed Central

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-01-01

    Aim The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Methods Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. Results ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Conclusions Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. PMID:23016924

  6. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers.

    PubMed

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-05-01

    The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  7. Assessment of the effects of CT dose in averaged x-ray CT images of a dose-sensitive polymer gel

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Kakakhel, M. B.; Johnston, H.; Jirasek, A.; Trapp, J. V.

    2015-01-01

    The signal-to-noise ratio achievable in x-ray computed tomography (CT) images of polymer gels can be increased by averaging over multiple scans of each sample. However, repeated scanning delivers a small additional dose to the gel which may compromise the accuracy of the dose measurement. In this study, a NIPAM-based polymer gel was irradiated and then CT scanned 25 times, with the resulting data used to derive an averaged image and a "zero-scan" image of the gel. Comparison between these two results and the first scan of the gel showed that the averaged and zero-scan images provided better contrast, higher contrast-to- noise and higher signal-to-noise than the initial scan. The pixel values (Hounsfield units, HU) in the averaged image were not noticeably elevated, compared to the zero-scan result and the gradients used in the linear extrapolation of the zero-scan images were small and symmetrically distributed around zero. These results indicate that the averaged image was not artificially lightened by the small, additional dose delivered during CT scanning. This work demonstrates the broader usefulness of the zero-scan method as a means to verify the dosimetric accuracy of gel images derived from averaged x-ray CT data.

  8. Decorporation Approach after Rat Lung Contamination with Plutonium: Evaluation of the Key Parameters Influencing the Efficacy of a Protracted Chelation Treatment.

    PubMed

    Grémy, Olivier; Coudert, Sylvie; Renault, Daniel; Miccoli, Laurent

    2017-11-01

    While the efficacy of a protracted zinc (Zn)- or calcium (Ca)-diethylenetriaminepentaacetic acid (DTPA) treatment in reducing transuranic body burden has already been demonstrated, questions about therapeutic variables remain. In response to this, we designed animal experiments primarily to assess both the effect of fractionation of a given dose and the effect of the frequency of dose fraction, with the same total dose. In our study, rats were contaminated intravenously with plutonium (Pu) then treated several days later with Ca-DTPA given at once or in various split-dose regimens cumulating to the same total dose and spread over several days. Similar efficacies were induced by the injection of the total dose or by splitting the dose in several smaller doses, independent of the number of doses and the dose level per injection. In a second study, rats were pulmonary contaminated, and three weeks later they received a Ca-DTPA dose 11-fold higher than the maximal daily recommended dose, administered either as a single bolus or as numerous multiple injections cumulating to the same dose, based on different injection frequency schedules. Independent of frequency schedule, the various split-dose regimens spread over weeks/months were as efficient as single delivery of the total dose in mobilizing lung plutonium, and had a therapeutic advantage for removal of retained hepatic and bone plutonium burdens. We concluded that cumulative dose level was a therapeutic variable of greater importance than the distribution of split doses for the success of a repeated treatment regimen on retained tissue plutonium. In addition, pulmonary administration of clodronate, which aims at killing alveolar macrophages and subsequently releasing their plutonium content, and which is associated with a continuous Ca-DTPA infusion regimen, suggested that the efficacy of injected Ca-DTPA in decorporating lung deposit is limited, due to its restricted penetration into alveolar macrophages and not because plutonium, as a physicochemical form, is unavailable for chelation.

  9. Dosimetric comparison of 3D conformal, IMRT, and V-MAT techniques for accelerated partial-breast irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Jian-Jian; Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai

    2014-07-01

    The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies includingmore » gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10 Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V{sub 10}) or 20 Gy (V{sub 20}) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V{sub 5} and D{sub 5}). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.« less

  10. The tissue distribution and excretion study of paeoniflorin-6'-O-benzene sulfonate (CP-25) in rats.

    PubMed

    Zhao, Mingyi; Zhou, Peng; Yu, Jun; James, Asenso; Xiao, Feng; Wang, Chun; Wei, Wei

    2018-03-09

    Paeoniflorin-6'-O-benzene sulfonate (code: CP-25) is a novel ester derivative of paeoniflorin (Pae). Compared to Pae, CP-25 has higher lipid solubility, bioavailability and better bioactivity. However, the tissue distribution and excretion of CP-25 still remain unknown. The LC-MS method was applied to investigate the tissue distribution and excretion of CP-25 in rats. As such, 50 mg/kg of CP-25 and Pae were administered to rats in multiple doses via an oral route. CP-25 and Pae were distributed widely and rapidly in all the tested tissues. Compared with Pae, the concentrations of CP-25 were almost increased evidently in most tissues. The highest CP-25 level was found in the liver (1476.33 ± 535.20 ng/g, male; 1970.38 ± 177.21 ng/g, female) at 3 h, and a high concentration of CP-25 was detected in male and female intestine, synovium, muscle, lung, and brain. Following a single oral dose of 50 mg/kg of CP-25 in rats, the total excretion of CP-25 was merely 21.8% (18.40, 3.19 and 0.22% for feces, bile and urine, respectively) in males; and was approximately 21.3% (14.04, 7.16 and 0.14% for feces, bile and urine, respectively) in females. The results indicated that the CP-25 concentration was higher in major tissues than Pae; CP-25 was primarily excreted through the feces; and there were gender-related differences in the tissue distribution and excretion.

  11. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  12. Forward treatment planning techniques to reduce the normalization effect in Gamma Knife radiosurgery.

    PubMed

    Cheng, Hao-Wen; Lo, Wei-Lun; Kuo, Chun-Yuan; Su, Yu-Kai; Tsai, Jo-Ting; Lin, Jia-Wei; Wang, Yu-Jen; Pan, David Hung-Chi

    2017-11-01

    In Gamma Knife forward treatment planning, normalization effect may be observed when multiple shots are used for treating large lesions. This effect can reduce the proportion of coverage of high-value isodose lines within targets. The aim of this study was to evaluate the performance of forward treatment planning techniques using the Leksell Gamma Knife for the normalization effect reduction. We adjusted the shot positions and weightings to optimize the dose distribution and reduce the overlap of high-value isodose lines from each shot, thereby mitigating the normalization effect during treatment planning. The new collimation system, Leksell Gamma Knife Perfexion, which contains eight movable sectors, provides an additional means to reduce the normalization effect by using composite shots. We propose different techniques in forward treatment planning that can reduce the normalization effect. Reducing the normalization effect increases the coverage proportion of higher isodose lines within targets, making the high-dose region within targets more uniform and increasing the mean dose to targets. Because of the increase in the mean dose to the target after reducing the normalization effect, we can set the prescribed marginal dose at a higher isodose level and reduce the maximum dose, thereby lowering the risk of complications. © 2017 Shuang Ho Hospital-Taipei Medical University. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. Pharmacokinetics, Microbial Response, and Pulmonary Outcomes of Multidose Intravenous Azithromycin in Preterm Infants at Risk for Ureaplasma Respiratory Colonization

    PubMed Central

    Merchan, L. Marcela; Hassan, Hazem E.; Terrin, Michael L.; Waites, Ken B.; Kaufman, David A.; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J.; Schelonka, Robert; Magder, Laurence S.; Shukla, Sagar; Eddington, Natalie D.

    2014-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg0.75, 1.88 liters · kg, 1.79 liters/h · kg0.75, and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating Ureaplasma spp. from the preterm respiratory tract. PMID:25385115

  14. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  15. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less

  16. Methods for Probabilistic Radiological Dose Assessment at a High-Level Radioactive Waste Repository.

    NASA Astrophysics Data System (ADS)

    Maheras, Steven James

    Methods were developed to assess and evaluate the uncertainty in offsite and onsite radiological dose at a high-level radioactive waste repository to show reasonable assurance that compliance with applicable regulatory requirements will be achieved. Uncertainty in offsite dose was assessed by employing a stochastic precode in conjunction with Monte Carlo simulation using an offsite radiological dose assessment code. Uncertainty in onsite dose was assessed by employing a discrete-event simulation model of repository operations in conjunction with an occupational radiological dose assessment model. Complementary cumulative distribution functions of offsite and onsite dose were used to illustrate reasonable assurance. Offsite dose analyses were performed for iodine -129, cesium-137, strontium-90, and plutonium-239. Complementary cumulative distribution functions of offsite dose were constructed; offsite dose was lognormally distributed with a two order of magnitude range. However, plutonium-239 results were not lognormally distributed and exhibited less than one order of magnitude range. Onsite dose analyses were performed for the preliminary inspection, receiving and handling, and the underground areas of the repository. Complementary cumulative distribution functions of onsite dose were constructed and exhibited less than one order of magnitude range. A preliminary sensitivity analysis of the receiving and handling areas was conducted using a regression metamodel. Sensitivity coefficients and partial correlation coefficients were used as measures of sensitivity. Model output was most sensitive to parameters related to cask handling operations. Model output showed little sensitivity to parameters related to cask inspections.

  17. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  18. Pharmacokinetics, Pharmacodynamics, and Tolerability of Single and Multiple Doses of Trandolapril, an Effective Angiotensin-Converting Enzyme Inhibitor, in Healthy Chinese Subjects.

    PubMed

    Li, Xiaojiao; Liu, Chang; Wu, Min; Zhang, Hong; Sun, Yanfu; Cheng, Longmei; Chen, Hong; Liu, Chengjiao; Yang, Lizhi; Zhang, Qi; Cao, Yuchen; Gu, Jingkai; Ding, Yanhua

    2016-08-01

    Trandolapril is the pro-drug of trandolaprilat, a non-sulfhydryl angiotensin-converting enzyme inhibitor. This study was designed to assess the pharmacokinetics (PK), pharmacodynamics (PD), and tolerability of single and multiple doses of trandolapril in healthy Chinese subjects. Healthy subjects (six men and six women) were randomized into a single-dose, 3 × 3 crossover study (1-2-4 mg, 2-4-1 mg, and 4-1-2 mg), and a multiple-dose study (2 mg/day, 6 days). Serial blood and urine samples were collected after drug administration and analyzed using a validated LC-MS/MS method, and the trandolapril and trandolaprilat PK parameters were obtained. PD was evaluated by the changes in blood pressure and heart rates after dosing. Tolerability was assessed by monitoring adverse events, vital signs, ECGs, and changes in laboratory tests. In the single-dose study, trandolapril was absorbed rapidly, and peak plasma levels (C max, 1.57, 3.77, and 7.99 ng/mL) and AUCs (1.89, 3.46, and 6.47 ng/mL) were dose-dependent. The AUC0-∞ of trandolaprilat was dose-dependent, but in a non-linear fashion. The cumulative urine excretion of trandolapril and trandolaprilat was 5.51, 6.20, and 7.41 % for three doses, respectively. In the multiple-dose study, steady-state pharmacokinetics was observed; there was no trandolapril accumulation, but there was mild trandolaprilat accumulation (R = 1.67). Trandolapril was well tolerated. The most pronounced reductions in blood pressure were observed at 8 h after administration, which was later than T max. No orthostatic hypotension occurred. The pharmacokinetics and pharmacodynamics following single and multiple oral doses trandolapril in healthy Chinese subjects are similar to those observed in non-Chinese healthy subjects.

  19. Stochastic simulation of radium-223 dichloride therapy at the sub-cellular level

    NASA Astrophysics Data System (ADS)

    Gholami, Y.; Zhu, X.; Fulton, R.; Meikle, S.; El-Fakhri, G.; Kuncic, Z.

    2015-08-01

    Radium-223 dichloride (223Ra) is an alpha particle emitter and a natural bone-seeking radionuclide that is currently used for treating osteoblastic bone metastases associated with prostate cancer. The stochastic nature of alpha emission, hits and energy deposition poses some challenges for estimating radiation damage. In this paper we investigate the distribution of hits to cells by multiple alpha particles corresponding to a typical clinically delivered dose using a Monte Carlo model to simulate the stochastic effects. The number of hits and dose deposition were recorded in the cytoplasm and nucleus of each cell. Alpha particle tracks were also visualized. We found that the stochastic variation in dose deposited in cell nuclei (≃ 40%) can be attributed in part to the variation in LET with pathlength. We also found that ≃ 18% of cell nuclei receive less than one sigma below the average dose per cell (≃ 15.4 Gy). One possible implication of this is that the efficacy of cell kill in alpha particle therapy need not rely solely on ionization clustering on DNA but possibly also on indirect DNA damage through the production of free radicals and ensuing intracellular signaling.

  20. SU-D-BRC-03: Development and Validation of an Online 2D Dose Verification System for Daily Patient Plan Delivery Accuracy Check

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J; Hu, W; Xing, Y

    Purpose: All plan verification systems for particle therapy are designed to do plan verification before treatment. However, the actual dose distributions during patient treatment are not known. This study develops an online 2D dose verification tool to check the daily dose delivery accuracy. Methods: A Siemens particle treatment system with a modulated scanning spot beam is used in our center. In order to do online dose verification, we made a program to reconstruct the delivered 2D dose distributions based on the daily treatment log files and depth dose distributions. In the log files we can get the focus size, positionmore » and particle number for each spot. A gamma analysis is used to compare the reconstructed dose distributions with the dose distributions from the TPS to assess the daily dose delivery accuracy. To verify the dose reconstruction algorithm, we compared the reconstructed dose distributions to dose distributions measured using PTW 729XDR ion chamber matrix for 13 real patient plans. Then we analyzed 100 treatment beams (58 carbon and 42 proton) for prostate, lung, ACC, NPC and chordoma patients. Results: For algorithm verification, the gamma passing rate was 97.95% for the 3%/3mm and 92.36% for the 2%/2mm criteria. For patient treatment analysis,the results were 97.7%±1.1% and 91.7%±2.5% for carbon and 89.9%±4.8% and 79.7%±7.7% for proton using 3%/3mm and 2%/2mm criteria, respectively. The reason for the lower passing rate for the proton beam is that the focus size deviations were larger than for the carbon beam. The average focus size deviations were −14.27% and −6.73% for proton and −5.26% and −0.93% for carbon in the x and y direction respectively. Conclusion: The verification software meets our requirements to check for daily dose delivery discrepancies. Such tools can enhance the current treatment plan and delivery verification processes and improve safety of clinical treatments.« less

  1. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    PubMed

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.

  2. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: Inmore » order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for a refined clinical treatment planning system. The improved dose rate measurements will facilitate a clinical study, which could correlate the therapeutic outcome of a brachytherapy treatment with an applicator and its individual dose rate distribution.« less

  3. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and the quality of the radiation dose absorbed by individual cells. The principal value of this reported potential multiparametric cellular biodosimeter is suggested to be that it justifies a search for similar but more robust radiogenic assays. That is, K18 is only one radiation dose-sensitive expressed protein, whereas analytical techniques of genomics and proteomics can be used to simultaneously analyze multiple gene and protein expressions resulting from radiation-dose absorption. The potential usefulness of multiparametric cellular biodosimeters will be best realized from quantitatively profiling these multiple markers using these modern techniques.

  4. Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine

    Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less

  5. SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Gautam, A; Kerr, M

    2016-06-15

    Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less

  6. Converging stereotactic radiotherapy using kilovoltage X-rays: experimental irradiation of normal rabbit lung and dose-volume analysis with Monte Carlo simulation.

    PubMed

    Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi

    2009-10-01

    To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.

  7. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less

  8. Pomalidomide for Multiple Myeloma

    Cancer.gov

    A summary of results from a phase III trial that compared the combination of pomalidomide (Pomalyst®) and low-dose dexamethasone versus high-dose dexamethasone alone in patients with multiple myeloma that has progressed despite other treatments.

  9. SU-F-BRF-13: Investigating the Feasibility of Accurate Dose Measurement in a Deforming Radiochromic Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juang, T; Adamovics, J; Oldham, M

    Purpose: Presage-Def, a deformable radiochromic 3D dosimeter, has been previously shown to have potential for validating deformable image registration algorithms. This work extends this effort to investigate the feasibility of using Presage-Def to validate dose-accumulation algorithms in deforming structures. Methods: Two cylindrical Presage-Def dosimeters (8cm diameter, 4.5cm length) were irradiated in a water-bath with a simple 4-field box treatment. Isocentric dose was 20Gy. One dosimeter served as control (no deformation) while the other was laterally compressed during irradiation by 21%. Both dosimeters were imaged before and after irradiation with a fast (∼10 minutes for 1mm isotropic resolution), broad beam, highmore » resolution optical-CT scanner. Measured dose distributions were compared to corresponding distributions calculated by a commissioned Eclipse planning system. Accuracy in the control was evaluated with 3D gamma (3%/3mm). The dose distribution calculated for the compressed dosimeter in the irradiation geometry cannot be directly compared via profiles or 3D gamma to the measured distribution, which deforms with release from compression. Thus, accuracy under deformation was determined by comparing integral dose within the high dose region of the deformed dosimeter distribution versus calculated dose. Dose profiles were used to study temporal stability of measured dose distributions. Results: Good dose agreement was demonstrated in the control with a 3D gamma passing rate of 96.6%. For the dosimeter irradiated under compression, the measured integral dose in the high dose region (518.0Gy*cm3) was within 6% of the Eclipse-calculated integral dose (549.4Gy*cm3). Elevated signal was noted on the dosimeter edge in the direction of compression. Change in dosimeter signal over 1.5 hours was ≤2.7%, and the relative dose distribution remained stable over this period of time. Conclusion: Presage-Def is promising as a 3D dosimeter capable of accurately measuring dose in a deforming structure, and warrants further study to quantify comprehensive accuracy at different levels of deformation. This work was supported by NIH R01CA100835. John Adamovics is the president of Heuris Inc., which commercializes PRESAGE.« less

  10. New approach to CT pixel-based photon dose calculations in heterogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, J.W.; Henkelman, R.M.

    The effects of small cavities on dose in water and the dose in a homogeneous nonunit density medium illustrate that inhomogeneities do not act independently in photon dose perturbation, and serve as two constraints which should be satisfied by approximate methods of computed tomography (CT) pixel-based dose calculations. Current methods at best satisfy only one of the two constraints and show inadequacies in some intermediate geometries. We have developed an approximate method that satisfies both these constraints and treats much of the synergistic effect of multiple inhomogeneities correctly. The method calculates primary and first-scatter doses by first-order ray tracing withmore » the first-scatter contribution augmented by a component of second scatter that behaves like first scatter. Multiple-scatter dose perturbation values extracted from small cavity experiments are used in a function which approximates the small residual multiple-scatter dose. For a wide range of geometries tested, our method agrees very well with measurements. The average deviation is less than 2% with a maximum of 3%. In comparison, calculations based on existing methods can have errors larger than 10%.« less

  11. Derivation of mean dose tolerances for new fractionation schemes and treatment modalities

    NASA Astrophysics Data System (ADS)

    Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan

    2018-02-01

    Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perko, Z; Bortfeld, T; Hong, T

    Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less

  13. SU-E-T-113: Dose Distribution Using Respiratory Signals and Machine Parameters During Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imae, T; Haga, A; Saotome, N

    Purpose: Volumetric modulated arc therapy (VMAT) is a rotational intensity-modulated radiotherapy (IMRT) technique capable of acquiring projection images during treatment. Treatment plans for lung tumors using stereotactic body radiotherapy (SBRT) are calculated with planning computed tomography (CT) images only exhale phase. Purpose of this study is to evaluate dose distribution by reconstructing from only the data such as respiratory signals and machine parameters acquired during treatment. Methods: Phantom and three patients with lung tumor underwent CT scans for treatment planning. They were treated by VMAT while acquiring projection images to derive their respiratory signals and machine parameters including positions ofmore » multi leaf collimators, dose rates and integrated monitor units. The respiratory signals were divided into 4 and 10 phases and machine parameters were correlated with the divided respiratory signals based on the gantry angle. Dose distributions of each respiratory phase were calculated from plans which were reconstructed from the respiratory signals and the machine parameters during treatment. The doses at isocenter, maximum point and the centroid of target were evaluated. Results and Discussion: Dose distributions during treatment were calculated using the machine parameters and the respiratory signals detected from projection images. Maximum dose difference between plan and in treatment distribution was −1.8±0.4% at centroid of target and dose differences of evaluated points between 4 and 10 phases were no significant. Conclusion: The present method successfully evaluated dose distribution using respiratory signals and machine parameters during treatment. This method is feasible to verify the actual dose for moving target.« less

  14. Estimation of the influence of radical effect in the proton beams using a combined approach with physical data and gel data

    NASA Astrophysics Data System (ADS)

    Haneda, K.

    2016-04-01

    The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.

  15. A new fully human recombinant FSH (follitropin epsilon): two phase I randomized placebo and comparator-controlled pharmacokinetic and pharmacodynamic trials.

    PubMed

    Abd-Elaziz, Khalid; Duijkers, Ingrid; Stöckl, Lars; Dietrich, Bruno; Klipping, Christine; Eckert, Kelvin; Goletz, Steffen

    2017-08-01

    What are the differences and similarities of pharmacokinetic (PK) and pharmacodynamic (PD) characteristics of the novel recombinant human FSH follitropin epsilon expressed in the human cell line GlycoExpress compared with a Chinese hamster ovary (CHO) derived compound and a urinary derived product? Overall follitropin epsilon, with a fully human glycosylation, shows a comparable PK profile at single-dose as well as multiple-dose administration compared to recombinant CHO-derived FSH as well as urinary derived FSH, whereas the PD properties differ from product to product with follitropin epsilon being most active in PD parameters. Recombinant FSH produced in CHO and FSH obtained from the urine of postmenopausal women show comparable PK and PD properties. However, more recently a comparative study of a recombinant FSH produced in the human cell line PerC6 and a CHO-derived FSH preparation revealed differences in PK and PD properties of the molecule. Both studies were randomized, placebo- and comparator-controlled, single-blind phase I studies in healthy pituitary-suppressed female volunteers aged 18 and 40 years. The single-dose, dose escalation study included 19 women (April 2011 to September 2011) with three ascending dose levels per subject or placebo/comparators with a 14-day washout phase between dosings. The multiple-dose study included 57 women (October 2011 to April 2012) in five cohorts with three dose levels versus placebo and two comparators. Randomization to the respective treatment was performed after successful downregulation of the pituitary gland prior to Investigational Medicinal Product dosing. In the single-dose study, 12 subjects received follitropin epsilon (25, 75, 150 and 300 IU) in three of four possible ascending doses and seven subjects received one dose of two comparators (150 IU Bravelle and 150 IU Gonal-f) and placebo in random order in each treatment period. In the multiple-dose study, 30 subjects received follitropin epsilon (75 IU or 150 IU once daily [QD], or 150 IU every other day [QAD], 10 subjects each) and 27 subjects received 150 IU Gonal-f, 150 IU Bravelle, or placebo for 7 days (11/10/6 subjects). Blood samples for measuring PK as well as PD parameters were collected systematically before, during and after dosing. Adverse events (AEs) and other relevant safety parameters were recorded. Data were summarized using descriptive statistics. The single- and multiple-dose PK parameters maximum concentration (Cmax) and area under the concentration-time curve (AUC0-last) increased in a linear fashion with increasing dose levels of follitropin epsilon. Follitropin epsilon showed PK characteristics comparable to the comparators indicating that well established treatment schemes could be applied. There was a dose-response effect of single and multiple doses of follitropin epsilon on follicular growth, which was shown for the biomarker inhibin B as well as for the mean number and size of follicles. Multiple doses of 75 IU follitropin epsilon given daily, as well as 150 IU follitropin epsilon every second day, showed a follicle growth comparable with 150 IU Gonal-f given daily, while in case of daily administration of 150 IU Bravelle only weak follicle stimulation was observed. Multiple doses of 150 IU follitropin epsilon induced a much higher follicle growth compared to the same dose of Gonal-f. All single and multiple follitropin epsilon doses tested were safe and well tolerated, and overall there were no relevant differences between follitropin epsilon and the comparators in terms of safety. The average number of AEs increased with increasing dose levels. No clinically relevant abnormalities were reported for any of the other safety parameters assessed. No follitropin epsilon anti-drug antibodies were observed. The studies were conducted as a single-blind design. Hormone levels or other parameters assessed in serum are generally not considered as being subject to bias. Other assessments directly performed by the investigators, such as transvaginal ultrasound assessments, may have been subject to personal bias. No prospective calculations of statistical power had been made, as is common practice for first in human and early phase I studies in healthy volunteers. These early development studies showed that follitropin epsilon exhibits comparable PK characteristics, as well as inducing stronger PD effects in terms of follicle growth and serum inhibin B, than the comparators. Follitropin epsilon induced a dose-dependent increase in follicular growth. The results warrant further studies with this new fully human recombinant FSH. The studies were sponsored by GLYCOTOPE GmbH, Berlin, Germany. K.A-E. is an employee of QPS-Netherlands, B.V., which received funding for the studies from Glycotope GmbH; I.D. and C.K. are employees of Dinox B.V., which received funding for the studies from Glycotope GmbH; L.S. and S.G. are employees and shareholders of Glycotope GmbH; B.D. and K.E. are employees of Glycotope GmbH. www.clinicaltrials.gov: NCT01354886 (single-dose); NCT01477073 (multiple-dose). The single-dose trial was registered on 11 May 2011 while the multiple-dose trial was registered on 09 November 2011. First subject was enroled in the single-dose trial in 27 April 2011 and in the multiple-dose trial in 02 October 2011. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. The novel application of Benford's second order analysis for monitoring radiation output in interventional radiology.

    PubMed

    Cournane, S; Sheehy, N; Cooke, J

    2014-06-01

    Benford's law is an empirical observation which predicts the expected frequency of digits in naturally occurring datasets spanning multiple orders of magnitude, with the law having been most successfully applied as an audit tool in accountancy. This study investigated the sensitivity of the technique in identifying system output changes using simulated changes in interventional radiology Dose-Area-Product (DAP) data, with any deviations from Benford's distribution identified using z-statistics. The radiation output for interventional radiology X-ray equipment is monitored annually during quality control testing; however, for a considerable portion of the year an increased output of the system, potentially caused by engineering adjustments or spontaneous system faults may go unnoticed, leading to a potential increase in the radiation dose to patients. In normal operation recorded examination radiation outputs vary over multiple orders of magnitude rendering the application of normal statistics ineffective for detecting systematic changes in the output. In this work, the annual DAP datasets complied with Benford's first order law for first, second and combinations of the first and second digits. Further, a continuous 'rolling' second order technique was devised for trending simulated changes over shorter timescales. This distribution analysis, the first employment of the method for radiation output trending, detected significant changes simulated on the original data, proving the technique useful in this case. The potential is demonstrated for implementation of this novel analysis for monitoring and identifying change in suitable datasets for the purpose of system process control. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Is high–dose rate RapidArc-based radiosurgery dosimetrically advantageous for the treatment of intracranial tumors?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bo; Yang, Yong, E-mail: yangy2@upmc.edu; Li, Xiang

    In linac-based stereotactic radiosurgery (SRS) and radiotherapy (SRT), circular cone(s) or conformal arc(s) are conventionally used to treat intracranial lesions. However, when the target is in close proximity to critical structures, it is frequently quite challenging to generate a quality plan using these techniques. In this study, we investigated the dosimetric characteristics of using high–dose rate RapidArc (RA) technique for radiosurgical treatment of intracranial lesions. A total of 10 intracranial SRS/SRT cases previously planned using dynamic conformal arc (DCA) or cone-based techniques have been included in this study. For each case, 3 treatment plans were generated: (1) a DCA planmore » with multiple noncoplanar arcs, (2) a high–dose rate RA plan with arcs oriented the same as DCA (multiple-arc RA), and 3) a high–dose rate RA plan with a single coplanar arc (single-arc RA). All treatment plans were generated under the same prescription and similar critical structure dose limits. Plan quality for different plans was evaluated by comparing various dosimetric parameters such as target coverage, conformity index (CI), homogeneity index (HI), critical structures, and normal brain tissue doses as well as beam delivery time. With similar critical structure sparing, high–dose rate RA plans can achieve much better target coverage, dose conformity, and dose homogeneity than the DCA plans can. Plan quality indices CI and HI, for the DCA, multiple-arc RA, and single-arc RA techniques, were measured as 1.67 ± 0.39, 1.32 ± 0.28, and 1.38 ± 0.30 and 1.24 ± 0.11, 1.10 ± 0.04, and 1.12 ± 0.07, respectively. Normal brain tissue dose (V{sub 12} {sub Gy}) was found to be similar for DCA and multiple-arc RA plans but much larger for the single-arc RA plans. Beam delivery was similar for DCA and multiple-arc RA plans but shorter with single-arc RA plans. Multiple-arc RA SRS/SRT can provide better treatment plans than conventional DCA plans, especially for complex cases.« less

  18. Standard and reduced doses of dabigatran, rivaroxaban and apixaban for stroke prevention in atrial fibrillation: a nationwide cohort study.

    PubMed

    Staerk, L; Gerds, T A; Lip, G Y H; Ozenne, B; Bonde, A N; Lamberts, M; Fosbøl, E L; Torp-Pedersen, C; Gislason, G H; Olesen, J B

    2018-01-01

    Comparative data of non-vitamin K antagonist oral anticoagulants (NOAC) are lacking in patients with atrial fibrillation (AF). We compared effectiveness and safety of standard and reduced dose NOAC in AF patients. Using Danish nationwide registries, we included all oral anticoagulant-naïve AF patients who initiated NOAC treatment (2012-2016). Outcome-specific and mortality-specific multiple Cox regressions were combined to compute average treatment effects as 1-year standardized differences in stroke and bleeding risks (g-formula). Amongst 31 522 AF patients, the distribution of NOAC/dose was as follows: dabigatran standard dose (22.4%), dabigatran-reduced dose (14.0%), rivaroxaban standard dose (21.8%), rivaroxaban reduced dose (6.7%), apixaban standard dose (22.9%), and apixaban reduced dose (12.2%). The 1-year standardized absolute risks of stroke/thromboembolism were 1.73-1.98% and 2.51-2.78% with standard and reduced NOAC dose, respectively, without statistically significant differences between NOACs for given dose level. Comparing standard doses, the 1-year standardized absolute risk (95% CI) for major bleeding was for rivaroxaban 2.78% (2.42-3.17%); corresponding absolute risk differences (95% CI) were for dabigatran -0.93% (-1.45% to -0.38%) and apixaban, -0.54% (-0.99% to -0.05%). The results for major bleeding were similar for reduced NOAC dose. The 1-year standardized absolute risk (95% CI) for intracranial bleeding was for standard dose dabigatran 0.19% (0.22-0.50%); corresponding absolute risk differences (95% CI) were for rivaroxaban 0.23% (0.06-0.41%) and apixaban, 0.18% (0.01-0.34%). Standard and reduced dose NOACs, respectively, showed no significant risk difference for associated stroke/thromboembolism. Rivaroxaban was associated with higher bleeding risk compared with dabigatran and apixaban and dabigatran was associated with lower intracranial bleeding risk compared with rivaroxaban and apixaban. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  19. Dosage and Distribution in Morphosyntax Intervention: Current Evidence and Future Needs

    ERIC Educational Resources Information Center

    Proctor-Williams, Kerry

    2009-01-01

    This article reviews the effectiveness of dose forms and the efficacy of dosage and distribution in morphosyntax intervention for children. Dose forms include the commonly used techniques, procedures, and intervention contexts that constitute teaching episodes; dosage includes the quantitative measures of dose, dose frequency, total intervention…

  20. Pharmacokinetics of opicapone, a third-generation COMT inhibitor, after single and multiple oral administration: A comparative study in the rat.

    PubMed

    Gonçalves, Daniela; Alves, Gilberto; Fortuna, Ana; Soares-da-Silva, Patrício; Falcão, Amílcar

    2017-05-15

    Opicapone is a novel potent, reversible and purely peripheral catechol-O-methyltransferase inhibitor that has been developed to be used as an adjunct to levodopa/aromatic L-amino acid decarboxylase inhibitor therapy for Parkinson's disease. Thus, this study aimed to compare the plasma pharmacokinetics of opicapone and its active metabolite (BIA 9-1079) after the administration of single and multiple oral doses to rats. Wistar rats (n=8 per group) were orally treated with single (30, 60 or 90mg/kg) or multiple (30mg/kg once-daily for seven consecutive days) oral doses of opicapone. Blood samples were collected up to 24h post-dosing through a cannula introduced in the tail vein of rats. After quantifying opicapone and BIA 9-1079 in plasma, a non-compartmental pharmacokinetic analysis was performed. Opicapone was quickly absorbed (time to reach the maximum plasma concentration≤2h) in both dosage regimens and the extent of systemic exposure to opicapone increased approximately in a dose-proportional manner after single-dosing within the studied dose range (30-90mg/kg). Opicapone and BIA 9-1079 showed a relatively short plasma elimination half-life (1.58-4.50h) and a small systemic accumulation after multiple-dosing. Hence, no pharmacokinetic concerns are expected when opicapone is administered with a once-daily dosing regimen. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Estimation of effective dose and lifetime attributable risk from multiple head CT scans in ventriculoperitoneal shunted children.

    PubMed

    Aw-Zoretic, J; Seth, D; Katzman, G; Sammet, S

    2014-10-01

    The purpose of this review is to determine the averaged effective dose and lifetime attributable risk factor from multiple head computed tomography (CT) dose data on children with ventriculoperitoneal shunts (VPS). A total of 422 paediatric head CT exams were found between October 2008 and January 2011 and retrospectively reviewed. The CT dose data was weighted with the latest IRCP 103 conversion factor to obtain the effective dose per study and the averaged effective dose was calculated. Estimates of the lifetime attributable risk were also calculated from the averaged effective dose using a conversion factor from the latest BEIR VII report. Our study found the highest effective doses in neonates and the lowest effective doses were observed in the 10-18 years age group. We estimated a 0.007% potential increase risk in neonates and 0.001% potential increased risk in teenagers over the base risk. Multiple head CTs in children equates to a slight potential increase risk in lifetime attributable risk over the baseline risk for cancer, slightly higher in neonates relative to teenagers. The potential risks versus clinical benefit must be assessed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. SU-F-19A-10: Recalculation and Reporting Clinical HDR 192-Ir Head and Neck Dose Distributions Using Model Based Dose Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson Tedgren, A; Persson, M; Nilsson, J

    Purpose: To retrospectively re-calculate dose distributions for selected head and neck cancer patients, earlier treated with HDR 192Ir brachytherapy, using Monte Carlo (MC) simulations and compare results to distributions from the planning system derived using TG43 formalism. To study differences between dose to medium (as obtained with the MC code) and dose to water in medium as obtained through (1) ratios of stopping powers and (2) ratios of mass energy absorption coefficients between water and medium. Methods: The MC code Algebra was used to calculate dose distributions according to earlier actual treatment plans using anonymized plan data and CT imagesmore » in DICOM format. Ratios of stopping power and mass energy absorption coefficients for water with various media obtained from 192-Ir spectra were used in toggling between dose to water and dose to media. Results: Differences between initial planned TG43 dose distributions and the doses to media calculated by MC are insignificant in the target volume. Differences are moderate (within 4–5 % at distances of 3–4 cm) but increase with distance and are most notable in bone and at the patient surface. Differences between dose to water and dose to medium are within 1-2% when using mass energy absorption coefficients to toggle between the two quantities but increase to above 10% for bone using stopping power ratios. Conclusion: MC predicts target doses for head and neck cancer patients in close agreement with TG43. MC yields improved dose estimations outside the target where a larger fraction of dose is from scattered photons. It is important with awareness and a clear reporting of absorbed dose values in using model based algorithms. Differences in bone media can exceed 10% depending on how dose to water in medium is defined.« less

  3. Isobio software: biological dose distribution and biological dose volume histogram from physical dose conversion using linear-quadratic-linear model.

    PubMed

    Jaikuna, Tanwiwat; Khadsiri, Phatchareewan; Chawapun, Nisa; Saekho, Suwit; Tharavichitkul, Ekkasit

    2017-02-01

    To develop an in-house software program that is able to calculate and generate the biological dose distribution and biological dose volume histogram by physical dose conversion using the linear-quadratic-linear (LQL) model. The Isobio software was developed using MATLAB version 2014b to calculate and generate the biological dose distribution and biological dose volume histograms. The physical dose from each voxel in treatment planning was extracted through Computational Environment for Radiotherapy Research (CERR), and the accuracy was verified by the differentiation between the dose volume histogram from CERR and the treatment planning system. An equivalent dose in 2 Gy fraction (EQD 2 ) was calculated using biological effective dose (BED) based on the LQL model. The software calculation and the manual calculation were compared for EQD 2 verification with pair t -test statistical analysis using IBM SPSS Statistics version 22 (64-bit). Two and three-dimensional biological dose distribution and biological dose volume histogram were displayed correctly by the Isobio software. Different physical doses were found between CERR and treatment planning system (TPS) in Oncentra, with 3.33% in high-risk clinical target volume (HR-CTV) determined by D 90% , 0.56% in the bladder, 1.74% in the rectum when determined by D 2cc , and less than 1% in Pinnacle. The difference in the EQD 2 between the software calculation and the manual calculation was not significantly different with 0.00% at p -values 0.820, 0.095, and 0.593 for external beam radiation therapy (EBRT) and 0.240, 0.320, and 0.849 for brachytherapy (BT) in HR-CTV, bladder, and rectum, respectively. The Isobio software is a feasible tool to generate the biological dose distribution and biological dose volume histogram for treatment plan evaluation in both EBRT and BT.

  4. Pharmacokinetics of doxycycline in laying hens after intravenous and oral administration.

    PubMed

    Yang, F; Si, H B; Wang, Y Q; Zhao, Z S; Zhou, B H; Hao, X Q

    2016-08-01

    The pharmacokinetics of doxycycline in laying hens was investigated after a single intravenous (IV) or an oral (PO) dose at 20 mg/kg body weight. The concentrations of doxycycline in plasma samples were determined by high-performance liquid chromatography with an ultraviolet detector, and pharmacokinetic parameters were calculated using a compartmental model method. The disposition of doxycycline after one single IV injection was best described by a two-compartment open model and the main pharmacokinetic parameters were as follows: volume of distribution (Vd) was 865.15 ± 127.64 ml/kg, distribution rate constant (α) was (2.28 ± 0.38) 1/h, elimination rate constant (β) was 0.08 ± 0.02 1/h and total body clearance (Cl) was104.11 ± 18.32 ml/h/kg, while after PO administration, the concentration versus time curve was best described by a one-compartment open model and absorption rate constant (Ka), peak concentration (Cmax), time to reach Cmax (tmax) and absolute bioavailability (F) were 2.55 ± 1.40 1/h, 5.88 ± 0.70 μg/ml, 1.73 ± 0.75 h and 52.33%, respectively. The profile of doxycycline exhibited favourable pharmacokinetic characteristics in laying hens, such as quick absorption and slow distribution and elimination, though oral bioavailability was relatively low. A multiple-dosing regimen (a dose of 20 mg/kg/d for 3 consecutive days) of doxycycline was recommended to treat infections in laying hens. But a further study should be conducted to determine the withdrawal time of doxycycline in eggs.

  5. Optimal field-splitting algorithm in intensity-modulated radiotherapy: Evaluations using head-and-neck and female pelvic IMRT cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xin; Kim, Yusung, E-mail: yusung-kim@uiowa.edu; Bayouth, John E.

    2013-04-01

    To develop an optimal field-splitting algorithm of minimal complexity and verify the algorithm using head-and-neck (H and N) and female pelvic intensity-modulated radiotherapy (IMRT) cases. An optimal field-splitting algorithm was developed in which a large intensity map (IM) was split into multiple sub-IMs (≥2). The algorithm reduced the total complexity by minimizing the monitor units (MU) delivered and segment number of each sub-IM. The algorithm was verified through comparison studies with the algorithm as used in a commercial treatment planning system. Seven IMRT, H and N, and female pelvic cancer cases (54 IMs) were analyzed by MU, segment numbers, andmore » dose distributions. The optimal field-splitting algorithm was found to reduce both total MU and the total number of segments. We found on average a 7.9 ± 11.8% and 9.6 ± 18.2% reduction in MU and segment numbers for H and N IMRT cases with an 11.9 ± 17.4% and 11.1 ± 13.7% reduction for female pelvic cases. The overall percent (absolute) reduction in the numbers of MU and segments were found to be on average −9.7 ± 14.6% (−15 ± 25 MU) and −10.3 ± 16.3% (−3 ± 5), respectively. In addition, all dose distributions from the optimal field-splitting method showed improved dose distributions. The optimal field-splitting algorithm shows considerable improvements in both total MU and total segment number. The algorithm is expected to be beneficial for the radiotherapy treatment of large-field IMRT.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klüter, Sebastian, E-mail: sebastian.klueter@med.uni-heidelberg.de; Schubert, Kai; Lissner, Steffen

    Purpose: The dosimetric verification of treatment plans in helical tomotherapy usually is carried out via verification measurements. In this study, a method for independent dose calculation of tomotherapy treatment plans is presented, that uses a conventional treatment planning system with a pencil kernel dose calculation algorithm for generation of verification dose distributions based on patient CT data. Methods: A pencil beam algorithm that directly uses measured beam data was configured for dose calculation for a tomotherapy machine. Tomotherapy treatment plans were converted into a format readable by an in-house treatment planning system by assigning each projection to one static treatmentmore » field and shifting the calculation isocenter for each field in order to account for the couch movement. The modulation of the fluence for each projection is read out of the delivery sinogram, and with the kernel-based dose calculation, this information can directly be used for dose calculation without the need for decomposition of the sinogram. The sinogram values are only corrected for leaf output and leaf latency. Using the converted treatment plans, dose was recalculated with the independent treatment planning system. Multiple treatment plans ranging from simple static fields to real patient treatment plans were calculated using the new approach and either compared to actual measurements or the 3D dose distribution calculated by the tomotherapy treatment planning system. In addition, dose–volume histograms were calculated for the patient plans. Results: Except for minor deviations at the maximum field size, the pencil beam dose calculation for static beams agreed with measurements in a water tank within 2%/2 mm. A mean deviation to point dose measurements in the cheese phantom of 0.89% ± 0.81% was found for unmodulated helical plans. A mean voxel-based deviation of −0.67% ± 1.11% for all voxels in the respective high dose region (dose values >80%), and a mean local voxel-based deviation of −2.41% ± 0.75% for all voxels with dose values >20% were found for 11 modulated plans in the cheese phantom. Averaged over nine patient plans, the deviations amounted to −0.14% ± 1.97% (voxels >80%) and −0.95% ± 2.27% (>20%, local deviations). For a lung case, mean voxel-based deviations of more than 4% were found, while for all other patient plans, all mean voxel-based deviations were within ±2.4%. Conclusions: The presented method is suitable for independent dose calculation for helical tomotherapy within the known limitations of the pencil beam algorithm. It can serve as verification of the primary dose calculation and thereby reduce the need for time-consuming measurements. By using the patient anatomy and generating full 3D dose data, and combined with measurements of additional machine parameters, it can substantially contribute to overall patient safety.« less

  7. Developmental changes rather than repeated administration drive paracetamol glucuronidation in neonates and infants.

    PubMed

    Krekels, Elke H J; van Ham, Saskia; Allegaert, Karel; de Hoon, Jan; Tibboel, Dick; Danhof, Meindert; Knibbe, Catherijne A J

    2015-09-01

    Based on recovered metabolite ratios in urine, it has been concluded that paracetamol glucuronidation may be up-regulated upon multiple dosing. This study investigates paracetamol clearance in neonates and infants after single and multiple dosing using a population modelling approach. A population pharmacokinetic model was developed in NONMEM VI, based on paracetamol plasma concentrations from 54 preterm and term neonates and infants, and on paracetamol, paracetamol-glucuronide and paracetamol-sulphate amounts in urine from 22 of these patients. Patients received either a single intravenous propacetamol dose or up to 12 repeated doses. Paracetamol and metabolite disposition was best described with one-compartment models. The formation clearance of paracetamol-sulphate was 1.46 mL/min/kg(1.4), which was about 5.5 times higher than the formation clearance of the glucuronide of 0.266 mL/min/kg. The renal excretion rate constants of both metabolites was estimated to be 11.4 times higher than the excretion rate constant of unchanged paracetamol, yielding values of 0.580 mL/min/kg. Developmental changes were best described by bodyweight in linear relationships on the distribution volumes, the formation of paracetamol-glucuronide and the unchanged excretion of paracetamol, and in an exponential relationship on the formation of paracetamol-sulphate. There was no evidence for up-regulation or other time-varying changes in any of the model parameters. Simulations with this model illustrate how paracetamol-glucuronide recovery in urine increases over time due to the slower formation of this metabolite and in the absence of up-regulation. Developmental changes, described by bodyweight-based functions, rather than up-regulation, explain developmental changes in paracetamol disposition in neonates and infants.

  8. Frameless Stereotactic Radiosurgery for Treatment of Multiple Sclerosis-Related Trigeminal Neuralgia.

    PubMed

    Conti, Alfredo; Pontoriero, Antonio; Iatì, Giuseppe; Esposito, Felice; Siniscalchi, Enrico Nastro; Crimi, Salvatore; Vinci, Sergio; Brogna, Anna; De Ponte, Francesco; Germanò, Antonino; Pergolizzi, Stefano; Tomasello, Francesco

    2017-07-01

    Trigeminal neuralgia (TN) affects 7% of patients with multiple sclerosis (MS). In such patients, TN is difficult to manage either pharmacologically and surgically. Radiosurgical rhizotomy is an effective treatment option. The nonisocentric geometry of radiation beams of CyberKnife introduces new concepts in the treatment of TN. Its efficacy for MS-related TN has not yet been demonstrated. Twenty-seven patients with refractory TN and MS were treated. A nonisocentric beams distribution was chosen; the maximal target dose was 72.5 Gy. The maximal dose to the brainstem was <12 Gy. Effects on pain, medications, sensory disturbance, rate, and time of pain recurrence were analyzed. Median follow-up was 37 (18-72) months. Barrow Neurological Institute pain scale score I-III was achieved in 23/27 patients (85%) within 45 days. Prescription isodose line (80%) accounting for a dose of 58 Gy incorporated an average of 4.85 mm (4-6 mm) of the nerve and mean nerve volume of 26.4 mm 3 (range 20-38 mm 3 ). Seven out of 27 patients (26%) had mild, not bothersome, facial numbness (Barrow Neurological Institute numbness score II). The rate of pain control decreased progressively after the first year, and only 44% of patients retained pain control 4 years later. Frameless radiosurgery can be effectively used to perform retrogasserian rhizotomy. Pain relief was satisfactory and, with our dose/volume constraints, no sensory complications were recorded. Nonetheless, long-term pain control was possible in less than half of the patients. This is a limitation that CyberKnife radiosurgery shares with other techniques in MS patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.

    PubMed

    Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A

    1999-08-01

    BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.

  10. SU-E-T-374: Evaluation and Verification of Dose Calculation Accuracy with Different Dose Grid Sizes for Intracranial Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, C; Schultheiss, T

    Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less

  11. Temporal aspects of tumorigenic response to individual and mixed carcinogens. [Response of mouse skin to benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.

    1976-02-01

    Results are reported from experiments that involved either single or multiple doses of benzo(a)pyrene in mouse skin followed by prolonged observation. Preliminary results indicate linearity in dose and time and no evidence of recovery or enhancement for multiple doses of initiator given for extended periods of time. (auth)

  12. Triple dose of gadolinium-DTPA and delayed MRI in patients with benign multiple sclerosis.

    PubMed Central

    Filippi, M; Capra, R; Campi, A; Colombo, B; Prandini, F; Marcianò, N; Gasparotti, R; Comi, G

    1996-01-01

    OBJECTIVES--To evaluate whether a triple dose of gadolinium-DTPA (Gd-DTPA) or delayed MRI increase the number, size, and conspicuousness of enhancing lesions in patients with benign multiple sclerosis. METHODS--T1 weighted brain MRI was carried out on 20 patients with benign multiple sclerosis (expanded disability status scale < 3 with a disease duration > 10 years) in two sessions. In the first session, one scan was obtained before and two scans five to seven minutes and 20-30 minutes after the injection of 0.1 mmol/kg Gd-DTPA (standard dose). In the second session, six to 24 hours later, the same procedure was repeated with 0.3 mmol/kg Gd-DTPA (triple dose). RESULTS--Nine enhancing lesions were found in seven patients (35%) using the standard dose of Gd-DTPA. The numbers of enhancing lesions increased to 13 (P = 0.03) and the number of patients with such lesions to eight (40%) on the delayed standard dose scans. On the early triple dose scans, we found 19 enhancing lesions in 10 patients (50%). The number of enhancing lesions was significantly higher (P = 0.01) than that obtained with the early standard dose. The number of enhancing lesions was 18 and the number of "active" patients 11 (55%) on the delayed triple dose scans. The enhancing areas increased progressively from the early standard dose scans to the delayed triple dose scans. The contrast ratios of the lesions detected in early standard dose scans was lower than those of lesions present in the early (P = 0.01) and delayed (P = 0.04) triple dose scans. CONCLUSIONS--More enhancing lesions were detected in patients with benign multiple sclerosis with both delay of MRI and the use of triple dose of Gd-DTPA suggesting that the amount of inflammation in the lesions of such patients is mild and heterogeneous. Images PMID:8778257

  13. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation.

    PubMed

    Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R

    2018-06-01

    This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.

  14. Quantitative comparison of the results obtained by the multiple-dose guinea pig maximization test and the non-radioactive murine local lymph-node assay for various biocides.

    PubMed

    Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu

    2005-07-01

    We compared the results of the multiple-dose guinea pig maximization test (GPMT) and the non-radioactive murine local lymph-node assay (LLNA) for various biocides. Thirteen out of 17 positive biocides in the GPMT gave positive results in the LLNA. In the GPMT, the minimum first induction doses ranged over four orders (0.00005-0.5%), while elicitation-threshold doses, which were evaluated using an optimally sensitized group of animals in the multiple-dose studies, ranged over five orders (0.00006-2.8%). In the LLNA, minimum induction doses ranged over more than three orders (0.01-30%). With respect to 13 biocides that were positive in both the GPMT and the LLNA, results were quantitatively compared. When compared after conversion to corresponding area doses (microg/cm), the minimum doses required to elicit skin reaction in guinea pigs were always lower than that for induction in mice with all biocides. Correlation between minimum induction doses from the GPMT and the LLNA seemed poor (r=0.57), while that between minimum induction doses in the LLNA and elicitation-threshold doses in the GPMT was relatively good (r=0.73). The results suggest the possibility to estimate human elicitation-threshold doses, which are definitely lacking in the process of risk assessment for skin-sensitizers, from the data of the LLNA.

  15. Survey of distribution of seasonal influenza vaccine doses in 201 countries (2004-2015): The 2003 World Health Assembly resolution on seasonal influenza vaccination coverage and the 2009 influenza pandemic have had very little impact on improving influenza control and pandemic preparedness.

    PubMed

    Palache, A; Abelin, A; Hollingsworth, R; Cracknell, W; Jacobs, C; Tsai, T; Barbosa, P

    2017-08-24

    There is no global monitoring system for influenza vaccination coverage, making it difficult to assess progress towards the 2003 World Health Assembly (WHA) vaccination coverage target. In 2008, the IFPMA Influenza Vaccine Supply International Task Force (IVS) developed a survey method to assess the global distribution of influenza vaccine doses as a proxy for vaccination coverage rates. The latest dose distribution data for 2014 and 2015 was used to update previous analyses. Data were confidentially collected and aggregated by the IFPMA Secretariat, and combined with previous IFPMA IVS survey data (2004-2013). Data were available from 201 countries over the 2004-2015 period. A "hurdle" rate was defined as the number of doses required to reach 15.9% of the population in 2008. Overall, the number of distributed doses progressively increased between 2004 and 2011, driven by a 150% increase in AMRO, then plateaued. One percent fewer doses were distributed in 2015 than in 2011. Twenty-three countries were above the hurdle rate in 2015, compared to 15 in 2004, but distribution was highly uneven in and across all WHO regions. Three WHO regions (AMRO, EURO and WPRO) accounted for about 95% of doses distributed. But in EURO and WPRO, distribution rates in 2015 were only marginally higher than in 2004, and in EURO there was an overall downward trend in dose distribution. The vast majority of countries cannot meet the 2003WHA coverage targets and are inadequately prepared for a global influenza pandemic. With only 5% of influenza vaccine doses being distributed to 50% of the world's population, there is urgency to redress the gross inequities in disease prevention and in pandemic preparedness. The 2003WHA resolution must be reviewed and revised and a call issued for the renewed commitment of Member States to influenza vaccination coverage targets. Copyright © 2017. Published by Elsevier Ltd.

  16. Acceleration of intensity-modulated radiotherapy dose calculation by importance sampling of the calculation matrices.

    PubMed

    Thieke, Christian; Nill, Simeon; Oelfke, Uwe; Bortfeld, Thomas

    2002-05-01

    In inverse planning for intensity-modulated radiotherapy, the dose calculation is a crucial element limiting both the maximum achievable plan quality and the speed of the optimization process. One way to integrate accurate dose calculation algorithms into inverse planning is to precalculate the dose contribution of each beam element to each voxel for unit fluence. These precalculated values are stored in a big dose calculation matrix. Then the dose calculation during the iterative optimization process consists merely of matrix look-up and multiplication with the actual fluence values. However, because the dose calculation matrix can become very large, this ansatz requires a lot of computer memory and is still very time consuming, making it not practical for clinical routine without further modifications. In this work we present a new method to significantly reduce the number of entries in the dose calculation matrix. The method utilizes the fact that a photon pencil beam has a rapid radial dose falloff, and has very small dose values for the most part. In this low-dose part of the pencil beam, the dose contribution to a voxel is only integrated into the dose calculation matrix with a certain probability. Normalization with the reciprocal of this probability preserves the total energy, even though many matrix elements are omitted. Three probability distributions were tested to find the most accurate one for a given memory size. The sampling method is compared with the use of a fully filled matrix and with the well-known method of just cutting off the pencil beam at a certain lateral distance. A clinical example of a head and neck case is presented. It turns out that a sampled dose calculation matrix with only 1/3 of the entries of the fully filled matrix does not sacrifice the quality of the resulting plans, whereby the cutoff method results in a suboptimal treatment plan.

  17. Proton depth dose distribution: 3-D calculation of dose distributions from solar flare irradiation

    NASA Astrophysics Data System (ADS)

    Leavitt, Dennis D.

    1990-11-01

    Relative depth dose distribution to the head from 3 typical solar flare proton events were calculated for 3 different exposure geometries: (1) single directional radiation incident upon a fixed head; (2) single directional radiation incident upon head rotating axially (2-D rotation); and (3) omnidirectional radiation incident upon head (3-D rotation). Isodose distributions in the transverse plane intersecting isocenter are presented for each of the 3 solar flare events in all 3 exposure geometries. In all 3 calculation configurations the maximum predicted dose occurred on the surface of the head. The dose at the isocenter of the head relative to the surface dose for the 2-D and 3-D rotation geometries ranged from 2 to 19 percent, increasing with increasing energy of the event. The calculations suggest the superficially located organs (lens of the eye and skin) are at greatest risk for the proton events studied here.

  18. The effect of dose heterogeneity on radiation risk in medical imaging.

    PubMed

    Samei, Ehsan; Li, Xiang; Chen, Baiyu; Reiman, Robert

    2013-06-01

    The current estimations of risk associated with medical imaging procedures rely on assessing the organ dose via direct measurements or simulation. The dose to each organ is assumed to be homogeneous. To take into account the differences in radiation sensitivities, the mean organ doses are weighted by a corresponding tissue-weighting coefficients provided by ICRP to calculate the effective dose, which has been used as a surrogate of radiation risk. However, those coefficients were derived under the assumption of a homogeneous dose distribution within each organ. That assumption is significantly violated in most medical-imaging procedures. In helical chest CT, for example, superficial organs (e.g. breasts) demonstrate a heterogeneous dose distribution, whereas organs on the peripheries of the irradiation field (e.g. liver) might possess a discontinuous dose profile. Projection radiography and mammography involve an even higher level of organ dose heterogeneity spanning up to two orders of magnitude. As such, mean dose or point measured dose values do not reflect the maximum energy deposited per unit volume of the organ. In this paper, the magnitude of the dose heterogeneity in both CT and projection X-ray imaging was reported, using Monte Carlo methods. The lung dose demonstrated factors of 1.7 and 2.2 difference between the mean and maximum dose for chest CT and radiography, respectively. The corresponding values for the liver were 1.9 and 3.5. For mammography and breast tomosynthesis, the difference between mean glandular dose and maximum glandular dose was 3.1. Risk models based on the mean dose were found to provide a reasonable reflection of cancer risk. However, for leukaemia, they were found to significantly under-represent the risk when the organ dose distribution is heterogeneous. A systematic study is needed to develop a risk model for heterogeneous dose distributions.

  19. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.

  20. Real-time dose calculation and visualization for the proton therapy of ocular tumours

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Karsten; Bendl, Rolf

    2001-03-01

    A new real-time dose calculation and visualization was developed as part of the new 3D treatment planning tool OCTOPUS for proton therapy of ocular tumours within a national research project together with the Hahn-Meitner Institut Berlin. The implementation resolves the common separation between parameter definition, dose calculation and evaluation and allows a direct examination of the expected dose distribution while adjusting the treatment parameters. The new tool allows the therapist to move the desired dose distribution under visual control in 3D to the appropriate place. The visualization of the resulting dose distribution as a 3D surface model, on any 2D slice or on the surface of specified ocular structures is done automatically when adapting parameters during the planning process. In addition, approximate dose volume histograms may be calculated with little extra time. The dose distribution is calculated and visualized in 200 ms with an accuracy of 6% for the 3D isodose surfaces and 8% for other objects. This paper discusses the advantages and limitations of this new approach.

  1. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy

    PubMed Central

    Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari

    2016-01-01

    Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486

  2. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    PubMed

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared with the low dose FDK reconstruction. The proposed method is expected to reduce the radiation dose by a factor of 8 for CBCT, considering the voted strongly discriminated low contrast tissues.

  3. PROPOSALS FOR THE ESTABLISHMENT OF NATIONAL DIAGNOSTIC REFERENCE LEVELS FOR RADIOGRAPHY FOR ADULT PATIENTS BASED ON REGIONAL DOSE SURVEYS IN RUSSIAN FEDERATION.

    PubMed

    Vodovatov, A V; Balonov, M I; Golikov, V Yu; Shatsky, I G; Chipiga, L A; Bernhardsson, C

    2017-04-01

    In 2009-2014, dose surveys aimed to collect adult patient data and parameters of most common radiographic examinations were performed in six Russian regions. Typical patient doses were estimated for the selected examinations both in entrance surface dose and in effective dose. 75%-percentiles of typical patient effective dose distributions were proposed as preliminary regional diagnostic reference levels (DRLs) for radiography. Differences between the 75%-percentiles of regional typical patient dose distributions did not exceed 30-50% for the examinations with standardized clinical protocols (skull, chest and thoracic spine) and a factor of 1.5 for other examinations. Two different approaches for establishing national DRLs were evaluated: as a 75%-percentile of a pooled regional sample of patient typical doses (pooled method) and as a median of 75%-percentiles of regional typical patient dose distributions (median method). Differences between pooled and median methods for effective dose did not exceed 20%. It was proposed to establish Russian national DRLs in effective dose using a pooled method. In addition, the local authorities were granted an opportunity to establish regional DRLs if the local radiological practice and typical patient dose distributions are significantly different. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kok, H. Petra, E-mail: H.P.Kok@amc.uva.nl; Crezee, Johannes; Franken, Nicolaas A.P.

    2014-03-01

    Purpose: To develop a method to quantify the therapeutic effect of radiosensitization by hyperthermia; to this end, a numerical method was proposed to convert radiation therapy dose distributions with hyperthermia to equivalent dose distributions without hyperthermia. Methods and Materials: Clinical intensity modulated radiation therapy plans were created for 15 prostate cancer cases. To simulate a clinically relevant heterogeneous temperature distribution, hyperthermia treatment planning was performed for heating with the AMC-8 system. The temperature-dependent parameters α (Gy{sup −1}) and β (Gy{sup −2}) of the linear–quadratic model for prostate cancer were estimated from the literature. No thermal enhancement was assumed for normalmore » tissue. The intensity modulated radiation therapy plans and temperature distributions were exported to our in-house-developed radiation therapy treatment planning system, APlan, and equivalent dose distributions without hyperthermia were calculated voxel by voxel using the linear–quadratic model. Results: The planned average tumor temperatures T90, T50, and T10 in the planning target volume were 40.5°C, 41.6°C, and 42.4°C, respectively. The planned minimum, mean, and maximum radiation therapy doses were 62.9 Gy, 76.0 Gy, and 81.0 Gy, respectively. Adding hyperthermia yielded an equivalent dose distribution with an extended 95% isodose level. The equivalent minimum, mean, and maximum doses reflecting the radiosensitization by hyperthermia were 70.3 Gy, 86.3 Gy, and 93.6 Gy, respectively, for a linear increase of α with temperature. This can be considered similar to a dose escalation with a substantial increase in tumor control probability for high-risk prostate carcinoma. Conclusion: A model to quantify the effect of combined radiation therapy and hyperthermia in terms of equivalent dose distributions was presented. This model is particularly instructive to estimate the potential effects of interaction from different treatment modalities.« less

  5. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  6. A case control study of multiple myeloma at four nuclear facilities.

    PubMed

    Wing, S; Richardson, D; Wolf, S; Mihlan, G; Crawford-Brown, D; Wood, J

    2000-04-01

    Reported elevations of multiple myeloma among nuclear workers exposed to external penetrating ionizing radiation, based on small numbers of cases, prompted this multi-facility study of workers at US Department of Energy facilities. Ninety-eight multiple myeloma deaths and 391 age-matched controls were selected from the combined roster of 115,143 workers hired before 1979 at Hanford, Los Alamos National Laboratory, Oak Ridge National Laboratory, and the Savannah River site. These workers were followed for vital status through 1990 (1986 for Hanford). Demographic, work history, and occupational exposure data were derived from personnel, occupational medicine, industrial hygiene, and health physics records. Exposure-disease associations were evaluated using conditional logistic regression. Cases were disproportionately African American, male, and hired prior to 1948. Lifetime cumulative whole body ionizing radiation dose was not associated with multiple myeloma, however, there was a significant effect of age at exposure, with positive associations between multiple myeloma and doses received at older ages. Dose response associations increased in magnitude with exposure age (from 40 to 50) and lag assumption (from 5 to 15 years), while a likelihood ratio goodness of fit test reached the highest value for cumulative doses received at ages above 45 with a 5-year lag (X2=5.43,1 df; relative risk = 6.9% per 10 mSv). Dose response associations persisted with adjustment for potential confounders. Multiple myeloma was associated with low level whole body penetrating ionizing radiation doses at older ages. The exposure age effect is at odds with interpretations of A-bomb survivor studies but in agreement with several studies of cancer among nuclear workers.

  7. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  8. Onychopharmacokinetics of terbinafine hydrochloride penetration from a novel topical formulation into the human nail in vitro.

    PubMed

    Hui, Xiaoying; Lindahl, Åke; Lamel, Sonia; Maibach, Howard I

    2013-09-01

    This study determined the onychopharmacokinetics, nail absorption, distribution, and penetration of [¹⁴C]-terbinafine HCl in a new topical formulation into/through the human finger nail using the in vitro finite dose model. This study determined the penetration rate of terbinafine HCl from multiple doses of topical formulation applied daily for 14 days. Results showed that the total dose recovery (mass balance) was almost 100%. The concentration of terbinafine HCl in the deeper nail plate (ventral/intermediate layers) and the cotton-pad nail bed samples after the 14-day treatment were 613 ± 145 and (±S.D.) and 27 ± 1.2 µg/cm³ (or 1.9 ± 0.6 µg/cm³ daily) on average, respectively. In comparison with nail concentration data from the literature for other topical terbinatine formulations, our results show that higher amounts of terbinafine HCl reached the deep nail plate and/or the nail bed after a 14-day topical treatment with this topical formulation in vitro.

  9. Mechanistic simulation of normal-tissue damage in radiotherapy—implications for dose-volume analyses

    NASA Astrophysics Data System (ADS)

    Rutkowska, Eva; Baker, Colin; Nahum, Alan

    2010-04-01

    A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V20 correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

  10. Biological effective dose for comparison and combination of external beam and low-dose rate interstitial brachytherapy prostate cancer treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashesh B.; Hand, Christopher M.; Lujan, Anthony E.

    2004-03-31

    We report a methodology for comparing and combining dose information from external beam radiotherapy (EBRT) and interstitial brachytherapy (IB) components of prostate cancer treatment using the biological effective dose (BED). On a prototype early-stage prostate cancer patient treated with EBRT and low-dose rate I-125 brachytherapy, a 3-dimensional dose distribution was calculated for each of the EBRT and IB portions of treatment. For each component of treatment, the BED was calculated on a point-by-point basis to produce a BED distribution. These individual BED distributions could then be summed for combined therapies. BED dose-volume histograms (DVHs) of the prostate, urethra, rectum, andmore » bladder were produced and compared for various combinations of EBRT and IB. Transformation to BED enabled computation of the relative contribution of each modality to the prostate dose, as the relative weighting of EBRT and IB was varied. The BED-DVHs of the prostate and urethra demonstrated dramatically increased inhomogeneity with the introduction of even a small component of IB. However, increasing the IB portion relative to the EBRT component resulted in lower dose to the surrounding normal structures, as evidenced by the BED-DVHs of the bladder and rectum. Conformal EBRT and low-dose rate IB conventional dose distributions were successfully transformed to the common 'language' of BED distributions for comparison and for merging prostate cancer radiation treatment plans. The results of this analysis can assist physicians in quantitatively determining the best combination and weighting of radiation treatment modalities for individual patients.« less

  11. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  12. TU-F-CAMPUS-J-01: Dosimetric Effects of HU Changes During the Course of Proton Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, C; Yin, L; Ainsley, C

    2015-06-15

    Purpose: To characterize the changes in Hounsfield unit (HU) in lung radiotherapy with proton beams during the course of treatment and to study the effect on the proton plan dose distribution. Methods: Twenty consecutive patients with non-small cell lung cancer treated with proton radiotherapy who underwent multiple CT scans including the planning CT and weekly verification CTs were studied. HU histograms were computed for irradiated lung volumes in beam paths for all scans using the same treatment plan. Histograms for un-irradiated lung volume were used as control to characterize inter-scan variations. HU statistics were calculated for both irradiated and un-irradiatedmore » lung volumes for each patient scan. Further, multiple CT scans based on the same planning CT were generated by replacing the HU of the lung based on the verification CT scans HU values. Using the same beam arrangement, we created plans for each of the altered CT scans to study the dosimetric effect using the dose volume histogram. Results: Lung HU decreased for irradiated lung volume during the course of radiotherapy. The magnitude of this change increased with total irradiation dose. On average, HU changed by −53.8 in the irradiated volume. This change resulted in less than 0.5mm of beam overshoot in tissue for every 1cm beam traversed in the irradiated lung. The dose modification is about +3% for the lung, and less than +1% for the primary tumor. Conclusion: HU of the lung decrease throughout the course of radiation therapy. This change results in a beam overshoot (e.g. 3mm for 6cm of lung traversed) and causes a small dose modification in the overall plan. However, this overshoot does not affect the quality of plans since the margins used in planning, based on proton range uncertainty, are greater. HU needs to change by 150 units before re-planning is warranted.« less

  13. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  14. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  15. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model.

    PubMed

    Merlé, Y; Mentré, F

    1995-02-01

    In this paper 3 criteria to design experiments for Bayesian estimation of the parameters of nonlinear models with respect to their parameters, when a prior distribution is available, are presented: the determinant of the Bayesian information matrix, the determinant of the pre-posterior covariance matrix, and the expected information provided by an experiment. A procedure to simplify the computation of these criteria is proposed in the case of continuous prior distributions and is compared with the criterion obtained from a linearization of the model about the mean of the prior distribution for the parameters. This procedure is applied to two models commonly encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open model with bolus intravenous single-dose injection and the Emax model. They both involve two parameters. Additive as well as multiplicative gaussian measurement errors are considered with normal prior distributions. Various combinations of the variances of the prior distribution and of the measurement error are studied. Our attention is restricted to designs with limited numbers of measurements (1 or 2 measurements). This situation often occurs in practice when Bayesian estimation is performed. The optimal Bayesian designs that result vary with the variances of the parameter distribution and with the measurement error. The two-point optimal designs sometimes differ from the D-optimal designs for the mean of the prior distribution and may consist of replicating measurements. For the studied cases, the determinant of the Bayesian information matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior covariance matrix can be far from its lower bound, namely, the inverse of the Bayesian information matrix, especially for the Emax model and a multiplicative measurement error. The expected information provided by the experiment and the determinant of the pre-posterior covariance matrix generally lead to the same designs except for the Emax model and the multiplicative measurement error. Results show that these criteria can be easily computed and that they could be incorporated in modules for designing experiments.

  16. Verification of Dose Distribution in Carbon Ion Radiation Therapy for Stage I Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irie, Daisuke; Saitoh, Jun-ichi, E-mail: junsaito@gunma-u.ac.jp; Shirai, Katsuyuki

    Purpose: To evaluate robustness of dose distribution of carbon-ion radiation therapy (C-ion RT) in non-small cell lung cancer (NSCLC) and to identify factors affecting the dose distribution by simulated dose distribution. Methods and Materials: Eighty irradiation fields for delivery of C-ion RT were analyzed in 20 patients with stage I NSCLC. Computed tomography images were obtained twice before treatment initiation. Simulated dose distribution was reconstructed on computed tomography for confirmation under the same settings as actual treatment with respiratory gating and bony structure matching. Dose-volume histogram parameters, such as %D95 (percentage of D95 relative to the prescribed dose), were calculated.more » Patients with any field for which the %D95 of gross tumor volume (GTV) was below 90% were classified as unacceptable for treatment, and the optimal target margin for such cases was examined. Results: Five patients with a total of 8 fields (10% of total number of fields analyzed) were classified as unacceptable according to %D95 of GTV, although most patients showed no remarkable change in the dose-volume histogram parameters. Receiver operating characteristic curve analysis showed that tumor displacement and change in water-equivalent pathlength were significant predictive factors of unacceptable cases (P<.001 and P=.002, respectively). The main cause of degradation of the dose distribution was tumor displacement in 7 of the 8 unacceptable fields. A 6-mm planning target volume margin ensured a GTV %D95 of >90%, except in 1 extremely unacceptable field. Conclusions: According to this simulation analysis of C-ion RT for stage I NSCLC, a few fields were reported as unacceptable and required resetting of body position and reconfirmation. In addition, tumor displacement and change in water-equivalent pathlength (bone shift and/or chest wall thickness) were identified as factors influencing the robustness of dose distribution. Such uncertainties should be regarded in planning.« less

  17. Modeling Environment for Total Risk-4M

    EPA Science Inventory

    MENTOR-4M uses an integrated, mechanistically consistent, source-to-dose modeling framework to quantify simultaneous exposures and doses of individuals and populations to multiple contaminants. It is an implementation of the MENTOR system for exposures to Multiple contaminants fr...

  18. Use of Subcutaneous and Intraperitoneal Administration Methods to Facilitate Cassette Dosing in Microdialysis Studies in Rats.

    PubMed

    Durk, Matthew R; Deshmukh, Gauri; Valle, Nicole; Ding, Xiao; Liederer, Bianca M; Liu, Xingrong

    2018-07-01

    Microdialysis is a powerful technique allowing for real-time measurement of unbound drug concentrations in brain interstitial fluid in conscious animals. Use of microdialysis in drug discovery is limited by high resource requirement and low throughput, but this may be improved by cassette dosing. Administering multiple compounds intravenously of diverse physiochemical properties, it is often very challenging and time consuming to identify a vehicle that can dissolve all of the compounds. To overcome this limitation, the present study explores the possibility of administering a cassette dose of nine diverse compounds (carbamazepine, citalopram, desmethylclozapine, diphenhydramine, gabapentin, metoclopramide, naltrexone, quinidine, and risperidone) in suspension, rather than in solution, by intraperitoneal and subcutaneous routes, and determining if this is a viable option for assessing blood-brain barrier penetration in microdialysis studies. Repeated hourly subcutaneous dosing during the 6-hour microdialysis study allowed for the best attainment of distributional equilibrium between brain and plasma, resulting in less than a 2-fold difference in the unbound brain to unbound plasma concentration ratio for the cassette dosing method versus discrete dosing. Both subcutaneous and intraperitoneal repeated dosing can provide a more practical substitute for intravenous dosing in determining brain penetration of a cassette of diverse compounds in brain microdialysis studies. The results from the present study demonstrate that dosing compounds in suspension represents a practical approach to eliminating the technical challenge and labor-intensive step of preparation of solutions of a mixture of compounds and will enable the use of the cassette brain microdialysis method in a central nervous system drug discovery setting. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  19. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates.

    PubMed

    Rao, Shripada C; Srinivasjois, Ravisha; Moon, Kwi

    2016-12-06

    Animal studies and trials in older children and adults suggest that a 'one dose per day' regimen of gentamicin is superior to a 'multiple doses per day' regimen. To compare the efficacy and safety of one dose per day compared to multiple doses per day of gentamicin in suspected or proven sepsis in neonates. Eligible studies were identified by searching the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 3) in the Cochrane Library (searched 8 April 2016), MEDLINE (1966 to 8 April 2016), Embase (1980 to 8 April 2016), and CINAHL (December 1982 to 8 April 2016). All randomised or quasi-randomised controlled trials comparing one dose per day ('once a day') compared to multiple doses per day ('multiple doses a day') of gentamicin to newborn infants. Data collection and analysis was performed according to the standards of the Cochrane Neonatal Review Group. Eleven RCTs were included (N = 574) and 28 excluded. All except one study enrolled infants of more than 32 weeks' gestation. Limited information suggested that infants in both 'once a day' as well as 'multiple doses a day' regimens showed adequate clearance of sepsis (typical RR 1.00, 95% CI 0.84 to 1.19; typical RD 0.00, 95% CI -0.19 to 0.19; 3 trials; N = 37). 'Once a day' gentamicin regimen was associated with fewer failures to attain peak level of at least 5 µg/ml (typical RR 0.22, 95% CI 0.11 to 0.47; typical RD -0.13, 95% CI -0.19 to -0.08; number needed to treat for an additional beneficial outcome (NNTB) = 8; 9 trials; N = 422); and fewer failures to achieve trough levels of 2 µg/ml or less (typical RR 0.38, 95% CI 0.27 to 0.55; typical RD -0.22, 95% CI -0.29 to -0.15; NNTB = 4; 11 trials; N = 503). 'Once a day' gentamicin achieved higher peak levels (MD 2.58, 95% CI 2.26 to 2.89; 10 trials; N = 440) and lower trough levels (MD -0.57, 95% CI -0.69 to -0.44; 10 trials; N = 440) than 'multiple doses a day' regimen. There was no significant difference in ototoxicity between two groups (typical RR 1.69, 95% CI 0.18 to 16.25; typical RD 0.01, 95% CI -0.04 to 0.05; 5 trials; N = 214). Nephrotoxicity was not noted with either of the treatment regimens. Overall, the quality of evidence was considered to be moderate on GRADE analysis, given the small sample size and unclear/high risk of bias in some of the domains in a few of the included studies. There is insufficient evidence from the currently available RCTs to conclude whether a 'once a day' or a 'multiple doses a day' regimen of gentamicin is superior in treating proven neonatal sepsis. However, data suggest that pharmacokinetic properties of a 'once a day' gentamicin regimen are superior to a 'multiple doses a day' regimen in that it achieves higher peak levels while avoiding toxic trough levels. There was no change in nephrotoxicity or auditory toxicity. Based on the assessment of pharmacokinetics, a 'once a day regimen' may be superior in treating sepsis in neonates of more than 32 weeks' gestation.

  20. Pharmacokinetics of isotretinoin during repetitive dosing to patients.

    PubMed

    Brazzell, R K; Vane, F M; Ehmann, C W; Colburn, W A

    1983-01-01

    The multiple dose pharmacokinetics of isotretinoin and its major blood metabolite, 4-oxo-isotretinoin, were studied in 10 patients with cystic acne and 11 patients with various keratinization disorders. Blood samples were obtained at predetermined times following the first dose, interim doses and the final dose. Blood concentrations of isotretinoin and 4-oxo-isotretinoin were measured by a specific and sensitive HPLC method. A lag time was usually observed prior to the onset of absorption following oral administration of the drug in a soft elastic gelatin capsule. Absorption then proceeded rapidly and maximum blood concentrations usually occurred within 4 h of drug administration. The harmonic mean half-life for the elimination of isotretinoin by the cystic acne patients was approximately 10 h after the initial dose and did not change significantly following 25 days of 40 mg b.i.d. dosing. Steady-state blood concentrations remained relatively constant after the fifth day of dosing. The harmonic mean elimination half-life in the patients with various disorders of keratinization was about 16 h. The results of the 2 studies suggest that no significant changes in the pharmacokinetics of isotretinoin occur during multiple dosing and that the multiple dose pharmacokinetic profile is predictable and can be described using a linear pharmacokinetic model. This suggests that the steady-state concentrations of isotretinoin can be predicted from single dose data.

  1. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    PubMed

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  2. Development of a Spect-Based Three-Dimensional Treatment Planner for Radionuclide Therapy with Iodine -131.

    NASA Astrophysics Data System (ADS)

    Giap, Huan Bosco

    Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.

  3. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  4. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU).

    PubMed

    Wang, Mingjun; Zhou, Yufeng

    2016-08-01

    HIFU becomes an effective and non-invasive modality of solid tumour/cancer ablation. Simulation of the non-linear acoustic wave propagation using a phased-array transducer in multiple layered media using different focusing strategies and the consequent lesion formation are essential in HIFU planning in order to enhance the efficacy and efficiency of treatment. An angular spectrum approach with marching fractional steps was applied in the wave propagation from phased-array HIFU transducer, and diffraction, attenuation, and non-linearity effects were accounted for by a second-order operator splitting scheme. The simulated distributions of the first three harmonics along and transverse to the transducer axis were compared to the hydrophone measurements. The bioheat equation was used to simulate the subsequent temperature elevation using the deposited acoustic energy, and lesion formation was determined by the thermal dose. Better agreement was found between the measured harmonics distribution and simulation using the proposed algorithm than the Khokhlov-Zabozotskaya-Kuznetsov equation. Variable focusing of the phased-array transducer (geometric focusing, transverse shifting and the generation of multiple foci) can be simulated successfully. The shifting and splitting of focus was found to result in significantly less temperature elevation at the focus and the subsequently, the smaller lesion size, but the larger grating lobe grating lobe in the pre-focal region. The proposed algorithm could simulate the non-linear wave propagation from the source with arbitrary shape and distribution of excitation through multiple tissue layers in high computation accuracy. The performance of phased-array HIFU can be optimised in the treatment planning.

  5. Rectal Bleeding After High-Dose-Rate Brachytherapy Combined With Hypofractionated External-Beam Radiotherapy for Localized Prostate Cancer: The Relationship Between Dose-Volume Histogram Parameters and the Occurrence Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Masahiko, E-mail: masaoka@showa.gunma-u.ac.jp; Ishikawa, Hitoshi; Ebara, Takeshi

    2012-02-01

    Purpose: To determine the predictive risk factors for Grade 2 or worse rectal bleeding after high-dose-rate brachytherapy (HDR-BT) combined with hypofractionated external-beam radiotherapy (EBRT) for prostate cancer using dose-volume histogram analysis. Methods and Materials: The records of 216 patients treated with HDR-BT combined with EBRT were analyzed. The treatment protocols for HDR-BT were 5 Gy Multiplication-Sign five times in 3 days or 7 Gy Multiplication-Sign three, 10.5 Gy Multiplication-Sign two, or 9 Gy Multiplication-Sign two in 2 days. The EBRT doses ranged from 45 to 51 Gy with a fractional dose of 3 Gy. Results: In 20 patients Grade 2more » or worse rectal bleeding developed, and the cumulative incidence rate was 9% at 5 years. By converting the HDR-BT and EBRT radiation doses into biologic effective doses (BED), the BED{sub 3} at rectal volumes of 5% and 10% in the patients who experienced bleeding were significantly higher than those in the remaining 196 patients. Univariate analysis showed that a higher rectal BED{sub 3-5%} and the use of fewer needles in brachytherapy were correlated with the incidence of bleeding, but BED{sub 3-5%} was found to be the only significant factor on multivariate analysis. Conclusions: The radiation dose delivered to small rectal lesions as 5% is important for predicting Grade 2 or worse rectal bleeding after HDR-BT combined with EBRT for prostate cancer.« less

  6. Effect of intravenous drug administration mode on drug distribution in a tumor slab: a finite Fourier transform analysis.

    PubMed

    Subramaniam, B; Claudius, J S

    1990-03-08

    Cancer therapy using chemotherapeutic drugs frequently involves injection of the drug into the body through some intravenous mode of administration, viz, continuous (drip) infusion or single/multiple bolus injection(s). An understanding of the effect of the various modes of administration upon tumor penetration of drug is essential to rational design of drug therapy. This paper investigates drug penetration into a model tumor of slab geometry (between two capillaries) in which the overall transport rate of drug is limited by intra-tumor transport characterized by an effective diffusion coefficient. Employing the method of Finite Fourier Transforms (FFT), analytical solutions have been obtained for transient drug distribution in both the plasma and the tumor following three modes of administration, viz, continuous infusion, single bolus injection and equally-spaced equal-dose multiple bolus injections, of a given amount of drug. The qualitative trends exhibited by the plasma drug distribution profiles are consistent with reported experimental studies. Two concepts, viz, the dimensionless decay constant and the plasma/tumor drug concentration trajectories, are found to be particularly useful in the rational design of drug therapy. The dimensionless decay constant provides a measure of the rate of drug decay in the plasma relative to the rate of drug diffusion into the tumor and is thus characteristic of the tumor/drug system. The magnitude of this parameter dictates the choice of drug administration mode for minimizing drug decay in the plasma while simultaneously maximizing drug transport into the tumor. The concentration trajectories provide a measure of the plasma drug concentration relative to the tumor drug concentration at various times following injection. When the tumor drug concentration exceeds the plasma drug concentration, the drug will begin to diffuse out of the tumor. Knowledge of the time at which this diffusion reversal occurs is especially useful for optimum scheduling of subsequent bolus injections in a multiple bolus dosing regimen. There are no reported applications of the FFT method to solve repeated input functions in either the chemical engineering or pharmaceutical science literature. Thus, the application of FFT method to solve multiple bolus injections is a unique one. Use of this FFT based analysis as a predictor tool can limit the number of costly experiments which are being done now to achieve this purpose. Even though the model in its present form is simplified, the analysis thereof has nevertheless led to a better understanding of the various factors that must be taken into account for rational design of drug therapy.

  7. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations

    NASA Astrophysics Data System (ADS)

    Sempau, Josep; Wilderman, Scott J.; Bielajew, Alex F.

    2000-08-01

    A new Monte Carlo (MC) algorithm, the `dose planning method' (DPM), and its associated computer program for simulating the transport of electrons and photons in radiotherapy class problems employing primary electron beams, is presented. DPM is intended to be a high-accuracy MC alternative to the current generation of treatment planning codes which rely on analytical algorithms based on an approximate solution of the photon/electron Boltzmann transport equation. For primary electron beams, DPM is capable of computing 3D dose distributions (in 1 mm3 voxels) which agree to within 1% in dose maximum with widely used and exhaustively benchmarked general-purpose public-domain MC codes in only a fraction of the CPU time. A representative problem, the simulation of 1 million 10 MeV electrons impinging upon a water phantom of 1283 voxels of 1 mm on a side, can be performed by DPM in roughly 3 min on a modern desktop workstation. DPM achieves this performance by employing transport mechanics and electron multiple scattering distribution functions which have been derived to permit long transport steps (of the order of 5 mm) which can cross heterogeneity boundaries. The underlying algorithm is a `mixed' class simulation scheme, with differential cross sections for hard inelastic collisions and bremsstrahlung events described in an approximate manner to simplify their sampling. The continuous energy loss approximation is employed for energy losses below some predefined thresholds, and photon transport (including Compton, photoelectric absorption and pair production) is simulated in an analogue manner. The δ-scattering method (Woodcock tracking) is adopted to minimize the computational costs of transporting photons across voxels.

  8. Single- and multiple-dose pharmacokinetics, pharmacodynamics, and safety of apixaban in healthy Chinese subjects

    PubMed Central

    Cui, Yimin; Song, Yan; Wang, Jessie; Yu, Zhigang; Schuster, Alan; Barrett, Yu Chen; Frost, Charles

    2013-01-01

    Background The pharmacokinetics (PK), pharmacodynamics (PD), and safety of apixaban were assessed in healthy Chinese subjects in this randomized, placebo-controlled, double-blind, single-sequence, single- and multiple-dose study. Subjects and methods Eighteen subjects 18–45 years of age were randomly assigned (2:1 ratio) to receive apixaban or matched placebo. Subjects received a single 10 mg dose of apixaban or placebo on day 1, followed by 10 mg apixaban or placebo twice daily for 6 days (days 4–9). The PK and PD of apixaban were assessed by collecting plasma samples for 72 hours following the dose on day 1 and the morning dose on day 9, and measuring apixaban concentration and anti-Xa activity. Safety was assessed via physical examinations, vital sign measurements, electrocardiograms, and clinical laboratory evaluations. Results PK analysis showed similar characteristics of apixaban after single and multiple doses, including a median time to maximum concentration of ~3 hours, mean elimination half-life of ~11 hours, and renal clearance of ~1.2 L/hour. The accumulation index was 1.7, consistent with twice-daily dosing and the observed elimination half-life. Single-dose data predict multiple-dose PK, therefore apixaban PK are time-independent. The relationship between anti-Xa activity and plasma apixaban concentrations appears to be linear. Apixaban was safe and well tolerated, with no bleeding-related adverse events reported. Conclusion Apixaban was safe and well tolerated in healthy Chinese subjects. Apixaban PK and PD were predictable and consistent with findings from previous studies in Asian and non-Asian subjects. The administration of apixaban does not require any dose modification based on race. PMID:24353445

  9. Steady-state pharmacokinetics of fluvastatin in healthy subjects following a new extended release fluvastatin tablet, Lescol XL.

    PubMed

    Barilla, Denise; Prasad, Pratapa; Hubert, Martine; Gumbhir-Shah, Kavita

    2004-03-01

    This was an open-label, randomized, three-period, three-treatment, multiple dose, crossover study in 12 healthy male and female subjects. This study evaluated single dose and steady-state pharmacokinetics of fluvastatin following single and multiple dose administrations of a new extended release fluvastatin 8 h matrix tablet, Lescol XL 80 mg and 160 mg doses once a day. The study also included a twice a day administration of an immediate release (IR) form of fluvastatin capsule, Lescol, for comparative purposes. All doses were administered for 7 days. The safety and tolerability were also assessed. The pharmacokinetics of fluvastatin were evaluated on days 1 and 7 following each treatment. Fluvastatin systemic exposure was 50% less when administered as Lescol XL 80 mg qd compared with Lescol IR 40 mg bid. Conversely, fluvastatin systemic exposure was 22% higher when administered as Lescol XL 160 mg qd compared with Lescol IR 40 mg bid. Single doses of Lescol XL 80 mg and 160 mg were dose proportional but, deviation (30%) from dose proportionality was observed for the Lescol XL 160 mg at steady-state. There appeared to be moderate (20%-40%) accumulation of serum fluvastatin maximal concentrations and exposure after multiple doses of Lescol XL tablets. Both Lescol XL 80 mg and 160 mg showed delayed absorption and longer apparent elimination half-life compared with fluvastatin IR capsule. Single and multiple doses of fluvastatin were generally well tolerated in this healthy volunteer population. Adverse event profiles were consistent with the published safety profile of the marketed formulations. Aside from one incidence of creatine phosphokinase (CPK) elevation (following Lescol XL 160 mg qd treatment), there were no safety concerns with any of the treatments when administered acutely (7 days). Copyright 2004 John Wiley & Sons, Ltd.

  10. Safety, pharmacokinetics and pharmacodynamics of multiple oral doses of apixaban, a factor Xa inhibitor, in healthy subjects

    PubMed Central

    Frost, Charles; Nepal, Sunil; Wang, Jessie; Schuster, Alan; Byon, Wonkyung; Boyd, Rebecca A; Yu, Zhigang; Shenker, Andrew; Barrett, Yu Chen; Mosqueda-Garcia, Rogelio; LaCreta, Frank

    2013-01-01

    Aim Apixaban is an oral factor Xa inhibitor approved for stroke prevention in atrial fibrillation and thromboprophylaxis in patients who have undergone elective hip or knee replacement surgery and under development for treatment of venous thromboembolism. This study examined the safety, pharmacokinetics and pharmacodynamics of multiple dose apixaban. Method This double-blind, randomized, placebo-controlled, parallel group, multiple dose escalation study was conducted in six sequential dose panels – apixaban 2.5, 5, 10 and 25 mg twice daily and 10 and 25 mg once daily– with eight healthy subjects per panel. Within each panel, subjects were randomized (3:1) to oral apixaban or placebo for 7 days. Subjects underwent safety assessments and were monitored for adverse events (AEs). Blood samples were taken to measure apixaban plasma concentration, international normalized ratio (INR), activated partial thromboplastin time (aPTT) and modified prothrombin time (mPT). Results Forty-eight subjects were randomized and treated (apixaban, n = 36; placebo, n = 12); one subject receiving 2.5 mg twice daily discontinued due to AEs (headache and nausea). No dose limiting AEs were observed. Apixaban maximum plasma concentration was achieved ∼3 h post-dose. Exposure increased approximately in proportion to dose. Apixaban steady-state concentrations were reached by day 3, with an accumulation index of 1.3–1.9. Peak : trough ratios were lower for twice daily vs. once daily regimens. Clotting times showed dose-related increases tracking the plasma concentration–time profile. Conclusion Multiple oral doses of apixaban were safe and well tolerated over a 10-fold dose range, with pharmacokinetics with low variability and concentration-related increases in clotting time measures. PMID:23451769

  11. SU-E-T-558: Assessing the Effect of Inter-Fractional Motion in Esophageal Sparing Plans.

    PubMed

    Williamson, R; Bluett, J; Niedzielski, J; Liao, Z; Gomez, D; Court, L

    2012-06-01

    To compare esophageal dose distributions in esophageal sparing IMRT plans with predicted dose distributions which include the effect of inter-fraction motion. Seven lung cancer patients were used, each with a standard and an esophageal sparing plan (74Gy, 2Gy fractions). The average max dose to esophagus was 8351cGy and 7758cGy for the standard and sparing plans, respectively. The average length of esophagus for which the total circumference was treated above 60Gy (LETT60) was 9.4cm in the standard plans and 5.8cm in the sparing plans. In order to simulate inter-fractional motion, a three-dimensional rigid shift was applied to the calculated dose field. A simulated course of treatment consisted of a single systematic shift applied throughout the treatment as well a random shift for each of the 37 fractions. Both systematic and random shifts were generated from Gaussian distributions of 3mm and 5mm standard deviation. Each treatment course was simulated 1000 times to obtain an expected distribution of the delivered dose. Simulated treatment dose received by the esophagus was less than dose seen in the treatment plan. The average reduction in maximum esophageal dose for the standard plans was 234cGy and 386cGY for the 3mm and 5mm Gaussian distributions, respectively. The average reduction in LETT60 was 0.6cm and 1.7cm, for the 3mm and 5mm distributions respectively. For the esophageal sparing plans, the average reduction in maximum esophageal dose was 94cGy and 202cGy for 3mm and 5mm Gaussian distributions, respectively. The average change in LETT60 for the esophageal sparing plans was smaller, at 0.1cm (increase) and 0.6cm (reduction), for the 3mm and 5mm distributions, respectively. Interfraction motion consistently reduced the maximum doses to the esophagus for both standard and esophageal sparing plans. © 2012 American Association of Physicists in Medicine.

  12. [Comparison of SIB-IMRT treatment plans for upper esophageal carcinoma].

    PubMed

    Fu, Wei-hua; Wang, Lv-hua; Zhou, Zong-mei; Dai, Jian-rong; Hu, Yi-min

    2003-06-01

    To implement simultaneous integrated boost intensity-modulated radiotherapy(SIB-IMRT) plans for upper esophageal carcinoma and investigate the dose profiles of tumor and electively treated region and the dose to organs at risk (OARs). SIB-IMRT plans were designed for two patients with upper esophageal carcinoma. Two target volumes were predefined: PTV1, the target volume of the primary lesion, which was given to 67.2 Gy, and PTV2, the target volume of electively treated region, which was given to 50.4 Gy. With the same dose-volume constraints, but different beams arrangements (3, 5, 7, or 9 equispaced coplanar beams), four plans were generated. Indices, including dose distribution, dose volume histogram (DVH) and conformity index, were used for comparison of these plans. The plan with three intensity-modulated beams could produce good dose distribution for the two target volumes. The dose conformity to targets and the dose to OARs were improved as the beam number increased. The dose distributions in targets changed little when the beam number increased from 7 to 9. Five to seven intensity-modulated beams can produce desirable dose distributions for simultaneous integrated boost (SIB) treatment for upper esophageal carcinoma. The primary tumor can get higher equivalent dose by SIB treatments. It is easier and more efficient to design plans with equispaced coplanar beams. The efficacy of SIB-IMRT remains to be determined by the clinical outcome.

  13. Novel Microbiological and Spatial Statistical Methods to Improve Strength of Epidemiological Evidence in a Community-Wide Waterborne Outbreak

    PubMed Central

    Jalava, Katri; Rintala, Hanna; Ollgren, Jukka; Maunula, Leena; Gomez-Alvarez, Vicente; Revez, Joana; Palander, Marja; Antikainen, Jenni; Kauppinen, Ari; Räsänen, Pia; Siponen, Sallamaari; Nyholm, Outi; Kyyhkynen, Aino; Hakkarainen, Sirpa; Merentie, Juhani; Pärnänen, Martti; Loginov, Raisa; Ryu, Hodon; Kuusi, Markku; Siitonen, Anja; Miettinen, Ilkka; Santo Domingo, Jorge W.; Hänninen, Marja-Liisa; Pitkänen, Tarja

    2014-01-01

    Failures in the drinking water distribution system cause gastrointestinal outbreaks with multiple pathogens. A water distribution pipe breakage caused a community-wide waterborne outbreak in Vuorela, Finland, July 2012. We investigated this outbreak with advanced epidemiological and microbiological methods. A total of 473/2931 inhabitants (16%) responded to a web-based questionnaire. Water and patient samples were subjected to analysis of multiple microbial targets, molecular typing and microbial community analysis. Spatial analysis on the water distribution network was done and we applied a spatial logistic regression model. The course of the illness was mild. Drinking untreated tap water from the defined outbreak area was significantly associated with illness (RR 5.6, 95% CI 1.9–16.4) increasing in a dose response manner. The closer a person lived to the water distribution breakage point, the higher the risk of becoming ill. Sapovirus, enterovirus, single Campylobacter jejuni and EHEC O157:H7 findings as well as virulence genes for EPEC, EAEC and EHEC pathogroups were detected by molecular or culture methods from the faecal samples of the patients. EPEC, EAEC and EHEC virulence genes and faecal indicator bacteria were also detected in water samples. Microbial community sequencing of contaminated tap water revealed abundance of Arcobacter species. The polyphasic approach improved the understanding of the source of the infections, and aided to define the extent and magnitude of this outbreak. PMID:25147923

  14. Safety and pharmacodynamics of venetoclax (ABT-199) in a randomized single and multiple ascending dose study in women with systemic lupus erythematosus.

    PubMed

    Lu, P; Fleischmann, R; Curtis, C; Ignatenko, S; Clarke, S H; Desai, M; Wong, S L; Grebe, K M; Black, K; Zeng, J; Stolzenbach, J; Medema, J K

    2018-02-01

    Objective The anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) may contribute to the pathogenesis of systemic lupus erythematosus. The safety, tolerability, and pharmacodynamics of the selective Bcl-2 inhibitor venetoclax (ABT-199) were assessed in women with systemic lupus erythematosus. Methods A phase 1, double-blind, randomized, placebo controlled study evaluated single ascending doses (10, 30, 90, 180, 300, and 500 mg) and multiple ascending doses (2 cycles; 30, 60, 120, 240, 400, and 600 mg for 1 week, and then 3 weeks off per cycle) of orally administered venetoclax. Eligible participants were aged 18-65 years with a diagnosis of systemic lupus erythematosus for 6 months or more receiving stable therapy for systemic lupus erythematosus (which could have included corticosteroids and/or stable antimalarials). Results All patients (48/48) completed the single ascending dose, 25 continued into the multiple ascending dose, and 44/50 completed the multiple ascending dose; two of the withdrawals (venetoclax 60 mg and 600 mg cohorts) were due to adverse events. Adverse event incidences were slightly higher in the venetoclax groups compared with the placebo groups, with no dose dependence. There were no serious adverse events with venetoclax. The most common adverse events were headache, nausea, and fatigue. Venetoclax 600 mg multiple ascending dose treatment depleted total lymphocytes and B cells by approximately 50% and 80%, respectively. Naive, switched memory, and memory B-cell subsets enriched in autoreactive B cells exhibited dose-dependent reduction of up to approximately 80%. There were no consistent or marked changes in neutrophils, natural killer cells, hemoglobin, or platelets. Conclusions Venetoclax was generally well tolerated in women with systemic lupus erythematosus and reduced total lymphocytes and disease-relevant subsets of antigen-experienced B cells. Registration ClinicalTrials.gov: NCT01686555.

  15. Clinical Pharmacokinetics in Kidney Disease: Fundamental Principles.

    PubMed

    Lea-Henry, Tom N; Carland, Jane E; Stocker, Sophie L; Sevastos, Jacob; Roberts, Darren M

    2018-06-22

    Kidney disease is an increasingly common comorbidity that alters the pharmacokinetics of many drugs. Prescribing to patients with kidney disease requires knowledge about the drug, the extent of the patient's altered physiology, and pharmacokinetic principles that influence the design of dosing regimens. There are multiple physiologic effects of impaired kidney function, and the extent to which they occur in an individual at any given time can be difficult to define. Although some guidelines are available for dosing in kidney disease, they may be on the basis of limited data or not widely applicable, and therefore, an understanding of pharmacokinetic principles and how to apply them is important to the practicing clinician. Whether kidney disease is acute or chronic, drug clearance decreases, and the volume of distribution may remain the same or increase. Although in CKD, these changes progress relatively slowly, they are dynamic in AKI, and recovery is possible depending on the etiology and treatments. This, and the use of kidney replacement therapies further complicate attempts to quantify drug clearance at the time of prescribing and dosing in AKI. The required change in the dosing regimen can be estimated or even quantitated in certain instances through the application of pharmacokinetic principles to guide rational drug dosing. This offers an opportunity to provide personalized medical care and minimizes adverse drug events from either under- or overdosing. We discuss the principles of pharmacokinetics that are fundamental for the design of an appropriate dosing regimen in this review. Copyright © 2018 by the American Society of Nephrology.

  16. Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study

    NASA Astrophysics Data System (ADS)

    Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia

    2010-02-01

    We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, H; Ferjani, S; Masssey, V

    Purpose: Perform dosimetric comparison between planned and delivered dose in the junction area, measure daily dose variation in the arc junction area for pediatric patients treated for medulloblastoma using Craniospinal axis irradiation(CSI) Material and methods Dose comparison in the junction area, daily dose variation in the arc junction area for a Rando Phantom and 5 pediatric patients treated using CSI technique were analyzed. Plans were created using the Eclipse treatment planning system. Two arcs for cranium and 1 arc for spine region were used. Planar dose matrix was created by projecting phantom and patient plan into the ArcCheck phantom. EBT3more » film was placed in the middle of ArcCheck plug to measure dose distribution in the junction areaDuring patient treatment, strip of EBT3 film was placed daily at each junction area for verification. EBT3 films were scanned using a flatbed scanner, Epson Expression 10000 XL. Film QA pro software was used to analyze film. Scanning and analysis was performed according to vendor recommendations and AAPM TG-55 report. Films were scanned and analyzed daily after each treatment and at the end of treatment course. Planar dose distributions from films were compared with planar dose distribution from treatment planning system. Results: Comparison of planned vs. measured dose distributions for patients have passing rates of 90%–100% with 3% and 3 mm gamma analysis. In some of the treatment fractions, daily setup film showed variation in dose distribution in the junction area. Conclusion: It is critical to measure dose distribution in the arc junction area and use additional quality assurance measures to verify daily setup for CSI patient where one or more junctions are present. EBT3 film prove to be a good tool to achieve this task considering flexibility associated with the film such as symmetry, self-developing and ease of use.« less

  18. Total body irradiation, toward optimal individual delivery: dose evaluation with metal oxide field effect transistors, thermoluminescence detectors, and a treatment planning system.

    PubMed

    Bloemen-van Gurp, Esther J; Mijnheer, Ben J; Verschueren, Tom A M; Lambin, Philippe

    2007-11-15

    To predict the three-dimensional dose distribution of our total body irradiation technique, using a commercial treatment planning system (TPS). In vivo dosimetry, using metal oxide field effect transistors (MOSFETs) and thermoluminescence detectors (TLDs), was used to verify the calculated dose distributions. A total body computed tomography scan was performed and loaded into our TPS, and a three-dimensional-dose distribution was generated. In vivo dosimetry was performed at five locations on the patient. Entrance and exit dose values were converted to midline doses using conversion factors, previously determined with phantom measurements. The TPS-predicted dose values were compared with the MOSFET and TLD in vivo dose values. The MOSFET and TLD dose values agreed within 3.0% and the MOSFET and TPS data within 0.5%. The convolution algorithm of the TPS, which is routinely applied in the clinic, overestimated the dose in the lung region. Using a superposition algorithm reduced the calculated lung dose by approximately 3%. The dose inhomogeneity, as predicted by the TPS, can be reduced using a simple intensity-modulated radiotherapy technique. The use of a TPS to calculate the dose distributions in individual patients during total body irradiation is strongly recommended. Using a TPS gives good insight of the over- and underdosage in a patient and the influence of patient positioning on dose homogeneity. MOSFETs are suitable for in vivo dosimetry purposes during total body irradiation, when using appropriate conversion factors. The MOSFET, TLD, and TPS results agreed within acceptable margins.

  19. Organ Doses Associated with Partial-Body Irradiation with 2.5% Bone Marrow Sparing of the Non-Human Primate: A Retrospective Study.

    PubMed

    Prado, C; MacVittie, T J; Bennett, A W; Kazi, A; Farese, A M; Prado, K

    2017-12-01

    A partial-body irradiation model with approximately 2.5% bone marrow sparing (PBI/BM2.5) was established to determine the radiation dose-response relationships for the prolonged and delayed multi-organ effects of acute radiation exposure. Historically, doses reported to the entire body were assumed to be equal to the prescribed dose at some defined calculation point, and the dose-response relationship for multi-organ injury has been defined relative to the prescribed dose being delivered at this point, e.g., to a point at mid-depth at the level of the xiphoid of the non-human primate (NHP). In this retrospective-dose study, the true distribution of dose within the major organs of the NHP was evaluated, and these doses were related to that at the traditional dose-prescription point. Male rhesus macaques were exposed using the PBI/BM2.5 protocol to a prescribed dose of 10 Gy using 6-MV linear accelerator photons at a rate of 0.80 Gy/min. Point and organ doses were calculated for each NHP from computed tomography (CT) scans using heterogeneous density data. The prescribed dose of 10.0 Gy to a point at midline tissue assuming homogeneous media resulted in 10.28 Gy delivered to the prescription point when calculated using the heterogeneous CT volume of the NHP. Respective mean organ doses to the volumes of nine organs, including the heart, lung, bowel and kidney, were computed. With modern treatment planning systems, utilizing a three-dimensional reconstruction of the NHP's CT images to account for the variations in body shape and size, and using density corrections for each of the tissue types, bone, water, muscle and air, accurate determination of the differences in dose to the NHP can be achieved. Dose and volume statistics can be ascertained for any body structure or organ that has been defined using contouring tools in the planning system. Analysis of the dose delivered to critical organs relative to the total-body target dose will permit a more definitive analysis of organ-specific effects and their respective influence in multiple organ injury.

  20. A comparison of intensity modulated x-ray therapy to intensity modulated proton therapy for the delivery of non-uniform dose distributions

    NASA Astrophysics Data System (ADS)

    Flynn, Ryan

    2007-12-01

    The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.

  1. SU-F-T-159: Monte Carlo Simulation Studies of Three-Dimensional Dose Distribution for Polymer Gel Dosimeter and Radiochromic Gel Dosimeter in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Jung, H

    Purpose: The purpose of this simulation study is to evaluate the proton detectability of gel dosimeters, and estimate the three-dimensional dose distribution of protons in the radiochromic gel and polymer gel dosimeter compared with the dose distribution in water. Methods: The commercial composition ratios of normoxic polymer gel and LCV micelle radiochromic gel were included in this simulation study. The densities of polymer and radiochromic gel were 1.024 and 1.005 g/cm3, respectively. The 50, 80 and 140 MeV proton beam energies were selected. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiationmore » transport code (MCNPX 2.7.0, Los Alamos Laboratory). The water equivalent depth profiles and the dose distributions of two gel dosimeters were compared for the water. Results: In case of irradiating 50, 80 and 140 MeV proton beam to water phantom, the reference Bragg-peak depths are represented at 2.22, 5.18 and 13.98 cm, respectively. The difference in the water equivalent depth is represented to about 0.17 and 0.37 cm in the radiochromic gel and polymer gel dosimeter, respectively. The proton absorbed doses in the radiochromic gel dosimeter are calculated to 2.41, 3.92 and 6.90 Gy with increment of incident proton energies. In the polymer gel dosimeter, the absorbed doses are calculated to 2.37, 3.85 and 6.78 Gy with increment of incident proton energies. The relative absorbed dose in radiochromic gel (about 0.47 %) is similar to that of water than the relative absorbed dose of polymer gel (about 2.26 %). In evaluating the proton dose distribution, we found that the dose distribution of both gel dosimeters matched that of water in most cases. Conclusion: As the dosimetry device, the radiochromic gel dosimeter has the potential particle detectability and is feasible to use for quality assurance of proton beam therapy beam.« less

  2. SU-E-T-753: Three-Dimensional Dose Distributions of Incident Proton Particle in the Polymer Gel Dosimeter and the Radiochromic Gel Dosimeter: A Simulation Study with MCNP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Kim, G; Ji, Y

    Purpose: The purpose of this study is to estimate the three-dimensional dose distributions in the polymer and the radiochromic gel dosimeter, and to identify the detectability of both gel dosimeters by comparing with the water phantom in case of irradiating the proton particles. Methods: The normoxic polymer gel and the LCV micelle radiochromic gel were used in this study. The densities of polymer and the radiochromic gel dosimeter were 1.024 and 1.005 g/cm{sup 3}, respectively. The dose distributions of protons in the polymer and radiochromic gel were simulated using Monte Carlo radiation transport code (MCNPX, Los Alamos National Laboratory). Themore » shape of phantom irradiated by proton particles was a hexahedron with the dimension of 12.4 × 12.4 × 15.0 cm{sup 3}. The energies of proton beam were 50, 80, and 140 MeV energies were directed to top of the surface of phantom. The cross-sectional view of proton dose distribution in both gel dosimeters was estimated with the water phantom and evaluated by the gamma evaluation method. In addition, the absorbed dose(Gy) was also calculated for evaluating the proton detectability. Results: The evaluation results show that dose distributions in both gel dosimeters at intermediated section and Bragg-peak region are similar with that of the water phantom. At entrance section, however, inconsistencies of dose distribution are represented, compared with water. The relative absorbed doses in radiochromic and polymer gel dosimeter were represented to be 0.47 % and 2.26 % difference, respectively. These results show that the radiochromic gel dosimeter was better matched than the water phantom in the absorbed dose evaluation. Conclusion: The polymer and the radiochromic gel dosimeter show similar characteristics in dose distributions for the proton beams at intermediate section and Bragg-peak region. Moreover the calculated absorbed dose in both gel dosimeters represents similar tendency by comparing with that in water phantom.« less

  3. Single- and multiple-dose pharmacokinetics and absolute bioavailability of tedizolid.

    PubMed

    Flanagan, Shawn; Fang, Edward; Muñoz, Kelly A; Minassian, Sonia L; Prokocimer, Philippe G

    2014-09-01

    Tedizolid phosphate is a novel antibacterial under investigation for the treatment of gram-positive infections. This study was conducted to assess the pharmacokinetics, safety, and tolerability of intravenous tedizolid phosphate as well as the oral bioavailability of tedizolid phosphate. Double-blind, single-ascending dose, multiple-dose pharmacokinetics study, as well as tolerability and open-label crossover studies. Single center in the United States (Covance Clinical Research Unit, Madison, WI) between September 2009 and January 2010. Ninety healthy volunteers. Single intravenous (IV) doses of tedizolid phosphate 50 mg (lead-in) and 100-400 mg. Single oral and IV dose of tedizolid phosphate 200 mg in crossover fashion. Multiple IV doses of tedizolid phosphate 200 and 300 mg for up to 7 days. A dose-dependent increase was observed in the maximum plasma concentration (1.2-5.1 μg/ml) and the area under the concentration-time curve (17.4-58.7 μg × hr/ml) of tedizolid (the microbiologically active moiety of tedizolid phosphate) after single IV doses of tedizolid phosphate 100-400 mg. Administration of IV tedizolid phosphate 200 mg once/day for 7 days resulted in minimal (28%) tedizolid accumulation. The absolute oral bioavailability of tedizolid after a single 200-mg dose of tedizolid phosphate was 91%; pharmacokinetic parameters of tedizolid were similar with oral and IV administration. Treatment-related adverse events occurred in 41% of subjects. Most adverse events were related to infusion site and became more frequent with multiple dosing. In an additional 3-day tolerability study, IV tedizolid phosphate 200 mg and placebo were similarly tolerated, based on visual infusion phlebitis scores. These results from a population of healthy volunteers support once/day dosing of tedizolid phosphate 200 mg with both the oral and IV formulations, without the need for dose adjustment when switching administration routes. © 2014 Cubist Pharmaceuticals. Pharmacotherapy published by Wiley Periodicals, Inc. on behalf of Pharmacotherapy Publications, Inc.

  4. Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.

    PubMed

    Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo

    2017-09-01

    The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

  5. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident.

    PubMed

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9-50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years.

  6. WE-A-17A-12: The Influence of Eye Plaque Design On Dose Distributions and Dose- Volume Histograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, P; Molloy, JA; Rivard, MJ

    Purpose: To investigate the effect of slot design of the model EP917 plaque on dose distributions and dose-volume histograms (DVHs). Methods: The dimensions and orientation of the slots in EP917 plaques were measured. In the MCNP5 radiation simulation geometry, dose distributions on orthogonal planes and DVHs for a tumor and sclera were generated for comparisons. 27 slot designs and 13 plaques were evaluated and compared with the published literature and the Plaque Simulator clinical treatment planning system. Results: The dosimetric effect of the gold backing composition and mass density was < 3%. Slot depth, width, and length changed the centralmore » axis (CAX) dose distributions by < 1% per 0.1 mm in design variation. Seed shifts in the slot towards the eye and shifts of the {sup 125} I-coated Ag rod within the capsule had the greatest impact on CAX dose distribution, increasing by 14%, 9%, 4%, and 2.5% at 1, 2, 5, and 10 mm, respectively, from the inner sclera. Along the CAX, dose from the full plaque geometry using the measured slot design was 3.4% ± 2.3% higher than the manufacturer-provided geometry. D{sub 10} for the simulated tumor, inner sclera, and outer sclera for the measured plaque was also higher, but 9%, 10%, and 20%, respectively. In comparison to the measured plaque design, a theoretical plaque having narrow and deep slots delivered 30%, 37%, and 62% lower D{sub 10} doses to the tumor, inner sclera, and outer sclera, respectively. CAX doses at −1, 0, 1, and 2 mm were also lower by a factor of 2.6, 1.4, 1.23, and 1.13, respectively. Conclusion: The study identified substantial sensitivity of the EP917 plaque dose distributions to slot design. However, it did not identify substantial dosimetric variations based on radionuclide choice ({sup 125}I, {sup 103}Pd, or {sup 131}Cs). COMS plaques provided lower scleral doses with similar tumor dose coverage.« less

  7. SU-E-T-109: An Investigation of Including Variable Relative Biological Effectiveness in Intensity Modulated Proton Therapy Planning Optimization for Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, W; Zaghian, M; Lim, G

    2015-06-15

    Purpose: The current practice of considering the relative biological effectiveness (RBE) of protons in intensity modulated proton therapy (IMPT) planning is to use a generic RBE value of 1.1. However, RBE is indeed a variable depending on the dose per fraction, the linear energy transfer, tissue parameters, etc. In this study, we investigate the impact of using variable RBE based optimization (vRBE-OPT) on IMPT dose distributions compared by conventional fixed RBE based optimization (fRBE-OPT). Methods: Proton plans of three head and neck cancer patients were included for our study. In order to calculate variable RBE, tissue specific parameters were obtainedmore » from the literature and dose averaged LET values were calculated by Monte Carlo simulations. Biological effects were calculated using the linear quadratic model and they were utilized in the variable RBE based optimization. We used a Polak-Ribiere conjugate gradient algorithm to solve the model. In fixed RBE based optimization, we used conventional physical dose optimization to optimize doses weighted by 1.1. IMPT plans for each patient were optimized by both methods (vRBE-OPT and fRBE-OPT). Both variable and fixed RBE weighted dose distributions were calculated for both methods and compared by dosimetric measures. Results: The variable RBE weighted dose distributions were more homogenous within the targets, compared with the fixed RBE weighted dose distributions for the plans created by vRBE-OPT. We observed that there were noticeable deviations between variable and fixed RBE weighted dose distributions if the plan were optimized by fRBE-OPT. For organs at risk sparing, dose distributions from both methods were comparable. Conclusion: Biological dose based optimization rather than conventional physical dose based optimization in IMPT planning may bring benefit in improved tumor control when evaluating biologically equivalent dose, without sacrificing OAR sparing, for head and neck cancer patients. The research is supported in part by National Institutes of Health Grant No. 2U19CA021239-35.« less

  8. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.

    PubMed

    Shirey, Robert J; Wu, Hsinshun Terry

    2018-01-01

    This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. An assessment of a 3D EPID-based dosimetry system using conventional two- and three-dimensional detectors for VMAT.

    PubMed

    Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A

    2018-01-01

    To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Inclusion of dosimetric data as covariates in toxicity-related radiogenomic studies : A systematic review.

    PubMed

    Yahya, Noorazrul; Chua, Xin-Jane; Manan, Hanani A; Ismail, Fuad

    2018-05-17

    This systematic review evaluates the completeness of dosimetric features and their inclusion as covariates in genetic-toxicity association studies. Original research studies associating genetic features and normal tissue complications following radiotherapy were identified from PubMed. The use of dosimetric data was determined by mining the statement of prescription dose, dose fractionation, target volume selection or arrangement and dose distribution. The consideration of the dosimetric data as covariates was based on the statement mentioned in the statistical analysis section. The significance of these covariates was extracted from the results section. Descriptive analyses were performed to determine their completeness and inclusion as covariates. A total of 174 studies were found to satisfy the inclusion criteria. Studies published ≥2010 showed increased use of dose distribution information (p = 0.07). 33% of studies did not include any dose features in the analysis of gene-toxicity associations. Only 29% included dose distribution features as covariates and reported the results. 59% of studies which included dose distribution features found significant associations to toxicity. A large proportion of studies on the correlation of genetic markers with radiotherapy-related side effects considered no dosimetric parameters. Significance of dose distribution features was found in more than half of the studies including these features, emphasizing their importance. Completeness of radiation-specific clinical data may have increased in recent years which may improve gene-toxicity association studies.

  11. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  12. Pharmacokinetics of Memantine after a Single and Multiple Dose of Oral and Patch Administration in Rats.

    PubMed

    Lee, Soo-Han; Kim, Seung-Hyun; Noh, Yook-Hwan; Choi, Byung-Moon; Noh, Gyu-Jeong; Park, Woo-Dae; Kim, Eun-Jung; Cho, Ik-Hyun; Bae, Chun-Sik

    2016-02-01

    Memantine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist used to treat Alzheimer's disease. We investigated memantine pharmacokinetics after oral, IV and patch administration in rats, and compared memantine pharmacokinetics after multiple- or single-dose oral and transdermal administration. Venous blood was collected at preset intervals in single- and multiple-dose studies. Non-compartmental pharmacokinetics was analysed for all formulations. The oral, IV and patch memantine doses were 10 mg/kg, 2 mg/kg and 8.21 ± 0.89 mg/kg, respectively. The maximum plasma concentration was lower and the half-life longer after patch administration than oral and IV administration. Memantine bioavailability was 41 and 63% for oral and patch administration, respectively. Steady state was achieved around 24 hr for oral and patch administration. The mean AUC increased after oral or patch administration from single to multiple dose. The memantine patch formulation displayed a longer duration of action and lower peak plasma concentration. However, drug exposure was similar to the oral formulation at each dose. Additionally, the memantine patch formulation displayed a smaller interindividual variability and lower accumulation than the oral formulation. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

    2012-10-15

    Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnosticmore » cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.« less

  14. Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific

    NASA Astrophysics Data System (ADS)

    Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.

    2015-09-01

    This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner. Electronic supplementary information (ESI) available: IF images of brain, heart, low magnification images of spleen, mouse heart rate and blood pressure post-LPS. See DOI: 10.1039/c5nr03626g

  15. SU-E-T-397: Evaluation of Planned Dose Distributions by Monte Carlo (0.5%) and Ray Tracing Algorithm for the Spinal Tumors with CyberKnife

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Brindle, J; Hepel, J

    2015-06-15

    Purpose: To analyze and evaluate dose distribution between Ray Tracing (RT) and Monte Carlo (MC) algorithms of 0.5% uncertainty on a critical structure of spinal cord and gross target volume and planning target volume. Methods: Twenty four spinal tumor patients were treated with stereotactic body radiotherapy (SBRT) by CyberKnife in 2013 and 2014. The MC algorithm with 0.5% of uncertainty is used to recalculate the dose distribution for the treatment plan of the patients using the same beams, beam directions, and monitor units (MUs). Results: The prescription doses are uniformly larger for MC plans than RT except one case. Upmore » to a factor of 1.19 for 0.25cc threshold volume and 1.14 for 1.2cc threshold volume of dose differences are observed for the spinal cord. Conclusion: The MC recalculated dose distributions are larger than the original MC calculations for the spinal tumor cases. Based on the accuracy of the MC calculations, more radiation dose might be delivered to the tumor targets and spinal cords with the increase prescription dose.« less

  16. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  17. Measurement and simulation of lineal energy distribution at the CERN high energy facility with a tissue equivalent proportional counter.

    PubMed

    Rollet, S; Autischer, M; Beck, P; Latocha, M

    2007-01-01

    The response of a tissue equivalent proportional counter (TEPC) in a mixed radiation field with a neutron energy distribution similar to the radiation field at commercial flight altitudes has been studied. The measurements have been done at the CERN-EU High-Energy Reference Field (CERF) facility where a well-characterised radiation field is available for intercomparison. The TEPC instrument used by the ARC Seibersdorf Research is filled with pure propane gas at low pressure and can be used to determine the lineal energy distribution of the energy deposition in a mass of gas equivalent to a 2 microm diameter volume of unit density tissue, of similar size to the nuclei of biological cells. The linearity of the detector response was checked both in term of dose and dose rate. The effect of dead-time has been corrected. The influence of the detector exposure location and orientation in the radiation field on the dose distribution was also studied as a function of the total dose. The microdosimetric distribution of the absorbed dose as a function of the lineal energy has been obtained and compared with the same distribution simulated with the FLUKA Monte Carlo transport code. The dose equivalent was calculated by folding this distribution with the quality factor as a function of linear energy transfer. The comparison between the measured and simulated distributions show that they are in good agreement. As a result of this study the detector is well characterised, thanks also to the numerical simulations the instrument response is well understood, and it's currently being used onboard the aircrafts to evaluate the dose to aircraft crew caused by cosmic radiation.

  18. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, Shahram; Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario; Fleury, Emmanuelle

    Purpose: The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Methods and Materials: Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43more » dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Results: Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V{sub 100} and V{sub 90} are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. Conclusions: The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases.« less

  19. Clinical Significance of Accounting for Tissue Heterogeneity in Permanent Breast Seed Implant Brachytherapy Planning.

    PubMed

    Mashouf, Shahram; Fleury, Emmanuelle; Lai, Priscilla; Merino, Tomas; Lechtman, Eli; Kiss, Alex; McCann, Claire; Pignol, Jean-Philippe

    2016-03-15

    The inhomogeneity correction factor (ICF) method provides heterogeneity correction for the fast calculation TG43 formalism in seed brachytherapy. This study compared ICF-corrected plans to their standard TG43 counterparts, looking at their capacity to assess inadequate coverage and/or risk of any skin toxicities for patients who received permanent breast seed implant (PBSI). Two-month postimplant computed tomography scans and plans of 140 PBSI patients were used to calculate dose distributions by using the TG43 and the ICF methods. Multiple dose-volume histogram (DVH) parameters of clinical target volume (CTV) and skin were extracted and compared for both ICF and TG43 dose distributions. Short-term (desquamation and erythema) and long-term (telangiectasia) skin toxicity data were available on 125 and 110 of the patients, respectively, at the time of the study. The predictive value of each DVH parameter of skin was evaluated using the area under the receiver operating characteristic (ROC) curve for each toxicity endpoint. Dose-volume histogram parameters of CTV, calculated using the ICF method, showed an overall decrease compared to TG43, whereas those of skin showed an increase, confirming previously reported findings of the impact of heterogeneity with low-energy sources. The ICF methodology enabled us to distinguish patients for whom the CTV V100 and V90 are up to 19% lower compared to TG43, which could present a risk of recurrence not detected when heterogeneity are not accounted for. The ICF method also led to an increase in the prediction of desquamation, erythema, and telangiectasia for 91% of skin DVH parameters studied. The ICF methodology has the advantage of distinguishing any inadequate dose coverage of CTV due to breast heterogeneity, which can be missed by TG43. Use of ICF correction also led to an increase in prediction accuracy of skin toxicities in most cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aluminum exacerbates cyclosporin induced nephrotoxicity in rats.

    PubMed

    Tariq, M; Morais, C; Sujata, B; Sobki, S; al Sulaiman, M; al Khader, A

    1999-01-01

    Cyclosporin (CSA) has been universally used as an immunosuppressant for the management of allotransplantation and autoimmune diseases. However, nephrotoxicity of CSA limits its use to optimum level. Aluminum (Al) is an extensively distributed element in the environment and human exposure to this metal is unavoidable. Recent studies suggest that even a slight impairment of renal function may increase the Al body burden significantly, which may lead to neurotoxicity, nephrotoxicity, osteodystrophy or hypochromic anemia. In the present study, an attempt was made to study the effect of concomitant use of Al and CSA on structure and function of kidney in rats. This study was undertaken in two steps. In the first set of experiments, the effect of single dose of Al (1% Al2(SO4)3 18H2O) on the nephrotoxicity of multiple doses of CSA (12.5 mg/kg, 25 mg/kg and 50 mg/kg) was studied, where as in the second set of experiments the effect of multiple doses of Al (0.25%, 0.5% and 1%) on single dose of CSA (50 mg/kg) was undertaken. Male Sprague-Dawley rats (weighing 230 +/- 20 g) were used in this study. CSA was given once a day by gavage for seven days, where as Al was given in drinking water for the same period. Twenty four hours after the last dose of CSA, animals were sacrificed and blood and kidney were collected for biochemical and histopathological studies. The bio-chemical parameters included blood urea nitrogen (BUN), serum creatinine (SCr), CSA and Al levels. The kidney homogenates were assayed for malondialdehyde (MDA) and lipid hydroperoxides (LPH). Treatment of rats with CSA alone produced dose-dependent structural and functional changes in kidney. Although Al alone failed to produce any deleterious effect on renal function, it significantly increased the bioavailability and nephrotoxicity of CSA. Al also exacerbated CSA induced increase in oxidative stress (as evident by increased MDA and LPH). Thus, the exacerbation of CSA nephrotoxicity by Al may be attributed to increased bioavailability of CSA and excessive generation of free radicals following concomitant use of these drugs.

  1. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform.

    PubMed

    Ding, Chuxiong; Hrycushko, Brian; Whitworth, Louis; Li, Xiang; Nedzi, Lucien; Weprin, Bradley; Abdulrahman, Ramzi; Welch, Babu; Jiang, Steve B; Wardak, Zabi; Timmerman, Robert D

    2017-10-01

    Radiosurgery is an established technique to treat cerebral arteriovenous malformations (AVMs). Obliteration of larger AVMs (> 10-15 cm 3 or diameter > 3 cm) in a single session is challenging with current radiosurgery platforms due to toxicity. We present a novel technique of multistage stereotactic radiosurgery (SRS) for large intracranial arteriovenous malformations (AVM) using the Gamma Knife system. Eighteen patients with large (> 10-15 cm 3 or diameter > 3 cm) AVMs, which were previously treated using a staged SRS technique on the Cyberknife platform, were retrospectively selected for this study. The AVMs were contoured and divided into 3-8 subtargets to be treated sequentially in a staged approach at half to 4 week intervals. The prescription dose ranged from 15 Gy to 20 Gy, depending on the subtarget number, volume, and location. Gamma Knife plans using multiple collimator settings were generated and optimized. The coordinates of each shot from the initial plan covering the total AVM target were extracted based on their relative positions within the frame system. The shots were regrouped based on their location with respect to the subtarget contours to generate subplans for each stage. The delivery time of each shot for a subtarget was decay corrected with 60 Co for staging the treatment course to generate the same dose distribution as that planned for the total AVM target. Conformality indices and dose-volume analysis were performed to evaluate treatment plans. With the shot redistribution technique, the composite dose for the multistaged treatment of multiple subtargets is equivalent to the initial plan for total AVM target. Gamma Knife plans resulted in an average PTV coverage of 96.3 ± 0.9% and a PITV of 1.23 ± 0.1. The resulting Conformality indices, V 12Gy and R 50 dose spillage values were 0.76 ± 0.05, 3.4 ± 1.8, and 3.1 ± 0.5 respectively. The Gamma Knife system can deliver a multistaged conformal dose to treat large AVMs when correcting for translational setup errors of each shot at each staged treatment. © 2017 American Association of Physicists in Medicine.

  2. The effects of intra-fraction organ motion on the delivery of intensity-modulated field with a multileaf collimator.

    PubMed

    Chui, Chen-Shou; Yorke, Ellen; Hong, Linda

    2003-07-01

    Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.

  3. A new transmission methodology for quality assurance in radiotherapy based on radiochromic film measurements

    PubMed Central

    do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi

    2015-01-01

    Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306

  4. Verification of the grid size and angular increment effects in lung stereotactic body radiation therapy using the dynamic conformal arc technique

    NASA Astrophysics Data System (ADS)

    Park, Hae-Jin; Suh, Tae-Suk; Park, Ji-Yeon; Lee, Jeong-Woo; Kim, Mi-Hwa; Oh, Young-Taek; Chun, Mison; Noh, O. Kyu; Suh, Susie

    2013-06-01

    The dosimetric effects of variable grid size and angular increment were systematically evaluated in the measured dose distributions of dynamic conformal arc therapy (DCAT) for lung stereotactic body radiation therapy (SBRT). Dose variations with different grid sizes (2, 3, and 4 mm) and angular increments (2, 4, 6, and 10°) for spherical planning target volumes (PTVs) were verified in a thorax phantom by using EBT2 films. Although the doses for identical PTVs were predicted for the different grid sizes, the dose discrepancy was evaluated using one measured dose distribution with the gamma tool because the beam was delivered in the same set-up for DCAT. The dosimetric effect of the angular increment was verified by comparing the measured dose area histograms of organs at risk (OARs) at each angular increment. When the difference in the OAR doses is higher than the uncertainty of the film dosimetry, the error is regarded as the angular increment effect in discretely calculated doses. In the results, even when a 2-mm grid size was used with an elaborate dose calculation, 4-mm grid size led to a higher gamma pass ratio due to underdosage, a steep-dose descent gradient, and lower estimated PTV doses caused by the smoothing effect in the calculated dose distribution. An undulating dose distribution and a difference in the maximum contralateral lung dose of up to 14% were observed in dose calculation using a 10° angular increment. The DCAT can be effectively applied for an approximately spherical PTV in a relatively uniform geometry, which is less affected by inhomogeneous materials and differences in the beam path length.

  5. Dose computation for therapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Glegg, Martin Mackenzie

    The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).

  6. Spatial frequency performance limitations of radiation dose optimization and beam positioning

    NASA Astrophysics Data System (ADS)

    Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.

    2018-06-01

    The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.

  7. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    PubMed

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Upper bound dose values for meson radiation in heavy-ion therapy.

    PubMed

    Rabin, C; Gonçalves, M; Duarte, S B; González-Sprinberg, G A

    2018-06-01

    Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.

  9. Infusional β-lactam antibiotics in febrile neutropenia: has the time come?

    PubMed

    Abbott, Iain J; Roberts, Jason A

    2012-12-01

    Febrile neutropenia presents a clinical challenge in which timely and appropriate antibiotic exposure is crucial. In the context of altered pharmacokinetics and rising bacterial resistance, standard antibiotic doses are unlikely to be sufficient. This review explores the potential utility of altered dosing approaches of β-lactam antibiotics to optimize treatment in febrile neutropenia. There is a dynamic relationship between the antibiotic, the infecting pathogen, and the host. Great advancements have been made in the understanding of the pharmacokinetic changes in critical illness and the pharmacodynamic relationships of antibiotics in these settings. Antibiotic treatment in febrile neutropenia is becoming increasingly difficult. Patients are of higher acuity, receive more intensive chemotherapy regimens leading to prolonged neutropenia, and are often exposed to multiple antibiotic courses. These patients display significant variability in antibiotic clearances and increases in volume of distribution compared with standard ward-based patients. Rising antibiotic resistance and a lack of new antibiotics in production have prompted alternative dosing strategies based on pharmacokinetic/pharmacodynamic data, such as extended or continuous infusions of β-lactam antibiotics, to maximize the likelihood of treatment success. A definitive study that describes a mortality benefit of such dosing regimens remains elusive and the theoretical advantages require testing in well designed clinical trials.

  10. Development and Implementation: B’More Healthy Communities for Kid’s Store and Wholesaler Intervention

    PubMed Central

    Schwendler, Teresa; Shipley, Cara; Budd, Nadine; Trude, Angela; Surkan, Pamela J.; Steeves, Elizabeth Anderson; de Morais Sato, Priscila; Eckmann, Thomas; Loh, Hong; Gittelsohn, Joel

    2017-01-01

    Higher rates of obesity and obesity-related chronic disease are prevalent in communities where there is limited access to affordable, healthy food. The B’More Healthy Communities for Kids (BHCK) trial worked at multiple levels of the food environment including food wholesalers and corner stores to improve the surrounding community’s access to healthy food. The objective of this article is to describe the development and implementation of BHCK’s corner store and wholesaler interventions through formal process evaluation. Researchers evaluated each level of the intervention to assess reach, dose delivered, and fidelity. Corner store and wholesaler reach, dose delivered, and fidelity were measured by number of interactions, promotional materials distributed, and maintenance of study materials, respectively. Overall, the corner store implementation showed moderate reach, dose delivered, and high fidelity. The wholesaler intervention was implemented with high reach, dose, and fidelity. The program held 355 corner store interactive sessions and had 9,347 community member interactions, 21% of which were with children between the ages of 10 and 14 years. There was a 15% increase in corner store promoted food stocking during Wave 1 and a 17% increase during Wave 2. These findings demonstrate a successfully implemented food retailer intervention in a low-income urban setting. PMID:28343413

  11. Acute symptomatic sinus bradycardia in a woman treated with pulse dose steroids for multiple sclerosis: a case report.

    PubMed

    Kundu, Amartya; Fitzgibbons, Timothy P

    2015-09-24

    Sinus bradycardia has been reported after administration of pulse dose steroids, although most cases have occurred in children and are asymptomatic. We report a case of acute symptomatic sinus bradycardia due to pulse dose steroids in a woman with multiple sclerosis. Interestingly, this patient also suffered from inappropriate sinus tachycardia due to autonomic involvement of multiple sclerosis. A 48-year-old Caucasian woman with multiple sclerosis and chronic palpitations due to inappropriate sinus tachycardia was prescribed a 5-day course of intravenous methylprednisolone for treatment of an acute flare. Immediately following the fourth dose of intravenous methylprednisolone, she developed dyspnea, chest heaviness, and lightheadedness. She was referred to the emergency department where an electrocardiogram showed marked sinus bradycardia (40 beats per minute). Initial laboratory test results, including a complete blood count, basic metabolic profile and cardiac biomarkers, were normal. She was admitted for observation on telemetry monitoring. Her heart rate gradually increased and her symptoms resolved. Her outpatient dose of atenolol, taken for symptomatic inappropriate sinus tachycardia, was resumed. Our patient's acute symptoms were attributed to symptomatic sinus bradycardia due to pulse dose steroid treatment. Although several theories have been suggested to explain this phenomenon, the exact mechanism still remains unknown. It does not warrant any specific treatment, as it is a self-limiting side effect that resolves after discontinuing steroid infusion. Young patients who are free of any active cardiac conditions can safely be administered pulse dose steroids without monitoring. However, older patients with active cardiac conditions should have heart rate and blood pressure monitoring during infusion. Our patient also suffered from inappropriate sinus tachycardia, a manifestation of autonomic involvement of multiple sclerosis that has not been previously described. This case has implications for the pathogenesis and treatment of dysautonomia in patients with multiple sclerosis.

  12. Dual-energy computed tomography of the head: a phantom study assessing axial dose distribution, eye lens dose, and image noise level

    NASA Astrophysics Data System (ADS)

    Matsubara, Kosuke; Kawashima, Hiroki; Hamaguchi, Takashi; Takata, Tadanori; Kobayashi, Masanao; Ichikawa, Katsuhiro; Koshida, Kichiro

    2016-03-01

    The aim of this study was to propose a calibration method for small dosimeters to measure absorbed doses during dual- source dual-energy computed tomography (DECT) and to compare the axial dose distribution, eye lens dose, and image noise level between DE and standard, single-energy (SE) head CT angiography. Three DE (100/Sn140 kVp 80/Sn140 kVp, and 140/80 kVp) and one SE (120 kVp) acquisitions were performed using a second-generation dual-source CT device and a female head phantom, with an equivalent volumetric CT dose index. The axial absorbed dose distribution at the orbital level and the absorbed doses for the eye lens were measured using radiophotoluminescent glass dosimeters. CT attenuation numbers were obtained in the DE composite images and the SE images of the phantom at the orbital level. The doses absorbed at the orbital level and in the eye lens were lower and standard deviations for the CT attenuation numbers were slightly higher in the DE acquisitions than those in the SE acquisition. The anterior surface dose was especially higher in the SE acquisition than that in the DE acquisitions. Thus, DE head CT angiography can be performed with a radiation dose lower than that required for a standard SE head CT angiography, with a slight increase in the image noise level. The 100/Sn140 kVp acquisition revealed the most balanced axial dose distribution. In addition, our proposed method was effective for calibrating small dosimeters to measure absorbed doses in DECT.

  13. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    PubMed Central

    Barnewall, Roy E.; Comer, Jason E.; Miller, Brian D.; Gutting, Bradford W.; Wolfe, Daniel N.; Director-Myska, Alison E.; Nichols, Tonya L.; Taft, Sarah C.

    2012-01-01

    Repeated low-level exposures to biological agents could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as B. anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU) of B. anthracis spores) and included a pilot feasibility characterization study, acute exposure study, and a multiple 15 day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 × 102, 1 × 103, 1 × 104, and 1 × 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 × 102, 1 × 103, and 1 × 104 CFU. In all studies, targeted inhaled doses remained consistent from rabbit-to-rabbit and day-to-day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and over multiple exposure days. PMID:22919662

  14. Utility of the sore throat pain model in a multiple-dose assessment of the acute analgesic flurbiprofen: a randomized controlled study.

    PubMed

    Schachtel, Bernard; Aspley, Sue; Shephard, Adrian; Shea, Timothy; Smith, Gary; Schachtel, Emily

    2014-07-03

    The sore throat pain model has been conducted by different clinical investigators to demonstrate the efficacy of acute analgesic drugs in single-dose randomized clinical trials. The model used here was designed to study the multiple-dose safety and efficacy of lozenges containing flurbiprofen at 8.75 mg. Adults (n=198) with moderate or severe acute sore throat and findings of pharyngitis on a Tonsillo-Pharyngitis Assessment (TPA) were randomly assigned to use either flurbiprofen 8.75 mg lozenges (n=101) or matching placebo lozenges (n=97) under double-blind conditions. Patients sucked one lozenge every three to six hours as needed, up to five lozenges per day, and rated symptoms on 100-mm scales: the Sore Throat Pain Intensity Scale (STPIS), the Difficulty Swallowing Scale (DSS), and the Swollen Throat Scale (SwoTS). Reductions in pain (lasting for three hours) and in difficulty swallowing and throat swelling (for four hours) were observed after a single dose of the flurbiprofen 8.75 mg lozenge (P<0.05 compared with placebo). After using multiple doses over 24 hours, flurbiprofen-treated patients experienced a 59% greater reduction in throat pain, 45% less difficulty swallowing, and 44% less throat swelling than placebo-treated patients (all P<0.01). There were no serious adverse events. Utilizing the sore throat pain model with multiple doses over 24 hours, flurbiprofen 8.75 mg lozenges were shown to be an effective, well-tolerated treatment for sore throat pain. Other pharmacologic actions (reduced difficulty swallowing and reduced throat swelling) and overall patient satisfaction from the flurbiprofen lozenges were also demonstrated in this multiple-dose implementation of the sore throat pain model. This trial was registered with ClinicalTrials.gov, registration number: NCT01048866, registration date: January 13, 2010.

  15. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Dynamically accumulated dose and 4D accumulated dose for moving tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Heng; Li Yupeng; Zhang Xiaodong

    2012-12-15

    Purpose: The purpose of this work was to investigate the relationship between dynamically accumulated dose (dynamic dose) and 4D accumulated dose (4D dose) for irradiation of moving tumors, and to quantify the dose uncertainty induced by tumor motion. Methods: The authors established that regardless of treatment modality and delivery properties, the dynamic dose will converge to the 4D dose, instead of the 3D static dose, after multiple deliveries. The bounds of dynamic dose, or the maximum estimation error using 4D or static dose, were established for the 4D and static doses, respectively. Numerical simulations were performed (1) to prove themore » principle that for each phase, after multiple deliveries, the average number of deliveries for any given time converges to the total number of fractions (K) over the number of phases (N); (2) to investigate the dose difference between the 4D and dynamic doses as a function of the number of deliveries for deliveries of a 'pulsed beam'; and (3) to investigate the dose difference between 4D dose and dynamic doses as a function of delivery time for deliveries of a 'continuous beam.' A Poisson model was developed to estimate the mean dose error as a function of number of deliveries or delivered time for both pulsed beam and continuous beam. Results: The numerical simulations confirmed that the number of deliveries for each phase converges to K/N, assuming a random starting phase. Simulations for the pulsed beam and continuous beam also suggested that the dose error is a strong function of the number of deliveries and/or total deliver time and could be a function of the breathing cycle, depending on the mode of delivery. The Poisson model agrees well with the simulation. Conclusions: Dynamically accumulated dose will converge to the 4D accumulated dose after multiple deliveries, regardless of treatment modality. Bounds of the dynamic dose could be determined using quantities derived from 4D doses, and the mean dose difference between the dynamic dose and 4D dose as a function of number of deliveries and/or total deliver time was also established.« less

  17. Ceruletide intravenous dose-response study by a simplified scintigraphic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamurthy, G.T.; Turner, F.E.; Mangham, D.

    1985-04-01

    The intravenous dose response of a ceruletide diethylamine (ceruletide) was established by a simplified scintigraphic technique where multiple graded doses were given sequentially on a single occasion. The gallbladder volume was presented nongeometrically by /sup 99m/Tc-IDA counts. The mean latent period, ejection period, and ejection rate were similar for all four groups of subjects given 1-20 ng/kg of ceruletide. The ejection fractions were similar to the values when the identical dose of ceruletide was administered sequentially either before or after another dose. A dose of 5 ng/kg produced the most physiologic type of emptying. Intravenous doses of 10 ng/kg andmore » larger caused adverse reactions in 42% of the total doses in the form of abdominal pain, nausea, systolic and diastolic hypotension, or bradycardia. It is concluded that the dose response of a cholecystokininlike agent (ceruletide) can be established reliably by a scintigraphic technique where multiple graded doses are given on a single occasion.« less

  18. The rat caudal nerves: a model for experimental neuropathies.

    PubMed

    Schaumburg, Herbert H; Zotova, Elena; Raine, Cedric S; Tar, Moses; Arezzo, Joseph

    2010-06-01

    This study provides a detailed investigation of the anatomy of the rat caudal nerve along its entire length, as well as correlated nerve conduction measures in both large and small diameter axons. It determines that rodent caudal nerves provide a simple, sensitive experimental model for evaluation of the pathophysiology of degeneration, recovery, and prevention of length-dependent distal axonopathy. After first defining the normal anatomy and electrophysiology of the rat caudal nerves, acrylamide monomer, a reliable axonal toxin, was administered at different doses for escalating time periods. Serial electrophysiological recordings were obtained, during intoxication, from multiple sites along caudal and distal sciatic nerves. Multiple sections of the caudal and sciatic nerves were examined with light and electron microscopy. The normal distribution of conduction velocities was determined and acrylamide-induced time- and dose-related slowing of velocities at the vulnerable ultraterminal region was documented. Degenerative morphological changes in the distal regions of the caudal nerves appeared well before changes in the distal sciatic nerves. Our study has shown that (1) rat caudal nerves have a complex neural structure that varies along a distal-to-proximal gradient and (2) correlative assessment of both morphology and electrophysiology of rat caudal nerves is easily achieved and provides a highly sensitive index of the onset and progression of the length-dependent distal axonopathy.

  19. Is volumetric modulated arc therapy with constant dose rate a valid option in radiation therapy for head and neck cancer patients?

    PubMed

    Didona, Annamaria; Lancellotta, Valentina; Zucchetti, Claudio; Panizza, Bianca Moira; Frattegiani, Alessandro; Iacco, Martina; Di Pilato, Anna Concetta; Saldi, Simonetta; Aristei, Cynthia

    2018-01-01

    Intensity-modulated radiotherapy (IMRT) improves dose distribution in head and neck (HN) radiation therapy. Volumetric-modulated arc therapy (VMAT), a new form of IMRT, delivers radiation in single or multiple arcs, varying dose rates (VDR-VMAT) and gantry speeds, has gained considerable attention. Constant dose rate VMAT (CDR-VMAT) associated with a fixed gantry speed does not require a dedicated linear accelerator like VDR-VMAT. The present study explored the feasibility, efficiency and delivery accuracy of CDR-VMAT, by comparing it with IMRT and VDR-VMAT in treatment planning for HN cancer. Step and shoot IMRT (SS-IMRT), CDR-VMAT and VDR-VMAT plans were created for 15 HN cancer patients and were generated by Pinnacle 3 TPS (v 9.8) using 6 MV photon energy. Three PTVs were defined to receive respectively prescribed doses of 66 Gy, 60 Gy and 54 Gy, in 30 fractions. Organs at risk (OARs) included the mandible, spinal cord, brain stem, parotids, salivary glands, esophagus, larynx and thyroid. SS-IMRT plans were based on 7 co-planar beams at fixed gantry angles. CDR-VMAT and VDR-VMAT plans, generated by the SmartArc module, used a 2-arc technique: one clockwise from 182° to 178° and the other one anti-clockwise from 178° to 182°. Comparison parameters included dose distribution to PTVs ( D mean , D 2% , D 50% , D 95% , D 98% and Homogeneity Index), maximum or mean doses to OARs, specific dose-volume data, the monitor units and treatment delivery times. Compared with SS-IMRT, CDR-VMAT significantly reduced the maximum doses to PTV1 and PTV2 and significantly improved all PTV3 parameters, except D 98% and D 95% . It significantly spared parotid and submandibular glands and was associated with a lower D mean to the larynx. Compared with VDR-VMAT, CDR-VMAT was linked to a significantly better D mean , to the PTV3 but results were worse for the parotids, left submandibular gland, esophagus and mandible. Furthermore, the D mean to the larynx was also worse. Compared with SS-IMRT and VDR-VMAT, CDR-VMAT was associated with higher average monitor unit values and significantly shorter average delivery times. CDR-VMAT appeared to be a valid option in Radiation Therapy Centers that lack a dedicated linear accelerator for volumetric arc therapy with variable dose-rates and gantry velocities, and are unwilling or unable to sanction major expenditure at present but want to adopt volumetric techniques.

  20. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    2016-12-01

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  1. NSR&D Program Fiscal Year 2015 Funded Research Stochastic Modeling of Radioactive Material Releases Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrus, Jason P.; Pope, Chad; Toston, Mary

    Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less

  2. SU-F-T-62: Three-Dimensional Dosimetric Gamma Analysis for Impacts of Tissue Inhomogeneity Using Monte Carlo Simulation in Intracavitary Brachytheray for Cervix Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke

    Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less

  3. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is donemore » offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.« less

  4. Comparative dosimetry of diode and diamond detectors in electron beams for intraoperative radiation therapy.

    PubMed

    Björk, P; Knöös, T; Nilsson, P

    2000-11-01

    The aim of the present study is to examine the validity of using silicon semiconductor detectors in degraded electron beams with a broad energy spectrum and a wide angular distribution. A comparison is made with diamond detector measurements, which is the dosimeter considered to give the best results provided that dose rate effects are corrected for. Two-dimensional relative absorbed dose distributions in electron beams (6-20 MeV) for intraoperative radiation therapy (IORT) are measured in a water phantom. To quantify deviations between the detectors, a dose comparison tool that simultaneously examines the dose difference and distance to agreement (DTA) is used to evaluate the results in low- and high-dose gradient regions, respectively. Uncertainties of the experimental measurement setup (+/- 1% and +/- 0.5 mm) are taken into account by calculating a composite distribution that fails this dose-difference and DTA acceptance limit. Thus, the resulting area of disagreement should be related to differences in detector performance. The dose distributions obtained with the diode are generally in very good agreement with diamond detector measurements. The buildup region and the dose falloff region show good agreement with increasing electron energy, while the region outside the radiation field close to the water surface shows an increased difference with energy. The small discrepancies in the composite distributions are due to several factors: (a) variation of the silicon-to-water collision stopping-power ratio with electron energy, (b) a more pronounced directional dependence for diodes than for diamonds, and (c) variation of the electron fluence perturbation correction factor with depth. For all investigated treatment cones and energies, the deviation is within dose-difference and DTA acceptance criteria of +/- 3% and +/- 1 mm, respectively. Therefore, p-type silicon diodes are well suited, in the sense that they give results in close agreement with diamond detectors, for practical measurements of relative absorbed dose distributions in degraded electron beams used for IORT.

  5. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation.

    PubMed

    Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko

    2017-03-01

    In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.

  6. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  7. Monte Carlo simulation of depth-dose distributions in TLD-100 under 90Sr-90Y irradiation.

    PubMed

    Rodríguez-Villafuerte, M; Gamboa-deBuen, I; Brandan, M E

    1997-04-01

    In this work the depth-dose distribution in TLD-100 dosimeters under beta irradiation from a 90Sr-90Y source was investigated using the Monte Carlo method. Comparisons between the simulated data and experimental results showed that the depth-dose distribution is strongly affected by the different components of both the source and dosimeter holders due to the large number of electron scattering events.

  8. Pharmacokinetics and tissue distribution of furanodiene W/O/W multiple emulsions in rats by a fast and sensitive HPLC-APCI-MS/MS method.

    PubMed

    Zhang, Li-Feng; Lu, Tao-Tao; Zhang, Shu-Qiu; Lin, Wen-Han; Li, Qing-Shan

    2013-12-01

    A sensitive and specific HPLC-APCI-MS/MS method was developed and validated for the quantification of furanodiene, a natural antitumor compound in rat plasma and tissues. W/O/W multiple emulsions of furanodiene, identified through microscope-observation and eosin staining method, were prepared with a two-step-procedure. Pharmacokinetics and tissue distribution were studied in rats after oral, intraperitoneal and intravenous injection with the dose of 5, 10 and 50 mg/kg, respectively. The assay achieved a good sensitivity and specificity for the determination of furanodiene in biological samples. The results showed that the concentration-time curves of furanodiene in rats after intravenous injection were fitted to a two-compartment model and the linear pharmacokinetic characteristic. The highest concentration in rat tissue was observed in the spleen, followed by heart, liver, lung, kidney, small intestine and brain. Comparing with the low concentration in plasma, furanodiene could be detected in various tissue samples after oral or intraperitoneal injection which indicated furanodiene had good and rapid tissue uptake. The results suggested that the wide tissue distribution of furanodiene could conduce to the therapeutic effects, but the short biological half-life limited its further application as an antitumor agent. The results are helpful for the structure modification of furanodiene as an antitumor candidate.

  9. Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer

    NASA Astrophysics Data System (ADS)

    Grzetic, Shelby Mariah

    Head and neck cancer (HNC) IMRT treatment planning is a challenging process that relies heavily on the planner's experience. Previously, we used the single, best match from a library of manually planned cases to semi-automatically generate IMRT plans for a new patient. The current multi-case Knowledge Based Radiation Therapy (MC-KBRT) study utilized different matching cases for each of six individual organs-at-risk (OARs), then combined those six cases to create the new treatment plan. From a database of 103 patient plans created by experienced planners, MC-KBRT plans were created for 40 (17 unilateral and 23 bilateral) HNC "query" patients. For each case, 2D beam's-eye-view images were used to find similar geometric "match" patients separately for each of 6 OARs. Dose distributions for each OAR from the 6 matching cases were combined and then warped to suit the query case's geometry. The dose-volume constraints were used to create the new query treatment plan without the need for human decision-making throughout the IMRT optimization. The optimized MC-KBRT plans were compared against the clinically approved plans and Version 1 (previous KBRT using only one matching case with dose warping) using the dose metrics: mean, median, and maximum (brainstem and cord+5mm) doses. Compared to Version 1, MC-KBRT had no significant reduction of the dose to any of the OARs in either unilateral or bilateral cases. Compared to the manually planned unilateral cases, there was significant reduction of the oral cavity mean/median dose (>2Gy) at the expense of the contralateral parotid. Compared to the manually planned bilateral cases, reduction of dose was significant in the ipsilateral parotid, larynx, and oral cavity (>3Gy mean/median) while maintaining PTV coverage. MC-KBRT planning in head and neck cancer generates IMRT plans with better dose sparing than manually created plans. MC-KBRT using multiple case matches does not show significant dose reduction compared to using a single match case with dose warping.

  10. SU-E-T-482: In Vivo Dosimetry of An Anthropomorphic Phantom by Using the RADPOS System for Proton Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, R; Motegi, K; Hotta, K

    Purpose: Delivered doses in an anthropomorphic phantom were evaluated by using the RADPOS system for proton beam therapy. Methods: The RADPOS in vivo dosimetry system combines an electromagnetic positioning sensor with MOSFET dosimetry, allowing simultaneous online measurements of dose and spatial position. Through the RADPOS system, dose evaluation points can be determined. In vivo proton dosimetry was evaluated by using the RADPOS system and anthropomorphic head and neck phantom. MOSFET doses measured at 3D positions obtained with the RADPOS were compared to the treatment plan values that were calculated by a simplified Monte Carlo (SMC) method. Although the MOSFET responsemore » depends strongly on the linear energy transfer (LET) of proton beam, the MOSFET responses to proton beams were corrected with the SMC. Here, the SMC calculated only dose deposition determined by the experimental depth–dose distribution and lateral displacement of protons due to both multiple scattering effect in materials and incident angle. As a Result, the SMC could quickly calculate accurate doses in even heterogeneities. Results: In vivo dosimetry by using the RADPOS, as well as the MOSFET doses agreed in comparison with calculations by the SMC in the range of −3.0% to 8.3%. Most measurement errors occurred because of the uncertainties of dose calculations due to the position error of 1 mm. Conclusion: We evaluated the delivered doses in the anthropomorphic phantom by using the RADPOS system for proton beam therapy. The MOSFET doses agreed in comparison with calculations by the SMC within the measurement error. Therefore, we could successfully control the uncertainties of the measurement positions by using the RADPOS system within 1 mm in in vivo proton dosimetry. We aim for the clinical application of in vivo proton dosimetry with this RADPOS system.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D; O’Connell, D; Lamb, J

    Purpose: To demonstrate real-time dose calculation of free-breathing MRI guided Co−60 treatments, using a motion model and Monte-Carlo dose calculation to accurately account for the interplay between irregular breathing motion and an IMRT delivery. Methods: ViewRay Co-60 dose distributions were optimized on ITVs contoured from free-breathing CT images of lung cancer patients. Each treatment plan was separated into 0.25s segments, accounting for the MLC positions and beam angles at each time point. A voxel-specific motion model derived from multiple fast-helical free-breathing CTs and deformable registration was calculated for each patient. 3D images for every 0.25s of a simulated treatment weremore » generated in real time, here using a bellows signal as a surrogate to accurately account for breathing irregularities. Monte-Carlo dose calculation was performed every 0.25s of the treatment, with the number of histories in each calculation scaled to give an overall 1% statistical uncertainty. Each dose calculation was deformed back to the reference image using the motion model and accumulated. The static and real-time dose calculations were compared. Results: Image generation was performed in real time at 4 frames per second (GPU). Monte-Carlo dose calculation was performed at approximately 1frame per second (CPU), giving a total calculation time of approximately 30 minutes per treatment. Results show both cold- and hot-spots in and around the ITV, and increased dose to contralateral lung as the tumor moves in and out of the beam during treatment. Conclusion: An accurate motion model combined with a fast Monte-Carlo dose calculation allows almost real-time dose calculation of a free-breathing treatment. When combined with sagittal 2D-cine-mode MRI during treatment to update the motion model in real time, this will allow the true delivered dose of a treatment to be calculated, providing a useful tool for adaptive planning and assessing the effectiveness of gated treatments.« less

  12. A Multicenter, Randomized, Open-Label, Pharmacokinetics and Safety Study of Pantoprazole Tablets in Children and Adolescents Aged 6 Through 16 Years With GERD

    PubMed Central

    Ward, Robert M.; Kearns, Gregory L.; Tammara, Brinda; Bishop, Phyllis; O’Gorman, Molly A.; James, Laura P.; Katz, Mitchell H.; Maguire, Mary K.; Rath, Natalie; Meng, Xu; Comer, Gail M.

    2011-01-01

    SUMMARY Children with GERD may benefit from gastric acid suppression with proton pump inhibitors such as pantoprazole. Effective treatment with pantoprazole requires correct dosing and understanding of the drug’s kinetic profile in children. The aim of these studies was to characterize the pharmacokinetic (PK) profile of single and multiple doses of pantoprazole delayed-release tablets in pediatric patients with GERD aged ≥6 through 11 years (study 1) and 12 through 16 years (study 2). Patients were randomly assigned to receive pantoprazole 20 or 40 mg once daily. Plasma pantoprazole concentrations were obtained at intervals through 12 hours after the single dose, and at 2 and 4 hours after multiple doses for PK evaluation. PK parameters were derived by standard noncompartmental methods and examined as a function of both drug dose and patient age. Safety was also monitored. Pantoprazole PK was dose independent (when dose normalized) and similar toPK reported from adult studies. There was no evidence of accumulation with multiple dosing or reports of serious drug-associated adverse events. In children aged 6 to 16 years with GERD, currently available pantoprazole delayed-release tablets can be used to provide systemic exposure similar to that in adults. PMID:20852004

  13. Elucidating Rifampin’s Inducing and Inhibiting Effects on Glyburide Pharmacokinetics and Blood Glucose in Healthy Volunteers: Unmasking the Differential Effect of Enzyme Induction and Transporter Inhibition for a Drug and Its Primary Metabolite

    PubMed Central

    Zheng, HX; Huang, Y; Frassetto, LA; Benet, LZ

    2013-01-01

    The effects of single doses of intravenous ciprofloxacin and rifampin, multiple doses of rifampin, on glyburide exposure and effect on blood glucose levels in 9 healthy volunteers were investigated. The single intravenous dose of rifampin significantly increased the AUCs of glyburide and metabolite. Blood glucose levels dropped significantly in comparison to when glyburide was dosed alone. Multiple doses of rifampin induced liver enzymes leading to a marked decrease in glyburide exposure and in blood glucose measurements. When intravenous rifampin was given after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect, however, relative changes in AUC for glyburide and its hydroxyl metabolite were the same as that seen under non-induced conditions. The studies reported here demonstrate how measurements of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and characterizing enzymatic versus transporter mechanisms. PMID:18843263

  14. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite.

    PubMed

    Zheng, H X; Huang, Y; Frassetto, L A; Benet, L Z

    2009-01-01

    The effects of single doses of intravenous (IV) ciprofloxacin and rifampin and of multiple doses of rifampin on glyburide exposure and blood glucose levels were investigated in nine healthy volunteers. A single IV dose of rifampin significantly increased the area under the concentration-time curve (AUC) of glyburide and its metabolite. Blood glucose levels were significantly lower than those observed after dosing with glyburide alone. Multiple doses of rifampin induced an increase in liver enzyme levels, leading to a marked decrease in glyburide exposure and blood glucose levels. When IV rifampin was administered after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect; however, the relative changes in AUC for glyburide and its hydroxyl metabolite were similar to those seen under noninduced conditions. The studies reported here demonstrate how measurements of the levels of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and in characterizing enzymatic vs. transporter mechanisms.

  15. Dose Distribution in Bladder and Surrounding Normal Tissues in Relation to Bladder Volume in Conformal Radiotherapy for Bladder Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Wojciech, E-mail: wmajewski1@poczta.onet.p; Wesolowska, Iwona; Urbanczyk, Hubert

    2009-12-01

    Purpose: To estimate bladder movements and changes in dose distribution in the bladder and surrounding tissues associated with changes in bladder filling and to estimate the internal treatment margins. Methods and Materials: A total of 16 patients with bladder cancer underwent planning computed tomography scans with 80- and 150-mL bladder volumes. The bladder displacements associated with the change in volume were measured. Each patient had treatment plans constructed for a 'partially empty' (80 mL) and a 'partially full' (150 mL) bladder. An additional plan was constructed for tumor irradiation alone. A subsequent 9 patients underwent sequential weekly computed tomography scanningmore » during radiotherapy to verify the bladder movements and estimate the internal margins. Results: Bladder movements were mainly observed cranially, and the estimated internal margins were nonuniform and largest (>2 cm) anteriorly and cranially. The dose distribution in the bladder worsened if the bladder increased in volume: 70% of patients (11 of 16) would have had bladder underdosed to <95% of the prescribed dose. The dose distribution in the rectum and intestines was better with a 'partially empty' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 23%, 20%, and 15% for the rectum and 162, 144, 123 cm{sup 3} for the intestines, respectively) than with a 'partially full' bladder (volume that received >70%, 80%, and 90% of the prescribed dose was 28%, 24%, and 18% for the rectum and 180, 158, 136 cm{sup 3} for the intestines, respectively). The change in bladder filling during RT was significant for the dose distribution in the intestines. Tumor irradiation alone was significantly better than whole bladder irradiation in terms of organ sparing. Conclusion: The displacements of the bladder due to volume changes were mainly related to the upper wall. The internal margins should be nonuniform, with the largest margins cranially and anteriorly. The changes in bladder filling during RT could influence the dose distribution in the bladder and intestines. The dose distribution in the rectum and bowel was slightly better with a 'partially empty' than with a 'full' bladder.« less

  16. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  17. Systemic Absorption of Rifamycin SV MMX Administered as Modified-Release Tablets in Healthy Volunteers▿

    PubMed Central

    Di Stefano, A. F. D.; Rusca, A.; Loprete, L.; Dröge, M. J.; Moro, L.; Assandri, A.

    2011-01-01

    The new oral 200-mg rifamycin SV MMX modified-release tablets, designed to deliver rifamycin SV directly into the colonic lumen, offer considerable advantages over the existing immediate-release antidiarrheic formulations. In two pharmacokinetics studies of healthy volunteers, the absorption, urinary excretion, and fecal elimination of rifamycin SV after single- and multiple-dose regimens of the new formulation were investigated. Concentrations in plasma of >2 ng/ml were infrequently and randomly quantifiable after single and multiple oral doses. The systemic exposure to rifamycin SV after single and multiple oral doses of MMX tablets under fasting and fed conditions or following a four-times-a-day (q.i.d.) or a twice-a-day (b.i.d.) regimen could be considered negligible. With both oral regimens, the drug was confirmed to be very poorly absorbable systemically. The amount of systemically absorbed antibiotic excreted by the renal route is far lower than 0.01% of the administered dose after both the single- and multiple-dose regimens. The absolute bioavailability, calculated as the mean percent ratio between total urinary excretion amounts (ΣXu) after a single intravenous injection and after a single oral dose under fasting conditions, was 0.0410 ± 0.0617. The total elimination of the unchanged rifamycin SV with feces was 87% of the administered oral dose. No significant effect of rifamycin SV on vital signs, electrocardiograms, or laboratory parameters was observed. PMID:21402860

  18. Investigation of dose characteristics in three-dimensional MAGAT-type polymer gel dosimetry with MSE MR imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jason J. S.; Tsai, Chia-Jung; Lo, Man-Kuok; Huang, Yung-Hui; Chen, Chien-Chuan; Wu, Jay; Tyan, Yeu-Sheng; Wu, Tung-Hsin

    2008-05-01

    A new type of normoxic polymer gel dosimeter, named MAGAT responses well to absorbed dose even when manufacturing in the presence of normal levels of oxygen. The aim of this study was to evaluate dose response, diffusion effect and cumulated dose response under multiple fractional irradiations of the MAGAT gel dosimeter using Multiple Spin-Echo (MSE) Magnetic Resonance (MR) sequence. Dose response was performed by irradiating MAGAT-gel-filled testing vials with a 6 MV linear accelerator and a linear relationship was present with doses from 0 to 6 Gy, but gradually, a bi-exponential function result was obtained with given doses up to 20 Gy. No significant difference in dose response was present between single and cumulated doses (p > 0.05). For study of diffusion effect, edge sharpness of the R2 map imaging between two split doses was smaller than 1 cm of dose profile penumbra between 20% and 80%. In conclusion, the MAGAT polymer gel dosimeter with MSE MR imaging is a promising method for dose verification in clinical radiation therapy practice.

  19. A 3D isodose manipulation tool for interactive dose shaping

    NASA Astrophysics Data System (ADS)

    Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.

    2014-03-01

    The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.

  20. Detailed Distribution Map of Absorbed Dose Rate in Air in Tokatsu Area of Chiba Prefecture, Japan, Constructed by Car-Borne Survey 4 Years after the Fukushima Daiichi Nuclear Power Plant Accident

    PubMed Central

    Inoue, Kazumasa; Arai, Moeko; Fujisawa, Makoto; Saito, Kyouko; Fukushi, Masahiro

    2017-01-01

    A car-borne survey was carried out in the northwestern, or Tokatsu, area of Chiba Prefecture, Japan, to make a detailed distribution map of absorbed dose rate in air four years after the Fukushima Daiichi Nuclear Power Plant accident. This area was chosen because it was the most heavily radionuclide contaminated part of Chiba Prefecture and it neighbors metropolitan Tokyo. Measurements were performed using a 3-in × 3-in NaI(Tl) scintillation spectrometer in June 2015. The survey route covered the whole Tokatsu area which includes six cities. A heterogeneous distribution of absorbed dose rate in air was observed on the dose distribution map. Especially, higher absorbed dose rates in air exceeding 80 nGy h-1 were observed along national roads constructed using high porosity asphalt, whereas lower absorbed dose rates in air were observed along local roads constructed using low porosity asphalt. The difference between these asphalt types resulted in a heterogeneous dose distribution in the Tokatsu area. The mean of the contribution ratio of artificial radionuclides to absorbed dose rate in air measured 4 years after the accident was 29% (9–50%) in the Tokatsu area. The maximum absorbed dose rate in air, 201 nGy h-1 was observed at Kashiwa City. Radiocesium was deposited in the upper 1 cm surface layer of the high porosity asphalt which was collected in Kashiwa City and the environmental half-life of the absorbed dose rate in air was estimated to be 1.7 years. PMID:28129382

  1. SU-F-J-194: Development of Dose-Based Image Guided Proton Therapy Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, R; Sun, B; Zhao, T

    Purpose: To implement image-guided proton therapy (IGPT) based on daily proton dose distribution. Methods: Unlike x-ray therapy, simple alignment based on anatomy cannot ensure proper dose coverage in proton therapy. Anatomy changes along the beam path may lead to underdosing the target, or overdosing the organ-at-risk (OAR). With an in-room mobile computed tomography (CT) system, we are developing a dose-based IGPT software tool that allows patient positioning and treatment adaption based on daily dose distributions. During an IGPT treatment, daily CT images are acquired in treatment position. After initial positioning based on rigid image registration, proton dose distribution is calculatedmore » on daily CT images. The target and OARs are automatically delineated via deformable image registration. Dose distributions are evaluated to decide if repositioning or plan adaptation is necessary in order to achieve proper coverage of the target and sparing of OARs. Besides online dose-based image guidance, the software tool can also map daily treatment doses to the treatment planning CT images for offline adaptive treatment. Results: An in-room helical CT system is commissioned for IGPT purposes. It produces accurate CT numbers that allow proton dose calculation. GPU-based deformable image registration algorithms are developed and evaluated for automatic ROI-delineation and dose mapping. The online and offline IGPT functionalities are evaluated with daily CT images of the proton patients. Conclusion: The online and offline IGPT software tool may improve the safety and quality of proton treatment by allowing dose-based IGPT and adaptive proton treatments. Research is partially supported by Mevion Medical Systems.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  3. Population Pharmacokinetics of Intravenous Methotrexate in Patients with Hematological Malignancies: Utilization of Routine Clinical Monitoring Parameters.

    PubMed

    Nader, Ahmed; Zahran, Noran; Alshammaa, Aya; Altaweel, Heba; Kassem, Nancy; Wilby, Kyle John

    2017-04-01

    Clinical response to methotrexate in cancer is variable and depends on several factors including serum drug exposure. This study aimed to develop a population pharmacokinetic model describing methotrexate disposition in cancer patients using retrospective chart review data available from routine clinical practice. A retrospective review of medical records was conducted for cancer patients in Qatar. Relevant data (methotrexate dosing/concentrations from multiple occasions, patient history, and laboratory values) were extracted and analyzed using NONMEM VII ® . A population pharmacokinetic model was developed and used to estimate inter-individual and inter-occasion variability terms on methotrexate pharmacokinetic parameters, as well as patient factors affecting methotrexate pharmacokinetics. Methotrexate disposition was described by a two-compartment model with clearance (CL) of 15.7 L/h and central volume of distribution (V c ) of 79.2 L. Patient weight and hematocrit levels were significant covariates on methotrexate V c and CL, respectively. Methotrexate CL changed by 50 % with changes in hematocrit levels from 23 to 50 %. Inter-occasion variability in methotrexate CL was estimated for patients administered the drug on multiple occasions (48 and 31 % for 2nd and 3rd visits, respectively). Therapeutic drug monitoring data collected during routine clinical practice can provide a useful tool for understanding factors affecting methotrexate pharmacokinetics. Patient weight and hematocrit levels may play a clinically important role in determining methotrexate serum exposure and dosing requirements. Future prospective studies are needed to validate results of the developed model and evaluate its usefulness to predict methotrexate exposure and optimize dosing regimens.

  4. Outcome with lenalidomide plus dexamethasone followed by early autologous stem cell transplantation in patients with newly diagnosed multiple myeloma on the ECOG-ACRIN E4A03 randomized clinical trial: long-term follow-up.

    PubMed

    Biran, N; Jacobus, S; Vesole, D H; Callander, N S; Fonseca, R; Williams, M E; Abonour, R; Katz, M S; Rajkumar, S V; Greipp, P R; Siegel, D S

    2016-09-02

    In Eastern Cooperative Oncology Group-ACRIN E4A03, on completion of four cycles of therapy, newly diagnosed multiple myeloma patients had the option of proceeding to autologous peripheral blood stem cell transplant (ASCT) or continuing on their assigned therapy lenalidomide plus low-dose dexamethasone (Ld) or lenalidomide plus high-dose dexamethasone (LD). This landmark analysis compared the outcome of 431 patients surviving their first four cycles of therapy pursuing early ASCT to those continuing on their assigned therapy. Survival distributions were estimated using the Kaplan-Meier method and compared with log-rank test. Ninety patients (21%) opted for early ASCT. The 1-, 2-, 3-, 4- and 5-year survival probability estimates were higher for early ASCT versus no early ASCT at 99, 93, 91, 85 and 80% versus 94, 84, 75, 65 and 57%, respectively. The median overall survival (OS) in the early versus no early ASCT group was not reached (NR) versus 5.78 years. In patients <65 years of age, median OS in the early versus no early ASCT groups was NR in both, hazard ratio 0.79, 95% confidence interval: (0.50, 0.25). In patients ⩾65 years of age, median OS in the early versus no early ASCT was NR versus 5.11 years. ASCT dropped out of statistical significance (P=0.080). Patients opting for ASCT after induction Ld/LD had a higher survival probability and improvement in OS regardless of dexamethasone dose density.

  5. SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A; Yin, F; Wu, Q

    2015-06-15

    Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, Anik

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less

  7. Dosimetry for a uterine cervix cancer treatment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo

    2003-09-01

    The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.

  8. Pharmacokinetics, microbial response, and pulmonary outcomes of multidose intravenous azithromycin in preterm infants at risk for Ureaplasma respiratory colonization.

    PubMed

    Merchan, L Marcela; Hassan, Hazem E; Terrin, Michael L; Waites, Ken B; Kaufman, David A; Ambalavanan, Namasivayam; Donohue, Pamela; Dulkerian, Susan J; Schelonka, Robert; Magder, Laurence S; Shukla, Sagar; Eddington, Natalie D; Viscardi, Rose M

    2015-01-01

    The study objectives were to refine the population pharmacokinetics (PK) model, determine microbial clearance, and assess short-term pulmonary outcomes of multiple-dose azithromycin treatment in preterm infants at risk for Ureaplasma respiratory colonization. Fifteen subjects (7 of whom were Ureaplasma positive) received intravenous azithromycin at 20 mg/kg of body weight every 24 h for 3 doses. Azithromycin concentrations were determined in plasma samples obtained up to 168 h post-first dose by using a validated liquid chromatography-tandem mass spectrometry method. Respiratory samples were obtained predose and at three time points post-last dose for Ureaplasma culture, PCR, antibiotic susceptibility testing, and cytokine concentration determinations. Pharmacokinetic data from these 15 subjects as well as 25 additional subjects (who received either a single 10-mg/kg dose [n = 12] or a single 20-mg/kg dose [n = 13]) were analyzed by using a nonlinear mixed-effect population modeling (NONMEM) approach. Pulmonary outcomes were assessed at 36 weeks post-menstrual age and 6 months adjusted age. A 2-compartment model with all PK parameters allometrically scaled on body weight best described the azithromycin pharmacokinetics in preterm neonates. The population pharmacokinetics parameter estimates for clearance, central volume of distribution, intercompartmental clearance, and peripheral volume of distribution were 0.15 liters/h · kg(0.75), 1.88 liters · kg, 1.79 liters/h · kg(0.75), and 13 liters · kg, respectively. The estimated area under the concentration-time curve over 24 h (AUC24)/MIC90 value was ∼ 4 h. All posttreatment cultures were negative, and there were no drug-related adverse events. One Ureaplasma-positive infant died at 4 months of age, but no survivors were hospitalized for respiratory etiologies during the first 6 months (adjusted age). Thus, a 3-day course of 20 mg/kg/day intravenous azithromycin shows preliminary efficacy in eradicating Ureaplasma spp. from the preterm respiratory tract. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. SU-F-T-347: An Absolute Dose-Volume Constraint Based Deterministic Optimization Framework for Multi-Co60 Source Focused Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B; Liu, B; Li, Y

    2016-06-15

    Purpose: Treatment plan optimization in multi-Co60 source focused radiotherapy with multiple isocenters is challenging, because dose distribution is normalized to maximum dose during optimization and evaluation. The objective functions are traditionally defined based on relative dosimetric distribution. This study presents an alternative absolute dose-volume constraint (ADC) based deterministic optimization framework (ADC-DOF). Methods: The initial isocenters are placed on the eroded target surface. Collimator size is chosen based on the area of 2D contour on corresponding axial slice. The isocenter spacing is determined by adjacent collimator sizes. The weights are optimized by minimizing the deviation from ADCs using the steepest descentmore » technique. An iterative procedure is developed to reduce the number of isocenters, where the isocenter with lowest weight is removed without affecting plan quality. The ADC-DOF is compared with the genetic algorithm (GA) using the same arbitrary shaped target (254cc), with a 15mm margin ring structure representing normal tissues. Results: For ADC-DOF, the ADCs imposed on target and ring are (D100>10Gy, D50,10, 0<12Gy, 15Gy and 20Gy) and (D40<10Gy). The resulting D100, 50, 10, 0 and D40 are (9.9Gy, 12.0Gy, 14.1Gy and 16.2Gy) and (10.2Gy). The objectives of GA are to maximize 50% isodose target coverage (TC) while minimize the dose delivered to the ring structure, which results in 97% TC and 47.2% average dose in ring structure. For ADC-DOF (GA) techniques, 20 out of 38 (10 out of 12) initial isocenters are used in the final plan, and the computation time is 8.7s (412.2s) on an i5 computer. Conclusion: We have developed a new optimization technique using ADC and deterministic optimization. Compared with GA, ADC-DOF uses more isocenters but is faster and more robust, and achieves a better conformity. For future work, we will focus on developing a more effective mechanism for initial isocenter determination.« less

  10. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  11. Analysis of renal impairment in MM-003, a phase III study of pomalidomide + low - dose dexamethasone versus high - dose dexamethasone in refractory or relapsed and refractory multiple myeloma

    PubMed Central

    Weisel, Katja C.; Dimopoulos, Meletios A.; Moreau, Philippe; Lacy, Martha Q.; Song, Kevin W.; Delforge, Michel; Karlin, Lionel; Goldschmidt, Hartmut; Banos, Anne; Oriol, Albert; Alegre, Adrian; Chen, Christine; Cavo, Michele; Garderet, Laurent; Ivanova, Valentina; Martinez-Lopez, Joaquin; Knop, Stefan; Yu, Xin; Hong, Kevin; Sternas, Lars; Jacques, Christian; Zaki, Mohamed H.; Miguel, Jesus San

    2016-01-01

    Pomalidomide + low-dose dexamethasone is effective and well tolerated for refractory or relapsed and refractory multiple myeloma after bortezomib and lenalidomide failure. The phase III trial MM-003 compared pomalidomide + low-dose dexamethasone with high-dose dexamethasone. This subanalysis grouped patients by baseline creatinine clearance ≥ 30 − < 60 mL/min (n=93, pomalidomide + low-dose dexamethasone; n=56, high-dose dexamethasone) or ≥ 60 mL/min (n=205, pomalidomide + low-dose dexamethasone; n=93, high-dose dexamethasone). Median progression-free survival was similar for both subgroups and favored pomalidomide + low-dose dexamethasone versus high-dose dexamethasone: 4.0 versus 1.9 months in the group with baseline creatinine clearance ≥ 30 − < 60 mL/min (P<0.001) and 4.0 versus 2.0 months in the group with baseline creatinine clearance ≥ 60 mL/min (P<0.001). Median overall survival for pomalidomide + low-dose dexamethasone versus high-dose dexamethasone was 10.4 versus 4.9 months (P=0.030) and 15.5 versus 9.2 months (P=0.133), respectively. Improved renal function, defined as an increase in creatinine clearance from < 60 to ≥ 60 mL/min, was similar in pomalidomide + low-dose dexamethasone and high-dose dexamethasone patients (42% and 47%, respectively). Improvement in progression-free and overall survival in these patients was comparable with that in patients without renal impairment. There was no increase in discontinuations of therapy, dose modifications, and adverse events in patients with moderate renal impairment. Pomalidomide at a starting dose of 4 mg + low-dose dexamethasone is well tolerated in patients with refractory or relapsed and refractory multiple myeloma, and of comparable efficacy if moderate renal impairment is present. This trial was registered with clinicaltrials.gov identifier 01311687 and EudraCT identifier 2010-019820-30. PMID:27081177

  12. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.

    PubMed

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2017-09-01

    Low-dose naltrexone is a widely used off-label therapeutic prescribed for a variety of immune-related disorders. The mechanism underlying low-dose naltrexone's efficacy for fatigue, Crohn's disease, fibromyalgia, and multiple sclerosis is, in part, intermittent blockade of opioid receptors followed by upregulation of endogenous opioids. Short, intermittent blockade by naltrexone specifically blocks the opioid growth factor receptor resulting in biofeedback events that increase production of the endogenous opioid growth factor (OGF) (chemically termed [Met 5 ]-enkephalin) facilitating interactions between opioid growth factor and opioid growth factor receptor that ultimately, result in inhibited cell proliferation. Preclinical studies have reported that enkephalin levels are deficient in animal models of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our hypothesis is that serum enkephalin levels are diminished in humans with multiple sclerosis and experimental autoimmune encephalomyelitis mice, and that change in serum opioid growth factor levels may serve as a reasonable candidate biomarker for the onset of experimental autoimmune encephalomyelitis and response to therapy. To address this, we designed a two-part study to measure endogenous opioids in multiple sclerosis patients, and to investigate the temporal pattern of decline in serum enkephalin concentrations in mice with chronic progressive experimental autoimmune encephalomyelitis and treated with low-dose naltrexone. For comparison, we investigated whether low-dose naltrexone exposure in normal mice also resulted in altered enkephalin levels. In both animal models, we monitored tactile and heat sensitivity, as well as differential white blood cell counts as indicators of inflammation. Serum [Met 5 ]-enkephalin levels were lower in humans with multiple sclerosis relative to non-multiple sclerosis patients, and low-dose naltrexone restored their levels. In experimental autoimmune encephalomyelitis mice, [Met 5 ]-enkephalin levels were depressed prior to the appearance of clinical disease, and were restored with low-dose naltrexone treatment. Low-dose naltrexone therapy had no effect on serum [Met 5 ]-enkephalin or β-endorphin in normal mice. Thus, [Met 5 ]-enkephalin (i.e. opioid growth factor) may be a reasonable candidate biomarker for multiple sclerosis, and may signal new pathways for treatment of autoimmune disorders. Impact statement This report presents human and animal data identifying a novel biomarker for the onset and progression of multiple sclerosis (MS). Humans diagnosed with MS have reduced serum levels of OGF (i.e. [Met 5 ]-enkephalin) relative to non-MS neurologic patients, and low-dose naltrexone (LDN) therapy restored their enkephalin levels. Serum OGF levels were reduced in mice immunized with MOG 35-55 prior to any clinical behavioral sign of experimental autoimmune encephalomyelitis, and LDN therapy restored their serum OGF levels. β-endorphin concentrations were not altered by LDN in humans or mice. Thus, blood levels of OGF may serve as a new, selective biomarker for the progression of MS, as well as response to therapy.

  13. Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moradi, F.; Khandaker, M. U.; Mahdiraji, G. A.; Ung, N. M.; Bradley, D. A.

    2017-11-01

    In recent years doped silica fibre thermoluminescent dosimeters (TLD) have been demonstrated to have considerable potential for irradiation applications, benefitting from the available sensitivity, spatial resolution and dynamic dose range, with primary focus being on the needs of medical dosimetry. Present study concerns the dose distribution inside a cylindrically shaped gamma-ray irradiator cavity, with irradiator facilities such as the familiar 60Co versions being popularly used in industrial applications. Quality assurance of the radiation dose distribution inside the irradiation cell of such a device is of central importance in respect of the delivered dose to the irradiated material. Silica fibre TLD dose-rates obtained within a Gammacell-220 irradiator cavity show the existence of non-negligible dose distribution heterogeneity, by up to 20% and 26% in the radial and axial directions respectively, Monte Carlo simulations and available literature providing some support for present findings. In practice, it is evident that there is need to consider making corrections to nominal dose-rates in order to avoid the potential for under-dosing.

  14. Paraquat detoxication with multiple emulsions.

    PubMed

    Frasca, S; Couvreur, P; Seiller, M; Pareau, D; Lacour, B; Stambouli, M; Grossiord, J L

    2009-10-01

    In this study, we show that detoxifying W/O/W multiple emulsions, prepared with an appropriate extractant/trapping couple, represent a promising technology for quick and safe poisoning treatments, with application to the highly toxic herbicide Paraquat, responsible of poisonings from low-dose exposure leading to several deaths every year. In vitro tests led to the choice of an appropriate extractant/trapping couple system with significant detoxication performance. In vivo tests showed (i) that rats receiving high doses of Paraquat, then a detoxifying emulsion, presented an increase from 50% to 100% of the MST (median survival time) and (ii) that no mortality was observed during 30 days with rats dosed with emulsions initially loaded with Paraquat at a concentration much higher than the lethal dose, proving the stability and the inocuity of the detoxifying multiple emulsion in the gastrointestinal tract.

  15. MO-FG-202-08: Real-Time Monte Carlo-Based Treatment Dose Reconstruction and Monitoring for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Shi, F; Gu, X

    2016-06-15

    Purpose: This proof-of-concept study is to develop a real-time Monte Carlo (MC) based treatment-dose reconstruction and monitoring system for radiotherapy, especially for the treatments with complicated delivery, to catch treatment delivery errors at the earliest possible opportunity and interrupt the treatment only when an unacceptable dosimetric deviation from our expectation occurs. Methods: First an offline scheme is launched to pre-calculate the expected dose from the treatment plan, used as ground truth for real-time monitoring later. Then an online scheme with three concurrent threads is launched while treatment delivering, to reconstruct and monitor the patient dose in a temporally resolved fashionmore » in real-time. Thread T1 acquires machine status every 20 ms to calculate and accumulate fluence map (FM). Once our accumulation threshold is reached, T1 transfers the FM to T2 for dose reconstruction ad starts to accumulate a new FM. A GPU-based MC dose calculation is performed on T2 when MC dose engine is ready and a new FM is available. The reconstructed instantaneous dose is directed to T3 for dose accumulation and real-time visualization. Multiple dose metrics (e.g. maximum and mean dose for targets and organs) are calculated from the current accumulated dose and compared with the pre-calculated expected values. Once the discrepancies go beyond our tolerance, an error message will be send to interrupt the treatment delivery. Results: A VMAT Head-and-neck patient case was used to test the performance of our system. Real-time machine status acquisition was simulated here. The differences between the actual dose metrics and the expected ones were 0.06%–0.36%, indicating an accurate delivery. ∼10Hz frequency of dose reconstruction and monitoring was achieved, with 287.94s online computation time compared to 287.84s treatment delivery time. Conclusion: Our study has demonstrated the feasibility of computing a dose distribution in a temporally resolved fashion in real-time and quantitatively and dosimetrically monitoring the treatment delivery.« less

  16. Influence of robust optimization in intensity-modulated proton therapy with different dose delivery techniques

    PubMed Central

    Liu, Wei; Li, Yupeng; Li, Xiaoqiang; Cao, Wenhua; Zhang, Xiaodong

    2012-01-01

    Purpose: The distal edge tracking (DET) technique in intensity-modulated proton therapy (IMPT) allows for high energy efficiency, fast and simple delivery, and simple inverse treatment planning; however, it is highly sensitive to uncertainties. In this study, the authors explored the application of DET in IMPT (IMPT-DET) and conducted robust optimization of IMPT-DET to see if the planning technique’s sensitivity to uncertainties was reduced. They also compared conventional and robust optimization of IMPT-DET with three-dimensional IMPT (IMPT-3D) to gain understanding about how plan robustness is achieved. Methods: They compared the robustness of IMPT-DET and IMPT-3D plans to uncertainties by analyzing plans created for a typical prostate cancer case and a base of skull (BOS) cancer case (using data for patients who had undergone proton therapy at our institution). Spots with the highest and second highest energy layers were chosen so that the Bragg peak would be at the distal edge of the targets in IMPT-DET using 36 equally spaced angle beams; in IMPT-3D, 3 beams with angles chosen by a beam angle optimization algorithm were planned. Dose contributions for a number of range and setup uncertainties were calculated, and a worst-case robust optimization was performed. A robust quantification technique was used to evaluate the plans’ sensitivity to uncertainties. Results: With no uncertainties considered, the DET is less robust to uncertainties than is the 3D method but offers better normal tissue protection. With robust optimization to account for range and setup uncertainties, robust optimization can improve the robustness of IMPT plans to uncertainties; however, our findings show the extent of improvement varies. Conclusions: IMPT’s sensitivity to uncertainties can be improved by using robust optimization. They found two possible mechanisms that made improvements possible: (1) a localized single-field uniform dose distribution (LSFUD) mechanism, in which the optimization algorithm attempts to produce a single-field uniform dose distribution while minimizing the patching field as much as possible; and (2) perturbed dose distribution, which follows the change in anatomical geometry. Multiple-instance optimization has more knowledge of the influence matrices; this greater knowledge improves IMPT plans’ ability to retain robustness despite the presence of uncertainties. PMID:22755694

  17. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poder, Joel; Corde, Stéphanie

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less

  18. I-125 ROPES eye plaque dosimetry: validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic® EBT3 films.

    PubMed

    Poder, Joel; Corde, Stéphanie

    2013-12-01

    The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.

  19. SU-F-SPS-11: The Dosimetric Comparison of Truebeam 2.0 and Cyberknife M6 Treatment Plans for Brain SRS Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mabhouti, H; Sanli, E; Cebe, M

    Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less

  20. Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.

    2010-12-07

    A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributionsmore » using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.« less

  1. Proton dose distribution measurements using a MOSFET detector with a simple dose-weighted correction method for LET effects.

    PubMed

    Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2011-04-04

    We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.

  2. Pharmacokinetics and tolerability of intravenous ibuprofen injection in healthy Chinese volunteers: a randomized, open-label, single- and multiple-dose study
.

    PubMed

    Zhou, Huili; Xu, Wei; Wu, Guolan; Wu, Lihua; Shentu, Jianzhong; Pan, Zhengfei; Hu, Shuai; Liu, Yang

    2016-11-01

    Recently a formulation of intravenous (IV) ibuprofen was developed in China for management of mild to moderate pain in patients who could not take oral medications or where intravenous administration was preferable. The aim of this study was to evaluate the pharmacokinetic properties and tolerability of single and multiple doses of ibuprofen injection in healthy Chinese volunteers. This open-label, single- and multiple-dose study was conducted in healthy Chinese volunteers. In the single-dose phase, subjects were randomized to receive a single dose of ibuprofen injection 0.2, 0.4, or 0.8 g administered as a 30-minute IV infusion with a 1-week washout between periods. Blood samples were collected at regular intervals from 0 to 12.5 hours after drug administration and were analyzed using a validated LC-MS/MS method. In the multiple-dose phase, subjects received 0.4 g ibuprofen every 6 hours for 9 doses. Blood samples were obtained before the 7th, 8th, and 9th administration to determine the Cmin at steady state; on the 9th intravenous administration, blood samples were also collected for 12.5 hours after drug administration. Pharmacokinetic parameters were estimated using a noncompartmental model. Tolerability was determined using clinical evaluation and monitoring of adverse events (AEs). A total of 12 healthy male (n = 6) and female (n = 6) Chinese volunteers were enrolled and completed the trial. After IV administration of single dose, the mean (SD) Cmax value increased from 35.77 (6.98) to 117.12 (19.78) µg/mL, and the mean (SD) AUC0-t value increased from 67.63 (10.30) to 230.50 (33.55) µg×h/mL in the range of 0.2-g to 0.8-g dose. The terminal half-life in plasma was ~ 2.0 hours. After IV administration of 9 doses of ibuprofen 400 mg every 6 hours, the mean (SD) Cmax was 66.49 (8.49) µg/mL, the AUC0-t was 135.65 (26.91) µg×h/mL, the t1/2 was 2.14 (0.34) hours, the Cl/F was 3.34 (0.68) L/h, and the Vz/F was 10.32 (2.69) L, which were comparable with those after single dosing. The accumulation index was 1.17 (0.06), and the fluctuation was 304.0 (57.7) %. Results of the t-tests of Cmax and AUC found no significant differences between the male and female groups. No serious AEs were reported, and there were no discontinuations due to AEs. The pharmacokinetics of ibuprofen exhibited dose-related kinetics from the 0.2- to the 0.8-g dose. After multiple doses, the pharmacokinetic parameters of ibuprofen were consistent with those after single doses. There was no accumulation in ibuprofen exposure in healthy Chinese between multiple doses and single dose. At the doses studied, ibuprofen appeared to be well tolerated in these healthy volunteers.
.

  3. [The use of polymer gel dosimetry to measure dose distribution around metallic implants].

    PubMed

    Nagahata, Tomomasa; Yamaguchi, Hajime; Monzen, Hajime; Nishimura, Yasumasa

    2014-10-01

    A semi-solid polymer dosimetry system using agar was developed to measure the dose distribution close to metallic implants. Dosimetry of heterogeneous fields where electron density markedly varies is often problematic. This prompted us to develop a polymer gel dosimetry technique using agar to measure the dose distribution near substance boundaries. Varying the concentration of an oxygen scavenger (tetra-hydroxymethyl phosphonium chloride) showed the absorbed dose and transverse relaxation rate of the magnetic resonance signal to be linear between 3 and 12 Gy. Although a change in the dosimeter due to oxidization was observed in room air after 24 hours, no such effects were observed in the first 4 hours. The dose distribution around the metal implants was measured using agar dosimetry. The metals tested were a lead rod, a titanium hip joint, and a metallic stent. A maximum 30% dose increase was observed near the lead rod, but only a 3% increase in the absorbed dose was noted near the surface of the titanium hip joint and metallic stent. Semi-solid polymer dosimetry using agar thus appears to be a useful method for dosimetry around metallic substances.

  4. Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities

    NASA Astrophysics Data System (ADS)

    Zbijewski, W.; Sisniega, A.; Vaquero, J. J.; Muhit, A.; Packard, N.; Senn, R.; Yang, D.; Yorkston, J.; Carrino, J. A.; Siewerdsen, J. H.

    2012-03-01

    A novel cone-beam CT (CBCT) system has been developed with promising capabilities for musculoskeletal imaging (e.g., weight-bearing extremities and combined radiographic / volumetric imaging). The prototype system demonstrates diagnostic-quality imaging performance, while the compact geometry and short scan orbit raise new considerations for scatter management and dose characterization that challenge conventional methods. The compact geometry leads to elevated, heterogeneous x-ray scatter distributions - even for small anatomical sites (e.g., knee or wrist), and the short scan orbit results in a non-uniform dose distribution. These complex dose and scatter distributions were investigated via experimental measurements and GPU-accelerated Monte Carlo (MC) simulation. The combination provided a powerful basis for characterizing dose distributions in patient-specific anatomy, investigating the benefits of an antiscatter grid, and examining distinct contributions of coherent and incoherent scatter in artifact correction. Measurements with a 16 cm CTDI phantom show that the dose from the short-scan orbit (0.09 mGy/mAs at isocenter) varies from 0.16 to 0.05 mGy/mAs at various locations on the periphery (all obtained at 80 kVp). MC estimation agreed with dose measurements within 10-15%. Dose distribution in patient-specific anatomy was computed with MC, confirming such heterogeneity and highlighting the elevated energy deposition in bone (factor of ~5-10) compared to soft-tissue. Scatter-to-primary ratio (SPR) up to ~1.5-2 was evident in some regions of the knee. A 10:1 antiscatter grid was found earlier to result in significant improvement in soft-tissue imaging performance without increase in dose. The results of MC simulations elucidated the mechanism behind scatter reduction in the presence of a grid. A ~3-fold reduction in average SPR was found in the MC simulations; however, a linear grid was found to impart additional heterogeneity in the scatter distribution, mainly due to the increase in the contribution of coherent scatter with increased spatial variation. Scatter correction using MC-generated scatter distributions demonstrated significant improvement in cupping and streaks. Physical experimentation combined with GPU-accelerated MC simulation provided a sophisticated, yet practical approach in identifying low-dose acquisition techniques, optimizing scatter correction methods, and evaluating patientspecific dose.

  5. Statistical analysis of radiation dose derived from ingestion of foods

    NASA Astrophysics Data System (ADS)

    Dougherty, Ward L.

    2001-09-01

    This analysis undertook the task of designing and implementing a methodology to determine an individual's probabilistic radiation dose from ingestion of foods utilizing Crystal Ball. A dietary intake model was determined by comparing previous existing models. Two principal radionuclides were considered-Lead210 (Pb-210) and Radium 226 (Ra-226). Samples from three different local grocery stores-Publix, Winn Dixie, and Albertsons-were counted on a gamma spectroscopy system with a GeLi detector. The same food samples were considered as those in the original FIPR database. A statistical analysis, utilizing the Crystal Ball program, was performed on the data to assess the most accurate distribution to use for these data. This allowed a determination of a radiation dose to an individual based on the above-information collected. Based on the analyses performed, radiation dose for grocery store samples was lower for Radium-226 than FIPR debris analyses, 2.7 vs. 5.91 mrem/yr. Lead-210 had a higher dose in the grocery store sample than the FIPR debris analyses, 21.4 vs. 518 mrem/yr. The output radiation dose was higher for all evaluations when an accurate estimation of distributions for each value was considered. Radium-226 radiation dose for FIPR and grocery rose to 9.56 and 4.38 mrem/yr. Radiation dose from ingestion of Pb-210 rose to 34.7 and 854 mrem/yr for FIPR and grocery data, respectively. Lead-210 was higher than initial doses for many reasons: Different peak examined, lower edge of detection limit, and minimum detectable concentration was considered. FIPR did not utilize grocery samples as a control because they calculated radiation dose that appeared unreasonably high. Consideration of distributions with the initial values allowed reevaluation of radiation does and showed a significant difference to original deterministic values. This work shows the value and importance of considering distributions to ensure that a person's radiation dose is accurately calculated. Probabilistic dose methodology was proved to be a more accurate and realistic method of radiation dose determination. This type of methodology provides a visual presentation of dose distribution that can be a vital aid in risk methodology.

  6. SU-F-T-364: Monte Carlo-Dose Verification of Volumetric Modulated Arc Therapy Plans Using AAPM TG-119 Test Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onizuka, R; Araki, F; Ohno, T

    2016-06-15

    Purpose: To investigate the Monte Carlo (MC)-based dose verification for VMAT plans by a treatment planning system (TPS). Methods: The AAPM TG-119 test structure set was used for VMAT plans by the Pinnacle3 (convolution/superposition), using a Synergy radiation head of a 6 MV beam with the Agility MLC. The Synergy was simulated with the EGSnrc/BEAMnrc code, and VMAT dose distributions were calculated with the EGSnrc/DOSXYZnrc code by the same irradiation conditions as TPS. VMAT dose distributions of TPS and MC were compared with those of EBT3 film, by 2-D gamma analysis of ±3%/3 mm criteria with a threshold of 30%more » of prescribed doses. VMAT dose distributions between TPS and MC were also compared by DVHs and 3-D gamma analysis of ±3%/3 mm criteria with a threshold of 10%, and 3-D passing rates for PTVs and OARs were analyzed. Results: TPS dose distributions differed from those of film, especially for Head & neck. The dose difference between TPS and film results from calculation accuracy for complex motion of MLCs like tongue and groove effect. In contrast, MC dose distributions were in good agreement with those of film. This is because MC can model fully the MLC configuration and accurately reproduce the MLC motion between control points in VMAT plans. D95 of PTV for Prostate, Head & neck, C-shaped, and Multi Target was 97.2%, 98.1%, 101.6%, and 99.7% for TPS and 95.7%, 96.0%, 100.6%, and 99.1% for MC, respectively. Similarly, 3-D gamma passing rates of each PTV for TPS vs. MC were 100%, 89.5%, 99.7%, and 100%, respectively. 3-D passing rates of TPS reduced for complex VMAT fields like Head & neck because MLCs are not modeled completely for TPS. Conclusion: MC-calculated VMAT dose distributions is useful for the 3-D dose verification of VMAT plans by TPS.« less

  7. TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayan, S; Xiong, Z; Shankar, A

    Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less

  8. SU-E-T-243: MonteCarlo Simulation Study of Polymer and Radiochromic Gel for Three-Dimensional Proton Dose Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Jung, H; Kim, G

    2014-06-01

    Purpose: To estimate the three dimensional dose distributions in a polymer gel and a radiochromic gel by comparing with the virtual water phantom exposed to proton beams by applying Monte Carlo simulation. Methods: The polymer gel dosimeter is the compositeness material of gelatin, methacrylic acid, hydroquinone, tetrakis, and distilled water. The radiochromic gel is PRESAGE product. The densities of polymer and radiochromic gel were 1.040 and 1.0005 g/cm3, respectively. The shape of water phantom was a hexahedron with the size of 13 × 13 × 15 cm3. The proton beam energies of 72 and 116 MeV were used in themore » simulation. Proton beam was directed to the top of the phantom with Z-axis and the shape of beam was quadrangle with 10 × 10 cm2 dimension. The Percent depth dose and the dose distribution were evaluated for estimating the dose distribution of proton particle in two gel dosimeters, and compared with the virtual water phantom. Results: The Bragg-peak for proton particles in two gel dosimeters was similar to the virtual water phantom. Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in the identical region (4.3 cm) for 72 MeV proton beam. For 116 MeV proton beam, the Bragg-peak regions of polymer gel, radiochromic gel, and virtual water phantom were represented in 9.9, 9.9 and 9.7 cm, respectively. The dose distribution of proton particles in polymer gel, radiochromic gel, and virtual water phantom was approximately identical in the case of 72 and 116 MeV energies. The errors for the simulation were under 10%. Conclusion: This work indicates the evaluation of three dimensional dose distributions by exposing proton particles to polymer and radiochromic gel dosimeter by comparing with the water phantom. The polymer gel and the radiochromic gel dosimeter show similar dose distributions for the proton beams.« less

  9. Evaluation of Rifampin's Transporter Inhibitory and CYP3A Inductive Effects on the Pharmacokinetics of Venetoclax, a BCL-2 Inhibitor: Results of a Single- and Multiple-Dose Study.

    PubMed

    Agarwal, Suresh K; Hu, Beibei; Chien, David; Wong, Shekman L; Salem, Ahmed Hamed

    2016-11-01

    Venetoclax is a selective, potent, first-in-class B-cell lymphoma-2 inhibitor that has demonstrated clinical efficacy in a variety of hematological malignancies. A single-dose and multiple-dose rifampin study was conducted to evaluate the effect of CYP3A induction and transporter inhibition on the pharmacokinetics of venetoclax. Subjects received a single dose of venetoclax 200 mg on day 1 of period 1 and days 1 and 14 of period 2, a single dose of rifampin 600 mg on day 1 of period 2, and rifampin 600 mg once daily on days 5 through 17 of period 2. Blood samples were collected up to 96 hours after each venetoclax dose on day 1 of period 1 and days 1 and 14 of period 2. Compared with venetoclax alone, coadministration with a single dose of rifampin increased venetoclax C max and AUC ∞ by 106% (90%CI, 73%-145%) and 78% (90%CI, 50%-111%), respectively, whereas coadministration with multiple doses of rifampin decreased venetoclax C max and AUC ∞ by 42% (90%CI, 31%-52%) and 71% (90%CI, 66%-76%), respectively. It was possible to isolate the net effect of chronic CYP3A induction from acute P-glycoprotein (P-gp) inhibition by comparing venetoclax exposures following coadministration with multiple doses of rifampin versus a single dose of rifampin, which showed that CYP3A induction decreased venetoclax C max and AUC by 72% and 84%, respectively. These results are consistent with venetoclax being a P-gp substrate and indicate that CYP3A plays a major role in venetoclax metabolism. Prescribers should consider agents with little or no CYP3A induction during treatment with venetoclax. © 2016, The American College of Clinical Pharmacology.

  10. TH-AB-207A-03: Skin Dose to Patients Receiving Multiple CTA and CT Exams of the Head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nawfel, RD; Young, G

    Purpose: To measure patient skin dose from CT angiography (CTA) and CT exams of the head, and determine if patients having multiple exams could receive cumulative doses that approach or exceed deterministic thresholds. Methods: This study was HIPAA compliant and conducted with IRB approval. Patient skin doses were measured over a 4 month period using nanoDot OSL dosimeters placed on the head of 52 patients for two CT scanners. On each scanner, 26 patients received CT exams (scanner 1: 10 females, 16 males, mean age 64.2 years; scanner 2: 18 females, 8 males, mean age 61.2 years). CT exam dosemore » metrics, CTDIvol and dose-length product (DLP) were recorded for each exam. Additionally, skin dose was measured on an acrylic skull phantom in each scanner and on a neuro-interventional imaging system using clinical protocols. Measured dose data was used to estimate peak skin dose (PSD) for 4 patients receiving multiple exams including CTA, head CT, and cerebral angiography. Results: For scanner 1, the mean PSD for CTA exams (98.9 ± 5.3 mGy) and for routine head CT exams (39.2 ± 3.7 mGy) agreed reasonably well with the PSD measured on the phantom, 105.4 mGy and 40.0 mGy, respectively. Similarly for scanner 2, the mean PSD for CTA exams (98.8 ± 7.4 mGy) and for routine head CT exams (42.9 ± 9.4 mGy) compared well with phantom measurements, 95.2 mGy and 37.6 mGy, respectively. In addition, the mean PSD was comparable between scanners for corresponding patient exams, CTA and routine head CT respectively. PSD estimates ranged from 1.9 – 4.5 Gy among 4 patients receiving multiple exams. Conclusion: Patients having several exams including both CTA and routine head CT may receive cumulative doses approaching or exceeding the threshold for single dose deterministic effects.« less

  11. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan

    NASA Astrophysics Data System (ADS)

    Inaniwa, Taku; Kanematsu, Nobuyuki; Matsufuji, Naruhiro; Kanai, Tatsuaki; Shirai, Toshiyuki; Noda, Koji; Tsuji, Hiroshi; Kamada, Tadashi; Tsujii, Hirohiko

    2015-04-01

    At the National Institute of Radiological Sciences (NIRS), more than 8,000 patients have been treated for various tumors with carbon-ion (C-ion) radiotherapy in the past 20 years based on a radiobiologically defined clinical-dose system. Through clinical experience, including extensive dose escalation studies, optimum dose-fractionation protocols have been established for respective tumors, which may be considered as the standards in C-ion radiotherapy. Although the therapeutic appropriateness of the clinical-dose system has been widely demonstrated by clinical results, the system incorporates several oversimplifications such as dose-independent relative biological effectiveness (RBE), empirical nuclear fragmentation model, and use of dose-averaged linear energy transfer to represent the spectrum of particles. We took the opportunity to update the clinical-dose system at the time we started clinical treatment with pencil beam scanning, a new beam delivery method, in 2011. The requirements for the updated system were to correct the oversimplifications made in the original system, while harmonizing with the original system to maintain the established dose-fractionation protocols. In the updated system, the radiation quality of the therapeutic C-ion beam was derived with Monte Carlo simulations, and its biological effectiveness was predicted with a theoretical model. We selected the most used C-ion beam with αr = 0.764 Gy-1 and β = 0.0615 Gy-2 as reference radiation for RBE. The C-equivalent biological dose distribution is designed to allow the prescribed survival of tumor cells of the human salivary gland (HSG) in entire spread-out Bragg peak (SOBP) region, with consideration to the dose dependence of the RBE. This C-equivalent biological dose distribution is scaled to a clinical dose distribution to harmonize with our clinical experiences with C-ion radiotherapy. Treatment plans were made with the original and the updated clinical-dose systems, and both physical and clinical dose distributions were compared with regard to the prescribed dose level, beam energy, and SOBP width. Both systems provided uniform clinical dose distributions within the targets consistent with the prescriptions. The mean physical doses delivered to targets by the updated system agreed with the doses by the original system within ±1.5% for all tested conditions. The updated system reflects the physical and biological characteristics of the therapeutic C-ion beam more accurately than the original system, while at the same time allowing the continued use of the dose-fractionation protocols established with the original system at NIRS.

  13. Pharmacokinetics and tolerability of febuxostat after oral administration in healthy Chinese volunteers: a randomized, open-label, singleand multiple-dose three-way crossover study.

    PubMed

    Zhou, Huili; Zheng, Yunliang; Wu, Guolan; Hu, Xingjiang; Zhai, You; Iv, Duo; Liu, Jian; Wu, Lihua; Shentu, Jianzhong

    2016-02-01

    Febuxostat is a novel non-purine selective inhibitor of xanthine oxidase indicated for the chronic management of hyperuricemia in patients with gout. The aim of the present study was to evaluate the pharmacokinetic properties and tolerability of single and multiple oral administrations of febuxostat capsules in healthy Chinese volunteers. This openlabel, single- and multiple-dose three-way crossover study was conducted in healthy Chinese volunteers. Subjects were randomized to receive a single dose of febuxostat 40, 80, or 120 mg in separate trial periods, with a 1-week washout between periods. Those allocated to the 40 mg and 80 mg dose continued into the multiple-dose phase, in which they received 40 mg or 80 mg once daily for 6 consecutive days. During the course of the study, blood samples were collected and the concentrations of febuxostat were determined using LC-MS/MS. Pharmacokinetic parameters were estimated using a noncompartmental model. Tolerability was determined using clinical evaluation and monitoring of adverse events (AEs). 12 healthy Chinese volunteers were enrolled and completed 3 treatment periods. After oral administration of single doses of 40, 80, and 120 mg of febuxostat, the mean (SD) Cmax was 2,835.43 (1,136.41), 5,356.75 (1,711.33), and 7,718.21 (2,446.34) ng/mL, respectively; the AUC0-48h was 8,821.10 (3,018.35), 17,854.46 (5,113.28), and 30,832.05 (10,992.20) ng×h/ mL; the AUC0-∞ was 8,990.33 (3,046.14), 18,193.58 (5,160.80), and 31,466.93 (1,1074.74) ng×h/mL; the t1/2 was 5.95 (2.71), 9.41 (7.47), and 12.34 (10.34) hours; the Cl/F was 4.81 (1.18), 4.70 (1.21), and 4.18(1.19) L/h; and the Vz/F was 39.66 (16.69), 62.72 (51.41), and 73.41 (64.84) L. After administration of multiple doses of 40 and 80 mg febuxostat, the mean (SD) Cmax,ss was 2,762.38 (1,331.96) and 5,047.27 (1,456.57) ng/mL; the Cmin,ss was 124.10 (6.32) and 46.93 (15.86) ng/mL; the AUCss,0-τ was 8,525.49 (2,160.64) and 16,757.12 (4,223.17) ng×h /mL; the steadystate plasma concentration (Css) was 355.23 (90.03) and 698.21 (175.97) ng/mL; the t1/2 was 7.68 (3.30) and 11.33 (6.94) hours; the Cl/F was 4.99 (1.30) and 5.05 (1.22) L/h; and the Vz/F was 54.10 (24.10) and 85.51 (65.99) L. No serious AEs were reported, and there were no discontinuations due to AEs. The PK of febuxostat exhibited dose proportional kinetics from 40 to 120 mg dose. After multiple doses, the pharmacokinetic parameters of febuxostat were consistent with those after single doses. There was no accumulation in febuxostat exposure in healthy Chinese between multiple doses and single dose. At the doses studied, febuxostat appeared to be well tolerated in these healthy volunteers.

  14. Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.

    PubMed

    Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie

    2018-05-01

    Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.

  15. Radiation dose in 320-slice multidetector cardiac CT: a single center experience of evolving dose minimization.

    PubMed

    Tung, Matthew K; Cameron, James D; Casan, Joshua M; Crossett, Marcus; Troupis, John M; Meredith, Ian T; Seneviratne, Sujith K

    2013-01-01

    Minimization of radiation exposure remains an important subject that occurs in parallel with advances in scanner technology. We report our experience of evolving radiation dose and its determinants after the introduction of 320-multidetector row cardiac CT within a single tertiary cardiology referral service. Four cohorts of consecutive patients (total 525 scans), who underwent cardiac CT at defined time points as early as 2008, are described. These include a cohort just after scanner installation, after 2 upgrades of the operating system, and after introduction of an adaptive iterative image reconstruction algorithm. The proportions of nondiagnostic coronary artery segments and studies with nondiagnostic segments were compared between cohorts. Significant reductions were observed in median radiation doses in all cohorts compared with the initial cohort (P < .001). Median dose-length product fell from 944 mGy · cm (interquartile range [IQR], 567.3-1426.5 mGy · cm) to 156 mGy · cm (IQR, 99.2-265.0 mGy · cm). Although the proportion of prospectively triggered scans has increased, reductions in radiation dose have occurred independently of distribution of scan formats. In multiple regression that combined all groups, determinants of dose-length product were tube output, the number of cardiac cycles scanned, tube voltage, scan length, scan format, body mass index, phase width, and heart rate (adjusted R(2) = 0.85, P < .001). The proportion of nondiagnostic coronary artery segments was slightly increased in group 4 (2.9%; P < .01). While maintaining diagnostic quality in 320-multidetector row cardiac CT, the radiation dose has decreased substantially because of a combination of dose-reduction protocols and technical improvements. Continued minimization of radiation dose will increase the potential for cardiac CT to expand as a cardiac imaging modality. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  16. Proposed linear energy transfer areal detector for protons using radiochromic film.

    PubMed

    Mayer, Rulon; Lin, Liyong; Fager, Marcus; Douglas, Dan; McDonough, James; Carabe, Alejandro

    2015-04-01

    Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.

  17. SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, K; Liu, B

    Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less

  18. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate

    NASA Astrophysics Data System (ADS)

    Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.

    2017-04-01

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  19. Assessment of dosimetric impact of system specific geometric distortion in an MRI only based radiotherapy workflow for prostate.

    PubMed

    Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E

    2017-04-21

    Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were  ⩽0.02% and the radiotherapy structure mean volume deviations were  <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.

  20. SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Deroma, R; Borzov, E; Nevelsky, A

    2015-06-15

    Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less

  1. Biology Based Lung Cancer Model for Chronic Low Radon Exposures

    NASA Astrophysics Data System (ADS)

    TruÅ£ǎ-Popa, Lucia-Adina; Hofmann, Werner; Fakir, Hatim; Cosma, Constantin

    2008-08-01

    Low dose effects of alpha particles at the tissue level are characterized by the interaction of single alpha particles, affecting only a small fraction of the cells within that tissue. Alpha particle intersections of bronchial target cells during a given exposure period were simulated by an initiation-promotion model, formulated in terms of cellular hits within the cycle time of the cell (dose-rate) and then integrated over the whole exposure period (dose). For a given average number of cellular hits during the lifetime of bronchial cells, the actual number of single and multiple hits was selected from a Poisson distribution. While oncogenic transformation is interpreted as the primary initiation step, stimulated mitosis by killing adjacent cells is assumed to be the primary radiological promotion event. Analytical initiation and promotion functions were derived from experimental in vitro data on oncogenic transformation and cellular survival. To investigate the shape of the lung cancer risk function at chronic, low level exposures in more detail, additional biological factors describing the tissue response and operating specifically at low doses were incorporated into the initiation-promotion model. These mechanisms modifying the initial response at the cellular level were: adaptive response, genomic instability, induction of apoptosis by surrounding cells, and detrimental as well as protective bystander mechanisms. To quantify the effects of these mechanisms as functions of dose, analytical functions were derived from the experimental evidence presently available. Predictions of lung cancer risk, including these mechanisms, exhibit a distinct sublinear dose-response relationship at low exposures, particularly for very low exposure rates.

  2. SU-F-T-178: Optimized Design of a Diamond Detector Specifically Dedicated to the Dose Distribution Measurements in Clinical Proton Pencil Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moignier, C; Pomorski, M; Agelou, M

    2016-06-15

    Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less

  3. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    NASA Astrophysics Data System (ADS)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  4. High brachytherapy doses can counteract hypoxia in cervical cancer—a modelling study

    NASA Astrophysics Data System (ADS)

    Lindblom, Emely; Dasu, Alexandru; Beskow, Catharina; Toma-Dasu, Iuliana

    2017-01-01

    Tumour hypoxia is a well-known adverse factor for the outcome of radiotherapy. For cervical tumours in particular, several studies indicate large variability in tumour oxygenation. However, clinical evidence shows that the management of cervical cancer including brachytherapy leads to high rate of success. It was the purpose of this study to investigate whether the success of brachytherapy for cervical cancer, seemingly regardless of oxygenation status, could be explained by the characteristics of the brachytherapy dose distributions. To this end, a previously used in silico model of tumour oxygenation and radiation response was further developed to simulate the treatment of cervical cancer employing a combination of external beam radiotherapy and intracavitary brachytherapy. Using a clinically-derived brachytherapy dose distribution and assuming a homogeneous dose delivered by external radiotherapy, cell survival was assessed on voxel level by taking into account the variation of sensitivity with oxygenation as well as the effects of repair, repopulation and reoxygenation during treatment. Various scenarios were considered for the conformity of the brachytherapy dose distribution to the hypoxic region in the target. By using the clinically-prescribed brachytherapy dose distribution and varying the total dose delivered with external beam radiotherapy in 25 fractions, the resulting values of the dose for 50% tumour control, D 50, were in agreement with clinically-observed values for high cure rates if fast reoxygenation was assumed. The D 50 was furthermore similar for the different degrees of conformity of the brachytherapy dose distribution to the tumour, regardless of whether the hypoxic fraction was 10%, 25%, or 40%. To achieve 50% control with external RT only, a total dose of more than 70 Gy in 25 fractions would be required for all cases considered. It can thus be concluded that the high doses delivered in brachytherapy can counteract the increased radioresistance caused by hypoxia if fast reoxygenation is assumed.

  5. SU-E-T-02: 90Y Microspheres Dosimetry Calculation with Voxel-S-Value Method: A Simple Use in the Clinic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneru, F; Gracia, M; Gallardo, N

    2015-06-15

    Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less

  6. Systematic evaluation of four-dimensional hybrid depth scanning for carbon-ion lung therapy.

    PubMed

    Mori, Shinichiro; Furukawa, Takuji; Inaniwa, Taku; Zenklusen, Silvan; Nakao, Minoru; Shirai, Toshiyuki; Noda, Koji

    2013-03-01

    Irradiation of a moving target with a scanning beam requires a comprehensive understanding of organ motion as well as a robust dose error mitigation technique. The authors studied the effects of intrafractional respiratory motion for carbon-ion pencil beam scanning with phase-controlled rescanning on dose distributions for lung tumors. To address density variations, they used 4DCT data. Dose distributions for various rescanning methods, such as simple layer rescanning (LR), volumetric rescanning, and phase-controlled rescanning (PCR), were calculated for a lung phantom and a lung patient studies. To ensure realism, they set the scanning parameters such as scanning velocity and energy variation time to be similar to those used at our institution. Evaluation metrics were determined with regard to clinical relevance, and consisted of (i) phase-controlled rescanning, (ii) sweep direction, (iii) target motion (direction and amplitude), (iv) respiratory cycle, and (v) prescribed dose. Spot weight maps were calculated by using a beam field-specific target volume, which takes account of range variations for respective respiratory phases. To emphasize the impact of intrafractional motion on the dose distribution, respiratory gating was not used. The accumulated dose was calculated by applying a B-spline-based deformable image registration, and the results for phase-controlled layered rescanning (PCRL) and phase-controlled volumetric rescanning (PCRV) were compared. For the phantom study, simple LR was unable to improve the dose distributions for an increased number of rescannings. The phase-controlled technique without rescanning (1×PCRL and 1×PCRV) degraded dose conformity significantly due to a reduced scan velocity. In contrast, 4×PCRL or more significantly and consistently improved dose distribution. PCRV showed interference effects, but in general also improved dose homogeneity with higher numbers of rescannings. Dose distributions with single PCRL∕PCRV with a sweep direction perpendicular to motion direction showed large hot∕cold spots; however, this effect vanished with higher numbers of rescannings for both methods. Similar observations were obtained for the other dose metrics, such as target motion (SI∕AP), amplitude (6-22 mm peak-to-peak) and respiratory period (3.0-5.0 s). For four or more rescannings, both methods showed significantly better results, albeit that volumetric PCR was more affected by interference effects, which lead to severe degradation of a few dose distributions. The clinical example showed the same tendencies as the phantom study. Dose assessment metrics (D95, Dmax∕Dmin, homogeneity index) were improved with an increasing number of PCRL∕PCRV, but with PCRL being more robust. PCRL requires a longer treatment time than PCRV for high numbers of rescannings in the NIRS scanning system but is more robust. Although four or more rescans provided good dose homogeneity and conformity, the authors prefer to use more rescannings for clinical cases to further minimize dose degradation effects due to organ motion.

  7. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy.

    PubMed

    Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy

    PubMed Central

    Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    Abstract The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. PMID:29087492

  9. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    PubMed

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Seasonal influenza vaccine dose distribution in 195 countries (2004-2013): Little progress in estimated global vaccination coverage.

    PubMed

    Palache, Abraham; Oriol-Mathieu, Valerie; Fino, Mireli; Xydia-Charmanta, Margarita

    2015-10-13

    Seasonal influenza is an important disease which results in 250,000-500,000 annual deaths worldwide. Global targets for vaccination coverage rates (VCRs) in high-risk groups are at least 75% in adults ≥65 years and increased coverage in other risk groups. The International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply (IFPMA IVS) International Task Force developed a survey methodology in 2008, to assess the global distribution of influenza vaccine doses as a proxy for VCRs. This paper updates the previous survey results on absolute numbers of influenza vaccine doses distributed between 2004 and 2013 inclusive, and dose distribution rates per 1000 population, and provides a qualitative assessment of the principal enablers and barriers to seasonal influenza vaccination. The two main findings from the quantitative portion of the survey are the continued negative trend for dose distribution in the EURO region and the perpetuation of appreciable differences in scale of dose distribution between WHO regions, with no observed convergence in the rates of doses distributed per 1000 population over time. The main findings from the qualitative portion of the survey were that actively managing the vaccination program in real-time and ensuring political commitment to vaccination are important enablers of vaccination, whereas insufficient access to vaccination and lack of political commitment to seasonal influenza vaccination programs are likely contributing to vaccination target failures. In all regions of the world, seasonal influenza vaccination is underutilized as a public health tool. The survey provides evidence of lost opportunity to protect populations against potentially serious influenza-associated disease. We call on the national and international public health communities to re-evaluate their political commitment to the prevention of the annual influenza disease burden and to develop a systematic approach to improve vaccine distribution equitably. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Dose-volume histogram prediction using density estimation.

    PubMed

    Skarpman Munter, Johanna; Sjölund, Jens

    2015-09-07

    Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting.The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram.To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar.In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.

  12. Pharmacokinetics, Pharmacodynamics, and Allometric Scaling of Chloroquine in a Murine Malaria Model▿

    PubMed Central

    Moore, Brioni R.; Page-Sharp, Madhu; Stoney, Jillian R.; Ilett, Kenneth F.; Jago, Jeffrey D.; Batty, Kevin T.

    2011-01-01

    Chloroquine (CQ) is an important antimalarial drug for the treatment of special patient groups and as a comparator for preclinical testing of new drugs. Pharmacokinetic data for CQ in animal models are limited; thus, we conducted a three-part investigation, comprising (i) pharmacodynamic studies of CQ and CQ plus dihydroartemisinin (DHA) in Plasmodium berghei-infected mice, (ii) pharmacokinetic studies of CQ in healthy and malaria-infected mice, and (iii) interspecies allometric scaling for CQ from 6 animal and 12 human studies. The single-dose pharmacodynamic study (10 to 50 mg CQ/kg of body weight) showed dose-related reduction in parasitemia (5- to >500-fold) and a nadir 2 days after the dose. Multiple-dose regimens (total dose, 50 mg/kg CQ) demonstrated a lower nadir and longer survival time than did the same single dose. The CQ-DHA combination provided an additive effect compared to each drug alone. The elimination half-life (t1/2), clearance (CL), and volume of distribution (V) of CQ were 46.6 h, 9.9 liters/h/kg, and 667 liters/kg, respectively, in healthy mice and 99.3 h, 7.9 liters/h/kg, and 1,122 liters/kg, respectively, in malaria-infected mice. The allometric equations for CQ in healthy mammals (CL = 3.86 × W0.56, V = 230 × W0.94, and t1/2 = 123 × W0.2) were similar to those for malaria-infected groups. CQ showed a delayed dose-response relationship in the murine malaria model and additive efficacy when combined with DHA. The biphasic pharmacokinetic profiles of CQ are similar across mammalian species, and scaling of specific parameters is plausible for preclinical investigations. PMID:21646487

  13. Energy optimization in gold nanoparticle enhanced radiation therapy.

    PubMed

    Sung, Wonmo; Schuemann, Jan

    2018-06-25

    Gold nanoparticles (GNPs) have been demonstrated as radiation dose enhancing agents. Kilovoltage external photon beams have been shown to yield the largest enhancement due to the high interaction probability with gold. While orthovoltage irradiations are feasible and promising, they suffer from a reduced tissue penetrating power. This study quantifies the effect of varying photon beam energies on various beam arrangements, body, tumor, and cellular GNP uptake geometries. Cell survival was modeled based on our previously developed GNP-local effect model with radial doses calculated using the TOPAS-nBio Monte Carlo code. Cell survival curves calculated for tumor sites with GNPs were used to calculate the relative biological effectiveness (RBE)-weighted dose. In order to evaluate the plan quality, the ratio of the mean dose between the tumor and normal tissue for 50-250 kVp beams with GNPs was compared to the standard of care using 6 MV photon beams without GNPs for breast and brain tumors. For breast using a single photon beam, kV  +  GNP was found to yield up to 2.73 times higher mean RBE-weighted dose to the tumor than two tangential megavoltage beams while delivering the same dose to healthy tissue. For irradiation of brain tumors using multiple photon beams, the GNP dose enhancement was found to be effective for energies above 50 keV. A small tumor at shallow depths was found to be the most effective treatment conditions for GNP enhanced radiation therapy. GNP uptake distributions in the cell (with or without nuclear uptake) and the beam arrangement were found to be important factors in determining the optimal photon beam energy.

  14. Carbon-ion scanning lung treatment planning with respiratory-gated phase-controlled rescanning: simulation study using 4-dimensional CT data.

    PubMed

    Takahashi, Wataru; Mori, Shinichiro; Nakajima, Mio; Yamamoto, Naoyoshi; Inaniwa, Taku; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji; Nakagawa, Keiichi; Kamada, Tadashi

    2014-11-11

    To moving lung tumors, we applied a respiratory-gated strategy to carbon-ion pencil beam scanning with multiple phase-controlled rescanning (PCR). In this simulation study, we quantitatively evaluated dose distributions based on 4-dimensional CT (4DCT) treatment planning. Volumetric 4DCTs were acquired for 14 patients with lung tumors. Gross tumor volume, clinical target volume (CTV) and organs at risk (OARs) were delineated. Field-specific target volumes (FTVs) were calculated, and 48Gy(RBE) in a single fraction was prescribed to the FTVs delivered from four beam angles. The dose assessment metrics were quantified by changing the number of PCR and the results for the ungated and gated scenarios were then compared. For the ungated strategy, the mean dose delivered to 95% of the volume of the CTV (CTV-D95) was in average 45.3 ± 0.9 Gy(RBE) even with a single rescanning (1 × PCR). Using 4 × PCR or more achieved adequate target coverage (CTV-D95 = 46.6 ± 0.3 Gy(RBE) for ungated 4 × PCR) and excellent dose homogeneity (homogeneity index =1.0 ± 0.2% for ungated 4 × PCR). Applying respiratory gating, percentage of lung receiving at least 20 Gy(RBE) (lung-V20) and heart maximal dose, averaged over all patients, significantly decreased by 12% (p < 0.05) and 13% (p < 0.05), respectively. Four or more PCR during PBS-CIRT improved dose conformation to moving lung tumors without gating. The use of a respiratory-gated strategy in combination with PCR reduced excessive doses to OARs.

  15. Poster — Thur Eve — 38: Feasibility of a Table-Top Total Body Irradiation Technique using Robotic Couch Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, Erika; Otto, Karl; Hoppe, Richard

    Purpose: To develop and test the feasibility of a table-top implementation for total body irradiation (TBI) via robotic couch motion and coordinated monitor unit modulation on a standard C-arm linac geometry. Methods: To allow for collision free delivery and to maximize the effective field size, the couch was rotated to 270° IEC and dropped to 150 cm from the vertical radiation source. The robotic delivery was programmed using the TrueBeam STx Developer Mode using custom XML scripting. To assess the dosimetry of a sliding 30×20 cm{sup 2} field, irradiation on a solid water phantom of varying thickness was analyzed usingmore » EDR2 radiographic film and OSLDs. Beam modulation was achieved by dividing the couch path into multiple segments of varying dose rates and couch speeds in order to deliver 120 cGy to the midline. Results: The programmed irradiation in conjunction with coordinated couch motion was successfully delivered on a TrueBeam linac. When no beam modulation was employed, the dose difference between two different phantom sections was 17.0%. With simple beam modulation via changing dose rates and couch speeds, the desired prescription dose can be achieved at the centre of each phantom section within 1.9%. However, dose deviation at the junction was 9.2% due to the nonphysical change in the phantom thickness. Conclusions: The feasibility of robotic table-top TBI on a C-arm linac geometry was experimentally demonstrated. To achieve a more uniform dose distribution, inverse-planning allowing for a combination of dose rate modulation, jaw tracking and MLC motion is under investigation.« less

  16. Design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatments.

    PubMed

    Grams, Michael P; de Los Santos, Luis E Fong

    2018-06-01

    To describe the design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatment plans using radiochromic film. A solid water cylindrical phantom was designed with separable upper and lower halves and rests on plastic bearings allowing for 360° rotation about its central axis. The phantom accommodates a half sheet of radiochromic film, and by rotating the cylinder, the film can be placed in any plane between coronal and sagittal. Calculated dose planes coinciding with rotated film measurements are exported by rotating the CT image and dose distribution within the treatment planning system. The process is illustrated with 2 rotated film measurements of an SRS treatment plan involving 4 separate targets. Additionally, 276 patient specific QA measurements were obtained with the phantom and analyzed with a 2%/2 mm gamma criterion. The average 2%/2 mm gamma passing rate for all 276 plans was 99.3%. Seventy-two of the 276 plans were measured with the plane of the film rotated between the coronal and sagittal planes and had an average passing rate of 99.4%. The rotational phantom allows for accurate film measurements in any plane. With this technique, regions of a dose distribution which might otherwise require multiple sagittal or coronal measurements can be verified with as few as a single measurement. This increases efficiency and, in combination with the high spatial resolution inherent to film dosimetry, makes the rotational technique an attractive option for patient-specific QA. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. In vitro biotransformation rates in fish liver S9: effect of dosing techniques.

    PubMed

    Lee, Yung-Shan; Lee, Danny H Y; Delafoulhouze, Maximilien; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C

    2014-08-01

    In vitro biotransformation assays are currently being explored to improve estimates of bioconcentration factors of potentially bioaccumulative organic chemicals in fish. The present study compares thin-film and solvent-delivery dosing techniques as well as single versus multiple chemical dosing for measuring biotransformation rates of selected polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) liver S9. The findings show that biotransformation rates of very hydrophobic substances can be accurately measured in thin-film sorbent-dosing assays from concentration-time profiles in the incubation medium but not from those in the sorbent phase because of low chemical film-to-incubation-medium mass-transfer rates at the incubation temperature of 13.5 °C required for trout liver assays. Biotransformation rates determined by thin-film dosing were greater than those determined by solvent-delivery dosing for chrysene (octanol-water partition coefficient [KOW ] =10(5.60) ) and benzo[a]pyrene (KOW  =10(6.04) ), whereas there were no statistical differences in pyrene (KOW  =10(5.18) ) biotransformation rates between the 2 methods. In sorbent delivery-based assays, simultaneous multiple-chemical dosing produced biotransformation rates that were not statistically different from those measured in single-chemical dosing experiments for pyrene and benzo[a]pyrene but not for chrysene. In solvent-delivery experiments, multiple-chemical dosing produced biotransformation rates that were much smaller than those in single-chemical dosing experiments for all test chemicals. While thin-film sorbent-phase and solvent delivery-based dosing methods are both suitable methods for measuring biotransformation rates of substances of intermediate hydrophobicity, thin-film sorbent-phase dosing may be more suitable for superhydrophobic chemicals. © 2014 SETAC.

  18. Dose-Dependent Negative Effects of Prior Multiple Vaccinations against Influenza A and Influenza B among School Children: A Study of Kamigoto Island in Japan during the 2011/12, 2012/13 and 2013/14 Influenza Seasons.

    PubMed

    Saito, Nobuo; Komori, Kazuhiro; Suzuki, Motoi; Kishikawa, Takayuki; Yasaka, Takahiro; Ariyoshi, Koya

    2018-03-08

    We investigated the negative effects of prior multiple vaccinations on influenza vaccine effectiveness (VE) and analysed the association of VE with prior vaccine doses. Patients aged 9-18 years presenting with influenza-like illness at a community hospital on a Japanese remote island during the 2011/12, 2012/13 and 2013/14 seasons were tested for influenza using a rapid diagnostic test (RDT). A test-negative case-control study design was used to estimate the VEs of trivalent inactivated influenza vaccine (TIV). Histories of vaccination and medically-attended influenza (MA-flu) A and B during three previous seasons were collected from registry systems. VE was calculated using multi-level mixed-effects logistic regression models adjusted for the history of RDT-confirmed MA-flu. During three influenza seasons, 1668 influenza-like illness episodes were analysed, including 421 and 358 episodes of MA-fluA and MA-fluB, respectively. The adjusted VE yielded significant dose-dependent attenuations by prior vaccinations against both MA-fluA [0 doses during previous three seasons: 96% (95% CI: 69%-100%), 1 dose: 48% (-7% to 74%), 2 doses: 52% (11%-74%), 3 doses: 21% (-25% to 51%); P for trend <0.05] and MA-fluB [0 doses: 66% (-5% to 89%), 1 dose: 48% (-14% to 76%), 2 doses: 34% (-33% to 67%), 3 doses: -7% (-83% to 37%); P for trend <0.05]. After excluding episodes of MA-flu during prior three seasons, similar trends were observed. Repeated previous vaccinations over multiple seasons had significant dose-dependent negative impacts on VE against both MA-fluA and MA-fluB. Further studies to confirm this finding are necessary.

  19. SU-E-T-138: Dosimetric Verification For Volumetric Modulated Arc Therapy Cranio-Spinal Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goksel, E; Bilge, H; Yildiz, Yarar

    2014-06-01

    Purpose: Dosimetric feasibility of cranio-spinal irradiation with volumetric modulated arc therapy (VMAT-CSI) technique in terms of dose distribution accuracy was investigated using a humanlike phantom. Methods: The OARs and PTV volumes for the Rando phantom were generated on supine CT images. Eclipse (version 8.6) TPS with AAA algorithm was used to create the treatment plan with VMAT-CSI technique. RapidArc plan consisted of cranial, upper spinal (US) and lower spinal (LS) regions that were optimized in the same plan. US field was overlapped by 3cm with cranial and LS fields. Three partial arcs for cranium and 1 full arc for eachmore » US and LS region were used. The VMAT-CSI dose distribution inside the Rando phantom was measured with thermoluminescent detectors (TLD) and film dosimetry, and was compared to the calculated doses of field junctions, target and OARs. TLDs were placed at 24 positions throughout the phantom. The measured TLD doses were compared to the calculated point doses. Planar doses for field junctions were verified with Gafchromic films. Films were analyzed in PTW Verisoft application software using gamma analysis method with the 4 mm distance to agreement (DTA) and 4% dose agreement criteria. Results: TLD readings demonstrated accurate dose delivery, with a median dose difference of -0.3% (range: -8% and 12%) when compared with calculated doses for the areas inside the treatment portal. The maximum dose difference was 12% higher in testicals that are outside the treatment region and 8% lower in lungs where the heterogeinity was higher. All planar dose verifications for field junctions passed the gamma analysis and measured planar dose distributions demonstrated average 97% agreement with calculated doses. Conclusion: The dosimetric data verified with TLD and film dosimetry shows that VMAT-CSI technique provides accurate dose distribution and can be delivered safely.« less

  20. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

Top