Environmental standards for ionizing radiation: theoretical basis for dose-response curves.
Upton, A C
1983-01-01
The types of injury attributable to ionizing radiation are subdivided, for purposes of risk assessment and radiological protection, into two broad categories: stochastic effects and nonstochastic effects. Stochastic effects are viewed as probablistic phenomena, varying in frequency but not severity as a function of the dose, without any threshold; nonstochastic effects are viewed as deterministic phenomena, varying in both frequency and severity as a function of the dose, with clinical thresholds. Included among stochastic effects are heritable effects (mutations and chromosome aberrations) and carcinogenic effects. Both types of effects are envisioned as unicellular phenomena which can result from nonlethal injury of individual cells, without the necessity of damage to other cells. For the induction of mutations and chromosome aberrations in the low-to-intermediate dose range, the dose-response curve with high-linear energy transfer (LET) radiation generally conforms to a linear nonthreshold relationship and varies relatively little with the dose rate. In contrast, the curve with low-LET radiation generally conforms to a linear-quadratic relationship, rising less steeply than the curve with high-LET radiation and increasing in slope with increasing dose and dose rate. The dose-response curve for carcinogenic effects varies widely from one type of neoplasm to another in the intermediate-to-high dose range, in part because of differences in the way large doses of radiation can affect the promotion and progression of different neoplasms. Information about dose-response relations for low-level irradiation is fragmentary but consistent, in general, with the hypothesis that the neoplastic transformation may result from mutation, chromosome aberration or genetic recombination in a single susceptible cell. PMID:6653536
U-SHAPED DOSE-RESPONSE CURVES: THEIR OCCURRENCE AND IMPLICATIONS FOR RISK ASSESSMENT
A class of curvilinear dose-response relationships in toxicological and epidemiological studies may be roughly described by "U-shaped curves. uch curves reflect an apparent reversal or inversion in the effect of an otherwise toxic agent at a low or intermediate region of the dose...
A dose-response curve for biodosimetry from a 6 MV electron linear accelerator
Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A.
2015-01-01
Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. PMID:26445334
Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses
Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas
2012-01-01
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of “the dose makes the poison,” because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health. PMID:22419778
The utility of laboratory animal data in toxicology depends upon the ability to generalize the results quantitatively to humans. To compare the acute behavioral effects of inhaled toluene in humans to those in animals, dose-effect curves were fitted by meta-analysis of published...
The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. Recently, claims have arisen tha...
ABSTRACT BODY: The shape of the dose response curve in the low dose region has been debated since the 1940s, originally focusing on linear no threshold (LNT) versus threshold responses for cancer and noncancer effects. Recently, it has been claimed that endocrine disrupters (EDCs...
Gyssels, Elodie; Bohy, Pascale; Cornil, Arnaud; van Muylem, Alain; Howarth, Nigel; Gevenois, Pierre A; Tack, Denis
2016-01-01
The aim of the study was to compare radiation dose and image quality between the "average" and the "very strong" automatic exposure control (AEC) strength curves. Images reconstructed with filtered back-projection techniques and radiation dose data of unenhanced helical chest computed tomography (CT) examinations obtained at 2 hospitals (hospital A, hospital B) using the same scanner devices and acquisition protocols but different AEC strength curves were evaluated over a 3-month period. The selected AEC strength curve applied to "slim" patients (diameter <32 cm estimated from the attenuation automatically measured on the topogram) was "average" and "very strong" in hospital A and hospital B, respectively. Two radiologists with 13 and 24 years of experience scored the image quality of the lung parenchyma and the mediastinum on a 5-point scale. The patients' effective diameter, the delivered CT dose index volume, and dose-length products were recorded. A total of 410 patients were included. The average body mass index was 24.0 kg/m in hospital A and 24.8 kg/m in hospital B. There was no significant difference between hospitals with respect to age, sex ratio, weight, height, body mass index, effective diameters, and image quality scores for each radiologist (P ranging from 0.050 to 1.000). The mean CT dose index volume for the entire population was 2.0 mGy and was significantly lower in hospital B with the "very strong" AEC curve as compared with hospital A (-11%, P=0.001). The mean dose-length product delivered in this 70 kg-weight population was 68 mGy cm, corresponding to an effective dose of 0.95 mSv. Changing the AEC strength curve from "average" to "very strong" for slim patients maintains image quality and reduces the radiation dose to <1 mSv in routine chest CT examinations reconstructed with filtered back-projection techniques.
NASA Technical Reports Server (NTRS)
Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.
1972-01-01
Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.
Kalita, J M; Chithambo, M L
2018-06-15
We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al 2 O 3 :C,Mg and α-Al 2 O 3 :C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al 2 O 3 :C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al 2 O 3 :C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al 2 O 3 :C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al 2 O 3 :C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al 2 O 3 :C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cheung, D; Bel, E H; Den Hartigh, J; Dijkman, J H; Sterk, P J
1992-06-01
Neuropeptides such as neurokinin A (NKA) have been proposed as important mediators of bronchoconstriction and airway hyperresponsiveness in asthma. Inhaled NKA causes bronchoconstriction in patients with asthma, but not in normal subjects. This is possibly due to the activity of an endogenous neuropeptide-degrading enzyme: neutral endopeptidase (NEP). We investigated whether a NEP-inhibitor, thiorphan, reveals bronchoconstriction to NKA or NKA-induced changes in airway responsiveness to methacholine in normal humans in vivo. Eight normal male subjects participated in a double-blind crossover study, using thiorphan as pretreatment to NKA challenge. Dose-response curves to inhaled NKA (8 to 1,000 micrograms/ml, 0.5 ml/dose) were recorded on 2 randomized days 1 wk apart, and methacholine tests were performed 48 h before and 24 h after the NKA challenge. Ten minutes prior to NKA challenge the subjects inhaled either thiorphan (2.5 mg/ml, 0.5 ml) or placebo. To detect a possible nonspecific effect of thiorphan, we investigated the effect of the same pretreatment with thiorphan or placebo on the dose-response curve to methacholine in a separate set of experiments. The response was measured by the flow from standardized partial expiratory flow-volume curves (V40p), expressed in percent fall from baseline. NKA log dose-response curves were analyzed using the area under the curve (AUC) and the response to the highest dose of 1,000 micrograms/ml (V40p,1000). The methacholine dose-response curves were characterized by their position (PC40V40p) and the maximal-response plateau (MV40p). Baseline V40p was not affected by either pretreatment (p greater than 0.15).(ABSTRACT TRUNCATED AT 250 WORDS)
Biphasic Effects of Alcohol on Delay and Probability Discounting
Bidwell, L. Cinnamon; MacKillop, James; Murphy, James G.; Grenga, Andrea; Swift, Robert M.; McGeary, John E.
2014-01-01
Delay discounting and probability discounting are behavioral economic indices of impulsive and risky decision making that have been associated with addictive behavior, but the acute biphasic effects of alcohol on these decision-making processes are not well understood. This study sought to investigate the biphasic effects of alcohol on delay and probability discounting across the ascending and descending limbs of the breath alcohol concentration (BAC) curve, which are respectively characterized by the stimulant and sedative effects of alcohol. Delay and probability discounting were measured at four time points (Baseline, Ascending, Descending, and Endpoint) across the BAC curve at two target alcohol doses (40 mg/dl and 80 mg/dl) in healthy adults (N = 23 and 27, for both doses, respectively). There was no significant effect of alcohol on delay discounting at either dose. Alcohol significantly affected probability discounting, such that reduced discounting for uncertain rewards was evident during the descending limb of the BAC curve at the lower dose (p<.05) and during both the ascending and descending limb of the BAC curve at the higher dose (p<.05). Thus, alcohol resulted in increased risky decision making, particularly during the descending limb which is primarily characterized by the sedative effects of alcohol. These findings suggest that the biphasic effects of alcohol across the ascending and descending limbs of the BAC have differential effects on behavior related to decision-making for probabilistic, but not delayed, rewards. Parallels to and distinctions from previous findings are discussed. PMID:23750692
Drinking sucrose enhances quinpirole-induced yawning in rats
Baladi, Michelle G; Newman, Amy H; Thomas, Yvonne M; France, Charles P
2011-01-01
Food and drugs can activate brain dopamine systems and sensitivity to the effects of drugs acting on those systems is influenced by amount and content of food consumed. This study examined the effects of drinking sucrose on behavioral effects of the directly-acting dopamine receptor agonist quinpirole. Male Sprague-Dawley rats (n=6/group) had free access to water or 10% sucrose and quinpirole dose-response curves (yawning and hypothermia) were generated weekly for 8 weeks. Subsequently, all rats drank water for 8 weeks with quinpirole dose-response curves determined on weeks 9, 10, and 16. In rats drinking sucrose, the ascending (D3 receptor-mediated), but not descending (D2 receptor-mediated), limb of the yawning dose-response curve shifted leftward. The D3 receptor-selective antagonist PG01037 shifted the ascending limb of the dose-response curve to the right in all rats. When rats that previously drank sucrose drank water, their sensitivity to quinpirole did not return to normal. Quinpirole-induced hypothermia was not different between groups. These data show that drinking sucrose increases sensitivity to a dopamine D3, but not D2, receptor-mediated effect and that this change is long lasting. Dopamine receptors mediate the effects of many drugs and the actions of those drugs are likely impacted by dietary factors. PMID:21979833
Drinking sucrose enhances quinpirole-induced yawning in rats.
Baladi, Michelle G; Newman, Amy H; Thomas, Yvonne M; France, Charles P
2011-12-01
Food and drugs can activate brain dopamine systems and sensitivity to the effects of drugs acting on those systems is influenced by amount and content of food consumed. This study examined the effects of drinking sucrose on behavioral effects of the direct-acting dopamine receptor agonist quinpirole. Male Sprague-Dawley rats (n=6/group) had free access to water or 10% sucrose and quinpirole dose-response curves (yawning and hypothermia) were generated weekly for 8 weeks. Subsequently, all rats drank water for 8 weeks with quinpirole dose-response curves determined on weeks 9, 10, and 16. In rats drinking sucrose, the ascending (D3 receptor-mediated), but not descending (D2 receptor-mediated), limb of the yawning dose-response curve shifted leftward. The D3 receptor-selective antagonist PG01037 shifted the ascending limb of the dose-response curve to the right in all rats. When rats that previously drank sucrose drank water, their sensitivity to quinpirole did not return to normal. Quinpirole-induced hypothermia was not different between groups. These data show that drinking sucrose increases sensitivity to a dopamine D3, but not D2, receptor-mediated effect and that this change is long lasting. Dopamine receptors mediate the effects of many drugs and the actions of those drugs are likely impacted by dietary factors.
Liu, Feng; Walters, Stephen J; Julious, Steven A
2017-10-02
It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA), a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC) trial for a follow-on compound using the lessons learnt from the lead compound. The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid "S" shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM) is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response. It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response follows a placebo like curve, an Emax like curve, or log linear shape curve under fixed dose allocation, no adaptive allocation, half adaptive and adaptive scenarios. The bias though is significantly increased for the Emax model if the true dose response follows a U-shaped curve. In most cases the Bayesian Emax model works effectively and efficiently, with low bias and good probability of success in case of monotonic dose response. However, if there is a belief that the dose response could be non-monotonic then the NDLM is the superior model to assess the dose response.
Dose-Response Calculator for ArcGIS
Hanser, Steven E.; Aldridge, Cameron L.; Leu, Matthias; Nielsen, Scott E.
2011-01-01
The Dose-Response Calculator for ArcGIS is a tool that extends the Environmental Systems Research Institute (ESRI) ArcGIS 10 Desktop application to aid with the visualization of relationships between two raster GIS datasets. A dose-response curve is a line graph commonly used in medical research to examine the effects of different dosage rates of a drug or chemical (for example, carcinogen) on an outcome of interest (for example, cell mutations) (Russell and others, 1982). Dose-response curves have recently been used in ecological studies to examine the influence of an explanatory dose variable (for example, percentage of habitat cover, distance to disturbance) on a predicted response (for example, survival, probability of occurrence, abundance) (Aldridge and others, 2008). These dose curves have been created by calculating the predicted response value from a statistical model at different levels of the explanatory dose variable while holding values of other explanatory variables constant. Curves (plots) developed using the Dose-Response Calculator overcome the need to hold variables constant by using values extracted from the predicted response surface of a spatially explicit statistical model fit in a GIS, which include the variation of all explanatory variables, to visualize the univariate response to the dose variable. Application of the Dose-Response Calculator can be extended beyond the assessment of statistical model predictions and may be used to visualize the relationship between any two raster GIS datasets (see example in tool instructions). This tool generates tabular data for use in further exploration of dose-response relationships and a graph of the dose-response curve.
Shi, J Q; Wang, B; Will, E J; West, R M
2012-11-20
We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.
Dose Response Data for Hormonally Active Chemicals: Estrogens, Antiandrogens and Androgens
The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the defaul...
CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION
Carcinogenic Effects of Low Doses of Ionizing Radiation
R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
The form of the dose-response curve for radiation-induced cancers, particu...
Effect of high-dose irradiation on the optically stimulated luminescence of Al2O3:C
NASA Technical Reports Server (NTRS)
Yukihara, E. G.; Whitley, V. H.; McKeever, S. W. S.; Akselrod, A. E.; Akselrod, M. S.
2004-01-01
This paper examines the effect of high-dose irradiation on the optically stimulated luminescence (OSL) of Al2O3:C, principally on the shape of the OSL decay curve and on the OSL sensitivity. The effect of the degree of deep trap filling on the OSL was also studied by monitoring the sensitivity changes after doses of beta irradiation and after step-annealing of samples previously irradiated with high doses. The OSL response to dose shows a linear-supralinear-saturation behavior, with a decrease in the response for doses higher than those required for saturation. This behavior correlates with the sensitivity changes observed in the samples annealed only to 773 K, which show sensitization for doses up to 20-50 Gy and desensitization for higher doses. Data from the step-annealing study leads to the suggestion that the sensitization is caused by the filling of deep electron traps, which become thermally unstable at 1100-1200 K, whereas the desensitization is caused by the filling of deep hole traps, which become thermally unstable at 800-875 K, along with a concomitant decrease in the concentration of recombination centers (F+ -centers). Changes in the shape of the OSL decay curves are also observed at high doses, the decay becoming faster as the dose increases. These changes in the OSL decay curves are discussed in terms of multiple overlapping components, each characterized by different photoionization cross-sections. However, using numerical solutions of the rate equations for a simple model consisting of a main trap and a recombination center, it is shown that the kinetics of OSL process may also be partially responsible for the changes in the OSL curves at high doses in Al2O3:C. Finally, the implication of these results for the dosimetry of heavy charged particles is discussed. c2004 Elsevier Ltd. All rights reserved.
Dose-response relationships in a microneutralization test for foot-and-mouth disease viruses.
Booth, J. C.; Rweyemamu, M. M.; Pay, T. W.
1978-01-01
Two-dimensional quantal microneutralization tests on foot-and-mouth disease viruses, in which neutralizing antibody activity was titrated against a serial range of virus doses, demonstrated a variety of dose-response curves some of which were rectilinear, others clearly curvilinear. Moreover, in the case of the non-linear responses obtained with some antisera, the shape of the curve was such that antibody titres recorded with doses of virus ranging from 10(3)-10(5) TCD50 were closely similar. Studies were carried out on the effect of varying the conditions of the test on the shape of the dose-response curve: significant differences were obtained after treatment of the antiserum-virus mixtures with anti-species globulin, and when the test was assayed in cells of differing susceptibility to infection. PMID:202650
Biodosimetry of heavy ions by interphase chromosome painting
NASA Astrophysics Data System (ADS)
Durante, M.; Kawata, T.; Nakano, T.; Yamada, S.; Tsujii, H.
1998-11-01
We report measurements of chromosomal aberrations in peripheral blood lymphocytes from cancer patients undergoing radiotherapy treatment. Patients with cervix or esophageal cancer were treated with 10 MV X-rays produced at a LINAC accelerator, or high-energy carbon ions produced at the HIMAC accelerator at the National Institute for Radiological Sciences (NIRS) in Chiba. Blood samples were obtained before, during, and after the radiation treatment. Chromosomes were prematurely condensed by incubation in calyculin A. Aberrations in chromosomes 2 and 4 were scored after fluorescence in situ hybridization with whole-chromosome probes. Pre-treatment samples were exposed in vitro to X-rays, individual dose-response curves for the induction of chromosomal aberrations were determined, and used as calibration curves to calculate the effective whole-body dose absorbed during the treatment. This calculated dose, based on the calibration curve relative to the induction of reciprocal exchanges, has a sharp increase after the first few fractions of the treatment, then saturates at high doses. Although carbon ions are 2-3 times more effective than X-rays in tumor sterilization, the effective dose was similar to that of X-ray treatment. However, the frequency of complex-type chromosomal exchanges was much higher for patients treated with carbon ions than X-ray.
Effect of aerosol fenoterol on the severity of bronchial hyperreactivity in patients with asthma.
Salome, C M; Schoeffel, R E; Yan, K; Woolcock, A J
1983-01-01
Beta adrenergic agents given by aerosol decrease the responsiveness of the airways to histamine and methacholine in subjects with asthma, causing a shift of the dose response curve to the right. To find out whether the shift is related to the dose of beta adrenergic agent given and to determine the duration of the reduced responsiveness, eight subjects with asthma were given histamine inhalation tests after inhaled saline and after increasing doses of inhaled fenoterol on different days. The histamine inhalation tests were repeated at hourly intervals for five hours after a selected dose of fenoterol. Fenoterol caused a dose related shift to the right of the histamine dose response curve in each subject and in some the dose response relationship reached the "non-symptomatic range." The shift in the dose response curve was short lived and had returned towards the control position within three hours in all subjects. There was no change in shape of the curves at the time of maximal shift. The results show that inhaled fenoterol greatly reduces the airway responsiveness to histamine, but up to 400 micrograms of fenoterol every four to five hours may be needed to keep the responsiveness of the airways in the non-symptomatic range. PMID:6648868
Low dose evaluation of the antiandrogen flutamide following a Mode of Action approach.
Sarrabay, A; Hilmi, C; Tinwell, H; Schorsch, F; Pallardy, M; Bars, R; Rouquié, D
2015-12-15
The dose-response characterization of endocrine mediated toxicity is an on-going debate which is controversial when exploring the nature of the dose-response curve and the effect at the low-end of the curve. To contribute to this debate we have assessed the effects of a wide range of dose levels of the antiandrogen flutamide (FLU) on 7-week male Wistar rats. FLU was administered by oral gavage at doses of 0, 0.001, 0.01, 0.1, 1 and 10mg/kg/day for 28 days. To evaluate the reproducibility, the study was performed 3 times. The molecular initiating event (MIE; AR antagonism), the key events (LH increase, Leydig cell proliferation and hyperplasia increases) and associated events involved in the mode of action (MOA) of FLU induced testicular toxicity were characterized to address the dose response concordance. Results showed no effects at low doses (<0.1mg/kg/day) for the different key events studied. The histopathological changes (Leydig cell hyperplasia) observed at 1 and 10mg/kg/day were associated with an increase in steroidogenesis gene expression in the testis from 1mg/kg/day, as well as an increase in testosterone blood level at 10mg/kg/day. Each key event dose-response was in good concordance with the MOA of FLU on the testis. From the available results, only monotonic dose-response curves were observed for the MIE, the key events, associated events and in effects observed in other sex related tissues. All the results, so far, show that the reference endocrine disruptor FLU induces threshold effects in a standard 28-day toxicity study on adult male rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Cheung, D; Timmers, M C; Zwinderman, A H; den Hartigh, J; Dijkman, J H; Sterk, P J
1993-12-01
In a previous study we have shown that inhibition of the endogenous neuropeptide-degrading enzyme, neutral endopeptidase (NEP), potentiates airway narrowing to neurokinin A (NKA) in normal humans in vivo. In the present study, we tested the hypothesis that hyperresponsiveness to NKA in asthma is caused by a reduction in endogenous NEP activity. To that end, we used the NEP inhibitor, thiorphan, or placebo as inhaled pretreatment to NKA challenge in eight atopic asthmatic men, who were controlled by on-demand usage of beta 2-agonists alone. The dose of thiorphan pretreatment was obtained from pilot experiments in which 0.5 ml of a 2.5-mg/ml concentration appeared to be the maximally effective nebulized dose. Dose-response curves to inhaled NKA (1 to 125 micrograms/ml, 0.5 ml/dose) were recorded on 2 randomized days 1 wk apart, in a cross-over study. To detect any effects of thiorphan on bronchoconstriction per se, we also investigated the effect of thiorphan or placebo on the dose-response curve to inhaled methacholine in a separate set of experiments. The response was measured by FEV1 and by partial expiratory flow-volume curves (V40p). The position of the dose-response curves was expressed as the concentration causing a 20% fall in FEV1 (PC20FEV1) or a 40% fall in V40p (PC40V40p). Baseline FEV1 and V40p were not affected by either pretreatment (p > 0.06). PC20FEV1 and PC40V40p to NKA were significantly lower after thiorphan pretreatment as compared with placebo (mean difference +/- SEM: 2.3 +/- 0.6 and 1.6 +/- 0.5 doubling dose, respectively; p < 0.015).(ABSTRACT TRUNCATED AT 250 WORDS)
Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry.
Sohrabpour, M; Hassanzadeh, M; Shahriari, M; Sharifzadeh, M
2002-10-01
The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators.
Radioimmunoassays and 2-site immunoradiometric "sandwich" assays: basic principles.
Rodbard, D
1988-10-01
The "sandwich" or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.
Baladi, Michelle G; France, Charles P
2010-01-01
Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718
Baladi, Michelle G; France, Charles P
2010-10-01
Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, F; Tian, Z; Jia, X
Purpose: In treatment plan optimization for Intensity Modulated Radiation Therapy (IMRT), after a plan is initially developed by a dosimetrist, the attending physician evaluates its quality and often would like to improve it. As opposed to having the dosimetrist implement the improvements, it is desirable to have the physician directly and efficiently modify the plan for a more streamlined and effective workflow. In this project, we developed an interactive optimization system for physicians to conveniently and efficiently fine-tune iso-dose curves. Methods: An interactive interface is developed under C++/Qt. The physician first examines iso-dose lines. S/he then picks an iso-dose curvemore » to be improved and drags it to a more desired configuration using a computer mouse or touchpad. Once the mouse is released, a voxel-based optimization engine is launched. The weighting factors corresponding to voxels between the iso-dose lines before and after the dragging are modified. The underlying algorithm then takes these factors as input to re-optimize the plan in near real-time on a GPU platform, yielding a new plan best matching the physician's desire. The re-optimized DVHs and iso-dose curves are then updated for the next iteration of modifications. This process is repeated until a physician satisfactory plan is achieved. Results: We have tested this system for a series of IMRT plans. Results indicate that our system provides the physicians an intuitive and efficient tool to edit the iso-dose curves according to their preference. The input information is used to guide plan re-optimization, which is achieved in near real-time using our GPU-based optimization engine. Typically, a satisfactory plan can be developed by a physician in a few minutes using this tool. Conclusion: With our system, physicians are able to manipulate iso-dose curves according to their preferences. Preliminary results demonstrate the feasibility and effectiveness of this tool.« less
Radiation damage and sensitization effects on thermoluminescence of LiF:Mg,Ti (TLD-700)
NASA Astrophysics Data System (ADS)
Farag, M. A.; Sadek, A. M.; Shousha, Hany. A.; El-Hagg, A. A.; Atta, M. R.; Kitis, G.
2017-09-01
The radiation damage effects and enhancement the thermoluminescence (TL) efficiency of LiF:Mg,Ti (TLD-700)dosimeters via sensitization method were discussed. Attempts to eliminate the effects of damage and sensitization were made using different types of annealing processes. The results showed that after irradiating the dosimeters with dose > 250 Gy of 60Co gamma source, damage effects were observed. The sensitivity of the total area under the curve was decreased by a factor of ∼0.5 after irradiation at a pre-test dose of 2 kGy. However, the effects of radiation damage on each glow-peak are different. The glow-peak 2 was the only peak that was not affected by the high-dose irradiation. It has been shown that the degree of the radiation damage effect is related to the maximum dose-response function, f(D)max of the glow-peak. In general, significant radiation damage effects were observed for the glow-peaks of high f(D)max . Post-irradiation anneal at 280 °C for 30 min causes dramatic effects on the shape of the glow-curve and as well as on the sensitivity of the dosimeters. An increasing by a factor of ∼35 in the sensitivity of the total area under the curve was observed at a pre-test dose of 2 kGy. Improving the sensitivity of peak 7 by a factor of∼22 was the dominant factor in increasing the sensitivity of the dosimeters. On the other hand, an increasing by factors of ∼2.5 and ∼4 was found for peaks 2 and 5 respectively. On the other hand, a decreasing by a factor ∼0.5 was observed for peaks 3 and 4. At pre-test dose levels >250 Gy, a very strange and high intensity tail was observed in the high-temperature region of the glow-curves. The readout anneal was not enough to remove this tail. While, the furnace anneal could eliminate the sensitization effects but not the radiation damage effects on the sensitivity of the dosimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winbery, S.L.; Barker, L.A.
1986-03-01
The effects of metronidazole and 5-aminosalicylic acid (5-ASA) on histamine receptor-effector systems in the small intestine and right atrium of the guinea pig were studied. In an apparently all-or-none manner, both caused a sinistral shift in dose-response curves for the phasic component of the contractile response to histamine at H1 receptors on the ileum. In the presence of either, the EC50 value for histamine was reduced from 0.07 to about 0.03 microM. Similarly, in an apparently all-or-none fashion, both produced an elevation in the dose-response curve for the actions of dimaprit at H2-receptors in the ileum; the response to allmore » doses was increased about 30% with no significant change in the EC50 value. Metronidazole and 5-ASA did not alter dose-response curves for the tonic contractile response to histamine or curves generated by the cumulative addition of histamine. Also, neither altered the positive chronotropic response on isolated right atria or the phasic contractile response on isolated segments of jejunum and duodenum to histamine or dimaprit. Likewise, neither altered dose-response curves for the direct action of carbamylcholine at muscarinic receptors or for the indirect actions of dimethylphenylpiperazinium on the ileum. The effects of 5-ASA or metronidazole on the response to histamine could be prevented as well as reversed by scopolamine or tetrodotoxin. The results suggest that metronidazole and 5-ASA enhance the actions of histamine and dimaprit on the ileum by an action on myenteric plexus neurons.« less
Preparation-induced errors in EPR dosimetry of enamel: pre- and post-crushing sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskell, E.H.; Hayes, R.B.; Kenner, G.H.
1996-01-01
Errors in dose estimation as a function of grain size for tooth enamel has been previously shown for beta irradiation after crushing. We tested the effect of gamma radiation applied to specimens before and after crushing. We extend the previous work in that we found that post-crushing irradiation altered the slope of the dose-response curve of the hydroxyapatite signal and produced a grain-size dependent offset. No changes in the slope of the dose-response curve were seen in enamel caps irradiated before crushing.
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
Purpose: To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. Materials and methods: A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm2. Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm2 and compared with ion chamber data. Scanditronix/Wellhofer OmniProTM IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Results: Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm2 at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm2 multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. Conclusion: EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established. PMID:21614315
Suriyapee, S; Pitaxtarnin, N; Oonsiri, S; Jumpangern, C; Israngkul Na Ayuthaya, I
2008-01-01
To investigate the optimal sensitometric curves of extended dose range (EDR2) radiographic film in terms of depth, field size, dose range and processing conditions for dynamic intensity modulated radiation therapy (IMRT) dosimetry verification with 6 MV X-ray beams. A Varian Clinac 23 EX linear accelerator with 6 MV X-ray beam was used to study the response of Kodak EDR2 film. Measurements were performed at depths of 5, 10 and 15 cm in MedTec virtual water phantom and with field sizes of 2x2, 3x3, 10x10 and 15x15 cm(2). Doses ranging from 20 to 450 cGy were used. The film was developed with the Kodak RP X-OMAT Model M6B automatic film processor. Film response was measured with the Vidar model VXR-16 scanner. Sensitometric curves were applied to the dose profiles measured with film at 5 cm in the virtual water phantom with field sizes of 2x2 and 10x10 cm(2) and compared with ion chamber data. Scanditronix/Wellhofer OmniPro(TM) IMRT software was used for the evaluation of the IMRT plan calculated by Eclipse treatment planning. Investigation of the reproducibility and accuracy of the film responses, which depend mainly on the film processor, was carried out by irradiating one film nine times with doses of 20 to 450 cGy. A maximum standard deviation of 4.9% was found which decreased to 1.9% for doses between 20 and 200 cGy. The sensitometric curves for various field sizes at fixed depth showed a maximum difference of 4.2% between 2x2 and 15x15 cm(2) at 5 cm depth with a dose of 450 cGy. The shallow depth tended to show a greater effect of field size responses than the deeper depths. The sensitometric curves for various depths at fixed field size showed slightly different film responses; the difference due to depth was within 1.8% for all field sizes studied. Both field size and depth effect were reduced when the doses were lower than 450 cGy. The difference was within 2.5% in the dose range from 20 to 300 cGy for all field sizes and depths studied. Dose profiles measured with EDR2 film were consistent with those measured with an ion chamber. The optimal sensitometric curve was acquired by irradiating film at a depth of 5 cm with doses ranging from 20 to 450 cGy with a 3×3 cm(2) multileaf collimator. The optimal sensitometric curve allowed accurate determination of the absolute dose distribution. In almost 200 cases of dynamic IMRT plan verification with EDR2 film, the difference between measured and calculated dose was generally less than 3% and with 3 mm distance to agreement when using gamma value verification. EDR2 film can be used for accurate verification of composite isodose distributions of dynamic IMRT when the optimal sensitometric curve has been established.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were -32.336 and -33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range.
Gotanda, Tatsuhiro; Katsuda, Toshizo; Gotanda, Rumi; Kuwano, Tadao; Akagawa, Takuya; Tanki, Nobuyoshi; Tabuchi, Akihiko; Shimono, Tetsunori; Kawaji, Yasuyuki
2016-01-01
Radiochromic film dosimeters have a disadvantage in comparison with an ionization chamber in that the dosimetry process is time-consuming for creating a density-absorbed dose calibration curve. The purpose of this study was the development of a simplified method of creating a density-absorbed dose calibration curve from radiochromic film within a short time. This simplified method was performed using Gafchromic EBT3 film with a low energy dependence and step-shaped Al filter. The simplified method was compared with the standard method. The density-absorbed dose calibration curves created using the simplified and standard methods exhibited approximately similar straight lines, and the gradients of the density-absorbed dose calibration curves were −32.336 and −33.746, respectively. The simplified method can obtain calibration curves within a much shorter time compared to the standard method. It is considered that the simplified method for EBT3 film offers a more time-efficient means of determining the density-absorbed dose calibration curve within a low absorbed dose range such as the diagnostic range. PMID:28144120
Gentry, P R; Yager, J W; Clewell, R A; Clewell, H J
2014-10-01
In the recent National Research Council report on conducting a dose-response assessment for inorganic arsenic, the committee remarked that mode of action data should be used, to the extent possible, to extrapolate below the observed range for epidemiological studies to inform the shape of the dose-response curve. Recent in vitro mode of action studies focused on understanding the development of bladder cancer following exposure to inorganic arsenic provide data to inform the dose-response curve. These in vitro data, combined with results of bladder cancer epidemiology studies, inform the dose-response curve in the low-dose region, and include values for both pharmacokinetic and pharmacodynamic variability. Integration of these data provides evidence of a range of concentrations of arsenic for which no effect on the bladder would be expected. Specifically, integration of these results suggest that arsenic exposures in the range of 7-43 ppb in drinking water are exceedingly unlikely to elicit changes leading to key events in the development of cancer or noncancer effects in bladder tissue. These findings are consistent with the lack of evidence for bladder cancer following chronic ingestion of arsenic water concentrations <100 ppb in epidemiological studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
The effect of peptidase inhibitors on bradykinin-induced bronchoconstriction in guinea-pigs in vivo.
Ichinose, M.; Barnes, P. J.
1990-01-01
1. Bradykinin (BK) instilled directly into the airway lumen caused bronchoconstriction in anaesthetized, mechanically ventilated guinea-pigs in the presence of propranolol (1 mg kg-1 i.v.). The geometric mean dose of BK required to produce 100% increase in airway opening pressure (PD100) was 22.9 nmol (95% c.i. 11.7-44.6 nmol). 2. The dose-response curve for the effect of instilled BK was significantly shifted to the left by the angiotensin converting enzyme (ACE) inhibitor, captopril (5 and 50 nmol instillation, PD100 = 3.0, 95% c.i. 0.98-8.9, and 2.0 nmol, 95% c.i. 0.65-6.2 nmol, respectively). 3. The neutral endopeptidase (NEP) inhibitor, phosphoramidon (5 and 50 nmol instillation) also shifted the dose-response curve for the effect of instilled BK; the PD100 values = 2.2 (95% c.i. 0.40-11.7) and 1.8 nmol (95% c.i. 0.87-3.5 nmol), respectively. 4. After pretreatment with captopril (50 nmol) and phosphoramidon (50 nmol) in combination, the dose-response curve for the effect of instilled BK (PD100 = 1.1 nmol, 95% c.i. 0.37-3.2 nmol) was similar to that obtained in the presence of each inhibitor used alone. 5. The kinase I inhibitor, DL-2-mercaptomethyl-3-guanidinoethylthiopropionic acid (50 nmol instillation) failed to alter the dose-response curve to instilled BK (PD100 = 14.6 nmol, 95% c.i. 6.7-32.0 nmol). 6. These data suggest that both ACE and NEP degrade BK in the airway lumen, but that kininase I is not involved. PMID:2282470
EPA’s Nonmonotonic Dose Response Curve Workplan
EPA’s standard guidelines for reproductive and developmental toxicity testing and risk assessment are needed in order to detect and characterize low-dose adverse effects of endocrine disrupting chemicals (EDCs).
Evaluation of small bowel blood flow in healthy subjects receiving low-dose aspirin
Nishida, Urara; Kato, Mototsugu; Nishida, Mutsumi; Kamada, Go; Yoshida, Takeshi; Ono, Shouko; Shimizu, Yuichi; Asaka, Masahiro
2011-01-01
AIM: To investigate the relationship between low-dose aspirin-induced small bowel mucosal damage and blood flow, and the effect of rebamipide. METHODS: Ten healthy volunteers were enrolled in this study. The subjects were divided into two groups: a placebo group given low-dose aspirin plus placebo and a rebamipide group given low-dose aspirin plus rebamipide for a period of 14 d. Capsule endoscopy and contrast-enhanced ultrasonography were performed before and after administration of drugs. Areas under the curves and peak value of time-intensity curve were calculated. RESULTS: Absolute differences in areas under the curves were -1102.5 (95% CI: -1980.3 to -224.7, P = 0.0194) in the placebo group and -152.7 (95% CI: -1604.2 to 641.6, P = 0.8172) in the rebamipide group. Peak values of time intensity curves were -148.0 (95% CI: -269.4 to -26.2, P = 0.0225) in the placebo group and 28.3 (95% CI: -269.0 to 325.6, P = 0.8343) in the rebamipide group. Capsule endoscopy showed mucosal breaks only in the placebo group. CONCLUSION: Short-term administration of low-dose aspirin is associated with small bowel injuries and blood flow. PMID:21245996
Radiation dose-response curves: cell repair mechanisms vs. ion track overlapping
NASA Astrophysics Data System (ADS)
Kowalska, Agata; Czerski, Konrad; Nasonova, Elena; Kutsalo, Polina; Krasavin, Eugen
2017-12-01
Chromosome aberrations in human lymphocytes exposed to different doses of particle radiation: 150 MeV and spread out Bragg peak proton beams, 22 MeV/u boron beam and 199 V/u carbon beam were studied. For comparison, an experiment with 60Co γ-rays was also performed. We investigated distributions of aberration frequency and the shape of dose-response curves for the total aberration yield as well as for exchange and non-exchange aberrations, separately. Applying the linear-quadratic model, we could derive a relation between the fitted parameters and the ion track radius which could explain experimentally observed curvature of the dose-response curves. The results compared with physical expectations clearly show that the biological effects of cell repair are much more important than the ion track overlapping. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Vagne, M; Collinet, M; Cuber, J C; Bernard, C; Chayvialle, J A; McDonald, T J; Mutt, V
1987-01-01
The effect of porcine gastrin releasing peptide (GRP) was compared to those of bombesin (BBS) and pentagastrin (PG) in conscious cats. GRP and BBS augmented acid and pepsin secretions, as well as antral motility with an early effect comparable to that produced by pentagastrin with an elevation of low amplitude contractions and a diminution of high amplitude contractions. BBS and GRP increased plasma gastrin and pancreatic polypeptide (PP) levels and decreased motilin levels measured by a C terminus-directed antiserum. In all cases, BBS and GRP displayed parallel dose-response curves. PG showed slight differences in the slopes of the dose-response curves slopes of the dose-response curves except for acid secretion stimulation where no difference was noted (PG was the most effective) and for pepsin stimulation where the difference was large (PG was much less effective). According to the different targets studied, BBS was 4 to 9 times more potent than GRP, 6 to 200 times more than PG. Gastrin release, elicited by the lowest ED50 of both BBS and GRP, should be considered as their primary effect in the cat.
Nonmonotonic Dose-Response Curves and Endocrine-Disrupting Chemicals: Fact or Falderal?**
Nonmonotonic Dose-Response Curves and Endocrine-Disrupting Chemicals: Fact or Falderal? The shape of the dose response curve in the low dose region has been debated since the 1940s, originally focusing on linear no threshold (LNT) versus threshold responses for cancer and noncanc...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheehan, Daniel M.
2006-01-15
We tested the hypothesis that no threshold exists when estradiol acts through the same mechanism as an active endogenous estrogen. A Michaelis-Menten (MM) equation accounting for response saturation, background effects, and endogenous estrogen level fit a turtle sex-reversal data set with no threshold and estimated the endogenous dose. Additionally, 31 diverse literature dose-response data sets were analyzed by adding a term for nonhormonal background; good fits were obtained but endogenous dose estimations were not significant due to low resolving power. No thresholds were observed. Data sets were plotted using a normalized MM equation; all 178 data points were accommodated onmore » a single graph. Response rates from {approx}1% to >95% were well fit. The findings contradict the threshold assumption and low-dose safety. Calculating risk and assuming additivity of effects from multiple chemicals acting through the same mechanism rather than assuming a safe dose for nonthresholded curves is appropriate.« less
Zhu, X R; Jursinic, P A; Grimm, D F; Lopez, F; Rownd, J J; Gillin, M T
2002-08-01
A new type of radiographic film, Kodak EDR2 film, was evaluated for dose verification of intensity modulated radiation therapy (IMRT) delivered by a static multileaf collimator (SMLC). A sensitometric curve of EDR2 film irradiated by a 6 MV x-ray beam was compared with that of Kodak X-OMAT V (XV) film. The effects of field size, depth and dose rate on the sensitometric curve were also studied. It is found that EDR2 film is much less sensitive than XV film. In high-energy x-ray beams, the double hit process is the dominant mechanism that renders the grains on EDR2 films developable. As a result, in the dose range that is commonly used for film dosimetry for IMRT and conventional external beam therapy, the sensitometric curves of EDR2 films cannot be approximated as a linear function, OD = c * D. Within experimental uncertainty, the film sensitivity does not depend on the dose rate (50 vs 300 MU/min) or dose per pulse (from 1.0 x 10(-4) to 4.21 x 10(-4) Gy/pulse). Field sizes and depths (up to field size of 10 x 10 cm2 and depth = 10 cm) have little effect on the sensitometric curves. Percent depth doses (PDDs) for both 6 and 23 MV x rays were measured with both EDR2 and XV films and compared with ion chamber data. Film data are within 2.5% of the ion chamber results. Dose profiles measured with EDR2 film are consistent with those measured with an ion chamber. Examples of measured IMRT isodose distributions versus calculated isodoses are presented. We have used EDR2 films for verification of all IMRT patients treated by SMLC in our clinic. In most cases, with EDR2 film, actual clinical daily fraction doses can be used for verification of composite isodose distributions of SMLC-based IMRT.
Cocaine self-administration under variable-dose schedules in squirrel monkeys.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2006-06-01
Squirrel monkeys self-administered cocaine under a variable-dose schedule, with the dose varied from injection to injection. As in earlier studies with rats, post-injection pauses varied as a monotonic function of dose, allowing a cocaine dose-effect curve to be obtained during each session. These curves were shifted by pretreatment with dopamine antagonists, demonstrating that this procedure may provide an efficient means of evaluating treatments that affect drug self-administration. However, drug intake eventually became "dysregulated" after extensive training (100-300 sessions), with relatively short pauses following all doses. Dose-sensitivity was restored by adding a 60-s timeout period after each injection, suggesting that dysregulation occurred because the monkeys developed a tendency to self-administer another injection before the previous injection had been adequately distributed. Finally, when the response requirement under the variable-dose schedule was increased from 1 to 10, both the post-injection pause and the rate of responding following the pause ("run rates") were found to vary with dose. The dose-dependency of run rates suggests that post-injection pauses reflect not only motivational factors, such as satiety, but also the direct effects of cocaine on leverpressing.
NASA Astrophysics Data System (ADS)
Kim, In-Sup; Park, Duck-Gun; Byun, Thak-Sang; Hong, Jun-Hwa
1999-12-01
Effects of neutron dose on the mechanical and magnetic properties of a SA508-3 nuclear pressure vessel steel were investigated by using ball indentation test technique and magnetic Barkhausen noise (BN) measurements. The samples were irradiated in a research reactor up to 1018n/cm2 (E>1 MeV) at 70 °C. The yield strength and flow curve were evaluated from the indentation load-depth curves. The change of mechanical properties showed characteristic trend with respect to neutron dose, namely near plateau, rapid increase and slow increase. On the other hand, the BN varied in a reverse manner, a slow decrease up to a neutron dose of 1016n/cm2, followed by a rapid decrease up to a dose of 1018n/cm2.
Height reduction among prenatally exposed atomic-bomb survivors: A longitudinal study of growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakashima, Eiji; Funamoto, Sachiyo; Carter, R.L.
Using a random coefficient regression model, sex-specific longitudinal analyses of height were made on 801 (392 male and 409 female) atomic-bomb survivors exposed in utero to detect dose effects on standing height. The data set resulted from repeated measurements of standing height of adolescents (age 10-18 y). The dose effect, if any, was assumed to be linear. Gestational ages at the time of radiation exposure were divided into trimesters. Since an earlier longitudinal data analysis has demonstrated radiation effects on height, the emphasis in this paper is on the interaction between dose and gestational age at exposure and radiation effectsmore » on the age of occurrence of the adolescent growth spurt. For males, a cubic polynomial growth-curve model applied to the data was affected significantly by radiation. The dose by trimester interaction effect was not significant. The onset of adolescent growth spurt was estimated at about 13 y at 0 Gy. There was no effect of radiation on the adolescent growth spurt For females, a quadratic polynomial growth-curve model was fitted to the data. The dose effect was significant, while the dose by trimester interaction was again not significant. 27 refs., 3 figs., 4 tabs.« less
Nonmonotonic dose response curves (NMDRCs) are common after Estrogen or Androgen signaling pathway disruption. Fact or Falderal? Leon Earl Gray Jr, USEPA, ORD, NHEERL, TAD, RTB. RTP, NC, USA The shape of the dose response curve in the low dose region has been debated since th...
Shuryak, Igor; Brenner, David J.; Ullrich, Robert L.
2011-01-01
Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis. PMID:22194850
Regulation of operant oral ethanol self-administration: a dose-response curve study in rats.
Carnicella, Sebastien; Yowell, Quinn V; Ron, Dorit
2011-01-01
Oral ethanol self-administration procedures in rats are useful preclinical tools for the evaluation of potential new pharmacotherapies as well as for the investigation into the etiology of alcohol abuse disorders and addiction. Determination of the effects of a potential treatment on a full ethanol dose-response curve should be essential to predict its clinical efficacy. Unfortunately, this approach has not been fully explored because of the aversive taste reaction to moderate to high doses of ethanol, which may interfere with consumption. In this study, we set out to determine whether a meaningful dose-response curve for oral ethanol self-administration can be obtained in rats. Long-Evans rats were trained to self-administer a 20% ethanol solution in an operant procedure following a history of excessive voluntary ethanol intake. After stabilization of ethanol self-administration, the concentration of the solution was varied from 2.5 to 60% (v/v), and operant and drinking behaviors, as well as blood ethanol concentration (BEC), were evaluated following the self-administration of a 20, 40, and 60% ethanol solution. Varying the concentration of ethanol from 2.5 to 60% after the development of excessive ethanol consumption led to a typical inverted U-shaped dose-response curve. Importantly, rats adapted their level and pattern of responding to changes in ethanol concentration to obtain a constant level of intake and BEC, suggesting that their operant behavior is mainly driven by the motivation to obtain a specific pharmacological effect of ethanol. This procedure can be a useful and straightforward tool for the evaluation of the effects of new potential pharmacotherapies for the treatment of alcohol abuse disorders. Copyright © 2010 by the Research Society on Alcoholism.
Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.
Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika
2017-08-01
It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Study of thermoluminescence response of purple to violet amethyst quartz from Balikesir, Turkey
NASA Astrophysics Data System (ADS)
Nur, N.; Yeğingil, Z.; Topaksu, M.; Kurt, K.; Doğan, T.; Sarıgül, N.; Yüksel, M.; Altunal, V.; Özdemir, A.; Güçkan, V.; Günay, I.
2015-09-01
In thermoluminescence (TL) dosimetry, the phosphor amethyst quartz as a thermoluminescent, appears to be one of the materials arousing the highest interest. In this study the dosimetric characteristics of natural amethyst quartz crystals collected from Balikesir-Dursunbey (Turkey) were investigated for the purpose of determination of the general properties that phosphors should have in order to be useful for thermoluminescence dosimetry. The natural thermoluminescence was drained by annealing the powder samples at 450 °C for 1.5 h. The effects of high temperature annealing, dose response curves, glow curves after a postirradiation annealing, reusability of the samples and storage of trapped electrons in dark at room temperature were clarified through irradiating the samples with the desired exposures by 90Sr/90Y beta particles. Isothermal annealing before and after irradiation was found to have a definite effect upon the TL glow curve of amethyst crystal powder. The same sample varied in sensitivity depending upon its previous thermal and radiation history. The peak heights of the glow peaks were examined with respect to dose response at dose levels between 1 Gy and 5 kGy. The intermediate temperature (IT) and high temperature (HT) peaks of 230 °C and 300 °C, respectively, exhibit dose-response curves as superlinear when dose is on the logarithmic scale except the dose response of 300 °C peak for the dose values of 1 < D < 20 Gy in which linear dose response was acquired. At the end of the storage time between exposure and readout which was about one month at room temperature, the emitted light reduction was 14% comparing to the initial state. Repeating the measurements of the same sample, exposed with 0.1, 0.5, 0.8 and 1 kGy beta exposures, resulted in between 4% and 11% increase in the TL sensitivity of the material.
ESTIMATING SYSTEMIC EXPOSURE TO ETHINYL ESTRADIOL FROM AN ORAL CONTRACEPTIVE
WESTHOFF, Carolyn L.; PIKE, Malcolm C.; TANG, Rosalind; DINAPOLI, Marianne N.; SULL, Monica; CREMERS, Serge
2015-01-01
Objectives This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive to steady-state values, and to assess whether any simpler measures could provide an adequate proxy of the ‘gold standard’ 24-hour steady-state area-under-the-curve. Identifying a simple, less expensive, measure of systemic ethinyl estradiol exposure would be useful for larger studies designed to assess the relationship between an individual’s ethinyl estradiol exposure and her side effects. Study Design We conducted a 13 samples over 24 hours pharmacokinetic analysis on day 1 and day 21 of the first cycle of a monophasic oral contraceptive containing 30 mcg ethinyl estradiol and 150 mcg levonorgestrel in 17 non-obese healthy white women. We also conducted an abbreviated single dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of full 13-sample steady-state pharmacokinetic analysis with results calculated using fewer samples (9 or 5) and following the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. Results The area-under-the-curve, maximum (Cmax), and 24-hour (C24) values were similar following the two single oral contraceptive doses (area-under-the-curve, r = 0.92). The steady-state 13-sample 24-hour area-under-the-curve was highly correlated with the average 9-sample area-under-the-curve after the two single doses (r = 0.81, p = 0.0002). This correlation remained the same if the number of samples was reduced to 4, taken at time 1, 2.5, 4 and 24 hours. The C24 at steady-state was highly correlated with the 24-hour steady-state area-under-the-curve (r = 0.92, p < 0.0001). The average of the C24 values following the two single doses was also quite highly correlated with the steady-state area-under-the-curve (r = 0.72, p = 0.0026). Conclusions Limited blood sampling, including results from two single doses, gave highly correlated estimates of an oral contraceptive user’s steady-state ethinyl estradiol exposure. PMID:25511238
Influence of Media on Seasonal Influenza Epidemic Curves.
Saito, Satoshi; Saito, Norihiro; Itoga, Masamichi; Ozaki, Hiromi; Kimura, Toshiyuki; Okamura, Yuji; Murakami, Hiroshi; Kayaba, Hiroyuki
2016-09-01
Theoretical investigations predicting the epidemic curves of seasonal influenza have been demonstrated so far; however, there is little empirical research using ever accumulated epidemic curves. The effects of vaccine coverage and information distribution on influenza epidemics were evaluated. Four indices for epidemics (i.e., onset-peak duration, onset-end duration, ratio of the onset-peak duration to onset-end duration and steepness of epidemic curves) were defined, and the correlations between these indices and anti-flu drug prescription dose, vaccine coverage, the volume of media and search trend on influenza through internet were analyzed. Epidemiological data on seasonal influenza epidemics from 2002/2003 to 2013/2014 excluding 2009/2010 season were collected from National Institute of Infectious Diseases of Japan. The onset-peak duration and its ratio to onset-end duration correlated inversely with the volume of anti-flu drug prescription. Onset-peak duration correlated positively with media information volume on influenza. The steepness of the epidemic curve, and anti-flu drug prescription dose inversely correlated with the volume of media information. Pre-epidemic search trend and media volume on influenza correlated with the vaccine coverage in the season. Vaccine coverage had no strong effect on epidemic curve. Education through media has an effect on the epidemic curve of seasonal influenza. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Wu, Benjamin M; Sabarinath, Sreedharan N; Rand, Kenneth; Johnson, Judith; Derendorf, Hartmut
2011-06-01
Current dosing approaches for treating microbial infections ignore resistant subpopulations. A clinical isolate of Pseudomonas aeruginosa was cultured in a dynamic in vitro kill curve system designed to simulate the half-lives of drugs in order to evaluate the drug-microbial response relationship. The first dose of ciprofloxacin (CIP) uses a concentration equivalent to the unbound fraction of a 200mg clinical dose. A second dose of 200mg or 600 mg CIP, or ceftriaxone (CFX) or gentamicin (GEN) was administered at 12h. Dynamics of the minimum inhibitory concentration (MIC) were assessed using Etest strips before and throughout the CIP treatment period. In addition, the microbroth dilution method was used to evaluate drug susceptibility across a wide range of antibiotics using samples from before and after CIP exposure. A significant loss of CIP effects was observed at the second dose. Cross-resistance to many antibiotics (cefoxitin, cefuroxime, cefotetan, ampicillin and ertapenem) was observed. GEN, but not CFX or high-dose CIP, was sufficient to suppress the developed resistant subpopulation following the initial CIP exposure. The CIP MIC increased substantially from 0.13 μg/mL pre dose to 4 μg/mL at 12h after a CIP dose. In addition, aztreonam induced a similar resistance pattern as CIP, indicating that induction of resistance was not limited to fluoroquinolones. In conclusion, the in vitro dynamic kill curve system revealed that aminoglycosides, more than other classes of antibiotics, were effective against the CIP-induced resistant subpopulations. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeenk, Robert Jan, E-mail: r.smeenk@rther.umcn.nl; Hoffmann, Aswin L.; Hopman, Wim P.M.
2012-06-01
Purpose: To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). Methods and Materials: In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed.more » Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. Results: The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: {<=}30 Gy to the IAS; {<=}10 Gy to the EAS; {<=}50 Gy to the PRM; and {<=}40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Conclusions: Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are excluded.« less
Smeenk, Robert Jan; Hoffmann, Aswin L; Hopman, Wim P M; van Lin, Emile N J Th; Kaanders, Johannes H A M
2012-06-01
To delineate the individual pelvic floor muscles considered to be involved in anorectal toxicity and to investigate dose-effect relationships for fecal incontinence-related complaints after prostate radiotherapy (RT). In 48 patients treated for localized prostate cancer, the internal anal sphincter (IAS) muscle, the external anal sphincter (EAS) muscle, the puborectalis muscle (PRM), and the levator ani muscles (LAM) in addition to the anal wall (Awall) and rectal wall (Rwall) were retrospectively delineated on planning computed tomography scans. Dose parameters were obtained and compared between patients with and without fecal urgency, incontinence, and frequency. Dose-effect curves were constructed. Finally, the effect of an endorectal balloon, which was applied in 28 patients, was investigated. The total volume of the pelvic floor muscles together was about three times that of the Awall. The PRM was exposed to the highest RT dose, whereas the EAS received the lowest dose. Several anal and rectal dose parameters, as well as doses to all separate pelvic floor muscles, were associated with urgency, while incontinence was associated mainly with doses to the EAS and PRM. Based on the dose-effect curves, the following constraints regarding mean doses could be deduced to reduce the risk of urgency: ≤ 30 Gy to the IAS; ≤ 10 Gy to the EAS; ≤ 50 Gy to the PRM; and ≤ 40 Gy to the LAM. No dose-effect relationships for frequency were observed. Patients treated with an endorectal balloon reported significantly less urgency and incontinence, while their treatment plans showed significantly lower doses to the Awall, Rwall, and all pelvic floor muscles. Incontinence-related complaints show specific dose-effect relationships to individual pelvic floor muscles. Dose constraints for each muscle can be identified for RT planning. When only the Awall is delineated, substantial components of the continence apparatus are excluded. Copyright © 2012 Elsevier Inc. All rights reserved.
Morphine tolerance as a function of ratio schedule: response requirement or unit price?
Hughes, Christine E; Sigmon, Stacey C; Pitts, Raymond C; Dykstra, Linda A
2005-05-01
Key pecking by 3 pigeons was maintained by a multiple fixed-ratio 10, fixed-ratio 30, fixed-ratio 90 schedule of food presentation. Components differed with respect to amount of reinforcement, such that the unit price was 10 responses per 1-s access to food. Acute administration of morphine, l-methadone, and cocaine dose-dependently decreased overall response rates in each of the components. When a rate decreasing dose of morphine was administered daily, tolerance, as measured by an increase in the dose that reduced response rates to 50% of control (i.e., the ED50 value), developed in each of the components; however, the degree of tolerance was smallest in the fixed-ratio 90 component (i.e., the ED50 value increased the least). When the l-methadone dose-effect curve was redetermined during the chronic morphine phase, the degree of cross-tolerance conferred to l-methadone was similar across components, suggesting that behavioral variables may not influence the degree of cross-tolerance between opioids. During the chronic phase, the cocaine dose-effect curve shifted to the right for 2 pigeons and to the left for 1 pigeon, which is consistent with predictions based on the lack of pharmacological similarity between morphine and cocaine. When the morphine, l-methadone, and cocaine dose-effect curves were redetermined after chronic morphine administration ended, the morphine and l-methadone ED50s replicated those obtained prior to chronic morphine administration. The morphine data suggest that the fixed-ratio value (i.e., the absolute output) determines the degree of tolerance and not the unit price.
Probabilistic assessment method of the non-monotonic dose-responses-Part I: Methodological approach.
Chevillotte, Grégoire; Bernard, Audrey; Varret, Clémence; Ballet, Pascal; Bodin, Laurent; Roudot, Alain-Claude
2017-08-01
More and more studies aim to characterize non-monotonic dose response curves (NMDRCs). The greatest difficulty is to assess the statistical plausibility of NMDRCs from previously conducted dose response studies. This difficulty is linked to the fact that these studies present (i) few doses tested, (ii) a low sample size per dose, and (iii) the absence of any raw data. In this study, we propose a new methodological approach to probabilistically characterize NMDRCs. The methodology is composed of three main steps: (i) sampling from summary data to cover all the possibilities that may be presented by the responses measured by dose and to obtain a new raw database, (ii) statistical analysis of each sampled dose-response curve to characterize the slopes and their signs, and (iii) characterization of these dose-response curves according to the variation of the sign in the slope. This method allows characterizing all types of dose-response curves and can be applied both to continuous data and to discrete data. The aim of this study is to present the general principle of this probabilistic method which allows to assess the non-monotonic dose responses curves, and to present some results. Copyright © 2017 Elsevier Ltd. All rights reserved.
USE OF MECHANISTIC DATA TO HELP DEFINE DOSE-RESPONSE CURVES
Use of Mechanistic Data to Help Define Dose-Response Curves
The cancer risk assessment process described by the U.S. EPA necessitates a description of the dose-response curve for tumors in humans at low (environmental) exposures. This description can either be a default l...
[Pharmacokinetics and the clinical effect of bemitil after a single administration].
Boĭko, S S; Bobkov, Iu G; Neznamov, G G; Serebriakova, T V
1986-01-01
It was found on studying a novel psychotropic drug bemitil that after its single administration kinetic curves significantly differed depending on a clinical effect of the test dose in patients with asthenic states. At predomination of the psychoactivating component of action one could note a larger area under the concentration-time relationship curve and a shorter period of half-excretion than in patients with the tranquilizing action. The obtained data on the difference in the drug test dose effect depending on the drug pharmacokinetics should be taken into consideration at determination of bemitil course therapy duration in patients with neuroses and neurosis-like states with predominance of asthenic disturbances in the clinical picture.
Gaylor, David W; Lutz, Werner K; Conolly, Rory B
2004-01-01
Statistical analyses of nonmonotonic dose-response curves are proposed, experimental designs to detect low-dose effects of J-shaped curves are suggested, and sample sizes are provided. For quantal data such as cancer incidence rates, much larger numbers of animals are required than for continuous data such as biomarker measurements. For example, 155 animals per dose group are required to have at least an 80% chance of detecting a decrease from a 20% incidence in controls to an incidence of 10% at a low dose. For a continuous measurement, only 14 animals per group are required to have at least an 80% chance of detecting a change of the mean by one standard deviation of the control group. Experimental designs based on three dose groups plus controls are discussed to detect nonmonotonicity or to estimate the zero equivalent dose (ZED), i.e., the dose that produces a response equal to the average response in the controls. Cell proliferation data in the nasal respiratory epithelium of rats exposed to formaldehyde by inhalation are used to illustrate the statistical procedures. Statistically significant departures from a monotonic dose response were obtained for time-weighted average labeling indices with an estimated ZED at a formaldehyde dose of 5.4 ppm, with a lower 95% confidence limit of 2.7 ppm. It is concluded that demonstration of a statistically significant bi-phasic dose-response curve, together with estimation of the resulting ZED, could serve as a point-of departure in establishing a reference dose for low-dose risk assessment.
NASA Technical Reports Server (NTRS)
Brucker, G. J.; Stassinopoulos, E. G.
1991-01-01
An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental sigma-versus-LET curves are available.
NASA Technical Reports Server (NTRS)
Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.
2002-01-01
The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.
Romm, H; Ainsbury, E; Bajinskis, A; Barnard, S; Barquinero, J F; Barrios, L; Beinke, C; Puig-Casanovas, R; Deperas-Kaminska, M; Gregoire, E; Oestreicher, U; Lindholm, C; Moquet, J; Rothkamm, K; Sommer, S; Thierens, H; Vral, A; Vandersickel, V; Wojcik, A
2014-05-01
In the case of a large scale radiation accident high throughput methods of biological dosimetry for population triage are needed to identify individuals requiring clinical treatment. The dicentric assay performed in web-based scoring mode may be a very suitable technique. Within the MULTIBIODOSE EU FP7 project a network is being established of 8 laboratories with expertise in dose estimations based on the dicentric assay. Here, the manual dicentric assay was tested in a web-based scoring mode. More than 23,000 high resolution images of metaphase spreads (only first mitosis) were captured by four laboratories and established as image galleries on the internet (cloud). The galleries included images of a complete dose effect curve (0-5.0 Gy) and three types of irradiation scenarios simulating acute whole body, partial body and protracted exposure. The blood samples had been irradiated in vitro with gamma rays at the University of Ghent, Belgium. Two laboratories provided image galleries from Fluorescence plus Giemsa stained slides (3 h colcemid) and the image galleries from the other two laboratories contained images from Giemsa stained preparations (24 h colcemid). Each of the 8 participating laboratories analysed 3 dose points of the dose effect curve (scoring 100 cells for each point) and 3 unknown dose points (50 cells) for each of the 3 simulated irradiation scenarios. At first all analyses were performed in a QuickScan Mode without scoring individual chromosomes, followed by conventional scoring (only complete cells, 46 centromeres). The calibration curves obtained using these two scoring methods were very similar, with no significant difference in the linear-quadratic curve coefficients. Analysis of variance showed a significant effect of dose on the yield of dicentrics, but no significant effect of the laboratories, different methods of slide preparation or different incubation times used for colcemid. The results obtained to date within the MULTIBIODOSE project by a network of 8 collaborating laboratories throughout Europe are very promising. The dicentric assay in the web based scoring mode as a high throughput scoring strategy is a useful application for biodosimetry in the case of a large scale radiation accident.
Pajic, J; Rakic, B; Jovicic, D; Milovanovic, A
2014-10-01
Biological dosimetry using chromosome damage biomarkers is a valuable dose assessment method in cases of radiation overexposure with or without physical dosimetry data. In order to estimate dose by biodosimetry, any biological dosimetry service have to have its own dose response calibration curve. This paper reveals the results obtained after irradiation of blood samples from fourteen healthy male and female volunteers in order to establish biodosimetry in Serbia and produce dose response calibration curves for dicentrics and micronuclei. Taking into account pooled data from all the donors, the resultant fitted curve for dicentrics is: Ydic=0.0009 (±0.0003)+0.0421 (±0.0042)×D+0.0602 (±0.0022)×D(2); and for micronuclei: Ymn=0.0104 (±0.0015)+0.0824 (±0.0050)×D+0.0189 (±0.0017)×D(2). Following establishment of the dose response curve, a validation experiment was carried out with four blood samples. Applied and estimated doses were in good agreement. On this basis, the results reported here give us confidence to apply both calibration curves for future biological dosimetry requirements in Serbia. Copyright © 2014 Elsevier B.V. All rights reserved.
Low dose evaluation of the antiandrogen flutamide following a Mode of Action approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrabay, A.; UniverSud, INSERM, UMR-996 “Inflammation, Chemokines and Immunopathology”, Châtenay-Malabry; Bayer SAS, 16, rue Jean Marie Leclair, 69009 Lyon
ABSTRACT: The dose–response characterization of endocrine mediated toxicity is an on-going debate which is controversial when exploring the nature of the dose–response curve and the effect at the low-end of the curve. To contribute to this debate we have assessed the effects of a wide range of dose levels of the antiandrogen flutamide (FLU) on 7-week male Wistar rats. FLU was administered by oral gavage at doses of 0, 0.001, 0.01, 0.1, 1 and 10 mg/kg/day for 28 days. To evaluate the reproducibility, the study was performed 3 times. The molecular initiating event (MIE; AR antagonism), the key events (LHmore » increase, Leydig cell proliferation and hyperplasia increases) and associated events involved in the mode of action (MOA) of FLU induced testicular toxicity were characterized to address the dose response concordance. Results showed no effects at low doses (< 0.1 mg/kg/day) for the different key events studied. The histopathological changes (Leydig cell hyperplasia) observed at 1 and 10 mg/kg/day were associated with an increase in steroidogenesis gene expression in the testis from 1 mg/kg/day, as well as an increase in testosterone blood level at 10 mg/kg/day. Each key event dose–response was in good concordance with the MOA of FLU on the testis. From the available results, only monotonic dose–response curves were observed for the MIE, the key events, associated events and in effects observed in other sex related tissues. All the results, so far, show that the reference endocrine disruptor FLU induces threshold effects in a standard 28-day toxicity study on adult male rats. - Highlights: • Dose–response characterization of endocrine mediated toxicity is an on-going debate. • A wide range of dose levels of flutamide was evaluated on young adult male rats. • Flutamide induces threshold effects using on standard and molecular tools.« less
Paciorek, P. M.; Pierce, V.; Shepperson, N. B.; Waterfall, J. F.
1984-01-01
The potencies and selectivities of a novel series of benzoquinolizines for the alpha 2-adrenoceptor have been investigated in the rat in comparison with yohimbine and indoramin. Peripheral postjunctional alpha 2- and alpha 1-adrenoceptor blockade was measured as the reversal of B-HT 933 and methoxamine-induced pressor responses, respectively, in the pithed rat. Peripheral prejunctional alpha 2-adrenoceptor blockade was measured as the reversal of B-HT 933-induced inhibition of an electrically evoked tachycardia in the pithed rat. Central alpha 2-adrenoceptor blockade was measured as a reversal of the hypotension induced in anaesthetized rats by central (i.c.v.) administration of clonidine. Wy 25309, Wy 26392, Wy 26703 and yohimbine (0.3-3 mg kg-1 i.v.) evoked dose-dependent shifts to the right of the dose-response curves to B-HT 933 whilst having minimal effects on the methoxamine dose-response curve. The selectivity for alpha 2-adrenoceptors increased with the dose of antagonist administered. In general, the order of selectivity was Wy 25309 greater than Wy 26392 greater than Wy 26703 greater than yohimbine. Indoramin (1 mg kg-1 i.v.) shifted the methoxamine pressor dose-response curve to the right without affecting the B-HT 933 dose-response curves, confirming its selective alpha 1-antagonist activity. Peripheral administration of all three benzoquinolizines (1-100 micrograms kg-1 i.v.) led to a dose-dependent reversal of the hypotension evoked by central administration of clonidine (500 ng i.c.v.). The reversal was incomplete, higher doses causing a further decrease in blood pressure. (ABSTRACT TRUNCATED AT 250 WORDS) PMID:6329385
Proton irradiation of stem cells: Radiation damage and chemical radioprotection
NASA Technical Reports Server (NTRS)
Riley, R. C.; Montour, J. L.; Gurney, C. W.
1972-01-01
Effects of high energy protons on erythropoietic stem cells and radioprotection by chemicals were investigated in NASA Space Radiation Effects Laboratory. The effects of a parallel beam of 600 MeV protons. The fluence, when converted to dose, were referenced to the synchrocyclotron beam monitors which were then used to administer radiation exposures. Mice were given graded doses to 300 rads to determine dose-response curve. Other mice received saline, AET, or 5-hydroxytryptamine 10 to 15 minutes before exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, M; Bronk, L; Guan, F
Purpose: To investigate the biologic effects of scanned protons by evenly sampling dose-averaged LET (LETd) values. Methods: Our previous high-throughput clonogenic study demonstrated a distinct relationship between RBE and LETd. However, our initial experimental design resulted in over-sampling the low LETd values in the plateau region of the Bragg curve while under-sampling in the region proximal to the Bragg peak as well as the high LETd values in the distal edge of the Bragg curve. To further examine the relationship between RBE and LETd, we refined the experimental design to more evenly sample proton LETd values from 1 to 20more » keV/µm by optimizing the thicknesses of the irradiation jig steps. We used the clonogenic survival as the biological endpoint for the H460 lung cancer cell line cultured in 96-well plates (12 columns by 8 rows). In the irradiation, the 8 wells in each column received a uniform dose-LETd pair. The dose-LETd pairs of the 12 different columns were sampled along the Bragg curve of 81.4 MeV scanned protons. Five peak dose levels from 1.5 Gy to 7.5 Gy were delivered with an increment of 1.5 Gy in the preliminary test. Two 96-well plates were irradiated simultaneously to decrease the statistical uncertainties. Results: In the proximal region, for LETd = 5 keV/µm and 8 keV/µm, we did not observe any distinct differential biologic effects between the survival curves. At the Bragg peak (LETd = 9.5 keV/µm) and in the distal edge, irradiation with increasing LET values resulted in decreasing cell survival. Conclusion: The survival curves from the new experimental design support our previous findings that below 10 keV/µm, the LET effect in cell kill is obscured, but above 10 keV/µm, the biologic effects increase with LETd. Funding Support: U19 CA021239-35 and R21 CA187484-01.« less
NASA Astrophysics Data System (ADS)
Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia
2016-09-01
In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining PCC of lymphocytes and CHO cells with FISH using PNA probes after 10 h and 24 h after irradiation, and, finally, calibration data of excess PCC fragments (Giemsa) to be used if human blood is available immediately after irradiation or within 24 h.
Poveda, Raquel; Fernández-Dueñas, Víctor; Fernández, Alejandro; Sánchez, Sílvia; Puig, Margarita M; Planas, Eulàlia
2006-07-10
Here we report a synergistic interaction between fentanyl and the histamine H(3) receptor agonist R-(alpha)-methylhistamine on the inhibition of nociception and plasma extravasation in mice. Chronic inflammation was induced by subplantar injection of Complete Freund's Adjuvant into the right hind paw, and the effect of the drugs was evaluated 7 days later. Nociception and plasma extravasation were assessed by hot-plate and Evans blue tests respectively. Subcutaneous administration of fentanyl (0.01-0.1 mg/kg) induced dose-related anti-nociceptive and anti-extravasation effects (E(max)=100% and 62%, respectively). R-(alpha)-methylhistamine administration (0.3-3 mg/kg) showed a dose-related inhibitory effect on extravasation (E(max)=65%) but not on nociception. To analyze possible interaction between these two drugs, a dose-response curve to fentanyl plus a fixed dose of R-(alpha)-methylhistamine (0.5 mg/kg) was obtained. The dose-response curve for the combined treatment showed a shift to the left compared with that for fentanyl alone. Our results confirm that fentanyl and R-(alpha)-methylhistamine interact in a synergic way, inhibiting nociception and plasma extravasation.
Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko
2012-03-08
When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.
NASA Astrophysics Data System (ADS)
Oh, Moonseong
Most brachytherapy planning systems are based on a dose calculation algorithm that assumes an infinite scatter environment surrounding the target volume and applicator. In intra-operative high dose rate brachytherapy (IOHDR) where treatment catheters are typically laid either directly on a tumor bed or within applicators that may have little or no scatter material above them, the lack of scatter from one side of the applicator can result in serious underdosage during treatment. Therefore, full analyses of the physical processes such as the photoelectric effect, Rayleigh, and Compton scattering that contribute to dosimetric errors have to be investigated and documented to result in more accurate treatment delivery to patients undergoing IOHDR procedures. Monte Carlo simulation results showed the Compton scattering effect is about 40 times more probable than photoelectric effect for the treated areas of single source, 4 x 4, and 2 x 4 cm2. Also, the dose variations with and without photoelectric effect were 0.3 ˜ 0.7%, which are within the uncertainty in Monte Carlo simulations. Also, Monte Carlo simulation studies were done to verify the following experimental results for quantification of dosimetric errors in clinical IOHDR brachytherapy. The first experimental study was performed to quantify the inaccuracy in clinical dose delivery due to the incomplete scatter conditions inherent in IOHDR brachytherapy. Treatment plans were developed for 3 different treatment surface areas (4 x 4, 7 x 7, 12 x 12 cm2), each with prescription points located at 3 distances (0.5 cm, 1.0 cm, and 1.5 cm) from the source dwell positions. Measurements showed that the magnitude of the underdosage varies from about 8% to 13% of the prescription dose as the prescription depth is increased from 0.5 cm to 1.5 cm. This treatment error was found to be independent of the irradiated area and strongly dependent on the prescription distance. The study was extended to confirm the underdosage for various shape of treated area (especially, irregular shape), which can be applied in clinical cases. Treatment plans of 10 patients previously treated at Roswell Park Cancer Institute in Buffalo, which had irregular shapes of treated areas, were used. In IOHDR brachytherapy, a 2-dimensional (2-D) planar geometry is typically used without considering the curved shape of target surfaces. In clinical cases, this assumption of the planar geometry may cause the serious dose delivery errors to target volumes. The second study was performed to investigate the dose errors to curved surfaces. Seven rectangular shaped plans (five for 1.0 cm and two for 0.5 cm prescription depth) and archived irregular shaped plans of 2 patients were analyzed. Cylindrical phantoms with six radii (ranged 1.35 to 12.5 cm) were used to simulate the treatment planning geometries, which were calculated in 2-D plans. Actual doses delivered to prescription points were over-estimated up to 15% on the concave side of curved applicators for all cylindrical phantoms with 1.0 cm prescription depth. Also, delivered doses decreased by up to 10% on the convex side of curved applicators for small treated areas (≤ 5catheters), but interestingly, any dose dependence was not shown with large treated areas. Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan was delivered in a curved applicator setting. Dose errors arising due to the tumor curvature may be significant in a clinical set up and merit attention during planning.
Brewen, J. G.; Payne, H. S.; Adler, I. D.
1977-01-01
Split-dose experiments were done on maturing dictyate oocytes to determine if the magnitude of the first dose influenced the "rejoining time" of radiation-induced chromosomal lesions. A total dose of 400r was split into various combinations with varying fractionation intervals. The data derived from analyzing interchanges indicate that there is no difference in the rejoining time whether the first dose was 100, 200, or 300r. It thus appears that the radiation dose in the ranges studied does not significantly alter the rate of repair of the chromosomal lesions. This conclusion is contrary to that which has been propounded to explain the nonlinear dose curves obtained for specific locus mutations. Chronic 60Co γ-ray exposures were given to female mice over an 8-day period. The exposures were delivered during the period of peak sensitivity, i.e., 8–16 days prior to ovulation. The doses given were 117, 240, 348, and 483r. The aberration yields observed were dramatically lower than for comparable doses of acute X rays even when the RBE of γ rays compared with X rays is taken into account. The large drop in yields at the low dose rates is interpreted as resulting from a large two-track component in the acute curve, and as being independent of effects on repair systems. PMID:604163
Ulsh, B A; Whicker, F W; Congdon, J D; Bedford, J S; Hinton, T G
2001-01-01
Using a whole-chromosome FISH painting probe we previously developed for chromosome 1 of the yellow-bellied slider turtle (Trachemys scripta), we investigated the dose-rate effect for radiation-induced symmetrical translocations in T. scripta fibroblasts and lymphocytes. The dose rate below which no reduction in effect per unit dose is observed with further dose protraction was approximately 23 cGy h(-1). We estimated the whole-genome spontaneous background level of complete, apparently simple symmetrical translocations in T. scripta lymphocytes to be approximately 1.20 x 10(-3)/cell projected from aberrations occurring in chromosome 1. Similar spontaneous background levels reported for humans are some 6- to 25-fold higher, ranging from about 6 x 10(-3) to 3.4 x 10(-2) per cell. This relatively low background level for turtles would be a significant advantage for resolution of effects at low doses and dose rates. We also chronically irradiated turtles over a range of doses from 0-8 Gy delivered at approximately 5.5 cGy h(-1) and constructed a lymphocyte dose-response curve for complete, apparently simple symmetrical translocations suitable for use with animals chronically exposed to radiation in contaminated environments. The best-fitting calibration curve (not constrained through the zero dose estimate) was of the form Y(as) = c + aD + bD(2), where Y(as) was the number of apparently simple symmetrical translocations per cell, D was the dose (Gy), a = (0.0058 +/- 0.0009), b = (-0.00033 +/- 0.00011), and c = (0.0015 +/- 0.0013). With additional whole-chromosome probes to improve sensitivity, environmental biodosimetry using stable chromosome translocations could provide a practical and genetically relevant measurement end point for ecological risk assessments and biomonitoring programs.
Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study
Rosenblad, Carl; af Edholm Arvidsson, Karolina; Wictorin, Klas; Keywood, Charlotte; Shankar, Bavani; Lowe, David A.; Björklund, Anders; Widner, Håkan
2015-01-01
In advanced stages of Parkinson’s disease, serotonergic terminals take up l-DOPA and convert it to dopamine. Abnormally released dopamine may participate in the development of l-DOPA-induced dyskinesias. Simultaneous activation of 5-HT1A and 5-HT1B receptors effectively blocks l-DOPA-induced dyskinesias in animal models of dopamine depletion, justifying a clinical study with eltoprazine, a 5-HT1A/B receptor agonist, against l-DOPA-induced dyskinesias in patients with Parkinson’s disease. A double-blind, randomized, placebo-controlled and dose-finding phase I/IIa study was conducted. Single oral treatment with placebo or eltoprazine, at 2.5, 5 and 7.5 mg, was tested in combination with a suprathreshold dose of l-DOPA (Sinemet®) in 22 patients with Parkinson’s disease (16 male/six female; 66.6 ± 8.8 years old) with l-DOPA-induced dyskinesias. A Wilcoxon Signed Ranked Test was used to compare each eltoprazine dose level to paired randomized placebo on the prespecified primary efficacy variables; area under the curve scores on Clinical Dyskinesia Rating Scale for 3 h post-dose and maximum change of Unified Parkinson’s Disease Rating Scale part III for 3 h post-dose. Secondary objectives included effects on maximum Clinical Dyskinesia Rating Scale score, area under the curve of Rush Dyskinesia Rating Scale score for 3 h post-dose, mood parameters measured by Hospital Anxiety Depression Scale and Montgomery Asberg Depression Rating Scale along with the pharmacokinetics, safety and tolerability profile of eltoprazine. A mixed model repeated measures was used for post hoc analyses of the area under the curve and peak Clinical Dyskinesia Rating Scale scores. It was found that serum concentrations of eltoprazine increased in a dose-proportional manner. Following levodopa challenge, 5 mg eltoprazine caused a significant reduction of l-DOPA-induced dyskinesias on area under the curves of Clinical Dyskinesia Rating Scale [–1.02(1.49); P = 0.004] and Rush Dyskinesia Rating Scale [–0.15(0.23); P = 0.003]; and maximum Clinical Dyskinesia Rating Scale score [–1.14(1.59); P = 0.005]. The post hoc analysis confirmed these results and also showed an antidyskinetic effect of 7.5 mg eltoprazine. Unified Parkinson’s Disease Rating Scale part III scores did not differ between the placebo and eltoprazine treatments. The most frequent adverse effects after eltoprazine were nausea and dizziness. It can be concluded that a single dose, oral treatment with eltoprazine has beneficial antidyskinetic effects without altering normal motor responses to l-DOPA. All doses of eltoprazine were well tolerated, with no major adverse effects. Eltoprazine has a favourable risk-benefit and pharmacokinetic profile in patients with Parkinson’s disease. The data support further clinical studies with chronic oral eltoprazine to treat l-DOPA-induced-dyskinesias. PMID:25669730
The mass-action law based algorithms for quantitative econo-green bio-research.
Chou, Ting-Chao
2011-05-01
The relationship between dose and effect is not random, but rather governed by the unified theory based on the median-effect equation (MEE) of the mass-action law. Rearrangement of MEE yields the mathematical form of the Michaelis-Menten, Hill, Henderson-Hasselbalch and Scatchard equations of biochemistry and biophysics, and the median-effect plot allows linearization of all dose-effect curves regardless of potency and shape. The "median" is the universal common-link and reference-point for the 1st-order to higher-order dynamics, and from single-entities to multiple-entities and thus, it allows the all for one and one for all unity theory to "integrate" simple and complex systems. Its applications include the construction of a dose-effect curve with a theoretical minimum of only two data points if they are accurately determined; quantification of synergism or antagonism at all dose and effect levels; the low-dose risk assessment for carcinogens, toxic substances or radiation; and the determination of competitiveness and exclusivity for receptor binding. Since the MEE algorithm allows the reduced requirement of the number of data points for small size experimentation, and yields quantitative bioinformatics, it points to the deterministic, efficient, low-cost biomedical research and drug discovery, and ethical planning for clinical trials. It is concluded that the contemporary biomedical sciences would greatly benefit from the mass-action law based "Green Revolution".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov; Gilbert, Ethel; Curtis, Rochelle
Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studiesmore » of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.« less
NASA Astrophysics Data System (ADS)
Singh, Ranjit; Kainth, Harpreet Singh
2018-07-01
The luminiscence characteristics of thermoluminscence dosimeter LiF: Mg, Ti (TLD-100) irradiated to X-rays from 6 MV linac have been studied for wide range of 2-50 K/s readout linear heating rates. The reproducibility of glow curves for TLDs is found to be better at lower heating rates and depreciate at higher heating rates. The glow curve spectra were analysed using deconvolution procedure based on general-order kinetics. Shift in the peak maximum temperature per unit rise in heating rate for various peaks were found to decrease with heating rate. The TLDs irradiated with same dose exhibit decreasing TL counts with increase in the heating rate, which indicate the thermal quenching effect in TLD-100. The value of activation energy for each peak within the glow curve increases with heating rate. Calibration curves plotted for the dose range 0.4-1020 cGy exhibit decreasing slope with increasing readout heating rate. Corrections for temperature lag between the heating element and the dosimeter, and the effective heating rate (βeff) across the sample estimated using formulation proposed by Kitis and Tuyn and are found to be fairly applicable.
The differential effects of alprazolam and oxazepam on methamphetamine self-administration in rats.
Spence, Allyson L; Guerin, Glenn F; Goeders, Nicholas E
2016-09-01
Methamphetamine is the second most commonly used illicit drug in the world, and despite recent attempts by the Drug Enforcement Administration to combat this epidemic, methamphetamine use is still on the rise. As methamphetamine use increases so does polydrug use, particularly that involving methamphetamine and benzodiazepines. The present study was designed to examine the effects of two benzodiazepines on methamphetamine self-administration. Five doses of methamphetamine (0.0075, 0.015, 0.03, 0.09, and 0.12mg/kg/infusion) were tested, producing an inverted U-shaped dose-response curve. Rats were then pretreated with oxazepam, alprazolam, or vehicle prior to methamphetamine self-administration. To determine if the effects of these drugs were due to the GABAA receptor and/or translocator protein (TSPO), we also pretreated rats with an antagonist for the benzodiazepine-binding site on the GABAA receptor (i.e., flumazenil) and a TSPO antagonist (i.e., PK11195) prior to alprazolam or oxazepam administration. Oxazepam significantly reduced methamphetamine self-administration as demonstrated by a downward shift of the dose-response curve. In contrast, alprazolam significantly enhanced methamphetamine self-administration as evidenced by a leftward shift of the dose-response curve. Flumazenil completely blocked the effects of alprazolam on methamphetamine self-administration. When administered individually, both flumazenil and PK11195 partially reversed the effects of oxazepam on methamphetamine self-administration. However, when these two antagonists were combined, the effects of oxazepam were completely reversed. The GABAA receptor is responsible for the alprazolam-induced enhancement of methamphetamine self-administration, while the activation of both the GABAA receptor and TSPO are responsible for the oxazepam-induced reduction of methamphetamine self-administration. Published by Elsevier Ireland Ltd.
Effects of ethanol on Pavlovian autoshaping in rats.
Tomie, A; Cunha, C; Mosakowski, E M; Quartarolo, N M; Pohorecky, L A; Benjamin, D
1998-09-01
Approach responses, consummatory behaviors, and directed motor responses maintained by food reward resemble autoshaping CRs and are increased by lower doses of ethanol. This study evaluated the effects of presession i.p. injections of ethanol doses (0.00, 0.25, 0.50, 0.70. or 1.00 g/kg) on the acquisition of lever-press autoshaping CR performance in groups of male Long-Evans hooded rats. Paired groups received 15 daily sessions of Pavlovian autoshaping procedures, wherein the insertion of a retractable lever for 5 s (CS) was followed by the response-independent presentation of food (US). Ethanol facilitated lever-press autoshaping CR acquisition, as revealed by dose-related increases in the number of trials on which CRs were performed. The form of the dose-effect curve was inverted U-shaped with maximal responding induced during sessions 1-5 by the 0.70 g/kg ethanol dose. A similar dose-effect curve was observed during sessions 11-15, revealing that the effects of ethanol on autoshaping CR performance were relatively stable. A pseudoconditioning control group injected presession with 0.50 g/kg ethanol received training wherein the food US was presented randomly with respect to the lever CS. Few lever-presses were performed by the Random 0.50 group, indicating that ethanol's effects on autoshaping CR acquisition and maintenance observed in the Paired 0.50 group were not due to its psychomotor activating effects. A non-injection control group performed more autoshaping CRs than did the control group injected presession with saline, indicating that daily presession i.p. injections per se suppress autoshaping CR performance. Results reveal that low doses of ethanol enhance Pavlovian conditioning of directed motor and consummatory-like responding maintained by food reward. Implications for autoshaping accounts of impulsivity and drug abuse are considered.
Errors introduced by dose scaling for relative dosimetry
Watanabe, Yoichi; Hayashi, Naoki
2012-01-01
Some dosimeters require a relationship between detector signal and delivered dose. The relationship (characteristic curve or calibration equation) usually depends on the environment under which the dosimeters are manufactured or stored. To compensate for the difference in radiation response among different batches of dosimeters, the measured dose can be scaled by normalizing the measured dose to a specific dose. Such a procedure, often called “relative dosimetry”, allows us to skip the time‐consuming production of a calibration curve for each irradiation. In this study, the magnitudes of errors due to the dose scaling procedure were evaluated by using the characteristic curves of BANG3 polymer gel dosimeter, radiographic EDR2 films, and GAFCHROMIC EBT2 films. Several sets of calibration data were obtained for each type of dosimeters, and a calibration equation of one set of data was used to estimate doses of the other dosimeters from different batches. The scaled doses were then compared with expected doses, which were obtained by using the true calibration equation specific to each batch. In general, the magnitude of errors increased with increasing deviation of the dose scaling factor from unity. Also, the errors strongly depended on the difference in the shape of the true and reference calibration curves. For example, for the BANG3 polymer gel, of which the characteristic curve can be approximated with a linear equation, the error for a batch requiring a dose scaling factor of 0.87 was larger than the errors for other batches requiring smaller magnitudes of dose scaling, or scaling factors of 0.93 or 1.02. The characteristic curves of EDR2 and EBT2 films required nonlinear equations. With those dosimeters, errors larger than 5% were commonly observed in the dose ranges of below 50% and above 150% of the normalization dose. In conclusion, the dose scaling for relative dosimetry introduces large errors in the measured doses when a large dose scaling is applied, and this procedure should be applied with special care. PACS numbers: 87.56.Da, 06.20.Dk, 06.20.fb PMID:22955658
Agarwal, Suresh K; Kriel, Robert L; Cloyd, James C; Coles, Lisa D; Scherkenbach, Lisa A; Tobin, Michael H; Krach, Linda E
2015-01-01
Our objective was to characterize baclofen pharmacokinetics and safety given orally and intravenously. Twelve healthy subjects were enrolled in a randomized, open-label, crossover study and received single doses of baclofen: 3 or 5 mg given intravenously and 5 or 10 mg taken orally with a 48-hour washout. Blood samples for baclofen analysis were collected pre-dose and at regular intervals up to 24 hours post-dose. Clinical response was assessed by sedation scores, ataxia, and nystagmus. Mean absolute bioavailability of oral baclofen was 74%. Dose-adjusted areas under the curve between the oral and intravenous arms were statistically different (P = .0024), whereas area under the curve variability was similar (coefficient of variation: 18%-24%). Adverse effects were mild in severity and not related to either dose or route of administration. Three- and 5-mg intravenous doses of baclofen were well tolerated. Seventy-four percent oral bioavailability indicates that smaller doses of intravenous baclofen are needed to attain comparable total drug exposures. © The Author(s) 2014.
Thermoluminscence of irradiated herbs and spices
NASA Astrophysics Data System (ADS)
Mamoon, A.; Abdul-Fattah, A. A.; Abulfaraj, W. H.
1994-07-01
Several types of herbs and spices from the local market were irradiated with different doses of γ radiations. Doses varied from a few kilograys to 10 kilograys. Thermoluminescence of the irradiated samples and their controls was investigated. For the same type of herb or spice glow curves of different magnitudes, corresponding somewhat to the doses given, were obtained from the irradiated samples. Most control samples gave little or insignificant glow. Glow curves from different herbs and spices irradiated with the same doses were not similar in the strength of the glow signal given. Samples of the black pepper obtained from different packages sometimes give glow curves of very different intensities. Samples from irradiated black pepper were found to show little fading of their glow curves even at 9 months postirradiation. All irradiations were done under the same experimental conditions and at a dose rate of approximately 1 kGy h-1. The glow curves were obtained using a heating rate of about 9°C s-1 and a constant nitrogen flow rate.
Optimization of equivalent uniform dose using the L-curve criterion.
Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R
2007-10-07
Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.
Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko
2012-01-01
When in vivo proton dosimetry is performed with a metal‐oxide semiconductor field‐effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth‐output curve for a mono‐energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMCMOSFET). The SMCMOSFET output value at an arbitrary point was compared with the value obtained by the conventional SMCPPIC, which calculates proton dose distributions by using the depth‐dose curve determined by a parallel‐plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMCPPIC results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector. PACS number: 87.56.‐v PMID:22402385
Chopda, Girish R; Parge, Viraj; Thakur, Ganesh A; Gatley, S John; Makriyannis, Alexandros; Paronis, Carol A
2016-08-01
Daily treatment with cannabinoids results in tolerance to many, but not all, of their behavioral and physiologic effects. The present studies investigated the effects of 7-day exposure to 10 mg/kg daily of Δ(9)-tetrahydrocannabinol (THC) on the diuretic and antinociceptive effects of THC and the synthetic cannabinoid AM4054. Comparison studies determined diuretic responses to the κ-opioid agonist U50,488 and furosemide. After determination of control dose-response functions, mice received 10 mg/kg daily of THC for 7 days, and dose-response functions were re-determined 24 hours, 7 days, or 14 days later. THC and AM4054 had biphasic diuretic effects under control conditions with maximum effects of 30 and 35 ml/kg of urine, respectively. In contrast, antinociceptive effects of both drugs increased monotonically with dose to >90% of maximal possible effect. Treatment with THC produced 9- and 7-fold rightward shifts of the diuresis and antinociception dose-response curves for THC and, respectively, 7- and 3-fold rightward shifts in the AM4054 dose-response functions. U50,488 and furosemide increased urine output to >35 ml/kg under control conditions. The effects of U50,488 were attenuated after 7-day treatment with THC, whereas the effects of furosemide were unaltered. Diuretic effects of THC and AM4054 recovered to near-baseline levels within 14 days after stopping daily THC injections, whereas tolerance to the antinociceptive effects persisted longer than 14 days. The tolerance induced by 7-day treatment with THC was accompanied by a 55% decrease in the Bmax value for cannabinoid receptors (CB1). These data indicate that repeated exposure to THC produces similar rightward shifts in the ascending and descending limbs of cannabinoid diuresis dose-effect curves and to antinociceptive effects while resulting in a flattening of the U50,488 diuresis dose-effect function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Fundamental Flaws of Hormesis for Public Health Decisions
Thayer, Kristina A.; Melnick, Ronald; Burns, Kathy; Davis, Devra; Huff, James
2005-01-01
Hormesis (defined operationally as low-dose stimulation, high-dose inhibition) is often used to promote the notion that while high-level exposures to toxic chemicals could be detrimental to human health, low-level exposures would be beneficial. Some proponents claim hormesis is an adaptive, generalizable phenomenon and argue that the default assumption for risk assessments should be that toxic chemicals induce stimulatory (i.e., “beneficial”) effects at low exposures. In many cases, nonmonotonic dose–response curves are called hormetic responses even in the absence of any mechanistic characterization of that response. Use of the term “hormesis,” with its associated descriptors, distracts from the broader and more important questions regarding the frequency and interpretation of nonmonotonic dose responses in biological systems. A better understanding of the biological basis and consequences of nonmonotonic dose–response curves is warranted for evaluating human health risks. The assumption that hormesis is generally adaptive is an oversimplification of complex biological processes. Even if certain low-dose effects were sometimes considered beneficial, this should not influence regulatory decisions to allow increased environmental exposures to toxic and carcinogenic agents, given factors such as interindividual differences in susceptibility and multiplicity in exposures. In this commentary we evaluate the hormesis hypothesis and potential adverse consequences of incorporating low-dose beneficial effects into public health decisions. PMID:16203233
Shoaib, M; Gommans, J; Morley, A; Stolerman, I P; Grailhe, R; Changeux, J-P
2002-03-01
The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. These experiments use mice lacking the beta2 subunit of nicotinic receptors to investigate its role in nicotine discrimination and conditioned taste aversion (CTA). Wild-type and mutant mice were trained either in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement, or in a counterbalanced two-flavour CTA procedure. Rates of lever-pressing of wild-type and mutant mice did not differ. Wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) rapidly and exhibited steep dose-response curves. Mutant mice failed to acquire these nicotine discriminations and exhibited flat dose-response curves. Both wild-type and mutant mice acquired discrimination of nicotine (1.6 mg/kg) although discrimination performance was weak in the mutants. Nicotine initially reduced response rates in wild-type and mutant mice, and tolerance developed to this effect in each genotype. Both genotypes acquired discrimination of morphine (3 mg/kg) with similar degrees of accuracy, and dose-response curves for morphine discrimination in the two genotypes were indistinguishable. Nicotine produced dose-related CTA in both genotypes, but the magnitude of the effect was less in the mutants than in the wild-type controls. It is concluded that nicotinic receptors containing the beta2 subunit play a major role in the discriminative stimulus and taste aversion effects of nicotine that may reflect psychological aspects of tobacco dependence. Such receptors appear to have a less crucial role in the response-rate, reducing effects of nicotine and in nicotine tolerance.
Bustamante, D; Paeile, C; Willer, J C; Le Bars, D
1996-03-01
A C-fiber reflex elicited by electrical stimulation within the territory of the sural nerve, was recorded from the ipsilateral biceps femoris muscle in anesthetized rats. The temporal evolution of the response was studied using a constant stimulus intensity (3 x threshold) and recruitment curves were built by varying stimulus intensity from 0 to 7 x threshold. The i.v. administration of aspirin, indomethacin, ketoprofen, paracetamol (= acetaminophen) and lysine clonixinate resulted in dose-dependent depressions of the C-fiber reflex by up to 30 to 40%. By contrast, saline was ineffective. High doses of the effective drugs that produced large disturbances in heart rate and/or acid-base equilibrium were not considered in the pharmacological analysis. When a constant level of stimulation was used, different dose-dependent profiles of drug action were observed. Aspirin induced a slow and gradual depression, although indomethacin, ketoprofen and paracetamol produced a peak effect within the first 10-min period and then reached a steady state phase for up to 30 min. The depressive effects of lysine clonixinate appeared more stable. When recruitment curves were built with a range of nociceptive stimulus intensities, all the drugs produced a dose-dependent decrease in the slopes and the areas under the recruitment curves without any major modification in the thresholds. The order of potency was the same for both stimulation paradigms, e.g., aspirin < paracetamol < lysine clonixinate = ketoprofen < indomethacin. It is concluded that NSAID elicit significant antinociceptive effects at a central level, which do not depend on the existence of a hyperalgesic or inflammatory state.
Derivative based sensitivity analysis of gamma index
Sarkar, Biplab; Pradhan, Anirudh; Ganesh, T.
2015-01-01
Originally developed as a tool for patient-specific quality assurance in advanced treatment delivery methods to compare between measured and calculated dose distributions, the gamma index (γ) concept was later extended to compare between any two dose distributions. It takes into effect both the dose difference (DD) and distance-to-agreement (DTA) measurements in the comparison. Its strength lies in its capability to give a quantitative value for the analysis, unlike other methods. For every point on the reference curve, if there is at least one point in the evaluated curve that satisfies the pass criteria (e.g., δDD = 1%, δDTA = 1 mm), the point is included in the quantitative score as “pass.” Gamma analysis does not account for the gradient of the evaluated curve - it looks at only the minimum gamma value, and if it is <1, then the point passes, no matter what the gradient of evaluated curve is. In this work, an attempt has been made to present a derivative-based method for the identification of dose gradient. A mathematically derived reference profile (RP) representing the penumbral region of 6 MV 10 cm × 10 cm field was generated from an error function. A general test profile (GTP) was created from this RP by introducing 1 mm distance error and 1% dose error at each point. This was considered as the first of the two evaluated curves. By its nature, this curve is a smooth curve and would satisfy the pass criteria for all points in it. The second evaluated profile was generated as a sawtooth test profile (STTP) which again would satisfy the pass criteria for every point on the RP. However, being a sawtooth curve, it is not a smooth one and would be obviously poor when compared with the smooth profile. Considering the smooth GTP as an acceptable profile when it passed the gamma pass criteria (1% DD and 1 mm DTA) against the RP, the first and second order derivatives of the DDs (δD’, δD”) between these two curves were derived and used as the boundary values for evaluating the STTP against the RP. Even though the STTP passed the simple gamma pass criteria, it was found failing at many locations when the derivatives were used as the boundary values. The proposed derivative-based method can identify a noisy curve and can prove to be a useful tool for improving the sensitivity of the gamma index. PMID:26865761
Bel, E. H.; Zwinderman, A. H.; Timmers, M. C.; Dijkman, J. H.; Sterk, P. J.
1991-01-01
Beta 2 agonists reduce airway hypersensitivity to bronchoconstrictor stimuli acutely in patients with asthma and chronic obstructive lung disease. To determine whether these drugs also protect against excessive airway narrowing, the effect of inhaled salbutamol on the position and shape of the dose-response curves for histamine or methacholine was investigated in 12 patients with asthma and 11 with chronic obstructive lung disease. After pretreatment with salbutamol (200 or 400 micrograms) or placebo in a double blind manner dose-response curves for inhaled histamine and methacholine were obtained by a standard method on six days in random order. Airway sensitivity was defined as the concentration of histamine or methacholine causing a 20% fall in FEV1 (PC20). A maximal response plateau on the log dose-response curve was considered to be present if two or more data points for FEV1 fell within a 5% response range. In the absence of a plateau, the test was continued until a predetermined level of severe bronchoconstriction was reached. Salbutamol caused an acute increase in FEV1 (mean increase 11.5% predicted in asthma, 7.2% in chronic obstructive lung disease), and increase in PC20 (mean 15 fold in asthma, fivefold in chronic obstructive lung disease), and an increase in the slope of the dose-response curves in both groups. In subjects in whom a plateau of FEV1 response could be measured salbutamol did not change the level of the plateau. In subjects without a plateau salbutamol did not lead to the development of a plateau, despite achieving a median FEV1 of 44% predicted in asthma and 39% in chronic obstructive lung disease. These results show that, although beta 2 agonists acutely reduce the airway response to a given strength of bronchoconstrictor stimulus, they do not protect against excessive airflow obstruction if there is exposure to relatively strong stimuli. This, together with the steepening of the dose-response curve, could be a disadvantage of beta 2 agonists in the treatment of moderate and severe asthma or chronic obstructive lung disease. PMID:1871705
Clinical application of Chamomilla recutita in phlebitis: dose response curve study.
Reis, Paula Elaine Diniz Dos; Carvalho, Emilia Campos de; Bueno, Paula Carolina Pires; Bastos, Jairo Kenupp
2011-01-01
This experimental and dose-response curve study aimed to carry out the quality control of the Chamomilla recutita sample, as well as to estimate the ideal dose, for anti-inflammatory effect, of the extract of its capitula, in patients with phlebitis due to peripheral intravenous infusion of antineoplastic chemotherapy and to evaluate the toxicity of this extract in human beings. The therapeutic efficacy, concerning the anti-inflammatory potential, of different doses of Chamomilla recutita extract were analyzed and compared in 25 patients. The time of regression of phlebitis was shorter for groups with 2.5% concentration (mean=29.2h, standard deviation = 8.98) and 5% concentration (mean = 38.8h, standard deviation = 17.47). Local toxicity was almost not observed. This research contributes to the innovation of the nursing clinical practice, since it suggests an alternative for the treatment of phlebitis through the clinical use of phytotherapeutic drugs.
Dose response of alanine detectors irradiated with carbon ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, Rochus; Jaekel, Oliver; Palmans, Hugo
Purpose: The dose response of the alanine detector shows a dependence on particle energy and type when irradiated with ion beams. The purpose of this study is to investigate the response behavior of the alanine detector in clinical carbon ion beams and compare the results to model predictions. Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track structure based alanine response model developed by Hansen andmore » Olsen has been implemented in the Monte Carlo code FLUKA and calculations were compared to experimental results. Results: Calculations of the relative effectiveness deviate less than 5% from the measured values for monoenergetic beams. Measured depth-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasimonoenergetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties of the detector geometry implemented in the Monte Carlo simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
2015-06-15
Purpose: Aim of this study was to analyze the modulating, broadening effect on the Bragg Peak due to heterogeneous geometries like multi-wire chambers in the beam path of a particle therapy beam line. The effect was described by a mathematical model which was implemented in the Monte-Carlo code FLUKA via user-routines, in order to reduce the computation time for the simulations. Methods: The depth dose curve of 80 MeV/u C12-ions in a water phantom was calculated using the Monte-Carlo code FLUKA (reference curve). The modulating effect on this dose distribution behind eleven mesh-like foils (periodicity ∼80 microns) occurring in amore » typical set of multi-wire and dose chambers was mathematically described by optimizing a normal distribution so that the reverence curve convoluted with this distribution equals the modulated dose curve. This distribution describes a displacement in water and was transferred in a probability distribution of the thickness of the eleven foils using the water equivalent thickness of the foil’s material. From this distribution the distribution of the thickness of one foil was determined inversely. In FLUKA the heterogeneous foils were replaced by homogeneous foils and a user-routine was programmed that varies the thickness of the homogeneous foils for each simulated particle using this distribution. Results: Using the mathematical model and user-routine in FLUKA the broadening effect could be reproduced exactly when replacing the heterogeneous foils by homogeneous ones. The computation time was reduced by 90 percent. Conclusion: In this study the broadening effect on the Bragg Peak due to heterogeneous structures was analyzed, described by a mathematical model and implemented in FLUKA via user-routines. Applying these routines the computing time was reduced by 90 percent. The developed tool can be used for any heterogeneous structure in the dimensions of microns to millimeters, in principle even for organic materials like lung tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J
2015-06-15
Purpose: Tc-99m labeled IDA-D-[c(RGDfK){sub 2} ( {sup 99m}Tc-RGD) is a recently developed radiotracer for gamma camera or single photon emission computed tomography (SPECT) imaging and promising agent for the visualization of angiogenesis. In this study, we investigated the internal radiation dosimetry of {sup 99m}Tc-RGD in humans. Methods: Six normal controls (F:M=4:2; 68.3±3.2 years; 56.5±10.7 kg) were participated in this study. Simultaneous anterior and posterior scans of whole-body were performed using dual head gamma camera system. Before the emission scan, transmission scan was performed just before injection of {sup 99m}Tc-RGD using Co-57 flood source. After an intravenous injection of 388.7±29.3 MBqmore » of {sup 99m}Tc-RGD, six serial emission scans were performed at 0, 1, 2, 4, 8 and 24 hours post-injection. The anterior and posterior images were geometrically averaged and attenuation correction was applied using transmission scan image. Regions of interest (ROIs) were drawn on liver, gallbladder, kidneys, urinary bladder, spleen, brain, and large intestine. Time activity curves were obtained from serial emission scan and ROIs. The number of disintegrations per unit activity administered (residence time) were calculated from the area under the curve of time activity curves and injected dose of each patient. Finally, the radiation dose for each organ and effective doses were obtained using OLINDA/EXM 1.1 software and residence time. Results: High radiation doses were reported on renal and biliary excretion tracks such as urinary bladder wall, upper large intestine, kidneys, liver and gallbladder wall and their doses were 19.15±6.84, 19.28±4.78, 15.67±0.90, 9.13±1.71 and 9.09±2.03 µGy/MBq, respectively. The effective dose and effective dose equivalent were 5.08±0.53 and 7.11±0.58 µSv/MBq, respectively. Conclusion: We evaluated the radiation dose of 99mTc-RGD, which has an acceptable effective radiation dose compare to the other Tc-99m labeled radio-tracers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaghloul, M.S.; Dorie, M.J.; Kallman, R.F.
1993-06-15
This study was conducted to examine the radioprotective and radiochemoprotective capabilities of interleukin 1[beta] (IL-1) on two acute-reacting normal tissues of the C3H mouse, the mucosa of the lip and the duodenum. Also assessed was the modulating effect of IL-1 on tumor growth in the same strain of mice. IL-1 was administered to C3H-Km mice in combination with fractionated irradiation, or with cyclophosphamide, cisplatin, or 5-fluorouracil (5FU) followed by irradiation. Normal tissue damage was evaluated in the mouse lip, using a subjective scoring system for tissue reaction, and in the duodenum, using the crypt cell survival assay. RIF-1 fibrosarcoma tumormore » response was assayed with the regrowth delay method. IL-1 protected against the acute reaction produced by fractionated irradiation in the lip mucosa, shifting the dose-response curve by 3.8 Gy. IL-1 was protective when injected intraperitoneally 24 hr before CY or c-DDP, which were given immediately before the first of five daily radiation dose fractions. The dose-response curves for cyclophosphamide and cisplatin were shifted 4.0 Gy and 1.6 Gy, respectively. IL-1 did not protect against 5FU toxicity when treatments were administered in that same sequence; however, when 5FU was given 4 or 8 hr before IL-1 and the first radiation dose fraction followed 20 or 16 hr later, there was significant protection and the curves were separated by 1.5 Gy or 3.5 Gy. IL-1 also protected duodenal crypt cells against the cytocidal effect of fractionated irradiation, with a dose difference of 1.5 Gy and an improvement of crypt survival of 11.7%. It was even more immediately before the first of five daily radiation doses, with the dose differences of 4.4 and 5.3 Gy, respectively, and improvements of crypt survival of 33.8 and 29.9%, respectively. There was no modification by IL-1 of the effect of irradiation alone on the RIF-1 tumor. 45 refs., 8 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.
2017-11-01
Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohl, A; Boer, S De
Purpose: To investigate the differences in relative electron density for different energy (kVp) settings and the effect that these differences have on dose calculations. Methods: A Nuclear Associates 76-430 Mini CT QC Phantom with materials of known relative electron densities was imaged by one multi-slice (16) and one single-slice computed tomography (CT) scanner. The Hounsfield unit (HU) was recorded for each material with energies ranging from 80 to 140 kVp and a representative relative electron density (RED) curve was created. A 5 cm thick inhomogeneity was created in the treatment planning system (TPS) image at a depth of 5 cm.more » The inhomogeneity was assigned HU for various materials for each kVp calibration curve. The dose was then calculated with the analytical anisotropic algorithm (AAA) at points within and below the inhomogeneity and compared using the 80 kVp beam as a baseline. Results: The differences in RED values as a function of kVp showed the largest variations of 580 and 547 HU for the Aluminum and Bone materials; the smallest differences of 0.6 and 3.0 HU were observed for the air and lung inhomogeneities. The corresponding dose calculations for the different RED values assigned to the 5 cm thick slab revealed the largest differences inside the aluminum and bone inhomogeneities of 2.2 to 6.4% and 4.3 to 7.0% respectively. The dose differences beyond these two inhomogeneities were between 0.4 to 1.6% for aluminum and 1.9 to 2.2 % for bone. For materials with lower HU the calculated dose differences were less than 1.0%. Conclusion: For high CT number materials the dose differences in the phantom calculation as high as 7.0% are significant. This result may indicate that implementing energy specific RED curves can increase dose calculation accuracy.« less
Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Allen, E-mail: davis.allen@epa.gov; Gift, Jeffrey S.; Zhao, Q. Jay
2011-07-15
Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addressesmore » many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.« less
Bellamy, D.; Penketh, A.
1987-01-01
The potency and side effects of salbutamol and fenoterol inhalers have been compared in 8 asthmatic patients using a dose response curve. There was no significant difference in the absolute or percentage increase in FEV1 with the two treatments, but fenoterol caused a significantly greater (P less than 0.01) increase in heart rate than did salbutamol. A greater degree of bronchodilatation was observed with increased doses and we suggest that regular higher doses may provide better bronchodilatation and control of asthma in selected patients. PMID:3432172
[Combined internal-external radiotherapy (CIERT) in a cell model].
Oehme, Liane; Bartzsch, Thomas; Maucksch, Ute; Freudenberg, Robert; Wunderlich, Gerd; Kotzerke, Jörg
2018-06-01
Combined internal-external radiotherapy (CIERT) requires a unified assessment of biologic radiation effects in addition to the total dose. The concept of biological effective dose (BED) was evaluated in a cell model. The thyroid NIS-positive cell line FRTL-5 was irradiated with X-ray and the radiotracer Tc-99m pertechnetate either alone or in combination. The cellular uptake of the radionuclide during the incubation time of 24 h was controlled by the presence or absence of perchlorate. Dose calculation was performed based on measured uptake values. Cell specific radiobiologic parameters were derived from dose effect curves using the colony forming assay as biological endpoint. For the combination of the radiation qualities the sequence and time difference were varied. Cell survival was compared with the prediction of the BED model. The radiobiologic parameters from X-ray dose response were α = (0.22 ± 0.02) Gy -1 and β = (0.021 ± 0.001) Gy -2 . The half life for repair was (1.51 ± 0.21) h. These values could also explain the dose response curves for Tc-99m-irradiation with exponential decreasing dose rate. CIERT experiments showed no significant differences in cell survival regarding sequence and irradiation break. When the radionuclide uptake was not prevented the cell survival for the combination of X-ray and Tc-99m was lower than the prediction by BED calculations. The validity of the BED formalism for different dose rates and radiation qualities was verified. Supraaddive effects measured in the combination of X-ray and intracellular Tc-99m might be caused by Auger and conversion electrons, however further experiments are necessary. Schattauer GmbH.
Cvrčková, Fatima; Luštinec, Jiří; Žárský, Viktor
2015-01-01
We usually expect the dose-response curves of biological responses to quantifiable stimuli to be simple, either monotonic or exhibiting a single maximum or minimum. Deviations are often viewed as experimental noise. However, detailed measurements in plant primary tissue cultures (stem pith explants of kale and tobacco) exposed to varying doses of sucrose, cytokinins (BA or kinetin) or auxins (IAA or NAA) revealed that growth and several biochemical parameters exhibit multiple reproducible, statistically significant maxima over a wide range of exogenous substance concentrations. This results in complex, non-monotonic dose-response curves, reminiscent of previous reports of analogous observations in both metazoan and plant systems responding to diverse pharmacological treatments. These findings suggest the existence of a hitherto neglected class of biological phenomena resulting in dose-response curves exhibiting periodic patterns of maxima and minima, whose causes remain so far uncharacterized, partly due to insufficient sampling frequency used in many studies.
Reinforcing effects of sigma-receptor agonists in rats trained to self-administer cocaine.
Hiranita, Takato; Soto, Paul L; Tanda, Gianluigi; Katz, Jonathan L
2010-02-01
sigma-Receptor (sigmaR) antagonists have been reported to block certain effects of psychostimulant drugs. The present study examined the effects of sigmaR ligands in rats trained to self-administer cocaine (0.032-1.0 mg/kg/inj i.v.) under fixed-ratio 5-response schedules of reinforcement. Maximal rates of responding were maintained by 0.32 mg/kg/inj cocaine, or by the sigmaR agonists, 1,3-di-(2-tolyl)guanidine (DTG; 1.0 mg/kg/inj) or 2-(4-morpholinethyl) 1-phenylcyclohexane-1-carboxylate hydrochloride (PRE-084; 0.32 mg/kg/inj), when substituted for cocaine. Lower response rates were maintained at higher and lower doses of the compounds. No dose of the sigmaR antagonists [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD 1047), N-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine (BD 1063)] maintained responding appreciably above levels obtained when responding had no consequences. Presession treatment with sigmaR agonists dose-dependently shifted the cocaine self-administration dose-effect curve leftward. The dopamine-uptake inhibitor, (-)-2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (WIN 35,428), dose-dependently shifted the DTG and PRE-084 self-administration dose-effect curves leftward. Treatment with the sigmaR antagonists dose-dependently decreased response rates maintained by DTG or PRE-084, but did not affect cocaine self-administration. Response rates maintained by maximally effective DTG or PRE-084 doses were decreased by sigmaR antagonists at lower doses than those that decreased response rates maintained by food reinforcement. Although sigmaR antagonists block some cocaine-induced effects, the lack of effect on cocaine self-administration suggests that the primary reinforcing effects of cocaine do not involve direct effects at sigmaRs. However, the self-administration of sigmaR agonists in cocaine-trained subjects, facilitation of cocaine self-administration by sigmaR-agonist pretreatment, and the facilitation of sigmaR-agonist self-administration by WIN 35,428, together suggest enhanced abuse-related effects resulting from concomitant dopaminergically mediated actions and sigmaR-mediated actions of the drugs.
Reinforcing Effects of σ-Receptor Agonists in Rats Trained to Self-Administer Cocaine
Hiranita, Takato; Soto, Paul L.; Tanda, Gianluigi
2010-01-01
σ-Receptor (σR) antagonists have been reported to block certain effects of psychostimulant drugs. The present study examined the effects of σR ligands in rats trained to self-administer cocaine (0.032–1.0 mg/kg/inj i.v.) under fixed-ratio 5-response schedules of reinforcement. Maximal rates of responding were maintained by 0.32 mg/kg/inj cocaine, or by the σR agonists, 1,3-di-(2-tolyl)guanidine (DTG; 1.0 mg/kg/inj) or 2-(4-morpholinethyl) 1-phenylcyclohexane-1-carboxylate hydrochloride (PRE-084; 0.32 mg/kg/inj), when substituted for cocaine. Lower response rates were maintained at higher and lower doses of the compounds. No dose of the σR antagonists [N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)ethylamine (BD 1008), N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine (BD 1047), N-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine (BD 1063)] maintained responding appreciably above levels obtained when responding had no consequences. Presession treatment with σR agonists dose-dependently shifted the cocaine self-administration dose-effect curve leftward. The dopamine-uptake inhibitor, (−)-2β-carbomethoxy-3β-(4-fluorophenyl)tropane (WIN 35,428), dose-dependently shifted the DTG and PRE-084 self-administration dose-effect curves leftward. Treatment with the σR antagonists dose-dependently decreased response rates maintained by DTG or PRE-084, but did not affect cocaine self-administration. Response rates maintained by maximally effective DTG or PRE-084 doses were decreased by σR antagonists at lower doses than those that decreased response rates maintained by food reinforcement. Although σR antagonists block some cocaine-induced effects, the lack of effect on cocaine self-administration suggests that the primary reinforcing effects of cocaine do not involve direct effects at σRs. However, the self-administration of σR agonists in cocaine-trained subjects, facilitation of cocaine self-administration by σR-agonist pretreatment, and the facilitation of σR-agonist self-administration by WIN 35,428, together suggest enhanced abuse-related effects resulting from concomitant dopaminergically mediated actions and σR-mediated actions of the drugs. PMID:19892920
Parotid gland mean dose as a xerostomia predictor in low-dose domains.
Gabryś, Hubert Szymon; Buettner, Florian; Sterzing, Florian; Hauswald, Henrik; Bangert, Mark
2017-09-01
Xerostomia is a common side effect of radiotherapy resulting from excessive irradiation of salivary glands. Typically, xerostomia is modeled by the mean dose-response characteristic of parotid glands and prevented by mean dose constraints to either contralateral or both parotid glands. The aim of this study was to investigate whether normal tissue complication probability (NTCP) models based on the mean radiation dose to parotid glands are suitable for the prediction of xerostomia in a highly conformal low-dose regime of modern intensity-modulated radiotherapy (IMRT) techniques. We present a retrospective analysis of 153 head and neck cancer patients treated with radiotherapy. The Lyman Kutcher Burman (LKB) model was used to evaluate predictive power of the parotid gland mean dose with respect to xerostomia at 6 and 12 months after the treatment. The predictive performance of the model was evaluated by receiver operating characteristic (ROC) curves and precision-recall (PR) curves. Average mean doses to ipsilateral and contralateral parotid glands were 25.4 Gy and 18.7 Gy, respectively. QUANTEC constraints were met in 74% of patients. Mild to severe (G1+) xerostomia prevalence at both 6 and 12 months was 67%. Moderate to severe (G2+) xerostomia prevalence at 6 and 12 months was 20% and 15%, respectively. G1 + xerostomia was predicted reasonably well with area under the ROC curve ranging from 0.69 to 0.76. The LKB model failed to provide reliable G2 + xerostomia predictions at both time points. Reduction of the mean dose to parotid glands below QUANTEC guidelines resulted in low G2 + xerostomia rates. In this dose domain, the mean dose models predicted G1 + xerostomia fairly well, however, failed to recognize patients at risk of G2 + xerostomia. There is a need for the development of more flexible models able to capture complexity of dose response in this dose regime.
Palmer, Antony L; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H
2015-11-21
There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.
NASA Astrophysics Data System (ADS)
Palmer, Antony L.; Dimitriadis, Alexis; Nisbet, Andrew; Clark, Catharine H.
2015-11-01
There is renewed interest in film dosimetry for the verification of dose delivery of complex treatments, particularly small fields, compared to treatment planning system calculations. A new radiochromic film, Gafchromic EBT-XD, is available for high-dose treatment verification and we present the first published evaluation of its use. We evaluate the new film for MV photon dosimetry, including calibration curves, performance with single- and triple-channel dosimetry, and comparison to existing EBT3 film. In the verification of a typical 25 Gy stereotactic radiotherapy (SRS) treatment, compared to TPS planned dose distribution, excellent agreement was seen with EBT-XD using triple-channel dosimetry, in isodose overlay, maximum 1.0 mm difference over 200-2400 cGy, and gamma evaluation, mean passing rate 97% at 3% locally-normalised, 1.5 mm criteria. In comparison to EBT3, EBT-XD gave improved evaluation results for the SRS-plan, had improved calibration curve gradients at high doses, and had reduced lateral scanner effect. The dimensions of the two films are identical. The optical density of EBT-XD is lower than EBT3 for the same dose. The effective atomic number for both may be considered water-equivalent in MV radiotherapy. We have validated the use of EBT-XD for high-dose, small-field radiotherapy, for routine QC and a forthcoming multi-centre SRS dosimetry intercomparison.
Hama, A T; Lloyd, G K; Menzaghi, F
2001-03-01
The analgesic effect of intrathecal injection of epibatidine, clonidine and neostigmine, compounds that elevate ACh, was examined in the formalin test, a model of post-injury central sensitization in the rat. The compounds were injected alone and in combination. Intrathecal injection of epibatidine alone did not alter pain behaviors, compared to vehicle-treated rats. Intrathecal injection of clonidine dose-dependently reduced tonic pain behaviors (ED(50)+/-95% confidence limits=6.7+/-4.8 microg). The combination of clonidine and epibatidine (C:E), in the ratio of 26:1, dose-dependently reduced tonic pain behaviors; and the ED(50) of C:E was 1.1+/-0.98 microg a significant 6-fold leftward shift of the dose response curve, compared with clonidine alone. The antinociceptive effect of C:E (26:1) was attenuated by pre-treatment with the nAChR antagonist mecamylamine. Neostigmine dose-dependently reduced tonic pain behaviors (ED(50)=1.5+/-1.3 microg). The combination of neostigmine and epibatidine, in a ratio of 8:1, significantly shifted the dose response curve 4-fold to the left (ED(50)=0.4+/-0.3 microg). The effect is mediated in part by the activation of the nAChR and possibly by the enhanced release of ACh. These data demonstrate significant enhancement of the antinociceptive effects of spinally delivered analgesics by a nAChR agonist, suggesting that this class of compounds may have utility as adjuvants when combined with conventional therapeutics.
Choosing a therapy electron accelerator target.
Hutcheon, R M; Schriber, S O; Funk, L W; Sherman, N K
1979-01-01
Angular distributions of photon depth dose produced by 25-MeV electrons incident on several fully stopping single-element targets (C, Al, Cu, Mo, Ta, Pb) and two composite layered targets (Ni-Al, W-Al) were studied. Depth-dose curves measured using TLD-700 (thermoluminescent dosimeter) chips embedded in lucite phantoms. Several useful therapy electron accelerator design curves were determined, including relative flattener thickness as a function of target atomic number, "effective" bremsstrahlung endpoint energy or beam "hardness" as a function of target atomic number and photon emission angle, and estimates of shielding thickness as a function of angle required to reduce the radiation outside the treatment cone to required levels.
USDA-ARS?s Scientific Manuscript database
Dose-response curves with semiochemicals are reported in many articles in insect chemical ecology regarding neurophysiology and behavioral bioassays. Most such curves are shown in figures where the x-axis has order of magnitude increases in dosages versus responses on the y-axis represented by point...
Bustamante, D; Paeile, C; Willer, J C; Le Bars, D
1997-06-01
A C-fiber reflex elicited by electrical stimulation within the territory of the sural nerve was recorded from the ipsilateral biceps femoris muscle in anesthetized rats. The temporal evolution of the response was studied using a constant stimulus intensity (3 times threshold), and recruitment curves were built by varying the stimulus intensity from 0 to 7 times threshold. The intrathecal (i.t.) but not i.c.v. administration of aspirin, indomethacin, ketoprofen and lysine clonixinate resulted in dose-dependent depressions of the C-fiber reflex. In contrast, saline was ineffective. Regardless of the route of administration, the drugs never produced disturbances in heart rate and/or acid-base equilibrium. When a constant level of stimulation was used, 500 microg of aspirin i.t. induced a blockade of the reflex immediately after the injection, followed by a partial recovery. Indomethacin produced a stable depression, which reached 80 to 90% with an i.t. dose of 500 microg. Ketoprofen and lysine clonixinate produced a more stable effect; the highest doses (500 microg) produced a steady-state depression of approximately 50% for approximately 30 min. When the recruitment curves were built with a range of nociceptive stimulus intensities, all of the drugs except for indomethacin produced a dose-dependent decrease in the slopes and the areas under the recruitment curves without major modifications in the thresholds; indomethacin also induced a significant dose-related increase in the threshold. The orders of potency for both stimulation paradigms with the i.t. route were the same, namely aspirin > indomethacin > lysine clonixinate > or = ketoprofen. It is concluded that nonsteroidal anti-inflammatory drugs elicit significant antinociceptive effects at a spinal level, which do not depend on the existence of a hyperalgesic or inflammatory state. Such effects were not seen after injections within the lateral ventricle.
Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G
2013-12-01
To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.
Hirschowitz, B I; Molina, E
1983-05-01
To quantitate bombesin stimulation of gastric acid and pepsin via release of gastrin, five gastric fistula dogs were given graded doses (60-1,250 pmol X kg-1 X h-1) of bombesin tetradecapeptide and 40-2,000 pmol X kg-1 X h-1 of synthetic gastrin-17 (G-17). Acid and pepsin output and serum gastrin were proportional to the dose of stimulant. The half-maximal dose of bombesin for gastrin release was 200 pmol X kg-1 X h-1. Bombesin-stimulated acid secretion related to serum gastrin concentrations was congruent with the G-17 curve, but with a maximum of only 62% of the G-17 maximum before declining by 27% despite higher serum gastrin levels. This suggested that bombesin stimulates acid secretion only via gastrin release and inhibits at higher doses by releasing another inhibitory peptide, most likely somatostatin, which is also released by bombesin. The same mechanism could apply to supramaximal inhibition of acid and pepsin seen with high doses of G-17. Because the pepsin curve related to serum gastrin was to the left of the G-17 curve, we concluded that another secretagogue released by bombesin acts synergistically with gastrin on pepsin secretion. Therefore, bombesin stimulates gastric secretion through gastrin release, but its effects are modified by peptides coreleased to a) increase pepsin output at low doses and b) limit the output of acid and pepsin to 50-60% of the G-17 maximum.
Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia
2013-02-15
Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can bemore » accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.« less
Kuramochi-Motegi, A; Kuramochi, H; Takahashi, K; Takeuchi, T
1991-04-01
Liblomycin (NK313) is a novel derivative of bleomycin (BLM) and peplomycin (PEP). The cell kill kinetics of NK313 on rat ascites hepatoma AH66 were compared with those of PEP. NK313 induced intracellular DNA cleavage and arrested cell cycle progression at the G2 phase similarly to PEP. The cytocidal effect of NK313, however, was found to be different from that of PEP as described below: 1) The dose-survival curve for cells exposed to PEP for 1 hour was upward concave, whereas in case of NK313, the survival curve was linear. PEP was more effective to AH66 than NK313 at lower concentration, but at higher concentration, NK313 was much more effective. 2) The time-survival curve for cells treated with either NK313 or PEP was biphasic. NK313, however, did not induce temporary resistance of AH66 cells to NK313, while PEP induced resistance to PEP. 3) NK313 was effective against the cells which became temporarily resistant to PEP by the treatment of PEP. These differences suggest that NK313 might be of value to treat PEP-insensitive tumor cells.
Enhancing effect of menthol on nicotine self-administration in rats
Biswas, Lisa; Harrison, Erin; Gong, Yongzhen; Avusula, Ramachandram; Lee, Jonathan; Zhang, Meiyu; Rousselle, Thomas; Lage, Janice; Liu, Xiu
2016-01-01
Rationale Tobacco smoking is a leading preventable cause of premature death in the United States. Menthol is a significant flavoring additive in tobacco products. Clinical evidence suggests that menthol may promote tobacco smoking and nicotine dependence. However, it is unclear whether menthol enhances the reinforcing actions of nicotine and thus facilitates nicotine consumption. This study employed a rat model of nicotine self-administration to examine the effects of menthol on nicotine-taking behavior. Methods Male Sprague-Dawley rats were trained in daily 1-h sessions to press a lever for intravenous nicotine self-administration under a fixed-ratio 5 schedule of reinforcement. In separate groups, rats self-administered nicotine at four different doses (0.0075, 0.015, 0.03, and 0.06 mg/kg/infusion). Five minutes prior to the two test sessions, menthol (5 mg/kg) or its vehicle was administered intraperitoneally in all rats in a counterbalanced design within each group. In separate rats that self-administered 0.015 mg/kg/infusion nicotine, menthol dose-response function was determined. Menthol was also tested on food self-administration. Results An inverted U-shaped nicotine dose-response curve was observed. Menthol pretreatment shifted the nicotine dose-response curve to the left. The facilitating effect of menthol on the self-administration of 0.015 mg/kg/infusion nicotine was dose-dependent, whereas it produced similar effects at doses above the threshold of 2.5 mg/kg. Menthol tended to suppress the self-administration of food pellets. Conclusions These data demonstrate that menthol enhances the reinforcing effects of nicotine, and the effect of menthol was specific to nicotine. The findings suggest that menthol directly facilitates nicotine consumption, thereby contributing to tobacco smoking. PMID:27473365
Synergism between tramadol and parecoxib in the orofacial formalin test.
Isiordia-Espinoza, Mario Alberto; Zapata-Morales, Juan Ramón; Castañeda-Santana, Demian Ismael; de la Rosa-Coronado, Maximiliano; Aragon-Martinez, Othoniel Hugo
2015-05-01
The aim of this study was to evaluate the interaction between tramadol and parecoxib in the orofacial formalin test. Tramadol (10, 31.6, 56, and 100 mg/kg ip) or parecoxib (31.6, 56, 100, and 178 mg/kg ip) were administered 10 min before formalin (2.5%) injection into the upper lip to characterize the dose-response curve of each individual drug in the orofacial pain test in mice. Once the dose-response curve of each drug was obtained, an experimental effective dose 50 (ED50 ) value was determined for each drug. The tramadol-parecoxib combination was evaluated in four different groups of animals. The isobolographic analysis and the interaction index were used to evaluate the nature of interaction between both drugs. The isobologram and the interaction index showed increased in the antinociceptive effect of the combination. The tramadol-parecoxib combination produces a synergism in the second phase of the orofacial formalin test. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, H; Menon, G; Sloboda, R
The purpose of this study was to investigate the accuracy of radiochromic film calibration procedures used in external beam radiotherapy when applied to I-125 brachytherapy sources delivering higher doses, and to determine any necessary modifications to achieve similar accuracy in absolute dose measurements. GafChromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 6 MV, 75 kVp and (∼28 keV) I-125 photon sources. A custom phantom was used for the I-125 irradiations to obtain a larger film area with nearly constant dose to reduce the effects of film heterogeneities on the optical density (OD) measurements. RGBmore » transmission images were obtained with an Epson 10000XL flatbed scanner, and calibration curves relating OD and dose using a rational function were determined for each colour channel and at each energy using a non-linear least square minimization method. Differences found between the 6 MV calibration curve and those for the lower energy sources are large enough that 6 MV beams should not be used to calibrate film for low-energy sources. However, differences between the 75 kVp and I-125 calibration curves were quite small; indicating that 75 kVp is a good choice. Compared with I-125 irradiation, this gives the advantages of lower type B uncertainties and markedly reduced irradiation time. To obtain high accuracy calibration for the dose range up to 35 Gy, two-segment piece-wise fitting was required. This yielded absolute dose measurement accuracy above 1 Gy of ∼2% for 75 kVp and ∼5% for I-125 seed exposures.« less
Brocks, Dion R
2015-07-01
Pharmacokinetics can be a challenging topic to teach due to the complex relationships inherent between physiological parameters, mathematical descriptors and equations, and their combined impact on shaping the blood fluid concentration vs. time curves of drugs. A computer program was developed within Microsoft Excel for Windows, designed to assist in the instruction of basic pharmacokinetics within an entry-to-practice pharmacy class environment. The program is composed of a series of spreadsheets (modules) linked by Visual Basic for Applications, intended to illustrate the relationships between pharmacokinetic and in some cases physiological parameters, doses and dose rates and the drug blood fluid concentration vs. time curves. Each module is accompanied by a simulation user's guide, prompting the user to change specific independent parameters and then observe the impact of the change(s) on the drug concentration vs. time curve and on other dependent parameters. "Slider" (or "scroll") bars can be selected to readily see the effects of repeated changes on the dependencies. Topics covered include one compartment single dose administration (iv bolus, oral, short infusion), intravenous infusion, repeated doses, renal and hepatic clearance, nonlinear elimination, two compartment model, plasma protein binding and the relationship between pharmacokinetics and drug effect. The program has been used in various forms in the classroom over a number of years, with positive ratings generally being received from students for its use in the classroom. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
New assay of protective activity of Rocky Mountain spotted fever vaccines.
Anacker, R L; Smith, R F; Mann, R E; Hamilton, M A
1976-01-01
Areas under the fever curves of guinea pigs inoculated with Rocky Mountain spotted fever vaccine over a restricted dose range and infected with a standardized dose of Rickettsia rickettsii varied linearly with log10 dose of vaccine. A calculator was programmed to plot fever curves and calculate the vaccine dose that reduced the fever of infected animals by 50%. PMID:823177
Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.
Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf
2015-12-01
Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.
Nonparametric methods for doubly robust estimation of continuous treatment effects.
Kennedy, Edward H; Ma, Zongming; McHugh, Matthew D; Small, Dylan S
2017-09-01
Continuous treatments (e.g., doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve, and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.
Puig, Roser; Pujol, Mònica; Barrios, Leonardo; Caballín, María Rosa; Barquinero, Joan-Francesc
2016-09-01
In a similar way to high-dose exposures to low-LET radiations, cells show difficulties reaching mitosis after high-LET radiation exposure. For this reason, techniques have been proposed that are able to analyze chromosome aberrations in interphase by prematurely condensing the chromosomes (PCC-techniques). Few dose-effect curves for high-LET radiation types have been reported, and none for α-particles. The aim of this study was to evaluate, by chemically-induced PCC, the chromosome aberrations induced by several doses of α-particles. Monolayers of peripheral lymphocytes were exposed to an α-source of Americium-241 with a mean energy entering the cells of 2.7 MeV. Lymphocytes were exposed to 10 doses, from 0-2.5 Gy, and then cultured for 48 h. Colcemid and Calyculin-A were added at 24 and 1 h before harvesting, respectively. During microscope analysis, chromosome rings and extra chromosome pieces were scored in G2/M-PCC and M cells, while dicentric chromosomes were only scored in M cells. As the dose increased, fewer cells were able to reach mitosis and the proportion of G2/M-PCC cells increased. Chromosome rings were hardly observed in M cells when compared to G2/M-PCC cells. Extra fragments were more frequent than rings in both G2/M-PCC and M cells, but with lower frequencies than in G2/M-PCC cells. The distribution of dicentrics and extra fragments showed a clear overdispersion; this was not so evident for rings. The dose-effect curves obtained fitted very well to a linear model. Damaged cells after α-particle irradiation show more difficulties in reaching mitosis than cells exposed to γ-rays. After α-particle irradiation the frequency of all the chromosome aberrations considered increased linearly with the dose, and α-particles clearly produced more dicentrics and extra chromosome pieces with respect to γ-rays. After α-particle exposure, the existence of extra chromosome fragments in PCC cells seems to be a good candidate for use as a biomarker for dose assessment. However, the observed frequencies of different types of chromosomal aberrations could be influenced by some methodological aspects; for this reason, and in order to avoid possible methodological bias, standardization of the technique will be desirable.
A new form of the calibration curve in radiochromic dosimetry. Properties and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamponi, Matteo, E-mail: mtamponi@aslsassari.it; B
Purpose: This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. Methods: The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer–Lambert law and a simple modeling of the film. The new calibration curve hasmore » been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. Results: The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. Conclusions: The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the landscape/portrait orientation, and the time after exposure. This form of the calibration curve could become even more useful with new optical digital devices using monochromatic light.« less
A new form of the calibration curve in radiochromic dosimetry. Properties and results.
Tamponi, Matteo; Bona, Rossana; Poggiu, Angela; Marini, Piergiorgio
2016-07-01
This work describes a new form of the calibration curve for radiochromic dosimetry that depends on one fit parameter. Some results are reported to show that the new curve performs as well as those previously used and, more importantly, significantly reduces the dependence on the lot of films, the film orientation on the scanner, and the time after exposure. The form of the response curve makes use of the net optical densities ratio against the dose and has been studied by means of the Beer-Lambert law and a simple modeling of the film. The new calibration curve has been applied to EBT3 films exposed at 6 and 15 MV energy beams of linear accelerators and read-out in transmission mode by means of a flatbed color scanner. Its performance has been compared to that of two established forms of the calibration curve, which use the optical density and the net optical density against the dose. Four series of measurements with four lots of EBT3 films were used to evaluate the precision, accuracy, and dependence on the time after exposure, orientation on the scanner and lot of films. The new calibration curve is roughly subject to the same dose uncertainty, about 2% (1 standard deviation), and has the same accuracy, about 1.5% (dose values between 50 and 450 cGy), as the other calibration curves when films of the same lot are used. Moreover, the new calibration curve, albeit obtained from only one lot of film, shows a good agreement with experimental data from all other lots of EBT3 films used, with an accuracy of about 2% and a relative dose precision of 2.4% (1 standard deviation). The agreement also holds for changes of the film orientation and of the time after exposure. The dose accuracy of this new form of the calibration curve is always equal to or better than those obtained from the two types of curves previously used. The use of the net optical densities ratio considerably reduces the dependence on the lot of films, the landscape/portrait orientation, and the time after exposure. This form of the calibration curve could become even more useful with new optical digital devices using monochromatic light.
Modelling the effects of pulse exposure of several PSII inhibitors on two algae.
Copin, Pierre-Jean; Chèvre, Nathalie
2015-10-01
Subsequent to crop application and during precipitation events, herbicides can reach surface waters in pulses of high concentrations. These pulses can exceed the Annual Average Environmental Quality Standards (AA-EQS), defined in the EU Water Framework Directive, which aims to protect the aquatic environment. A model was developed in a previous study to evaluate the effects of pulse exposure for the herbicide isoproturon on the alga Scenedesmus vacuolatus. In this study, the model was extended to other substances acting as photosystem II inhibitors and to other algae. The measured and predicted effects were equivalent when pulse exposure of atrazine and diuron were tested on S. vacuolatus. The results were consistent for isoproturon on the alga Pseudokirchneriella subcapitata. The model is thus suitable for the effect prediction of phenylureas and triazines and for the algae used: S. vacuolatus and P. subcapitata. The toxicity classification obtained from the dose-response curves (diuron>atrazine>isoproturon) was conserved for the pulse exposure scenarios modelled for S. vacuolatus. Toxicity was identical for isoproturon on the two algae when the dose-response curves were compared and also for the pulse exposure scenarios. Modelling the effects of any pulse scenario of photosystem II inhibitors on algae is therefore feasible and only requires the determination of the dose-response curves of the substance and growth rate of unexposed algae. It is crucial to detect the longest pulses when measurements of herbicide concentrations are performed in streams because the model showed that they principally affect the cell density inhibition of algae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of aviation noise on awakenings from sleep
DOT National Transportation Integrated Search
1997-06-01
The effect of aviation noise on sleep is a long-recognized concern of those interested in addressing the impacts of noise on people. In 1992, the Federal Interagency Committee on Noise (FICON) recommended an interim dose-response curve to predict the...
Hofford, Rebecca S; Chow, Jonathan J; Beckmann, Joshua S; Bardo, Michael T
2017-12-01
Opioid abuse is a major problem around the world. Identifying environmental factors that contribute to opioid abuse and addiction is necessary for decreasing this epidemic. In rodents, environmental enrichment protects against the development of low dose stimulant self-administration, but studies examining the effect of enrichment and isolation (compared to standard housing) on the development of intravenous opioid self-administration have not been conducted. The present study investigated the role of environmental enrichment on self-administration of the short-acting μ-opioid remifentanil. Rats were raised in an enriched condition (Enr), standard condition (Std), or isolated condition (Iso) beginning at 21 days of age and were trained to lever press for 1 or 3 μg/kg/infusion remifentanil in young adulthood. Acquisition of self-administration and responding during increasing fixed ratio requirements were assessed, and a dose-response curve was generated. In all phases, Enr rats lever pressed significantly less than Std and Iso rats, with Enr rats pressing between 9 and 40% the amount of Iso rats. Enr rats did not acquire remifentanil self-administration when trained with 1 μg/kg/infusion, did not increase responding over increasing FR when trained at either dose, and their dose-response curves were flattened compared to Std and Iso rats. When expressed as economic demand curves, Enr rats displayed a decrease in both essential value (higher α) and reinforcer intensity (Q 0 ) compared to Std and Iso rats at the 1 μg/kg/infusion training dose. Environmental enrichment reduced remifentanil intake, suggesting that social and environmental novelty may protect against opioid abuse.
Pharmacokinetic Correlates of the Effects of a Heroin Vaccine on Heroin Self-Administration in Rats
Raleigh, Michael D.; Pentel, Paul R.; LeSage, Mark G.
2014-01-01
The purpose of this study was to evaluate the effects of a morphine-conjugate vaccine (M-KLH) on the acquisition, maintenance, and reinstatement of heroin self-administration (HSA) in rats, and on heroin and metabolite distribution during heroin administration that approximated the self-administered dosing rate. Vaccination with M-KLH blocked heroin-primed reinstatement of heroin responding. Vaccination also decreased HSA at low heroin unit doses but produced a compensatory increase in heroin self-administration at high unit doses. Vaccination shifted the heroin dose-response curve to the right, indicating reduced heroin potency, and behavioral economic demand curve analysis further confirmed this effect. In a separate experiment heroin was administered at rates simulating heroin exposure during HSA. Heroin and its active metabolites, 6-acetylmorphine (6-AM) and morphine, were retained in plasma and metabolite concentrations were reduced in brain in vaccinated rats compared to controls. Reductions in 6-AM concentrations in brain after vaccination were consistent with the changes in HSA rates accompanying vaccination. These data provide evidence that 6-AM is the principal mediator of heroin reinforcement, and the principal target of the M-KLH vaccine, in this model. While heroin vaccines may have potential as therapies for heroin addiction, high antibody to drug ratios appear to be important for obtaining maximal efficacy. PMID:25536404
NASA Technical Reports Server (NTRS)
George, Kerry; Durante, Marco; Willingham, Veronica; Wu, Honglu; Yang, Tracy C.; Cucinotta, Francis A.
2003-01-01
Chromosome aberrations were investigated in human lymphocytes after in vitro exposure to 1H-, 3He-, 12C-, 40Ar-, 28Si-, 56Fe-, or 197Au-ion beams, with LET ranging from approximately 0.4-1393 keV/microm in the dose range of 0.075-3 Gy. Dose-response curves for chromosome exchanges, measured at the first mitosis postirradiation using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosomal damage with respect to low- or high-dose-rate gamma rays. Estimates of RBEmax values for mitotic spreads, which ranged from near 0.7 to 11.1 for total exchanges, increased with LET, reaching a maximum at about 150 keV/microm, and decreased with further increase in LET. RBEs for complex aberrations are undefined due to the lack of an initial slope for gamma rays. Additionally, the effect of mitotic delay on RBE values was investigated by measuring chromosome aberrations in interphase after chemically induced premature chromosome condensation (PCC), and values were up to threefold higher than for metaphase analysis.
Faddegon, Bruce A.; Shin, Jungwook; Castenada, Carlos M.; Ramos-Méndez, José; Daftari, Inder K.
2015-01-01
Purpose: To measure depth dose curves for a 67.5 ± 0.1 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Methods: Depth dose curves were measured in 2 beam lines. Protons in the raw beam line traversed a Ta scattering foil, 0.1016 or 0.381 mm thick, a secondary emission monitor comprised of thin Al foils, and a thin Kapton exit window. The beam energy and peak width and the composition and density of material traversed by the beam were known with sufficient accuracy to permit benchmark quality measurements. Diodes for charged particle dosimetry from two different manufacturers were used to scan the depth dose curves with 0.003 mm depth reproducibility in a water tank placed 300 mm from the exit window. Depth in water was determined with an uncertainty of 0.15 mm, including the uncertainty in the water equivalent depth of the sensitive volume of the detector. Parallel-plate chambers were used to verify the accuracy of the shape of the Bragg peak and the peak-to-plateau ratio measured with the diodes. The uncertainty in the measured peak-to-plateau ratio was 4%. Depth dose curves were also measured with a diode for a Bragg curve and treatment beam spread out Bragg peak (SOBP) on the beam line used for eye treatment. The measurements were compared to Monte Carlo simulation done with geant4 using topas. Results: The 80% dose at the distal side of the Bragg peak for the thinner foil was at 37.47 ± 0.11 mm (average of measurement with diodes from two different manufacturers), compared to the simulated value of 37.20 mm. The 80% dose for the thicker foil was at 35.08 ± 0.15 mm, compared to the simulated value of 34.90 mm. The measured peak-to-plateau ratio was within one standard deviation experimental uncertainty of the simulated result for the thinnest foil and two standard deviations for the thickest foil. It was necessary to include the collimation in the simulation, which had a more pronounced effect on the peak-to-plateau ratio for the thicker foil. The treatment beam, being unfocussed, had a broader Bragg peak than the raw beam. A 1.3 ± 0.1 MeV FWHM peak width in the energy distribution was used in the simulation to match the Bragg peak width. An additional 1.3–2.24 mm of water in the water column was required over the nominal values to match the measured depth penetration. Conclusions: The proton Bragg curve measured for the 0.1016 mm thick Ta foil provided the most accurate benchmark, having a low contribution of proton scatter from upstream of the water tank. The accuracy was 0.15% in measured beam energy and 0.3% in measured depth penetration at the Bragg peak. The depth of the distal edge of the Bragg peak in the simulation fell short of measurement, suggesting that the mean ionization potential of water is 2–5 eV higher than the 78 eV used in the stopping power calculation for the simulation. The eye treatment beam line depth dose curves provide validation of Monte Carlo simulation of a Bragg curve and SOBP with 4%/2 mm accuracy. PMID:26133619
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cifter, F; Dhou, S; Lewis, J
2015-06-15
Purpose: To calculate the effect of lack of backscatter from air and attenuation of bone on dose distributions in brachytherapy surface treatment of head. Existing treatment planning systems based on TG43 do not account for heterogeneities, and thus may overestimate the dose to the brain. While brachytherapy generally has rapid dose falloff, the dose to the deeper tissues (in this case, the brain) can become significant when treating large curved surfaces. Methods: Applicator geometries representing a range of clinical cases were simulated in MCNP5. An Ir-192 source was modeled using the energy spectrum presented by TG-43. The head phantom wasmore » modeled as a 7.5-cm radius water sphere, with a 7 -mm thick skull embedded 5-mm beneath the surface. Dose values were calculated at 20 points inside the head, in which 10 of them were on the central axis and the other 10 on the axis connecting the central of the phantom with the second to last source from the applicator edge. Results: Central and peripheral dose distributions for a range of applicator and head sizes are presented. The distance along the central axis at which the dose falls to 80% of the prescribed dose (D80) was 7 mm for a representative small applicator and 9 mm for a large applicator. Corresponding D50 and D30 for the same small applicator were 17 mm and 32 mm respectively. D50 and D30 for the larger applicator were 32 mm and 60 mm respectively. These results reflect the slower falloff expected for larger applicators on a curved surface. Conclusion: Our results can provide guidance for clinicians to calculate the dose reduction effect due to bone attenuation and the lack of backscatter from air to estimate the brain dose for the HDR treatments of surface lesions.« less
Effect of Single-dose Rifampin on the Pharmacokinetics of Warfarin in Healthy Volunteers
Frymoyer, A; Shugarts, S; Browne, M; Wu, AHB; Frassetto, L; Benet, LZ
2011-01-01
Based on in vitro rat and human hepatocyte uptake studies showing inhibition of warfarin uptake in the presence of the non-specific organic anion transporting polypeptide (OATP) inhibitor rifampin, a clinical study was conducted in 10 healthy volunteers. In a randomized, single-dose, two-period, crossover design, subjects received a 7.5 mg dose of warfarin alone or immediately following a 600 mg intravenous dose of rifampin. Rifampin did not significantly alter R- or S- warfarin area under the concentration-time curve (AUC) from 0–12 hours (period of hepatic OATP inhibition by rifampin) or Cmax (maximum plasma concentration). AUC0–∞ was decreased on rifampin days for both R- (25% reduction; p < 0.001) and S-warfarin (15% reduction; p < 0.05). No differences were seen on the area under the INR-time curve. Our study suggests hepatic uptake via OATPs may not be clinically important in the pharmacokinetics of warfarin. PMID:20703222
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, J; National Cancer Center, Goyang-si; Kim, M
Purpose: A fiber-optic radiation sensor using Cerenkov radiation (FOCR) has been widely studied for use as a dosimeter for proton therapeutic beam. We developed the FOCR, and it applied to patient-specific point dose measurement in order to evaluate the effectiveness of the FOCR system for proton therapy QA. Methods: Calibration of FOCR was performed with an ionization chamber whose absolute doses were determined according to the IAEA TRS-398 protocol. To determine the calibration curve, the FOCR was irradiated perpendicularly to the proton beam at the 13 dose levels steps. We selected five actual patient treatment plans performed at proton therapymore » center and compared the resulting FOCR measurements with the ionization chamber measurements. Results: The Cerenkov light yield of the FOCR increases linearly with as the dose measured using the ionization chamber increases from 0 cGy to 500 cGy. The results indicate that the fitting curve is linear, suggesting that dose measurement based on the light yield of the FOCR is possible. The results of proton radiation dose QA performed using the FOCR for 10 proton fields and five patients are good agreement with an ionization chamber. Conclusion: We carried out the patient QA using the FOCR for proton therapeutic beam and evaluated the effectiveness of the FOCR as a proton therapy QA tool. Our results indicate that the FOCR is suitable for use in patient QA of clinical proton beams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane
Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol wasmore » applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.« less
Tang, Leilei; Guérard, Melanie; Zeller, Andreas
2014-01-01
Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.
Justinová, Zuzana; Ferré, Sergi; Redhi, Godfrey H; Mascia, Paola; Stroik, Jessica; Quarta, Davide; Yasar, Sevil; Müller, Christa E; Franco, Rafael; Goldberg, Steven R
2011-07-01
Several recent studies suggest functional and molecular interactions between striatal adenosine A(2A) and cannabinoid CB(1) receptors. Here, we demonstrate that A(2A) receptors selectively modulate reinforcing effects of cannabinoids. We studied effects of A(2A) receptor blockade on the reinforcing effects of delta-9-tetrahydrocannabinol (THC) and the endogenous CB(1) receptor ligand anandamide under a fixed-ratio schedule of intravenous drug injection in squirrel monkeys. A low dose of the selective adenosine A(2A) receptor antagonist MSX-3 (1 mg/kg) caused downward shifts of THC and anandamide dose-response curves. In contrast, a higher dose of MSX-3 (3 mg/kg) shifted THC and anandamide dose-response curves to the left. MSX-3 did not modify cocaine or food pellet self-administration. Also, MSX-3 neither promoted reinstatement of extinguished drug-seeking behavior nor altered reinstatement of drug-seeking behavior by non-contingent priming injections of THC. Finally, using in vivo microdialysis in freely-moving rats, a behaviorally active dose of MSX-3 significantly counteracted THC-induced, but not cocaine-induced, increases in extracellular dopamine levels in the nucleus accumbens shell. The significant and selective results obtained with the lower dose of MSX-3 suggest that adenosine A(2A) antagonists acting preferentially at presynaptic A(2A) receptors might selectively reduce reinforcing effects of cannabinoids that lead to their abuse. However, the appearance of potentiating rather than suppressing effects on cannabinoid reinforcement at the higher dose of MSX-3 would likely preclude the use of such a compound as a medication for cannabis abuse. Adenosine A(2A) antagonists with more selectivity for presynaptic versus postsynaptic receptors could be potential medications for treatment of cannabis abuse. Addiction Biology © 2010 Society for the Study of Addiction. No claim to original US government works.
Thermoluminescence glow-curve characteristics of LiF phosphors at high doses of gamma radiation
NASA Astrophysics Data System (ADS)
Benny, P. G.; Khader, S. A.; Sarma, K. S. S.
2013-05-01
High doses of ionising radiation are becoming increasingly common for radiation-processing applications of various medical, agricultural and polymer products using gamma and electron beams. The objective of this work was to study thermoluminescence (TL) glow-curve characteristics of commonly used commercial LiF TL phosphors at high doses of radiation with a view to use them in dosimetry of radiation-processing applications. The TL properties of TLD 100 and 700 phosphors, procured from the Thermo-Scientific (previously Harshaw) company, have been studied in the dose range of 1-60 kGy. The shift in glow peaks was observed in this dose range. Integral TL responses of TLD 100 and TLD 700 were found to decrease as a linear function of dose in the range of 5-50 kGy. The paper describes initial results related to the glow-curve characteristics of these phosphors.
Feltus, A; Ramanathan, S; Daunert, S
1997-12-01
Biotinylated recombinant aequorin was used in the development of a heterogeneous bioluminescence binding assay for biotin. This assay is based on a competition between a biotinylated aequorin conjugate and biotin for the binding sites of avidin immobilized on solid particles. Dose-response curves were obtained that relate solid-phase aequorin activity to the concentration of biotin. Under certain experimental conditions these curves were biphasic; i.e., as the biotin concentration increased, the solid-phase aequorin activity first increased reaching a maximum and then decreased at higher biotin concentrations. This "hook" effect was observed with four different types of immobilization supports. The effect was more pronounced when low concentrations of aequorin-biotin conjugate were used, and diminished at a high conjugate concentration. This behavior indicates a possible positive cooperativity in the interaction between the immobilized avidin and biotin. Scatchard plot analysis was also consistent with a positive cooperativity mechanism. By using the ascending portion of the dose-response curve, the detection limit of the assay for biotin was 1 x 10(-15) M (100 zmol of biotin in the sample). Copyright 1997 Academic Press.
Effect of antacid on the bioavailabiity of lithium carbonate.
Goode, D L; Newton, D W; Ueda, C T; Wilson, J E; Wulf, B G; Kafonek, D
1984-01-01
The effect of an antacid on the bioavailability of lithium carbonate was determined in six healthy men in a crossover study. The volunteers were given single 300-mg doses of lithium carbonate alone and with 30 ml of an antacid containing aluminum and magnesium hydroxides with simethicone. Blood samples were collected at various times for 0-24 hours after each dose. The plasma samples were analyzed for lithium using a spectrophotometer, and bioavailability variables were calculated from plasma lithium concentration-time curves. There were no significant differences in peak plasma lithium concentration, time to peak concentration, area under the concentration-time curve from 0 to 24 hours, first-order absorption rate constant, and first-order elimination rate constant between the two treatments. Concurrent administration of antacids and lithium carbonate should not affect lithium blood concentrations.
Belz, G G; Essig, J; Kleinbloesem, C H; Hoogkamer, J F; Wiegand, U W; Wellstein, A
1988-01-01
1. The pharmacokinetics, hormonal and haemodynamic responses at rest and during challenges with angiotensin I (blood pressure), isoprenaline (heart rate), and noradrenaline (blood pressure) were investigated in six healthy male volunteers following a 1 week treatment with placebo, propranolol (120 mg day-1), cilazapril (2, 5 mg day-1), and a combination of both in a double-blind cross-over design. 2. Both drugs reduced systolic and diastolic blood pressure by about 7 mm Hg as compared with placebo. After coadministration, this drop in blood pressure was doubled and lasted longer than after the administration of the individual components. 3. Following cilazapril, a pronounced increase in plasma renin activity (PRA) was found (factor approximately 10 at drug peak concentrations). Coadministration of both drugs resulted only in a moderate increase in the PRA (factor approximately 3). Significant changes in plasma catecholamines were not observed. 4. Propranolol shifted the isoprenaline dose-effect curve to the right, and cilazapril that of angiotensin I, irrespective of the presence of the other drug. Cilazapril tended to shift the noradrenaline dose-effect curve somewhat to the right. 5. The gain of the baroreceptor reflex (angiotensin-stimulation) was not influenced by cilazapril but was lowered by propranolol, irrespective of the presence of the ACE inhibitor. 6. Except for a statistically not significant decrease in the peak concentrations of each drug during the combined therapy, a pharmacokinetic interaction between the two drugs was not found. PMID:2974715
He, Pengbo; Li, Qiang; Liu, Xinguo; Dai, Zhongying; Zhao, Ting; Fu, Tingyan; Shen, Guosheng; Ma, Yuanyuan; Huang, Qiyan; Yan, Yuanlin
2014-01-01
Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standard BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose rate and improved overall treatment precision were observed compared to conventional free breathing-based, respiratory-gated irradiation. Because breathing guidance curves could be established based on the respective average respiratory period and amplitude for each patient, it may be easier for patients to cooperate using this technique. PMID:25370622
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Pengbo; Ma, Yuanyuan; Huang, Qiyan
Purpose: To efficiently deliver respiratory-gated radiation during synchrotron-based pulsed heavy-ion radiotherapy, a novel respiratory guidance method combining a personalized audio-visual biofeedback (BFB) system, breath hold (BH), and synchrotron-based gating was designed to help patients synchronize their respiratory patterns with synchrotron pulses and to overcome typical limitations such as low efficiency, residual motion, and discomfort. Methods: In-house software was developed to acquire body surface marker positions and display BFB, gating signals, and real-time beam profiles on a LED screen. Patients were prompted to perform short BHs or short deep breath holds (SDBH) with the aid of BFB following a personalized standardmore » BH/SDBH (stBH/stSDBH) guiding curve or their own representative BH/SDBH (reBH/reSDBH) guiding curve. A practical simulation was performed for a group of 15 volunteers to evaluate the feasibility and effectiveness of this method. Effective dose rates (EDRs), mean absolute errors between the guiding curves and the measured curves, and mean absolute deviations of the measured curves were obtained within 10%–50% duty cycles (DCs) that were synchronized with the synchrotron’s flat-top phase. Results: All maneuvers for an individual volunteer took approximately half an hour, and no one experienced discomfort during the maneuvers. Using the respiratory guidance methods, the magnitude of residual motion was almost ten times less than during nongated irradiation, and increases in the average effective dose rate by factors of 2.39–4.65, 2.39–4.59, 1.73–3.50, and 1.73–3.55 for the stBH, reBH, stSDBH, and reSDBH guiding maneuvers, respectively, were observed in contrast with conventional free breathing-based gated irradiation, depending on the respiratory-gated duty cycle settings. Conclusions: The proposed respiratory guidance method with personalized BFB was confirmed to be feasible in a group of volunteers. Increased effective dose rate and improved overall treatment precision were observed compared to conventional free breathing-based, respiratory-gated irradiation. Because breathing guidance curves could be established based on the respective average respiratory period and amplitude for each patient, it may be easier for patients to cooperate using this technique.« less
Cotler, S; Chen, S; Macasieb, T; Colburn, W A
1984-01-01
Oral, intraportal, iv doses of isotretinoin were administered to dogs before and after bile duct cannulation to determine the effect of route of administration and biliary excretion on the pharmacokinetics of this compound. Blood and bile samples were collected and analyzed for isotretinoin using a gradient elution high performance liquid chromatographic method. Blood concentrations were decreased after bile duct cannulation. Decreases in the area under the blood concentration-time curves were greatest following oral dosing, intermediate following intraportal dosing, and least following iv dosing. These results indicate that biliary excretion impacts on the blood profile of isotretinoin as a function of route of administration and that the differences are the result of differences in first pass clearance. In addition, the apparent bioavailability of isotretinoin was 14% in bile cannulated dogs and 54% in the intact (uncannulated) animals, suggesting that enterohepatic recycling of isotretinoin may contribute to its oral bioavailability. Isotretinoin was excreted in the bile; predominantly as a conjugate. The largest percentage (approximately 27%) of the dose was excreted in the bile following intraportal infusion, an intermediate percentage (approximately 8.5%) after iv dosing, and the smallest percentage (approximately 3.3%) after oral dosing. When the amount of drug excreted in bile as intact drug and conjugate is divided by the area under the systemic blood concentration--time curve, the resulting apparent biliary clearances following oral and intraportal administration were almost identical whereas the apparent biliary clearance after iv dosing was substantially less.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Chen, Wei; He, Baoping
The experimental tests of dose rate and annealing effects on array charge-coupled devices (CCDs) are presented. The saturation output voltage (V{sub S}) versus the total dose at the dose rates of 0.01, 0.1, 1.0, 10.0 and 50 rad(Si)/s are compared. Annealing tests are performed to eliminate the time-dependent effects. The V{sub S} degradation levels depend on the dose rates. The V{sub S} degradation mechanism induced by dose rate and annealing effects is analyzed. The V{sub S} at 20 krad(Si) with the dose rate of 0.03 rad(Si)/s are supplemented to assure the degradation curves between the dose rates of 0.1 andmore » 0.01 rad(Si)/s. The CCDs are divided into two groups, with one group biased and the other unbiased during {sup 60}Co γ radiation. The V{sub S} degradation levels of the biased CCDs during radiation are more severe than that of the unbiased CCDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underbrink, A.G.; Woch, B.
1980-11-01
Experimental evidence was found that the oxygen enhancement ratio (OER) for pink somatic mutations in the stamen hairs of Tradescantia clone 02 appears to reach unity at X-ray doses of 2 to 3 rad. There is also a small segment on the dose-response curves from about 3 to 10 rad where the OER appears to be dose-dependent. At higher doses the aerated and hypoxic curves are parallel, and the OER is 3.2 up to doses where the mutation frequency reaches a plateau.
Houghton, Jan Laws; Strogatz, David S; Torosoff, Mikhail T; Smith, Vivienne E; Fein, Steven A; Kuhner, Patricia A; Philbin, Edward F; Carr, Albert A
2003-09-01
Excess coronary heart disease morbidity and mortality among African Americans remains an important yet unexplained public health problem. We hypothesized that adverse outcome is in part due to intrinsic or acquired abnormalities in coronary endothelial function and vasoreactivity. We compared dose-response curves relating changes in coronary blood flow and epicardial diameter to graded infusions of acetylcholine in 50 African American and 65 white subjects with hypertensive left ventricular hypertrophy (LVH) and normal coronary arteries. These groups were similar for age, body mass index, mean arterial pressure, and indexed left ventricular mass. The same protocol was conducted in 24 normotensive African American and 56 similar white subjects. We found significant depression in the coronary blood flow dose-response curve relation among African Americans when compared with white subjects with similar LVH (P<0.03). Racial differences were observed at all doses of acetylcholine but were less precisely estimated at the highest dose. The same testing among normotensive subjects revealed similar dose-response curves with no significant effect of race. Qualitatively similar results were found with respect to coronary diameter. Adenosine responses, a measure of endothelium-independent function, were similar after partitioning by LVH. Our study demonstrates that there are racial differences in sensitivity of coronary arteries to acetylcholine-stimulated relaxation among those with LVH. These results provide a mechanism whereby racial differences in coronary vasoreactivity might contribute to adverse coronary heart disease outcome among African Americans, a group in whom LVH is prevalent.
A dose of nature: Tree cover, stress reduction, and gender differences
Bin Jiang; Chun-Yen Chang; William C. Sullivan
2014-01-01
Although it is well established that exposure to nearby nature can help reduce stress in individuals, the shape of the dose-response curve is entirely unclear. To establish this dose-response curve, we recruited 160 individuals for a laboratory experiment. Participants engaged in the Trier Social Stress Test (TSST) to induce psychological stress, and were then randomly...
Can reduction of uncertainties in cervix cancer brachytherapy potentially improve clinical outcome?
Nesvacil, Nicole; Tanderup, Kari; Lindegaard, Jacob C; Pötter, Richard; Kirisits, Christian
2016-09-01
The aim of this study was to quantify the impact of different types and magnitudes of dosimetric uncertainties in cervix cancer brachytherapy (BT) on tumour control probability (TCP) and normal tissue complication probability (NTCP) curves. A dose-response simulation study was based on systematic and random dose uncertainties and TCP/NTCP models for CTV and rectum. Large patient cohorts were simulated assuming different levels of dosimetric uncertainties. TCP and NTCP were computed, based on the planned doses, the simulated dose uncertainty, and an underlying TCP/NTCP model. Systematic uncertainties of 3-20% and random uncertainties with a 5-30% standard deviation per BT fraction were analysed. Systematic dose uncertainties of 5% lead to a 1% decrease/increase of TCP/NTCP, while random uncertainties of 10% had negligible impact on the dose-response curve at clinically relevant dose levels for target and OAR. Random OAR dose uncertainties of 30% resulted in an NTCP increase of 3-4% for planned doses of 70-80Gy EQD2. TCP is robust to dosimetric uncertainties when dose prescription is in the more flat region of the dose-response curve at doses >75Gy. For OARs, improved clinical outcome is expected by reduction of uncertainties via sophisticated dose delivery and treatment verification. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ranitidine Can Potentiate The Prokinetic Effect Of Itopride At Low Doses- An In Vitro Study.
Butt, Aroosa Ishtiaq; Khan, Bushra Tayyaba; Khan, Asma; Khan, Qamar-Uz-Zaman
2017-01-01
Gastroparesis and GERD occur concomitantly in 40 percent of the cases. Prokinetic drugs and acid blockers are employed as the main treatment modality. Ranitidine is an acid blocker with additional prokinetic activity and Itopride is a known prokinetic drug. This study was designed to observe the synergistic potentiating prokinetic effect of Ranitidine on itopride on isolated duodenum of rabbits. Ranitidine (10-5-10-3) and itopride (10-6-10-5) were added in increasing concentrations to isolated duodenum of rabbits and contractions were recorded on PowerLab Data acquisition unit AHK/214. Cumulative dose response curves were constructed. The potentiating prokinetic effect of Ranitidine on itopride was seen by using a fixed dose of ranitidine and cumulatively enhancing doses of itopride on iWorx. Ranitidine and itopride produced a dose dependent reversible contraction of the isolated tissue of rabbits with ranitidine showing a max response of 0.124mV and itopride showing a maximum response of 0.131mV. Ranitidine was able to potentiate the prokinetic effect of itopride at low doses but at high dose the effect began to wane off. Ranitidine and itopride produce a statistically significant synergistic potentiating prokinetic effect at low doses in vitro.
SU-G-BRB-14: Uncertainty of Radiochromic Film Based Relative Dose Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devic, S; Tomic, N; DeBlois, F
2016-06-15
Purpose: Due to inherently non-linear dose response, measurement of relative dose distribution with radiochromic film requires measurement of absolute dose using a calibration curve following previously established reference dosimetry protocol. On the other hand, a functional form that converts the inherently non-linear dose response curve of the radiochromic film dosimetry system into linear one has been proposed recently [Devic et al, Med. Phys. 39 4850–4857 (2012)]. However, there is a question what would be the uncertainty of such measured relative dose. Methods: If the relative dose distribution is determined going through the reference dosimetry system (conversion of the response bymore » using calibration curve into absolute dose) the total uncertainty of such determined relative dose will be calculated by summing in quadrature total uncertainties of doses measured at a given and at the reference point. On the other hand, if the relative dose is determined using linearization method, the new response variable is calculated as ζ=a(netOD)n/ln(netOD). In this case, the total uncertainty in relative dose will be calculated by summing in quadrature uncertainties for a new response function (σζ) for a given and the reference point. Results: Except at very low doses, where the measurement uncertainty dominates, the total relative dose uncertainty is less than 1% for the linear response method as compared to almost 2% uncertainty level for the reference dosimetry method. The result is not surprising having in mind that the total uncertainty of the reference dose method is dominated by the fitting uncertainty, which is mitigated in the case of linearization method. Conclusion: Linearization of the radiochromic film dose response provides a convenient and a more precise method for relative dose measurements as it does not require reference dosimetry and creation of calibration curve. However, the linearity of the newly introduced function must be verified. Dave Lewis is inventor and runs a consulting company for radiochromic films.« less
Thomas, P A; Tracy, B L; Ping, T; Wickstrom, M; Sidhu, N; Hiebert, L
2003-02-01
Alpha-radiation from polonium-210 ((210)Po) can elevate background radiation dose by an order of magnitude in people consuming large quantities of meat and seafood, particularly caribou and reindeer. Because up to 50% of the ingested (210)Po body burden is initially found in the blood, a primary target for the short range alpha-particles is the endothelial cells lining the blood vessels. This study examined the relative biological effectiveness (RBE) of (210)Po alpha-particles versus 250 kVp X-rays in producing injury to cultured bovine aortic endothelial cells. Radiation effects on cells were measured in four different ways: the percentage viable cells by trypan blue dye exclusion, the number of live cells, the lactate dehydrogenase (LDH) release to medium and the ability to form colonies (clonogenic survival). Comparison of dose-response curves yielded RBE values of 13.1+/-2.5 (SEM) for cell viability, 10.3+/-1.0 for live cell number and 11.1+/-3.0 for LDH activity. The RBE values for clonogenic survival were 14.0+/-1.0 based on the ratio of the initial slopes of the dose-response curves and 13.1, 9.9 and 7.7 for 50, 10 and 1% survival rate, respectively. At X-ray doses <0.25 Gy, a pronounced stimulatory effect on proliferation was noted. Exposure to (210)Po alpha-particles was seven to 14 times more effective than X-ray exposure in causing endothelial cell damage.
EFFECT OF FOOD TRAINING AND TRAINING DOSE ON NICOTINE SELF-ADMINISTRATION IN RATS
Garcia, Kristine L.P.; Lê, Anh Dzung; Tyndale, Rachel F.
2014-01-01
Few studies investigate factors that influence acquisition in nicotine self-administration (NSA), such as food training and training dose. Most have utilized peak doses along nicotine’s dose-response curve (15 and 30 μg/kg) that establish NSA in the majority of animals. To investigate the specific and combined effects of training and dose on NSA acquisition, separate and head-to head experiments using food training (FT) or spontaneous acquisition (SP) at multiple doses on the ascending limb of the dose-response curve were tested. First, rats underwent FT or SP under fixed ratio (FR1 and FR2) and progressive ratio (PR) schedules using 7.5–30 μg/kg nicotine. More rats acquired NSA with FT vs. SP at 3.75 μg/kg (56% vs. 38%) and 7.5 μg/kg (88% vs. 40%, p<0.05) and FT rats responded higher under PR. Based on these findings, rats then underwent identical NSA acquisition and PR (with and without nicotine), extinction and reinstatement induced by cue exposure and nicotine in a head-to-head comparison of FT and SP using 7.5 μg/kg. Acquisition differences were replicated: 100% FT and 60% SP rats met criteria (p<0.05). Without nicotine (cue only), no FT rats and 8% SP rats met criteria. FR and PR responding, extinction, and cue and nicotine-induced reinstatement did not differ between FT and SP. FT versus SP enhances acquisition at lower nicotine doses but does not alter subsequent behaviors. Lower doses can reinforce NSA and be used, in the absence of FT, to study influences on acquisition more closely modelling the initial phases of human smoking. PMID:25101539
Effect of food training and training dose on nicotine self-administration in rats.
Garcia, Kristine L P; Lê, Anh Dzung; Tyndale, Rachel F
2014-11-01
Few studies investigate factors that influence acquisition in nicotine self-administration (NSA), such as food training and training dose. Most have utilized peak doses along nicotine's dose-response curve (15 and 30μg/kg) that establish NSA in the majority of animals. To investigate the specific and combined effects of training and dose on NSA acquisition, separate and head-to-head experiments using food training (FT) or spontaneous acquisition (SP) at multiple doses on the ascending limb of the dose-response curve were tested. First, rats underwent FT or SP under fixed ratio (FR1 and FR2) and progressive ratio (PR) schedules using 7.5-30μg/kg nicotine. More rats acquired NSA with FT vs. SP at 3.75μg/kg (56% vs. 38%) and 7.5μg/kg (88% vs. 40%, p<0.05) and FT rats responded higher under PR. Based on these findings, rats then underwent identical NSA acquisition and PR (with and without nicotine), extinction and reinstatement induced by cue exposure and nicotine in a head-to-head comparison of FT and SP using 7.5μg/kg. Acquisition differences were replicated: 100% FT and 60% SP rats met criteria (p<0.05). Without nicotine (cue only), no FT rats and 8% SP rats met criteria. FR and PR responding, extinction, and cue and nicotine-induced reinstatement did not differ between FT and SP. FT versus SP enhances acquisition at lower nicotine doses but does not alter subsequent behaviours. Lower doses can reinforce NSA and be used, in the absence of FT, to study influences on acquisition more closely modelling the initial phases of human smoking. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulation-Based Sodium Thiosulfate Dosing Strategies for the Treatment of Calciphylaxis
Singh, Rajendra Pratap; Derendorf, Hartmut
2011-01-01
Summary Background and objectives Calciphylaxis remains a poorly understood life-threatening disorder with limited therapeutic options. Sodium thiosulfate (STS) has reported efficacy, thought to be because solubilizing calcium deposits promote clearance by hemodialysis (HD). Lack of rigorous pharmacokinetic studies makes it problematic for determining proper STS dosing given the expanding range of dialysis prescriptions and intensities. Design, setting, participants, & measurements The purpose of this study was to determine the dosing strategies for STS during different dialysis regimens. Given reported successes using an empiric 25 g, intravenous, 3 times per week after HD, simulations were performed to predict dosing guidelines for alternative, more or less intense dialysis to produce equivalent area under the curve drug exposure. The modeled prescriptions varied HD time from 12 to 40 h/wk over three to six sessions (Qb 200 to 400 ml/min, Qd 500 to 800 ml/min), and continuous venovenous hemodialysis at low flow rates (Qb 100 to 200 ml/min, Qd 35 to 50 ml/min), using high-flux polysulfone hemofilters. Results Simulations showed a marked variation in STS doses depending on HD frequency and duration. Blood and dialysate flows have a less prominent effect. Assuming no residual renal function, HD prescription permutations caused the dose to vary from 72 to 245 g/wk (70-kg adult), and the simulations provide specific guidelines for clinicians. Conclusions Based on the success reported for one STS dosing regimen and assuming area under the curve exposure of STS is proportional to its effect, pharmacokinetic simulations can be used to calculate the dose for alternative, higher or lower intensity dialysis regimens. These strategies are imperative to assure adequate treatment for this mortal disease, as well as to avoid toxicity from excess dosing. PMID:21441129
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
Investigations on the use of Low Level Laser Therapy (LLLT) for wound healing especially with the red laser light have demonstrated its pro-healing potential on a variety of pre-clinical and surgical wounds. However, until now, in LLLT the effect of multiple exposure of low dose laser irradiation on acute wound healing on well-designed pre-clinical model is not much explored. The present study aimed to investigate the effect of multiple exposure of low dose Helium Neon laser on healing progression of full thickness excision wounds in Swiss albino mice. Further, the efficacy of the multiple exposure of low dose laser irradiation was compared with the single exposure of optimum dose. Full thickness excision wounds (circular) of 15 mm diameter were created, and subsequently illuminated with the multiple exposures (1, 2, 3, 4 and 5 exposure/ week until healing) of He-Ne (632.8 nm, 4.02 mWcm-2) laser at 0.5 Jcm-2 along with single exposure of optimum laser dose (2 J/cm-2) and un-illuminated controls. Classical biophysical parameters such as contraction kinetics, area under the curve and the mean healing time were documented as the assessment parameters to examine the efficacy of multiple exposures with low level laser dose. Experimental findings substantiated that either single or multiple exposures of 0.5 J/cm2 failed to produce any detectable alterations on wound contraction, area under the curve and mean healing time compared to single exposure of optimum dose (2 Jcm-2) and un-illuminated controls. Single exposure of optimum, laser dose was found to be ideal for acute wound healing.
Barateau, Anaïs; Garlopeau, Christopher; Cugny, Audrey; De Figueiredo, Bénédicte Henriques; Dupin, Charles; Caron, Jérôme; Antoine, Mikaël
2015-03-01
We aimed to identify the most accurate combination of phantom and protocol for image value to density table (IVDT) on volume-modulated arc therapy (VMAT) dose calculation based on kV-Cone-beam CT imaging, for head and neck (H&N) and pelvic localizations. Three phantoms (Catphan(®)600, CIRS(®)062M (inner phantom for head and outer phantom for body), and TomoTherapy(®) "Cheese" phantom) were used to create IVDT curves of CBCT systems with two different CBCT protocols (Standard-dose Head and Standard Pelvis). Hounsfield Unit (HU) time stability and repeatability for a single On-Board-Imager (OBI) and compatibility of two distinct devices were assessed with Catphan(®)600. Images from the anthropomorphic phantom CIRS ATOM(®) for both CT and CBCT modalities were used for VMAT dose calculation from different IVDT curves. Dosimetric indices from CT and CBCT imaging were compared. IVDT curves from CBCT images were highly different depending on phantom used (up to 1000 HU for high densities) and protocol applied (up to 200 HU for high densities). HU time stability was verified over seven weeks. A maximum difference of 3% on the dose calculation indices studied was found between CT and CBCT VMAT dose calculation across the two localizations using appropriate IVDT curves. One IVDT curve per localization can be established with a bi-monthly verification of IVDT-CBCT. The IVDT-CBCTCIRS-Head phantom with the Standard-dose Head protocol was the most accurate combination for dose calculation on H&N CBCT images. For pelvic localizations, the IVDT-CBCTCheese established with the Standard Pelvis protocol provided the best accuracy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Nasonova, E A; Shmakova, N L; Komova, O V; Mel'nikova, L A; Fadeeva, T A; Krasavin, E A
2006-01-01
The induction of chromosome damage by the exposure to low doses of gamma-(60)Co and accelerated carbon ions 12C in peripheral blood lymphocytes of different donors was investigated. The complex nonlinear dose-effect dependence at the range from 1 to 50-70 cGy was observed. At the doses of 1-5 cGy the cells show the highest radiosensitivity (hypersensitivity), mainly due to the chromatid-type aberration, which is typical to those spontaneously generated in the cell and believed not to be induced by the irradiation of unstimulated lymphocytes according to the classical theory of aberration formation. With the increasing dose the frequency of the aberrations decreases significantly, in some cases up to the control level. At the doses over 50-70 cGy the dose-effect curve becomes linear. The possible role of the oxidative stress, caused by radiation-induced increase in mitochondrial reactive oxigen species (ROS) release in the phenomenon of hypersensitivity (HS) at low doses is discussed as well as cytoprotective mechanisms causing the increased radioresistance at higher doses.
Moser, V C; Casey, M; Hamm, A; Carter, W H; Simmons, J E; Gennings, C
2005-07-01
Environmental exposures generally involve chemical mixtures instead of single chemicals. Statistical models such as the fixed-ratio ray design, wherein the mixing ratio (proportions) of the chemicals is fixed across increasing mixture doses, allows for the detection and characterization of interactions among the chemicals. In this study, we tested for interaction(s) in a mixture of five organophosphorus (OP) pesticides (chlorpyrifos, diazinon, dimethoate, acephate, and malathion). The ratio of the five pesticides (full ray) reflected the relative dietary exposure estimates of the general population as projected by the US EPA Dietary Exposure Evaluation Model (DEEM). A second mixture was tested using the same dose levels of all pesticides, but excluding malathion (reduced ray). The experimental approach first required characterization of dose-response curves for the individual OPs to build a dose-additivity model. A series of behavioral measures were evaluated in adult male Long-Evans rats at the time of peak effect following a single oral dose, and then tissues were collected for measurement of cholinesterase (ChE) activity. Neurochemical (blood and brain cholinesterase [ChE] activity) and behavioral (motor activity, gait score, tail-pinch response score) endpoints were evaluated statistically for evidence of additivity. The additivity model constructed from the single chemical data was used to predict the effects of the pesticide mixture along the full ray (10-450 mg/kg) and the reduced ray (1.75-78.8 mg/kg). The experimental mixture data were also modeled and statistically compared to the additivity models. Analysis of the 5-OP mixture (the full ray) revealed significant deviation from additivity for all endpoints except tail-pinch response. Greater-than-additive responses (synergism) were observed at the lower doses of the 5-OP mixture, which contained non-effective dose levels of each of the components. The predicted effective doses (ED20, ED50) were about half that predicted by additivity, and for brain ChE and motor activity, there was a threshold shift in the dose-response curves. For the brain ChE and motor activity, there was no difference between the full (5-OP mixture) and reduced (4-OP mixture) rays, indicating that malathion did not influence the non-additivity. While the reduced ray for blood ChE showed greater deviation from additivity without malathion in the mixture, the non-additivity observed for the gait score was reversed when malathion was removed. Thus, greater-than-additive interactions were detected for both the full and reduced ray mixtures, and the role of malathion in the interactions varied depending on the endpoint. In all cases, the deviations from additivity occurred at the lower end of the dose-response curves.
Matton, A.; Engelborghs, S.; Bollengier, F.; Finné, E.; Vanhaeist, L.
1996-01-01
1. The effect of the nootropic drug, piracetam on stress- and subsequent morphine-induced prolactin (PRL) secretion was investigated in vivo in male rats, by use of a stress-free blood sampling and drug administration method by means of a permanent indwelling catheter in the right jugular vein. 2. Four doses of piracetam were tested (20, 100, 200 and 400 mg kg-1), being given intraperitoneally 1 h before blood sampling; control rats received saline instead. After a first blood sample, rats were subjected to immobilization stress and received morphine, 6 mg kg-1, 90 min later. 3. Piracetam had no effect on basal plasma PRL concentration. 4. While in the non-piracetam-treated rats, stress produced a significant rise in plasma PRL concentration, in the piracetam-pretreated rats PRL peaks were attenuated, especially in the group given 100 mg kg-1 piracetam, where plasma PRL concentration was not significantly different from basal values. The dose-response relationship showed a U-shaped curve; the smallest dose had a minor inhibitory effect and the highest dose had no further effect on the PRL rise. 5. In unrestrained rats, morphine led to a significant elevation of plasma PRL concentration. After the application of immobilization stress it lost its ability to raise plasma PRL concentration in the control rats, but not in the piracetam-treated rats. This tolerance was overcome by piracetam in a significant manner but with a reversed dose-response curve; i.e. the smaller the dose of piracetam, the higher the subsequent morphine-induced PRL peak. 6. There is no simple explanation for the mechanism by which piracetam induces these contradictory effects. Interference with the excitatory amino acid system, which is also involved in opiate action, is proposed speculatively as a possible mediator of the effects of piracetam. PMID:8821540
Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.
Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin
2017-12-01
Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared with the low dose FDK reconstruction. The proposed method is expected to reduce the radiation dose by a factor of 8 for CBCT, considering the voted strongly discriminated low contrast tissues.
2010-04-01
of radiolabeling fusion proteins without the denaturing effects coincident with oxidative radio-iodination associated with the chloramine T method...organ PS product = [(%ID/g)/AUC]*1000 Reportable Outcomes (1) The plasma concentration decay curve for AGT-185 is shown in Figure 1. The % of...injected dose (ID)/mL decreases rapidly in plasma following IV injection. This plasma decay curve was fit to the bi-exponential equation described above
Barquinero, J F; Stephan, G; Schmid, E
2004-02-01
To evaluate by the fluorescent in-situ hybridization (FISH) technique the dose-response and intercellular distribution of alpha-particle-induced chromosome aberrations. In particular, the validity of using the yield of characteristic types of chromosome abnormalities in stable cells as quantitative indicators for retrospective dose reconstruction has been evaluated. Monolayers of human peripheral lymphocytes were exposed at doses from 0.02 to 1 Gy to alpha-particles emitted from a source of americium-241. The most probable energy of the alpha-particles entering the cells was 2.7 MeV. FISH painting was performed using DNA probes for chromosomes 2, 4 and 8 in combination with a pan-centromeric probe. In complete first-division cells, identified by harlequin staining, aberrations involving painted target chromosomal material were recorded as well as aberrations involving only unpainted chromosomal material. In total, the percentage of complex aberrations was about 35% and no dose dependence was observed. When complex-type exchanges were reduced to simple base types, the different cell distributions were clearly over-dispersed, and the linear coefficients of the dose-effect curves for translocations were significantly higher than for dicentrics. For past dose reconstruction, only a few complex aberrations were in stable cells. The linear coefficient obtained for transmissible aberrations in stable cells was more than seven times lower than that obtained in all analysed cells, i.e. including unstable cells. FISH-based analysis of complex rearrangements allows discrimination between partial-body exposures to low-linear energy transfer radiation and high-linear energy transfer exposures. In assessing past or chronic exposure to alpha-particles, the use of a dose-effect curve obtained by FISH-based translocation data, which had not excluded data determined in unstable cells, would underestimate the dose. Insertions are ineffective biomarkers because their frequency is too low.
Influence of repetitive UVA stimulation on skin protection capacity and antioxidant efficacy.
Rohr, Mathias; Rieger, Ingrid; Jain, Anil; Schrader, Andreas
2011-01-01
Topically applied antioxidants (AOs) are widely used in cosmetic products - especially in day and sun care - to help reduce oxidative stress caused by exogenous influences such as ultraviolet (UV) radiation. Despite several advances in recent years, little is known about the duration of protective effects by application of topical AOs, AO protection capacity (APC) or the activation of an endogenous protection capacity (EPC). By measuring oxidative-stress-induced photon emission of human skin in vivo with the ICL-S method (induced chemiluminescence of human skin), the protective effect of daily AO treatment for 2 weeks was examined on 4 consecutive days after treatment. UVA-dose-independent effects were investigated by decay curve intersection point analysis. In addition, chemiluminescence signal integration was used to investigate the influence of different UVA doses for stimulation on the determined APC as well as the modulation of the EPC by repetitive UVA stimulation both forming the skin protection capacity (SPC). The SPC showed a strong dependency on the UVA dose used for stimulation. AO pretreatment was more effective against lower UVA doses. Over the course of 4 days, the AO-induced SPC did not change significantly for a given UVA dose. Analyzing the decay curve intersection point for 2 different UVA doses, however, revealed a decrease in SPC with time. In addition, we found that a repetitive UVA irradiation of 1 J/cm(2) caused a statistically significant protective effect against UVA irradiation by stimulation of endogenous mechanisms. Topically supplemented AOs provide a protective effect against oxidative stress for at least 3 days, supporting their widespread use in cosmetic products. Especially their interaction with cutaneous protective mechanisms should be investigated in more detail for maximal protection, as endogenous defense mechanisms are already triggered by 2 low-dose UVA irradiations within 24 h. In summary, the in vivo measurement of UVA-induced cutaneous chemiluminescence permits the UVA-dose-independent determination of the AO efficacy for better comparability of the results while also taking endogenous defense mechanisms into account. Copyright © 2011 S. Karger AG, Basel.
Neodymium oxide: A new thermoluminescent material for gamma dosimetry
NASA Astrophysics Data System (ADS)
Soliman, C.
2006-10-01
In the present study thermoluminescence (TL) glow curves of commercial and gamma (0.001 Gy to 100 kGy) exposed neodymium oxide (Nd 2O 3) have been investigated. The commercial glow curve is simple with TL peaks at 310, 350 and 385 °C. The TL sensitivity was enhanced to ˜4.7 times the original value when the investigated material was subject to pre-heating treatment at 800 °C for 1 h. The effect of storage time at room temperature has been monitored for different γ-doses. The combination of good γ-dose response and high stability of defects offer the possibility of applying the investigated material to γ-ray dosimetry in radiotherapy and experimental radiology range.
/sup 125/I interstitial implants in the RIF-1 murine flank tumor: an animal model for brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, M.; Gutin, P.H.; Weaver, D.A.
1982-09-01
The development of a model for interstitial brachytherapy that uses high-activity, removable /sup 125/I sources in the RIF-1 murine flank tumor is reported. Experimental end points are clonogenic cell and tumor regrowth delay assays. For the clonogenic cell assay, interestitial radiation is delivered at total doses of 500-10,000 rad at dose rates of 0.9-2.7 rad/min to cells in annuli of tissue in the tumor. Dose-survival curves are characterized by an initial shoulder followed by a straight (exponential) portion, with D/sub 0/ similar to that of the curve obtained by external irradiation of the RIF-1 tumor in a self-contained cesium irradiatormore » at similar dose rates. Tumor regrowth curves have been obtained for minimum tumor doses of 500-5000 rad; marked tumor regression has been observed with minimum tumor doses as low as 2000 rad, but results are not as reproducible as the results obtained with the clonogenic cell assay.« less
Zheng, H X; Huang, Y; Frassetto, L A; Benet, L Z
2009-01-01
The effects of single doses of intravenous (IV) ciprofloxacin and rifampin and of multiple doses of rifampin on glyburide exposure and blood glucose levels were investigated in nine healthy volunteers. A single IV dose of rifampin significantly increased the area under the concentration-time curve (AUC) of glyburide and its metabolite. Blood glucose levels were significantly lower than those observed after dosing with glyburide alone. Multiple doses of rifampin induced an increase in liver enzyme levels, leading to a marked decrease in glyburide exposure and blood glucose levels. When IV rifampin was administered after multiple doses of rifampin, the inhibition of hepatic uptake transporters masked the induction effect; however, the relative changes in AUC for glyburide and its hydroxyl metabolite were similar to those seen under noninduced conditions. The studies reported here demonstrate how measurements of the levels of both the parent drug and its primary metabolite are useful in unmasking simultaneous drug-drug induction and inhibition effects and in characterizing enzymatic vs. transporter mechanisms.
Adenosinergic modulation of the discriminative-stimulus effects of methamphetamine in rats.
Munzar, Patrik; Justinova, Zuzana; Kutkat, Scott W; Ferré, Sergi; Goldberg, Steven R
2002-06-01
A(1) and A(2A) adenosine receptors are co-localized with dopamine D(1) and D(2) receptors, respectively, and their stimulation attenuates dopaminergic functioning. To test whether adenosine antagonists with different selectivities for A(1) and A(2A) receptors mimic the discriminative-stimulus effects of dopamine releaser methamphetamine. Effects of the A(1) antagonist DPCPX, the preferential A(2A) antagonist DMPX and the non-selective adenosine antagonist caffeine were evaluated in Sprague-Dawley rats trained to discriminate 1.0 mg/kg, IP, methamphetamine from saline under a fixed-ratio 10 schedule of food presentation. The A(1) antagonist DPCPX (1.0-10.0 mg/kg) failed to substitute for methamphetamine. However, 5.6 mg/kg DPCPX shifted the methamphetamine dose-response curve to the left. The A(2A) antagonist DMPX (1.8-18.0 mg/kg) produced about 70% methamphetamine-appropriate responding and the non-selective antagonist caffeine (3.0-56.0 mg/kg) about 50% methamphetamine-appropriate responding at the highest tested doses. Both DMPX (5.6 mg/kg) and caffeine (30.0 mg/kg) shifted the methamphetamine dose-response curve to the left. Methamphetamine-like effects of DMPX were blocked fully by the D(2) antagonist spiperone (0.18 mg/kg) and partially by the D(1) antagonist SCH-23390 (0.018 mg/kg). Antagonism at A(2A) adenosine receptors directly mimics the discriminative-stimulus effects of methamphetamine through the interaction with dopamine receptors. Antagonism at A(1) adenosine receptors potentiates effects of lower methamphetamine doses and thus plays a rather indirect, modulatory role.
A forced titration study of the antioxidant and immunomodulatory effects of Ambrotose AO supplement
2010-01-01
Background Oxidative stress plays a role in acute and chronic inflammatory disease and antioxidant supplementation has demonstrated beneficial effects in the treatment of these conditions. This study was designed to determine the optimal dose of an antioxidant supplement in healthy volunteers to inform a Phase 3 clinical trial. Methods The study was designed as a combined Phase 1 and 2 open label, forced titration dose response study in healthy volunteers (n = 21) to determine both acute safety and efficacy. Participants received a dietary supplement in a forced titration over five weeks commencing with a no treatment baseline through 1, 2, 4 and 8 capsules. The primary outcome measurement was ex vivo changes in serum oxygen radical absorbance capacity (ORAC). The secondary outcome measures were undertaken as an exploratory investigation of immune function. Results A significant increase in antioxidant activity (serum ORAC) was observed between baseline (no capsules) and the highest dose of 8 capsules per day (p = 0.040) representing a change of 36.6%. A quadratic function for dose levels was fitted in order to estimate a dose response curve for estimating the optimal dose. The quadratic component of the curve was significant (p = 0.047), with predicted serum ORAC scores increasing from the zero dose to a maximum at a predicted dose of 4.7 capsules per day and decreasing for higher doses. Among the secondary outcome measures, a significant dose effect was observed on phagocytosis of granulocytes, and a significant increase was also observed on Cox 2 expression. Conclusion This study suggests that Ambrotose AO® capsules appear to be safe and most effective at a dosage of 4 capsules/day. It is important that this study is not over interpreted; it aimed to find an optimal dose to assess the dietary supplement using a more rigorous clinical trial design. The study achieved this aim and demonstrated that the dietary supplement has the potential to increase antioxidant activity. The most significant limitation of this study was that it was open label Phase 1/Phase 2 trial and is subject to potential bias that is reduced with the use of randomization and blinding. To confirm the benefits of this dietary supplement these effects now need to be demonstrated in a Phase 3 randomised controlled trial (RCT). Trial Registration Australian and New Zealand Clinical Trials Register: ACTRN12605000258651 PMID:20433711
Banks, Matthew L; Blough, Bruce E; Negus, S Stevens
2013-02-01
Behavioral and pharmacotherapeutic approaches constitute two prominent strategies for treating cocaine dependence. This study investigated interactions between behavioral and pharmacological strategies in a preclinical model of cocaine vs food choice. Six rhesus monkeys, implanted with a chronic indwelling double-lumen venous catheter, initially responded under a concurrent schedule of food delivery (1-g pellets, fixed-ratio (FR) 100 schedule) and cocaine injections (0-0.1 mg/kg/injection, FR 10 schedule) during continuous 7-day treatment periods with saline or the agonist medication phenmetrazine (0.032-0.1 mg/kg/h). Subsequently, the FR response requirement for cocaine or food was varied (food, FR 100; cocaine, FR 1-100; cocaine, FR 10; food, FR 10-300), and effects of phenmetrazine on cocaine vs food choice were redetermined. Decreases in the cocaine FR or increases in the food FR resulted in leftward shifts in the cocaine choice dose-effect curve, whereas increases in the cocaine FR or decreases in the food FR resulted in rightward shifts in the cocaine choice dose-effect curve. The efficacy of phenmetrazine to decrease cocaine choice varied systematically as a function of the prevailing response requirements, such that phenmetrazine efficacy was greatest when cocaine choice was maintained by relatively low unit cocaine doses. These results suggest that efficacy of pharmacotherapies to modulate cocaine use can be influenced by behavioral contingencies of cocaine availability. Agonist medications may be most effective under contingencies that engender choice of relatively low cocaine doses.
Current clinical use of reteplase for thrombolysis. A pharmacokinetic-pharmacodynamic perspective.
Martin, U; Kaufmann, B; Neugebauer, G
1999-04-01
Clinical evaluation of a new thrombolytic agent should start with a dose that provides adequate efficacy and has an acceptably low bleeding risk; this results in a narrow therapeutic window at the upper end of the dose-response curve. Angiographic patency of the infarct-related artery is still the clinical surrogate end-point for mortality in phase II dose-ranging studies. There is experimental and clinical evidence that the area under the concentration-time curve (AUC) for plasminogenolytic activity of a thrombolytic agent is positively correlated with patency of the infarct-related artery. Dose-ranging studies of the novel recombinant plasminogen activator reteplase in healthy volunteers enabled computation of a linear regression curve by which a clinical starting dose could be calculated for an adapted target AUC that would be clinically effective. Pharmacokinetic analysis also revealed that the half-life of reteplase is 4 times longer than that of the reference thrombolytic alteplase, thus allowing bolus injection. The suggested single bolus starting dose of 10U was supported by results from studies in a canine model of coronary thrombolysis. The feedback of insufficiently high patency rates compared with the increased efficacy of front-loaded and accelerated alteplase demanded optimisation strategies for reteplase. Animal experiments suggested that a double bolus regimen of reteplase would be preferable to doubling the single bolus dose. Pharmacokinetic modelling suggested a time interval of 30 min between the 2 bolus injections. Selection of the tested double bolus regimens was conservative and empirical. First, the previously tested single bolus of 15U was divided to 10 + 5U; secondly, the second bolus dose was increased to 10U. This strategy proved to be successful. The current dosage recommendation for reteplase is a double bolus intravenous injection of 10 + 10U, each over 2 min, 30 min apart. This produces a reduction in mortality in patients with acute myocardial infarction that is equivalent to that produced by front-loaded and accelerated infusion of alteplase.
SU-E-T-223: Computed Radiography Dose Measurements of External Radiotherapy Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aberle, C; Kapsch, R
2015-06-15
Purpose: To obtain quantitative, two-dimensional dose measurements of external radiotherapy beams with a computed radiography (CR) system and to derive volume correction factors for ionization chambers in small fields. Methods: A commercial Kodak ACR2000i CR system with Kodak Flexible Phosphor Screen HR storage foils was used. Suitable measurement conditions and procedures were established. Several corrections were derived, including image fading, length-scale corrections and long-term stability corrections. Dose calibration curves were obtained for cobalt, 4 MV, 8 MV and 25 MV photons, and for 10 MeV, 15 MeV and 18 MeV electrons in a water phantom. Inherent measurement inhomogeneities were studiedmore » as well as directional dependence of the response. Finally, 2D scans with ionization chambers were directly compared to CR measurements, and volume correction factors were derived. Results: Dose calibration curves (0.01 Gy to 7 Gy) were obtained for multiple photon and electron beam qualities. For each beam quality, the calibration curves can be described by a single fit equation over the whole dose range. The energy dependence of the dose response was determined. The length scale on the images was adjusted scan-by-scan, typically by 2 percent horizontally and by 3 percent vertically. The remaining inhomogeneities after the system’s standard calibration procedure were corrected for. After correction, the homogeneity is on the order of a few percent. The storage foils can be rotated by up to 30 degrees without a significant effect on the measured signal. First results on the determination of volume correction factors were obtained. Conclusion: With CR, quantitative, two-dimensional dose measurements with a high spatial resolution (sub-mm) can be obtained over a large dose range. In order to make use of these advantages, several calibrations, corrections and supporting measurements are needed. This work was funded by the European Metrology Research Programme (EMRP) project HLT09 MetrExtRT Metrology for Radiotherapy using Complex Radiation Fields.« less
NASA Technical Reports Server (NTRS)
George, Kerry; Hada, Megumi; Cucinotta, F. A.
2011-01-01
Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.
A Simulation Study of Methods for Selecting Subgroup-Specific Doses in Phase I Trials
Morita, Satoshi; Thall, Peter F.; Takeda, Kentaro
2016-01-01
Summary Patient heterogeneity may complicate dose-finding in phase I clinical trials if the dose-toxicity curves differ between subgroups. Conducting separate trials within subgroups may lead to infeasibly small sample sizes in subgroups having low prevalence. Alternatively, it is not obvious how to conduct a single trial while accounting for heterogeneity. To address this problem, we consider a generalization of the continual reassessment method (O’Quigley, et al., 1990) based on a hierarchical Bayesian dose-toxicity model that borrows strength between subgroups under the assumption that the subgroups are exchangeable. We evaluate a design using this model that includes subgroup-specific dose selection and safety rules. A simulation study is presented that includes comparison of this method to three alternative approaches, based on non-hierarchical models, that make different types of assumptions about within-subgroup dose-toxicity curves. The simulations show that the hierarchical model-based method is recommended in settings where the dose-toxicity curves are exchangeable between subgroups. We present practical guidelines for application, and provide computer programs for trial simulation and conduct. PMID:28111916
Blood Levels and Management of Lithium Treatment
Crammer, John L.; Rosser, Rachel M.; Crane, Graham
1974-01-01
The limited value of plasma measurements in the management of treatment with lithium is discussed in the light of the mechanisms of its therapeutic actions and toxic effects. The plasma level of lithium usually rises twofold or threefold in the three to five hours after ingestion of each dose of delayed-release tablets and then gradually falls. The precise shape and height of the lithium curve depend on gastric emptying, which can be slowed with propantheline or speeded with metoclopramide. Depressed or demented patients may be irregular in taking their tablets and variable in food intake. Both the time of the blood test and this behaviour must be considered before changing the prescribed dose of lithium salt because of a laboratory result. A lithium tolerance curve may be a safer guide to treatment than single measures. Mild intermittent thirst is a common early side effect, and severe persistent thirst with polyuria is an uncommon later effect of daily intakes of at least 1,500 mg lithium carbonate. This diabetes insipidus is reversible, non-progressive, unrelated to plasma level, and distinct in attack from lithium-induced hypothyroidism, which may occur at low dosage but is also usually of late onset and reversible or treatable with thyroxine while lithium is continued. Obesity is another occasional effect of large doses. These side effects and the antimanic and prophylactic effects may have different mechanisms. PMID:4425791
Brimer, L; Henriksen, S A; Gyrd-Hansen, N; Rasmussen, F
1993-12-01
An in vitro test to determine the acaricidal effect of organophosphorous insecticides (OP) is described. The effect of parathion, phoxim and phosmet against the pig mange mite Sarcoptes scabiei var. suis was evaluated. The test is based on the migration ability of mites on the surface of agar gels containing the acaricide. The mite activity is expressed as a migration index (MI) and compared with the OP concentration in the agar. Good dose-response data were obtained for all three OPs tested, although the instability of phosmet required special precautions concerning the analysis of the agar. The test was found to be accurate, sensitive, easy to carry out and applicable for routine determinations. However, the test requires that the actual concentrations of the OPs in the gel batches are determined. For the three OPs used analytical methods were developed. While the lower threshold for acaricidal effect in vitro was approximately 1-2 micrograms g-1 for all three OPs tested, a significant difference in the higher concentration range was seen between the dose-response curve for parathion and the curves for phoxim and phosmet. While the latter curves decreased only slightly at concentrations above 3-6 micrograms g-1 (corresponding to MI values around 5-10), the curve for parathion was linear down to an MI value of 1, corresponding to a parathion concentration of approximately 30 micrograms g-1. This discrepancy was ascribed to different rates of uptake through the cuticula due to differences in the lipophilicity of the OPs.
The risk equivalent of an exposure to-, versus a dose of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, V.P.
The long-term potential carcinogenic effects of low-level exposure (LLE) are addressed. The principal point discussed is linear, no-threshold dose-response curve. That the linear no-threshold, or proportional relationship is widely used is seen in the way in which the values for cancer risk coefficients are expressed - in terms of new cases, per million persons exposed, per year, per unit exposure or dose. This implies that the underlying relationship is proportional, i.e., ''linear, without threshold''. 12 refs., 9 figs., 1 tab.
Pharmacokinetic Variability of Drugs Used for Prophylactic Treatment of Migraine.
Tfelt-Hansen, Peer; Ågesen, Frederik Nybye; Pavbro, Agniezka; Tfelt-Hansen, Jacob
2017-05-01
In this review, we evaluate the variability in the pharmacokinetics of 11 drugs with established prophylactic effects in migraine to facilitate 'personalized medicine' with these drugs. PubMed was searched for 'single-dose' and 'steady-state' pharmacokinetic studies of these 11 drugs. The maximum plasma concentration was reported in 248 single-dose and 115 steady-state pharmacokinetic studies, and the area under the plasma concentration-time curve was reported in 299 single-dose studies and 112 steady-state pharmacokinetic studies. For each study, the coefficient of variation was calculated for maximum plasma concentration and area under the plasma concentration-time curve, and we divided the drug variability into two categories; high variability, coefficient of variation >40%, or low or moderate variability, coefficient of variation <40%. Based on the area under the plasma concentration-time curve in steady-state studies, the following drugs have high pharmacokinetic variability: propranolol in 92% (33/36), metoprolol in 85% (33/39), and amitriptyline in 60% (3/5) of studies. The following drugs have low or moderate variability: atenolol in 100% (2/2), valproate in 100% (15/15), topiramate in 88% (7/8), and naproxen and candesartan in 100% (2/2) of studies. For drugs with low or moderate pharmacokinetic variability, treatment can start without initial titration of doses, whereas titration is used to possibly enhance tolerability of topiramate and amitriptyline. The very high pharmacokinetic variability of metoprolol and propranolol can result in very high plasma concentrations in a small minority of patients, and those drugs should therefore be titrated up from a low initial dose, depending mainly on the occurrence of adverse events.
Mavridou, Eleftheria; Melchers, Ria J. B.; van Mil, Anita C. H. A. M.; Mangin, E.; Motyl, Mary R.
2014-01-01
MK7655 is a newly developed beta-lactamase inhibitor of class A and class C carbapenemases. Pharmacokinetics (PK) of imipenem-cilastatin (IMP/C) and MK7655 were determined for intraperitoneal doses of 4 mg/kg to 128 mg/kg of body weight. MIC and pharmacodynamics (PD) studies of MK7655 were performed against several beta-lactamase producing Pseudomonas aeruginosa and Klebsiella pneumoniae strains to determine its effect in vitro and in vivo. Neutropenic mice were infected in each thigh 2 h before treatment with an inoculum of approximately 5 × 106 CFU. They were treated with IMP/C alone (every 2 hours [q2h], various doses) or in combination with MK7655 in either a dose fractionation study or q2h for 24 h and sacrificed for CFU determinations. IMP/MK7655 decreased MICs regarding IMP MIC. The PK profiles of IMP/C and MK7655 were linear over the dosing range studied and comparable with volumes of distribution (V) of 0.434 and 0.544 liter/kg and half-lives (t1/2) of 0.24 and 0.25 h, respectively. Protein binding of MK7655 was 20%. A sigmoidal maximum effect (Emax) model was fit to the PK/PD index responses. The effect of the inhibitor was not related to the maximum concentration of drug in serum (Cmax)/MIC, and model fits for T>MIC and area under the concentration-time curve (AUC)/MIC were comparable (R2 of 0.7 and 0.75), but there appeared to be no significant relationship of effect with dose frequency. Escalating doses of MK7655 and IMP/C showed that the AUC of MK7655 required for a static effect was dependent on the dose of IMP/C and the MIC of the strain, with a mean area under the concentration-time curve for the free, unbound fraction of the drug (fAUC) of 26.0 mg · h/liter. MK7655 shows significant activity in vivo and results in efficacy of IMP/C in otherwise resistant strains. The exposure-response relationships found can serve as a basis for establishing dosing regimens in humans. PMID:25403667
Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L
2010-08-05
Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.
Low level laser therapy on injured rat muscle
NASA Astrophysics Data System (ADS)
Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.
2013-06-01
Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.
NASA Astrophysics Data System (ADS)
Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.
Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Low dose rates per fraction were used in some neutron experiments. Split-dose lethality studies (LD 50/30) with fission neutrons indicated greater accumulation of injury during a 9 fraction course (over 17 days) than was the case for γ-radiation. When total doses of 96 or 247 cGy of neutrons or γ rays were given as a single dose or in 9 fractions, a significant sparing effect on femur CFU-S depression was observed for both radiation qualities during the first 11 days, but there was not an earlier return to normal with dose fractionation. During the 9 fraction sequence, a significant sparing effect of low dose rate on CFU-S depression was observed in both neutron and γ-irradiated mice. CFU-S content at the end of the fractionation sequence did not correlate with measured LD 50/30. Sustained depression of femur and spleen CFU-S and a significant thrombocytopenia were observed when a total neutron dose of 240 cGy was given in 72 fractions over 24 weeks at low dose rates. The temporal aspects of CFU-S repopulation were different after a single versus fractionated neutron doses. The sustained reduction in the size of the CFU-S population was accompanied by an increase in the fraction in DNA synthesis. The proliferation characteristics and effects of age were different for radial CFU-S population closely associated with bone, compared with the axial population that can be readily aspirated from the femur. In aged irradiated animals, the CFU-S proliferation/redistribution response to typhoid vaccine showed both an age and radiation effect. After high single doses of neutrons or γ rays, a significant age- and radiation-related deficiency in host defense mechanisms was detected by a shorter mean survival time following challenge with transplantable leukemia cells. Comparison of dose-response curves for life shortening after irradiation with fission-spectrum neutrons or high energy silicon particles indicated high initial slopes for both radiation qualities at low doses, but for higher doses of silicon, the effect per Gy decreased to a value similar to that for γ rays. The two component life-shortening curve for silicon particles has implications for the potential efficacy of radioprotectants. Recent studies on protection against early and late effects by aminothiols, prostaglandins, and other compounds are discussed.
Thermoluminescence properties of gamma-irradiated nano-structure hydroxyapatite.
Shafaei, M; Ziaie, F; Sardari, D; Larijani, M M
2016-02-01
The suitability of nano-structured hydroxyapatite (HAP) for use as a thermoluminescence dosimeter was investigated. HAP samples were synthesized using a hydrolysis method. The formation of nanoparticles was confirmed by X-ray diffraction and average particle size was estimated to be ~30 nm. The glow curve exhibited a peak centered at around 200 °C. The additive dose method was applied and this showed that the thermoluminescence (TL) glow curves follow first-order kinetics due to the non-shifting nature of Tm after different doses. The numbers of overlapping peaks and related kinetic parameters were identified from Tm -Tstop through computerized glow curve deconvolution methods. The dependence of the TL responses on radiation dose was studied and a linear dose response up to 1000 Gy was observed for the samples. Copyright © 2015 John Wiley & Sons, Ltd.
Straetemans, Saartje; Roelants, Mathieu; Thomas, Muriel; Rooman, Raoul; De Schepper, Jean
2014-01-01
Comparing observed and expected growth after first-year growth hormone (GH) therapy is useful for identifying a poor growth response to GH. To generate a first-year, age-specific growth response reference curve for prepubertal Belgian children with idiopathic growth hormone deficiency (iGHD) treated with a standard weight-adjusted GH dose and to compare this national reference with the response references derived from KIGS. First-year height data of 357 prepubertal children (240 males) with iGHD were analyzed. Smooth reference curves of first-year height velocity (HV) in relation to age were created. Differences with the KIGS targets were evaluated after z-score transformation. The observed first-year HVs were log-normal distributed by age and decreased significantly with age (p<0.001). No GH dose or gender effect was observed (p=0.5). Distance to target height, severity of GHD and occurrence of multiple pituitary hormone deficiencies had a positive effect (p<0.01) on the calculated HV SDS. When applying the KIGS targets for severe iGHD, mean HV SDS was close to zero (-0.09±0.84). The developed age-specific growth response curves enable rapid identification of poor response to first-year GH treatment in prepubertal iGHD children. Our results validate the published growth targets derived from the KIGS database. © 2014 S. Karger AG, Basel.
Hamada, Nobuyuki; Fujimichi, Yuki
2014-01-01
Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798
Applying Emax model and bivariate thin plate splines to assess drug interactions
Kong, Maiying; Lee, J. Jack
2014-01-01
We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95% point-wise confidence interval as well as its 95% simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies. PMID:20036878
Applying Emax model and bivariate thin plate splines to assess drug interactions.
Kong, Maiying; Lee, J Jack
2010-01-01
We review the semiparametric approach previously proposed by Kong and Lee and extend it to a case in which the dose-effect curves follow the Emax model instead of the median effect equation. When the maximum effects for the investigated drugs are different, we provide a procedure to obtain the additive effect based on the Loewe additivity model. Then, we apply a bivariate thin plate spline approach to estimate the effect beyond additivity along with its 95 per cent point-wise confidence interval as well as its 95 per cent simultaneous confidence interval for any combination dose. Thus, synergy, additivity, and antagonism can be identified. The advantages of the method are that it provides an overall assessment of the combination effect on the entire two-dimensional dose space spanned by the experimental doses, and it enables us to identify complex patterns of drug interaction in combination studies. In addition, this approach is robust to outliers. To illustrate this procedure, we analyzed data from two case studies.
NASA Technical Reports Server (NTRS)
Hada, Megumi; George, Kerry A.; Cucinotta, F. A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivor with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (.01 - 0.2 Gy) of 170 MeV/u Si-28-ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). The curves for doses above 0.1 Gy were more than one ion traverses a cell showed linear dose responses. However, for doses less than 0.1 Gy, Si-28-ions showed no dose response, suggesting a non-targeted effect when less than one ion traversal occurs. Additional findings for Fe-56 will be discussed.
Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice.
Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tanaka, Koh-ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko
2014-04-01
We investigated whether pretreatment with the neurotransmitter/neuromodulator agmatine (decarboxylated L-arginine) affected methamphetamine (METH)-induced hyperlocomotion and stereotypy in male ICR mice. Agmatine pretreatment alone had no effects on locomotion or stereotypy, but it produced a dose-dependent attenuation of locomotion and the total incidence of stereotyped behavior induced by a low dose of METH (5 mg/kg). The stereotypy induced by this dose was predominantly characterized by stereotyped sniffing. By contrast, agmatine did not affect the total incidence of stereotypy induced by a higher dose of METH (10 mg/kg). However, the nature of stereotypy induced by this dose of METH was substantially altered; agmatine pretreatment significantly reduced stereotyped biting but significantly increased stereotyped sniffing and persistent locomotion. Agmatine pretreatment therefore appears to produce a rightward shift in the dose-response curve for METH. Pretreatment of mice with piperazine-1-carboxamidine (a putative agmatinase inhibitor) had no effect on locomotion or stereotypy induced by a low dose of METH, suggesting that endogenous agmatine may not regulate the METH action.
NASA Astrophysics Data System (ADS)
Griscom, David L.
2001-11-01
Formalisms have been developed to express the time evolution of bimolecular processes taking place in fractal spaces. These ``stretched-second-order'' solutions are specifically applicable to radiation-induced electron-hole pairs and/or vacancy-interstitial pairs in insulating glasses. Like the analogous Kohlrausch-type (stretched-first-order) expressions, the present solutions are functions of (kt)β, where 0<β<1, k is an effective rate coefficient, and t is time. Both the new second-order formalism and the familiar Kohlrausch approach have been used to fit experimental data (induced optical absorptions in silica-based glasses monitored at selected wavelengths) that serve as proxies for the numbers of color centers created by γ irradiation and/or destroyed by processes involving thermal, optical, or γ-ray activation. Two material systems were investigated: (1) optical fibers with Ge-doped-silica cores and (2) fibers with low-OH/low-chloride pure-silica cores. Successful fits of the growth curves for the Ge-doped-silica-core fibers at four widely separated dose rates were accomplished using solutions for color-center concentrations, N[(kt)β], which approach steady-state values, Nsat, as t-->∞. The parametrization of these fits reveals some unexpected, and potentially useful, empirical rules regarding the dose-rate dependences of β, k, and Nsat in the fractal regime (0<β<1). Similar, though possibly not identical, rules evidently apply to color centers in the pure-silica-core fibers as well. In both material systems, there appear to be fractal<==> classical phase transitions at certain threshold values of dose rate, below which the dose-rate dependencies of k and Nsat revert to those specified by classical (β=1) first- or second-order kinetics. For kt<<1, both the first- and second-order fractal kinetic growth curves become identical, i.e., N((kt)β)~Atβ, where the coefficient A depends on dose rate but not kinetic order. It is found empirically that A depends on the 3β/2 power of dose rate in both first- and second-order kinetics, thus ``accidentally'' becoming linearly proportional to dose rate in cases where β~2/3 (characteristic of random fractals and many disordered materials). If interfering dose-rate-independent components are absent, it is possible to distinguish the order of the kinetics from the shapes of the growth and decay curves in both fractal and classical regimes. However, for reasons that are discussed, the parameters that successfully fit the experimental growth curves could not be used as bases for closed-form predictions of the shapes of the decay curves recorded when the irradiation is interrupted.
Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem
2017-03-01
Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P < .001) owing to the higher attenuation (P < .001) and thus resulted in higher total organ doses for all investigated phantoms and protocols (P < .001). Noise in CT images was lower with PA localizer radiography than with AP localizer radiography (P = .03). The use of an AP projection allowed for total dose reductions of 16%, 15%, and 12% for lungs, breast, and heart, respectively. Differences in organ doses were not related to tube start angles (P = .17). Conclusion The total organ doses are higher when using PA projection localizer radiography owing to higher TCM values, whereas the organ doses from PA localizer radiography alone are lower. Thus, PA localizer radiography should be used in combination with reduced reference tube current at subsequent chest CT. © RSNA, 2016 Online supplemental material is available for this article.
SU-E-T-137: The Response of TLD-100 in Mixed Fields of Photons and Electrons.
Lawless, M; Junell, S; Hammer, C; DeWerd, L
2012-06-01
Thermoluminescent dosimeters are used routinely for dosimetric measurements of photon and electron fields. However, no work has been published characterizing TLDs for use in combined photon and electron fields. This work investigates the response of TLD-100 (LiF:Mg,Ti) in mixed fields of photon and electron beam qualities. TLDs were irradiated in a 6 MV photon beam, 6 MeV electron beam, and a NIST traceable cobalt-60 beam. TLDs were also irradiated in a mixed field of the electron and photon beams. All irradiations were normalized to absorbed dose to water as defined in the AAPM TG-51 report. The average response per dose (nC/Gy) for each linac beam quality was normalized to the average response per dose of the TLDs irradiated by the cobalt-60 standard.Irradiations were performed in a water tank and a Virtual Water™ phantom. Two TLD dose calibration curves for determining absorbed dose to water were generated using photon and electron field TLD response data. These individual beam quality dose calibration curves were applied to the TLDs irradiated in the mixed field. The TLD response in the mixed field was less sensitive than the response in the photon field and more sensitive than the response in the electron field. TLD determination of dose in the mixed field using the dose calibration curve generated by TLDs irradiated by photons resulted in an underestimation of the delivered dose, while the use of a dose calibration curve generated using electrons resulted in an overestimation of the delivered dose. The relative response of TLD-100 in mixed fields fell consistently between the photon nd electron relative responses. When using TLD-100 in mixed fields, the user must account for this intermediate response to avoid an over- or underestimation of the dose due to calibration in a single photon or electron field. © 2012 American Association of Physicists in Medicine.
Rastkhah, E; Zakeri, F; Ghoranneviss, M; Rajabpour, M R; Farshidpour, M R; Mianji, F; Bayat, M
2016-03-01
An in vitro study of the dose responses of human peripheral blood lymphocytes was conducted with the aim of creating calibrated dose-response curves for biodosimetry measuring up to 4 Gy (0.25-4 Gy) of gamma radiation. The cytokinesis-blocked micronucleus (CBMN) assay was employed to obtain the frequencies of micronuclei (MN) per binucleated cell in blood samples from 16 healthy donors (eight males and eight females) in two age ranges of 20-34 and 35-50 years. The data were used to construct the calibration curves for men and women in two age groups, separately. An increase in micronuclei yield with the dose in a linear-quadratic way was observed in all groups. To verify the applicability of the constructed calibration curve, MN yields were measured in peripheral blood lymphocytes of two real overexposed subjects and three irradiated samples with unknown dose, and the results were compared with dose values obtained from measuring dicentric chromosomes. The comparison of the results obtained by the two techniques indicated a good agreement between dose estimates. The average baseline frequency of MN for the 130 healthy non-exposed donors (77 men and 55 women, 20-60 years old divided into four age groups) ranged from 6 to 21 micronuclei per 1000 binucleated cells. Baseline MN frequencies were higher for women and for the older age group. The results presented in this study point out that the CBMN assay is a reliable, easier and valuable alternative method for biological dosimetry.
Honda, I; Kohrogi, H; Yamaguchi, T; Hamamoto, J; Hirata, N; Iwagoe, H; Fujii, K; Goto, E; Ando, M
1997-01-01
To determine the roles of endogenously released tachykinins (substance P [SP] and neurokinin A [NKA]) in the human bronchial tissues, we studied the effects of tachykinin antagonist FK224 on bronchial smooth muscle contraction induced by SP, NKA and capsaicin in an organ bath. FK224 (10(-6) M and 10(-5) M, respectively) significantly inhibited NKA-induced contraction and 10(-5) M FK224 shifted the dose-response curve to more than one log unit higher concentration. Because SP- and capsaicin-induced contractions were small, we pretreated the tissues with the neutral endopeptidase inhibitor phosphoramidon (10(-5) M), which inhibits degradation of exogenous tachykinins in order to potentiate the contractions. FK224 (10(-5) M) significantly inhibited SP-induced contraction and it shifted the dose-response curves to about one log unit higher concentration. FK224 (10(-5) M) also significantly inhibited capsaicin-induced contraction and it shifted the dose-response curves to more than one log unit higher concentration. In contrast, FK224 (10(-5) M) did not affect on acetylcholine-, histamine-, and leukotriene D4-induced contraction. These results suggest that FK224 is a tachykinin receptor antagonist in the human bronchial smooth muscle, and that capsaicin-induced contraction is due to endogenously released tachykinin-like substances in the human bronchus.
Monda, D.P.; Galat, D.L.; Finger, S.E.; Kaiser, M.S.
1995-01-01
Toxicity of un-ionized ammonia (NH3-N) to the midge, Chironomus riparius was compared, using laboratory culture (well) water and sewage effluent (≈0.4 mg/L NH3-N) in two 96-h, static-renewal toxicity experiments. A generalized linear model was used for data analysis. For the first and second experiments, respectively, LC50 values were 9.4 mg/L (Test 1A) and 6.6 mg/L (Test 2A) for ammonia in well water, and 7.8 mg/L (Test 1B) and 4.1 mg/L (Test 2B) for ammonia in sewage effluent. Slopes of dose-response curves for Tests 1A and 2A were equal, but mortality occurred at lower NH3-N concentrations in Test 2A (unequal intercepts). Response ofC. riparius to NH3 in effluent was not consistent; dose-response curves for tests 1B and 2B differed in slope and intercept. Nevertheless, C. riparius was more sensitive to ammonia in effluent than in well water in both experiments, indicating a synergistic effect of ammonia in sewage effluent. These results demonstrate the advantages of analyzing the organisms entire range of response, as opposed to generating LC50 values, which represent only one point on the dose-response curve.
Lacroix, Frederic; Guillot, Mathieu; McEwen, Malcolm; Gingras, Luc; Beaulieu, Luc
2011-10-01
This work presents the experimental extraction of the perturbation factor in megavoltage electron beams for three models of silicon diodes (IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded) using a plastic scintillation detector (PSD). The authors used a single scanning PSD mounted on a high-precision scanning tank to measure depth-dose curves in 6-, 12-, and 18-MeV clinical electron beams. They also measured depth-dose curves using the IBA Dosimetry, EFD and SFD, and the PTW 60012 unshielded diodes. The authors used the depth-dose curves measured with the PSD as a perturbation-free reference to extract the perturbation factors of the diodes. The authors found that the perturbation factors for the diodes increased substantially with depth, especially for low-energy electron beams. The experimental results show the same trend as published Monte Carlo simulation results for the EFD diode; however, the perturbations measured experimentally were greater. They found that using an effective point of measurement (EPOM) placed slightly away from the source reduced the variation of perturbation factors with depth and that the optimal EPOM appears to be energy dependent. The manufacturer recommended EPOM appears to be incorrect at low electron energy (6 MeV). In addition, the perturbation factors for diodes may be greater than predicted by Monte Carlo simulations.
Kusawake, Tomohiro; Keirns, James J; Kowalski, Donna; den Adel, Martin; Groenendaal-van de Meent, Dorien; Takada, Akitsugu; Ohtsu, Yoshiaki; Katashima, Masataka
2017-12-01
Amenamevir (ASP2151) is a nonnucleoside antiherpesvirus compound available for the treatment of varicella-zoster virus infections. In this article we summarize the findings of four phase 1 studies in healthy participants. Four randomized phase 1 studies investigated the safety and pharmacokinetics of single and multiple doses of amenamevir, including the assessment of age group effect (nonelderly vs elderly), food effect, and the relative bioavailability of two formulations. Amenamevir was administered orally at various doses as a single dose (5-2400 mg) or daily (300 or 600 mg/day) for 7 days. Following single and multiple oral doses, amenamevir demonstrated a less than dose proportional increase in the pharmacokinetic parameters area under the plasma drug concentration versus time curve from time zero to infinity (AUC inf ) and C max . After single and multiple oral 300-mg doses of amenamevir, no apparent differences in pharmacokinetics were observed between nonelderly and elderly participants. In contrast, with the amenamevir 600-mg dose both the area under the plasma drug concentration versus time curve from time zero to 24 h and C max were slightly increased and renal clearance was decreased in elderly participants. The pharmacokinetics of amenamevir was affected by food, with AUC inf increased by about 90%. In the bioavailability study, AUC inf and C max were slightly lower following tablet versus capsule administration (decreased by 14 and 12%, respectively), with relative bioavailability of 86%. The different amenamevir doses and formulations were safe and well tolerated; no deaths or serious adverse events were reported. Amenamevir had less than dose proportional pharmacokinetic characteristics. Age may have an influence on amenamevir pharmacokinetics; however, the effect was considered minimal. The pharmacokinetics of amenamevir were affected by food, with AUC inf almost doubling when amenamevir was administered with food. The concentration versus time profile of the tablet was slightly lower than that of the capsule; the relative bioavailability of the tablet versus the capsule was 86%. Amenamevir was safe and well tolerated in the dose range investigated. Astellas Pharma. ClinicalTrials.gov identifiers NCT02852876 (15L-CL-002) and NCT02796118 (15L-CL-003).
Drinking sucrose or saccharin enhances sensitivity of rats to quinpirole-induced yawning
Serafine, Katherine M; Bentley, Todd A; Kilborn, Dylan J; Koek, Wouter; France, Charles P
2015-01-01
Diet can impact sensitivity of rats to some of the behavioral effects of drugs acting on dopamine systems. The current study tested whether continuous access to sucrose is necessary to increase yawning induced by the dopamine receptor agonist quinpirole, or if intermittent access is sufficient. These studies also tested whether sensitivity to quinpirole-induced yawning increases in rats drinking the non-caloric sweetener saccharin. Dose-response curves (0.0032–0.32 mg/kg) for quinpirole-induced yawning were determined once weekly in rats with free access to standard chow and either continuous access to water, 10% sucrose solution, or 0.1% saccharin solution, or intermittent access to sucrose or saccharin (i.e., 2 days per week with access to water on other days). Cumulative doses of quinpirole increased then decreased yawning, resulting in an inverted U-shaped dose-response curve. Continuous or intermittent access to sucrose enhanced sensitivity to quinpirole-induced yawning. Continuous, but not intermittent, access to saccharin also enhanced sensitivity to quinpirole-induced yawning. In all groups, pretreatment with the selective D3 receptor antagonist PG 01037 shifted the ascending limb of the quinpirole dose-response curve to the right, while pretreatment with the selective D2 receptor antagonist L-741626 shifted the descending limb to the right. These results suggest that even intermittent consumption of diets containing highly palatable substances (e.g. sucrose) alters sensitivity to drugs acting on dopamine systems in a manner that could be important in vulnerability to abuse drugs. PMID:26189020
Rosenfeld, C R; Gant, N F
1981-01-01
Vascular refractoriness to the systemic pressor effects of angiotension II (AII) develops normally during human pregnancy. To ascertain if the ewe might provide a suitable animal model to study the mechanisms responsible for this response (unique to pregnancy) we studied this phenomenon in unanesthetized, chronically instrumented nonpregnant and pregnant sheep, 68-143 d gestation. In these studies dose-response curves were established for changes in both mean arterial pressure and uterine blood flow. The pressor response to continuous infusions of AII increases as a function of the dose of AII in both nonpregnant and pregnant animals (P less than 0.001), R = 0.943 and 0.879, respectively. However, the pregnant animals were refractory to the pressor effects of AII, requiring 0.016 microgram of AII/min per kg to elicit a 20 mm HG rise in mean arterial pressure, in contrast to 0.009 for nonpregnant animals. The slope and intercept for the regression lines are different at P less than 0.001. In pregnant animals the dose-response curve for uterine blood flow was also determined. Increases in uterine blood flow were observed at doses of AII less than 0.016 microgram/min per kg, while larger doses resulted in a progressively greater reduction in blood flow. It appears likely that the ewe may serve as an animal model suitable for the further study of the unique pregnancy-modified systemic and uteroplacental vascular responses elicited by AII. PMID:7462427
NASA Astrophysics Data System (ADS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.
NASA Technical Reports Server (NTRS)
Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.
2004-01-01
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Flick, Burkhard; Schneider, Steffen; Melching-Kollmuss, Stephanie; Fussell, Karma C; Gröters, Sibylle; Buesen, Roland; Strauss, Volker; van Ravenzwaay, Bennard
2017-04-01
The current investigation examines whether the fungicide vinclozolin, which has an anti-androgenic mode of action, is capable of disrupting endocrine homeostasis at very low doses. The data generated clarify whether a non-monotonic dose-response relationship exists to enhance the current debate about the regulation of endocrine disruptors. Moreover, it is part of a series of investigations assessing the dose-response relationship of single and combined administration of anti-androgenic substances. A pre-postnatal in vivo study design was chosen which was compliant with regulatory testing protocols. The test design was improved by additional endpoints addressing hormone levels, morphology and histopathological examinations. Doses were chosen to represent an effect level (20 mg/kg bw/d), the current NOAEL (4 mg/kg bw/d), and a dose close to the "ADI" (0.005 mg/kg bw/d) for the detection of a possible non-monotonic dose-response curve. Anti-androgenic changes were observable at the effect level but not at lower exposures. Nipple/areola counts appeared to be the most sensitive measure of effect, followed by male sex organ weights at sexual maturation, and finally gross and histopathological findings. The results indicate the absence of evidence for effects at low or very low dose levels. A non-monotonic dose-response relationship was not evident.
NASA Technical Reports Server (NTRS)
Hada, M.; George, Kerry; Cucinotta, Francis A.
2011-01-01
The relationship between biological effects and low doses of absorbed radiation is still uncertain, especially for high LET radiation exposure. Estimates of risks from low-dose and low-dose-rates are often extrapolated using data from Japanese atomic bomb survivors with either linear or linear quadratic models of fit. In this study, chromosome aberrations were measured in human peripheral blood lymphocytes and normal skin fibroblasts cells after exposure to very low dose (1-20 cGy) of 170 MeV/u Si-28- ions or 600 MeV/u Fe-56-ions. Chromosomes were analyzed using the whole chromosome fluorescence in situ hybridization (FISH) technique during the first cell division after irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving greater than 2 breaks in 2 or more chromosomes). The curves for doses above 10 cGy were fitted with linear or linear-quadratic functions. For Si-28- ions no dose response was observed in the 2-10 cGy dose range, suggesting a non-target effect in this range.
Scott, B R; Lyzlov, A F; Osovets, S V
1998-05-01
During a Phase-I effort, studies were planned to evaluate deterministic (nonstochastic) effects of chronic exposure of nuclear workers at the Mayak atomic complex in the former Soviet Union to relatively high levels (> 0.25 Gy) of ionizing radiation. The Mayak complex has been used, since the late 1940's, to produce plutonium for nuclear weapons. Workers at Site A of the complex were involved in plutonium breeding using nuclear reactors, and some were exposed to relatively large doses of gamma rays plus relatively small neutron doses. The Weibull normalized-dose model, which has been set up to evaluate the risk of specific deterministic effects of combined, continuous exposure of humans to alpha, beta, and gamma radiations, is here adapted for chronic exposure to gamma rays and neutrons during repeated 6-h work shifts--as occurred for some nuclear workers at Site A. Using the adapted model, key conclusions were reached that will facilitate a Phase-II study of deterministic effects among Mayak workers. These conclusions include the following: (1) neutron doses may be more important for Mayak workers than for Japanese A-bomb victims in Hiroshima and can be accounted for using an adjusted dose (which accounts for neutron relative biological effectiveness); (2) to account for dose-rate effects, normalized dose X (a dimensionless fraction of an LD50 or ED50) can be evaluated in terms of an adjusted dose; (3) nonlinear dose-response curves for the risk of death via the hematopoietic mode can be converted to linear dose-response curves (for low levels of risk) using a newly proposed dimensionless dose, D = X(V), in units of Oklad (where D is pronounced "deh"), and V is the shape parameter in the Weibull model; (4) for X < or = Xo, where Xo is the threshold normalized dose, D = 0; (5) unlike absorbed dose, the dose D can be averaged over different Mayak workers in order to calculate the average risk of death via the hematopoietic mode for the population exposed at Site A; and (6) the expected cases of death via the hematopoietic syndrome mode for Mayak workers chronically exposed during work shifts at Site A to gamma rays and neutrons can be predicted using ln(2)B M[D]; where B (pronounced "beh") is the number of workers at risk (criticality accident victims excluded); and M[D] is the average (mean) value of D (averaged over the worker population at risk, for Site A, for the time period considered). These results can be used to facilitate a Phase II study of deterministic radiation effects among Mayak workers chronically exposed to gamma rays and neutrons.
Takeda, Seiichi; Toda, Takao; Nakamura, Kazuki
2016-01-01
We investigated the radical-scavenging effects of heparin (HE), medium molecular weight heparinyl phenylalanine (MHF), and medium molecular weight heparinyl leucine (MHL) using ischemic paw edema in mice. We also examined the activated partial thromboplastin time (APTT) of mice that were administered these compounds as an index of their side-effects. HE had a preventative effect and significant reduced ischemic paw edema. However, its effect was not dose-dependent and the dose-response curve was bell-shaped. The effective dose of HE also exhibited a prolonged APTT. Pretreatment using MHF and MHL were effective against ischemic paw edema without a prolonged APTT. Remarkably, the action of MHF was not only preventively, but also therapeutically active. These results suggest that MHF and MHL are superior to HE as safe radical scavengers in vivo. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Chenal, C; Legue, F; Nourgalieva, K; Brouazin-Jousseaume, V; Durel, S; Guitton, N
2000-01-01
In human radiation protection, the shape of the dose effects curve for low doses irradiation (LDI) is assumed to be linear, extrapolated from the clinical consequences of Hiroshima and Nagasaki nuclear explosions. This extrapolation probably overestimates the risk below 200 mSv. In many circumstances, the living species and cells can develop some mechanisms of adaptation. Classical epidemiological studies will not be able to answer the question and there is a need to assess more sensitive biological markers of the effects of LDI. The researches should be focused on DNA effects (strand breaks), radioinduced expression of new genes and proteins involved in the response to oxidative stress and DNA repair mechanisms. New experimental biomolecular techniques should be developed in parallel with more conventional ones. Such studies would permit to assess new biological markers of radiosensitivity, which could be of great interest in radiation protection and radio-oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, J; Lasio, G; Chen, S
2015-06-15
Purpose: To develop a CBCT HU correction method using a patient specific HU to mass density conversion curve based on a novel image registration and organ mapping method for head-and-neck radiation therapy. Methods: There are three steps to generate a patient specific CBCT HU to mass density conversion curve. First, we developed a novel robust image registration method based on sparseness analysis to register the planning CT (PCT) and the CBCT. Second, a novel organ mapping method was developed to transfer the organs at risk (OAR) contours from the PCT to the CBCT and corresponding mean HU values of eachmore » OAR were measured in both the PCT and CBCT volumes. Third, a set of PCT and CBCT HU to mass density conversion curves were created based on the mean HU values of OARs and the corresponding mass density of the OAR in the PCT. Then, we compared our proposed conversion curve with the traditional Catphan phantom based CBCT HU to mass density calibration curve. Both curves were input into the treatment planning system (TPS) for dose calculation. Last, the PTV and OAR doses, DVH and dose distributions of CBCT plans are compared to the original treatment plan. Results: One head-and-neck cases which contained a pair of PCT and CBCT was used. The dose differences between the PCT and CBCT plans using the proposed method are −1.33% for the mean PTV, 0.06% for PTV D95%, and −0.56% for the left neck. The dose differences between plans of PCT and CBCT corrected using the CATPhan based method are −4.39% for mean PTV, 4.07% for PTV D95%, and −2.01% for the left neck. Conclusion: The proposed CBCT HU correction method achieves better agreement with the original treatment plan compared to the traditional CATPhan based calibration method.« less
Attenuation of cocaine self-administration by chronic oral phendimetrazine in rhesus monkeys.
Czoty, P W; Blough, B E; Fennell, T R; Snyder, R W; Nader, M A
2016-06-02
Chronic treatment with the monoamine releaser d-amphetamine has been consistently shown to decrease cocaine self-administration in laboratory studies and clinical trials. However, the abuse potential of d-amphetamine is an obstacle to widespread clinical use. Approaches are needed that exploit the efficacy of the agonist approach but avoid the abuse potential associated with dopamine releasers. The present study assessed the effectiveness of chronic oral administration of phendimetrazine (PDM), a pro-drug for the monoamine releaser phenmetrazine (PM), to decrease cocaine self-administration in four rhesus monkeys. Each day, monkeys pressed a lever to receive food pellets under a 50-response fixed-ratio (FR) schedule of reinforcement and self-administered cocaine (0.003-0.56 mg/kg per injection, i.v.) under a progressive-ratio (PR) schedule in the evening. After completing a cocaine self-administration dose-response curve, sessions were suspended and PDM was administered (1.0-9.0 mg/kg, p.o., b.i.d.). Cocaine self-administration was assessed using the PR schedule once every 7 days while food-maintained responding was studied daily. When a persistent decrease in self-administration was observed, the cocaine dose-effect curve was re-determined. Daily PDM treatment decreased cocaine self-administration by 30-90% across monkeys for at least 4 weeks. In two monkeys, effects were completely selective for cocaine. Tolerance developed to initial decreases in food-maintained responding in the third monkey and in the fourth subject, fluctuations were observed that were lower in magnitude than effects on cocaine self-administration. Cocaine dose-effect curves were shifted down and/or rightward in three monkeys. These data provide further support for the use of agonist medications for cocaine abuse, and indicate that the promising effects of d-amphetamine extend to a more clinically viable pharmacotherapy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Bobby, R., Ph.D.
2003-06-27
OAK - B135 This project final report summarizes modeling research conducted in the U.S. Department of Energy (DOE), Low Dose Radiation Research Program at the Lovelace Respiratory Research Institute from October 1998 through June 2003. The modeling research described involves critically evaluating the validity of the linear nonthreshold (LNT) risk model as it relates to stochastic effects induced in cells by low doses of ionizing radiation and genotoxic chemicals. The LNT model plays a central role in low-dose risk assessment for humans. With the LNT model, any radiation (or genotoxic chemical) exposure is assumed to increase one¡¯s risk of cancer.more » Based on the LNT model, others have predicted tens of thousands of cancer deaths related to environmental exposure to radioactive material from nuclear accidents (e.g., Chernobyl) and fallout from nuclear weapons testing. Our research has focused on developing biologically based models that explain the shape of dose-response curves for low-dose radiation and genotoxic chemical-induced stochastic effects in cells. Understanding the shape of the dose-response curve for radiation and genotoxic chemical-induced stochastic effects in cells helps to better understand the shape of the dose-response curve for cancer induction in humans. We have used a modeling approach that facilitated model revisions over time, allowing for timely incorporation of new knowledge gained related to the biological basis for low-dose-induced stochastic effects in cells. Both deleterious (e.g., genomic instability, mutations, and neoplastic transformation) and protective (e.g., DNA repair and apoptosis) effects have been included in our modeling. Our most advanced model, NEOTRANS2, involves differing levels of genomic instability. Persistent genomic instability is presumed to be associated with nonspecific, nonlethal mutations and to increase both the risk for neoplastic transformation and for cancer occurrence. Our research results, based on applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low-LET radiation). Such phantom risks also may arise from risk assessments conducted for combined exposure to low- and high-LET radiations when based on the LNT or other models that exclude RR < 1. Our results for high-LET radiation are consistent with the LNT hypothesis but only where there is no additional low-LET contribution (e.g., gamma rays) to the total dose. For high-LET neutron sources, gamma rays arise (especially in vivo) for large mammals such as humans from neutron interactions with tissue. The gamma rays might provide some protection from low-dose-related stochastic effects via inducing the protective bystander apoptosis effect that is considered to contribute to tissue cleansing via removal of problematic cells.« less
Particle effects on ultraviolet disinfection of coliform bacteria in recycled water.
Jolis, D; Lam, C; Pitt, P
2001-01-01
Pilot- and bench-scale coliform inactivation tests with UV irradiation were used to show how suspended solids remaining in filtered secondary effluent affect the efficiency of the UV disinfection process. Observed kinetic inactivation rates decreased with increasing suspended particle sizes of 7 microm or larger present in tertiary effluent. First-order inactivation rates estimated from collimated beam dose-response curves for discrete ranges of UV doses were substantially different, which should caution researchers not to compare inactivation data obtained with largely dissimilar UV doses or suspended particle distributions. A dose of approximately 800 J/m2 was identified as the minimum dose that will consistently meet the California wastewater reclamation coliform criterion when applied to in-line filtration effluent.
Honkalammi, Johanna; Niemi, Mikko; Neuvonen, Pertti J; Backman, Janne T
2011-10-01
Gemfibrozil 1-O-β-glucuronide inactivates CYP2C8 irreversibly. We investigated the effect of gemfibrozil dose on CYP2C8 activity in humans using repaglinide as a probe drug. In a randomized, five-phase crossover study, 10 healthy volunteers ingested 0.25 mg of repaglinide 1 h after different doses of gemfibrozil or placebo. Concentrations of plasma repaglinide, gemfibrozil, their metabolites, and blood glucose were measured. A single gemfibrozil dose of 30, 100, 300, and 900 mg increased the area under the concentration-time curve of repaglinide 1.8-, 4.5-, 6.7-, and 8.3-fold (P < 0.001), and its peak concentration 1.4-, 1.7-, 2.1-, and 2.4-fold (P < 0.05), compared with placebo, respectively. Gemfibrozil pharmacokinetics was characterized by a slightly more than dose-proportional increase in the area under the curve of gemfibrozil and its glucuronide. The gemfibrozil-repaglinide interaction could be mainly explained by gemfibrozil 1-O-β-glucuronide concentration-dependent, mechanism-based inhibition of CYP2C8, with a minor contribution by competitive inhibition of organic anion-transporting polypeptide 1B1 at the highest gemfibrozil dose. The findings are consistent with ∼50% inhibition of CYP2C8 already with a single 30-mg dose of gemfibrozil and >95% inhibition with 900 mg. In clinical drug-drug interaction studies, a single 900-mg dose of gemfibrozil can be used to achieve nearly complete inactivation of CYP2C8.
Zhang, Weijiang; McIntyre, Christine; Kuhn, Melissa; Forbes, Harper; Kim, Tae Min; Lee, Jeeyun; Demidov, Lev; Colburn, Dawn
2018-04-12
The primary objective of this phase 1, open-label, multicenter, 3-period, fixed-sequence study was to evaluate the effect of multiple doses of vemurafenib on the pharmacokinetics of a single dose of digoxin, a probe P-glycoprotein (P-gp) substrate, in patients with BRAF V600 mutation-positive metastatic malignancy. Following a 28-day screening period, patients received a single oral dose of digoxin 0.25 mg on day 1 in period A, oral vemurafenib 960 mg twice daily for 21 days in period B (days 8-28), and a single oral dose of digoxin 0.25 mg on day 29 and vemurafenib 960 mg twice a day for 7 days (days 29-35) in period C. Log-transformed area under the concentration-time curve and peak concentration values for digoxin were compared between periods A (digoxin alone) and C (digoxin + vemurafenib) using an analysis of variance model. Twenty-six patients were evaluated for the primary pharmacokinetic analysis. The geometric mean ratio (period C/period A) of area under the curve to the last measurable concentration for digoxin was 1.82 (90%CI 1.63 to 2.02), and the geometric mean ratio of peak concentrations was 1.47 (90%CI 1.30 to 1.65); the 90%CIs were outside of the equivalence limits of 0.82 to 1.22, indicating an effect of vemurafenib on digoxin. Multiple oral doses of vemurafenib were generally well tolerated, with an adverse event profile similar to that previously seen in phase 2 and 3 studies of vemurafenib monotherapy. This study confirmed vemurafenib as an inhibitor of P-gp in vivo with a statistically significant drug-drug interaction with digoxin. Caution should be exercised when dosing vemurafenib concurrently with P-gp substrates. © 2018, The American College of Clinical Pharmacology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, W.F.; Kim, Y.T.; Molteni, A.
The ability of the angiotensin converting enzyme (ACE) inhibitor Captopril to modify radiation-induced pulmonary endothelial dysfunction was determined in male rats sacrificed 2 months after a single dose of 10-30 Gy of /sup 60/Co gamma rays to the right hemithorax. Half of each dose group consumed feed containing 0.12% w/w Captopril (60 mg/kg/day) continuously after irradiation, and half consumed control feed. Four markers of endothelial function were monitored: ACE activity, plasminogen activator (PLA) activity, and prostacyclin (PGI2) and thromboxane (TXA2) production. All data were plotted as dose-response curves, and subjected to linear regression analysis. The Captopril modifying effect was expressedmore » as the ratio of isoeffective doses at a common intermediate response (DRF), or as the ratio of the response curve slopes. Right lung ACE and PLA activity decreased linearly, and PGI2 and TXA2 production increased linearly with increasing radiation dose. Captopril exhibited DRF values of 1.4-2.1, and slope ratios of 1.4-5.1 for all four functional markers (p less than 0.05). Thus, the ACE inhibitor Captopril ameliorates radiation-induced pulmonary endothelial dysfunction in rats sacrificed 2 months postirradiation. Although the mechanism of Captopril action is not clear at present, these data suggest a novel application for this class of compounds as injury-modifying agents in irradiated lung.« less
NASA Astrophysics Data System (ADS)
Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro
2017-07-01
The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.
Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro
2017-07-07
The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV ) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min -1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate dependence.
Takemoto, Hiroaki; Yagura, Toru; Ito, Michiho
2009-10-01
Valerena-4,7(11)-diene and beta-maaliene were isolated from spikenard for the first time, and the effects of inhaling these compounds were investigated. Both compounds reduced the locomotor activity of mice dose-dependently, even at a low dose. Valerena-4,7(11)-diene had a particularly profound effect, with the strongest sedative activity observed at a dose of 0.06%. Caffeine-treated mice that showed an area under the curve (AUC) for locomotor activity that was double that of controls were calmed to normal levels by administration of valerena-4,7(11)-diene. The continuous sleep time of pentobarbital-treated mice was prolonged by about 2.7 times with valerena-4,7(11)-diene, an effect similar to that of chlorpromazine administered orally.
Maguire, David R; France, Charles P
2016-04-01
Opioid abuse remains a significant public health problem; together with the greater availability of marijuana in some regions there is an increasing likelihood that opioids and marijuana will be used together. Polydrug abuse is associated with increased toxicity and poorer treatment outcome; thus, a better understanding of the consequences of repeated coadministration of these drugs will facilitate the development of better prevention and treatment strategies. This study examined the effects of daily treatment with the cannabinoid receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) and its discontinuation on self-administration of heroin in rhesus monkeys (n=4) lever-pressing under a fixed-ratio 30 schedule. Heroin self-administration (0.32-32 μg/kg/infusion, intravenously) generated an inverted U-shaped dose-effect curve. Administered acutely, Δ-THC (0.01-0.32 mg/kg, subcutaneously) dose dependently decreased responding for heroin and flattened the self-administration dose-effect curve. Daily treatment with Δ-THC (0.01-0.1 mg/kg/12 h, subcutaneously) either had no effect on or decreased responding for heroin. In addition, daily treatment did not significantly impact extinction of heroin self-administration or resumption of responding for heroin after extinction. Discontinuation of daily Δ-THC treatment did not systematically impact rates of heroin self-administration. These data suggest that repeated administration of a cannabinoid receptor agonist likely does not increase, and possibly decreases, the positive reinforcing effects of a mu opioid receptor agonist.
The antipyretic effect of indomethacin.
Clark, W G; Cumby, H R
1975-01-01
1. Several possible mechanisms of the antipyretic action of indomethacin administered cat. 2. Indomethacin did not decrease bacterial endotoxin-induced release of endogenous pyrogen in vivo. 3. Indomethacin (5-40 mug/kg) inhibited the pyrogenic effect of peripherally or centrally administered leucocytic progen. A dose of 10 mug/kg caused a parallel shift to the right of the log dose-response curve for I.V. leucocytic pyrogen and reduced the potency of the pyrogen at least 50%. 4. Incubation of leucocytic pyrogen with indomethacin did not alter its pyrogenic potency. 5. Indomethacin exerted only a slight non-dose-related hypothermic effect in afebrile animals. 6. Indomethacin (up to 1 mg/kg) did not diminish the hyperthermic response to intraventricular administration of prostaglandin E1. 7. This pattern of activity indicates that indomethacin acts centrally to inhibit an effect of leucocytic pyrogen. PMID:1151840
Wang, Yan; Xu, Chang; Du, Li Qing; Cao, Jia; Liu, Jian Xiang; Su, Xu; Zhao, Hui; Fan, Fei-Yue; Wang, Bing; Katsube, Takanori; Fan, Sai Jun; Liu, Qiang
2013-01-01
Dose- and time-response curves were combined to assess the potential of the comet assay in radiation biodosimetry. The neutral comet assay was used to detect DNA double-strand breaks in lymphocytes caused by γ-ray irradiation. A clear dose-response relationship with DNA double-strand breaks using the comet assay was found at different times after irradiation (p < 0.001). A time-response relationship was also found within 72 h after irradiation (p < 0.001). The curves for DNA double-strand breaks and DNA repair in vitro of human lymphocytes presented a nice model, and a smooth, three-dimensional plane model was obtained when the two curves were combined. PMID:24240807
(-)Ephedrine and caffeine mutually potentiate one another's amphetamine-like stimulus effects.
Young, R; Gabryszuk, M; Glennon, R A
1998-10-01
Using rats trained to discriminate 1 mg/kg of (+)amphetamine (ED50 = 0.4 mg/kg) from saline vehicle in a two-lever drug discrimination procedure, it was shown that (-)ephedrine (ED50 = 4.5 mg/kg), but not (+)ephedrine, substitutes for the (+)AMPH stimulus. It was also shown that caffeine (ED50 = 12.9 mg/kg) can substitute for (+)amphetamine in a dose-related fashion. Doses of (-)ephedrine and caffeine, which produced < or = 1% drug-appropriate responding when administered alone, were able to enhance each other's stimulus effects when administered in combination such that there was a twofold leftward shift in their respective dose-response curves. Furthermore, stimulus generalization occurred when a dose of caffeine that produced saline-appropriate responding when administered alone was administered in combination with (+)ephedrine. It would appear that low doses of (-)ephedrine and caffeine may mutually potentiate one another's stimulus effects in (+)AMPH-trained rats, and that a combination of caffeine and (+)ephedrine result in altered stimulus character when compared to comparable doses of either agent administered alone.
NASA Astrophysics Data System (ADS)
Popov, Denis E.; Tuchina, Elena S.; Chernova, Julia A.; Podshibyakin, Dmitry; Rudik, Dmitry V.; Samsonova, Maria; Gromov, Igor; Tuchin, Valery V.
2005-06-01
Gram-negative E. coli, gram-positive facultative anaerobe cocci Staphylococcus lugdensis, Micrococcus halobius, and Stomatococcus mucilaginosus as subjects of study were chosen. LEDs with spectrum maxima at 405 nm (without any exogenous sensitizer) and 660 nm (in conjunction with methylene blue) and power densities of 23 mW/cm2 and 5.7 mW/cm2 accordingly as continuous light sources were chosen. Photosensitized light's affect by methylene blue was studied on E. coli only. The original scheme of experiment set up was developed. It permits one to increase expositions quantity in each experiment for more certain trend's construction over dose curves and decrease parasite flora sowing. As a result of accomplished studies it was established that blue low-coherent light have unalike weak light's dose depending suppressing effect on cocci whereas red low-coherent light have a moderate dose-depended suppressing effect at low irradiation doses and a moderate dose-depended stimulating effect at high irradiation doses on sensitized by MeBlue E. coli. For all ofthis, but Staphylococcus morphology changes were observed.
El Gayar, Nesreen H.; Georgy, Sonia S.
2016-01-01
Background. Ibuprofen is used chronically in different animal models of inflammation by administration in drinking water or in diet due to its short half-life. Though this practice has been used for years, ibuprofen doses were never assayed against parenteral dose–response curves. This study aims at identifying the equivalent intraperitoneal (i.p.) doses of ibuprofen, when it is administered in drinking water or in diet. Methods. Bioassays were performed using formalin test and incisional pain model for antinociceptive efficacy and serum TXB2 for eicosanoid inhibitory activity. The dose–response curve of i.p. administered ibuprofen was constructed for each test using 50, 75, 100 and 200 mg/kg body weight (b.w.). The dose–response curves were constructed of phase 2a of the formalin test (the most sensitive phase to COX inhibitory agents), the area under the ‘change in mechanical threshold’-time curve in the incisional pain model and serum TXB2 levels. The assayed ibuprofen concentrations administered in drinking water were 0.2, 0.35, 0.6 mg/ml and those administered in diet were 82, 263, 375 mg/kg diet. Results. The 3 concentrations applied in drinking water lay between 73.6 and 85.5 mg/kg b.w., i.p., in case of the formalin test; between 58.9 and 77.8 mg/kg b.w., i.p., in case of the incisional pain model; and between 71.8 and 125.8 mg/kg b.w., i.p., in case of serum TXB2 levels. The 3 concentrations administered in diet lay between 67.6 and 83.8 mg/kg b.w., i.p., in case of the formalin test; between 52.7 and 68.6 mg/kg b.w., i.p., in case of the incisional pain model; and between 63.6 and 92.5 mg/kg b.w., i.p., in case of serum TXB2 levels. Discussion. The increment in pharmacological effects of different doses of continuously administered ibuprofen in drinking water or diet do not parallel those of i.p. administered ibuprofen. It is therefore difficult to assume the equivalent parenteral daily doses based on mathematical calculations. PMID:27547547
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, K.; Masunaga, S.; Akaboshi, M.
1994-04-01
We have already reported that the {alpha}/{beta} ratio of the cell survival curve could be estimated from the micronucleus frequency in cytokinesis-blocked cells treated with cytochalasin-B after irradiation. In this paper, we investigate the direct relationship between the {alpha} value and the appearance of micronuclei. Cells of the SCCVII, RIF-1, EMT6, V-79, CHO, HeLa and human esophageal cancer cell lines were used for the study. Low-dose-rate irradiation was used to determine the {alpha} component of the relationship between dose and micronucleus frequency according to the linear-quadratic (LQ) model. A reduction of the dose rate from 3.09 to 0.0142 Gy/min correspondinglymore » decreased the micronucleus frequency; however, the fraction of binucleate cells without micronuclei was not affected in SCCVII and RIF-1 cells. When this fraction was defined as the normal nuclear division fraction, it decreased exponentially as a function of radiation dose. Then dose vs normal nuclear division fraction (NNDF) was fitted as follows: -In NNDF = aD + C, where D is radiation dose in grays and C is constant. The slope of the dose vs normal nuclear division fraction was not affected by dose rate. The correlation was also explored between the slope (a) and the {alpha} value of the cell survival curve determined by the colony formation assay in cells of eight cell lines. These two values showed extremely high agreement: {alpha} = 1.01a + 0.00795 (r = 0.99, P < 0.01). This assay was applied to estimate the {alpha} value of the cell survival curve of human esophageal cancer cell lines established from surgical specimens. 13 refs., 5 figs.« less
Asaad, Celia O; Caraos, Gloriamaris L; Robles, Gerardo Jose M; Asa, Anie Day D C; Cobar, Maria Lucia C; Asaad, Al-Ahmadgaid
2016-01-01
The utility of a biological dosimeter based on the analysis of dicentrics is invaluable in the event of a radiological emergency wherein the estimated absorbed dose of an exposed individual is crucial in the proper medical management of patients. The technique is also used for routine monitoring of occupationally exposed workers to determine radiation exposure. An in vitro irradiation study of human peripheral blood lymphocytes was conducted to establish a dose-response curve for radiation-induced dicentric aberrations. Blood samples were collected from volunteer donors and together with optically stimulated luminescence (OSL) dosimeters and were irradiated at 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 4, and 6 Gy using a cobalt-60 radiotherapy unit. Blood samples were cultured for 48 h, and the metaphase chromosomes were prepared following the procedure of the International Atomic Energy Agency's Emergency Preparedness and Response - Biodosimetry 2011 manual. At least 100 metaphases were scored for dicentric aberrations at each dose point. The data were analyzed using R language program. The results indicated that the distribution of dicentric cells followed a Poisson distribution and the dose-response curve was established using the estimated model, Y dic = 0.0003 (±0.0003) +0.0336 (±0.0115) × D + 0.0236 (±0.0054) × D 2 . In this study, the reliability of the dose-response curve in estimating the absorbed dose was also validated for 2 and 4 Gy using OSL dosimeters. The data were fitted into the constructed curve. The result of the validation study showed that the obtained estimate for the absorbed exposure doses was close to the true exposure doses.
A mathematical approach to beam matching
Manikandan, A; Nandy, M; Gossman, M S; Sureka, C S; Ray, A; Sujatha, N
2013-01-01
Objective: This report provides the mathematical commissioning instructions for the evaluation of beam matching between two different linear accelerators. Methods: Test packages were first obtained including an open beam profile, a wedge beam profile and a depth–dose curve, each from a 10×10 cm2 beam. From these plots, a spatial error (SE) and a percentage dose error were introduced to form new plots. These three test package curves and the associated error curves were then differentiated in space with respect to dose for a first and second derivative to determine the slope and curvature of each data set. The derivatives, also known as bandwidths, were analysed to determine the level of acceptability for the beam matching test described in this study. Results: The open and wedged beam profiles and depth–dose curve in the build-up region were determined to match within 1% dose error and 1-mm SE at 71.4% and 70.8% for of all points, respectively. For the depth–dose analysis specifically, beam matching was achieved for 96.8% of all points at 1%/1 mm beyond the depth of maximum dose. Conclusion: To quantify the beam matching procedure in any clinic, the user needs to merely generate test packages from their reference linear accelerator. It then follows that if the bandwidths are smooth and continuous across the profile and depth, there is greater likelihood of beam matching. Differentiated spatial and percentage variation analysis is appropriate, ideal and accurate for this commissioning process. Advances in knowledge: We report a mathematically rigorous formulation for the qualitative evaluation of beam matching between linear accelerators. PMID:23995874
The role of nicotinic receptor alpha 7 subunits in nicotine discrimination.
Stolerman, I P; Chamberlain, S; Bizarro, L; Fernandes, C; Schalkwyk, L
2004-03-01
The subtypes of nicotinic receptors at which the behavioural effects of nicotine originate are not fully understood. The experiments described here use mice lacking the alpha7 subunit of nicotinic receptors to investigate the role of alpha7-containing receptors in nicotine discrimination. Wild-type and alpha7-knockout mice were trained in a two-lever nicotine discrimination procedure using a tandem schedule of food reinforcement. Mutant mice exhibited baseline rates of lever-pressing as low as 52.2% of rates in wild-type controls (n=21-24). Mutant and wild-type mice acquired discrimination of nicotine (0.4 or 0.8 mg/kg) at a similar rate (n=10-12) and reached similar final levels of accuracy (71.9 +/- 4.4% and 90.8 +/- 3.1% after 60 training sessions for 0.4 and 0.8 mg/kg training doses, respectively, in mutant mice, as compared with 75.0 +/- 6.5% and 87.6 +/- 4.8% for wild types). The genotypes exhibited similar steep dose-response curves for nicotine discrimination. In both genotypes, dose-response curves for mice trained with 0.8 mg/kg of nicotine were displaced three- to four-fold to the right as compared with those for the mice trained with the smaller dose. The predominant effect of nicotine on the overall rate of responding was a reduction at the largest doses tested and there was no difference between the genotypes. The results suggest that nicotinic receptors containing the alpha7 subunit do not contribute to the discriminative stimulus or response-rate-depressant effects of nicotine, although they may regulate baseline rates of operant responding.
Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin
2014-06-05
In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Time independent summary statistics may aid the understanding of drugs' action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies.
Geometrical correction of the e-beam proximity effect for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-06-01
Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.
Committed effective dose determination in southern Brazilian cereal flours.
Scheibel, V; Appoloni, C R
2013-01-01
The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.
Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.
2013-01-01
Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the results show there is good potential for real-time superficial dose monitoring. Dose imaging under normal ambient room lighting was validated, using gated detection and a breast phantom. Conclusions: This study indicates that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging in real time for external beam radiotherapy with megavoltage x-ray beams. PMID:24089916
[Nootropic and analgesic effects of Semax following different routes of administration].
Manchenko, D M; Glazova, N Iu; Levitskaia, N G; Andreeva, L A; Kamenskiĭ, A A; Miasoedov, N F
2010-10-01
Heptapeptide Semax (MEHFPGP) is the fragment of ACTH(4-10) analogue with prolonged neurotropic activity. The aim of the present work was to study the Semax effects on learning capability and pain sensitivity in white rats following intraperitoneal and intranasal administration in different doses. Semax nootropic effects were studied in the test of acquisition of passive avoidance task. Pain sensitivity was estimated in Randall-Selitto paw-withdrawal test. It was shown that Semax exerts nootropic and analgesic activities following intraperitoneal administration. Analysis of dependence of these effects on dose resulted in different dose-response curves. Following intranasal administration, Semax was more potent in learning improvement compared to intraperitoneal administration. The peptide failed to affect the animal pain sensitivity following intranasal administration as opposed to intraperitoneal administration. The data obtained suggest different mechanisms and brain structures involved in realization of the nootropic and analgesic effects of Semax.
Tallarida, Ronald J.; Raffa, Robert B.
2014-01-01
In this review we show that the concept of dose equivalence for two drugs, the theoretical basis of the isobologram, has a wider use in the analysis of pharmacological data derived from single and combination drug use. In both its application to drug combination analysis with isoboles and certain other actions, listed below, the determination of doses, or receptor occupancies, that yield equal effects provide useful metrics that can be used to obtain quantitative information on drug actions without postulating any intimate mechanism of action. These other drug actions discussed here include (1) combinations of agonists that produce opposite effects, (2) analysis of inverted U-shaped dose effect curves of single agents, (3) analysis on the effect scale as an alternative to isoboles and (4) the use of occupation isoboles to examine competitive antagonism in the dual receptor case. New formulas derived to assess the statistical variance for additive combinations are included, and the more detailed mathematical topics are included in the appendix. PMID:20546783
The epileptogenic spectrum of opiate agonists.
Snead, O C; Bearden, L J
1982-11-01
The present authors gave mu, delta, kappa, epsilon and sigma opiate receptor agonists intracerebroventricularly to rats both singly and in combination while monitoring the electroencephalogram from cortical and depth electrodes. Dose-response curves were plotted with naloxone against the changes produced by each agonist, and the effect of a number of anticonvulsant drugs on agonist-induced seizures was ascertained. Each opiate agonist produced a different seizure pattern with a different naloxone dose-response curve and anticonvulsant profile. The order of convulsive potency was epsilon greater than delta greater than mu greater than sigma much greater than kappa. Petit mal-like seizure activity was unique to the delta agonist, leucine-enkephalin, while only the mu agonist, morphine produced generalized convulsive seizures. These experiments raise the possibility that opiate systems in the brain may be involved in the pathogenesis of a wide spectrum of seizure disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simiele, E; Smith, B; Culberson, W
2016-06-15
Purpose: The aim of this work was to determine experimentally the effective point of measurement (EPOM) in clinical electron beams for three cylindrical ionization chambers using a commercial scintillation detector as a reference detector. Methods: Percent depth dose (PDD) curves were measured using an Exradin W1 scintillation detector and were used as a representative PDD to water. Depth dose curves were measured with the Exradin A18, A1SL, and A28 ionization chambers. The raw ionization chamber curve data were corrected by the chamber fluence perturbation correction factor and restricted mass collisional stopping power ratio at each depth to obtain a percentmore » depth dose curve to the gas volume (PDDGV) of the detector. Ratios of the W1 PDD to the ion chamber PDDGV were calculated for each measurement depth. The W1 PDD curve was shifted by small depth increments, Δz, until the ratio of the W1 PDD to the ion chamber PDDGV was depth-independent (optimal Δz). A MATLAB routine was developed to determine the optimal Δz value. Results: The optimal Δz shift was used as an estimate of the EPOM for each chamber. The average calculated EPOM shifts (expressed as a fraction of the chamber cavity radius) for the A18, A1SL, and A28 ionization chambers were 0.21 ± 0.04, 0.10 ± 0.05, and 0.22 ± 0.03, respectively. Conclusion: The experimentally determined EPOM values for the A18 and A1SL in this work agreed with the simulated values of Muir and Rogers (MedPhys 2014). The results also indicate that the Exradin W1 scintillator is water equivalent for electron energies of 6 MeV, 9 MeV, 12 MeV, and 16 MeV. In addition, we confirmed that the AAPM TG51 recommended EPOM shift of 0.5 times the cavity radius is not accurate for the A18 and A1SL chambers.« less
Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta
2018-01-09
Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3 × 3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.
NASA Astrophysics Data System (ADS)
Allen, Christian Harry; Kumar, Achint; Qutob, Sami; Nyiri, Balazs; Chauhan, Vinita; Murugkar, Sangeeta
2018-01-01
Recent findings in populations exposed to ionizing radiation (IR) indicate dose-related lens opacification occurs at much lower doses (<2 Gy) than indicated in radiation protection guidelines. As a result, research efforts are now being directed towards identifying early predictors of lens degeneration resulting in cataractogenesis. In this study, Raman micro-spectroscopy was used to investigate the effects of varying doses of radiation, ranging from 0.01 Gy to 5 Gy, on human lens epithelial (HLE) cells which were chemically fixed 24 h post-irradiation. Raman spectra were acquired from the nucleus and cytoplasm of the HLE cells. Spectra were collected from points in a 3 × 3 grid pattern and then averaged. The raw spectra were preprocessed and principal component analysis followed by linear discriminant analysis was used to discriminate between dose and control for 0.25, 0.5, 2, and 5 Gy. Using leave-one-out cross-validation accuracies of greater than 74% were attained for each dose/control combination. The ultra-low doses 0.01 and 0.05 Gy were included in an analysis of band intensities for Raman bands found to be significant in the linear discrimination, and an induced repair model survival curve was fit to a band-difference-ratio plot of this data, suggesting HLE cells undergo a nonlinear response to low-doses of IR. A survival curve was also fit to clonogenic assay data done on the irradiated HLE cells, showing a similar nonlinear response.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2015-04-01
To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.
Biermans, Geert; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Saenen, Eline; Van Hees, May; Wannijn, Jean; Vives i Batlle, Jordi; Cuypers, Ann
2014-07-01
There is a need for a better understanding of biological effects of radiation exposure in non-human biota. Correct description of these effects requires a more detailed model of dosimetry than that available in current risk assessment tools, particularly for plants. In this paper, we propose a simple model for dose calculations in roots and shoots of Arabidopsis thaliana seedlings exposed to radionuclides in a hydroponic exposure setup. This model is used to compare absorbed doses for three radionuclides, (241)Am (α-radiation), (90)Sr (β-radiation) and (133)Ba (γ radiation). Using established dosimetric calculation methods, dose conversion coefficient values were determined for each organ separately based on uptake data from the different plant organs. These calculations were then compared to the DCC values obtained with the ERICA tool under equivalent geometry assumptions. When comparing with our new method, the ERICA tool appears to overestimate internal doses and underestimate external doses in the roots for all three radionuclides, though each to a different extent. These observations might help to refine dose-response relationships. The DCC values for (90)Sr in roots are shown to deviate the most. A dose-effect curve for (90)Sr β-radiation has been established on biomass and photosynthesis endpoints, but no significant dose-dependent effects are observed. This indicates the need for use of endpoints at the molecular and physiological scale. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Haneda, K.
2016-04-01
The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.
Dose Response Data for Hormonally Active Chemicals ...
The shape of the dose response curve in the low dose region has been debated since the late 1940s. The debate originally focused on linear no threshold (LNT) vs threshold responses in the low dose range for cancer and noncancer related effects. For noncancer effects the default assumption is that noncancer effects generally display threshold rather than LNT responses. More recently, claims have arisen that the chemicals, like endocrine disrupters (EDS), which act via high affinity, low capacity nuclear receptors, may display LNT or nonmonotonic low dose responses: responses that could be missed in multigenerational guideline toxicity testing. This presentation will discuss LNT, threshold and nonmonotonic dose response relationships from case studies of chemicals that disrupt reproductive development and function via the ER, AR and AhR pathways and will include in vitro and in vivo multigenerational data. The in vivo studies in this discussion include only robust, well designed, comprehensive studies that administered the chemical via a relevant route(s) of exposure over a broad dose response range, including low dose(s) in the microgram/kg/d range. The chemicals include ethinyl estradiol, estradiol, genistein, bisphenol a, trenbolone, finasteride, flutamide, phthalate esters and 2,3,7,8 TCDD. The objective is to critically evaluate the data from well done studies in this field to address concerns that current multigenerational reproductive test gui
Surgical Responses of Medial Rectus Muscle Recession in Thyroid Eye Disease-Related Esotropia
Lyu, In Jeong; Lee, Ju-Yeun; Kong, Mingui; Park, Kyung-Ah; Oh, Sei Yeul
2016-01-01
We evaluate the surgical outcomes and surgical responses of medial rectus muscle (MR) recession patients with thyroid eye disease (TED)-related esotropia (ET). The surgical dose-response curves 1 week postoperatively and at the final visit were analyzed. Univariable and multivariable linear regression analyses were applied to investigate factors influencing surgical dose-response. A total of 43 patients with TED-related ET that underwent MR recession were included. The final success rate was 86.0% and the rate of undercorrection was 14.0%. The surgical dose-response curves of TED-related ET showed a gentle slope compared with those of standard surgical tables. In the univariable model, simultaneous vertical rectus muscle recession was the only significant factor influencing surgical dose-response of MR recession in TED-related ET (β = -0.397, P = 0.044). In a model adjusted for age, sex, type of surgery, and preoperative horizontal angle of deviation, simultaneous vertical rectus muscle recession showed marginal significance (β = -0.389, P = 0.064). The surgical dose-response curve of TED-related ET was unique. Simultaneous vertical rectus muscle recession was associated with increased surgical dose-response in TED-related ET. PMID:26796354
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillmann, Clarissa, E-mail: clarissa.gillmann@med.uni-heidelberg.de; Jäkel, Oliver; Heidelberg Ion Beam Therapy Center
2014-04-01
Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time ofmore » 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a comparable photon-treated collective using the same dosimetric variable as in the present study.« less
Evidence for dose-additive effects of pyrethroids on motor activity in rats.
Wolansky, Marcelo J; Gennings, Chris; DeVito, Michael J; Crofton, Kevin M
2009-10-01
Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose-effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. We used a mixture of these 11 pyrethroids and the same testing paradigm used in single-compound assays to test the hypothesis that cumulative neurotoxic effects of pyrethroid mixtures can be predicted using the default dose-addition theory. Mixing ratios of the 11 pyrethroids in the tested mixture were based on the ED30 (effective dose that produces a 30% decrease in response) of the individual chemical (i.e., the mixture comprised equipotent amounts of each pyrethroid). The highest concentration of each individual chemical in the mixture was less than the threshold for inducing behavioral effects. Adult male rats received acute oral exposure to corn oil (control) or dilutions of the stock mixture solution. The mixture of 11 pyrethroids was administered either simultaneously (2 hr before testing) or after a sequence based on times of peak effect for the individual chemicals (4, 2, and 1 hr before testing). A threshold additivity model was fit to the single-chemical data to predict the theoretical dose-effect relationship for the mixture under the assumption of dose additivity. When subthreshold doses of individual chemicals were combined in the mixtures, we found significant dose-related decreases in motor activity. Further, we found no departure from the predicted dose-additive curve regardless of the mixture dosing protocol used. In this article we present the first in vivo evidence on pyrethroid cumulative effects supporting the default assumption of dose addition.
Linking fluorescence induction curve and biomass in herbicide screening.
Christensen, Martin G; Teicher, Harald B; Streibig, Jens C
2003-12-01
A suite of dose-response bioassays with white mustard (Sinapis alba L) and sugar beet (Beta vulgaris L) in the greenhouse and with three herbicides was used to analyse how the fluorescence induction curves (Kautsky curves) were affected by the herbicides. Bentazone, a photosystem II (PSII) inhibitor, completely blocked the normal fluorescence decay after the P-step. In contrast, fluorescence decay was still obvious for flurochloridone, a PDS inhibitor, and glyphosate, an EPSP inhibitor, which indicated that PSII inhibition was incomplete. From the numerous parameters that can be derived from OJIP-steps of the Kautsky curve the relative changes at the J-step [Fvj = (Fm - Fj)/Fm] was selected to be a common response parameter for the herbicides and yielded consistent dose-response relationships. Four hours after treatment, the response Fvj on the doses of bentazone and flurochloridone could be measured. For glyphosate, the changes of the Kautsky curve could similarly be detected 4 h after treatment in sugar beet, but only after 24 hs in S alba. The best prediction of biomass in relation to Fvj was found for bentazone. The experiments were conducted between May and August 2002 and showed that the ambient temperature and solar radiation in the greenhouse could affect dose-response relationships. If the Kautsky curve parameters should be used to predict the outcome of herbicide screening experiments in the greenhouse, where ambient radiation and temperature can only partly be controlled, it is imperative that the chosen fluorescence parameters can be used to predict accurately the resulting biomass used in classical bioassays.
Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi
2013-07-01
The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.
SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supanich, MP
2015-06-15
Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less
The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range
Kalliokoski, Annikka; Neuvonen, Mikko; Neuvonen, Pertti J; Niemi, Mikko
2008-01-01
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECTOrganic anion transporting polypeptide 1B1 is an influx transporter expressed on the basolateral membrane of hepatocytes.A common single nucleotide polymorphism, c.521T→C (p.Val174Ala), of the SLCO1B1 gene has been associated with increased plasma repaglinide concentrations in healthy volunteers.Previous studies at low repaglinide doses have suggested that the effect of SLCO1B1 c.521T→C polymorphism on the pharmacokinetics of repaglinide could be dose-dependent. WHAT THIS STUDY ADDSRepaglinide peak plasma concentration and area under the plasma concentration–time curve increased linearly along with repaglinide dose ranging from 0.25 to 2 mg in both the predominant c.521TT and rare c.521CC genotype group.The effect of SLCO1B1 c.521T→C polymorphism on repaglinide pharmacokinetics persists over a wide dose range. AIMS To establish whether the effect of SLCO1B1[encoding organic anion transporting polypeptide 1B1 (OATP1B1)] c.521T→C (p.Val174Ala) polymorphism on the pharmacokinetics of repaglinide is dose-dependent. METHODS Twelve healthy volunteers with the SLCO1B1 c.521TT genotype (controls) and eight with the c.521CC genotype ingested a single 0.25-, 0.5-, 1- or 2-mg dose of repaglinide in a dose-escalation study with a wash-out period of ≥1 week. RESULTS The mean area under the plasma concentration–time curve from time 0 to infinity (AUC0–∞) of 0.25, 0.5, 1 or 2 mg repaglinide was 82% (95% confidence interval 47, 125), 72% (24, 138), 56% (24, 95) or 108% (59, 171) (P ≤ 0.001) larger in participants with the SLCO1B1 c.521CC genotype than in those with the c.521TT genotype, respectively. Repaglinide peak plasma concentration and AUC0–∞ increased linearly along with repaglinide dose in both genotype groups (r > 0.88, P < 0.001). There was a tendency towards lower blood glucose concentrations after repaglinide administration in the participants with the c.521CC genotype than in those with the c.521TT genotype. CONCLUSIONS The effect of SLCO1B1 c.521T→C polymorphism on the pharmacokinetics of repaglinide persists throughout the clinically relevant dose range. PMID:18823304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. L. W.; Rogers, D. W. O.
In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to amore » calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.« less
Wang, L L W; Rogers, D W O
2009-06-01
In current dosimetry protocols for electron beams, for plane-parallel chambers, the effective point of measurement is at the front face of the cavity, and, for cylindrical chambers, it is at a point shifted 0.5r upstream from the cavity center. In this study, Monte Carlo simulations are employed to study the issue of effective point of measurement for both plane-parallel chambers and cylindrical thimble chambers in electron beams. It is found that there are two ways of determining the position of the effective point of measurement: One is to match the calculated depth-ionization curve obtained from a modeled chamber to a calculated depth-dose curve; the other is to match the electron fluence spectrum in the chamber cavity to that in the phantom. For plane-parallel chambers, the effective point of measurement determined by the first method is generally not at the front face of the chamber cavity, which is obtained by the second method, but shifted downstream toward the cavity center by an amount that could be larger than one-half a millimeter. This should not be ignored when measuring depth-dose curves in electron beams. For cylindrical chambers, these two methods also give different positions of the effective point of measurement: The first gives a shift of 0.5r, which is in agreement with measurements for high-energy beams and is the same as the value currently used in major dosimetry protocols; the latter gives a shift of 0.8r, which is closer to the value predicted by a theoretical calculation assuming no-scatter conditions. The results also show that the shift of 0.8r is more appropriate if the cylindrical chamber is to be considered as a Spencer-Attix cavity. In electron beams, since the water/air stopping-power ratio changes with depth in a water phantom, the difference of the two shifts (0.3r) will lead to an incorrect evaluation of the water/air stopping-power ratio at the point of measurement, thus resulting in a systematic error in determining the absorbed dose by cylindrical chambers. It is suggested that a shift of 0.8r be used for electron beam calibrations with cylindrical chambers and a shift of 0.4r-0.5r be used for depth-dose measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Palvi; Bedyal, A.K.; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com
2016-01-15
Highlights: • First time, a detailed comparative study of the glow curves and kinetic parameters was made on K{sub 3}Y(PO{sub 4}){sub 2} nanophosphor. • Combustion method was employed to synthesize the Eu{sup 3+} doped K{sub 3}Y(PO{sub 4}){sub 2} nanophosphor. • The nanophosphor exhibited sublinear response suggesting that it is suitable for TL dosimetry. - Abstract: Eu{sup 3+} doped K{sub 3}Y(PO{sub 4}){sub 2} nanophosphor was synthesized by combustion synthesis using urea as a fuel. The crystal structure and particle morphology of the nanophosphor were investigated by using X-ray diffraction and transmission electron microscopy, respectively. A Thermoluminescence (TL) study was carried outmore » after exposing the samples to gamma radiation. The TL glow curves exhibited a prominent peak at 407 K and a small hump at 478 K. The intensity of the peaks increased with the increase in the dose of the gamma rays (0.01–5 kGy). The K{sub 3}Y(PO{sub 4}){sub 2}: Eu{sup 3+} (2.5 mol%) nanophosphor exhibited sublinear TL response to γ-radiation over a wide range of gamma doses (0.01–5 kGy). The TLanal program was used to analyze the glow curves of the K{sub 3}Y(PO{sub 4}){sub 2} nanophosphor at different doses (0.2–5 kGy) and different heating rates (3–10 K/s). A comparative study was done for kinetic trapping parameters that were determined by the peak shape methods of Chen, Grossweiner and Lushchik. The frequency factors (s) for each glow peak were also calculated. The values of the activation energy (E) obtained by the TLanal program were in good agreement with those obtained by the peak shape methods. The effect of different amount of doses and different heating rates are discussed.« less
Huang, Jessie Y.; Eklund, David; Childress, Nathan L.; Howell, Rebecca M.; Mirkovic, Dragan; Followill, David S.; Kry, Stephen F.
2013-01-01
Purpose: Several simplifications used in clinical implementations of the convolution/superposition (C/S) method, specifically, density scaling of water kernels for heterogeneous media and use of a single polyenergetic kernel, lead to dose calculation inaccuracies. Although these weaknesses of the C/S method are known, it is not well known which of these simplifications has the largest effect on dose calculation accuracy in clinical situations. The purpose of this study was to generate and characterize high-resolution, polyenergetic, and material-specific energy deposition kernels (EDKs), as well as to investigate the dosimetric impact of implementing spatially variant polyenergetic and material-specific kernels in a collapsed cone C/S algorithm. Methods: High-resolution, monoenergetic water EDKs and various material-specific EDKs were simulated using the EGSnrc Monte Carlo code. Polyenergetic kernels, reflecting the primary spectrum of a clinical 6 MV photon beam at different locations in a water phantom, were calculated for different depths, field sizes, and off-axis distances. To investigate the dosimetric impact of implementing spatially variant polyenergetic kernels, depth dose curves in water were calculated using two different implementations of the collapsed cone C/S method. The first method uses a single polyenergetic kernel, while the second method fully takes into account spectral changes in the convolution calculation. To investigate the dosimetric impact of implementing material-specific kernels, depth dose curves were calculated for a simplified titanium implant geometry using both a traditional C/S implementation that performs density scaling of water kernels and a novel implementation using material-specific kernels. Results: For our high-resolution kernels, we found good agreement with the Mackie et al. kernels, with some differences near the interaction site for low photon energies (<500 keV). For our spatially variant polyenergetic kernels, we found that depth was the most dominant factor affecting the pattern of energy deposition; however, the effects of field size and off-axis distance were not negligible. For the material-specific kernels, we found that as the density of the material increased, more energy was deposited laterally by charged particles, as opposed to in the forward direction. Thus, density scaling of water kernels becomes a worse approximation as the density and the effective atomic number of the material differ more from water. Implementation of spatially variant, polyenergetic kernels increased the percent depth dose value at 25 cm depth by 2.1%–5.8% depending on the field size, while implementation of titanium kernels gave 4.9% higher dose upstream of the metal cavity (i.e., higher backscatter dose) and 8.2% lower dose downstream of the cavity. Conclusions: Of the various kernel refinements investigated, inclusion of depth-dependent and metal-specific kernels into the C/S method has the greatest potential to improve dose calculation accuracy. Implementation of spatially variant polyenergetic kernels resulted in a harder depth dose curve and thus has the potential to affect beam modeling parameters obtained in the commissioning process. For metal implants, the C/S algorithms generally underestimate the dose upstream and overestimate the dose downstream of the implant. Implementation of a metal-specific kernel mitigated both of these errors. PMID:24320507
Evaluation of β-blocker gel and effect of dosing volume for topical delivery.
Zhang, Qian; Chantasart, Doungdaw; Li, S Kevin
2015-05-01
Although topical administration of β-blockers is desired because of the improved therapeutic efficacy and reduced systemic adverse effects compared with systemic administration in the treatment of infantile hemangioma, the permeation of β-blockers across skin under finite dose conditions has not been systematically studied and an effective topical β-blocker formulation for skin application is not available. The present study evaluated the permeation of β-blockers propranolol, betaxolol, and timolol across human epidermal membrane (HEM) from a topical gel in Franz diffusion cells in vitro under various dosing conditions. The effects of occlusion and dosing volume on percutaneous absorption of β-blockers from the gel were studied. The permeation data were compared with those of finite dose diffusion theory. The results showed that skin permeation of β-blockers generally could be enhanced two to three times by skin occlusion. The cumulative amounts of β-blockers permeated across HEM increased with increasing dosing volume. An adequate fit was obtained between the theoretical curve and experimental permeation data, indicating that the experimental results of the gel are consistent with finite dose diffusion theory. In conclusion, the findings suggest the feasibility of using topical gels of β-blockers for infantile hemangioma treatment and topical application with skin occlusion is preferred. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Assessment by cytogenetic analysis of the radioprotection properties of propolis extract.
Montoro, A; Almonacid, M; Serrano, J; Saiz, M; Barquinero, J F; Barrios, L; Verdú, G; Pérez, J; Villaescusa, J I
2005-01-01
Propolis obtained from honeybee hives has been used in folk medicine as an anti-inflammatory, anti-carcinogenic or immunomodulatory agent. In animal studies, the radioprotector effect of propolis has been attributed to its free-radical scavenging properties. The present study was carried out to show the protective properties of propolis extract against DNA damage induced by gamma irradiation. The evaluation of the radioprotective effect of propolis has been carried out by the analysis of chromosome aberration induction after several doses of gamma rays. The results of an analysis in the presence of ethanol extract of propolis (EEP) were compared with the dose-effect calibration curve for gamma-rays by analysis of chromosome aberrations without propolis, a decrease in the radiation-induced chromosome aberrations has been observed to be higher than 50% for all the doses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
El Youssef, Joseph; Bakhtiani, Parkash A.; Cai, Yu; Stobbe, Jade M.; Branigan, Deborah; Ramsey, Katrina; Jacobs, Peter; Reddy, Ravi; Woods, Mark; Ward, W. Kenneth
2015-01-01
OBJECTIVE To evaluate subjects with type 1 diabetes for hepatic glycogen depletion after repeated doses of glucagon, simulating delivery in a bihormonal closed-loop system. RESEARCH DESIGN AND METHODS Eleven adult subjects with type 1 diabetes participated. Subjects underwent estimation of hepatic glycogen using 13C MRS. MRS was performed at the following four time points: fasting and after a meal at baseline, and fasting and after a meal after eight doses of subcutaneously administered glucagon at a dose of 2 µg/kg, for a total mean dose of 1,126 µg over 16 h. The primary and secondary end points were, respectively, estimated hepatic glycogen by MRS and incremental area under the glucose curve for a 90-min interval after glucagon administration. RESULTS In the eight subjects with complete data sets, estimated glycogen stores were similar at baseline and after repeated glucagon doses. In the fasting state, glycogen averaged 21 ± 3 g/L before glucagon administration and 25 ± 4 g/L after glucagon administration (mean ± SEM) (P = NS). In the fed state, glycogen averaged 40 ± 2 g/L before glucagon administration and 34 ± 4 g/L after glucagon administration (P = NS). With the use of an insulin action model, the rise in glucose after the last dose of glucagon was comparable to the rise after the first dose, as measured by the 90-min incremental area under the glucose curve. CONCLUSIONS In adult subjects with well-controlled type 1 diabetes (mean A1C 7.2%), glycogen stores and the hyperglycemic response to glucagon administration are maintained even after receiving multiple doses of glucagon. This finding supports the safety of repeated glucagon delivery in the setting of a bihormonal closed-loop system. PMID:26341131
Katsura, Kouji; Utsunomiya, Satoru; Abe, Eisuke; Sakai, Hironori; Kushima, Naotaka; Tanabe, Satoshi; Yamada, Takumi; Hayakawa, Takahide; Yamanoi, Yoshihiko; Kimura, Syuhei; Wada, Shinichi; Aoyama, Hidefumi; Hayashi, Takafumi
2016-11-01
The changes in dose distribution caused by backscatter radiation from a common commercial dental alloy (Au-Ag-Pd dental alloy; DA) were investigated to identify the optimal material and thicknesses of a dental device (DD) for effective prevention of mucositis. To this end, 1 cm 3 of DA was irradiated with a 6-MV X-ray beam (100 MU) in a field size of 10 × 10 cm 2 using a Novalis TX linear accelerator. Ethylene vinyl acetate copolymer, polyolefin elastomer, and polyethylene terephthalate (PET) were selected as DD materials. The depth dose along the central axis was determined with respect to the presence/absence of DA and DDs at thicknesses of 1-10 mm using a parallel-plate ionization chamber. The dose in the absence of DDs showed the lowest value at a distance of 5 mm from the DA surface and gradually increased with distance between the measurement point and the DA surface for distances of ≥5 mm. Except for PET, no significant difference between the DA dose curves for the presence and absence of DDs was observed. In the dose curve, PET showed a slightly higher dose for DA with DD than for DA without DD for thicknesses of ≥4 mm. The findings herein suggest that the optimal DD material for preventing local dose enhancement of the mucosa caused by DA backscatter radiation should have a relatively low atomic number and physical density and that optimal DD thickness should be chosen considering backscatter radiation and percentage depth dose. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Energy spectrum control for modulated proton beams.
Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N
2009-06-01
In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
Zazueta-Beltrán, Liliana; Medina-Aymerich, Lorena; Estela Díaz-Triste, Nadia; Chávez-Piña, Aracely Evangelina; Castañeda-Hernández, Gilberto; Cruz-Antonio, Leticia
2017-03-01
To determine the role of a pharmacokinetic interaction in the protective effect of curcumin against the gastric damage induced by indomethacin administration as such or as its prodrug acemetacin. Wistar rats orally received single dose of indomethacin (30 mg/kg) with and without curcumin (30 mg/kg); gastric injury was evaluated by determining the total damaged area. Additional groups of rats received an oral single dose of indomethacin (30 mg/kg) or its prodrug acemetacin (34.86 mg/kg) in the presence or absence of curcumin (30 mg/kg). Indomethacin and acemetacin concentrations in plasma from blood draws were determined by high-performance liquid chromatography.Plasma concentration-against-time curves were constructed, and bioavailability parameters, maximal concentration (C max ) and area under the curve to the last sampling time (AUC 0-t ) were estimated. Concomitant administration of indomethacin and curcumin resulted in a significantly reduced gastric damage compared to indomethacin alone. However, co-administration of curcumin did not produce any significant alteration in the bioavailability parameters of indomethacin and acemetacin after administration of either the active compound or the prodrug. Curcumin exhibits a protective effect against indomethacin-induced gastric damage, but does not produce a reduction of the bioavailability of this nonsteroidal anti-inflammatory drug, indomethacin. Data thus suggest that a pharmacokinetic mechanism of action is not involved in curcumin gastroprotection.
NASA Astrophysics Data System (ADS)
Rabin, B.; Joseph, J.; Shukitt-Hale, B.
Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation- induced disruption of dopaminergic function disrupts a variety of behaviors that are dependent upon the integrity of the dopaminergic system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, spatial learning and memory (Morris water maze), and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current presentation will review the data relevant to the degree to which these characteristics are in fact common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. Supported by N.A.S.A. Grant NAG9-1190.
Willis, Holly J; Thomas, William; Eldridge, Alison L; Harkness, Laura; Green, Hilary; Slavin, Joanne L
2011-01-01
Conventional wisdom suggests that fiber consumption leads to lower postprandial glucose and insulin response. We hypothesized that increasing doses of mixed, viscous fiber would lower glucose and insulin levels in a dose-dependent manner. Healthy men (n = 10) and women (n = 10) with a body mass index of 24 ± 2 (mean ± SEM) participated in this double-blind, crossover study. On 4 separate visits, fasting subjects consumed an approximately 2093 kJ (500 calorie) muffin with 0, 4, 8, or 12 g of mixed fibers. Blood was drawn to measure glucose and insulin at regular intervals throughout a 3-hour test period. Area under the curve (AUC) glucose was significantly lower after 0 g of fiber than after 4, 8, or 12 g of fiber (arbitrary AUC units ± SEM: 25.3 ± 5.2 vs 44.6 ± 7.7, 49.7 ± 7.9, 51.5 ± 6.6, respectively; P < .006). Area under the curve glucose increased with increasing fiber doses (P for trend = .0003). Area under the curve insulin was higher after the 4-g dose than after the 0-, 8-, and 12-g doses (arbitrary AUC units ± SEM: 84.4 ± 8.0 vs 60.1 ± 6.5, 69.4 ± 8.7, 69.7 ± 8.5, respectively; P < .05); it did not change in a dose-dependent manner. Area under the curve glucose and AUC insulin did not correlate with each other. Glucose and insulin did not decrease in a dose-dependent manner after 0, 4, 8, and 12 g of mixed fibers were consumed in muffins for breakfast. The lack of differences was largely based on the individual variation in glucose response. Caution should be used when making general claims about the expected impact of fiber on glucose and insulin levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Santos, D E; Liu, G J; Takeuchi, H
1995-01-16
Some histamine H1 receptor antagonists suppressed the inward current (Iin) of an Achatina identifiable neurone type, PON (periodically oscillating neurone), caused by an Achatina endogenous tetrapeptide having a D-phenylalanine residue, achatin-I (Gly-D-Phe-Ala-Asp), under voltage clamp. Achatin-I was applied locally to the neurone by brief pneumatic pressure ejection and antagonists were administered by perfusion. The dose-response curves of the effective histamine H1 antagonists indicated their potency order to suppress the Iin as follows: chlorcyclizine, promethazine, triprolidine and homochlorcyclizine > trimeprazine and clemastine > diphenylpyraline. The potent drugs were mostly piperazine and phenothiazine types. The effects of chlorcyclizine, promethazine and triprolidine on the dose (the duration of the pressure ejection)-response curve of achatin-I indicated that these drugs affected the Iin caused by achatin-I in a non-competitive manner. The antagonists for the receptors of the small-molecule neurotransmitters other than histamine H1, such as histamine H2, acetylcholine, gamma-aminobutyric acid (GABA), L-glutamic acid, dopamine, alpha- and beta-adrenalin and 5-hydroxytryptamine, had no effect on the Iin caused by achatin-I.
Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari
2015-01-01
To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.
Synergistic interaction between fentanyl and bupivacaine given intrathecally for labor analgesia.
Ngan Kee, Warwick D; Khaw, Kim S; Ng, Floria F; Ng, Karman K L; So, Rita; Lee, Anna
2014-05-01
Lipophilic opioids and local anesthetics are often given intrathecally in combination for labor analgesia. However, the nature of the pharmacologic interaction between these drugs has not been clearly elucidated in humans. Three hundred nulliparous women randomly received 1 of 30 different combinations of fentanyl and bupivacaine intrathecally using a combined spinal-epidural technique for analgesia in the first stage of labor. Visual analogue scale pain scores were recorded for 30 min. Response was defined by percentage decrease in pain score from baseline at 15 and 30 min. Dose-response curves for individual drugs were fitted to a hyperbolic dose-response model using nonlinear regression. The nature of the drug interaction was determined using dose equivalence methodology to compare observed effects of drug combinations with effects predicted by additivity. The derived dose-response models for individual drugs (doses in micrograms) at 15 min were: Effect = 100 × dose / (13.82 + dose) for fentanyl, and Effect = 100 × dose / (1,590 + dose) for bupivacaine. Combinations of fentanyl and bupivacaine produced greater effects than those predicted by additivity at 15 min (P < 0.001) and 30 min (P = 0.015) (mean differences, 9.1 [95% CI, 4.1-14.1] and 6.4 [95% CI, 1.2-11.5] units of the normalized response, respectively), indicating a synergistic interaction. The pharmacologic interaction between intrathecal fentanyl and bupivacaine is synergistic. Characterization and quantification of this interaction provide a theoretical basis and support for the clinical practice of combining intrathecal opioids and local anesthetics.
Zuardi, Antonio W; Rodrigues, Natália P; Silva, Angélica L; Bernardo, Sandra A; Hallak, Jaime E C; Guimarães, Francisco S; Crippa, José A S
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase.
Zuardi, Antonio W.; Rodrigues, Natália P.; Silva, Angélica L.; Bernardo, Sandra A.; Hallak, Jaime E. C.; Guimarães, Francisco S.; Crippa, José A. S.
2017-01-01
The purpose of this study was to investigate whether the anxiolytic effect of cannabidiol (CBD) in humans follows the same pattern of an inverted U-shaped dose-effect curve observed in many animal studies. Sixty healthy subjects of both sexes aged between 18 and 35 years were randomly assigned to five groups that received placebo, clonazepam (1 mg), and CBD (100, 300, and 900 mg). The subjects were underwent a test of public speaking in a real situation (TPSRS) where each subject had to speak in front of a group formed by the remaining participants. Each subject completed the anxiety and sedation factors of the Visual Analog Mood Scale and had their blood pressure and heart rate recorded. These measures were obtained in five experimental sessions with 12 volunteers each. Each session had four steps at the following times (minutes) after administration of the drug/placebo, as time 0: -5 (baseline), 80 (pre-test), 153 (speech), and 216 (post-speech). Repeated-measures analyses of variance showed that the TPSRS increased the subjective measures of anxiety, heart rate, and blood pressure. Student-Newman-Keuls test comparisons among the groups in each phase showed significant attenuation in anxiety scores relative to the placebo group in the group treated with clonazepam during the speech phase, and in the clonazepam and CBD 300 mg groups in the post-speech phase. Clonazepam was more sedative than CBD 300 and 900 mg and induced a smaller increase in systolic and diastolic blood pressure than CBD 300 mg. The results confirmed that the acute administration of CBD induced anxiolytic effects with a dose-dependent inverted U-shaped curve in healthy subjects, since the subjective anxiety measures were reduced with CBD 300 mg, but not with CBD 100 and 900 mg, in the post-speech phase. PMID:28553229
Rocha-González, Héctor Isaac; Blaisdell-López, Everardo; Granados-Soto, Vinicio; Navarrete, Andrés
2010-12-15
The purpose of this study was to investigate the possible antinociceptive effect of Heterotheca inuloides in inflammatory pain and to identify the main compounds involved in this effect. Dose-response curves were obtained for hexane, dichlorometane, ethyl acetate and methanol extracts from Heterotheca inuloides inflorescences in the formalin test. Hexane extract was more potent and effective than other extracts. Bio-guided fractionation was performed to determine the main antinociceptive compounds of the plant. Gas chromatography-mass spectrometry technique demonstrated the composition of the most active fraction from hexane extract revealing the presence of caryophyllene oxide, cedrene, 7-hydroxy-3,4-dihydrocadalin, 7-hydroxycadalene and a compound not identified. The isolated compounds were individually evaluated in the formalin test in a preliminary dose of 100 μg/paw and only 7-hydroxy-3,4-dihydrocadalin showed a significant antinociceptive effect. Dose-response curves were then obtained for 7-hydroxy-3,4-dihydrocadalin and diclofenac, a prototypical analgesic drug. Both drugs were equieffective and equipotent in the second phase of the formalin test, but 7-hydroxy-3,4-dihydrocadalin was more effective and potent in the first phase than diclofenac. In addition, 7-hydroxy-3,4-dihydrocadalin reduced carrageenan-induced mechanical hyperalgesia and inflammation in a dose-dependent manner. Finally, in mechanistic studies, the antinociceptive effect of 7-hydroxy-3,4-dihydrocadalin in the formalin test was prevented by methiothepin, WAY100635, SB224289 and BRL15572 but not by naltrexone. Results support the use of H. inuloides inflorescences as analgesic in the Mexican traditional medicine. Moreover, data indicate that 7-hydroxy-3,4-dihydrocadalin is partly responsible of this pharmacological activity, and suggest that 5-HT(1A), 5-HT(1B), and 5-HT(1D) serotonergic, but not opioid, receptors participate in the antinociceptive effect of this drug. Copyright © 2010 Elsevier B.V. All rights reserved.
SU-E-T-451: Accuracy and Application of the Standard Imaging W1 Scintillator Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, M; McEwen, M
2014-06-01
Purpose: To evaluate the Standard Imaging W1 scintillator dosimeter in a range of clinical radiation beams to determine its range of possible applications. Methods: The W1 scintillator is a small perturbation-free dosimeter which is of interest in absolute and relative clinical dosimetry due to its small size and water equivalence. A single version of this detector was evaluated in Co-60 and linac photon and electron beams to investigate the following: linearity, sensitivity, precision, and dependence on electrometer type. In addition, depth-dose and cross-plane profiles were obtained in both photon and electron beams and compared with data obtained with wellbehaved ionizationmore » chambers. Results: In linac beams the precision and linearity was very impressive, with typical values of 0.3% and 0.1% respectively. Performance in a Co-60 beam was much poorer (approximately three times worse) and it is not clear whether this is due to the lower signal current or the effect of the continuous beam (rather than pulsed beam of the linac measurements). There was no significant difference in the detector reading when using either the recommended SI Supermax electrometer or two independent high-quality electrometers, except for low signal levels, where the Supermax exhibited an apparent threshold effect, preventing the measurement of the bremsstrahlung background in electron depth-dose curves. Comparisons with ion chamber measurements in linac beams were somewhat variable: good agreement was seen for cross-profiles (photon and electron beams) and electron beam depth-dose curves, generally within the 0.3% precision of the scintillator but systematic differences were observed as a function of measurement depth in photon beam depth-dose curves. Conclusion: A first look would suggest that the W1 scintillator has applications beyond small field dosimetry but performance appears to be limited to higher doserate and/or pulsed radiation beams. Further work is required to resolve discrepancies compared to ion chambers.« less
Chen, Yu-Wen; Chiu, Chong-Chi; Lin, Heng-Teng; Wang, Jhi-Joung; Hung, Ching-Hsia
2018-05-01
We evaluated the interaction of dopamine-proxymetacaine and dopamine- oxybuprocaine antinociception using isobolograms. This experiment uses subcutaneous drug (proxymetacaine, oxybuprocaine, and dopamine) injections under the skin of the rat's back, thus simulating infiltration blocks. The dose-related antinociceptive curves of proxymetacaine and oxybuprocaine alone and in combination with dopamine were constructed, and then the antinociceptive interactions between the local anesthetic and dopamine were analyzed using isobolograms. Subcutaneous proxymetacaine, oxybuprocaine, and dopamine produced a sensory block to local skin pinpricks in a dose-dependent fashion. The rank order of potency was proxymetacaine (0.57 [0.52-0.63] μmol/kg) > oxybuprocaine (1.05 [0.96-1.15] μmol/kg) > dopamine (165 [154-177] μmol/kg; P < .01 for each comparison) based on the 50% effective dose values. On the equianesthetic basis (25% effective dose, 50% effective dose, and 75% effective dose), the nociceptive block duration of proxymetacaine or oxybuprocaine was shorter than that of dopamine (P < .01). Oxybuprocaine or proxymetacaine coinjected with dopamine elicited a synergistic antinociceptive effect and extended the duration of action. Oxybuprocaine and proxymetacaine had a higher potency and provoked a shorter duration of sensory block compared with dopamine. The use of dopamine increased the quality and duration of skin antinociception caused by oxybuprocaine and proxymetacaine.
Corona-Ramos, Janette Nallely; De la O-Arciniega, Minarda; Déciga-Campos, Myrna; Medina-López, José Raúl; Domínguez-Ramírez, Adriana Miriam; Jaramillo-Morales, Osmar Antonio; Espinosa-Juárez, Josué Vidal; López-Muñoz, Francisco Javier
2016-08-01
Preclinical Research The current work evaluates the interaction between two commonly used drugs, tramadol (Tra) and gabapentin (Gbp). Dose-response curves (DRC) and isobolographic analysis were used to confirm their synergistic antihyperalgesic and anti-allodynic responses in a rat neuropathic pain model involving chronic constriction injury of the sciatic nerve and in von Frey and acetone tests. Tra and Gbp produced dose-dependent antihyperalgesic and anti-allodynic effects. Dose-response studies of combinations of Tra and Gbp in combination showed the DRC was leftward-shifted compared to the DRCs for each compound alone. One combination demonstrated both antihyperalgesic and anti-allodynic effects greater than those observed after individual administration. The remaining combinations demonstrated an additive effect. The Tra+Gbp combination demonstrated a potentiative effect with smaller doses of Tra. Additionally, it was determined lethal dose 50 (LD50 ) of Tra alone and tramadol + Gbp 10 using mice to 48 h post administration. The DRC (death) were similar for Tra alone and in Tra in combination, despite the improved effectiveness of Tra in the presence of GBP, 10 mg/kg. A combination of these drugs could be effective in neuropathic pain therapy because they can produce potentiative (at a low dose) or additive effects. Drug Dev Res 77 : 217-226, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.
Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A
1992-01-01
In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle. PMID:1323279
Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle.
Camps, M; Gumà, A; Viñals, F; Testar, X; Palacín, M; Zorzano, A
1992-08-01
In this study, the relationship between the concentration of extracellular insulin, insulin binding and insulin action was evaluated in skeletal muscle. Initially we investigated the dose-response relationship of insulin action using three different experimental models that are responsive to insulin, i.e. the isolated perfused rat hindquarter, incubated strips of soleus muscle, and insulin receptors partially affinity-purified from skeletal muscle. We selected as insulin-sensitive parameters glucose uptake in the perfused hindquarter, lactate production in the incubated muscle preparation, and tyrosine receptor kinase activity in the purified receptor preparation. Our results showed that the dose-response curves obtained in the perfused hindquarter and in the incubated muscle were superimposable. In contrast, the dose-response curve for insulin-stimulated receptor tyrosine kinase activity in partially purified receptors was displaced to the left compared with the curves obtained in the perfused hindquarter and in the incubated muscle. The differences between the dose-response curve for receptor tyrosine kinase and those for glucose uptake and lactate production were not explained by a substantial insulin concentration gradient between medium and interstitial space. Thus the medium/interstitial insulin concentration ratio, when assayed in the incubated intact muscle at 5 degrees C, was close to 1. We also compared the dose-response curve of insulin-stimulated receptor tyrosine kinase with the pattern of insulin-binding-site occupancy. The curve of insulin-stimulated receptor kinase activity fitted closely with the occupancy of high-affinity binding sites. In summary, assuming that the estimation of the medium/interstitial insulin concentration ratio obtained at 5 degrees C reflects the actual ratio under more physiological conditions, our results suggest that maximal insulin action is obtained in skeletal muscle at insulin concentrations which do allow full occupancy of high-affinity binding sites. Therefore our data provide evidence for a lack of spare high-affinity insulin receptors in skeletal muscle.
Drug discrimination under two concurrent fixed-interval fixed-interval schedules.
McMillan, D E; Li, M
2000-07-01
Pigeons were trained to discriminate 5.0 mg/kg pentobarbital from saline under a two-key concurrent fixed-interval (FI) 100-s FI 200-s schedule of food presentation, and later tinder a concurrent FI 40-s FI 80-s schedule, in which the FI component with the shorter time requirement reinforced responding on one key after drug administration (pentobarbital-biased key) and on the other key after saline administration (saline-biased key). After responding stabilized under the concurrent FI 100-s FI 200-s schedule, pigeons earned an average of 66% (after pentobarbital) to 68% (after saline) of their reinforcers for responding under the FI 100-s component of the concurrent schedule. These birds made an average of 70% of their responses on both the pentobarbital-biased key after the training dose of pentobarbital and the saline-biased key after saline. After responding stabilized under the concurrent FI 40-s FI 80-s schedule, pigeons earned an average of 67% of their reinforcers for responding under the FI 40 component after both saline and the training dose of pentobarbital. These birds made an average of 75% of their responses on the pentobarbital-biased key after the training dose of pentobarbital, but only 55% of their responses on the saline-biased key after saline. In test sessions preceded by doses of pentobarbital, chlordiazepoxide, ethanol, phencyclidine, or methamphetamine, the dose-response curves were similar under these two concurrent schedules. Pentobarbital, chlordiazepoxide, and ethanol produced dose-dependent increases in responding on the pentobarbital-biased key as the doses increased. For some birds, at the highest doses of these drugs, the dose-response curve turned over. Increasing doses of phencyclidine produced increased responding on the pentobarbital-biased key in some, but not all, birds. After methamphetamine, responding was largely confined to the saline-biased key. These data show that pigeons can perform drug discriminations under concurrent schedules in which the reinforcement frequency under the schedule components differs only by a factor of two, and that when other drugs are substituted for the training drugs they produce dose-response curves similar to the curves produced by these drugs under other concurrent interval schedules.
Osvay, M; Deme, S
2006-01-01
Al2O3:Mg,Y ceramic thermoluminescence dosemeters were developed at the Institute of Isotopes for high dose applications at room temperatures. The glow curve of Al2O3:Mg,Y exhibits two peaks--one at 250 degrees C (I) and another peak at approximately 400 degrees C (II). In order to extend the application of these dosemeters to high temperatures, the effect of irradiation temperature was investigated using temperature controlled heating system during high dose irradiation at various temperatures (20-100 degrees C). The new calibration and measuring method has been successfully applied for dose mapping within the hermetic zone of the Paks Nuclear Power Plant even at high temperature parts of blocks.
Zinner, Stephen H; Vostrov, Sergey N; Alferova, Irene V; Lubenko, Irene Yu; Portnoy, Yury A; Firsov, Alexander A
2004-08-01
The killing kinetics of Escherichia coli and Pseudomonas aeruginosa were compared when exposed to ABT492 and ciprofloxacin. E. coli ATCC 25922 and a clinical isolate of P. aeruginosa 4226 were exposed to ABT492 (single dose) and ciprofloxacin (two 12 h doses) at the ratios of area under the curve (AUC) to MIC varying from 60 to 480 h and at clinically achievable AUC/MIC ratios of ABT492 (1,740 and 140 h, respectively) and ciprofloxacin (2,200 and 120 h, respectively) that correspond to a 400 mg dose of ABT492 and two 500 mg doses of ciprofloxacin. In addition, a double dose of ABT492 (800 mg; AUC/MIC 280 h) and two 12 h doses of ABT492 (2 x 400 mg) were used with P. aeruginosa. Maximal reductions in the starting inoculum of E. coli and P. aeruginosa were greater with ABT492 than with ciprofloxacin at a given AUC/MIC ratio (60-480 h), whereas the times to regrowth were shorter with ABT492. A specific AUC/MIC relationship of the antimicrobial effect was inherent in each quinolone-pathogen pair. With both E. coli and P. aeruginosa, AUC/MIC plots of the area between the control growth and the time-kill curves (I(E)) were steeper for ciprofloxacin than ABT492 and they were species-independent. The effect of ABT492 on E. coli at the clinically achievable AUC/MIC ratio (1740h) was more pronounced than the respective AUC/MIC of ciprofloxacin (2,200 h). With P. aeruginosa, a 140 h AUC/MIC of ABT492 (400 mg as a single dose) provided 1.8-fold less effect than a 120 h AUC/MIC of ciprofloxacin (2 x 500 mg). However, two 12 h doses of ABT492 (AUC/MIC 2 x 140 h) but not a double single dose (800 mg) were more efficient than ciprofloxacin. These findings predict comparable efficacies of clinically achievable AUC/MICs of ABT492 and ciprofloxacin against E. coli (q.d. versus b.i.d. quinolone dosing) and P. aeruginosa at b.i.d. but not at q.d. ABT492.
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
Modeling physiological resistance in bacterial biofilms.
Cogan, N G; Cortez, Ricardo; Fauci, Lisa
2005-07-01
A mathematical model of the action of antimicrobial agents on bacterial biofilms is presented. The model includes the fluid dynamics in and around the biofilm, advective and diffusive transport of two chemical constituents and the mechanism of physiological resistance. Although the mathematical model applies in three dimensions, we present two-dimensional simulations for arbitrary biofilm domains and various dosing strategies. The model allows the prediction of the spatial evolution of bacterial population and chemical constituents as well as different dosing strategies based on the fluid motion. We find that the interaction between the nutrient and the antimicrobial agent can reproduce survival curves which are comparable to other model predictions as well as experimental results. The model predicts that exposing the biofilm to low concentration doses of antimicrobial agent for longer time is more effective than short time dosing with high antimicrobial agent concentration. The effects of flow reversal and the roughness of the fluid/biofilm are also investigated. We find that reversing the flow increases the effectiveness of dosing. In addition, we show that overall survival decreases with increasing surface roughness.
Harper, David N; Langen, Anna-Lena; Schenk, Susan
2014-01-01
Drug discrimination studies have suggested that the subjective effects of low doses of (±)3,4-methylenedioxymethamphetamine (MDMA) are readily differentiated from those of d-amphetamine (AMPH) and that the discriminative stimulus properties are mediated by serotonergic and dopaminergic mechanisms, respectively. Previous studies, however, have primarily examined responses to doses that do not produce substantial increases in extracellular dopamine. The present study determined whether doses of MDMA that produce increases in synaptic dopamine would also produce subjective effects that were more like AMPH and were sensitive to pharmacological manipulation of D1-like receptors. A three-lever drug discrimination paradigm was used. Rats were trained to respond on different levers following saline, AMPH (0.5mg/kg, IP) or MDMA (1.5mg/kg, IP) injections. Generalization curves were generated for a range of different doses of both drugs and the effect of the D1-like antagonist, SCH23390 on the discriminative stimulus effects of different doses of MDMA was determined. Rats accurately discriminated MDMA, AMPH and saline. Low doses of MDMA produced almost exclusive responding on the MDMA lever but at doses of 3.0mg/kg MDMA or higher, responding shifted to the AMPH lever. The AMPH response produced by higher doses of MDMA was attenuated by pretreatment with SCH23390. The data suggest that low doses and higher doses of MDMA produce distinct discriminative stimuli. The shift to AMPH-like responding following administration of higher doses of MDMA, and the decrease in this response following administration of SCH23390 suggests a dopaminergic component to the subjective experience of MDMA at higher doses. Copyright © 2013 Elsevier Inc. All rights reserved.
Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Graves, Yan Jiang; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve
2013-12-21
Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using our in-house optimization engine.
New graphic AUC-based method to estimate overall survival benefit: pomalidomide reanalysis.
Fenix-Caballero, S; Diaz-Navarro, J; Prieto-Callejero, B; Rios-Sanchez, E; Alegre-del Rey, E J; Borrero-Rubio, J M
2016-02-01
Difference in median survival is an erratic measure and sometimes does not provide a good assessment of survival benefit. The aim of this study was to reanalyse the overall survival benefit of pomalidomide from pivotal clinical trial using a new area under curve (AUC)-based method. In the pivotal trial, pomalidomide plus low-dose dexamethasone showed a significant survival benefit over high-dose dexamethasone, with a difference between medians of 4.6 months. The new AUC method applied to the survival curves, obtained an overall survival benefit of 2.6 months for the pomalidomide treatment. This average difference in OS was calculated for the 61.5% of patients for whom the time to event is reliable enough. This 2-month differential would have major clinical and pharmacoeconomic implications, on both cost-effectiveness studies and on the willingness of the healthcare systems to pay for this treatment. © 2015 John Wiley & Sons Ltd.
[Antagonistic effects of cholinergic drugs on xylazine induced sedation].
Ding, R G; Huang, S J; Yang, J S
1993-01-01
Xylazine induced sedation in mice was observed as a kind of inhibition of exploratory activity. The reversible cholinesterase inhibitor cui xing ning (0.25-1.0 m.kg-1), the precursor of acetylcholine, choline bromide (100-300 mg.kg-1), and the M-receptor agonist arecoline (1.0-5.0 mg.kg-1) were shown to significantly antagonize xylazine (5.0 mg.kg-1) induced sedation. While cui xing ning (0.25 mg.kg-1) shifted the dose-response curve of xylazine induced sedation to the right, hemicholinum-3 (3 micrograms icv), which inhibits the synthesis of acetylcholine, shifted the dose-response curve to the left. These results suggest that the xylazine induced sedation may be partly due to a reduced central cholinergic function. Cui xing ning may have some value in the treatment of xylazine overdose and antagonize the anesthesia induced by anesthetics combined with xylazine.
Smith, Gillian M.; Slocombe, Brian; Abbott, Karen H.; Mizen, Linda W.
1998-01-01
High doses of amoxicillin, equivalent to those produced by 500- and 750-mg oral doses in humans (area under the plasma concentration-time curve), were effective against a penicillin-resistant strain of Streptococcus pneumoniae in an experimental respiratory tract infection in immunocompromised rats; this superior activity confirms the results of previous studies. An unexpected enhancement of amoxicillin’s antibacterial activity in vivo against penicillin-resistant and -susceptible S. pneumoniae strains was observed when subtherapeutic doses of amoxicillin were coadministered with the β-lactamase inhibitor potassium clavulanate. The reason for this enhancement was unclear since these organisms do not produce β-lactamase. The differential binding of clavulanic acid and amoxicillin to penicillin-binding proteins may have contributed to the observed effects. PMID:9559788
Collis, M. G.; Keddie, J. R.; Rouse, W.
1989-01-01
1. This paper describes the cardiovascular effects of ICI 170777, a novel compound which enhances cardiac contractility and causes arterial and venous dilatation. 2. The positive inotropic effects of ICI 170777 on the heart were demonstrated by an increase in left ventricular dP/dtmax in the anaesthetized and conscious dog, and by an increase in tension development in isolated papillary muscles from the cat. 3. In the anaesthetized dog, the positive inotropic effects of ICI 170777 and of isoprenaline were attenuated by atenolol (5 mg kg-1, i.v.). Atenolol displaced the dose-response curve to ICI 170777 to the right by 4 fold but displaced the isoprenaline dose-response curve to the right by 247 fold. In vitro, however, atenolol (10 microM) had no significant effect on the positive inotropic response to ICI 170777. In the ganglion-blocked anaesthetized dog, infusion of a low dose of ICI 170777 which had no effect on the basal left ventricular dP/dtmax, selectively potentiated the positive inotropic effects of isoprenaline. These results indicate that ICI 170777 has both a non-adrenoceptor-mediated positive inotropic effect on the heart and also facilitates the beta-adrenoceptor-mediated control of contractility. 4. In the denervated and perfused hind-limb of the dog, ICI 170777 reduced arterial perfusion pressure and increased limb circumference at a constant arterial flow and venous pressure. This indicates that ICI 170777 has direct dilator actions on both arterial and venous vessels. In this preparation, diazoxide exerted an arterial selective vasodilator effect and sodium nitroprusside was a relatively selective venous dilator.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2758224
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1996-01-01
The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.
Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-06-01
Methylphenidate (MPH), a stimulant drug with dopamine and noradrenaline reuptake inhibition properties, is mainly prescribed in attention deficit hyperactivity disorder, is increasingly used by the general population, intending to enhance their cognitive function. In this literature review, we aim to answer whether this is effective. We present a novel way to determine the extent to which MPH enhances cognitive performance in a certain domain. Namely, we quantify this by a percentage that reflects the number of studies showing performance enhancing effects of MPH. To evaluate whether the dose-response relationship follows an inverted-U-shaped curve, MPH effects on cognition are also quantified for low, medium and high doses, respectively. The studies reviewed here show that single doses of MPH improve cognitive performance in the healthy population in the domains of working memory (65% of included studies) and speed of processing (48%), and to a lesser extent may also improve verbal learning and memory (31%), attention and vigilance (29%) and reasoning and problem solving (18%), but does not have an effect on visual learning and memory. MPH effects are dose-dependent and the dose-response relationship differs between cognitive domains. MPH use is associated with side effects and other adverse consequences, such as potential abuse. Future studies should focus on MPH specifically to adequately asses its benefits in relation to the risks specific to this drug.
Optimization of the scan protocols for CT-based material extraction in small animal PET/CT studies
NASA Astrophysics Data System (ADS)
Yang, Ching-Ching; Yu, Jhih-An; Yang, Bang-Hung; Wu, Tung-Hsin
2013-12-01
We investigated the effects of scan protocols on CT-based material extraction to minimize radiation dose while maintaining sufficient image information in small animal studies. The phantom simulation experiments were performed with the high dose (HD), medium dose (MD) and low dose (LD) protocols at 50, 70 and 80 kVp with varying mA s. The reconstructed CT images were segmented based on Hounsfield unit (HU)-physical density (ρ) calibration curves and the dual-energy CT-based (DECT) method. Compared to the (HU;ρ) method performed on CT images acquired with the 80 kVp HD protocol, a 2-fold improvement in segmentation accuracy and a 7.5-fold reduction in radiation dose were observed when the DECT method was performed on CT images acquired with the 50/80 kVp LD protocol, showing the possibility to reduce radiation dose while achieving high segmentation accuracy.
Pupillometry as an indicator of L-DOPA dosages in Parkinson's disease patients.
Bartošová, O; Bonnet, C; Ulmanová, O; Šíma, M; Perlík, F; Růžička, E; Slanař, O
2018-04-01
Dopamine was shown to induce mydriasis by excitation of alpha-adrenergic receptors at the dilator pupillae muscle. Pupilla diameter may thus serve as an indirect measure of peripheral pharmacokinetics of L-DOPA and dopamine. The aim of this study is to evaluate the effect of L-DOPA dosage on pupillometric parameters in Parkinson's disease (PD) patients. Sixteen PD patients and 14 healthy control subjects (CS) were studied. The statistical analysis revealed significant differences between CS and PD patients for the mean maximum and minimum pupil diameters (p = 0.017, p = 0.028, respectively), with higher values found in PD. Moreover, a significant dose-response relationship was found between the maximum pupil diameter and both the morning L-DOPA dose (R 2 = 0.78) and the total daily L-DOPA dose (R 2 = 0.93). A sigmoid-shaped curve best describes the dose-response relationship, with a ceiling effect at about 400 mg L-DOPA daily dose. In conclusion, measuring pupillometric parameters represents a sensitive tool for non-invasive evaluation of the peripheral effect of L-DOPA, especially with daily doses below 400 mg L-DOPA.
Semchyshyn, Halyna M
2014-01-01
The biphasic-dose response of microorganisms to hydrogen peroxide is a phenomenon of particular interest in hormesis research. In different animal models, the dose-response curve for ethanol is also nonlinear showing an inhibitory effect at high doses but a stimulatory effect at low doses. In this study, we observed the hormetic-dose response to ethanol in budding yeast S. cerevisiae. Cross-protection is a phenomenon in which exposure to mild stress results in the acquisition of cellular resistance to lethal stress induced by different factors. Since both hydrogen peroxide and ethanol at low concentrations were found to stimulate yeast colony growth, we evaluated the role of one substance in cell cross-adaptation to the other substance as well as some weak organic acid preservatives. This study demonstrates that, unlike ethanol, hydrogen peroxide at hormetic concentrations causes cross-resistance of S. cerevisiae to different stresses. The regulatory protein Yap1 plays an important role in the hormetic effects by low concentrations of either hydrogen peroxide or ethanol, and it is involved in the yeast cross-adaptation by low sublethal doses of hydrogen peroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Liu, G
Purpose: We compare and investigate the dosimetric impacts on pencil beam scanning (PBS) proton treatment plans generated with CT calibration curves from four different CT scanners and one averaged ‘global’ CT calibration curve. Methods: The four CT scanners are located at three different hospital locations within the same health system. CT density calibration curves were collected from these scanners using the same CT calibration phantom and acquisition parameters. Mass density to HU value tables were then commissioned in a commercial treatment planning system. Five disease sites were chosen for dosimetric comparisons at brain, lung, head and neck, adrenal, and prostate.more » Three types of PBS plans were generated at each treatment site using SFUD, IMPT, and robustness optimized IMPT techniques. 3D dose differences were investigated using 3D Gamma analysis. Results: The CT calibration curves for all four scanners display very similar shapes. Large HU differences were observed at both the high HU and low HU regions of the curves. Large dose differences were generally observed at the distal edges of the beams and they are beam angle dependent. Out of the five treatment sites, lung plans exhibits the most overall range uncertainties and prostate plans have the greatest dose discrepancy. There are no significant differences between the SFUD, IMPT, and the RO-IMPT methods. 3D gamma analysis with 3%, 3 mm criteria showed all plans with greater than 95% passing rate. Two of the scanners with close HU values have negligible dose difference except for lung. Conclusion: Our study shows that there are more than 5% dosimetric differences between different CT calibration curves. PBS treatment plans generated with SFUD, IMPT, and the robustness optimized IMPT has similar sensitivity to the CT density uncertainty. More patient data and tighter gamma criteria based on structure location and size will be used for further investigation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Kabus, S
Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less
Santos, Alexandre M Caraça; Mohammadi, Mohammad; Afshar V, Shahraam
2015-11-01
The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k=1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99±0.08 Gy and 1.01±0.10 Gy by the RL and OSL, respectively. The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.
Baladi, Michelle G; Newman, Amy H; France, Charles P
2013-01-01
Rationale Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. Objectives This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Methods Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high fat (34.3%) chow. Results In rats gaining weight with restricted or free access to high fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032–0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within one week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high fat chow also developed insulin resistance. Conclusions These results show that amount and type of chow alter sensitivity to a direct-acting dopamine receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems. PMID:21544521
Baladi, Michelle G; Newman, Amy H; France, Charles P
2011-10-01
Amount and type of food can alter dopamine systems and sensitivity to drugs acting on those systems. This study examined whether changes in body weight, food type, or both body weight and food type contribute to these effects. Rats had free or restricted access (increasing, decreasing, or maintaining body weight) to standard (5.7% fat) or high-fat (34.3%) chow. In rats gaining weight with restricted or free access to high-fat chow, both limbs of the quinpirole yawning dose-response curve (0.0032-0.32 mg/kg) shifted leftward compared with rats eating standard chow. Restricting access to standard or high-fat chow (maintaining or decreasing body weight) decreased or eliminated quinpirole-induced yawning; within 1 week of resuming free feeding, sensitivity to quinpirole was restored, although the descending limb of the dose-response curve was shifted leftward in rats eating high-fat chow. These are not likely pharmacokinetic differences because quinpirole-induced hypothermia was not different among groups. PG01037 and L-741,626 antagonized the ascending and descending limbs of the quinpirole dose-response curve in rats eating high-fat chow, indicating D3 and D2 receptor mediation, respectively. Rats eating high-fat chow also developed insulin resistance. These results show that amount and type of chow alter sensitivity to a direct-acting dopamine-receptor agonist with the impact of each factor depending on whether body weight increases, decreases, or is maintained. These data demonstrate that feeding conditions, perhaps related to insulin and insulin sensitivity, profoundly impact the actions of drugs acting on dopamine systems.
Lack of effect of lacosamide on the pharmacokinetic and pharmacodynamic profiles of warfarin.
Stockis, Armel; van Lier, Jan Jaap; Cawello, Willi; Kumke, Thomas; Eckhardt, Klaus
2013-07-01
The aim of this study was to evaluate the effect of the antiepileptic drug lacosamide on the pharmacokinetics and pharmacodynamics of the anticoagulant warfarin. In this open-label, two-treatment crossover study, 16 healthy adult male volunteers were randomized to receive a single 25-mg dose of warfarin alone in one period and lacosamide 200 mg twice daily on days 1-9 with a single 25 mg dose of warfarin coadministered on day 3 in the other period. There was a 2-week washout between treatments. Pharmacokinetic end points were area under the plasma concentration-time curve (AUC(0,last) and AUC(0,∞) ) and maximum plasma concentration (Cmax ) for S- and R-warfarin. Pharmacodynamic end points were area under the international normalized ratio (INR)-time curve (AUCINR ), maximum INR (INRmax ), maximum prothrombin time (PTmax ) and area under the PT-time curve (AUCPT ). Following warfarin and lacosamide coadministration, Cmax and AUC of S- and R-warfarin, as well as peak value and AUC of PT and INR, were equivalent to those after warfarin alone. In particular, the AUC(0,∞) ratio (90% confidence interval) for coadministration of warfarin and lacosamide versus warfarin alone was 0.97 (0.94-1.00) for S-warfarin and 1.05 (1.02-1.09) for R-warfarin, and the AUCINR ratio was 1.04 (1.01-1.06). All participants completed the study. Coadministration of lacosamide 400 mg/day did not alter the pharmacokinetics of warfarin 25 mg or the anticoagulation level. These results suggest that there is no need for dose adjustment of warfarin when coadministered with lacosamide. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Radiation epidemiology: old and new challenges.
Shore, R E
1989-01-01
Over the last 40 years the amount of knowledge about human radiation effects has increased dramatically. During that interval, radiation epidemiologists have documented a number of additional types of radiation-induced cancer and have established rough estimates of the magnitude of cancer risks. Nevertheless, we currently have inadequate knowledge about a number of factors that help define the magnitude of radiation risks. These include questions of estimating risk over the lifetime, shapes of dose-effect curves, magnitude of risks at low doses, potentiation between radiation and other agents, and the nature and role of host susceptibility factors. Data from various studies are used to illustrate these questions. PMID:2759057
Take, Makoto; Takeuchi, Tetsuya; Haresaku, Mitsuru; Matsumoto, Michiharu; Nagano, Kasuke; Yamamoto, Seigo; Takamura-Enya, Takeji; Fukushima, Shoji
2014-01-01
The present study investigated the time-course changes of concentration of chloroform (CHCl3) in the blood during and after exposure of male rats to CHCl3 by inhalation. Increasing the dose of CHCl3 in the inhalation exposed groups caused a commensurate increase in the concentration of CHCl3 in the blood and the area under the blood concentration-time curve (AUC). There was good correlation (r = 0.988) between the inhalation dose and the AUC/kg body weight. Based on the AUC/kg body weight-inhalation dose curve and the AUC/kg body weight after oral administration, inhalation equivalent doses of orally administered CHCl3 were calculated. Calculation of inhalation equivalent doses allows the body burden due to CHCl3 by inhalation exposure and oral exposure to be directly compared. This type of comparison facilitates risk assessment in humans exposed to CHCl3 by different routes. Our results indicate that when calculating inhalation equivalent doses of CHCl3, it is critical to include the AUC from the exposure period in addition to the AUC after the end of the exposure period. Thus, studies which measure the concentration of volatile organic compounds in the blood during the inhalation exposure period are crucial. The data reported here makes an important contribution to the physiologically based pharmacokinetic (PBPK) database of CHCl3 in rodents.
Firsov, Alexander A.; Lubenko, Irene Y.; Portnoy, Yury A.; Zinner, Stephen H.; Vostrov, Sergey N.
2001-01-01
Most integral endpoints of the antimicrobial effect are determined over an arbitrarily chosen time period, such as the dosing interval (τ), regardless of the actual effect duration. Unlike the τ-related endpoints, the intensity of the antimicrobial effect (IE) does consider its duration—from time zero to the time when bacterial counts on the regrowth curve achieve the same maximal numbers as in the absence of the antimicrobial. To examine the possible impact of this fundamental difference on the relationships of the antimicrobial effect to the ratio of the area under the concentration-time curve (AUC) to the MIC, a clinical isolate of Staphylococcus aureus was exposed to simulated gemifloxacin pharmacokinetics over a 40-fold range of AUC/MIC ratios, from 11 to 466 h. In each run, IE and four τ-related endpoints, including the area under the time-kill curve (AUBC), the area above the curve (AAC), the area between the control growth and time-kill curves (ABBC), and the ABBC related to the area under the control growth curve (AUGC), were calculated for τ = 24 h. Unlike the IE, which displayed pseudolinear relationships with the AUC/MIC ratio; each τ-related endpoint showed a distinct saturation at potentially therapeutic AUC/MIC ratios (116 to 466 h) when the antimicrobial effect persisted longer than τ. This saturation results from the underestimation of the true effect and may be eliminated if ABBC, AAC, and AUBC (but not AUGC) are modified and determined in the same manner as the IE to consider the actual effect duration. These data suggest a marginal value of the τ-related endpoints as indices of the total antimicrobial effect. Since all of them respond to AUC/MIC ratio changes less than the IE, the latter is preferable in comparative pharmacodynamic studies. PMID:11181382
Single-aliquot EPR dosimetry of wallboard (drywall).
Mistry, R; Thompson, J W; Boreham, D R; Rink, W J
2011-11-01
Electron paramagnetic resonance spectra and dose-response curves are presented for a variety of wallboard samples obtained from different manufacturing facilities, as well as for source gypsum and anhydrite. The intensity of the CO(3)(-) paramagnetic centre (G2) is enhanced with gamma radiation. Isothermal decay curves are used to propose annealing methods for the removal of the radiosensitive CO(3)(-) radical without affecting the unirradiated baseline. Post-irradiation annealing of wallboard prevents recuperation of the radiosensitive CO(3)(-) radical with additional irradiation. A single-aliquot additive dose procedure is developed that successfully measures test doses as low as 0.76 Gy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Heuvel, F; Fiorini, F; George, B
2016-06-15
Purpose: 1) To describe the characteristics of pencil beam proton dose deposition kernels in a homogenous medium using a novel parameterization. 2) To propose a method utilizing this novel parametrization to reduce the measurements and pre-computation required in commissioning a pencil beam proton therapy system. Methods: Using beam data from a clinical, pencil beam proton therapy center, Monte Carlo simulations were performed to characterize the dose depositions at a range of energies from 100.32 to 226.08 MeV in 3.6MeV steps. At each energy, the beam is defined at the surface of the phantom by a two-dimensional Normal distribution. Using FLUKA,more » the in-medium dose distribution is calculated in 200×200×350 mm cube with 1 mm{sup 3} tally volumes. The calculated dose distribution in each 200×200 slice perpendicular to the beam axis is then characterized using a symmetric alpha-stable distribution centered on the beam axis. This results in two parameters, α and γ, that completely describe shape of the distribution. In addition, the total dose deposited on each slice is calculated. The alpha-stable parameters are plotted as function of the depth in-medium, providing a representation of dose deposition along the pencil beam. We observed that these graphs are isometric through a scaling of both abscissa and ordinate map the curves. Results: Using interpolation of the scaling factors of two source curves representative of different beam energies, we predicted the parameters of a third curve at an intermediate energy. The errors are quantified by the maximal difference and provide a fit better than previous methods. The maximal energy difference between the source curves generating identical curves was 21.14MeV. Conclusion: We have introduced a novel method to parameterize the in-phantom properties of pencil beam proton dose depositions. For the case of the Knoxville IBA system, no more than nine pencil beams have to be fully characterized.« less
Fantegrossi, William E.; Reissig, Chad J.; Katz, Elyse B.; Yarosh, Haley L.; Rice, Kenner C.; Winter, Jerrold C.
2008-01-01
N,N-dipropyltryptamine (DPT) is a synthetic tryptamine hallucinogen which has been used psychotherapeutically in humans, but has been studied preclinically only rarely. In the present studies, DPT was tested in a drug-elicited head twitch assay in mice, and in rats trained to discriminate lysergic acid diethylamide (LSD), N,N-dimethyl-4-phosphoryloxytryptamine (psilocybin), or 3,4-methylenedioxymethamphetamine (MDMA). A separate group of rats was also trained to recognize DPT itself as a discriminative stimulus, and in all cases, the behavioral effects of DPT were challenged with the selective serotonin (5-HT)2A antagonist M100907, the 5-HT1A selective antagonist WAY-100635, or their combination. In the head twitch assay, DPT elicited dose-dependent effects, producing a biphasic dose-effect curve. WAY-100635 produced a parallel rightward shift in the dose-effect curve for head twitches, indicative of surmountable antagonism, but the antagonist effects of M100907 were functionally insurmountable. DPT produced partial to full substitution when tested in rats trained to discriminate LSD, psilocybin or MDMA, and served as a discriminative stimulus. In all cases, the antagonist effects of M100907 were more profound than were those of WAY-100635. DPT is thus active in two rodent models relevant to 5-HT2 agonist activity. The effectiveness with which M100907 antagonizes the behavioral actions of this compound strongly suggests that the 5-HT2A receptor is an important site of action for DPT, but the modulatory actions of WAY-100635 also imply a 5-HT1A-mediated component to the actions of this compound. PMID:17905422
Radiochromic film calibration for the RQT9 quality beam
NASA Astrophysics Data System (ADS)
Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.
2017-11-01
When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.
Enkephalinase inhibitor potentiates mammalian tachykinin-induced contraction in ferret trachea.
Sekizawa, K; Tamaoki, J; Graf, P D; Basbaum, C B; Borson, D B; Nadel, J A
1987-12-01
To determine the roles of endogenous enkephalinase (EC.3.4.24.11) in regulating tachykinin-induced contraction of airway smooth muscle, the authors studied the effects of the enkephalinase inhibitor leucine-thiorphan on the contractile responses to substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) in isolated ferret tracheal smooth muscle segments. Leucine-thiorphan shifted, in concentration-dependent fashions, the dose-response curves to all tachykinins to lower concentrations. Leucine-thiorphan changed the rank order of tachykinin potency from NKA greater than SP greater than NKB to NKA = NKB greater than SP. Removal of the epithelium slightly enhanced the contractile responses to SP and NKA but not to NKB. Atropine shifted the dose-response curves of all tachykinins to higher concentrations. Each tachykinin increased the contractile response to electrical field stimulation (5 Hz, 20 sec of duration, 20 V) in a dose-dependent fashion. This effect was not altered by hexamethonium, indomethacin, BW755C or naloxone but was potentiated by leucine-thiorphan and inhibited by the tachykinin receptor antagonist (D-Pro2, D-Trp7,9)-SP and by atropine. Because tachykinins did not affect contractile responses to acetylcholine significantly, their effects were probably on presynaptic postganglionic nerves. Captopril, bestatin and leupeptin did not alter contractile responses, suggesting that angiotensin converting enzyme, aminopeptidases and serine proteinases did not modulate tachykinin-induced effects. Enkephalinase immunofluorescence was found in the smooth muscle and epithelium and confirmed the authors' finding of enkephalinase-like activity in the muscle. The results suggest that tracheal enkephalinase is an important modulator of tachykinin-induced effects.
Acute and Chronic Noradrenergic Effects on Cortical Excitability in Healthy Humans
Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang
2017-01-01
Abstract Background Noradrenaline is a major neuromodulator in the central nervous system, and it is involved in the pathophysiology of diverse neuropsychiatric diseases. Previous transcranial magnetic stimulation studies suggested that acute application of selective noradrenaline reuptake inhibitors enhances cortical excitability in the human brain. However, other, such like clinical effects, usually require prolonged noradrenaline reuptake inhibitor treatment, which might go along with different physiological effects. Methods The purpose of this study was to investigate the acute and chronic effects of the selective noradrenaline reuptake inhibitor reboxetine on cortical excitability in healthy humans in a double-blind, placebo-controlled, randomized crossover study. Sixteen subjects were assessed with different transcranial magnetic stimulation measurements: motor thresholds, input-output curve, short-latency intracortical inhibition and intracortical facilitation, I-wave facilitation, and short-interval afferent inhibition before and after placebo or reboxetine (8 mg) single-dose administration. Afterwards, the same subjects took reboxetine (8 mg/d) consecutively for 21 days. During this period (subjects underwent 2 experimental sessions with identical transcranial magnetic stimulation measures under placebo or reboxetine), transcranial magnetic stimulation measurements were assessed before and after drug intake. Results Both single-dose and chronic administration of reboxetine increased cortical excitability; increased the slope of the input-output curve, intracortical facilitation, and I-wave facilitation; but decreased short-latency intracortical inhibition and short-interval afferent inhibition. Moreover, chronic reboxetine showed a larger enhancement of intracortical facilitation and I-wave facilitation compared with single-dose application. Conclusions The results show physiological mechanisms of noradrenergic enhancement possibly underlying the functional effects of reboxetine regarding acute and chronic application. PMID:28430976
Effective dose equivalent on the ninth Shuttle--Mir mission (STS-91)
NASA Technical Reports Server (NTRS)
Yasuda, H.; Badhwar, G. D.; Komiyama, T.; Fujitaka, K.
2000-01-01
Organ and tissue doses and effective dose equivalent were measured using a life-size human phantom on the ninth Shuttle-Mir Mission (STS-91, June 1998), a 9.8-day spaceflight at low-Earth orbit (about 400 km in altitude and 51.65 degrees in inclination). The doses were measured at 59 positions using a combination of thermoluminescent dosimeters of Mg(2)SiO(4):Tb (TDMS) and plastic nuclear track detectors (PNTD). In correcting the change in efficiency of the TDMS, it was assumed that reduction of efficiency is attributed predominantly to HZE particles with energy greater than 100 MeV nucleon(-1). A conservative calibration curve was chosen for determining LET from the PNTD track-formation sensitivities. The organ and tissue absorbed doses during the mission ranged from 1.7 to 2.7 mGy and varied by a factor of 1.6. The dose equivalent ranged from 3.4 to 5.2 mSv and varied by a factor of 1.5 on the basis of the dependence of Q on LET in the 1990 recommendations of the ICRP. The effective quality factor (Q(e)) varied from 1.7 to 2.4. The dose equivalents for several radiation-sensitive organs, such as the stomach, lung, gonad and breast, were not significantly different from the skin dose equivalent (H(skin)). The effective dose equivalent was evaluated as 4.1 mSv, which was about 90% of the H(skin).
Conaway, C C; Jiao, D; Kohri, T; Liebes, L; Chung, F L
1999-01-01
Naturally occurring phenethyl isothiocyanate (PEITC) and its synthetic homolog 6-phenylhexyl isothiocyanate (PHITC) are both effective inhibitors of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumor development in A/J mice and F344 rats. To help explain why PHITC is considerably more efficacious than PEITC in chemopreventive potency, comparative disposition and pharmacokinetics data for male F344 rats were obtained after a single gavage dose of 50 micromol/kg (3.71 microCi/micromol) [14C]PEITC or 50 micromol/kg (6.59 microCi/micromol) [14C]PHITC in corn oil. After [14C]PEITC dosing, whole blood 14C peaked at 2.9 h, with an elimination half-life (T1/2e) of 21.7 h; blood 14C from [14C]PHITC-treated rats peaked at 8.9 h, with an T1/2e of 20.5 h. In lungs, the target organ, the T1/2e for [14C]PHITC and its labeled metabolites were more than twice that for [14C]PEITC and its labeled metabolites. The effective dose (area under the concentration-time curve) for 14C from PHITC was greater than 2.5 times the area under the concentration-time curve of 14C from PEITC in liver, lungs, and several other tissues. During 48 h, approximately 16.5% of the administered dose of [14C]PHITC was expired as [14C]CO2, more than 100 times the [14C]CO2 expired by rats treated with [14C]PEITC. In rats given [14C]PEITC, 88.7 +/- 2.2% and 9.9 +/- 1.9% of the dose appeared in the urine and feces, respectively, during 48 h; however, rats given [14C]PHITC excreted 7.2 +/- 0.8% of the dose of 14C in urine and 47.4 +/- 14.0% in the feces. Higher effective doses of PHITC in the lungs and other organs may be the basis, in part, for its greater potency as a chemopreventive agent.
Response of mouse epidermal cells to single doses of heavy-particles
NASA Technical Reports Server (NTRS)
Leith, J. T.; Schilling, W. A.; Welch, G. P.
1972-01-01
The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions.
Cochard, A; Guilhermet, R; Bonneau, M
1998-01-01
The aim of the present study was to examine, for the first time in pigs, the dose-dependent effect of arginine (ARG) on growth hormone (GH) and insulin release and the effect of the combined ARG and aspartic acid (ASP) treatment on GH and insulin release. ARG (0.5 or 1 g/kg body weight) with or without an equimolar supplement of ASP (0.38 or 0.76 g/kg, respectively) was administered in piglets via the duodenum. ARG increased plasma arginine, ornithine, urea, proline and branched chain amino acid concentrations. ASP increased specifically plasma aspartic acid, glutamic acid, alanine and citrulline concentrations. Plasma insulin increased with no apparent difference between treatments. Maximum GH level and the area under the GH curve (AUC) were increased in a dose-dependent manner in response to ARG treatment. GH response to the combined ARG and ASP treatment (ARGASP) was delayed compared to ARG alone and was not dose-dependent. AUC for GH after ARGASP treatments were intermediate between those observed after the two ARG doses. Our data suggest that high ASP doses transiently inhibit and delay ARG-induced GH release in pigs and that an equimolar supplement of ASP stimulates or inhibits ARG-induced GH release depending on the dose used.
Characterising Passive Dosemeters for Dosimetry of Biological Experiments in Space (dobies)
NASA Astrophysics Data System (ADS)
Vanhavere, Filip; Spurny, Frantisek; Yukihara, Eduardo; Genicot, Jean-Louis
Introduction: The DOBIES (Dosimetry of biological experi-ments in space) project focusses on the use of a stan-dard dosimetric method (as a combination of differ-ent passive techniques) to measure accurately the absorbed doses and equivalent doses in biological samples. Dose measurements on biological samples are of high interest in the fields of radiobiology and exobiology. Radiation doses absorbed by biological samples must be quantified to be able to determine the relationship between observed biological effects and the radiation dose. The radiation field in space is very complex, con-sisting of protons, neutrons, electrons and high-energy heavy charged particles. It is not straightfor-ward to measure doses in this radiation field, cer-tainly not with only small and light passive doseme-ters. The properties of the passive detectors must be tested in radiation fields that are representative of the space radiation. We will report on the characterisation of different type of passive detectors at high energy fields. The results from such characterisation measurements will be applied to recent exposures of detectors on the International Space Station. Material and methods: Following passive detectors are used: • thermoluminescent detectors (TLD) • optically stimulated luminescence detectors (OSLD) • track etch detectors (TED) The different groups have participated in the past to the ICCHIBAN series of irradiations. Here protons and other particles of high energy were used to de-termine the LET-dependency of the passive detec-tors. The last few months, new irradiations have been done at the iThemba labs (100-200 MeV protons), Dubna (145 MeV protons) and the JRC-IRMM (quasi mono energetic neutrons up to 19 MeV). All these detectors were also exposed to a simulated space radiation field at CERN (CERF-field). Discussion: The interpretation of the TLD and OSLD results is done using the measured LET spectrum (TED) and the LET-dependency curves of ths TLD and OSLDs. These LET- dependency curves are determined based on the different irradiations listed above. We will report on the results of the different detectors in these fields. Further information on the LET of the space irradia-tion can be deduced from the ratio of the different peaks of the TLDs after glow curve deconvolution, and from the shape of the decay curve of the OSLDs. The results in the CERF field can on the other hand directly being used as a calibration for space radia-tion fields. Conclusion: Combining different passive detectors will lead to improved information on the radiation field, and thus to a better estimation of the absorbed dose to the bio-logical samples. We use the characterisations on high energy accelerators to improve the estimation of some recent space doses.
A database of embryo-fetal developmental toxicity (EFDT) studies of 379 pharmaceutical compounds in rat and rabbit was analyzed for species differences based on toxicokinetic parameters of area under the curve (AUC) and maximum concentration (Cmax) at the developmental adverse ef...
DNA comet Giemsa staining for conventional bright-field microscopy.
Osipov, Andreyan; Arkhangelskaya, Ekaterina; Vinokurov, Alexei; Smetaninа, Nadezhda; Zhavoronkov, Alex; Klokov, Dmitry
2014-04-10
This study was undertaken to evaluate the compatibility of Giemsa staining protocol with the comet assay. We showed, for the first time, that DNA comets can be visualized and analyzed using Giemsa staining. We generated DNA damage dose response curves for human peripheral blood lymphocytes exposed to X-ray radiation using the comet assay with either SybrGreen I or Giemsa stain. The dose response curves were fitted by linear regressions (R2>0.977). The SybrGreen I results showed only ~1.2-fold higher slope coefficient (method sensitivity) compared to the Giemsa results. The unexpectedly high sensitivity of Giemsa staining for the comet assay is due to the Romanowsky-Giemsa effect, the stain photo-stability and the higher resolution of bright-field imaging compared to fluorescence imaging. Our results demonstrate that Giemsa staining can effectively be used for measuring DNA damage by the comet assay. The low cost and availability of Giemsa stain makes this method affordable for any low budget research and will facilitate new applications of the comet assay in biology and medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkhatib, H; Oves, S; Gebreamlak, W
Purpose: To investigate discrepancies between measured percent depth dose curves of a linear accelerator at depths beyond the commissioning data and those generated by the treatment planning system (TPS) via extrapolation. Methods: Relative depth doses were measured on an Elekta Synergy™ linac for photon beams of 6 -MV and 10-MV. SSDs for all curves were 100-cm and field sizes ranged from 4×4 to 35×35-cm{sup 2}. As most scanning tanks cannot provide depths greater than about 30-cm, percent depth dose measurements, extending 45-cm depths, were performed in Solid Water™ using a 0.125-cc ionization chamber (PTW model TN31012). The buildup regions ofmore » the curves were acquired with a parallel plate chamber (PTW model TN34001). Extrapolated curves were generated by the TPS (Phillips Pinnacle{sup 3} v. 9.6) by applying beams to CT images of 50-cm of Solid Water™ with density override set to 1.0-g/cc. Results: Percent difference between the two sets of curves (measured and TPS) was investigated. There is significant discrepancy in the buildup region to a depth of 7-mm. Beyond this depth, the two sets show good agreement. When analyzing the tail end of the curves, we saw percent difference of between 1.2% and 3.2%. The highest disagreement for the 6-MV curves was 10×10-cm{sup 2} (3%) and for the 10-MV curves it was the 35×35-cm{sup 2} (3.2%). Conclusion: A qualitative analysis of the measured data versus PDD curves generated by the TPS shows generally good agreement beyond 1-cm. However, a measurable percent difference was observed when comparing curves at depths beyond that provided by the commissioning data and at depths in the buildup region. Possible explanations for this include inaccuracies in modeling of the Solid Water™ or drift in beam energy since commissioning. Additionally, closer attention must be paid for measurements in the buildup region.« less
Effect of ozone exposure on antigen-induced airway hyperresponsiveness in guinea pigs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, M.H.; Segura, P.; Campos, M.G.
1994-12-31
Airway hyperresponsiveness can be induced by several stimuli including antigen and ozone, both of which may be present in the air of polluted cities. Though the effect of ozone on the bronchoconstrictor response to antigen has been well described, the combined effect of these stimuli on airway hyperresponsiveness has not yet been studied. Sensitized guinea pigs with or without ozone exposure for 1 h at 3 ppm, 18 h prior to study, were challenged with a dose-response curve to histamine (0.01-1.8 {mu}g/kg, iv), and then by a second histamine dose-response curve 1 h later. Airway responses were measured as themore » increase in pulmonary insufflation pressure. In sensitized guinea pigs, the histamine ED50 significantly decreased after antigen challenge, demonstrating the development of airway hyperresponsiveness. Sensitized guinea pigs exposed to ozone showed airway hyperresponsiveness to histamine when compared with nonexposed animals, and such hyperresponsiveness was further enhanced after antigen challenge. We conclude that in this guinea pig model of acute allergic bronchoconstriction both antigen challenge and ozone induce airway hyperresponsiveness, while ozone exposure does not modify the development of antigen-induced hyperresponsiveness. 25 refs., 1 fig., 1 tab.« less
Molecular, cellular, and genetic basis of radiosensitivity at low doses: a case of inducible repair?
Skov, K A
1994-04-01
Many proteins are induced by ionizing radiation, and genes are activated. We still do not know which, if any, are responsible for IRR, or what leads to the adaptive response seen at still lower doses. Are these the same responses? Are they related to apoptosis, repair of potentially lethal damage and other responses? Does the cell have a whole battery of responses, depending on the dose? I suspect this is the case. Can the responses be explained more simply, as effects on regulators of cell cycle or induction of fidelity, or is there induction of repair? Are there still other explanations for the apparent protection? The initial slope of the survival curve which was addressed earlier (1) must take on new meaning given the hyperradiosensitive portion. Similarly, we may have to change our thinking with respect to the LQ description of survival data. It is not surprising that this workshop, held at such an early stage primarily to address the phenomenon of increased radioresistance, produced more questions than answers. Single-strand breaks may trigger resistance, but additional lesions or classes of damage may be relevant. Some physicists expect the damage caused to be linear with dose; the biologists suggest that the response is nonlinear (e.g. saturation of an enzyme, induction of repair, cell cycle effects) and there is room for biochemistry which could also vary with dose (e.g. consumption of a protector or a sensitizer). Some biophysicists would argue that the observed structures in survival curves might be explained by change in the target cross section such as a large change in DNA conformation caused by a very low dose. There is some reluctance in the radiobiology community to accept that cells may respond to ionizing radiation by inducing or activating protective mechanisms, although the cell exhibits defensive responses to many other detrimental stimuli. If "the heart of the matter is in the shape of the survival curve" as suggested by Dr. Elkind in his summary of the 1974 "low doses" conference (p. 385 in ref. 1), then we are fortunate indeed that there are now additional methods to attack the question directly of what is turned on or activated. It is anticipated that there will be many further developments within the year, to be presented at related sessions at larger meetings, and at a closely related meeting to be held in June 1994 in Montreal, entitled "Gene Induction and Adaptive Responses in Irradiated Cells: Mechanisms and Clinical Implications."
van Battum, L J; Hoffmans, D; Piersma, H; Heukelom, S
2008-02-01
This paper focuses on the accuracy, in absolute dose measurements, with GafChromicTM EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.
Firsov, A A; Mattie, H
1997-01-01
In comparative studies of different modes of administration (MAs) simulated in in vitro dynamic models, only one dose of antibiotic is usually mimicked. Such an experimental design can provide a prediction of the antimicrobial effect (AME) of a given combination of drug, clinical isolate, and infection site, but may be inappropriate for accurate comparison of MAs. An alternative design providing comparison of different MAs with various antibiotic doses in a wide range and with evaluation of the respective relationships between AME and the AUC was proposed and examined. Two series of meropenem pharmacokinetic profiles, i.e., monoexponentially decreasing concentrations (bolus doses) and constant concentrations (6-h continuous infusion), were in vitro simulated. The simulated initial concentrations (Co[from 0.62 to 48 micrograms/ml]) and steady-state concentrations (Css[from 0.016 to 8 micrograms/ml]) were chosen to provide similar AUC for 0 to 6 h (AUC0-6) ranges for both MAs (from 0.070 to 50.0 micrograms.h/ml and from 0.09 to 48.0 micrograms.h/ml, respectively). The AME of meropenem on Staphylococcus aureus ATCC 25923 (MIC, 0.06 micrograms/ml) was determined at each time (t) point as a difference (E) between the logarithms of viable counts (N) in the control cultures without antibiotic (NC) and in cultures exposed to antibiotics (NA). Time courses of E observed at different Co of Css levels were compared in terms of the areas under the E-t curves (ABBCt). The finite values of the ABBCt observed by the end of the 6 -h observation period, which are equivalent to the area between bacterial count-time curves observed in the absence and presence of antibiotic (ABBC), were plotted versus the respective AUCs produced by each of the MAs. The ABBC versus AUC curves had a similar pattern: a plateau achieved at high AUCs followed by a steep rise in ABBC at relatively low AUCs was inherent in both of the MAs. The superiority of bolus dosing over the infusions could be documented only for meropenem concentrations below the MIC. At higher Co or Css (i.e., at an AUC of > or = 0.4 micrograms.h/ml), the ABBC versus AUC curves plotted for each of the MAs could practically be superimposed. On the whole, both MAs appeared to be equiefficient in terms of the ABBC. These results suggest that AUC analysis of the AME may be a useful tool for comparing different MAs. Such comparative studies should be designed in a manner that provides the use of similar AUC ranges, since the AUC may be considered as a common pharmacokinetic denominator in comparing one MA or dosing regimen to another. PMID:9021191
Mathematical modeling improves EC50 estimations from classical dose-response curves.
Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar
2015-03-01
The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.
van Kempen, T A T G; Reijersen, M H; de Bruijn, C; De Smet, S; Michiels, J; Traber, M G; Lauridsen, C
2016-10-01
Vitamin E is important for animal production because of its effects on health and product quality, but the amount and form required remains controversial. Our objective was to quantify the absolute bioavailability of oral -α-tocopheryl acetate (α-TAc) in swine (22 ± 1 kg and 8 wk old, fitted with jugular catheters) adapted to a diet supplemented with 75 mg/kg -α-TAc; 75 mg/kg was chosen because this level represents the nonweighted average inclusion level in piglet diets across Western key swine-producing countries. For this, a 350-g test meal (6% fat) was supplied at time 0 containing 75 mg deuterated (D9) -α-TAc to 9 animals, and 8 animals received an intravenous () dose containing deuterated (D6) RRR-α-tocopherol (α-T) at one-eighth the oral dose and a test meal without supplemental vitamin E. Plasma samples (12 to 13 per animal) were obtained at incremental intervals over 75 h for analysis of deuterated α-T using liquid chromatography-tandem mass spectrometry. Surprisingly, the i.v. dose rapidly disappeared from plasma and then reappeared. The half-life for this first peak was only 1.7 ± 0.3 min. The second peak had an appearance rate (Ka) of 0.10 ± 0.06 d and a half-life of 5.9 ± 1.2 h. Oral dosing resulted, after a lag of 56 min, in a Ka of 0.91 ± 0.21 d and a half-life of 2.6 ± 0.8 h. The bioavailability for oral α-TAc was 12.5%, whereas the area under the curve was only 5.4%. This low bioavailability, small area under the curve, and short half-life are likely because of various factors, that is, the use of only 6% fat in the diet, the use of the acetate ester and , and the high dose relative to requirements. In conclusion, i.v. dosed vitamin E shows both a rapid and a very slow pool, whereas orally dosed vitamin E shows a single slow pool. The oral material has a very short half-live (44% of i.v. or 2.6 h), low bioavailability (12.5%), and a very small area under the curve (5.4%), bringing into question the efficacy of typical doses of vitamin E in swine diets for alleviating oxidative stress.
NASA Astrophysics Data System (ADS)
Hoffmann, Ryan; Dennison, J. R.; Abbott, Jonathan
2006-03-01
When incident energetic electrons interact with a material, they excite electrons within the material to escape energies. The electron emission is quantified as the ratio of emitted electrons to incident particle flux, termed electron yield. Measuring the electron yield of insulators is difficult due to dynamic surface charge accumulation which directly affects landing energies and the potential barrier that emitted electrons must overcome. Our recent measurements of highly insulating materials have demonstrated significant changes in total yield curves and yield decay curves for very small electron doses equivalent to a trapped charge density of <10^10 electrons /cm^3. The Chung-Everhart theory provides a basic model for the behavior of the electron emission spectra which we relate to yield decay curves as charge is allowed to accumulate. Yield measurements as a function of dose for polyimide (Kapton^TM) and microcrystalline SiO2 will be presented. We use our data and model to address the question of whether there is a minimal dose threshold at which the accumulated charge no longer affects the yield.
The anti-tubercular drug delamanid as a potential oral treatment for visceral leishmaniasis
Patterson, Stephen; Wyllie, Susan; Norval, Suzanne; Stojanovski, Laste; Simeons, Frederick RC; Auer, Jennifer L; Osuna-Cabello, Maria; Read, Kevin D; Fairlamb, Alan H
2016-01-01
There is an urgent requirement for safe, oral and cost-effective drugs for the treatment of visceral leishmaniasis (VL). We report that delamanid (OPC-67683), an approved drug for multi-drug resistant tuberculosis, is a potent inhibitor of Leishmania donovani both in vitro and in vivo. Twice-daily oral dosing of delamanid at 30 mg kg-1 for 5 days resulted in sterile cures in a mouse model of VL. Treatment with lower doses revealed a U-shaped (hormetic) dose-response curve with greater parasite suppression at 1 mg kg-1 than at 3 mg kg-1 (5 or 10 day dosing). Dosing delamanid for 10 days confirmed the hormetic dose-response and improved the efficacy at all doses investigated. Mechanistic studies reveal that delamanid is rapidly metabolised by parasites via an enzyme, distinct from the nitroreductase that activates fexinidazole. Delamanid has the potential to be repurposed as a much-needed oral therapy for VL. DOI: http://dx.doi.org/10.7554/eLife.09744.001 PMID:27215734
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z; Baker, J; Hsia, A
Purpose: The commercially available Leipzig-style Cone for High Dose Rate (HDR) Brachytherapy has a steep depth dose curve and a non-uniform dose distribution. This work shows the performance of a Ring Surface Applicator created using a 3D printer that can generate a better dose distribution. Calculated doses were verified with film measurement. Methods: The water equivalent red-ABS plastic was used to print the Ring Surface Applicator which hosts three catheters: a center piece with a straight catheter and two concentric rings with diameters of 3.5 and 5.5 cm. Gafchromic EBT2 film, Epson Expression 10000 flatbed scanner, and the online softwaremore » at radiochromic.com were used to analyze the measured data. 10cm×10cm piece of film was sandwiched between two 15×10×5cm3 polystyrene phantoms. The applicator was positioned directly on top of the phantom. Measurement was done using dwell time and positions calculated by Eclipse BrachyVision treatment planning system (RTP). Results: Depth dose curve was generated from the plan and measurement. The results show that the measured and calculated depth dose were in agreement (<3%) from surface to 4mm depth. A discrepancy of 6% was observed at 5 mm depth, where the dose is typically prescribed to. For depths deeper than 5 mm, the measured doses were lower than those calculated by Eclipse BrachyVision. This can be attributed to a combination of simple calculation algorithm using TG-43 and the lack of inhomogeneity correction. Dose profiles at 5 mm depth were also generated from TPS calculation and measured with film. The measured and calculated profiles are similar. Consistent with the depth dose curve, the measured dose is lower than the calculated. Conclusion: Our results showed that the Ring Surface Applicator, printed using 3D printer, can generate more uniform dose distribution within the target volume and can be safely used in the clinic.« less
Dose--response of initial G2-chromatid breaks induced in normal human fibroblasts by heavy ions
NASA Technical Reports Server (NTRS)
Kawata, T.; Durante, M.; Furusawa, Y.; George, K.; Takai, N.; Wu, H.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)
2001-01-01
PURPOSE: To investigate initial chromatid breaks in prematurely condensed G2 chromosomes following exposure to heavy ions of different LET. MATERIAL AND METHODS: Exponentially growing human fibroblast cells AG1522 were irradiated with gamma-rays, energetic carbon (13 keV/ microm, 80 keV/microm), silicon (55 keV/microm) and iron (140 keV/microm, 185keV/microm, 440keV/microm) ions. Chromosomes were prematurely condensed using calyculin-A. Initial chromatid-type and isochromatid breaks in G2 cells were scored. RESULTS: The dose response curves for total chromatid breaks were linear regardless of radiation type. The relative biological effectiveness (RBE) showed a LET-dependent increase, peaking around 2.7 at 55-80keV/microm and decreasing at higher LET. The dose response curves for isochromatid-type breaks were linear for high-LET radiations, but linear-quadratic for gamma-rays and 13 keV/microm carbon ions. The RBE for the induction of isochromatid breaks obtained from linear components increased rapidly between 13keV/microm (about 7) and 80keV/microm carbon (about 71), and decreased gradually until 440 keV/microm iron ions (about 66). CONCLUSIONS: High-LET radiations are more effective at inducing isochromatid breaks, while low-LET radiations are more effective at inducing chromatid-type breaks. The densely ionizing track structures of heavy ions and the proximity of sister chromatids in G2 cells result in an increase in isochromatid breaks.
Honda, I; Kohrogi, H; Yamaguchi, T; Ando, M; Araki, S
1991-06-01
To determine the roles of endogenously released tachykinins (substance P, neurokinins A and B) in human bronchial tissues, and to determine the roles of enkephalinase (neutral endopeptidase, E.C. 3.4.24.11) in regulating the effects of the tachykinins, we studied the effects of substance P and capsaicin, which releases tachykinins, on human bronchial smooth muscle contraction in the presence or absence of enkephalinase inhibitor phosphoramidon in vitro. Substance P alone caused human bronchial smooth muscle contraction at 10(-6) M or more. Phosphoramidon (10(-7) to 10(-5) M) potentiated the substance P-induced contraction in a dose-dependent fashion, and phosphoramidon shifted the dose-response curve to lower concentrations. Capsaicin (10(-5) or 10(-4) M) alone caused bronchial smooth muscle contraction in four tissues from nine patients. After the contraction by capsaicin reached a plateau, phosphoramidon (10(-5) M) increased and prolonged the contraction significantly. Furthermore, pretreatment of bronchial tissues with phosphoramidon (10(-5) M) potentiated capsaicin-induced contraction in all tissues from five patients. Phosphoramidon (10(-5) M) shifted the dose-response curve to capsaicin to lower concentrations more than 1 log unit. Captopril did not alter the contractile response to substance P, suggesting that angiotensin-converting enzyme does not regulate the contractile response to substance P in human bronchial smooth muscle in vitro. These results suggest that enkephalinase regulates the contractile effects of exogenous substance P and endogenous substances, probably tachykinins, released by capsaicin in the human bronchus.
Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine.
Cysneiros, R M; Farkas, D; Harmatz, J S; von Moltke, L L; Greenblatt, D J
2007-07-01
The kinetic and dynamic interaction of caffeine and zolpidem was evaluated in a double-blind, single-dose, six-way crossover study of 7.5 mg zolpidem (Z) or placebo (P) combined with low-dose caffeine (250 mg), high-dose caffeine (500 mg), or placebo. Caffeine coadministration modestly increased maximum plasma concentration (C(max)) and area under the plasma concentration-time curve of zolpidem by 30-40%, whereas zolpidem did not significantly affect the pharmacokinetics of caffeine or its metabolites. Compared to P+P, Z+P significantly increased sedation, impaired digit-symbol substitution test performance, slowed tapping speed and reaction time, increased EEG relative beta amplitude, and impaired delayed recall. Caffeine partially, but not completely, reversed most pharmacodynamic effects of zolpidem. Thus, caffeine only incompletely reverses zolpidem's sedative and performance-impairing effects, and cannot be considered as an antidote to benzodiazepine agonists.
Manion, Jill S; Thomason, John M; Langston, Vernon C; Claude, Andrew K; Brooks, Marjory B; Mackin, Andrew J; Lunsford, Kari V
2016-01-01
To evaluate the anticoagulant effects of inhaled heparin in dogs. This study was conducted in 3 phases. In phase 1, bronchoalveolar lavage fluid (BALf) was collected to generate an in vitro calibration curve to relate heparin concentration to the activated partial thromboplastin time (aPTT). In phase 2, heparin was administered via nebulization to determine the threshold dose needed to prolong systemic aPTT. In phase 3, the local anticoagulant activity of inhaled heparin was determined by measurement of BALf anti-Xa activity and aPTT. University teaching hospital. Six healthy intact female Walker Hounds were used in this study. Two dogs were used for each phase. Inhaled unfractionated sodium heparin was administered in doses ranging from 50,000 to 200,000 IU. In vitro addition of heparin to BALf caused a prolongation in aPTT. Inhaled heparin at doses as high as 200,000 IU failed to prolong systemic aPTT, and a threshold dose could not be determined. No significant local anticoagulant effects were detected. Even at doses higher than those known to be effective in people, inhaled heparin appears to have no detectable local or systemic anticoagulant effects in dogs with the current delivery method. © Veterinary Emergency and Critical Care Society 2015.
Taylor, Bryan F; Ramirez, Harvey E; Battles, August H; Andrutis, Karl A; Neubert, John K
2016-01-01
Effective pain management for rats and mice is crucial due to the continuing increase in the use of these species in biomedical research. Here we used a recently validated operant orofacial pain assay to determine dose–response curves for buprenorphine and tramadol when mixed in nut paste and administered to male and female rats. Statistically significant analgesic doses of tramadol in nut paste included doses of 20, 30, and 40 mg/kg for female rats but only 40 mg/kg for male rats. For male rats receiving buprenorphine mixed in nut paste, a significant analgesic response was observed at 0.5 and 0.6 mg/kg. None of the doses tested produced a significant analgesic response in female rats. Our results indicate that at the doses tested, tramadol and buprenorphine produced an analgesic response in male rats. In female rats, tramadol shows a higher analgesic effect than buprenorphine. The analgesic effects observed 60 min after administration of the statistically significant oral doses of both drugs were similar to the analgesic effects of 0.03 mg/kg subcutaneous buprenorphine 30 min after administration. The method of voluntary ingestion could be effective, is easy to use, and would minimize stress to the rats during the immediate postoperative period. PMID:26817983
Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R
2003-12-01
Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the discriminative-stimulus effects of methamphetamine and cocaine.
Imel, Erik A.; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Carpenter, Thomas O.; Peacock, Munro
2015-01-01
Abstract In X‐linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half‐life was 16.4 days. The mean area under the concentration–time curve (AUCn) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration–time curve (AUECn) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn. Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology PMID:26073451
Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry
NASA Astrophysics Data System (ADS)
Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław
2014-08-01
The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.
Evidence for Dose-Additive Effects of Pyrethroids on Motor Activity in Rats
Wolansky, Marcelo J.; Gennings, Chris; DeVito, Michael J.; Crofton, Kevin M.
2009-01-01
Background Pyrethroids are neurotoxic insecticides used in a variety of indoor and outdoor applications. Previous research characterized the acute dose–effect functions for 11 pyrethroids administered orally in corn oil (1 mL/kg) based on assessment of motor activity. Objectives We used a mixture of these 11 pyrethroids and the same testing paradigm used in single-compound assays to test the hypothesis that cumulative neurotoxic effects of pyrethroid mixtures can be predicted using the default dose–addition theory. Methods Mixing ratios of the 11 pyrethroids in the tested mixture were based on the ED30 (effective dose that produces a 30% decrease in response) of the individual chemical (i.e., the mixture comprised equipotent amounts of each pyrethroid). The highest concentration of each individual chemical in the mixture was less than the threshold for inducing behavioral effects. Adult male rats received acute oral exposure to corn oil (control) or dilutions of the stock mixture solution. The mixture of 11 pyrethroids was administered either simultaneously (2 hr before testing) or after a sequence based on times of peak effect for the individual chemicals (4, 2, and 1 hr before testing). A threshold additivity model was fit to the single-chemical data to predict the theoretical dose–effect relationship for the mixture under the assumption of dose additivity. Results When subthreshold doses of individual chemicals were combined in the mixtures, we found significant dose-related decreases in motor activity. Further, we found no departure from the predicted dose-additive curve regardless of the mixture dosing protocol used. Conclusion In this article we present the first in vivo evidence on pyrethroid cumulative effects supporting the default assumption of dose addition. PMID:20019907
Peluso, Marco E M; Munnia, Armelle; Ceppi, Marcello
2014-11-05
Exposures to bisphenol-A, a weak estrogenic chemical, largely used for the production of plastic containers, can affect the rodent behaviour. Thus, we examined the relationships between bisphenol-A and the anxiety-like behaviour, spatial skills, and aggressiveness, in 12 toxicity studies of rodent offspring from females orally exposed to bisphenol-A, while pregnant and/or lactating, by median and linear splines analyses. Subsequently, the meta-regression analysis was applied to quantify the behavioural changes. U-shaped, inverted U-shaped and J-shaped dose-response curves were found to describe the relationships between bisphenol-A with the behavioural outcomes. The occurrence of anxiogenic-like effects and spatial skill changes displayed U-shaped and inverted U-shaped curves, respectively, providing examples of effects that are observed at low-doses. Conversely, a J-dose-response relationship was observed for aggressiveness. When the proportion of rodents expressing certain traits or the time that they employed to manifest an attitude was analysed, the meta-regression indicated that a borderline significant increment of anxiogenic-like effects was present at low-doses regardless of sexes (β)=-0.8%, 95% C.I. -1.7/0.1, P=0.076, at ≤120 μg bisphenol-A. Whereas, only bisphenol-A-males exhibited a significant inhibition of spatial skills (β)=0.7%, 95% C.I. 0.2/1.2, P=0.004, at ≤100 μg/day. A significant increment of aggressiveness was observed in both the sexes (β)=67.9,C.I. 3.4, 172.5, P=0.038, at >4.0 μg. Then, bisphenol-A treatments significantly abrogated spatial learning and ability in males (P<0.001 vs. females). Overall, our study showed that developmental exposures to low-doses of bisphenol-A, e.g. ≤120 μg/day, were associated to behavioural aberrations in offspring. Copyright © 2014. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandlik, Nandkumar, E-mail: ntmandlik@gmail.com; Patil, B. J.; Bhoraskar, V. N.
2014-04-24
Nanorods of CaSO{sub 4}: Dy having diameter 20 nm and length 200 nm have been synthesized by the chemical coprecipitation method. These samples were irradiated with gamma radiation for the dose varying from 0.1 Gy to 50 kGy and their TL characteristics have been studied. TL dose response shows a linear behavior up to 5 kGy and further saturates with increase in the dose. A Computerized Glow Curve Deconvolution (CGCD) program was used for the analysis of TL glow curves. Trapping parameters for various peaks have been calculated by using CGCD program.
NASA Astrophysics Data System (ADS)
Mandlik, Nandkumar; Patil, B. J.; Bhoraskar, V. N.; Sahare, P. D.; Dhole, S. D.
2014-04-01
Nanorods of CaSO4: Dy having diameter 20 nm and length 200 nm have been synthesized by the chemical coprecipitation method. These samples were irradiated with gamma radiation for the dose varying from 0.1 Gy to 50 kGy and their TL characteristics have been studied. TL dose response shows a linear behavior up to 5 kGy and further saturates with increase in the dose. A Computerized Glow Curve Deconvolution (CGCD) program was used for the analysis of TL glow curves. Trapping parameters for various peaks have been calculated by using CGCD program.
Pharmacokinetics of intravenous levofloxacin administered at 750 milligrams in obese adults.
Cook, Aaron M; Martin, Craig; Adams, Val R; Morehead, R Scott
2011-07-01
The physiochemical properties of levofloxacin suggest that it is an agent which may exhibit altered pharmacokinetics in obese individuals. The purpose of this study was to describe the pharmacokinetics of a single 750-mg intravenous dose of levofloxacin in both hospitalized and ambulatory obese individuals. The hypothesis was that a standard dose of levofloxacin in obese individuals would achieve serum concentrations likely to be therapeutic. A single levofloxacin dose of 750 mg was infused over 90 min, and seven serial serum samples were subsequently obtained to evaluate the pharmacokinetics after the first dose. The peak concentrations of levofloxacin were comparable to those seen with normal-weight individuals. However, the area under the concentration-time curve and clearance were quite variable. Accelerated clearance was evident in the ambulatory obese individuals. Further investigation of the effects of obesity on the pharmacokinetics of levofloxacin is necessary to ensure optimal dosing.
Pharmacokinetics of Intravenous Levofloxacin Administered at 750 Milligrams in Obese Adults ▿
Cook, Aaron M.; Martin, Craig; Adams, Val R.; Morehead, R. Scott
2011-01-01
The physiochemical properties of levofloxacin suggest that it is an agent which may exhibit altered pharmacokinetics in obese individuals. The purpose of this study was to describe the pharmacokinetics of a single 750-mg intravenous dose of levofloxacin in both hospitalized and ambulatory obese individuals. The hypothesis was that a standard dose of levofloxacin in obese individuals would achieve serum concentrations likely to be therapeutic. A single levofloxacin dose of 750 mg was infused over 90 min, and seven serial serum samples were subsequently obtained to evaluate the pharmacokinetics after the first dose. The peak concentrations of levofloxacin were comparable to those seen with normal-weight individuals. However, the area under the concentration-time curve and clearance were quite variable. Accelerated clearance was evident in the ambulatory obese individuals. Further investigation of the effects of obesity on the pharmacokinetics of levofloxacin is necessary to ensure optimal dosing. PMID:21576432
Consequences of synergy between environmental carcinogens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berenbaum, M.C.
1985-12-01
As it is generally impossible to determine dose-response relationships for carcinogens at the low concentrations in which they occur in the environment, risk-benefit considerations are by consensus based on the linear, no-threshold model, on the assumption that this represents the worst case. However, this assumption does not take into account the possibility of synergistic interactions between carcinogens. It is shown here that, as a result of such interactions, the dose-response curve for added risk due to any individual carcinogen will generally be steeper at lower doses than at higher doses, and consequently the risk at low environmental levels will bemore » higher than would be expected from a linear response. Moreover, this excess risk at low doses is shown to increase as the general level of environmental carcinogens rises and, independently of this effect, it may also increase with the number of carcinogens present.« less
Li, Yan; Zhang, Fan; Xu, Yanmei; Hu, Joice; Li, Huafang
2018-03-26
In this open-label, single-center study, the pharmacokinetics, safety, and tolerability of lamotrigine chewable/dispersible tablets were assessed in healthy Chinese volunteers. Each volunteer (N = 16) received repeat doses of oral lamotrigine titrated from 25 mg to 50 mg to 100 mg over 42 days and was followed up for 10-17 days. Safety and tolerability were assessed throughout the study. Lamotrigine pharmacokinetic parameters were estimated using noncompartmental analysis. Overall, 15 (94%) volunteers completed the study. Lamotrigine serum concentrations peaked 2.5 hours postdose, with a mean terminal half-life of 36.8 hours. The apparent lamotrigine oral clearance was 1577.88 mL/h. The accumulation ratios (day 14 vs day 1) were 2.53 and 2.58 for area under the curve and peak concentration, respectively. Lamotrigine 25 to 100 mg once daily exhibited dose-proportional pharmacokinetics (based on area under the curve and peak concentration), following repeat dosing. Nine volunteers reported adverse events, 2 experienced oropharyngeal pain, each receiving 25 mg and 50 mg. One volunteer withdrew due to an increase in liver enzymes. No deaths, serious adverse effects, or skin rashes were reported during the study. No new safety concerns were observed. Overall, the pharmacokinetic profiles after repeat doses of lamotrigine chewable/dispersible tablets once daily in a Chinese population were similar to those observed in Western populations. © 2018, The American College of Clinical Pharmacology.
Threshold-type dose response for induction of neoplastic transformation by 1 GeV/nucleon iron ions.
Elmore, E; Lao, X-Y; Kapadia, R; Redpath, J L
2009-06-01
Neoplastic transformation of HeLa x skin fibroblast human hybrid cells by doses of 1 GeV/nucleon iron ions in the range 1 cGy to 1 Gy to exposed cultures has been examined. The data indicate a threshold-type dose-response curve with no increase in transformation frequency until doses above 20 cGy. At doses <10 cGy, not all exposed cells receive a direct traversal of an iron-ion track core, but all exposed cells receive up to several mGy of low-LET radiation associated with the delta-ray penumbra. It is proposed that the threshold-type response seen is a consequence of an adaptive response associated with the delta-ray exposure. For comparison purposes, the dose response for (137)Cs gamma rays over the same dose range was examined using the same experimental procedure. As we have shown previously, the dose response for (137)Cs gamma radiation was J-shaped. The iron ions were 1.5 to 1.7 times more biologically effective than the gamma radiation over the dose range examined.
Niemi, M; Neuvonen, P J; Kivistö, K T
2001-07-01
Our objective was to study the effects of the macrolide antibiotic clarithromycin on the pharmacokinetics and pharmacodynamics of repaglinide, a novel short-acting antidiabetic drug. In a randomized, double-blind, 2-phase crossover study, 9 healthy volunteers were treated for 4 days with 250 mg oral clarithromycin or placebo twice daily. On day 5 they received a single dose of 250 mg clarithromycin or placebo, and 1 hour later a single dose of 0.25 mg repaglinide was given orally. Plasma repaglinide, serum insulin, and blood glucose concentrations were measured up to 7 hours. Clarithromycin increased the mean total area under the concentration-time curve of repaglinide by 40% (P <.0001) and the peak plasma concentration by 67% (P <.005) compared with placebo. The mean elimination half-life of repaglinide was prolonged from 1.4 to 1.7 hours (P <.05) by clarithromycin. Clarithromycin increased the mean incremental area under the concentration-time curve from 0 to 3 hours of serum insulin by 51% (P <.05) and the maximum increase in the serum insulin concentration by 61% (P <.01) compared with placebo. No statistically significant differences were found in the blood glucose concentrations between the placebo and clarithromycin phases. Even low doses of the cytochrome P4503A4 (CYP3A4) inhibitor clarithromycin increase the plasma concentrations and effects of repaglinide. Concomitant use of clarithromycin or other potent inhibitors of CYP3A4 with repaglinide may enhance its blood glucose-lowering effect and increase the risk of hypoglycemia.
Hernandez-Casner, Caroline; Ramos, Jeremiah; Serafine, Katherine M
2017-09-01
Eating a diet high in fat can lead to negative health consequences, including obesity and insulin resistance. Omega-3 polyunsaturated fatty acids (such as those found in fish oil) prevent high fat diet-induced obesity and insulin resistance in rats. Eating a high fat diet also enhances sensitivity of rats to the behavioral effects of drugs that act on dopamine systems (e.g. quinpirole, a dopamine D2/D3 receptor agonist). To test the hypothesis that dietary supplementation with fish oil prevents high fat diet-induced enhanced sensitivity to the behavioral effects of quinpirole (0.0032-0.32 mg/kg), male rats ate standard laboratory chow, high fat chow, standard chow with fish oil, or high fat chow with fish oil (20% w/w). After 5 weeks, rats eating high fat chow were more sensitive (e.g. leftward shift of the quinpirole dose-response curve) than rats eating standard chow to yawning induced by quinpirole. Dietary supplementation with fish oil prevented this effect. That is, quinpirole dose-response curves were not different between rats eating high fat chow supplemented with fish oil and standard chow fed controls. These data add to a growing literature showing the complex relationship between diet and dopamine systems, and the health benefits of fish oil.
2014-01-01
Background In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. Results First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Conclusion Time independent summary statistics may aid the understanding of drugs’ action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies. PMID:24902483
Effects of Different Types of Statins on Lipid Profile: A Perspective on Asians.
Meor Anuar Shuhaili, Meor Fairuz Rizal; Samsudin, Intan Nureslyna; Stanslas, Johnson; Hasan, Shariful; Thambiah, Subashini C
2017-04-01
The present review aimed at reviewing the effects of different statins on lipid profile, particularly in Asians. PubMed searches were conducted using the keywords 'statin, effect, and lipid profile' from database inception through March 2016. In this review, 718 articles were retrieved from the primary search. After reviewing the titles, abstracts, and full texts, we found that 59 studies met our inclusion criteria. These also included subsequent reference searches of retrieved articles. CURVES study compared the effect on lipid profile between atorvastatin and other statins. This study demonstrated that low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG) were reduced more with atorvastatin compared to simvastatin, pravastatin, lovastatin, and fluvastatin. However, simvastatin provided a greater elevation of high-density lipoprotein cholesterol (HDL-C) compared to atorvastatin. The STELLAR trial was based on dose-to-dose comparisons between atorvastatin and rosuvastatin efficacy in reducing LDL-C. Te present study also revealed that as the doses of rosuvastatin, simvastatin, and pravastatin increased, HDL-C also increased, with rosuvastatin having the greatest effect. However, HDL-C levels decreased as the dose of atorvastatin increased. The DISCOVERY study involving the Asian population revealed that the percentage of patients achieving the European goals for LDL-C and TC at 12 weeks was higher in rosuvastatin group compared to atorvastatin group. The effects of statins on lipid profile are dose dependent. Most studies showed that rosuvastatin has the best effect on lipid profile. Prescribing lower doses of statins in Asians seems necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S; Kim, K; Jung, H
Purpose: The small animal irradiator has been used with small animals to optimize new radiation therapy as preclinical studies. The small animal was irradiated by whole- or partial-body exposure. In this study, the dosimetric characterizations of small animal irradiator were carried out in small field using Radiochromic films Material & Methods: The study was performed in commercial animal irradiator (XRAD-320, Precision x-ray Inc, North Brantford) with Radiochromic films (EBT2, Ashland Inc, Covington). The calibration curve was generated between delivery dose and optical density (red channel) and the films were scanned by and Epson 1000XL scanner (Epson America Inc., Long Beach,more » CA).We evaluated dosimetric characterization of irradiator using various filter supported by manufacturer in 260 kV. The various filters were F1 (2.0mm Aluminum (HVL = about 1.0mm Cu) and F2 (0.75mm Tin + 0.25mm Copper + 1.5mm Aluminum (HVL = about 3.7mm Cu). According to collimator size (3, 5, 7, 10 mm, we calculated percentage depth dose (PDD) and the surface –source distance(SSD) was 17.3 cm considering dose rate. Results: The films were irradiated in 260 kV, 10mA and we increased exposure time 5sec. intervals from 5sec. to 120sec. The calibration curve of films was fitted with cubic function. The correlation between optical density and dose was Y=0.1405 X{sup 3}−2.916 X{sup 2}+25.566 x+2.238 (R{sup 2}=0.994). Based on the calibration curve, we calculated PDD in various filters depending on collimator size. When compared PDD of specific depth (3mm) considering animal size, the difference by collimator size was 4.50% in free filter and F1 was 1.53% and F2 was within 2.17%. Conclusion: We calculated PDD curve in small animal irradiator depending on the collimator size and the kind of filter using the radiochromic films. The various PDD curve was acquired and it was possible to irradiate various dose using these curve.« less
Commissioning an in-room mobile CT for adaptive proton therapy with a compact proton system.
Oliver, Jasmine A; Zeidan, Omar; Meeks, Sanford L; Shah, Amish P; Pukala, Jason; Kelly, Patrick; Ramakrishna, Naren R; Willoughby, Twyla R
2018-05-01
To describe the commissioning of AIRO mobile CT system (AIRO) for adaptive proton therapy on a compact double scattering proton therapy system. A Gammex phantom was scanned with varying plug patterns, table heights, and mAs on a CT simulator (CT Sim) and on the AIRO. AIRO-specific CT-stopping power ratio (SPR) curves were created with a commonly used stoichiometric method using the Gammex phantom. A RANDO anthropomorphic thorax, pelvis, and head phantom, and a CIRS thorax and head phantom were scanned on the CT Sim and AIRO. Clinically realistic treatment plans and nonclinical plans were generated on the CT Sim images and subsequently copied onto the AIRO CT scans for dose recalculation and comparison for various AIRO SPR curves. Gamma analysis was used to evaluate dosimetric deviation between both plans. AIRO CT values skewed toward solid water when plugs were scanned surrounded by other plugs in phantom. Low-density materials demonstrated largest differences. Dose calculated on AIRO CT scans with stoichiometric-based SPR curves produced over-ranged proton beams when large volumes of low-density material were in the path of the beam. To create equivalent dose distributions on both data sets, the AIRO SPR curve's low-density data points were iteratively adjusted to yield better proton beam range agreement based on isodose lines. Comparison of the stoichiometric-based AIRO SPR curve and the "dose-adjusted" SPR curve showed slight improvement on gamma analysis between the treatment plan and the AIRO plan for single-field plans at the 1%, 1 mm level, but did not affect clinical plans indicating that HU number differences between the CT Sim and AIRO did not affect dose calculations for robust clinical beam arrangements. Based on this study, we believe the AIRO can be used offline for adaptive proton therapy on a compact double scattering proton therapy system. © 2018 Orlando Health UF Health Cancer Center. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Analysis of the sources of uncertainty for EDR2 film‐based IMRT quality assurance
Shi, Chengyu; Papanikolaou, Nikos; Yan, Yulong; Weng, Xuejun; Jiang, gyu
2006-01-01
In our institution, patient‐specific quality assurance (QA) for intensity‐modulated radiation therapy (IMRT) is usually performed by measuring the dose to a point using an ion chamber and by measuring the dose to a plane using film. In order to perform absolute dose comparison measurements using film, an accurate calibration curve should be used. In this paper, we investigate the film response curve uncertainty factors, including film batch differences, film processor temperature effect, film digitization, and treatment unit. In addition, we reviewed 50 patient‐specific IMRT QA procedures performed in our institution in order to quantify the sources of error in film‐based dosimetry. Our study showed that the EDR2 film dosimetry can be done with less than 3% uncertainty. The EDR2 film response was not affected by the choice of treatment unit provided the nominal energy was the same. This investigation of the different sources of uncertainties in the film calibration procedure can provide a better understanding of the film‐based dosimetry and can improve quality control for IMRT QA. PACS numbers: 87.86.Cd, 87.53.Xd, 87.57.Nk PMID:17533329
Sheldon, P. W.; Clarke, C.; Dawson, K. B.
1984-01-01
Using a quantitative cytochemical technique for measuring beta-glucuronidase activity in the peripheral nerves of mice, we have investigated the effectiveness of four potential adjuncts for reducing the dose limiting neurotoxicity of misonidazole (MISO) in the clinic. Under the conditions used, the most effective adjunct was the steroid anti-inflammatory agent dexamethasone. When given over the week previous to MISO treatment, this agent almost completely eliminated the MISO neurotoxicity as determined at week 4 after commencement of MISO dosing. The second most effective adjunct was phenytoin, the third flurbiprofen and the last adjunct, phenobarbitone, was ineffective. Dexamethasone, phenytoin and phenobarbitone all reduced the clearance half-life of MISO and hence the drug exposure dose calculated as the area under the curve of MISO tissue concentration against time. However, no correlation was evident with these parameters and MISO neurotoxicity in the mouse. Dexamethasone, whilst affording protection against MISO toxicity, did not alter the radiosensitivity of the anaplastic MT tumour. PMID:6696821
Vandenberg, Laura N.; Colborn, Theo; Hayes, Tyrone B.; Heindel, Jerrold J.; Jacobs, David R.; Lee, Duk-Hee; Myers, John Peterson; Shioda, Toshi; Soto, Ana M.; vom Saal, Frederick S.; Welshons, Wade V.; Zoeller, R. Thomas
2013-01-01
For years, scientists from various disciplines have studied the effects of endocrine disrupting chemicals (EDCs) on the health and wellbeing of humans and wildlife. Some studies have specifically focused on the effects of low doses, i.e. those in the range that are thought to be safe for humans and/or animals. Others have focused on the existence of non-monotonic dose-response curves. These concepts challenge the way that chemical risk assessment is performed for EDCs. Continued discussions have clarified exactly what controversies and challenges remain. We address several of these issues, including why the study and regulation of EDCs should incorporate endocrine principles; what level of consensus there is for low dose effects; challenges to our understanding of non-monotonicity; and whether EDCs have been demonstrated to produce adverse effects. This discussion should result in a better understanding of these issues, and allow for additional dialogue on their impact on risk assessment. PMID:23411111
Study of constraints in using household NaCl salt for retrospective dosimetry
NASA Astrophysics Data System (ADS)
Elashmawy, M.
2018-05-01
Thermoluminescence (TL) characteristics of 5 different household NaCl salts and one analytical salt were determined to investigate the possible factors that affect the reliability of using household salt for retrospective dosimetry. Salts' TL sensitivities were found to be particle-size dependent and approached saturation at the largest size, whereas for salts that have the same particle size, the TL sensitivity depended on their origin. TL dependence on the particle size interprets significant variations in TL response reported in the literature for the same salt patch. The first TL readout indicated that all salts have similar glow curves with one distinctive peak. Typical second TL readout at two different doses showed a dramatic decrease in TL sensitivity associated with a significant change in the glow curve structure possessing two prominent peaks. Glow curve deconvolution (GCD) of the first TL readout for all salts yielded 6 individual glow peaks of first-order kinetics, whereas in GCD of second TL readouts, 5 individual glow peaks of second-order kinetics were obtained. Similarities in the glow curve structures of the first and second TL readouts suggest that additives such as KIO3 and MgCO3 have no effect on the TL process. Fading effect was evaluated for the salt of highest TL sensitivity, and it was found that the integral TL intensity decreased gradually and lost 40% of its initial value over 2 weeks, after which it remained constant. Results conclude that a household salt cannot be used for retrospective dosimetry without considering certain constraints such as the salt's origin and particle size. Furthermore, preparedness for radiological accidents and accurate dose reconstructions require that most of the commonly distributed household salt brands should be calibrated in advance and stored in a repository to be recalled in case of accidents.
Aoki, K R; Ranoux, D; Wissel, J
2006-12-01
When using botulinum toxin-based products, the physician must decide the optimal location and dose required to alleviate symptoms and improve the patient's quality of life. To deliver effective treatment, the physician needs to understand the importance of accurate target muscle selection and localization and the implications of each product's migration properties when diluted in different volumes. Pre-clinical mouse models of efficacy and safety have been utilized to compare local and distal muscle relaxation effects following defined intramuscular administration. Data from the model allow the products to be ranked based on their propensity for local efficacy versus their distal migration properties. Using standardized dilutions, the non-parallel dose-response curves for the various formulations demonstrate that they have different efficacy profiles. Distal effects were also noted at different treatment doses, which are reflected in the different safety and/or therapeutic margins. Based on these pre-clinical data, the safety and therapeutic margin rankings are ordered, largest to smallest, as BOTOX, Dysport and Myobloc. The results of subsequent clinical trials are variable and dose comparisons are inconclusive, thus supporting the regulatory position that the dose units of the individual preparations are unique and cannot be simply converted between products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Alexandre M. Caraça, E-mail: alexandre.santos@adelaide.edu.au; Mohammadi, Mohammad; Shahraam, Afshar V.
Purpose: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. Methods: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dosemore » linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Results: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k = 1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99 ± 0.08 Gy and 1.01 ± 0.10 Gy by the RL and OSL, respectively. Conclusions: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niedzielski, J; Martel, M; Tucker, S
2014-06-15
Purpose: Radiation induces an inflammatory response in the esophagus, discernible on CT studies. This work objectively quantifies the voxel esophageal radiation-response for patients with acute esophagitis. This knowledge is an important first-step towards predicting the effect of complex dose distributions on patient esophagitis symptoms. Methods: A previously validated voxel-based methodology of quantifying radiation esophagitis severity was used to identify the voxel dose-response for 18 NSCLC patients with severe esophagitis (CTCAE grading criteria, grade2 or higher). The response is quantified as percent voxel volume change for a given dose. During treatment (6–8 weeks), patients had weekly 4DCT studies and esophagitis scoring.more » Planning CT esophageal contours were deformed to each weekly CT using a demons DIR algorithm. An algorithm using the Jacobian Map from the DIR of the planning CT to all weekly CTs was used to quantify voxel-volume change, along with corresponding delivered voxel dose, to the planning voxel. Dose for each voxel for each time-point was calculated on each previous weekly CT image, and accumulated using DIR. Thus, for each voxel, the volume-change and delivered dose was calculated for each time-point. The data was binned according to when the volume-change first increased by a threshold volume (10%–100%, in 10% increments), and the average delivered dose calculated for each bin. Results: The average dose resulting in a voxel volume increase of 10–100% was 21.6 to 45.9Gy, respectively. The mean population dose to give a 50% volume increase was 36.3±4.4Gy, (range:29.8 to 43.5Gy). The average week of 50% response was 4.1 (range:4.9 to 2.8 weeks). All 18 patients showed similar dose to first response curves, showing a common trend in the initial inflammatoryresponse. Conclusion: We extracted the dose-response curve of the esophagus on a voxel-to-voxel level. This may be useful for estimating the esophagus response (and patient symptoms) to complicated dose distributions.« less
On the effective point of measurement in megavoltage photon beams.
Kawrakow, Iwan
2006-06-01
This paper presents a numerical investigation of the effective point of measurement of thimble ionization chambers in megavoltage photon beams using Monte Carlo simulations with the EGSNRC system. It is shown that the effective point of measurement for relative photon beam dosimetry depends on every detail of the chamber design, including the cavity length, the mass density of the wall material, and the size of the central electrode, in addition to the cavity radius. Moreover, the effective point of measurement also depends on the beam quality and the field size. The paper therefore argues that the upstream shift of 0.6 times the cavity radius, recommended in current dosimetry protocols, is inadequate for accurate relative photon beam dosimetry, particularly in the build-up region. On the other hand, once the effective point of measurement is selected appropriately, measured depth-ionization curves can be equated to measured depth-dose curves for all depths within +/- 0.5%.
Geary, Nori
2013-02-01
Analysis of the interactive effects of combinations of hormones or other manipulations with qualitatively similar individual effects is an important topic in basic and clinical endocrinology as well as other branches of basic and clinical research related to integrative physiology. Functional, as opposed to mechanistic, analyses of interactions rely on the concept of synergy, which can be defined qualitatively as a cooperative action or quantitatively as a supra-additive effect according to some metric for the addition of different dose-effect curves. Unfortunately, dose-effect curve addition is far from straightforward; rather, it requires the development of an axiomatic mathematical theory. I review the mathematical soundness, face validity, and utility of the most frequently used approaches to supra-additive synergy. These criteria highlight serious problems in the two most common synergy approaches, response additivity and Loewe additivity, which is the basis of the isobole and related response surface approaches. I conclude that there is no adequate, generally applicable, supra-additive synergy metric appropriate for endocrinology or any other field of basic and clinical integrative physiology. I recommend that these metrics be abandoned in favor of the simpler definition of synergy as a cooperative, i.e., nonantagonistic, effect. This simple definition avoids mathematical difficulties, is easily applicable, meets regulatory requirements for combination therapy development, and suffices to advance phenomenological basic research to mechanistic studies of interactions and clinical combination therapy research.
Jain, Raka; Holtzman, Stephen G
2005-05-15
The purpose of this study was to determine if caffeine induces cross tolerance to the amphetamine-like discriminative stimulus effects of dopaminergic drugs that act through distinct mechanisms (e.g., release, uptake inhibition, direct activation of dopamine D(1)- or D(2)-family receptors). Rats were trained to discriminate 1.0 mg/kg d-amphetamine from saline in a two-choice discrete-trial procedure. Stimulus-generalization curves were generated by cumulative dosing for d-amphetamine (0.1-1.0 mg/kg), methylphenidate (0.3-5.6 mg/kg), SKF 81297 (0.3-3.0 mg/kg), and R-(-)-propylnorapomorphine (NPA; 0.001-1.78 mg/kg), as well as for caffeine (3.0-56 mg/kg); curves were re-determined after twice daily injections of caffeine (30 mg/kg) for 3.5 days. The rats generalized dose dependently to the four dopaminergic drugs, but only to a limited extent to caffeine. Twice daily injections of caffeine induced significant cross tolerance (i.e., increased ED(50)) to the amphetamine-like discriminative effects of methylphenidate and SKF 81297, attenuated non-significantly the effects of NPA, and did not alter the effects of amphetamine. Thus, caffeine produces differential cross tolerance to the amphetamine-like discriminative effects of dopaminergic drugs, a phenomenon in which the dopamine D(1) receptor appears to have an important role.
Parotid Gland Function After Radiotherapy: The Combined Michigan and Utrecht Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dijkema, Tim, E-mail: T.Dijkema@umcutrecht.n; Raaijmakers, Cornelis P.J.; Ten Haken, Randall K.
2010-10-01
Purpose: To analyze the combined and updated results from the University of Michigan and University Medical Center Utrecht on normal tissue complication probability (NTCP) of the parotid gland 1 year after radiotherapy (RT) for head-and-neck (HN) cancer. Patients and Methods: A total of 222 prospectively analyzed patients with various HN malignancies were treated with conventional and intensity-modulated RT. Stimulated individual parotid gland flow rates were measured before RT and 1 year after RT using Lashley cups at both centers. A flow ratio <25% of pretreatment was defined as a complication. The data were fitted to the Lyman-Kutcher-Burman model. Results: Amore » total of 384 parotid glands (Michigan: 157; Utrecht: 227 glands) was available for analysis 1 year after RT. Combined NTCP analysis based on mean dose resulted in a TD{sub 50} (uniform dose leading to 50% complication probability) of 39.9 Gy and m (steepness of the curve) of 0.40. The resulting NTCP curve had good qualitative agreement with the combined clinical data. Mean doses of 25-30 Gy were associated with 17-26% NTCP. Conclusions: A definite NTCP curve for parotid gland function 1 year after RT is presented, based on mean dose. No threshold dose was observed, and TD{sub 50} was equal to 40 Gy.« less
DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: CASE STUDIES
Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed ...
Shimazu, T; Yukioka, T; Hubbard, G B; Langlinais, P C; Mason, A D; Pruitt, B A
1987-01-01
The dose responsiveness of selected physiologic indices was studied in a sheep model of smoke inhalation injury. In this model, graded severity of injury was achieved by changing the contact time with smoke (defined by "unit"), whereas other variables were kept constant. Blood gas and cardiopulmonary indices were measured in 70 sheep, including 12 controls, either 24 or 72 hours after exposure to 3, 6, 9, 12, 15, or 18 units of smoke. A 12-unit dose of smoke was fatal within 72 hours and an 18-unit dose was fatal within 24 hours. The best correlation between smoke dose and response was observed in arterial oxygen tension 24 hours after exposure. At 24 hours, most of the cardiopulmonary indices showed significant change only after a 12-unit exposure. Although the exact shape of the dose-response curve could not be defined, sigmoid or curved linear shape was suggested, reflecting the progressive deterioration. Images Fig. 3. Fig. 4A. Fig. 4B. PMID:3606236
Dunphy, F R; Boyd, J H; Kim, H J; Dunphy, C H; Harrison, B R; Dunleavy, T L; Rodriguez, J J; McDonough, E M; Minster, J R; Hilton, J G
1997-05-15
Standard therapy for advanced head and neck carcinoma is surgery and radiation, and the subsequent 5-year survival with this treatment has been less than 50%. New combined modality treatment strategies are being tested to improve survival. New chemotherapy combinations are being developed and administered simultaneously with, or sequenced with, radiation and surgery. This article reports the Phase I results of administering paclitaxel and carboplatin preoperatively. The authors' objective was to develop an outpatient chemotherapy that would downstage tumors and allow organ preservation with equal or improved survival as compared with standard therapy. Thirty-six patients with untreated Stage III/IV head and neck carcinoma were treated and were evaluable for toxicity. All patients had lesions that were measurable in perpendicular planes. A nonrandomized, Phase I design was used, according to which cohorts of patients were treated every 21 days with escalating doses of paclitaxel (150-265 mg/m2) given as a 3-hour infusion immediately preceding carboplatin. Premedication was used to avoid acute hypersensitivity reactions. Carboplatin was administered intravenously over 1 hour at a constant dose calculated with the Calvert formula (area under the curve, 7.5). The dose-limiting toxicities were neuropathy and thrombocytopenia at a paclitaxel dose of 265 mg/m2. Neutropenic fever was observed in 30% of patients at a paclitaxel dose of 250-265 mg/m2. Other observed adverse effects included pruritus, myalgia, arthralgia, alopecia, nausea, and vomiting. Toxicity was acceptable. The maximum tolerated dose of paclitaxel was 230 mg/m2 without hematopoietic growth factor, or 250 mg/m2 with hematopoietic growth factor, the carboplatin dose held constant, calculated at area under the curve of 7.5. Phase II studies of this combination are warranted in the treatment of these carcinomas.
Benchmark dose risk assessment software (BMDS) was designed by EPA to generate dose-response curves and facilitate the analysis, interpretation and synthesis of toxicological data. Partial results of QA/QC testing of the EPA benchmark dose software (BMDS) are presented. BMDS pr...
de la Peña, Amparo; Cui, Xuewei; Geiser, Jeanne; Loghin, Corina
2017-11-01
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) for the treatment of type 2 diabetes mellitus are known to delay gastric emptying (GE). The potential effect of the GLP-1 RA dulaglutide on the pharmacokinetics (PK) of four orally administered drugs and on the pharmacodynamic (PD) effect of warfarin was investigated. In four separate clinical pharmacology studies, digoxin, warfarin, atorvastatin and Ortho-Cyclen ® were orally administered to healthy subjects with and without a subcutaneous dose of dulaglutide 1.5 mg. The effect of dulaglutide coadministration was assessed based on the PK parameters of key analytes. For warfarin PD, the effect of dulaglutide on the international normalized ratio (INR) was evaluated. Areas under the concentration-time curves (AUCs) with and without dulaglutide were similar for all analytes except atorvastatin, where it was reduced by 21%. Maximum concentrations (C max ) were generally lower following coadministration with dulaglutide, with statistically significant reductions (90% confidence intervals of geometric least squares means ratios outside 0.80-1.25) for all analytes except R-warfarin. For all analytes, there was a general trend for the time to C max (t max ) to increase following coadministration with dulaglutide. For warfarin, dulaglutide coadministration had no statistically significant effect on the maximum INR (INR max ); however, a 2% increase in area under the INR curve (AUC INR ) was observed. Dulaglutide did not affect the absorption of the tested medications to a clinically relevant degree. Based on the PK and PD evaluations, no dose adjustments for digoxin, warfarin, atorvastatin and Ortho-Cyclen ® are recommended when coadministered with dulaglutide. NCT01458210, NCT01436201, NCT01432938, and NCT01250834.
SU-E-T-96: Energy Dependence of the New GafChromic- EBT3 Film's Dose Response-Curve.
Chiu-Tsao, S; Massillon-Jl, G; Domingo-Muñoz, I; Chan, M
2012-06-01
To study and compare the dose response curves of the new GafChromic EBT3 film for megavoltage and kilovoltage x-ray beams, with different spatial resolution. Two sets of EBT3 films (lot#A101711-02) were exposed to each x-ray beam (6MV, 15MV and 50kV) at 8 dose values (50-3200cGy). The megavoltage beams were calibrated per AAPM TG-51 protocol while the kilovoltage beam was calibrated following the TG-61 using an ionization chamber calibrated at NIST. Each film piece was scanned three consecutive times in the center of Epson 10000XL flatbed scanner in transmission mode, landscape orientation, 48-bit color at two separate spatial resolutions of 75 and 300 dpi. The data were analyzed using ImageJ and, for each scanned image, a region of interest (ROI) of 2×2cm 2 at the field center was selected to obtain the mean pixel value with its standard deviation in the ROI. For each energy, dose value and spatial resolution, the average netOD and its associated uncertainty were determined. The Student's t-test was performed to evaluate the statistical differences between the netOD/dose values of the three energy modalities, with different color channels and spatial resolutions. The dose response curves for the three energy modalities were compared in three color channels with 75 and 300dpi. Weak energy dependence was found. For doses above 100cGy, no statistical differences were observed between 6 and 15MV beams, regardless of spatial resolution. However, statistical differences were observed between 50kV and the megavoltage beams. The degree of energy dependence (from MV to 50kV) was found to be function of color channel, dose level and spatial resolution. The dose response curves for GafChromic EBT3 films were found to be weakly dependent on the energy of the photon beams from 6MV to 50kV. The degree of energy dependence varies with color channel, dose and spatial resolution. GafChromic EBT3 films were supplied by Ashland Corp. This work was partially supported by DGAPA-UNAM grant IN102610 and Conacyt Mexico grant 127409. © 2012 American Association of Physicists in Medicine.
Dose-response effects of corneal anesthetics.
Polse, K A; Keener, R J; Jauregui, M J
1978-01-01
With double-masking procedures, the dose-response curves for 0.1, 0.2, and 0.4% benoxinate and 0.125, 0.25, and 0.50% proparacaine hydrochloride were determined by monitoring changes in corneal touch threshold after applying each anesthetic. The level of corneal anesthesia necessary for applanation tonometry was also determined. The maximum increase in threshold that could be measured following instillation of 50 microliter of the drug was 200 mg/mm2 All 6 anesthetic solutions produced this amount of decreased corneal sensitivity. Recovery from the anesthetic was exponential for all concentrations; however, the lower doses had the shortest duration. For applanation tonometry, the corneal threshold for touch must be 75 mg/mm2 or higher. We conclude that a quarter to a half of the commonly used anesthetic dose is sufficient for routine tonometric evaluation.
Ueda, S; Meredith, P A; Howie, C A; Elliott, H L
1993-12-01
1 This study in normotensive subjects compared the duration and consistency of action of amlodipine (5 mg) and nifedipine GITS (60 mg) by assessment of the attenuation of pressor responses to noradrenaline and angiotensin II. 2 Both drugs significantly attenuated pressor responses to both vasoconstrictors at 6 and 24 h post-dose with rightward shifts of up to 2.3-fold in the dose-response curves. 3 There was significantly less pharmacokinetic variability with amlodipine: for example, intra-subject variability was 33% with amlodipine and 59% with nifedipine GITS. 4 There were no significant differences in the pressor dose ratios up to 48 h post-dose with amlodipine whereas there was a significant and progressive reduction in the pressor dose ratios with nifedipine. 5 These results suggest that both drugs are broadly comparable as once daily treatments but amlodipine displayed less intra- and inter-subject variability and provided a significantly more sustained effect with a reserve of pharmacological activity up to 48 h post-dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Yevegeniy; Diot, Quentin; Kavanagh, Brian
2013-08-15
Purpose: Stereotactic body radiation therapy (SBRT) is becoming the standard of care for early stage nonoperable lung cancers. Accurate dose–response modeling is challenging for SBRT because of the decreased number of clinical toxicity events. As a surrogate for a clinical toxicity endpoint, studies have proposed to use radiographic changes in follow up computed tomography (CT) scans to evaluate lung SBRT normal tissue effects. The purpose of the current study was to use local fibrotic lung regions to spatially and dosimetrically evaluate lung changes in patients that underwent SBRT.Methods: Forty seven SBRT patients treated at our institution from 2003 to 2009more » were used for the current study. Our patient cohort had a total of 148 follow up CT scans ranging from 3 to 48 months post-therapy. Post-treatment scans were binned into intervals of 3, 6, 12, 18, 24, 30, and 36 months after the completion of treatment. Deformable image registration was used to align the follow up CT scans with the pretreatment CT and dose distribution. Areas of visible fibrotic changes were contoured. The centroid of each gross tumor volume (GTV) and contoured fibrosis volume was calculated and the fibrosis volume location and movement (magnitude and direction) relative to the GTV and 30 Gy isodose centroid were analyzed. To perform a dose–response analysis, each voxel in the fibrosis volume was sorted into 10 Gy dose bins and the average CT number value for each dose bin was calculated. Dose–response curves were generated by plotting the CT number as a function of dose bin and time posttherapy.Results: Both fibrosis and GTV centroids were concentrated in the upper third of the lung. The average radial movement of fibrosis centroids relative to the GTV centroids was 2.6 cm with movement greater than 5 cm occurring in 11% of patients. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. The authors observed a CT number plateau at doses ranging from 30 to 50 Gy for the 3, 6, and 12 months posttherapy time points. There was no evident plateau for the dose–response curves generated using data from the 18, 24, 30, and 36 months posttherapy time points.Conclusions: Regions of local fibrotic lung changes in patients that underwent SBRT were evaluated spatially and dosimetrically. The authors found that the average fibrosis movement was 2.6 cm with movement greater than 5 cm possible. Evaluating dose–response curves revealed an overall trend of increasing CT number as a function of dose. Furthermore, our dose–response data also suggest that one of the possible explanations of the CT number plateau effect may be the time posttherapy of the acquired data. Understanding normal tissue dose–response is important for reducing toxicity after SBRT, especially in cases where larger tumors are treated. The methods presented in the current work build on prior quantitative studies and further enhance the understanding of normal lung dose–response after SBRT.« less
SU-F-BRCD-03: Dose Calculation of Electron Therapy Using Improved Lateral Buildup Ratio Method.
Gebreamlak, W; Tedeschi, D; Alkhatib, H
2012-06-01
To calculate the percentage depth dose of any irregular shape electron beam using modified lateral build-up-ratio method. Percentage depth dose (PDD) curves were measured using 6, 9, 12, and 15MeV electron beam energies for applicator cone sizes of 6×6, 10×10, 14×14, and 14×14cm 2 . Circular cutouts for each cone were prepared from 2.0cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The scanning was done using a water tank and two diodes - one for the signal and the other a stationary reference outside the tank. The water surface was determined by scanning the signal diode slowly from water to air and by noting the sharp change of the percentage depth dose curve at the water/air interface. The lateral build-up-ratio (LBR) for each circular cutout was calculated from the measured PDD curve using the open field of the 14×14 cm 2 cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter (sigma) of the electron shower was calculated. Unlike the commonly accepted assumption that sigma is independent of cutout size, it is shown that the sigma value increases linearly with circular cutout size. Using this characteristic of sigma, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that sigma increases with cutout size. For radius of circular cutout sizes up to the equilibrium range of the electron beam, the increase of sigma with the cutout size is linear. The percentage difference of the calculated PDD from the measured PDD for irregularly shaped cutouts was under 1.0%. Similar Result was obtained for four electron beam energies (6, 9, 12, and 15MeV). © 2012 American Association of Physicists in Medicine.
Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-04-04
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.
Moradi, Farhad; Mahdavi, Seyed Rabi; Mostaar, Ahmad; Motamedi, Mohsen
2012-01-01
In this study the commissioning of a dose calculation algorithm in a currently used treatment planning system was performed and the calculation accuracy of two available methods in the treatment planning system i.e., collapsed cone convolution (CCC) and equivalent tissue air ratio (ETAR) was verified in tissue heterogeneities. For this purpose an inhomogeneous phantom (IMRT thorax phantom) was used and dose curves obtained by the TPS (treatment planning system) were compared with experimental measurements and Monte Carlo (MCNP code) simulation. Dose measurements were performed by using EDR2 radiographic films within the phantom. Dose difference (DD) between experimental results and two calculation methods was obtained. Results indicate maximum difference of 12% in the lung and 3% in the bone tissue of the phantom between two methods and the CCC algorithm shows more accurate depth dose curves in tissue heterogeneities. Simulation results show the accurate dose estimation by MCNP4C in soft tissue region of the phantom and also better results than ETAR method in bone and lung tissues. PMID:22973081
Chen, Yang; Young, Paul M; Murphy, Seamus; Fletcher, David F; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2017-04-01
The aim of this study is to investigate aerosol plume geometries of pressurised metered dose inhalers (pMDIs) using a high-speed laser image system with different actuator nozzle materials and designs. Actuators made from aluminium, PET and PTFE were manufactured with four different nozzle designs: cone, flat, curved cone and curved flat. Plume angles and spans generated using the designed actuator nozzles with four solution-based pMDI formulations were imaged using Oxford Lasers EnVision system and analysed using EnVision Patternate software. Reduced plume angles for all actuator materials and nozzle designs were observed with pMDI formulations containing drug with high co-solvent concentration (ethanol) due to the reduced vapour pressure. Significantly higher plume angles were observed with the PTFE flat nozzle across all formulations, which could be a result of the nozzle geometry and material's hydrophobicity. The plume geometry of pMDI aerosols can be influenced by the vapour pressure of the formulation, nozzle geometries and actuator material physiochemical properties.
Plasmodium falciparum: attenuation by irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, S.; Yonome, I.; Suzuki, M.
The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed tomore » doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.« less
Extrapyramidal side effects of antipsychotic treatment: scope of problem and impact on outcome.
Tandon, Rajiv; Jibson, Michael D
2002-06-01
Previously, clinicians worked with antipsychotic drugs (conventional or typical) that almost invariably caused extrapyramidal symptoms (EPS) at clinically effective doses. This led to the false impression that all antipsychotics were the same, and that EPS were an unavoidable consequence of effective antipsychotic therapy. EPS adversely impact several aspects of antipsychotic efficacy and tolerability, thereby worsening outcome of afflicted individuals. EPS reduce beneficial effects of antipsychotic treatment on the negative, cognitive, and mood symptom domains, while increasing the risk of tardive dyskinesia and reducing compliance. By definition, the newer generation of "atypical" antipsychotic agents are significantly better than conventional agents with regard to EPS (i.e., they are clinically effective at doses at which they do not cause EPS). Pharmacologically, this difference is expressed in the greater degree of separation between respective dose response curves for antipsychotic and EPS effects observed for "atypical" in contrast to conventional agents. Clinically, this EPS advantage of atypical antipsychotics translates into several important benefits, including better negative symptom efficacy, less dysphoria, less impaired cognition, a lower risk of TD, and better overall outcome.
Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico
2017-12-01
The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.
Effect of Antacids and Ranitidine on the Single-Dose Pharmacokinetics of Fosamprenavir
Ford, Susan L.; Wire, Mary B.; Lou, Yu; Baker, Katherine L.; Stein, Daniel S.
2005-01-01
Single doses of MAALOX TC and ranitidine were administered separately with 1,400 mg of fosamprenavir (FPV). MAALOX TC decreased the area under the concentration-time curve from 0 to 24 h (AUC0-24) for plasma amprenavir (APV) by 18% and the maximum concentration of drug in serum (Cmax) by 35%; the plasma APV concentration at 12 h (C12) increased by 14%. Ranitidine at 300 mg decreased the AUC0-24 for plasma APV by 30% and Cmax by 51%; C12 was unchanged. FPV may be coadministered with antacids without concern and without separation in dosing; however, caution is recommended when FPV is coadministered with histamine2- receptor antagonists or proton pump inhibitors. PMID:15616339
NASA Technical Reports Server (NTRS)
Johnson, F. S.; Mo, T.; Green, A. E. S.
1976-01-01
Tabulated values are presented for ultraviolet radiation at the earth's surface as a function of wavelength, latitude, and season, for clear sky and seasonally and latitudinally averaged ozone amounts. These tabulations can be combined with any biological sensitivity function in order to obtain the seasonal and latitudinal variation of the corresponding effective doses. The integrated dosages, based on the erythemal sensitivity curve and on the Robertson-Berger sunburn-meter sensitivity curve, have also been calculated, and these are found to vary with latitude and season in very nearly the same way as 307 and 314 nm radiation, respectively.
Effects of Monoamine Oxidase Inhibition on the Reinforcing Properties of Low-Dose Nicotine.
Smith, Tracy T; Rupprecht, Laura E; Cwalina, Samantha N; Onimus, Matthew J; Murphy, Sharon E; Donny, Eric C; Sved, Alan F
2016-08-01
The Food and Drug Administration (FDA) has the authority to regulate cigarette smoke constituents, and a reduction in nicotine content might benefit public health by reducing the prevalence of smoking. Research suggests that cigarette smoke constituents that inhibit monoamine oxidase (MAO) may increase the reinforcing value of low doses of nicotine. The aim of the present experiments was to further characterize the impact of MAO inhibition on the primary reinforcing and reinforcement enhancing effects of nicotine in rats. In a series of experiments, rats responded for intravenous nicotine infusions or a moderately-reinforcing visual stimulus in daily 1-h sessions. Rats received pre-session injections of known MAO inhibitors. The results show that (1) tranylcypromine (TCP), a known MAO inhibitor, increases sensitivity to the primary reinforcing effects of nicotine, shifting the dose-response curve for nicotine to the left, (2) inhibition of MAO-A, but not MAO-B, increases low-dose nicotine self-administration, (3) partial MAO-A inhibition, to the degree observed in chronic cigarette smokers, also increases low-dose nicotine self-administration, and (4) TCP decreases the threshold nicotine dose required for reinforcement enhancement. The results of the present experiments suggest cigarette smoke constituents that inhibit MAO-A, in the range seen in chronic smokers, are likely to increase the primary reinforcing and reinforcement enhancing effects of low doses of nicotine. If the FDA reduces the nicotine content of cigarettes, then variability in constituents that inhibit MAO-A could impact smoking.
Bias of phencyclidine discrimination by the schedule of reinforcement.
McMillan, D E; Wenger, G R
1984-01-01
Pigeons, trained to discriminate phencyclidine from saline under a procedure requiring the bird to track the location of a color, received cumulative doses of phencyclidine, pentobarbital, or d-amphetamine with a variety of schedules of reinforcement in effect (across phases). When the same second-order schedules were used to reinforce responding after either saline or phencyclidine administration, stimulus control by phencyclidine did not depend on the schedule parameter. When different second-order schedules were used that biased responding toward the phencyclidine-correlated key color, pigeons responded on the phencyclidine-correlated key at lower doses of phencyclidine and pentobarbital than when the second-order schedule biased responding toward the saline key color. A similar but less marked effect was obtained with d-amphetamine. Attempts to produce bias by changing reinforcement magnitude (duration of food availability) were less successful. A signal-detection analysis of dose-effect curves for phencyclidine under two of the second-order schedules employed suggested that at low doses of phencyclidine, response bias is a major determinant of responding. As doses were increased, position preferences occurred and response bias decreased; at higher doses both response bias and position preference decreased and discriminability increased. With low doses of pentobarbital, responding again was biased but increasing doses produced position preference with only small increases in discriminability. At low doses of d-amphetamine responding also was biased, but bias did not decrease consistently with dose nor did discriminability increase. These experiments suggest that the schedule of reinforcement can be used to bias responding toward or away from making the drug-correlated response in drug discrimination experiments, and that signal-detection analysis and analysis of responding at a position can be used to separate the discriminability of the drug state from other effects of the drug on responding. PMID:6481300
TU-EF-304-09: Quantifying the Biological Effects of Therapeutic Protons by LET Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, F; Bronk, L; Kerr, M
2015-06-15
Purpose: To correlate in vitro cell kill with linear energy transfer (LET) spectra using Monte Carlo simulations and knowledge obtained from previous high-throughput in vitro proton relative biological effectiveness (RBE) measurements. Methods: The Monte Carlo simulation toolkit Geant4 was used to design the experimental setups and perform the dose, dose-averaged LET, and LET spectra calculations. The clonogenic assay was performed using the H460 lung cancer cell line in standard 6-well plates. Using two different experimental setups, the same dose and dose-averaged LET (12.6 keV/µm) was delivered to the cell layer; however, each respective energy or LET spectrum was different. Wemore » quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous RBE measurements) events in the LET spectra separately for these two setups as 39% and 53%. 8 dose levels with 1 Gy increments were delivered. The photon reference irradiation was performed using 6 MV x-rays from a LINAC. Results: The survival curves showed that both proton irradiations demonstrated an increased RBE compared to the reference photon irradiation. Within the proton-irradiated cells, the setup with 53% dose contribution from high-LET events exhibited the higher biological effectiveness. Conclusion: The experimental results indicate that the dose-averaged LET may not be an appropriate indicator to quantify the biological effects of protons when the LET spectrum is broad enough to contain both low- and high-LET events. Incorporating the LET spectrum distribution into robust intensity-modulated proton therapy optimization planning may provide more accurate biological dose distribution than using the dose-averaged LET. NIH Program Project Grant 2U19CA021239-35.« less
Millson, D S; Jessup, C L; Swaisland, A; Haworth, S; Rushton, A; Harry, J D
1992-01-01
1. ICI 170,809 (2-(2-dimethylamino-2-methylpropylthio)-3-phenylquinoline hydrochloride) is a potent 5-hydroxytryptamine (5-HT) type 2 postsynaptic receptor antagonist. 2. Effects of ICI 170,809 as single oral doses (3, 7, 15 and 30 mg) or placebo were studied on the duration of antagonism for the ex vivo platelet aggregatory response to 5-HT and to the pupillary light constrictor response in eight healthy male volunteers. 3. Pupillary dark adapted responses to a 0.5 s light stimulus were measured using a portable infrared pupillometer, for up to 24 h after dosing. 4. The in vitro platelet 5-HT aggregation response was reduced by ICI 170,809, with depression of the dose-response curve to 5-HT at all concentrations of 5-HT and with no evidence for a parallel shift. 5. The ex vivo platelet 5-HT response demonstrated a dose related significant (P less than 0.02) decrease in aggregation reaching a maximum at 2 h after dosing with the effect persisting for at least 8 h after dosing with the 7 and 15 mg doses. 6. Resting pupil diameter (RPD), and light induced pupillary responses in the dark adapted pupil, showed a significant (P less than 0.01) dose related reduction with significant (P less than 0.05) effects still present with the 15 and 30 mg doses at 8 h after dosing. 7. We conclude that, changes in both ex vivo platelet aggregation to 5-HT and dark adapted pupil size, are significantly correlated (P less than 0.0001) with log plasma concentrations (ng ml-1) of ICI 170,809, enabling the assessment of 5-HT2-receptor antagonism in man. PMID:1576048
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granville, DA; Sahoo, N; Sawakuchi, GO
Purpose: To investigate the use of optically stimulated luminescence (OSL) detectors (OSLDs) for measurements of dose-averaged linear energy transfer (LET) in patient-specific proton therapy treatment fields. Methods: We used Al{sub 2}O{sub 3}:C OSLDs made from the same material as commercially available nanoDot OSLDs from Landauer, Inc. We calibrated two parameters of the OSL signal as functions of LET in therapeutic proton beams: the ratio of the ultraviolet and blue emission intensities (UV/blue ratio) and the OSL curve shape. These calibration curves were created by irradiating OSLDs in passively scattered beams of known LET (0.96 to 3.91 keV/µm). The LET valuesmore » were determined using a validated Monte Carlo model of the beamline. We then irradiated new OSLDs with the prescription dose (16 to 74 cGy absorbed dose to water) at the center of the spread-out Bragg peak (SOBP) of four patient-specific treatment fields. From readouts of these OSLDs, we determined both the UV/blue ratio and OSL curve shape parameters. Combining these parameters with the calibration curves, we were able to measure LET using the OSLDs. The measurements were compared to the theoretical LET values obtained from Monte Carlo simulations of the patient-specific treatments fields. Results: Using the UV/blue ratio parameter, we were able to measure LET within 3.8%, 6.2%, 5.6% and 8.6% of the Monte Carlo value for each of the patient fields. Similarly, using the OSL curve shape parameter, LET measurements agreed within 0.5%, 11.0%, 2.5% and 7.6% for each of the four fields. Conclusion: We have demonstrated a method to verify LET in patient-specific proton therapy treatment fields using OSLDs. The possibility of enhancing biological effectiveness of proton therapy treatment plans by including LET in the optimization has been previously shown. The LET verification method we have demonstrated will be useful in the quality assurance of such LET optimized treatment plans. DA Granville received financial support from the Natural Sciences and Engineering Research Council of Canada.« less
Automatic treatment plan re-optimization for adaptive radiotherapy guided with the initial plan DVHs
NASA Astrophysics Data System (ADS)
Li, Nan; Zarepisheh, Masoud; Uribe-Sanchez, Andres; Moore, Kevin; Tian, Zhen; Zhen, Xin; Jiang Graves, Yan; Gautier, Quentin; Mell, Loren; Zhou, Linghong; Jia, Xun; Jiang, Steve
2013-12-01
Adaptive radiation therapy (ART) can reduce normal tissue toxicity and/or improve tumor control through treatment adaptations based on the current patient anatomy. Developing an efficient and effective re-planning algorithm is an important step toward the clinical realization of ART. For the re-planning process, manual trial-and-error approach to fine-tune planning parameters is time-consuming and is usually considered unpractical, especially for online ART. It is desirable to automate this step to yield a plan of acceptable quality with minimal interventions. In ART, prior information in the original plan is available, such as dose-volume histogram (DVH), which can be employed to facilitate the automatic re-planning process. The goal of this work is to develop an automatic re-planning algorithm to generate a plan with similar, or possibly better, DVH curves compared with the clinically delivered original plan. Specifically, our algorithm iterates the following two loops. An inner loop is the traditional fluence map optimization, in which we optimize a quadratic objective function penalizing the deviation of the dose received by each voxel from its prescribed or threshold dose with a set of fixed voxel weighting factors. In outer loop, the voxel weighting factors in the objective function are adjusted according to the deviation of the current DVH curves from those in the original plan. The process is repeated until the DVH curves are acceptable or maximum iteration step is reached. The whole algorithm is implemented on GPU for high efficiency. The feasibility of our algorithm has been demonstrated with three head-and-neck cancer IMRT cases, each having an initial planning CT scan and another treatment CT scan acquired in the middle of treatment course. Compared with the DVH curves in the original plan, the DVH curves in the resulting plan using our algorithm with 30 iterations are better for almost all structures. The re-optimization process takes about 30 s using our in-house optimization engine. This work was originally presented at the 54th AAPM annual meeting in Charlotte, NC, July 29-August 2, 2012.
NASA Astrophysics Data System (ADS)
Peng, Jiayuan; Zhang, Zhen; Wang, Jiazhou; Xie, Jiang; Chen, Junchao; Hu, Weigang
2015-10-01
GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter. Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method. The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90% ± 1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality. By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration curve.
Arimura, Kimiyoshi; Arimura, Yumiko; Takata, Yoshiharu; Nakamura, Tomonori; Kaji, Ryuji
2008-01-30
Ethnic differences in the muscle-relaxing effect of botulinum toxin type B (BTX-B) were examined by means of electrophysiological measurements in Japanese and Caucasian volunteers. This was a randomized, single-blinded, single-center study of 24 Japanese and 24 Caucasian healthy adult male subjects in Japan. BTX-B (20 U, 100 U, or 500 U/0.2 mL) or placebo was administered to the extensor digitorum brevis (EDB) muscle in the left lower limb as a single dose (in each dose group, 6 subjects received the test drug and two received placebo). The inhibitory effect of BTX-B on the M wave amplitude of EDB muscle generated by stimulation of the deep peroneal nerve was measured frequently during 2 weeks after administration, and then at weeks 4 (day 28) and 12 (day 84). The inhibitory effect of BTX-B on the M wave amplitude of EDB muscle was dose-dependent in both Japanese and Caucasian subjects, and the dose-response curves were similar. These findings demonstrate that the muscle-relaxing effect of BTX-B in Japanese subjects is electrophysiologically similar to that in Caucasians. 2007 Movement Disorder Society
NASA Astrophysics Data System (ADS)
Tao, F.; Powers-Risius, P.; Alpen, E. L.; Medvedovsky, C.; David, J.; Worgul, B. V.
1994-10-01
Lenses of mice irradiated with 250 MeV protons, 670 MeV/amu20Ne, 600 MeV/amu 56Fe, 600 MeV/amu 93Nb and 593 MeV/amu 139La ions were evaluated by analyzing cytopathological indicators which have been implicated in the cataractogenic process. The LETs ranged from 0.40 keV/μm to 953 keV/μm and fluences from 1.31 × 103/mm2 to 4.99 × 107/mm2. 60Co γ-rays were used as the reference radiation. The doses ranged from 10 to 40 cGy. The lenses were assessed 64 weeks post irradiation in order to observe the late effects of LET and dose on the target cell population of the lens epithelium. Our study shows that growth dependent pathological changes occur at the cellular level as a function of dose and LET. The shapes of the RBE-LET and RBE-dose curves are consistent with previous work on eye and other biological systems done in both our laboratory and others. The RBEmax's were estimated, for the most radiation cataract related cytological changes, MN frequency and MR disorganization, by calculating the ratio of the initial slopes of dose effect curve for various heavy ions to that of 60Co γ-ray. For each ion studied, the RBEmax derived from micronucleus (MN) frequency is similar to that derived from meridional row (MR) disorganization, suggesting that heavy ions are equally efficient at producing each type of damage. Furthermore, on a per particle basis (particle/cell nucleus), both MN frequency and MR disorganization are LET dependent indicating that these classic precataractogenic indicators are multi-gene effects. Poisson probability analysis of the particle number traversing cell nuclei (average area = 24 μm2)suggested that single nuclear traversals determine these changes. By virtue of their precataractogenic nature the data on these endpoints intimate that radiation cataract may also be the consequence of single hits. In any case, these observations are consistent with the current theory of the mechanism of radiation cataractogenesis, which proposes that genomic damage to the epithelial cells surviving the exposure is responsible for opacification.
Dose Equivalents for Second-Generation Antipsychotic Drugs: The Classical Mean Dose Method
Leucht, Stefan; Samara, Myrto; Heres, Stephan; Patel, Maxine X.; Furukawa, Toshi; Cipriani, Andrea; Geddes, John; Davis, John M.
2015-01-01
Background: The concept of dose equivalence is important for many purposes. The classical approach published by Davis in 1974 subsequently dominated textbooks for several decades. It was based on the assumption that the mean doses found in flexible-dose trials reflect the average optimum dose which can be used for the calculation of dose equivalence. We are the first to apply the method to second-generation antipsychotics. Methods: We searched for randomized, double-blind, flexible-dose trials in acutely ill patients with schizophrenia that examined 13 oral second-generation antipsychotics, haloperidol, and chlorpromazine (last search June 2014). We calculated the mean doses of each drug weighted by sample size and divided them by the weighted mean olanzapine dose to obtain olanzapine equivalents. Results: We included 75 studies with 16 555 participants. The doses equivalent to 1 mg/d olanzapine were: amisulpride 38.3 mg/d, aripiprazole 1.4 mg/d, asenapine 0.9 mg/d, chlorpromazine 38.9 mg/d, clozapine 30.6 mg/d, haloperidol 0.7 mg/d, quetiapine 32.3mg/d, risperidone 0.4mg/d, sertindole 1.1 mg/d, ziprasidone 7.9 mg/d, zotepine 13.2 mg/d. For iloperidone, lurasidone, and paliperidone no data were available. Conclusions: The classical mean dose method is not reliant on the limited availability of fixed-dose data at the lower end of the effective dose range, which is the major limitation of “minimum effective dose methods” and “dose-response curve methods.” In contrast, the mean doses found by the current approach may have in part depended on the dose ranges chosen for the original trials. Ultimate conclusions on dose equivalence of antipsychotics will need to be based on a review of various methods. PMID:25841041
Quality Assurance Testing of Version 1.3 of U.S. EPA Benchmark Dose Software (Presentation)
EPA benchmark dose software (BMDS) issued to evaluate chemical dose-response data in support of Agency risk assessments, and must therefore be dependable. Quality assurance testing methods developed for BMDS were designed to assess model dependability with respect to curve-fitt...
LNT IS THE BEST WE CAN DO - TO-DAY
Abstract
The form of the dose-response curve for radiation-induced cancers, particularly at low doses, is the subject of an ongoing and spirited debate. The present review describes the current data base and basis for establishing a low dose, linear no threshold (LNT) mode...
Toward computer simulation of high-LET in vitro survival curves.
Heuskin, A-C; Michiels, C; Lucas, S
2013-09-21
We developed a Monte Carlo based computer program called MCSC (Monte Carlo Survival Curve) able to predict the survival fraction of cells irradiated in vitro with a broad beam of high linear energy transfer particles. Three types of cell responses are studied: the usual high dose response, the bystander effect and the low-dose hypersensitivity (HRS). The program models the broad beam irradiation and double strand break distribution following Poisson statistics. The progression of cells through the cell cycle is taken into account while the repair takes place. Input parameters are experimentally determined for A549 lung carcinoma cells irradiated with 10 and 20 keV µm(-1) protons, 115 keV µm(-1) alpha particles and for EAhy926 endothelial cells exposed to 115 keV µm(-1) alpha particles. Results of simulations are presented and compared with experimental survival curves obtained for A549 and EAhy296 cells. Results are in good agreement with experimental data for both cell lines and all irradiation protocols. The benefits of MCSC are several: the gain of time that would have been spent performing time-consuming clonogenic assays, the capacity to estimate survival fraction of cell lines not forming colonies and possibly the evaluation of radiosensitivity parameters of given individuals.
NASA Astrophysics Data System (ADS)
Mavroidis, Panayiotis; Lind, Bengt K.; Theodorou, Kyriaki; Laurell, Göran; Fernberg, Jan-Olof; Lefkopoulos, Dimitrios; Kappas, Constantin; Brahme, Anders
2004-08-01
The purpose of this work is to provide some statistical methods for evaluating the predictive strength of radiobiological models and the validity of dose-response parameters for tumour control and normal tissue complications. This is accomplished by associating the expected complication rates, which are calculated using different models, with the clinical follow-up records. These methods are applied to 77 patients who received radiation treatment for head and neck cancer and 85 patients who were treated for arteriovenous malformation (AVM). The three-dimensional dose distribution delivered to esophagus and AVM nidus and the clinical follow-up results were available for each patient. Dose-response parameters derived by a maximum likelihood fitting were used as a reference to evaluate their compatibility with the examined treatment methodologies. The impact of the parameter uncertainties on the dose-response curves is demonstrated. The clinical utilization of the radiobiological parameters is illustrated. The radiobiological models (relative seriality and linear Poisson) and the reference parameters are validated to prove their suitability in reproducing the treatment outcome pattern of the patient material studied (through the probability of finding a worse fit, area under the ROC curve and khgr2 test). The analysis was carried out for the upper 5 cm of the esophagus (proximal esophagus) where all the strictures are formed, and the total volume of AVM. The estimated confidence intervals of the dose-response curves appear to have a significant supporting role on their clinical implementation and use.
Statistical analysis of radioimmunoassay. In comparison with bioassay (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, R.
1973-01-01
Using the data of RIA (radioimmunoassay), statistical procedures for dealing with two problems of the linearization of dose response curve and calculation of relative potency were described. There were three methods for linearization of dose response curve of RIA. In each method, the following parameters were shown on the horizontal and vertical axis: dose x, (B/T)/sup -1/; c/x + c, B/T (C: dose which makes B/T 50%); log x, logit B/T. Among them, the last method seems to be most practical. The statistical procedures for bioassay were employed for calculating the relative potency of unknown samples compared to the standardmore » samples from dose response curves of standand and unknown samples using regression coefficient. It is desirable that relative potency is calculated by plotting more than 5 points in the standard curve and plotting more than 2 points in unknow samples. For examining the statistical limit of precision of measuremert, LH activity of gonadotropin in urine was measured and relative potency, precision coefficient and the upper and lower limits of relative potency at 95% confidence limit were calculated. On the other hand, bioassay (by the ovarian ascorbic acid reduction method and anteriol lobe of prostate weighing method) was done in the same samples, and the precision was compared with that of RIA. In these examinations, the upper and lower limits of the relative potency at 95% confidence limit were near each other, while in bioassay, a considerable difference was observed between the upper and lower limits. The necessity of standardization and systematization of the statistical procedures for increasing the precision of RIA was pointed out. (JA)« less
Kimme-Smith, C; Rothschild, P A; Bassett, L W; Gold, R H; Moler, C
1989-01-01
Six different combinations of film-processor temperature (33.3 degrees C, 35 degrees C), development time (22 sec, 44 sec), and chemistry (Du Pont medium contrast developer [MCD] and Kodak rapid process [RP] developer) were each evaluated by separate analyses with Hurter and Driffield curves, test images of plastic step wedges, noise variance analysis, and phantom images; each combination also was evaluated clinically. Du Pont MCD chemistry produced greater contrast than did Kodak RP chemistry. A change in temperature from 33.3 degrees C (92 degrees F) to 35 degrees C (95 degrees F) had the least effect on dose and image contrast. Temperatures of 36.7 degrees C (98 degrees F) and 38.3 degrees C (101 degrees F) also were tested with extended processing. The speed increased for 36.7 degrees C but decreased at 38.3 degrees C. Base plus fog increased, but contrast decreased for these higher temperatures. Increasing development time had the greatest effect on decreasing the dose required for equivalent film darkening when imaging BR12 breast equivalent test objects; ion chamber measurements showed a 32% reduction in dose when the development time was increased from 22 to 44 sec. Although noise variance doubled in images processed with the extended development time, diagnostic capability was not compromised. Extending the processing time for mammographic films was an effective method of dose reduction, whereas varying the processing temperature and chemicals had less effect on contrast and dose.
Juzeniene, Asta; Grigalavicius, Mantas; Baturaite, Zivile; Moan, Johan
2014-11-01
Sigmoidal (S-shaped) dose-cancer incidence relationships are often observed in animal bioassays for carcinogenicity. Ultraviolet (UV) radiation is an established skin carcinogen. The aim of this study is to examine if S-shaped curves describe the relationship between solar UV doses and skin cancer incidences, and if such relationships can be used to estimate threshold levels of non-carcinogenic UV exposure, as well as maximal incidence rates. We studied the incidence rate-annual erythema-effective UV dose relationship for squamous cell carcinoma (SCC), basal cell carcinoma (BCC) and cutaneous melanoma (CM) among different Caucasian populations in Europe, Australia and New Zealand. Our analysis indicates that S-shaped associations describe the data well (P < 0.0001). The age-adjusted incidence rates for cases expected to be due to other causes than solar UV exposure (at zero UV dose) were found to be around 0.6, 9.7 and 4.0 per 100,000 for women in 1997-2007 for SCC, BCC and CM, respectively, and around 1.2, 14.3 and 2.6 per 100,000 for men. The analysis indicates that SCC, BCC and CM have maximal incidence of 361 ± 24, 1544 ± 49 and 36 ± 4 per 100,000 for women, and 592 ± 35, 2204 ± 109 and 50 ± 4 per 100,000 for men. Between 89 and 95% of the annual CM cases, around 99.8% SCC and 99.4% BCC cases are caused by solar UV exposure. The analysis did not identify any "safe" UV dose below which the risk for skin cancer was absent. Avoidance of UV radiation has a potential to reduce the incidence of skin cancer in fair-skinned population. Copyright © 2014 Elsevier GmbH. All rights reserved.
Characterizing a proton beam scanning system for Monte Carlo dose calculation in patients
NASA Astrophysics Data System (ADS)
Grassberger, C.; Lomax, Anthony; Paganetti, H.
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low-energy electrons (<0.6 MeV for 230 MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of-field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5 mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations.
Single toxin dose-response models revisited
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demidenko, Eugene, E-mail: eugened@dartmouth.edu
The goal of this paper is to offer a rigorous analysis of the sigmoid shape single toxin dose-response relationship. The toxin efficacy function is introduced and four special points, including maximum toxin efficacy and inflection points, on the dose-response curve are defined. The special points define three phases of the toxin effect on mortality: (1) toxin concentrations smaller than the first inflection point or (2) larger then the second inflection point imply low mortality rate, and (3) concentrations between the first and the second inflection points imply high mortality rate. Probabilistic interpretation and mathematical analysis for each of the fourmore » models, Hill, logit, probit, and Weibull is provided. Two general model extensions are introduced: (1) the multi-target hit model that accounts for the existence of several vital receptors affected by the toxin, and (2) model with a nonzero mortality at zero concentration to account for natural mortality. Special attention is given to statistical estimation in the framework of the generalized linear model with the binomial dependent variable as the mortality count in each experiment, contrary to the widespread nonlinear regression treating the mortality rate as continuous variable. The models are illustrated using standard EPA Daphnia acute (48 h) toxicity tests with mortality as a function of NiCl or CuSO{sub 4} toxin. - Highlights: • The paper offers a rigorous study of a sigmoid dose-response relationship. • The concentration with highest mortality rate is rigorously defined. • A table with four special points for five morality curves is presented. • Two new sigmoid dose-response models have been introduced. • The generalized linear model is advocated for estimation of sigmoid dose-response relationship.« less
Characterizing a Proton Beam Scanning System for Monte Carlo Dose Calculation in Patients
Grassberger, C; Lomax, Tony; Paganetti, H
2015-01-01
The presented work has two goals. First, to demonstrate the feasibility of accurately characterizing a proton radiation field at treatment head exit for Monte Carlo dose calculation of active scanning patient treatments. Second, to show that this characterization can be done based on measured depth dose curves and spot size alone, without consideration of the exact treatment head delivery system. This is demonstrated through calibration of a Monte Carlo code to the specific beam lines of two institutions, Massachusetts General Hospital (MGH) and Paul Scherrer Institute (PSI). Comparison of simulations modeling the full treatment head at MGH to ones employing a parameterized phase space of protons at treatment head exit reveals the adequacy of the method for patient simulations. The secondary particle production in the treatment head is typically below 0.2% of primary fluence, except for low–energy electrons (<0.6MeV for 230MeV protons), whose contribution to skin dose is negligible. However, there is significant difference between the two methods in the low-dose penumbra, making full treatment head simulations necessary to study out-of field effects such as secondary cancer induction. To calibrate the Monte Carlo code to measurements in a water phantom, we use an analytical Bragg peak model to extract the range-dependent energy spread at the two institutions, as this quantity is usually not available through measurements. Comparison of the measured with the simulated depth dose curves demonstrates agreement within 0.5mm over the entire energy range. Subsequently, we simulate three patient treatments with varying anatomical complexity (liver, head and neck and lung) to give an example how this approach can be employed to investigate site-specific discrepancies between treatment planning system and Monte Carlo simulations. PMID:25549079
The response of Kodak EDR2 film in high-energy electron beams.
Gerbi, Bruce J; Dimitroyannis, Dimitri A
2003-10-01
Kodak XV2 film has been a key dosimeter in radiation therapy for many years. The advantages of the recently introduced Kodak EDR2 film for photon beam dosimetry have been the focus of several IMRT verification dosimetry publications. However, no description of this film's response to electron beams exists in the literature. We initiated a study to characterize the response and utility of this film for electron beam dosimetry. We exposed a series of EDR2 films to 6, 9, 12, 16, and 20 MeV electrons in addition to 6 and 18 MV x rays to develop standard characteristic curves. The linac was first calibrated to ensure that the delivered dose was known accurately. All irradiations were done at dmax in polystyrene for both photons and electrons, all films were from the same batch, and were developed at the same time. We also exposed the EDR2 films in a solid water phantom to produce central axis depth dose curves. These data were compared against percent depth dose curves measured in a water phantom using an IC-10 ion chamber, Kodak XV2 film, and a PTW electron diode. The response of this film was the same for both 6 and 18 MV x rays, but showed an apparent energy-dependent enhancement for electron beams. The response of the film also increased with increasing electron energy. This caused the percent depth dose curves using film to be shifted toward the surface compared to the ion chamber data.
The role of a microDiamond detector in the dosimetry of proton pencil beams.
Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan
2016-03-01
In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams. Copyright © 2015. Published by Elsevier GmbH.
Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Mirosław; Luszczki, Jarogniew J
2014-01-01
The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice. © 2014 S. Karger AG, Basel.
Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment
Vaiserman, Alexander M.
2010-01-01
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444
Response of TLD-100 in mixed fields of photons and electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawless, Michael J.; Junell, Stephanie; Hammer, Cliff
Purpose: Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. Methods: TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable {sup 60}Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam.more » The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the {sup 60}Co beam. Irradiations were performed in water and in a Virtual Water Trade-Mark-Sign phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. Results: TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. Conclusions: The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.« less
Response of TLD-100 in mixed fields of photons and electrons.
Lawless, Michael J; Junell, Stephanie; Hammer, Cliff; DeWerd, Larry A
2013-01-01
Thermoluminescent dosimeters (TLDs) are routinely used for dosimetric measurements of high energy photon and electron fields. However, TLD response in combined fields of photon and electron beam qualities has not been characterized. This work investigates the response of TLD-100 (LiF:Mg,Ti) to sequential irradiation by high-energy photon and electron beam qualities. TLDs were irradiated to a known dose by a linear accelerator with a 6 MV photon beam, a 6 MeV electron beam, and a NIST-traceable (60)Co beam. TLDs were also irradiated in a mixed field of the 6 MeV electron beam and the 6 MV photon beam. The average TLD response per unit dose of the TLDs for each linac beam quality was normalized to the average response per unit dose of the TLDs irradiated by the (60)Co beam. Irradiations were performed in water and in a Virtual Water™ phantom. The 6 MV photon beam and 6 MeV electron beam were used to create dose calibration curves relating TLD response to absorbed dose to water, which were applied to the TLDs irradiated in the mixed field. TLD relative response per unit dose in the mixed field was less sensitive than the relative response in the photon field and more sensitive than the relative response in the electron field. Application of the photon dose calibration curve to the TLDs irradiated in a mixed field resulted in an underestimation of the delivered dose, while application of the electron dose calibration curve resulted in an overestimation of the dose. The relative response of TLD-100 in mixed fields fell between the relative response in the photon-only and electron-only fields. TLD-100 dosimetry of mixed fields must account for this intermediate response to minimize the estimation errors associated with calibration factors obtained from a single beam quality.
Cytogenetic effects of energetic ions with shielding
NASA Astrophysics Data System (ADS)
Yang, T. C.; George, K. A.; Wu, H.; Miller, D.; Miller, J.
1998-11-01
In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in non-dividing tissues, such as nervous systems.
Livingstone, J; Horowitz, Y S; Oster, L; Datz, H; Lerch, M; Rosenfeld, A; Horowitz, A
2010-03-01
The dose response of LiF:Mg,Ti (TLD-100) chips was measured from 1 to 50,000 Gy using 100 keV X rays at the European Synchroton Radiation Facility. Glow curves were deconvoluted into component glow peaks using a computerised glow curve deconvolution (CGCD) code based on first-order kinetics. The normalised dose response, f(D), of glow peaks 4 and 5 and 5b (the major components of composite peak 5), as well as peaks 7 and 8 (two of the major components of the high-temperature thermoluminescence (HTTL) at high levels of dose) was separately determined and theoretically interpreted using the unified interaction model (UNIM). The UNIM is a nine-parameter model encompassing both the irradiation/absorption stage and the thermally induced relaxation/recombination stage with an admixture of both localised and delocalised recombination mechanisms. The effects of radiation damage are included in the present modelling via the exponential removal of luminescent centres (LCs) at high dose levels. The main features of the experimentally measured dose response are: (i) increase in f(D)(max) with glow peak temperature, (ii) increase in D(max) (the dose level at which f(D)(max) occurs) with increasing glow peak temperature, and (iii) decreased effects of radiation damage with increasing glow peak temperature. The UNIM interpretation of this behaviour requires both strongly decreasing values of ks (the relative contribution of localised recombination) as a function of glow peak temperature and, as well, significantly different values of the dose-filling constants of the trapping centre (TC) and LC for peaks 7 and 8 than those used for peaks 4 and 5. This suggests that different TC/LC configurations are responsible for HTTL. The relative intensity of peak 5a (a low-temperature satellite of peak 5 arising from localised recombination) was found to significantly increase at higher dose levels due to preferential electron and hole population of the trapping/recombination complex giving rise to composite glow peak 5. It is also demonstrated that possible changes in the trapping cross section of the LC and the competitive centres due to increasing sample/glow peak temperature do not significantly influence these observations/conclusions.
NASA Astrophysics Data System (ADS)
Veigel, Cornelia; Hartmann, Günther H.; Fritz, Peter; Debus, Jürgen; Weber, Klaus-Josef
2017-02-01
Afterloading brachytherapy is conducted by the stepwise movement of a radioactive source through surgically implanted applicator tubes where at predefined dwell positions calculated dwell times optimize spatial dose delivery with respect to a planned dose level. The temporal exposure pattern exhibits drastic fluctuations in dose rate at a given coordinate and within a single treatment session because of the discontinuous and repeated source movement into the target volume. This could potentially affect biological response. Therefore, mammalian cells were exposed as monolayers to a high dose rate 192Ir source by utilizing a dedicated irradiation device where the distance between a planar array of radioactive source positions and the plane of the cell monolayer could be varied from 2.5 mm to 40 mm, thus varying dose rate pattern for any chosen total dose. The Gammamed IIi afterloading system equipped with a nominal 370 GBq (10 Ci) 192-Ir source was used to irradiate V79 Chinese hamster lung fibroblasts from both confluent and from exponential growth phase with dose up to 12 Gy (at room temperature, total exposure not exceeding 1 h). For comparison, V79 cells were also exposed to 6 MV x-rays from a clinical linear accelerator (dose rate of 2.5 Gy min-1). As biological endpoint, cell survival was determined by standard colony forming assay. Dose measurements were conducted with a diamond detector (sensitive area 7.3 mm2), calibrated by means of 60Co radiation. Additionally, dose delivery was simulated by Monte Carlo calculations using the EGSnrc code system. The calculated secondary electron fluence spectra at the cell location did not indicate a significant change of radiation quality (i.e. higher linear energy transfer) at the lower distances. Clonogenic cell survival curves obtained after brachytherapy exhibited an altered biological response compared to x-rays which was characterized by a significant reduction of the survival curve shoulder when dose rate fluctuations were high. Therefore, also for the time scale of the present investigation, cellular effects of radiation are not invariant to the temporal pattern in dose rate. We propose that with high dose rate variation the cells activate less efficiently their DNA damage response than after continuous irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Herrick, A; Hoke, S
Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from themore » calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the manufacturer is 4%. Following the proposed approach, it can be controlled to 2%.« less
SU-E-T-75: A Simple Technique for Proton Beam Range Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgdorf, B; Kassaee, A; Garver, E
2015-06-15
Purpose: To develop a measurement-based technique to verify the range of proton beams for quality assurance (QA). Methods: We developed a simple technique to verify the proton beam range with in-house fabricated devices. Two separate devices were fabricated; a clear acrylic rectangular cuboid and a solid polyvinyl chloride (PVC) step wedge. For efficiency in our clinic, we used the rectangular cuboid for double scattering (DS) beams and the step wedge for pencil beam scanning (PBS) beams. These devices were added to our QA phantom to measure dose points along the distal fall-off region (between 80% and 20%) in addition tomore » dose at mid-SOBP (spread out Bragg peak) using a two-dimensional parallel plate chamber array (MatriXX™, IBA Dosimetry, Schwarzenbruck, Germany). This method relies on the fact that the slope of the distal fall-off is linear and does not vary with small changes in energy. Using a multi-layer ionization chamber (Zebra™, IBA Dosimetry), percent depth dose (PDD) curves were measured for our standard daily QA beams. The range (energy) for each beam was then varied (i.e. ±2mm and ±5mm) and additional PDD curves were measured. The distal fall-off of all PDD curves was fit to a linear equation. The distal fall-off measured dose for a particular beam was used in our linear equation to determine the beam range. Results: The linear fit of the fall-off region for the PDD curves, when varying the range by a few millimeters for a specific QA beam, yielded identical slopes. The calculated range based on measured point dose(s) in the fall-off region using the slope resulted in agreement of ±1mm of the expected beam range. Conclusion: We developed a simple technique for accurately verifying the beam range for proton therapy QA programs.« less
Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, T.J.
1989-01-01
Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression ofmore » spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of ({sup 3} H)-L-nicotine and ({sup 3}H)-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of ({sup 3}H)-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 {mu}M nicotine and pempidine. Pempidine did not effectively displace ({sup 3}H)-L-nicotine binding.« less
Ferry, N; Geoffroy, J; Pozet, N; Cuisinaud, G; Benzoni, D; Zech, P Y; Sassard, J
1988-01-01
1. The kinetics of a single oral dose (300 mg) of cicletanine a new antihypertensive drug with diuretic properties, and its effects on the urinary excretion of electrolytes and of the major stable metabolites of prostacyclin and thromboxane A2 were studied in patients with normal renal function (n = 6), mild (n = 9) and severe (n = 10) renal insufficiency. 2. In normotensive subjects with normal renal function, cicletanine was rapidly and regularly absorbed, its apparent elimination half-life established around 7 h, and both its renal clearance (0.4 ml min-1) and its cumulative renal excretion (0.85% of the administered dose), were low. Mild renal insufficiency did not significantly alter these parameters, while severe renal impairment reduced the renal clearance and the cumulative urinary excretion of cicletanine and increased its apparent elimination half-life (31 h). However the area under the plasma curve was not changed due to reduced plasma concentrations in these patients. 3. Cicletanine induced a rapid and marked (four fold as a mean) increase in the urinary excretion of water, sodium and potassium which lasted for 6 to 10 h, in subjects with normal renal function. Renal insufficiency did not alter the slope of the calculated plasma concentration-effects curves but reduced the maximum effect observed for water, sodium and potassium. 4. A single oral dose of cicletanine did not change the urinary excretion of 6-keto-prostaglandin F1 alpha and thromboxane B2 in the three groups of patients studied, the basal values of which being found to be closely related to the creatinine clearance.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3358898
Deleterious Effects of a Low Amount of Ethanol on LTP-Like Plasticity in Human Cortex
Lücke, Caroline; Heidegger, Tonio; Röhner, Mirjam; Toennes, Stefan W; Krivanekova, Lucia; Müller-Dahlhaus, Florian; Ziemann, Ulf
2014-01-01
Ingesting ethanol (EtOH) at low doses during social drinking is a common human behavior for its facilitating effects on social interactions. However, low-dose EtOH may have also detrimental effects that so far are underexplored. Here we sought to test the effects of low-dose EtOH on long-term potentiation (LTP)-like plasticity in human motor cortex. Previous cellular experiments showed that low-dose EtOH potentiates extrasynaptic GABAAR and reduces NMDAR-mediated currents, processes that would limit the expression of LTP. Paired associative transcranial magnetic stimulation (PASLTP) was employed in nine healthy subjects for induction of LTP-like plasticity, indexed by a long-term increase in motor-evoked potential input–output curves. Synaptic α1-GABAAR function was measured by saccadic peak velocity (SPV). Very low doses of EtOH (resulting in blood concentrations of <5 mM) suppressed LTP-like plasticity but did not affect SPV when compared with a placebo condition. In contrast, 1 mg of alprazolam, a classical benzodiazepine, or 10 mg of zolpidem, a non-benzodiazepine hypnotic, decreased SPV but did not significantly affect LTP-like plasticity when compared with placebo. This double dissociation of low-dose EtOH vs alprazolam/zolpidem effects is best explained by the putatively high affinity of EtOH but not alprazolam/zolpidem to extrasynaptic GABAARs and to NMDARs. Findings suggest that enhancement of extrasynaptic GABAAR-mediated tonic inhibition and/or reduction of NMDAR-mediated neurotransmission by EtOH blocks LTP-like plasticity in human cortex at very low doses that are easily reached during social drinking. Therefore, low-dose EtOH may jeopardize LTP-dependent processes, such as learning and memory formation. PMID:24385131
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
NASA Technical Reports Server (NTRS)
Hada, M.; George, K.; Cucinotta, F. A.
2010-01-01
Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to 28Si- ions with energies ranging from 90 to 600 MeV/u, or to 56Fe-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET of the Si ions ranged from 48 to 158 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to -rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600-Mev/u beam, and the highest RBE(sub max) value for Si ions was obtained with the 170 MeV/u beam. For both ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/ m for Si, and decreasing with further increase in LET. Additional studies for low doses 28Si-ions down to 0.02 Gy will be discussed.
Hausner, Helene; Derving Karsbøl, Julie; Holst, Anders G; Jacobsen, Jacob B; Wagner, Frank-Dietrich; Golor, Georg; Anderson, Thomas W
2017-11-01
Semaglutide is a glucagon-like peptide-1 analogue in development for the once-weekly treatment of type 2 diabetes mellitus. Its effect on the rate and extent of absorption of concomitant oral medications (metformin, warfarin, atorvastatin and digoxin) was evaluated in healthy subjects. Subjects received metformin (500 mg twice daily for 3.5 days), warfarin (25 mg, single dose), atorvastatin (40 mg, single dose) or digoxin (0.5 mg, single dose) before and with subcutaneous semaglutide treatment at steady state (1.0 mg). Lack of drug-drug interaction was concluded if the 90% confidence intervals for the area under the plasma concentration-time curve ratio before and with semaglutide were within a pre-specified interval (0.80-1.25). Overall, metformin, warfarin, atorvastatin and digoxin pharmacokinetics were not affected to a clinically relevant degree with semaglutide co-administration. Estimated area under the plasma concentration-time curve ratios for all concomitant medications before and with semaglutide treatment were within the pre-specified interval. In addition, semaglutide did not affect maximum plasma concentration of concomitant medications to a relevant degree. Furthermore, no clinically relevant change in international normalised ratio response to warfarin was observed with semaglutide co-administration. Most adverse events with semaglutide treatment were mild or moderate. Adverse events with semaglutide and co-administered medication were comparable to those reported during treatment with semaglutide alone, and were mostly gastrointestinal related. No clinically significant pharmacokinetic or pharmacodynamic interactions were identified and no new safety issues observed with combined treatment with semaglutide. This suggests that no dose adjustments should be required when semaglutide is administered concomitantly with these medications.
Comparison of Points of Departure for Health Risk Assessment Based on High-Throughput Screening Data
Sand, Salomon; Parham, Fred; Portier, Christopher J.; Tice, Raymond R.; Krewski, Daniel
2016-01-01
Background: The National Research Council’s vision for toxicity testing in the 21st century anticipates that points of departure (PODs) for establishing human exposure guidelines in future risk assessments will increasingly be based on in vitro high-throughput screening (HTS) data. Objectives: The aim of this study was to compare different PODs for HTS data. Specifically, benchmark doses (BMDs) were compared to the signal-to-noise crossover dose (SNCD), which has been suggested as the lowest dose applicable as a POD. Methods: Hill models were fit to > 10,000 in vitro concentration–response curves, obtained for > 1,400 chemicals tested as part of the U.S. Tox21 Phase I effort. BMDs and lower confidence limits on the BMDs (BMDLs) corresponding to extra effects (i.e., changes in response relative to the maximum response) of 5%, 10%, 20%, 30%, and 40% were estimated for > 8,000 curves, along with BMDs and BMDLs corresponding to additional effects (i.e., absolute changes in response) of 5%, 10%, 15%, 20%, and 25%. The SNCD, defined as the dose where the ratio between the additional effect and the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute effect was 1, 0.67, and 0.5, respectively, was also calculated and compared with the BMDLs. Results: The BMDL40, BMDL25, and BMDL18, defined in terms of extra effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. Similarly, the BMDL25, BMDL17, and BMDL13, defined in terms of additional effect, corresponded to the SNCD1.0, SNCD0.67, and SNCD0.5, respectively, at the median. Conclusions: The SNCD may serve as a reference level that guides the determination of standardized BMDs for risk assessment based on HTS concentration–response data. The SNCD may also have application as a POD for low-dose extrapolation. Citation: Sand S, Parham F, Portier CJ, Tice RR, Krewski D. 2017. Comparison of points of departure for health risk assessment based on high-throughput screening data. Environ Health Perspect 125:623–633; http://dx.doi.org/10.1289/EHP408 PMID:27384688
Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-01-01
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v
Estimation and uncertainty analysis of dose response in an inter-laboratory experiment
NASA Astrophysics Data System (ADS)
Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.
2016-02-01
An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Glue, Paul; Lockhart, Michelle; Lam, Fred; Hung, Noelyn; Hung, Cheung-Tak; Friedhoff, Lawrence
2015-02-01
Noribogaine is the active metabolite of the naturally occurring psychoactive substance ibogaine, and may help suppress withdrawal symptoms in opioid-dependent subjects. The objectives of this Phase I study were to assess the safety, tolerability, pharmacokinetic, and pharmacodynamic profiles of noribogaine. In this ascending single-dose, placebo-controlled, randomized, double-blind, parallel-group study in 36 healthy drug-free male volunteers, 4 cohorts (n = 9) received oral doses of 3, 10, 30, or 60 mg or matching placebo, with intensive safety and pharmacokinetic assessments out to 216 hours, along with pharmacodynamic assessments sensitive to the effects of mu-opioid agonists. Noribogaine was rapidly absorbed, with peak concentrations occurring 2-3 hours after oral dosing, and showed dose-linear increases of area under the concentration-time curve (AUC) and Cmax between 3 and 60 mg. The drug was slowly eliminated, with mean half-life estimates of 28-49 hours across dose groups. Apparent volume of distribution was high (mean 1417-3086 L across dose groups). No safety or tolerability issues were identified in any cohort. No mu-opioid agonist pharmacodynamic effects were noted in pupillometry or cold-pressor testing. Single oral doses of noribogaine 3-60 mg were safe and well tolerated in healthy volunteers. © 2014, The American College of Clinical Pharmacology.
Exercise and Health: Dose and Response, Considering Both Ends of the Curve.
Simon, Harvey B
2015-11-01
Over the past 60 years, an enormous body of data has demonstrated that exercise is good for health. Recently, however, there has been concern that repetitive intense exercise may have deleterious cardiovascular effects. To evaluate this possibility, I have reviewed the health response to exercise, with particular attention to the body's minimum daily requirement and to the maximum amount that is safe and effective. Copyright © 2015 Elsevier Inc. All rights reserved.
Dose-ranging study of the novel recombinant plasminogen activator BM 06.022 in healthy volunteers.
Martin, U; von Möllendorff, E; Akpan, W; Kientsch-Engel, R; Kaufmann, B; Neugebauer, G
1991-10-01
The novel recombinant plasminogen activator BM 06.022 consists of the kringle 2 and protease domains of human tissue-type plasminogen activator and is unglycosylated because of its expression in Escherichia coli cells. Pharmacokinetics for activity and hemostatic effects of BM 06.022 were studied in 18 healthy male volunteers after an intravenous bolus injection over 2 minutes. BM 06.022 was administered successively at doses of 0.1125, 0.55, 2.2, 3.3, 4.4, and 5.5 MU to three volunteers. Plasma fibrinogen was unchanged; effects of BM 06.022 were observed on plasminogen only at higher doses, and dose-dependent effects were seen on alpha 2-antiplasmin and fibrin D-dimers. The concentration of plasminogen and alpha 2-antiplasmin was 87% +/- 3% and 79% +/- 3%, respectively, of baseline 2 hours after injection of 5.5 MU of BM 06.022. Fibrin D-dimers were highest with 1147 +/- 380 ng/ml at 5.5 MU of BM 06.022. The area under the activity concentration-time curve (AUC) increased dose-dependently and linearly. At 5.5 MU of BM 06.022, the AUC was 313 +/- 47 IU.hr.ml-1, the total plasma clearance was 306 +/- 40 ml/min, and the half-life was 14.4 +/- 1.1 minutes.
Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.
Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung
2015-12-01
Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai
2018-06-02
This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.
Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H
2014-01-01
Aims The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. Methods In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Results Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. Conclusions We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. PMID:24995954
Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H
2014-12-01
The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. © 2014 The British Pharmacological Society.
Docea, Anca Oana; Gofita, Eliza; Goumenou, Marina; Calina, Daniela; Rogoveanu, Otilia; Varut, Marius; Olaru, Cristian; Kerasioti, Efthalia; Fountoucidou, Polyxeni; Taitzoglou, Ioannis; Zlatian, Ovidiu; Rakitskii, Valerii N; Hernandez, Antonio F; Kouretas, Dimitrios; Tsatsakis, Aristidis
2018-05-01
This study assessed the potential adverse health effects of long-term low-dose exposure to chemical mixtures simulating complex real-life human exposures. Four groups of Sprague Dawley rats were administered mixtures containing carbaryl, dimethoate, glyphosate, methomyl, methyl parathion, triadimefon, aspartame, sodium benzoate, calcium disodium ethylene diamine tetra-acetate, ethylparaben, butylparaben, bisphenol A, and acacia gum at doses of 0, 0.25, 1 or 5 times the respective Toxicological Reference Values (TRV): acceptable daily intake (ADI) or tolerable daily intake (TDI) in a 24 weeks toxicity study. Body weight gain, feed and water consumption were evaluated weekly. At 24 weeks blood was collected and biochemistry parameters and redox status markers were assessed. Adverse effects were observed on body weight gain and in hepatotoxic parameters such as the total bilirubin, alanine aminotransferase (ALT) and alkaline phosphatase (ALP), especially in low dose and affecting mainly male rats. The low dose group showed increased catalase activity both in females and males, whereas the high dose group exhibited decreased protein carbonyl and total antioxidant capacity (TAC) levels in both sex groups. Non-monotonic effects and adaptive responses on liver function tests and redox status, leading to non-linear dose-responses curves, are probably produced by modulation of different mechanisms. Copyright © 2018. Published by Elsevier Ltd.
MO-FG-CAMPUS-TeP3-03: Calculation of Proton Pencil Beam Properties with Full Beamline Model in TOPAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Abel, E
2016-06-15
Purpose: Introducing Monte Carlo based dose calculation algorithms into proton therapy planning systems (TPS) leads to improved accuracy. However accurate modelling of the proton pencil beam impinging the patient is necessary. Current approaches rely on measurement-driven reconstruction of phase-space and spectrum properties, typically constrained to analytical model functions. In this study a detailed Monte Carlo model of the complete cyclotron-based delivery system was created with the aim of providing more representative beam properties at treatment position. Methods: A model of the Varian Probeam proton system from the cyclotron exit to isocenter was constructed in the TOPAS Monte Carlo framework. Themore » beam evolution through apertures and magnetic elements was validated using Transport/Turtle calculations and additionally against measurements from the Probeam™ system at Scripps Proton Therapy Center (SPTC) in San Diego, CA. A voxelized water phantom at isocenter allowed for comparison of the dose-depth curve from the Probeam model with that of a corresponding Gaussian beam over the entire energy range (70–240 MeV). Measurements of relative beam fluence cross-profiles and depth-dose curves at and around isocenter were also compared to the MC results. Results: The simulated TOPAS beam envelope was found to agree with both the Transport/Turtle and measurements to within 5% for most of the beamline. The MC predicted energy spectrum at isocenter was found to deviate increasingly from Gaussian at energies below 160 MeV. The corresponding effects on the depth dose curve agreed well with measurements. Conclusion: Given the flexibility of TOPAS and available details of the delivery system, an accurate characterization of a proton pencil beam at isocenter is possible. Incorporation of the MC derived properties of the proton pencil beam can eliminate analytical approximations and ultimately increase treatment plan accuracy and quality. Both authors are employees of Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y; Dahlman, E
2014-06-01
Purpose: To evaluate the analytic formula of the cell death probability after single fraction dose. Methods: Cancer cells endlessly divide, but radiation causes the cancer cells to die. Not all cells die right away after irradiation. Instead, they continue dividing for next few cell cycles before they stop dividing and die. At the end of every cell cycle, the cell decides if it undertakes the mitotic process with a certain probability, Pdiv, which is altered by the radiation. Previously, by using a simple analytic model of radiobiology experiments, we obtained a formula of Pdeath (= 1 − Pdiv). A questionmore » is if the proposed probability can reproduce the well-known survival data of the LQ model. In this study, we evaluated the formula by doing a Monte Carlo simulation of the cell proliferation process. Starting with Ns seed cells, the cell proliferation process was simulated for N generations or until all cells die. We counted the number of living cells at the end. Assuming that the cell colony survived when more than Nc cells were still alive, the surviving fraction S was estimated. We compared the S vs. dose, or S-D curve, with the LQ model. Results: The results indicated that our formula does not reproduce the experimentally observed S-D curve without selecting appropriate α and α/β. With parameter optimization, there was a fair agreement between the MC result and the LQ curve of dose lower than 20Gy. However, the survival fraction of MC decreased much faster in comparison to the LQ data for doses higher than 20 Gy. Conclusion: This study showed that the previously derived probability of cell death per cell cycle is not sufficiently accurate to replicate common radiobiological experiments. The formula must be modified by considering its cell cycle dependence and some other unknown effects.« less
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2014-01-01
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George
2013-12-30
Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET 137 Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies.
Deferasirox pharmacokinetic and toxicity correlation in β-thalassaemia major treatment.
Allegra, Sarah; De Francia, Silvia; Cusato, Jessica; Pirro, Elisa; Massano, Davide; Piga, Antonio; D'Avolio, Antonio
2016-11-01
Deferasirox adverse effects include the following: gastrointestinal disturbance, mild elevations in serum creatinine levels and intermittent proteinuria; these events are dose-dependent and reversible with drug discontinuation, but this solution can lead to an inadequate iron chelation. For these reasons, interindividual variability of drug plasma concentration could help the clinical management of deferasirox dosage. We sought to describe deferasirox plasma exposure in a cohort of 60 adult patients. A fully validated chromatographic method was used to quantify deferasirox concentration in plasma collected from β-thalassaemia adult patients. Samples obtained before and after 2, 4, 6 and 24 h drug administration were evaluated. Associations between variables were tested using the Pearson test. Concerning pharmacokinetic parameters, a higher interindividual variability was shown. A positive correlation was found between deferasirox area under the concentration curve over 24 h and serum creatinine (r = 0.314; P = 0.018) and between area and drug dose (r = 0.311; P = 0.016). Moreover, a negative correlation resulted among area under the concentration curve over 24 h and serum ferritin (r = -0.291; P = 0.026) and among drug half-life and its dose (r = -0.319; P = 0.013). Treatment decision based on the individual characteristics could strongly contribute to minimize toxicity and increase efficacy of deferasirox therapy. © 2016 Royal Pharmaceutical Society.
Lugo, Alessandra; Bosetti, Cristina; Peveri, Giulia; Rota, Matteo; Bagnardi, Vincenzo; Gallus, Silvano
2017-11-01
Only a limited number of meta-analyses providing risk curve functions of dose-response relationships between various smoking-related variables and cancer-specific risk are available. To identify all relevant original publications on the issue, we will conduct a series of comprehensive systematic reviews based on three subsequent literature searches: (1) an umbrella review, to identify meta-analyses, pooled analyses and systematic reviews published before 28 April 2017 on the association between cigarette smoking and the risk of 28 (namely all) malignant neoplasms; (2) for each cancer site, an updated review of original publications on the association between cigarette smoking and cancer risk, starting from the last available comprehensive review identified through the umbrella review; and (3) a review of all original articles on the association between cigarette smoking and site-specific cancer risk included in the publications identified through the umbrella review and the updated reviews. The primary outcomes of interest will be (1) the excess incidence/mortality of various cancers for smokers compared with never smokers; and (2) the dose-response curves describing the association between smoking intensity, duration and time since stopping and incidence/mortality for various cancers. For each cancer site, we will perform a meta-analysis by pooling study-specific estimates for smoking status. We will also estimate the dose-response curves for other smoking-related variables through random-effects meta-regression models based on a non-linear dose-response relationship framework. Ethics approval is not required for this study. Main results will be published in peer-reviewed journals and will also be included in a publicly available website. We will provide therefore the most complete and updated estimates on the association between various measures of cigarette smoking and site-specific cancer risk. This will allow us to obtain precise estimates on the cancer burden attributable to cigarette smoking. This protocol was registered in the International Prospective Register of Systematic Reviews (CRD42017063991). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Structuring a risk-based bioassay program for uranium usage in university laboratories
NASA Astrophysics Data System (ADS)
Dawson, Johnne Talia
Bioassay programs are integral in a radiation safety program. They are used as a method of determining whether individuals working with radioactive material have been exposed and have received a resulting dose. For radionuclides that are not found in nature, determining an exposure is straightforward. However, for a naturally occurring radionuclide like uranium, it is not as straightforward to determine whether a dose is the result of an occupational exposure. The purpose of this project is to address this issue within the University of Nevada, Las Vegas's (UNLV) bioassay program. This project consisted of two components that studied the effectiveness of a bioassay program in determining the dose for an acute inhalation of uranium. The first component of the plan addresses the creation of excretion curves, utilizing MATLAB that would allow UNLV to be able to determine at what time an inhalation dose can be attributed to. The excretion curves were based on the ICRP 30 lung model, as well as the Annual Limit Intake (ALI) values located in the Nuclear Regulatory Commission's 10CFR20 which is based on ICRP 30 (International Commission on Radiological Protection). The excretion curves would allow UNLV to be able to conduct in-house investigations of inhalation doses without solely depending on outside investigations and sources. The second component of the project focused on the creation of a risk based bioassay program to be utilized by UNLV that would take into account bioassay frequency that depended on the individual. Determining the risk based bioassay program required the use of baseline variance in order to minimize the investigation of false positives among those individuals who undergo bioassays for uranium work. The proposed program was compared against an evaluation limit of 10 mrem per quarter, an investigational limit of 125 mrem per quarter, and the federal/state requirement of 1.25 rem per quarter. It was determined that a bioassay program whose bioassay frequency varies per person, depending on the chemical class of material being worked with, in conjunction with continuous air monitoring can sufficiently meet ALARA standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, A; Institute for Photonics and Advanced Sensing and School of Chem and Phys, Adelaide, South Australia; Mohammadi, M
Purpose: Beryllium oxide (BeO) ceramics have an effective atomic number, zeff ∼7.1, closely matched to water, zeff ∼7.4. The purpose of this study was to evaluate the use of a beryllium oxide (BeO) ceramic fibrecoupled luminescence dosimeter, named RL/OSL BeO FOD, for high dose rate (HDR) brachytherapy dosimetry. In our dosimetry system the radioluminescence (RL) of BeO ceramics is utilized for dose-rate measurements, and the optically stimulated luminescence (OSL) can be read post exposure for accumulated dose measurements. Methods: The RL/OSL BeO FOD consists of a 1 mm diameter × 1 mm long cylinder of BeO ceramic coupled to amore » 15 m long silica-silica optical fibre. The optical fibre is connected to a custom developed portable RL and OSL reader, located outside of the treatment suite. The x-ray energy response was evaluated using superficial x-rays, an Ir-192 source and high energy linear accelerators. The RL/OSL BeO FOD was then characterised for an Ir-192 source, investigating the dose response and angular dependency. A depth dose curve for the Ir-192 source was also measured. Results: The RL/OSL BeO FOD shows an under-response at low energy x-rays as expected. Though at higher x-ray energies, the OSL response continued to increase, while the RL response remained relatively constant. The dose response for the RL is found to be linear up to doses of 15 Gy, while the OSL response becomes more supralinear to doses above 15 Gy. Little angular dependency is observed and the depth dose curve measured agreed within 4% of that calculated based on TG-43. Conclusion: This works shows that the RL/OSL BeO FOD can be useful in HDR dosimetry. With the RL/OSL BeO FODs current size, it is capable of being inserted into intraluminal catheters and interstitial needles to verify HDR treatments.« less
NASA Technical Reports Server (NTRS)
Holley, W. R.; Chatterjee, A.
1994-01-01
A theoretical framework is presented which provides a quantitative analysis of radiation induced translocations between the ab1 oncogene on CH9q34 and a breakpoint cluster region, bcr, on CH 22q11. Such translocations are associated frequently with chronic myelogenous leukemia. The theory is based on the assumption that incorrect or unfaithful rejoining of initial double strand breaks produced concurrently within the 200 kbp intron region upstream of the second abl exon, and the 16.5 kbp region between bcr exon 2 and exon 6 interact with each other, resulting in a fusion gene. for an x-ray dose of 100 Gy, there is good agreement between the theoretical estimate and the one available experimental result. The theory has been extended to provide dose response curves for these types of translocations. These curves are quadratic at low doses and become linear at high doses.
NASA Astrophysics Data System (ADS)
Valença, J. V. B.; Silveira, I. S.; Silva, A. C. A.; Dantas, N. O.; Antonio, P. L.; Caldas, L. V. E.; d'Errico, F.; Souza, S. O.
2017-11-01
The OSL characteristics of three different borate glass matrices containing magnesia (LMB), quicklime (LCB) or potassium carbonate (LKB) were examined. Five different formulations for each composition were produced using a melt-quenching method and analyzed in terms of both dose-response curves and OSL shape decay. The samples were irradiated using a 90Sr/90Y beta source with doses up to 30 Gy. Dose-response curves were plotted using the initial OSL intensity as the chosen parameter. The OSL analysis showed that LKB glasses are the most sensitive to beta irradiation. For the most sensitive LKB composition, the irradiation process was also done using a 60Co gamma source in a dose range from 200 to 800 Gy. In all cases, no saturation was observed. A fitting process using a three-term exponential function was performed for the most sensitive formulations of each composition, which suggested a similar behavior in the OSL decay.
Monte Carol-Based Dosimetry of Beta-Emitters for Intravascular Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C.K.
2002-06-25
Monte Carlo simulations for radiation dosimetry and the experimental verifications of the simulations have been developed for the treatment geometry of intravascular brachytherapy, a form of radionuclide therapy for occluded coronary disease (restenosis). Monte Carlo code, MCNP4C, has been used to calculate the radiation dose from the encapsulated array of B-emitting seeds (Sr/Y-source train). Solid water phantoms have been fabricated to measure the dose on the radiochromic films that were exposed to the beta source train for both linear and curved coronary vessel geometries. While the dose difference for the 5-degree curved vessel at the prescription point of f+2.0 mmmore » is within the 10% guideline set by the AAPM, however, the difference increased dramatically to 16.85% for the 10-degree case which requires additional adjustment for the acceptable dosimetry planning. The experimental dose measurements agree well with the simulation results« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, D; Titt, U; Bronk, L
2016-06-15
Purpose: Investigate and quantify the effect of dose and LET on the RBE of protons, helium and carbon ions. Methods: High throughput, high accuracy experimental setups were custom designed to investigate the Relative Biological Effectiveness (RBE) dependence on the dose and Linear Energy Transfer (LET) values for proton, helium and carbon ion beams. The experiment was conducted at the HIT facility in collaboration with the DKFZ in Heidelberg/Germany. Clonogenic assays of two human lung cancer cell lines, H460 and H1437, were investigated in this study. γH2AX foci staining on the H460 cell line was also undertaken to facilitate the studymore » of differential DNA double-strand break induction and repair between low-design available at the HIT facility. Specific points along the Bragg curve corresponding to well-defined doses and LET values were chosen by appropriate selection of the pre-absorber thicknesses. With a setup design for horizontal beam lines we were able to minimize ion scattering in the cell plate, resulting in narrower energy spectra and hence LET distributions in the Bragg peak and in the distal falloff regions, compared to the earlier experiments. Results: Approximately 16,000 samples of cancer cells were irradiated during 23 hours of beam time. The preliminary results of the survival curves for both cell lines show a distinct dependence on LET for a given dose with decreased survival fractions at increasing LET values, encountered at the Bragg peak and in the distal falloff. Conclusion: Our preliminary findings are indicative of the importance of novel variable-RBE models for proton therapy and provide insight into the RBE of heavy ions for possible future heavy ion therapy facilities in the US. Funding support: SINF 2015/16.« less
Jakubovski, Ewgeni; Varigonda, Anjali L; Freemantle, Nicholas; Taylor, Matthew J; Bloch, Michael H
2016-02-01
Previous studies suggested that the treatment response to selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder follows a flat response curve within the therapeutic dose range. The present study was designed to clarify the relationship between dosage and treatment response in major depressive disorder. The authors searched PubMed for randomized placebo-controlled trials examining the efficacy of SSRIs for treating adults with major depressive disorder. Trials were also required to assess improvement in depression severity at multiple time points. Additional data were collected on treatment response and all-cause and side effect-related discontinuation. All medication doses were transformed into imipramine-equivalent doses. The longitudinal data were analyzed with a mixed-regression model. Endpoint and tolerability analyses were analyzed using meta-regression and stratified subgroup analysis by predefined SSRI dose categories in order to assess the effect of SSRI dosing on the efficacy and tolerability of SSRIs for major depressive disorder. Forty studies involving 10,039 participants were included. Longitudinal modeling (dose-by-time interaction=0.0007, 95% CI=0.0001-0.0013) and endpoint analysis (meta-regression: β=0.00053, 95% CI=0.00018-0.00088, z=2.98) demonstrated a small but statistically significant positive association between SSRI dose and efficacy. Higher doses of SSRIs were associated with an increased likelihood of dropouts due to side effects (meta-regression: β=0.00207, 95% CI=0.00071-0.00342, z=2.98) and decreased likelihood of all-cause dropout (meta-regression: β=-0.00093, 95% CI=-0.00165 to -0.00021, z=-2.54). Higher doses of SSRIs appear slightly more effective in major depressive disorder. This benefit appears to plateau at around 250 mg of imipramine equivalents (50 mg of fluoxetine). The slightly increased benefits of SSRIs at higher doses are somewhat offset by decreased tolerability at high doses.
Takeoka, Hiroaki; Yamada, Kazuhiko; Azuma, Koichi; Zaizen, Yoshiaki; Yamashita, Fumie; Yoshida, Tsukasa; Naito, Yoshiko; Okayama, Yusuke; Miyamoto, Maki; Hoshino, Tomoaki
2014-05-01
The primary objective of this study was to evaluate the safety and tolerability of carboplatin plus pemetrexed for elderly patients (≥75 years) with chemotherapy-naïve advanced non-squamous non-small cell lung cancer. Patients received escalated doses of carboplatin at an area under the concentration-time curve of 4 (Level 1) or 5 (Level 2) plus pemetrexed (500 mg/m(2)) every 3 weeks for a maximum of six cycles. Dose escalation was decided according to whether dose-limiting toxicity occurred in the first cycle of chemotherapy. A total of 20 patients (6 at Level 1, 14 at Level 2) were enrolled. No dose-limiting toxicities were observed in patients at Level 1 or the first six patients at Level 2, and therefore the combination of carboplatin at an area under the concentration-time curve of 5 plus pemetrexed at 500 mg/m(2) was considered to be the recommended dose. Among a total of 14 patients in Level 2, only 1 patient experienced dose-limiting toxicity: Grade 3 febrile neutropenia and urticaria. The major toxicities were neutropenia, thrombocytopenia and anemia. Liver dysfunction, fatigue and anorexia were also common, but generally manageable. Six patients showed partial responses, giving the overall response rate of 30%. The median progression-free survival period was 4.8 months (95% confidence interval 2.9-6.7 months). The combination of carboplatin at an area under the concentration-time curve of 5 plus pemetrexed at 500 mg/m(2) was determined as the recommended dose in chemotherapy-naïve elderly patients (≥75 years) with advanced non-squamous non-small cell lung cancer, in view of overall safety and tolerability.
The use of megavoltage CT (MVCT) images for dose recomputations
NASA Astrophysics Data System (ADS)
Langen, K. M.; Meeks, S. L.; Poole, D. O.; Wagner, T. H.; Willoughby, T. R.; Kupelian, P. A.; Ruchala, K. J.; Haimerl, J.; Olivera, G. H.
2005-09-01
Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.
Predicting prolonged dose titration in patients starting warfarin.
Finkelman, Brian S; French, Benjamin; Bershaw, Luanne; Brensinger, Colleen M; Streiff, Michael B; Epstein, Andrew E; Kimmel, Stephen E
2016-11-01
Patients initiating warfarin therapy generally experience a dose-titration period of weeks to months, during which time they are at higher risk of both thromboembolic and bleeding events. Accurate prediction of prolonged dose titration could help clinicians determine which patients might be better treated by alternative anticoagulants that, while more costly, do not require dose titration. A prediction model was derived in a prospective cohort of patients starting warfarin (n = 390), using Cox regression, and validated in an external cohort (n = 663) from a later time period. Prolonged dose titration was defined as a dose-titration period >12 weeks. Predictor variables were selected using a modified best subsets algorithm, using leave-one-out cross-validation to reduce overfitting. The final model had five variables: warfarin indication, insurance status, number of doctor's visits in the previous year, smoking status, and heart failure. The area under the ROC curve (AUC) in the derivation cohort was 0.66 (95%CI 0.60, 0.74) using leave-one-out cross-validation, but only 0.59 (95%CI 0.54, 0.64) in the external validation cohort, and varied across clinics. Including genetic factors in the model did not improve the area under the ROC curve (0.59; 95%CI 0.54, 0.65). Relative utility curves indicated that the model was unlikely to provide a clinically meaningful benefit compared with no prediction. Our results suggest that prolonged dose titration cannot be accurately predicted in warfarin patients using traditional clinical, social, and genetic predictors, and that accurate prediction will need to accommodate heterogeneities across clinical sites and over time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Creaven, P J; Raghavan, D; Pendyala, L; Loewen, G; Kindler, H L; Berghorn, E J
1997-08-01
The combination of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) given by 3-hour infusion followed by carboplatin infused over 30 minutes has been evaluated in a series of phase I studies and is currently being explored in a phase II study in patients with limited- and extensive-stage small cell lung cancer. Pharmacokinetic measurements were performed at all dose levels in the phase I studies, in which the use of granulocyte colony-stimulating factor in previously treated patients enabled more than twice the dose of paclitaxel to be given with low to moderate doses of carboplatin (dosed to a target area under the concentration-time curve of 4.0 mg x min x mL[-1]). Treatment-naive patients tolerated high paclitaxel doses (270 mg/m2) with carboplatin (dosed to a target area under the curve of 4.5 mg x min x mL[-1]) without granulocyte colony-stimulating factor support. Twenty-three patients (including previously treated and untreated) with non-small cell lung cancer were entered at a variety of paclitaxel doses in the phase I studies. At 100 to 205 mg/m2 paclitaxel, none of nine treated patients responded; at 230 to 290 mg/m2, four (29%) of 14 responded. In the phase II study of paclitaxel 250 mg/m2 in previously untreated patients with small cell lung cancer, two of five evaluable patients with extensive-stage disease have shown a partial response. In a preliminary analysis of the pharmacodynamics of paclitaxel in relation to neurotoxicity (dose limiting in two of three phase I studies), neurotoxicity correlated with the total dose of paclitaxel, the area under the curve, and the peak paclitaxel concentration, but not with the length of time plasma paclitaxel levels remained above 0.05 micromol/L. These correlations were not strong, however, and analysis of these data is ongoing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, I; Ludwig Maximilian University, Garching, DE; Heidelberg University Hospital, Heidelberg, DE
2015-06-15
Purpose: We present an improved method to calculate patient-specific calibration curves to convert X-ray computed tomography (CT) Hounsfield Unit (HU) to relative stopping powers (RSP) for proton therapy treatment planning. Methods: By optimizing the HU-RSP calibration curve, the difference between a proton radiographic image and a digitally reconstructed X-ray radiography (DRR) is minimized. The feasibility of this approach has previously been demonstrated. This scenario assumes that all discrepancies between proton radiography and DRR originate from uncertainties in the HU-RSP curve. In reality, external factors cause imperfections in the proton radiography, such as misalignment compared to the DRR and unfaithful representationmore » of geometric structures (“blurring”). We analyze these effects based on synthetic datasets of anthropomorphic phantoms and suggest an extended optimization scheme which explicitly accounts for these effects. Performance of the method is been tested for various simulated irradiation parameters. The ultimate purpose of the optimization is to minimize uncertainties in the HU-RSP calibration curve. We therefore suggest and perform a thorough statistical treatment to quantify the accuracy of the optimized HU-RSP curve. Results: We demonstrate that without extending the optimization scheme, spatial blurring (equivalent to FWHM=3mm convolution) in the proton radiographies can cause up to 10% deviation between the optimized and the ground truth HU-RSP calibration curve. Instead, results obtained with our extended method reach 1% or better correspondence. We have further calculated gamma index maps for different acceptance levels. With DTA=0.5mm and RD=0.5%, a passing ratio of 100% is obtained with the extended method, while an optimization neglecting effects of spatial blurring only reach ∼90%. Conclusion: Our contribution underlines the potential of a single proton radiography to generate a patient-specific calibration curve and to improve dose delivery by optimizing the HU-RSP calibration curve as long as all sources of systematic incongruence are properly modeled.« less
Rousseau, Annick; Laroche, Marie-Laure; Venisse, Nicolas; Loichot-Roselmac, Cecile; Turcant, Alain; Hoizey, Guillaume; Compagnon, Patricia; Hary, Lionel; Debruyne, Danièle; Saivin, Sylvie; Jacqz-Aigrain, Evelyne; Buchler, Mathias; Villeneuve, Claire; Vergnenègre, Alain; Le Meur, Yannick; Marquet, Pierre
2010-05-27
In the prospective, randomized, multicenter APOMYGRE trial conducted in France, concentration-controlled mycophenolate mofetil (MMF) dosing based on mycophenolic acid (MPA) exposure significantly reduced the treatment failure and acute rejection during the first posttransplantation year compared with fixed-dose MMF. This analysis investigated the cost effectiveness of dose individualization. The study included 65 patients per group (intent-to-treat population). Treatment failure (primary efficacy endpoint) was defined as death, graft loss, acute rejection, or MMF discontinuation because of adverse effects. Data on hospitalizations, drugs prescribed, physicians' fees, laboratory expenses, ambulatory visits, and transportation were retrieved. Costs were calculated from the French National Health System perspective. The mean (95% confidence interval) total yearly cost per patient was Euro 47,477 (Euro 43,933; Euro 51,020) in the concentration-controlled group and Euro 46,783 ( Euro 44,152; Euro 49,414) in the fixed-dose group (P=0.7). The observed incremental cost-effectiveness ratio was Euro 3757 per treatment failure (Purchasing Power Parities United States/France: $4129). Hospitalization and drug costs accounted for approximately 50% and 25% of total costs, respectively. The cost for MPA area under the concentration-time curve and dose calculation was Euro 452 per patient, less than 1% of the total cost. In the APOMYGRE trial, therapeutic MPA monitoring using a limited sampling strategy reduced the risk of treatment failure and acute rejection in renal allograft recipients during the first 12 months posttransplantation, at neutral cost.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to 137Cs) dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.; Cash, B. L.; Semones, E. J.; Yasuda, H.; Fujitaka, K.
1999-01-01
Response of thermoluminescent detectors (TLD-100) to high linear energy transfer (LET) particles has been studied using helium, carbon, silicon, and iron ions from the Heavy Ion Medical Accelerator at Chiba (Japan), iron ions from the Brookhaven National Laboratory (NY) Alternate Gradient Synchrotron, and 53, 134, 185, and 232 MeV protons from the Loma Linda accelerator. Using the measured relative (to (137)Cs dose efficiency, and measured LET spectra from a tissue equivalent proportional counter (TEPC) on 20 Space Shuttle flights, and 7 Mir flights, the underestimation of absorbed dose by these detectors has been evaluated. The dose underestimation is between 15-20% depending upon the flight inclination and shielding location. This has been confirmed by direct correlation of measured dose by TEPC and TLD-100 at a low shielded location in the Shuttle mid-deck. A comparison of efficiency- LET data with a compilation of similar data from TLD-700, shows that shapes of the two curves are nearly identical, but that the TLD-100 curve is systematically lower by about 13%, and is the major cause of dose underestimation. These results strongly suggest that TLDs used for crew dose estimation be regularly calibrated using heavy ions.
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane
2016-01-01
Background and objectives Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid–dependent nephrotic syndrome. Design, setting, participants, & measurements This was a retrospective multicenter study including 95 children with steroid–dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. Results In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30–60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P=0.01). Conclusions Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid–dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. PMID:27445161
Tellier, Stéphanie; Dallocchio, Aymeric; Guigonis, Vincent; Saint-Marcoux, Frank; Llanas, Brigitte; Ichay, Lydia; Bandin, Flavio; Godron, Astrid; Morin, Denis; Brochard, Karine; Gandia, Peggy; Bouchet, Stéphane; Marquet, Pierre; Decramer, Stéphane; Harambat, Jérôme
2016-10-07
Therapeutic drug monitoring of mycophenolic acid can improve clinical outcome in organ transplantation and lupus, but data are scarce in idiopathic nephrotic syndrome. The aim of our study was to investigate whether mycophenolic acid pharmacokinetics are associated with disease control in children receiving mycophenolate mofetil for the treatment of steroid-dependent nephrotic syndrome. This was a retrospective multicenter study including 95 children with steroid-dependent nephrotic syndrome treated with mycophenolate mofetil with or without steroids. Area under the concentration-time curve of mycophenolic acid was determined in all children on the basis of sampling times at 20, 60, and 180 minutes postdose, using Bayesian estimation. The association between a threshold value of the area under the concentration-time curve of mycophenolic acid and the relapse rate was assessed using a negative binomial model. In total, 140 areas under the concentration-time curve of mycophenolic acid were analyzed. The findings indicate individual dose adaptation in 53 patients (38%) to achieve an area under the concentration-time curve target of 30-60 mg·h/L. In a multivariable negative binomial model including sex, age at disease onset, time to start of mycophenolate mofetil, previous immunomodulatory treatment, and concomitant prednisone dose, a level of area under the concentration-time curve of mycophenolic acid >45 mg·h/L was significantly associated with a lower relapse rate (rate ratio, 0.65; 95% confidence interval, 0.46 to 0.89; P =0.01). Therapeutic drug monitoring leading to individualized dosing may improve the efficacy of mycophenolate mofetil in steroid-dependent nephrotic syndrome. Additional prospective studies are warranted to determine the optimal target for area under the concentration-time curve of mycophenolic acid in this population. Copyright © 2016 by the American Society of Nephrology.
Dose calculation for electron therapy using an improved LBR method.
Gebreamlak, Wondesen T; Tedeschi, David J; Alkhatib, Hassaan A
2013-07-01
To calculate the percentage depth dose (PDD) of any irregularly shaped electron beam using a modified lateral build-up ratio (LBR) method. Percentage depth dose curves were measured using 6, 9, 12, and 15 MeV electron beam energies for applicator cone sizes of 6 × 6, 10 × 10, 14 × 14, and 20 × 20 cm(2). Circular cutouts for each cone were prepared from 2.0 cm diameter to the maximum possible size for each cone. In addition, three irregular cutouts were prepared. The LBR for each circular cutout was calculated from the measured PDD curve using the open field of the 14 × 14 cm(2) cone as the reference field. Using the LBR values and the radius of the circular cutouts, the corresponding lateral spread parameter [σR(z)] of the electron shower was calculated. Unlike the commonly accepted assumption that σR(z) is independent of cutout size, it is shown that its value increases linearly with circular cutout size (R). Using this characteristic of the lateral spread parameter, the PDD curves of irregularly shaped cutouts were calculated. Finally, the calculated PDD curves were compared with measured PDD curves. In this research, it is shown that the lateral spread parameter σR(z) increases with cutout size. For radii of circular cutout sizes up to the equilibrium range of the electron beam, the increase of σR(z) with the cutout size is linear. The percentage difference of the calculated PDD curve from the measured PDD data for irregularly shaped cutouts was under 1.0% in the region between the surface and therapeutic range of the electron beam. Similar results were obtained for four electron beam energies (6, 9, 12, and 15 MeV).
Ni, Jun; Liu, Dong-Yang; Hu, Bei; Li, Chen; Jiang, Ji; Wang, Han-Ping; Zhang, Li
2015-09-01
The current study was conducted to explore the relationship between icotinib hydrochloride exposure and therapeutic effects in Chinese patients with advanced non-small cell lung cancer (NSCLC) who were treated with icotinib hydrochloride. A total of 30 patients with NSCLC who were treated with icotinib hydrochloride were chosen from a single-center, open-label, phase 1 dose escalation clinical trial. Different doses of icotinib hydrochloride were administered orally for 28 consecutive days in different groups until disease progression or unacceptable toxicities occurred. Blood samples were collected during the first treatment cycle (day 1-28) for the pharmacokinetic analysis. Tumor responses were assessed according to the Response Evaluation Criteria in Solid Tumors (RECIST). The plasma concentrations of icotinib hydrochloride were assessed by liquid chromatography-mass spectrometry. Thirty patients with a median age of 56 years old (50% of whom were female) were enrolled. For single-dose treatment, the plasma pharmacokinetics demonstrated a median time to maximum concentration of 0.5 to 4 hours and a mean terminal elimination half-life of 6.21±3.44 hours at the 150-mg dose and 10.1±12.18 hours at the 200-mg dose. For multiple-dose treatment, the last measurable concentration (Clast ) was 708±368.67 ng/mL at the 150-mg every 12 hours, 782.73±618.18 ng/mL at the 200-mg every 12 hours, and 1162±658.44 ng/mL at the 125-mg every 8 hours; the under the concentration curve from time 0 to Clast was 14.5±2.43 hour*mg/mL, 13.2±2.5 hour*mg/mL, and 12.19±2.47 hour*mg/mL, respectively. At the dose of 150 mg every 12 hours, 1 patient with an epidermal growth factor receptor (EGFR) exon 19 deletion achieved a complete response for 10 months; another patient who carried the EGFR exon 19 deletion achieved stable disease for 6 months. Univariate analysis demonstrated that the time to maximum plasma concentration (Tmax ) after a single dose of icotinib hydrochloride was significantly correlated with the overall survival (OS) (Spearman correlation coefficient, 0.441; P = .012). The disease control rate was correlated with Tmax after a single dose (Spearman correlation coefficient, 0.518; P = .011). Multivariate analysis demonstrated that the area under the concentration-time curve from 0 to last determination time and the area under the curve from 0 to infinite time after a single dose of icotinib hydrochloride were correlated with OS (P = .037 and .042, respectively). The Clast was found to affect progression-free survival (P = .016). Stratification of these patients according to smoking status indicated significant correlation between OS and the area under the concentration-time curve from 0 to last determination time (Spearman correlation coefficient, -0.709; P = .015). Patients with a longer Tmax and higher exposure might experience longer OS and a higher disease control rate. In addition, the increased Clast might prolong the progressive-free survival of patients. However, the relationships between EGFR mutation, pharmacokinetics, and clinical outcomes require further research. © 2015 American Cancer Society.
Chen, Cuiping; Cowles, Verne E; Hou, Eddie
2011-03-01
The objectives of the 3 phase I studies described herein were (1) to compare the pharmacokinetics of gabapentin delivered from a novel gastric-retentive dosage form vs an immediate-release formulation, (2) to assess the dose proportionality of the gastric-retentive extended-release formulation, and (3) to determine the effect of food on the pharmacokinetics of gabapentin delivered from this formulation. The time to reach maximum plasma concentration (t(max)) was extended for gabapentin delivered from the gastric-retentive extended-release formulation compared with the immediate-release formulation. A dose-related increase in both the maximum plasma concentration (C(max)) and the area under the plasma concentration-time curve (AUC) was observed as the gabapentin dose increased from 600 to 2400 mg. Fed status and increased fat content delayed t(max) and enhanced C(max) and AUC in proportion to the fat content. The pharmacokinetics of gabapentin delivered from this extended-release formulation allows a reduced dosing frequency while maintaining bioavailability and possibly diminishing the occurrence of adverse events attributable to a slower increase to the peak concentration compared with the immediate-release dosage form.
NASA Astrophysics Data System (ADS)
Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina
2015-11-01
A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.
Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation
Wood, Suzanne; Sage, Jennifer R.; Shuman, Tristan
2014-01-01
Psychostimulants such as cocaine have been used as performance enhancers throughout recorded history. Although psychostimulants are commonly prescribed to improve attention and cognition, a great deal of literature has described their ability to induce cognitive deficits, as well as addiction. How can a single drug class be known to produce both cognitive enhancement and impairment? Properties of the particular stimulant drug itself and individual differences between users have both been suggested to dictate the outcome of stimulant use. A more parsimonious alternative, which we endorse, is that dose is the critical determining factor in cognitive effects of stimulant drugs. Herein, we review several popular stimulants (cocaine, amphetamine, methylphenidate, modafinil, and caffeine), outlining their history of use, mechanism of action, and use and abuse today. One common graphic depiction of the cognitive effects of psychostimulants is an inverted U–shaped dose-effect curve. Moderate arousal is beneficial to cognition, whereas too much activation leads to cognitive impairment. In parallel to this schematic, we propose a continuum of psychostimulant activation that covers the transition from one drug effect to another as stimulant intake is increased. Low doses of stimulants effect increased arousal, attention, and cognitive enhancement; moderate doses can lead to feelings of euphoria and power, as well as addiction and cognitive impairment; and very high doses lead to psychosis and circulatory collapse. This continuum helps account for the seemingly disparate effects of stimulant drugs, with the same drug being associated with cognitive enhancement and impairment. PMID:24344115
Fuss, Martina; Sturtewagen, Eva; De Wagter, Carlos; Georg, Dietmar
2007-07-21
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.
NASA Astrophysics Data System (ADS)
Fuss, Martina; Sturtewagen, Eva; DeWagter, Carlos; Georg, Dietmar
2007-07-01
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, ~1 Gy and ~7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 × 5 cm2, d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 × 3-40 × 40 cm2) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.
Analysis of risk and predictors of brain radiation necrosis after radiosurgery.
Zhuang, Hongqing; Zheng, Yi; Wang, Junjie; Chang, Joe Y; Wang, Xiaoguang; Yuan, Zhiyong; Wang, Ping
2016-02-16
In this study, we examined the factors contributing to brain radiation necrosis and its predictors of patients treated with Cyberknife radiosurgery. A total of 94 patients with primary or metastatic brain tumours having been treated with Cyberknife radiotherapy from Sep. 2006 to Oct. 2011 were collected and retrospectively analyzed. Skull based tracking was used to deliver radiation to 104 target sites. and the prescribed radiation doses ranged from 1200 to 4500 cGy in 1 to 8 fractions with a 60% to 87% isodose line. Radiation necrosis was confirmed by imaging or pathological examination. Associations between cerebral radiation necrosis and factors including diabetes, cardio-cerebrovascular disease, target volume, isodose line, prescribed dosage, number of fractions, combination with whole brain radiation and biologically equivalent dose (BED) were determined by logistic regression. ROC curves were created to measure the predictive accuracy of influence factors and identify the threshold for brain radiation necrosis. Our results showed that radiation necrosis occurred in 12 targets (11.54%). Brain radiation necrosis was associated by BED, combination with whole brain radiotherapy, and fractions (areas under the ROC curves = 0.892±0.0335, 0.650±0.0717, and 0.712±0.0637 respectively). Among these factors, only BED had the capability to predict brain radiation necrosis, and the threshold dose was 7410 cGy. In conclusion, BED is the most effective predictor of brain radiation necrosis, with a dose of 7410 cGy being identified as the threshold.
Mutation induction by charged particles of defined linear energy transfer.
Hei, T K; Chen, D J; Brenner, D J; Hall, E J
1988-07-01
The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines.
Effect of dose timing in relation to food intake on systemic exposure to blonanserin.
Saruwatari, Junji; Yasui-Furukori, Norio; Inoue, Yoshimasa; Kaneko, Sunao
2010-09-01
Blonanserin is a novel potent dopamine D(2) and serotonin 5-HT(2) antagonist for treating schizophrenia. The aim of this study was to investigate prandial effects on systemic exposure to blonanserin in healthy volunteers, with particular attention paid to the effect of dose timing relative to meal intake. Volunteers received a single 2-mg oral dose of blonanserin under the following conditions: fasting, 30 min before eating a standard meal; or 30 min or 2 or 4 h after eating the meal. Plasma concentrations of blonanserin were measured using validated high-performance liquid chromatography coupled with tandem mass spectrometry. Ratios and 90% confidence intervals of the geometric means compared with the fasting condition indicated that the maximum concentrations of blonanserin (C(max)) significantly increased with dosing 30 min before meal intake, and 30 min and 2 and 4 h after meal intake, yielding by 330%, 239%, 272%, and 138%, respectively. The truncated area under the concentration-time curve (AUC(last)) also increased by 386%, 201%, 256%, and 155%, respectively. There was no difference in values of the time to reach maximum concentration between the fasting and the four fed states. Food intake increased the systemic exposure to blonanserin for all time intervals investigated in this study. The marked effect of food on the bioavailability of blonanserin should be taken into account in its dosing schedules.
Kato, W; Wong, M
1975-01-01
A system for improving the quality of cinefilm and for maintaining quality control is described. Objective criteria for contrast, resolution, and grain structure were established to measure the effects of varying X-ray dose, f-stop, development temperature, and selection of film and developer. We found that all variables nust be adjusted to maximize the viewing quality and that similar denisty curves can be achieved, independently of the choice of film and developer.
van Der Auwera, P; Platzer, E; Xu, Z X; Schulz, R; Feugeas, O; Capdeville, R; Edwards, D J
2001-04-01
Ro 25-8315 is produced by conjugation of rhG-CSF mutant with polyethylene glycol (PEG). The purpose of this study was to examine the pharmacodynamics and pharmacokinetics of Ro 25-8315 in comparison with Filgrastim (rhG-CSF). Subjects received single subcutaneous doses of Ro 25-8315 ranging from 10 to 150 microg/kg using a double-blind, randomized, placebo-controlled design. Filgrastim was administered as a single dose (5 or 10 microg/kg) and, following a 14-day washout period, daily for 7 days. Ro 25-8315 increased absolute neutrophil count (ANC) by 6- to 8-fold and CD34+ cell count more than 30-fold at the highest doses tested. Single doses (60-150 microg/kg) of Ro 25-8315 and multiple doses of Filgrastim had similar effects on ANC and CD34+, although Ro 25-8315 had a greater effect on CFU-GM. The pharmacokinetics of Ro 25-8315 were dose-dependent, with peak concentrations and area under the serum concentration-time curve (AUC) increasing 100-fold over the range of doses studied. Time to reach peak concentration (T(max)) and half-life of Ro 25-8315 averaged 20-30 hr at all doses, approximately three times longer than with Filgrastim. Adverse events were not serious and occurred with similar frequency with both products. Pegylation of rhG-CSF mutant results in more desirable pharmacokinetic properties and a longer duration of action with effective increases in ANC and measures of peripheral blood progenitor cell mobilization for at least 1 week. Copyright 2001 Wiley-Liss, Inc.
Naqvi, Shahid A; D'Souza, Warren D
2005-04-01
Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.
Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Hoberman, Alan; Chanda, Sanjay
2016-09-01
Tavaborole is a topical antifungal agent approved by the US Food and Drug Administration for the treatment of toenail onychomycosis. As part of the nonclinical development program, reproductive and developmental toxicity studies were conducted (rat oral fertility and early embryonic development, rat (oral) and rabbit (dermal) embryo-fetal development). There were no effects on fertility or reproductive performance at doses up to 300 mg/kg/d (107 times the maximum recommended human dose [MRHD] based on mean area under the plasma concentration-time curve comparisons). In the rat embryo-fetal development toxicity studies, teratogenicity was not observed at doses up to 100 mg/kg/d (29 times the MRHD). However, several treatment-related skeletal malformations and variations were observed at 300 mg/kg/d (570 times the MRHD). In rabbit embryo-fetal development toxicity studies dosed via oral or dermal administration, the no observable adverse effect level for maternal toxicity and embryo-fetal toxicity was 50 mg/kg/d (16 times the MRHD) and 5% (26 times the MRHD), respectively. © The Author(s) 2016.
High dose of antacid (Mylanta II) reduces bioavailability of ranitidine.
Mihaly, G W; Marino, A T; Webster, L K; Jones, D B; Louis, W J; Smallwood, R A
1982-01-01
To investigate the effect of antacid on the bioavailability and disposition of ranitidine six healthy volunteers were studied on two occasions one week apart. In the first study the received ranitidine 150 mg with 60 ml water, and in the second study they received ranitidine 150 mg plus 30 ml of an aluminium/magnesium hydroxide mixture (Mylanta II) and 30 ml water. Giving antacid reduced both the maximum plasma ranitidine concentration and the area under the curve by one-third; elimination of the drug was not changed. Thus giving a high dose of antacid significantly diminished the bioavailability of ranitidine. PMID:6289961
Current modeling practice may lead to falsely high benchmark dose estimates.
Ringblom, Joakim; Johanson, Gunnar; Öberg, Mattias
2014-07-01
Benchmark dose (BMD) modeling is increasingly used as the preferred approach to define the point-of-departure for health risk assessment of chemicals. As data are inherently variable, there is always a risk to select a model that defines a lower confidence bound of the BMD (BMDL) that, contrary to expected, exceeds the true BMD. The aim of this study was to investigate how often and under what circumstances such anomalies occur under current modeling practice. Continuous data were generated from a realistic dose-effect curve by Monte Carlo simulations using four dose groups and a set of five different dose placement scenarios, group sizes between 5 and 50 animals and coefficients of variations of 5-15%. The BMD calculations were conducted using nested exponential models, as most BMD software use nested approaches. "Non-protective" BMDLs (higher than true BMD) were frequently observed, in some scenarios reaching 80%. The phenomenon was mainly related to the selection of the non-sigmoidal exponential model (Effect=a·e(b)(·dose)). In conclusion, non-sigmoid models should be used with caution as it may underestimate the risk, illustrating that awareness of the model selection process and sound identification of the point-of-departure is vital for health risk assessment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Carro, Tiffany; Dean, Karen; Ottinger, Mary Ann
2013-06-01
A 58-congener polychlorinated biphenyl (PCB) mixture based on contaminant analysis of spotted sandpiper eggs collected along the upper Hudson River, New York, USA, in 2004 was used to study in ovo PCB effects on cardiac development in the domestic chicken. Fertile eggs were injected prior to incubation with the following doses of the PCB mixture: untreated, sham, 0, 0.03, 0.08, 0.3, 0.5, 0.7, and 2.06 µg PCBs/g egg weight (toxic equivalent quotient [TEQ] range of 0.004-0.266 ng/g). In addition, there were untreated and sham-control groups. Embryonic development was monitored throughout incubation and chicks were necropsied at hatch. Hatchability followed a dose-dependent curve with significant (p < 0.05) mortality above the 0.5 µg PCBs/g egg weight treatment compared with controls. The median lethal dose (LD50) of this PCB mixture in hatchling chicks was estimated as 0.4 µg/g egg weight (0.052 ng TEQ/g egg wt) based on the lethality curve. Cardiac arrhythmia was observed at embryonic day 14 of development in embryos treated at concentrations of 0.5 µg/g egg weight and above. Histological analysis was utilized to characterize any cardiac abnormalities. Cardiomyopathies increased across treatments in a dose-dependent manner compared with control groups. Identified abnormalities included the absence of the trabeculated layer of the ventricular wall, ventricular dilation, thinning of the ventricular walls, malformation of the septal wall, and most commonly, absence of the compact layer of the ventricular wall. Chick heart width, depth, total area, compact layer depth, septal width, chamber area, and ventricular wall dimensions did not differ across treatments. The present study supports prior reports of adverse developmental effects of PCBs on cardiovascular systems in birds. Although the eggs hatched, measured cardiomyopathies suggest potential deleterious long-term impacts on individual health and fitness. Copyright © 2013 SETAC.
Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.B.; Travis, E.L.
To determine (a) whether a wound dressing gel that contains acemannan extracted from aloe leaves affects the severity of radiation-induced acute skin reactions in C3H mice; (b) if so, whether other commercially available gels such as a personal lubricating jelly and a healing ointment have similar effects; and (c) when the wound dressing gel should be applied for maximum effect. Male C3H mice received graded single doses of gamma radiation ranging from 30 to 47.5 Gy to the right leg. In most experiments, the gel was applied daily beginning immediately after irradiation. Dose-response curves were obtained by plotting the percentagemore » of mice that reached or exceeded a given peak skin reaction as a function of dose. Curves were fitted by logit analysis and ED{sub 50} values, and 95% confidence limits were obtained. The average peak skin reactions of the wound dressing gel-treated mice were lower than those of the untreated mice at all radiation doses tested. The ED{sub 50} values for skin reactions of 2.0-2.75 were approximately 7 Gy higher in the wound dressing gel-treated mice. The average peak skin reactions and the ED{sub 50} values for mice treated with personal lubricating jelly or healing ointment were similar to irradiated control values. Reduction in the percentage of mice with skin reactions of 2.5 or more was greatest in the groups that received wound dressing gel for at least 2 weeks beginning immediately after irradiation. There was no effect if gel was applied only before irradiation or beginning 1 week after irradiation. Wound dressing gel, but not personal lubricating jelly or healing ointment, reduces acute radiation-induced skin reactions in C3H mice if applied daily for at least 2 weeks beginning immediately after irradiation. 31 refs., 4 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Malezan, A.; Tomal, A.; Antoniassi, M.; Watanabe, P. C. A.; Albino, L. D.; Poletti, M. E.
2015-11-01
In this work, a spectral reconstruction methodology for diagnostic X-ray, using Laplace inverse transform of the attenuation, was successfully applied to dental X-ray equipments. The attenuation curves of 8 commercially available dental X-ray equipment, from 3 different manufactures (Siemens, Gnatus and Dabi Atlante), were obtained by using an ionization chamber and high purity aluminium filters, while the kVp was obtained with a specific meter. A computational routine was implemented in order to adjust a model function, whose inverse Laplace transform is analytically known, to the attenuation curve. This methodology was validated by comparing the reconstructed and the measured (using semiconductor detector of cadmium telluride) spectra of a given dental X-ray unit. The spectral reconstruction showed the Dabi Atlante equipments generating similar shape spectra. This is a desirable feature from clinic standpoint because it produces similar levels of image quality and dose. We observed that equipments from Siemens and Gnatus generate significantly different spectra, suggesting that, for a given operating protocol, these units will present different levels of image quality and dose. This fact claims for the necessity of individualized operating protocols that maximize image quality and dose. The proposed methodology is suitable to perform a spectral reconstruction of dental X-ray equipments from the simple measurements of attenuation curve and kVp. The simplified experimental apparatus and the low level of technical difficulty make this methodology accessible to a broad range of users. The knowledge of the spectral distribution can help in the development of operating protocols that maximize image quality and dose.
Irradiation as a quarantine treatment for the solenopsis mealybug, Phenacoccus solenopsis
NASA Astrophysics Data System (ADS)
Huang, Fang; Li, Weidi; Li, Xiuqiong; Bei, Yawei; Lin, Wencai; Lu, Yaobin; Wang, Bingkui
2014-03-01
Phenacoccus solenopsis is an aggressively invasive species that targets agricultural and ornamental plants, thereby threatening the world cotton industry and other crops. P. solenopsis has been listed as a quarantine insect in Europe and China. The utilization of phytosanitary irradiation as a potential treatment for disinfesting agricultural commodities in trade has expanded rapidly in recent years. A reasonable dose of radiation to eliminate P. solenopsis needs to be determined, taking into account the side effects of radiation on agricultural products and the species-specific tolerance of the insect to radiation. We applied radiation ranging from 50 to 200 Gy to P. solenopsis to determine the optimal dose. Both the radiation dose and the developmental stage of the insect were independent variables. Higher doses of radiation or lesser mature insect stages provided more effective treatment. In nymphs, a radiation dose of 100 Gy caused extinction of the irradiated population by disrupting ovary development, while 150 Gy caused 100% mortality. In adults, all tested doses of irradiation did not affect longevity, but we were able to prevent reproduction with high (150 and 200 Gy) doses. In P. solenopsis, a 100 Gy dose of radiation could eliminate the irradiated population in two generations. The mortality curve showed a steep slope beyond 150 Gy; thus, if killing all of the insects in a shorter amount of time is necessary, 200 Gy may be a reasonable dose for the quarantine treatment of the solenopsis mealybug.
Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)
NASA Astrophysics Data System (ADS)
Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.
2011-04-01
The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569
Jiang, X Y; Zhou, C M; Li, D M; Zhang, K J
1996-01-01
The effects of DSPM-Cl on ECG in rats, on the dose-effect curve in guinea pig left atria and on the fast action potential (AP), high-K+ depolarized slow action potential (SAP) in guinea pigs papillary muscle were examined electrophysiologically. DSPM-Cl (2 mg.kg-1) showed significant nagative frequency, negative conductivity effect, and prolonged the PP and PR interval. DSPM-CI (30-50 mumol.L-1) was shown to inhibit left atria contractility and shift the concentration-response curve of Iso and CaCl2 to the right with PD2' values of 4.60 and 4.13, respectively. In addition, DSPM-Cl was found to prolong the duration of action potential 90 (APD90) and effective refractory period (ERP), and decrease the maximal upstroke velocity (Vmax) in K(+)-depolarized guinea pigs papillary muscles. The results suggest that, like verpamil, DSPM-Cl might be a calcium antagonist.
Clemens, Pamela L; Cloyd, James C; Kriel, Robert L; Remmel, Rory P
2007-01-01
Maintenance of effective drug concentrations is essential for adequate treatment of epilepsy. Some antiepileptic drugs can be successfully administered rectally when the oral route of administration is temporarily unavailable. Oxcarbazepine is a newer antiepileptic drug that is rapidly converted to a monohydroxy derivative, the active compound. This study aimed to characterise the bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension using a randomised, crossover design in ten healthy volunteers. Two subjects received 300 mg doses of oxcarbazepine suspension via rectal and oral routes and eight received 450 mg doses. A washout period of at least 2 weeks elapsed between doses. The rectal dose was diluted 1:1 with water. Blood samples and urine were collected for 72 hours post-dose. Adverse effects were assessed at each blood collection time-point using a self-administered questionnaire. Plasma was assayed for oxcarbazepine and monohydroxy derivative; urine was assayed for monohydroxy derivative and monohydroxy derivative-glucuronide. Maximum plasma concentration (C(max)) and time to reach C(max) (t(max)) were obtained directly from the plasma concentration-time curves. The areas under the concentration-time curve (AUCs) were determined via non-compartmental analysis. Relative bioavailability was calculated and the C(max) and AUCs were compared using Wilcoxon signed-rank tests. Mean relative bioavailability calculated from plasma AUCs was 8.3% (SD 5.5%) for the monohydroxy derivative and 10.8% (SD 7.3%) for oxcarbazepine. Oxcarbazepine and monohydroxy derivative C(max) and AUC values were significantly lower following rectal administration (p < 0.01). The total amount of monohydroxy derivative excreted in the urine following rectal administration was 10 +/- 5% of the amount excreted following oral administration. Oral absorption was consistent with previous studies. The most common adverse effects were headache and fatigue with no discernible differences between routes. Monohydroxy derivative bioavailability following rectal administration of oxcarbazepine suspension is significantly lower than following oral administration, most likely because of poor oxcarbazepine water solubility. It is unlikely that adequate monohydroxy derivative concentrations can be achieved with rectal administration of diluted oxcarbazepine suspension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, S; Chung, K; Han, Y
Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beamsmore » of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].« less
SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawad, M Abdel; Elgohary, M; Hassaan, M
Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less
Clearie, Karine L; Williamson, Peter A; Meldrum, Karen; Gillen, Michael; Carlsson, Lars-Goran; Carlholm, Marie; Ekelund, Jan; Lipworth, Brian J
2011-01-01
AIMS A hydrofluoroalkane formulation of budesonide pressurized metered-dose inhaler has been developed to replace the existing chlorofluorocarbon one. The aim of this study was to evaluate the pharmacokinetic and pharmacodynamic characteristics of both formulations. METHODS Systemic bioavailability and bioactivity of both hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler formulations at 800 µg twice daily was determined during a randomized crossover systemic pharmacokinetic/pharmacodynamic study at steady state in healthy volunteers. Measurements included the following: plasma cortisol AUC24h[area under the concentration-time curve (0–24 h)], budesonide AUC0–12h and Cmax. Clinical efficacy was determined during a randomized crossover pharmacodynamic study in asthmatic patients receiving 200 µg followed by 800 µg budesonide via chlorofluorocarbon or hydrofluoroalkane pressurized metered-dose inhaler each for 4 weeks. Methacholine PC20 (primary outcome), exhaled nitric oxide, spirometry, peak expiratory flow and symptoms were evaluated. RESULTS In the pharmacokinetic study, there were no differences in cortisol, AUC0–12h[area under the concentration-time curve (0–12 h)], Tmax (time to maximum concentration) or Cmax (peak serum concentration) between the hydrofluoroalkane and chlorofluorocarbon pressurized metered-dose inhaler. The ratio of budesonide hydrofluoroalkane vs. chlorofluorocarbon pressurized metered-dose inhaler for cortisol AUC24h was 1.02 (95% confidence interval 0.93–1.11) and budesonide AUC0–12h was 1.03 (90% confidence interval 0.9–1.18). In the asthma pharmacodynamic study, there was a significant dose response (P < 0.0001) for methacholine PC20 (provocative concentration of methacholine needed to produce a 20% fall in FEV1) with a relative potency ratio of 1.10 (95% confidence interval 0.49–2.66), and no difference at either dose. No significant differences between formulations were seen with the secondary outcome variables. CONCLUSIONS Hydrofluoroalkane and chlorofluorocarbon formulations of budesonide were therapeutically equivalent in terms of relative lung bioavailability, airway efficacy and systemic effects. PMID:21395643
Dose gradient curve: A new tool for evaluating dose gradient
Choi, Young Eun
2018-01-01
Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471
Cozma, Lawrence S; Luzio, Stephen D; Dunseath, Gareth J; Underwood, Paul M; Owens, David R
2005-05-01
To assess the effects of incremental doses of repaglinide on postprandial insulin and glucose profiles after a standard 500-kcal test meal. Sixteen diet-treated Caucasians with type 2 diabetes (mean HbA(1c) 8.4%) were enrolled in this randomized, open-label, crossover trial. Subjects received 0.5, 1, 2, and 4 mg repaglinide or placebo in a random fashion, followed by a standard 500-kcal test meal on 5 separate study days, 1 week apart. The insulinogenic index (DeltaI30/DeltaG30) and insulin area under the curve (AUC) from 0 to 30 min (AUC(0-30)) were higher with the 4-mg drug dose compared with the two lower doses and with 2 mg compared with 0.5 mg. On subgroup analysis, the incremental insulin responses were apparent only in the fasting plasma glucose (FPG) < 9-mmol/l subgroup of subjects and not in the FPG >9-mmol/l subgroup. There was a significant dose-related increase in the late postprandial insulin secretion (insulin AUC(120-240)), which resulted in hypoglycemia in four subjects. Proinsulin-to-insulin ratios at 30 and 60 min improved with increasing doses of repaglinide; higher drug doses (2 and 4 mg) were more effective than the 0.5- and 1-mg doses. Significant dose-related increases in early insulin secretion were found only in less advanced diabetic subjects. In advanced diabetic patients, only the maximum dose (4 mg) was significant compared with placebo. Better proinsulin-to-insulin processing was noted with increasing drug doses.
Boily, Michaël; Dussault, Catherine; Massicotte, Julie; Guibord, Pascal; Lefebvre, Marc
2015-01-23
To demonstrate bioequivalence (BE) between two prolonged-release (PR) drug formulations, single dose studies under fasting and fed state as well as at least one steady-state study are currently required by the European Medicines Agency (EMA). Recently, however, there have been debates regarding the relevance of steady-state studies. New requirements in single-dose investigations have also been suggested by the EMA to address the absence of a parameter that can adequately assess the equivalence of the shape of the curves. In the draft guideline issued in 2013, new partial area under the curve (pAUC) pharmacokinetic (PK) parameters were introduced to that effect. In light of these potential changes, there is a need of supportive clinical evidence to evaluate the impact of pAUCs on the evaluation of BE between PR formulations. In this retrospective analysis, it was investigated whether the newly defined parameters were associated with an increase in discriminatory ability or a change in variability compared to the conventional PK parameters. Among the single dose studies that met the requirements already in place, 20% were found unable to meet the EMA's new requirements in regards to the pAUC PK parameters. When pairing fasting and fed studies for a same formulation, the failure rate increased to 40%. In some cases, due to the high variability of these parameters, an increase of the sample size would be required to prove BE. In other cases however, the pAUC parameters demonstrated a robust ability to detect differences between the shapes of the curves of PR formulations. The present analysis should help to better understand the impact of the upcoming changes in European regulations on PR formulations and in the design of future BE studies. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.
2017-10-01
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E
2017-10-03
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
van Gorp, Freek; Duffull, Stephen; Hackett, L Peter; Isbister, Geoffrey K
2012-01-01
AIMS To describe the pharmacokinetics and pharmacodynamics (PKPD) of escitalopram in overdose and its effect on QT prolongation, including the effectiveness of single dose activated charcoal (SDAC). METHODS The data set included 78 escitalopram overdose events (median dose, 140 mg [10–560 mg]). SDAC was administered 1.0 to 2.6 h after 12 overdoses (15%). A fully Bayesian analysis was undertaken in WinBUGS 1.4.3, first for a population pharmacokinetic (PK) analysis followed by a PKPD analysis. The developed PKPD model was used to predict the probability of having an abnormal QT as a surrogate for torsade de pointes. RESULTS A one compartment model with first order input and first-order elimination described the PK data, including uncertainty in dose and a baseline concentration for patients taking escitalopram therapeutically. SDAC reduced the fraction absorbed by 31% and reduced the individual predicted area under the curve adjusted for dose (AUCi/dose). The absolute QT interval was related to the observed heart rate with an estimated individual heart rate correction factor (α = 0.35). The heart rate corrected QT interval (QTc) was linearly dependent on predicted escitalopram concentration [slope = 87 ms/(mg l–1)], using a hypothetical effect-compartment (half-life of effect-delay, 1.0h). Administration of SDAC significantly reduced QT prolongation and was shown to reduce the risk of having an abnormal QT by approximately 35% for escitalopram doses above 200 mg. CONCLUSIONS There was a dose-related lengthening of the QT interval that lagged the increase in drug concentration. SDAC resulted in a moderate reduction in fraction of escitalopram absorbed and reduced the risk of the QT interval being abnormal. PMID:21883384
Energy optimization in gold nanoparticle enhanced radiation therapy.
Sung, Wonmo; Schuemann, Jan
2018-06-25
Gold nanoparticles (GNPs) have been demonstrated as radiation dose enhancing agents. Kilovoltage external photon beams have been shown to yield the largest enhancement due to the high interaction probability with gold. While orthovoltage irradiations are feasible and promising, they suffer from a reduced tissue penetrating power. This study quantifies the effect of varying photon beam energies on various beam arrangements, body, tumor, and cellular GNP uptake geometries. Cell survival was modeled based on our previously developed GNP-local effect model with radial doses calculated using the TOPAS-nBio Monte Carlo code. Cell survival curves calculated for tumor sites with GNPs were used to calculate the relative biological effectiveness (RBE)-weighted dose. In order to evaluate the plan quality, the ratio of the mean dose between the tumor and normal tissue for 50-250 kVp beams with GNPs was compared to the standard of care using 6 MV photon beams without GNPs for breast and brain tumors. For breast using a single photon beam, kV + GNP was found to yield up to 2.73 times higher mean RBE-weighted dose to the tumor than two tangential megavoltage beams while delivering the same dose to healthy tissue. For irradiation of brain tumors using multiple photon beams, the GNP dose enhancement was found to be effective for energies above 50 keV. A small tumor at shallow depths was found to be the most effective treatment conditions for GNP enhanced radiation therapy. GNP uptake distributions in the cell (with or without nuclear uptake) and the beam arrangement were found to be important factors in determining the optimal photon beam energy.
Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro
2013-05-01
The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.
Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro
2013-01-01
The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241
Effects of immobilization mask material on surface dose
Hadley, Scott W.; Kelly, Robin; Lam, Kwok
2005-01-01
This work investigates the increase in surface dose caused by thermoplastic masks used for patient positioning and immobilization. A thermoplastic mask is custom fit by stretching a heated mask over the patient at the time of treatment simulation. This mask is then used at treatment to increase the reproducibility of the patient position. The skin sparing effect of mega‐voltage X‐ray beams can be reduced when the patient's skin surface is under the mask material. The sheet of thermoplastic mask has holes to reduce this effect and is available from one manufacturer with two different sizes of holes, one larger than the other. This work investigates the increase in surface dose caused by the mask material and quantifies the difference between the two samples of masks available. The change in the dose buildup was measured using an Attix parallel plate chamber by measuring tissue maximum ratios (TMRs) using solid water. Measurements were made with and without the mask material on the surface of the solid water for 6‐MV and 15‐MV X‐ray beams. The effective thickness of equivalent water was estimated from the TMR curves, and the increase in surface dose was estimated. The buildup effect was measured to be equivalent to 2.2 mm to 0.6 mm for masks that have been stretched by different amounts. The surface dose was estimated to change from 16% and 12% for 6 MV and 15 MV, respectively, to 27% to 61% for 6 MV and 18% to 40% for 15 MV with the mask samples. PACS number: 87.53.Dq PMID:15770192
NASA Technical Reports Server (NTRS)
Goeorge, Kerry; Cucinotta, Francis A.
2007-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.
David, M; Hamann, C; Chen, F C; Bruch, L; Lichtenegger, W
2000-01-01
Substance dose-related comparison of relaxation effect of nitroglycerin (GTN) and the beta 2-mimetic substance fenoterol in human myometrial tissue. Test criterion is the isometric force development of isolated human myometrial strips. These muscle strips were removed from the lower uterine segment at cesarean section. Fenoterol in concentrations of 3 x 10(-8)-10(-5) mol/l or GTN in concentrations of 1.7 x 10(-8)-5.8 x 10(-4) mol/l were applied to the 2 x 2 x 10-mm strips, which were fixed and maintained in tissue baths. The curves were plotted on line. The integral or the "area under the curve" (AUC) served as the parameter for muscle strip activity. A total of 100 strips from 20 patients were used. GTN demonstrated a significant relaxation effect in the in vitro model on human myometrial strips from pregnant women already treated with oxytocin. The effect was able to be enhanced to a point where oxytocin-induced contractions were completely absent. A relatively clear connection was demonstrated between dose and effect whereby increased muscle relaxation resulted at increased concentrations. Compared to GTN application, muscle strip relaxation was less pronounced under fenoterol; a complete inhibition of myometrial activity was not achieved under fenoterol. With respect to relaxation of the myometrial tissue samples the NO donor GTN is at least as potent as the standard tocolytic agent fenoterol in the in vitro model.
Genetic susceptibility: radiation effects relevant to space travel.
Peng, Yuanlin; Nagasawa, Hatsumi; Warner, Christy; Bedford, Joel S
2012-11-01
Genetic variation in the capacity to repair radiation damage is an important factor influencing both cellular and tissue radiosensitivity variation among individuals as well as dose rate effects associated with such damage. This paper consists of two parts. The first part reviews some of the available data relating to genetic components governing such variability among individuals in susceptibility to radiation damage relevant for radiation protection and discusses the possibility and extent to which these may also apply for space radiations. The second part focuses on the importance of dose rate effects and genetic-based variations that influence them. Very few dose rate effect studies have been carried out for the kinds of radiations encountered in space. The authors present here new data on the production of chromosomal aberrations in noncycling low passage human ATM+/+ or ATM+/- cells following irradiations with protons (50 MeV or 1 GeV), 1 GeV(-1) n iron ions and gamma rays, where doses were delivered at a high dose rate of 700 mGy(-1) min, or a lower dose rate of 5 mGy min(-1). Dose responses were essentially linear over the dose ranges tested and not significantly different for the two cell strains. Values of the dose rate effectiveness factor (DREF) were expressed as the ratio of the slopes of the dose-response curves for the high versus the lower (5 mGy min(-1)) dose rate exposures. The authors refer to this as the DREF5. For the gamma ray standard, DREF5 values of approximately two were observed. Similar dose rate effects were seen for both energies of protons (DREF5 ≈ 2.2 in both cases). For 1 GeV(-1) n iron ions [linear energy transfer (LET) ≈ 150 keV μ(-1)], the DREF5 was not 1 as might have been expected on the basis of LET alone but was approximately 1.3. From these results and conditions, the authors estimate that the relative biological effectiveness for 1 GeV(-1) n iron ions for high and low dose rates, respectively, were about 10 and 15 rather than around 20 for low dose rates, as has been assumed by most recommendations from radiation protection organizations for charged particles of this LET. The authors suggest that similar studies using appropriate animal models of carcinogenesis would be valuable.
Output calculation of electron therapy at extended SSD using an improved LBR method.
Alkhatib, Hassaan A; Gebreamlak, Wondesen T; Tedeschi, David J; Mihailidis, Dimitris; Wright, Ben W; Neglia, William J; Sobash, Philip T; Fontenot, Jonas D
2015-02-01
To calculate the output factor (OPF) of any irregularly shaped electron beam at extended SSD. Circular cutouts were prepared from 2.0 cm diameter to the maximum possible size for 15 × 15 applicator cone. In addition, two irregular cutouts were prepared. For each cutout, percentage depth dose (PDD) at the standard SSD and doses at different SSD values were measured using 6, 9, 12, and 16 MeV electron beam energies on a Varian 2100C LINAC and the distance at which the central axis electron fluence becomes independent of cutout size was determined. The measurements were repeated with an ELEKTA Synergy LINAC using 14 × 14 applicator cone and electron beam energies of 6, 9, 12, and 15 MeV. The PDD measurements were performed using a scanning system and two diodes-one for the signal and the other a stationary reference outside the tank. The doses of the circular cutouts at different SSDs were measured using PTW 0.125 cm(3) Semiflex ion-chamber and EDR2 films. The electron fluence was measured using EDR2 films. For each circular cutout, the lateral buildup ratio (LBR) was calculated from the measured PDD curve using the open applicator cone as the reference field. The effective SSD (SSDeff) of each circular cutout was calculated from the measured doses at different SSD values. Using the LBR value and the radius of the circular cutout, the corresponding lateral spread parameter [σR(z)] was calculated. Taking the cutout size dependence of σR(z) into account, the PDD curves of the irregularly shaped cutouts at the standard SSD were calculated. Using the calculated PDD curve of the irregularly shaped cutout along with the LBR and SSDeff values of the circular cutouts, the output factor of the irregularly shaped cutout at extended SSD was calculated. Finally, both the calculated PDD curves and output factor values were compared with the measured values. The improved LBR method has been generalized to calculate the output factor of electron therapy at extended SSD. The percentage difference between the calculated and the measured output factors of irregularly shaped cutouts in a clinical useful SSD region was within 2%. Similar results were obtained for all available electron energies of both Varian 2100C and ELEKTA Synergy machines.
Bello-Bello, Jericó J; Chavez-Santoscoy, Rocío A; Lecona-Guzmán, Carlos A; Bogdanchikova, Nina; Salinas-Ruíz, Josafhat; Gómez-Merino, Fernando Carlos; Pestryakov, Alexey
2017-01-01
Hormesis is considered a dose-response phenomenon characterized by growth stimulation at low doses and inhibition at high doses. The hormetic response by silver nanoparticles (AgNPs) on in vitro multiplication of sugarcane was evaluated using a temporary immersion system. Sugarcane shoots were used as explants cultured in Murashige and Skoog medium with AgNPs at concentrations of 0, 25, 50, 100, and 200 mg/L. Shoot multiplication rate and length were used to determine hormetic response. Total content of phenolic compounds of sugarcane, mineral nutrition, and reactive oxygen species (ROS) was determined. Results were presented as a dose-response curve. Stimulation phase growth was observed at 50 mg/L AgNPs, whereas inhibition phase was detected at 200 mg/L AgNPs. Mineral nutrient analysis showed changes in macronutrient and micronutrient contents due to the effect of AgNPs. Moreover, AgNPs induced ROS production and increased total phenolic content, with a dose-dependent effect. Results suggested that the production of ROS and mineral nutrition are key mechanisms of AgNP-induced hormesis and that phenolic accumulation was obtained as a response of the plant to stress produced by high doses of AgNPs. Therefore, small doses of AgNPs in the culture medium could be an efficient strategy for commercial micropropagation.
Kelsey, Chris R; Jackson, Lauren; Langdon, Scott; Owzar, Kouros; Hubbs, Jessica; Vujaskovic, Zeljko; Das, Shiva; Marks, Lawrence B
2012-02-01
To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-β1 (TGFβ1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGFβ1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGFβ1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolution melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGFβ1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. 39 white patients with preradiation therapy and ≥ 6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGFβ1 ratios. This study suggests that a polymorphism within the promoter of the TGFβ1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion). Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: kelse003@mc.duke.edu; Jackson, Lauren; Langdon, Scott
2012-02-01
Purpose: To evaluate whether single nucleotide polymorphisms (SNPs) in the transforming growth factor-{beta}1 (TGF{beta}1) gene are associated with radiation sensitivity using an objective radiologic endpoint. Methods and Materials: Preradiation therapy and serial postradiation therapy single photon emission computed tomography (SPECT) lung perfusion scans were obtained in patients undergoing treatment for lung cancer. Serial blood samples were obtained to measure circulating levels of TGF{beta}1. Changes in regional perfusion were related to regional radiation dose yielding a patient-specific dose-response curve, reflecting the patient's inherent sensitivity to radiation therapy. Six TGF{beta}1 SNPs (-988, -800, -509, 869, 941, and 1655) were assessed using high-resolutionmore » melting assays and DNA sequencing. The association between genotype and slope of the dose-response curve, and genotype and TGF{beta}1 ratio (4-week/preradiation therapy), was analyzed using the Kruskal-Wallis test. Results: 39 white patients with preradiation therapy and {>=}6-month postradiation therapy SPECT scans and blood samples were identified. Increasing slope of the dose-response curve was associated with the C(-509)T SNP (p = 0.035), but not the other analyzed SNPs. This SNP was also associated with higher TGF{beta}1 ratios. Conclusions: This study suggests that a polymorphism within the promoter of the TGF{beta}1 gene is associated with increased radiation sensitivity (defined objectively by dose-dependent changes in SPECT lung perfusion).« less
NASA Technical Reports Server (NTRS)
George, K.; Cucinotta, F. A.
2006-01-01
Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.
Sex differences in antinociceptive tolerance to delta-9-tetrahydrocannabinol in the rat
Wakley, Alexa A.; Wiley, Jenny L.; Craft, Rebecca M.
2014-01-01
Background Sex differences in cannabinoid effects have been reported in rodents, with adult females typically being more sensitive than adult males. The present study compared the development of antinociceptive tolerance to delta-9-tetrahydrocannabinol (THC) in adult, gonadally intact female vs. male rats. Methods Cumulative dose-effect curves were obtained for THC (1.0–18 mg/kg i.p.) on warm water tail withdrawal and paw pressure tests. Vehicle or the sex-specific ED80 dose for THC was administered twice daily for 9 days; THC dose-effect curves were then re-determined. Results On the pre-chronic test day, THC was significantly more potent in females than males in producing antinociception on the tail withdrawal and paw pressure tests. After 9 days of twice-daily THC treatment (5.4 mg/kg/injection in females, 7.6 mg/kg/injection in males), THC potency on both tests decreased more in females than males. On the tail withdrawal test, chronic THC produced 4.2- vs. 2.8-fold increases in ED50 values in females vs. males, respectively. On the paw pressure test, chronic THC produced 4.4- vs. 2.9-fold increases in ED50 values in females vs. males, respectively. Chronic THC treatment did not significantly disrupt estrous cycling in females. Conclusions These results demonstrate that – even when sex differences in acute THC potency are controlled for – females develop more antinociceptive tolerance to THC than males. Given the importance of drug tolerance in the development of drug dependence, these results suggest that females may be more vulnerable than males to developing dependence after chronic cannabinoid exposure. PMID:25131716
King, Christopher R
2016-11-01
To date neither the optimal radiotherapy dose nor the existence of a dose-response has been established for salvage RT (SRT). A systematic review from 1996 to 2015 and meta-analysis was performed to identify the pathologic, clinical and treatment factors associated with relapse-free survival (RFS) after SRT (uniformly defined as a PSA>0.2ng/mL or rising above post-SRT nadir). A sigmoidal dose-response curve was objectively fitted and a non-parametric statistical test used to determine significance. 71 studies (10,034 patients) satisfied the meta-analysis criteria. SRT dose (p=0.0001), PSA prior to SRT (p=0.0009), ECE+ (p=0.039) and SV+ (p=0.046) had significant associations with RFS. Statistical analyses confirmed the independence of SRT dose-response. Omission of series with ADT did not alter results. Dose-response is well fit by a sigmoidal curve (p=0.0001) with a TCD 50 of 65.8Gy, with a dose of 70Gy achieving 58.4% RFS vs. 38.5% for 60Gy. A 2.0% [95% CI 1.1-3.2] improvement in RFS is achieved for each Gy. The SRT dose-response remarkably parallels that for definitive RT of localized disease. This study provides level 2a evidence for dose-escalated SRT>70Gy. The presence of an SRT dose-response for microscopic disease supports the hypothesis that prostate cancer is inherently radio-resistant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hirano, Emi; Fuji, Hiroshi; Onoe, Tsuyoshi; Kumar, Vinay; Shirato, Hiroki; Kawabuchi, Koichi
2014-03-01
The aim of this study is to evaluate the cost-effectiveness of proton beam therapy with cochlear dose reduction compared with conventional X-ray radiotherapy for medulloblastoma in childhood. We developed a Markov model to describe health states of 6-year-old children with medulloblastoma after treatment with proton or X-ray radiotherapy. The risks of hearing loss were calculated on cochlear dose for each treatment. Three types of health-related quality of life (HRQOL) of EQ-5D, HUI3 and SF-6D were used for estimation of quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for proton beam therapy compared with X-ray radiotherapy was calculated for each HRQOL. Sensitivity analyses were performed to model uncertainty in these parameters. The ICER for EQ-5D, HUI3 and SF-6D were $21 716/QALY, $11 773/QALY, and $20 150/QALY, respectively. One-way sensitivity analyses found that the results were sensitive to discount rate, the risk of hearing loss after proton therapy, and costs of proton irradiation. Cost-effectiveness acceptability curve analysis revealed a 99% probability of proton therapy being cost effective at a societal willingness-to-pay value. Proton beam therapy with cochlear dose reduction improves health outcomes at a cost that is within the acceptable cost-effectiveness range from the payer's standpoint.
Effect of antacids on predicted steady-state cimetidine concentrations.
Russell, W L; Lopez, L M; Normann, S A; Doering, P L; Guild, R T
1984-05-01
The purpose of this study was to evaluate effects of antacids on predicted steady-state concentrations of cimetidine. Ten healthy volunteers received in random order one week apart, cimetidine and cimetidine and antacid suspension. Blood was obtained at specified times and analyzed for cimetidine. Bioavailability was assessed by comparison of peak concentration, time to peak concentration, area under the curve, and time spent over 0.5 micrograms/ml. Single-dose data were extrapolated to steady-state using computer simulation. Concurrent administration of antacid suspension reduced parameters of bioavailability approximately 30%. When steady-state conditions were simulated, concentrations of cimetidine greater than or equal to 0.5 micrograms/ml were maintained for the entire dosing interval in seven of 10 subjects. These data suggest that temporal separation of cimetidine and antacid suspension may be unnecessary.
New Energy-Dependent Soft X-Rav Damage In MOS Devices
NASA Astrophysics Data System (ADS)
Chan, Tung-Yi; Gaw, Henry; Seligson, Daniel; Pan, Lawrence; King, Paul L.; Pianetta, Piero
1988-06-01
An energy-dependent soft x-ray-induced device damage has been discovered in MOS devices fabricated using standard CMOS process. MOS devices were irradiated by monochromatic x-rays in energy range just above and below the silicon K-edge (1.84 keV). Photons below the K-edge is found to create more damage in the oxide and oxide/silicon interface than photons above the K-edge. This energy-dependent damage effect is believed to be due to charge traps generated during device fabrication. It is found that data for both n- and p-type devices lie along a universal curve if normalized threshold voltage shifts are plotted against absorbed dose in the oxide. The threshold voltage shift saturates when the absorbed dose in the oxide exceeds 1.4X105 mJ/cm3, corresponding to 6 Mrad in the oxide. Using isochronal anneals, the trapped charge damage is found to recover with an activation energy of 0.38 eV. A discrete radiation-induced damage state appears in the low frequency C-V curve in a temperature range from 1750C to 325°C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghomi, Pooyan Shirvani; Zinchenko, Yuriy
2014-08-15
Purpose: To compare methods to incorporate the Dose Volume Histogram (DVH) curves into the treatment planning optimization. Method: The performance of three methods, namely, the conventional Mixed Integer Programming (MIP) model, a convex moment-based constrained optimization approach, and an unconstrained convex moment-based penalty approach, is compared using anonymized data of a prostate cancer patient. Three plans we generated using the corresponding optimization models. Four Organs at Risk (OARs) and one Tumor were involved in the treatment planning. The OARs and Tumor were discretized into total of 50,221 voxels. The number of beamlets was 943. We used commercially available optimization softwaremore » Gurobi and Matlab to solve the models. Plan comparison was done by recording the model runtime followed by visual inspection of the resulting dose volume histograms. Conclusion: We demonstrate the effectiveness of the moment-based approaches to replicate the set of prescribed DVH curves. The unconstrained convex moment-based penalty approach is concluded to have the greatest potential to reduce the computational effort and holds a promise of substantial computational speed up.« less