Sample records for dose estimates based

  1. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. (⁹⁹m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with ¹⁶⁶Ho-microspheres.

    PubMed

    Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M

    2014-10-01

    Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.

  3. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.

  4. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).

  5. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  6. SU-E-T-129: Are Knowledge-Based Planning Dose Estimates Valid for Distensible Organs?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalonde, R; Heron, D; Huq, M

    2015-06-15

    Purpose: Knowledge-based planning programs have become available to assist treatment planning in radiation therapy. Such programs can be used to generate estimated DVHs and planning constraints for organs at risk (OARs), based upon a model generated from previous plans. These estimates are based upon the planning CT scan. However, for distensible OARs like the bladder and rectum, daily variations in volume may make the dose estimates invalid. The purpose of this study is to determine whether knowledge-based DVH dose estimates may be valid for distensible OARs. Methods: The Varian RapidPlan™ knowledge-based planning module was used to generate OAR dose estimatesmore » and planning objectives for 10 prostate cases previously planned with VMAT, and final plans were calculated for each. Five weekly setup CBCT scans of each patient were then downloaded and contoured (assuming no change in size and shape of the target volume), and rectum and bladder DVHs were recalculated for each scan. Dose volumes were then compared at 75, 60,and 40 Gy for the bladder and rectum between the planning scan and the CBCTs. Results: Plan doses and estimates matched well at all dose points., Volumes of the rectum and bladder varied widely between planning CT and the CBCTs, ranging from 0.46 to 2.42 for the bladder and 0.71 to 2.18 for the rectum, causing relative dose volumes to vary between planning CT and CBCT, but absolute dose volumes were more consistent. The overall ratio of CBCT/plan dose volumes was 1.02 ±0.27 for rectum and 0.98 ±0.20 for bladder in these patients. Conclusion: Knowledge-based planning dose volume estimates for distensible OARs are still valid, in absolute volume terms, between treatment planning scans and CBCT’s taken during daily treatment. Further analysis of the data is being undertaken to determine how differences depend upon rectum and bladder filling state. This work has been supported by Varian Medical Systems.« less

  7. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Quantifying annual internal effective 137Cesium dose utilizing direct body-burden measurement and ecological dose modeling.

    PubMed

    Jelin, Benjamin A; Sun, Wenjie; Kravets, Alexandra; Naboka, Maryna; Stepanova, Eugenia I; Vdovenko, Vitaliy Y; Karmaus, Wilfried J; Lichosherstov, Alex; Svendsen, Erik R

    2016-11-01

    The Chernobyl Nuclear Power Plant (CNPP) accident represents one of the most significant civilian releases of 137 Cesium ( 137 Cs, radiocesium) in human history. In the Chernobyl-affected region, radiocesium is considered to be the greatest on-going environmental hazard to human health by radiobiologists and public health scientists. The goal of this study was to characterize dosimetric patterns and predictive factors for whole-body count (WBC)-derived radiocesium internal dose estimations in a CNPP-affected children's cohort, and cross-validate these estimations with a soil-based ecological dose estimation model. WBC data were used to estimate the internal effective dose using the International Commission on Radiological Protection (ICRP) 67 dose conversion coefficient for 137 Cs and MONDAL Version 3.01 software. Geometric mean dose estimates from each model were compared utilizing paired t-tests and intra-class correlation coefficients. Additionally, we developed predictive models for WBC-derived dose estimation in order to determine the appropriateness of EMARC to estimate dose for this population. The two WBC-derived dose predictive models identified 137 Cs soil concentration (P<0.0001) as the strongest predictor of annual internal effective dose from radiocesium validating the use of the soil-based EMARC model. The geometric mean internal effective dose estimate of the EMARC model (0.183 mSv/y) was the highest followed by the ICRP 67 dose estimates (0.165 mSv/y) and the MONDAL model estimates (0.149 mSv/y). All three models yielded significantly different geometric mean dose (P<0.05) estimates for this cohort when stratified by sex, age at time of exam and season of exam, except for the mean MONDAL and EMARC estimates for 15- and 16-year olds and mean ICRP and MONDAL estimates for children examined in Winter. Further prospective and retrospective radio-epidemiological studies utilizing refined WBC measurements and ecological model dose estimations, in conjunction with findings from animal toxicological studies, should help elucidate possible deterministic radiogenic health effects associated with chronic low-dose internal exposure to 137 Cs.

  9. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    PubMed

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    PubMed

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.

  11. SOME PROBLEMS OF "SAFE DOSE" ESTIMATION

    EPA Science Inventory

    In environmental carcinogenic risk assessment, the usually defined "safe doses" appear subjective in some sense. n this paper a method of standardizing "safe doses" based on some objective parameters is introduced and a procedure of estimating safe doses under the competing risks...

  12. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  13. SU-F-T-258: Efficacy of Exit Fluence-Based Dose Calculation for Prostate Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J; Gardner, J; Neal, B

    Purpose: To investigate the efficacy of exit-fluence-based dose computation for prostate radiotherapy by determining if it estimates true dose more accurately than the original planning dose. Methods: Virtual exit-fluencebased dose computation was performed for 19 patients, each with 9–12 repeat CT images. For each patient, a 78 Gy treatment plan was created utilizing 5 mm CTV-to-PTV and OAR-to-PRV margins. A Monte Carlo framework was used to compute dose and exit-fluence images for the planning image and for each repeat CT image based on boney-anatomyaligned and prostate-centroid-aligned CTs. Identical source particles were used for the MC dose-computations on the planning andmore » repeat CTs to maximize correlation. The exit-fluence-based dose and image were computed by multiplying source particle weights by FC(x,y)=FP(x,y)/FT(x,y), where (x,y) are the source particle coordinates projected to the exit-fluence plane and we denote the dose/fluence from the plan by (DP,FP), from the repeat-CT as (DT,FT), and the exit-fluence computation by (DFC,FFC). DFC mimics exit-fluence backprojection through the planning image as FT=FFC. Dose estimates were intercompared to judge the efficacy of exit-fluence-based dose computation. Results: Boney- and prostate-centroid aligned results are combined as there is no statistical difference between them, yielding 420 dose comparisons per dose-volume metric. DFC is more accurate than DP for 46%, 33%, and 44% of cases in estimating CTV D98, D50, and D2 respectively. DFC improved rectum D50 and D2 estimates 54% and 49% respectively and bladder D50 and D2 47 and 49% respectively. While averaged over all patients and images DFC and DP were within 3.1% of DT, they differed from DT by as much as 22% for GTV D98, 71% for the Bladder D50, 17% for Bladder D2, 19% for Rectum D2. Conclusion: Exit-fluence based dose computations infrequently improve CTV or OAR dose estimates and should be used with caution. Research supported in part by Varian Medical Systems.« less

  14. ESTIMATION OF EARLY INTERNAL DOSES TO FUKUSHIMA RESIDENTS AFTER THE NUCLEAR DISASTER BASED ON THE ATMOSPHERIC DISPERSION SIMULATION.

    PubMed

    Kim, Eunjoo; Tani, Kotaro; Kunishima, Naoaki; Kurihara, Osamu; Sakai, Kazuo; Akashi, Makoto

    2016-11-01

    Estimating the early internal doses to residents in the Fukushima Daiichi Nuclear Power Station accident is a difficult task because limited human/environmental measurement data are available. Hence, the feasibility of using atmospheric dispersion simulations created by the Worldwide version of System for Prediction of Environmental Emergency Dose Information 2nd Version (WSPEEDI-II) in the estimation was examined in the present study. This examination was done by comparing the internal doses evaluated based on the human measurements with those calculated using time series air concentration maps ( 131 I and 137 Cs) generated by WSPEEDI-II. The results showed that the latter doses were several times higher than the former doses. However, this discrepancy could be minimised by taking into account personal behaviour data that will be available soon. This article also presents the development of a prototype system for estimating the internal dose based on the simulations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. SU-E-T-769: T-Test Based Prior Error Estimate and Stopping Criterion for Monte Carlo Dose Calculation in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X; Gao, H; Schuemann, J

    2015-06-15

    Purpose: The Monte Carlo (MC) method is a gold standard for dose calculation in radiotherapy. However, it is not a priori clear how many particles need to be simulated to achieve a given dose accuracy. Prior error estimate and stopping criterion are not well established for MC. This work aims to fill this gap. Methods: Due to the statistical nature of MC, our approach is based on one-sample t-test. We design the prior error estimate method based on the t-test, and then use this t-test based error estimate for developing a simulation stopping criterion. The three major components are asmore » follows.First, the source particles are randomized in energy, space and angle, so that the dose deposition from a particle to the voxel is independent and identically distributed (i.i.d.).Second, a sample under consideration in the t-test is the mean value of dose deposition to the voxel by sufficiently large number of source particles. Then according to central limit theorem, the sample as the mean value of i.i.d. variables is normally distributed with the expectation equal to the true deposited dose.Third, the t-test is performed with the null hypothesis that the difference between sample expectation (the same as true deposited dose) and on-the-fly calculated mean sample dose from MC is larger than a given error threshold, in addition to which users have the freedom to specify confidence probability and region of interest in the t-test based stopping criterion. Results: The method is validated for proton dose calculation. The difference between the MC Result based on the t-test prior error estimate and the statistical Result by repeating numerous MC simulations is within 1%. Conclusion: The t-test based prior error estimate and stopping criterion are developed for MC and validated for proton dose calculation. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  16. An atlas-based organ dose estimator for tomosynthesis and radiography

    NASA Astrophysics Data System (ADS)

    Hoye, Jocelyn; Zhang, Yakun; Agasthya, Greeshma; Sturgeon, Greg; Kapadia, Anuj; Segars, W. Paul; Samei, Ehsan

    2017-03-01

    The purpose of this study was to provide patient-specific organ dose estimation based on an atlas of human models for twenty tomosynthesis and radiography protocols. The study utilized a library of 54 adult computational phantoms (age: 18-78 years, weight 52-117 kg) and a validated Monte-Carlo simulation (PENELOPE) of a tomosynthesis and radiography system to estimate organ dose. Positioning of patient anatomy was based on radiographic positioning handbooks. The field of view for each exam was calculated to include relevant organs per protocol. Through simulations, the energy deposited in each organ was binned to estimate normalized organ doses into a reference database. The database can be used as the basis to devise a dose calculator to predict patient-specific organ dose values based on kVp, mAs, exposure in air, and patient habitus for a given protocol. As an example of the utility of this tool, dose to an organ was studied as a function of average patient thickness in the field of view for a given exam and as a function of Body Mass Index (BMI). For tomosynthesis, organ doses can also be studied as a function of x-ray tube position. This work developed comprehensive information for organ dose dependencies across tomosynthesis and radiography. There was a general exponential decrease dependency with increasing patient size that is highly protocol dependent. There was a wide range of variability in organ dose across the patient population, which needs to be incorporated in the metrology of organ dose.

  17. An estimation of Canadian population exposure to cosmic rays from air travel.

    PubMed

    Chen, Jing; Newton, Dustin

    2013-03-01

    Based on air travel statistics in 1984, it was estimated that less than 4 % of the population dose from cosmic ray exposure would result from air travel. In the present study, cosmic ray doses were calculated for more than 3,000 flights departing from more than 200 Canadian airports using actual flight profiles. Based on currently available air travel statistics, the annual per capita effective dose from air transportation is estimated to be 32 μSv for Canadians, about 10 % of the average cosmic ray dose received at ground level (310 μSv per year).

  18. Comparing risk estimates following diagnostic CT radiation exposures employing different methodological approaches.

    PubMed

    Kashcheev, Valery V; Pryakhin, Evgeny A; Menyaylo, Alexander N; Chekin, Sergey Yu; Ivanov, Viktor K

    2014-06-01

    The current study has two aims: the first is to quantify the difference between radiation risks estimated with the use of organ or effective doses, particularly when planning pediatric and adult computed tomography (CT) examinations. The second aim is to determine the method of calculating organ doses and cancer risk using dose-length product (DLP) for typical routine CT examinations. In both cases, the radiation-induced cancer risks from medical CT examinations were evaluated as a function of gender and age. Lifetime attributable risk values from CT scanning were estimated with the use of ICRP (Publication 103) risk models and Russian national medical statistics data. For populations under the age of 50 y, the risk estimates based on organ doses usually are 30% higher than estimates based on effective doses. In older populations, the difference can be up to a factor of 2.5. The typical distributions of organ doses were defined for Chest Routine, Abdominal Routine, and Head Routine examinations. The distributions of organ doses were dependent on the anatomical region of scanning. The most exposed organs/tissues were thyroid, breast, esophagus, and lungs in cases of Chest Routine examination; liver, stomach, colon, ovaries, and bladder in cases of Abdominal Routine examination; and brain for Head Routine examinations. The conversion factors for calculation of typical organ doses or tissues at risk using DLP were determined. Lifetime attributable risk of cancer estimated with organ doses calculated from DLP was compared with the risk estimated on the basis of organ doses measured with the use of silicon photodiode dosimeters. The estimated difference in LAR is less than 29%.

  19. ANALYSIS OF EPR AND FISH STUDIES OF RADIATION DOSES IN PERSONS WHO LIVED IN THE UPPER REACHES OF THE TECHA RIVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less

  20. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  1. An assessment of the doses received by members of the public in Japan following the nuclear accident at Fukushima Daiichi nuclear power plant.

    PubMed

    Bedwell, P; Mortimer, K; Wellings, J; Sherwood, J; Leadbetter, S J; Haywood, S M; Charnock, T; Jones, A R; Hort, M C

    2015-12-01

    The earthquake and tsunami on 11 March 2011, centred off the east coast of Japan, caused considerable destruction and substantial loss of life along large swathes of the Japanese coastline. The tsunami damaged the Fukushima Daiichi nuclear power plant (NPP), resulting in prolonged releases of radioactive material into the environment. This paper assesses the doses received by members of the public in Japan. The assessment is based on an estimated source term and atmospheric dispersion modelling rather than monitoring data. It is evident from this assessment that across the majority of Japan the estimates of dose are very low, for example they are estimated to be less than the annual average dose from natural background radiation in Japan. Even in the regions local to Fukushima Daiichi NPP (and not affected by any form of evacuation) the maximum lifetime effective dose is estimated to be well below the cumulative natural background dose over the same period. The impact of the urgent countermeasures on the estimates of dose was considered. And the relative contribution to dose from the range of exposure pathways and radionuclides were evaluated. Analysis of estimated doses focused on the geographic irregularity and the impact of the meteorological conditions. For example the dose to an infant's thyroid received over the first year was estimated to be greater in Hirono than in the non-evacuated region of Naraha, despite Hirono being further from the release location. A number of factors were identified and thought to contribute towards this outcome, including the local wind pattern which resulted in the recirculation of part of the release. The non-uniform nature of dose estimates strengthens the case for evaluations based on dispersion modelling.

  2. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahbaee, Pooyan, E-mail: psahbae@ncsu.edu; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor)more » were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient anatomy, a first order approximation of organ and effective doses from routine CT scan protocols can be reasonably estimated using size specific factors. Estimation accuracy is generally poor for organ outside the scan range and for neurological protocols. The dose calculator designed in this study can be used to conveniently estimate and report the dose values for a patient across a multiplicity of CT scan protocols.« less

  3. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values.

    PubMed

    McMillan, Kyle; Bostani, Maryam; Cagnon, Christopher H; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H; McNitt-Gray, Michael F

    2017-08-01

    The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose. Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating patient organ doses, Monte Carlo simulations were performed by creating voxelized models of each patient, identifying key organs and incorporating tube current values into the simulations to estimate dose to the lungs and breasts (females only) for chest scans and the liver, kidney, and spleen for abdomen/pelvis scans. Organ doses from simulations using the actual tube current values were compared to those using each of the estimated tube current values (actual-topo and sim-topo). When compared to the actual tube current values, the average error for tube current values estimated from the actual topogram (actual-topo) and simulated topogram (sim-topo) was 3.9% and 5.8% respectively. For Monte Carlo simulations of chest CT exams using the actual tube current values and estimated tube current values (based on the actual-topo and sim-topo methods), the average differences for lung and breast doses ranged from 3.4% to 6.6%. For abdomen/pelvis exams, the average differences for liver, kidney, and spleen doses ranged from 4.2% to 5.3%. Strong agreement between organ doses estimated using actual and estimated tube current values provides validation of both methods for estimating tube current values based on data provided in the topogram or simulated from image data. © 2017 American Association of Physicists in Medicine.

  4. Estimating organ doses from tube current modulated CT examinations using a generalized linear model.

    PubMed

    Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F

    2017-04-01

    Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.

  5. Web based scoring is useful for validation and harmonisation of scoring criteria within RENEB.

    PubMed

    Romm, Horst; Ainsbury, Elizabeth A; Barquinero, Joan Francesc; Barrios, Leonardo; Beinke, Christina; Cucu, Alexandra; Domene, Mercedes Moreno; Filippi, Silvia; Monteiro Gil, Octávia; Gregoire, Eric; Hadjidekova, Valeria; Hatzi, Vasia; Lindholm, Carita; M Kacher, Radhia; Montoro, Alegria; Moquet, Jayne; Noditi, Mihaela; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Prieto, María Jesús; Popescu, Irina; Rothkamm, Kai; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Wojcik, Andrzej

    2017-01-01

    To establish a training data set of digital images and to investigate the scoring criteria and dose assessment of the dicentric assay within the European network of biodosimetry (RENEB), a web based scoring inter-comparison was undertaken by 17 RENEB partners. Two sets of 50 high resolution images were uploaded onto the RENEB website. One set included metaphases after a moderate exposure (1.3 Gy) and the other set consisted of metaphases after a high dose exposure (3.5 Gy). The laboratories used their own calibration curves for estimating doses based on observed aberration frequencies. The dose estimations and 95% confidence limits were compared to the actual doses and the corresponding z-values were satisfactory for the majority; only the dose estimations from two laboratories were too low or too high. The coefficients of variation were 17.6% for the moderate and 11.2% for the high dose. Metaphases with controversial results could be identified for training purposes. Overall, the web based scoring of the two galleries by the 17 laboratories produced very good results. Application of web based scoring for the dicentric assay may therefore be a relevant strategy for an operational biodosimetry assistance network.

  6. Benchmark dose analysis via nonparametric regression modeling

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Estimation of benchmark doses (BMDs) in quantitative risk assessment traditionally is based upon parametric dose-response modeling. It is a well-known concern, however, that if the chosen parametric model is uncertain and/or misspecified, inaccurate and possibly unsafe low-dose inferences can result. We describe a nonparametric approach for estimating BMDs with quantal-response data based on an isotonic regression method, and also study use of corresponding, nonparametric, bootstrap-based confidence limits for the BMD. We explore the confidence limits’ small-sample properties via a simulation study, and illustrate the calculations with an example from cancer risk assessment. It is seen that this nonparametric approach can provide a useful alternative for BMD estimation when faced with the problem of parametric model uncertainty. PMID:23683057

  7. UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL

    EPA Science Inventory

    The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...

  8. Estimating age-based antiretroviral therapy costs for HIV-infected children in resource-limited settings based on World Health Organization weight-based dosing recommendations.

    PubMed

    Doherty, Kathleen; Essajee, Shaffiq; Penazzato, Martina; Holmes, Charles; Resch, Stephen; Ciaranello, Andrea

    2014-05-02

    Pediatric antiretroviral therapy (ART) has been shown to substantially reduce morbidity and mortality in HIV-infected infants and children. To accurately project program costs, analysts need accurate estimations of antiretroviral drug (ARV) costs for children. However, the costing of pediatric antiretroviral therapy is complicated by weight-based dosing recommendations which change as children grow. We developed a step-by-step methodology for estimating the cost of pediatric ARV regimens for children ages 0-13 years old. The costing approach incorporates weight-based dosing recommendations to provide estimated ARV doses throughout childhood development. Published unit drug costs are then used to calculate average monthly drug costs. We compared our derived monthly ARV costs to published estimates to assess the accuracy of our methodology. The estimates of monthly ARV costs are provided for six commonly used first-line pediatric ARV regimens, considering three possible care scenarios. The costs derived in our analysis for children were fairly comparable to or slightly higher than available published ARV drug or regimen estimates. The methodology described here can be used to provide an accurate estimation of pediatric ARV regimen costs for cost-effectiveness analysts to project the optimum packages of care for HIV-infected children, as well as for program administrators and budget analysts who wish to assess the feasibility of increasing pediatric ART availability in constrained budget environments.

  9. Simple Method to Estimate Mean Heart Dose From Hodgkin Lymphoma Radiation Therapy According to Simulation X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimwegen, Frederika A. van; Cutter, David J.; Oxford Cancer Centre, Oxford University Hospitals NHS Trust, Oxford

    Purpose: To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Methods and Materials: Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case–controlmore » study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. Results: According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Conclusion: Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a meaningful measure of mean heart dose for use in studies of late cardiac complications.« less

  10. Simple method to estimate mean heart dose from Hodgkin lymphoma radiation therapy according to simulation X-rays.

    PubMed

    van Nimwegen, Frederika A; Cutter, David J; Schaapveld, Michael; Rutten, Annemarieke; Kooijman, Karen; Krol, Augustinus D G; Janus, Cécile P M; Darby, Sarah C; van Leeuwen, Flora E; Aleman, Berthe M P

    2015-05-01

    To describe a new method to estimate the mean heart dose for Hodgkin lymphoma patients treated several decades ago, using delineation of the heart on radiation therapy simulation X-rays. Mean heart dose is an important predictor for late cardiovascular complications after Hodgkin lymphoma (HL) treatment. For patients treated before the era of computed tomography (CT)-based radiotherapy planning, retrospective estimation of radiation dose to the heart can be labor intensive. Patients for whom cardiac radiation doses had previously been estimated by reconstruction of individual treatments on representative CT data sets were selected at random from a case-control study of 5-year Hodgkin lymphoma survivors (n=289). For 42 patients, cardiac contours were outlined on each patient's simulation X-ray by 4 different raters, and the mean heart dose was estimated as the percentage of the cardiac contour within the radiation field multiplied by the prescribed mediastinal dose and divided by a correction factor obtained by comparison with individual CT-based dosimetry. According to the simulation X-ray method, the medians of the mean heart doses obtained from the cardiac contours outlined by the 4 raters were 30 Gy, 30 Gy, 31 Gy, and 31 Gy, respectively, following prescribed mediastinal doses of 25-42 Gy. The absolute-agreement intraclass correlation coefficient was 0.93 (95% confidence interval 0.85-0.97), indicating excellent agreement. Mean heart dose was 30.4 Gy with the simulation X-ray method, versus 30.2 Gy with the representative CT-based dosimetry, and the between-method absolute-agreement intraclass correlation coefficient was 0.87 (95% confidence interval 0.80-0.95), indicating good agreement between the two methods. Estimating mean heart dose from radiation therapy simulation X-rays is reproducible and fast, takes individual anatomy into account, and yields results comparable to the labor-intensive representative CT-based method. This simpler method may produce a meaningful measure of mean heart dose for use in studies of late cardiac complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Using machine learning to model dose-response relationships.

    PubMed

    Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K

    2016-12-01

    Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.

  12. A framework for estimating radiation-related cancer risks in Japan from the 2011 Fukushima nuclear accident.

    PubMed

    Walsh, L; Zhang, W; Shore, R E; Auvinen, A; Laurier, D; Wakeford, R; Jacob, P; Gent, N; Anspaugh, L R; Schüz, J; Kesminiene, A; van Deventer, E; Tritscher, A; del Rosarion Pérez, M

    2014-11-01

    We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes, and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.

  13. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  14. PARMA: PHITS-based Analytical Radiation Model in the Atmosphere--Verification of Its Accuracy in Estimating Cosmic Radiation Doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    Estimation of cosmic-ray spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses. We therefore developed an analytical model that can predict the terrestrial neutron, proton, He nucleus, muon, electron, positron and photon spectra at altitudes below 20 km, based on the Monte Carlo simulation results of cosmic-ray propagation in the atmosphere performed by the PHITS code. The model was designated PARMA. In order to examine the accuracy of PARMA in terms of the neutron dose estimation, we measured the neutron dose rates at the altitudes between 20 to 10400 m, using our developedmore » dose monitor DARWIN mounted on an aircraft. Excellent agreement was observed between the measured dose rates and the corresponding data calculated by PARMA coupled with the fluence-to-dose conversion coefficients, indicating the applicability of the model to be utilized in the route-dose calculation.« less

  15. A summary of evidence on radiation exposures received near to the Semipalatinsk nuclear weapons test site in Kazakhstan.

    PubMed

    Simon, Steven L; Baverstock, Keith F; Lindholm, Carita

    2003-06-01

    The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.

  16. Estimating age-based antiretroviral therapy costs for HIV-infected children in resource-limited settings based on World Health Organization weight-based dosing recommendations

    PubMed Central

    2014-01-01

    Background Pediatric antiretroviral therapy (ART) has been shown to substantially reduce morbidity and mortality in HIV-infected infants and children. To accurately project program costs, analysts need accurate estimations of antiretroviral drug (ARV) costs for children. However, the costing of pediatric antiretroviral therapy is complicated by weight-based dosing recommendations which change as children grow. Methods We developed a step-by-step methodology for estimating the cost of pediatric ARV regimens for children ages 0–13 years old. The costing approach incorporates weight-based dosing recommendations to provide estimated ARV doses throughout childhood development. Published unit drug costs are then used to calculate average monthly drug costs. We compared our derived monthly ARV costs to published estimates to assess the accuracy of our methodology. Results The estimates of monthly ARV costs are provided for six commonly used first-line pediatric ARV regimens, considering three possible care scenarios. The costs derived in our analysis for children were fairly comparable to or slightly higher than available published ARV drug or regimen estimates. Conclusions The methodology described here can be used to provide an accurate estimation of pediatric ARV regimen costs for cost-effectiveness analysts to project the optimum packages of care for HIV-infected children, as well as for program administrators and budget analysts who wish to assess the feasibility of increasing pediatric ART availability in constrained budget environments. PMID:24885453

  17. Median infectious dose (ID₅₀) of porcine reproductive and respiratory syndrome virus isolate MN-184 via aerosol exposure.

    PubMed

    Cutler, Timothy D; Wang, Chong; Hoff, Steven J; Kittawornrat, Apisit; Zimmerman, Jeffrey J

    2011-08-05

    The median infectious dose (ID(50)) of porcine reproductive and respiratory syndrome (PRRS) virus isolate MN-184 was determined for aerosol exposure. In 7 replicates, 3-week-old pigs (n=58) respired 10l of airborne PRRS virus from a dynamic aerosol toroid (DAT) maintained at -4°C. Thereafter, pigs were housed in isolation and monitored for evidence of infection. Infection occurred at virus concentrations too low to quantify by microinfectivity assays. Therefore, exposure dose was determined using two indirect methods ("calculated" and "theoretical"). "Calculated" virus dose was derived from the concentration of rhodamine B monitored over the exposure sequence. "Theoretical" virus dose was based on the continuous stirred-tank reactor model. The ID(50) estimate was modeled on the proportion of pigs that became infected using the probit and logit link functions for both "calculated" and "theoretical" exposure doses. Based on "calculated" doses, the probit and logit ID(50) estimates were 1 × 10(-0.13)TCID(50) and 1 × 10(-0.14)TCID(50), respectively. Based on "theoretical" doses, the probit and logit ID(50) were 1 × 10(0.26)TCID(50) and 1 × 10(0.24)TCID(50), respectively. For each point estimate, the 95% confidence interval included the other three point estimates. The results indicated that MN-184 was far more infectious than PRRS virus isolate VR-2332, the only other PRRS virus isolate for which ID(50) has been estimated for airborne exposure. Since aerosol ID(50) estimates are available for only these two isolates, it is uncertain whether one or both of these isolates represent the normal range of PRRS virus infectivity by this route. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. USE OF EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) TO CONSTRUCT A PBPK /MODEL FOR CARBOFURAN WITH THE REPORTED EXPERIMENTAL DATA IN THE RAT

    EPA Science Inventory

    To better understand the relationships among carbofuran exposure, dose, and effects, a physiologically-based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed for the rat using the Exposure Related Dose Estimating Model (ERDEM) framework.

  19. New Fetal Dose Estimates from 18F-FDG Administered During Pregnancy: Standardization of Dose Calculations and Estimations with Voxel-Based Anthropomorphic Phantoms.

    PubMed

    Zanotti-Fregonara, Paolo; Chastan, Mathieu; Edet-Sanson, Agathe; Ekmekcioglu, Ozgul; Erdogan, Ezgi Basak; Hapdey, Sebastien; Hindie, Elif; Stabin, Michael G

    2016-11-01

    Data from the literature show that the fetal absorbed dose from 18 F-FDG administration to the pregnant mother ranges from 0.5E-2 to 4E-2 mGy/MBq. These figures were, however, obtained using different quantification techniques and with basic geometric anthropomorphic phantoms. The aim of this study was to refine the fetal dose estimates of published as well as new cases using realistic voxel-based phantoms. The 18 F-FDG doses to the fetus (n = 19; 5-34 wk of pregnancy) were calculated with new voxel-based anthropomorphic phantoms of the pregnant woman. The image-derived fetal time-integrated activity values were combined with those of the mothers' organs from the International Commission on Radiological Protection publication 106 and the dynamic bladder model with a 1-h bladder-voiding interval. The dose to the uterus was used as a proxy for early pregnancy (up to 10 wk). The time-integrated activities were entered into OLINDA/EXM 1.1 to derive the dose with the classic anthropomorphic phantoms of pregnant women, then into OLINDA/EXM 2.0 to assess the dose using new voxel-based phantoms. The average fetal doses (mGy/MBq) with OLINDA/EXM 2.0 were 2.5E-02 in early pregnancy, 1.3E-02 in the late part of the first trimester, 8.5E-03 in the second trimester, and 5.1E-03 in the third trimester. The differences compared with the doses calculated with OLINDA/EXM 1.1 were +7%, +70%, +35%, and -8%, respectively. Except in late pregnancy, the doses estimated with realistic voxelwise anthropomorphic phantoms are higher than the doses derived from old geometric phantoms. The doses remain, however, well below the threshold for any deterministic effects. Thus, pregnancy is not an absolute contraindication of a clinically justified 18 F-FDG PET scan. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. A Web-Based System for Bayesian Benchmark Dose Estimation.

    PubMed

    Shao, Kan; Shapiro, Andrew J

    2018-01-11

    Benchmark dose (BMD) modeling is an important step in human health risk assessment and is used as the default approach to identify the point of departure for risk assessment. A probabilistic framework for dose-response assessment has been proposed and advocated by various institutions and organizations; therefore, a reliable tool is needed to provide distributional estimates for BMD and other important quantities in dose-response assessment. We developed an online system for Bayesian BMD (BBMD) estimation and compared results from this software with U.S. Environmental Protection Agency's (EPA's) Benchmark Dose Software (BMDS). The system is built on a Bayesian framework featuring the application of Markov chain Monte Carlo (MCMC) sampling for model parameter estimation and BMD calculation, which makes the BBMD system fundamentally different from the currently prevailing BMD software packages. In addition to estimating the traditional BMDs for dichotomous and continuous data, the developed system is also capable of computing model-averaged BMD estimates. A total of 518 dichotomous and 108 continuous data sets extracted from the U.S. EPA's Integrated Risk Information System (IRIS) database (and similar databases) were used as testing data to compare the estimates from the BBMD and BMDS programs. The results suggest that the BBMD system may outperform the BMDS program in a number of aspects, including fewer failed BMD and BMDL calculations and estimates. The BBMD system is a useful alternative tool for estimating BMD with additional functionalities for BMD analysis based on most recent research. Most importantly, the BBMD has the potential to incorporate prior information to make dose-response modeling more reliable and can provide distributional estimates for important quantities in dose-response assessment, which greatly facilitates the current trend for probabilistic risk assessment. https://doi.org/10.1289/EHP1289.

  1. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; ...

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 ( 131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of themore » Phantom with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less

  2. Fast skin dose estimation system for interventional radiology

    PubMed Central

    Takata, Takeshi; Kotoku, Jun’ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-01-01

    Abstract To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient’s computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7–7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods. PMID:29136194

  3. Fast skin dose estimation system for interventional radiology.

    PubMed

    Takata, Takeshi; Kotoku, Jun'ichi; Maejima, Hideyuki; Kumagai, Shinobu; Arai, Norikazu; Kobayashi, Takenori; Shiraishi, Kenshiro; Yamamoto, Masayoshi; Kondo, Hiroshi; Furui, Shigeru

    2018-03-01

    To minimise the radiation dermatitis related to interventional radiology (IR), rapid and accurate dose estimation has been sought for all procedures. We propose a technique for estimating the patient skin dose rapidly and accurately using Monte Carlo (MC) simulation with a graphical processing unit (GPU, GTX 1080; Nvidia Corp.). The skin dose distribution is simulated based on an individual patient's computed tomography (CT) dataset for fluoroscopic conditions after the CT dataset has been segmented into air, water and bone based on pixel values. The skin is assumed to be one layer at the outer surface of the body. Fluoroscopic conditions are obtained from a log file of a fluoroscopic examination. Estimating the absorbed skin dose distribution requires calibration of the dose simulated by our system. For this purpose, a linear function was used to approximate the relation between the simulated dose and the measured dose using radiophotoluminescence (RPL) glass dosimeters in a water-equivalent phantom. Differences of maximum skin dose between our system and the Particle and Heavy Ion Transport code System (PHITS) were as high as 6.1%. The relative statistical error (2 σ) for the simulated dose obtained using our system was ≤3.5%. Using a GPU, the simulation on the chest CT dataset aiming at the heart was within 3.49 s on average: the GPU is 122 times faster than a CPU (Core i7-7700K; Intel Corp.). Our system (using the GPU, the log file, and the CT dataset) estimated the skin dose more rapidly and more accurately than conventional methods.

  4. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies.

    PubMed

    Silva-Rodríguez, Jesús; Aguiar, Pablo; Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor; Cortés, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, Alvaro

    2014-05-01

    Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  5. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva-Rodríguez, Jesús, E-mail: jesus.silva.rodriguez@sergas.es; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es; Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manualmore » ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.« less

  6. Human papillomavirus (HPV) vaccination coverage in young Australian women is higher than previously estimated: independent estimates from a nationally representative mobile phone survey.

    PubMed

    Brotherton, Julia M L; Liu, Bette; Donovan, Basil; Kaldor, John M; Saville, Marion

    2014-01-23

    Accurate estimates of coverage are essential for estimating the population effectiveness of human papillomavirus (HPV) vaccination. Australia has a purpose built National HPV Vaccination Program Register for monitoring coverage, however notification of doses administered to young women in the community during the national catch-up program (2007-2009) was not compulsory. In 2011, we undertook a population-based mobile phone survey of young women to independently estimate HPV vaccination coverage. Randomly generated mobile phone numbers were dialed to recruit women aged 22-30 (age eligible for HPV vaccination) to complete a computer assisted telephone interview. Consent was sought to validate self reported HPV vaccination status against the national register. Coverage rates were calculated based on self report and weighted to the age and state of residence structure of the Australian female population. These were compared with coverage estimates from the register using Australian Bureau of Statistics estimated resident populations as the denominator. Among the 1379 participants, the national estimate for self reported HPV vaccination coverage for doses 1/2/3, respectively, weighted for age and state of residence, was 64/59/53%. This compares with coverage of 55/45/32% and 49/40/28% based on register records, using 2007 and 2011 population data as the denominators respectively. Some significant differences in coverage between the states were identified. 20% (223) of women returned a consent form allowing validation of doses against the register and provider records: among these women 85.6% (538) of self reported doses were confirmed. We confirmed that coverage rates for young women vaccinated in the community (at age 18-26 years) are underestimated by the national register and that under-notification is greater for second and third doses. Using 2011 population estimates, rather than estimates contemporaneous with the program rollout, reduces register-based coverage estimates further because of large population increases due to immigration since the program. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Assessing vaccination coverage in infants, survey studies versus the Flemish immunisation register: achieving the best of both worlds.

    PubMed

    Braeckman, Tessa; Lernout, Tinne; Top, Geert; Paeps, Annick; Roelants, Mathieu; Hoppenbrouwers, Karel; Van Damme, Pierre; Theeten, Heidi

    2014-01-09

    Infant immunisation coverage in Flanders, Belgium, is monitored through repeated coverage surveys. With the increased use of Vaccinnet, the web-based ordering system for vaccines in Flanders set up in 2004 and linked to an immunisation register, this database could become an alternative to quickly estimate vaccination coverage. To evaluate its current accuracy, coverage estimates generated from Vaccinnet alone were compared with estimates from the most recent survey (2012) that combined interview data with data from Vaccinnet and medical files. Coverage rates from registrations in Vaccinnet were systematically lower than the corresponding estimates obtained through the survey (mean difference 7.7%). This difference increased by dose number for vaccines that require multiple doses. Differences in administration date between the two sources were observed for 3.8-8.2% of registered doses. Underparticipation in Vaccinnet thus significantly impacts on the register-based immunisation coverage estimates, amplified by underregistration of administered doses among vaccinators using Vaccinnet. Therefore, survey studies, despite being labour-intensive and expensive, currently provide more complete and reliable results than register-based estimates alone in Flanders. However, further improvement of Vaccinnet's completeness will likely allow more accurate estimates in the nearby future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Spline-based procedures for dose-finding studies with active control

    PubMed Central

    Helms, Hans-Joachim; Benda, Norbert; Zinserling, Jörg; Kneib, Thomas; Friede, Tim

    2015-01-01

    In a dose-finding study with an active control, several doses of a new drug are compared with an established drug (the so-called active control). One goal of such studies is to characterize the dose–response relationship and to find the smallest target dose concentration d*, which leads to the same efficacy as the active control. For this purpose, the intersection point of the mean dose–response function with the expected efficacy of the active control has to be estimated. The focus of this paper is a cubic spline-based method for deriving an estimator of the target dose without assuming a specific dose–response function. Furthermore, the construction of a spline-based bootstrap CI is described. Estimator and CI are compared with other flexible and parametric methods such as linear spline interpolation as well as maximum likelihood regression in simulation studies motivated by a real clinical trial. Also, design considerations for the cubic spline approach with focus on bias minimization are presented. Although the spline-based point estimator can be biased, designs can be chosen to minimize and reasonably limit the maximum absolute bias. Furthermore, the coverage probability of the cubic spline approach is satisfactory, especially for bias minimal designs. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25319931

  9. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  10. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    PubMed Central

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-01-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643

  11. The dose from Compton backscatter screening.

    PubMed

    Rez, Peter; Metzger, Robert L; Mossman, Kenneth L

    2011-04-01

    Systems based on the detection of Compton backscattered X rays have been deployed for screening personnel for weapons and explosives. Similar principles are used for screening vehicles at border-crossing points. Based on well-established scattering cross sections and absorption coefficients in conjunction with reasonable estimates of the image contrast and resolution, the entrance skin dose and the dose at a depth of 1 cm can be calculated. The effective dose can be estimated using the same conversion coefficients as used to convert exposure measurements to the effective dose. It is shown that the effective dose is highly dependent on image resolution (i.e. pixel size).The effective doses for personnel screening systems are unlikely to be in compliance with the American National Standards Institute standard NS 43.17 unless the pixel sizes are >4 mm. Nevertheless, calculated effective doses are well below doses associated with health effects.

  12. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956-2007.

    PubMed

    Davis, F G; Yu, K L; Preston, D; Epifanova, S; Degteva, M; Akleyev, A V

    2015-07-01

    Previously reported studies of the Techa River Cohort have established associations between radiation dose and the occurrence of solid cancers and leukemia (non-CLL) that appear to be linear in dose response. These analyses include 17,435 cohort members alive and not known to have had cancer prior to January 1, 1956 who lived in areas near the river or Chelyabinsk City at some time between 1956 and the end of 2007, utilized individualized dose estimates computed using the Techa River Dosimetry System 2009 and included five more years of follow-up. The median and mean dose estimates based on these doses are consistently higher than those based on earlier Techa River Dosimetry System 2000 dose estimates. This article includes new site-specific cancer risk estimates and risk estimates adjusted for available information on smoking. There is a statistically significant (P = 0.02) linear trend in the smoking-adjusted all-solid cancer incidence risks with an excess relative risk (ERR) after exposure to 100 mGy of 0.077 with a 95% confidence interval of 0.013-0.15. Examination of site-specific risks revealed statistically significant radiation dose effects only for cancers of the esophagus and uterus with an ERR per 100 mGy estimates in excess of 0.10. Esophageal cancer risk estimates were modified by ethnicity and sex, but not smoking. While the solid cancer rates are attenuated when esophageal cancer is removed (ERR = 0.063 per 100 mGy), a dose-response relationship is present and it remains likely that radiation exposure has increased the risks for most solid cancers in the cohort despite the lack of power to detect statistically significant risks for specific sites.

  13. Dose Estimating Application Software Modification: Additional Function of a Size-Specific Effective Dose Calculator and Auto Exposure Control.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Shouichi; Matsunaga, Yuta; Haba, Tomonobu; Kawaguchi, Ai; Daioku, Tomihiko; Toyama, Hiroshi; Kato, Ryoichi

    2017-05-01

    Adequate dose management during computed tomography is important. In the present study, the dosimetric application software ImPACT was added to a functional calculator of the size-specific dose estimate and was part of the scan settings for the auto exposure control (AEC) technique. This study aimed to assess the practicality and accuracy of the modified ImPACT software for dose estimation. We compared the conversion factors identified by the software with the values reported by the American Association of Physicists in Medicine Task Group 204, and we noted similar results. Moreover, doses were calculated with the AEC technique and a fixed-tube current of 200 mA for the chest-pelvis region. The modified ImPACT software could estimate each organ dose, which was based on the modulated tube current. The ability to perform beneficial modifications indicates the flexibility of the ImPACT software. The ImPACT software can be further modified for estimation of other doses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Organ dose conversion coefficients for tube current modulated CT protocols for an adult population

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan

    2016-03-01

    In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.

  15. The internal dosimetry of Rubidium-82 based on dynamic PET/CT imaging in humans

    NASA Astrophysics Data System (ADS)

    Hunter, Chad R.

    Rubidium-82 (Rb-82) is a useful blood flow tracer, and has become important in recent years due to the shutdown of the Chalk River reactor. Published effective dose estimates for Rb-82 vary widely, and as yet no comprehensive study in man has been conducted with PET/CT, and no effective dose estimates for Rb-82 during pharmacological stress testing has been published. 30 subjects were recruited for rest, and 25 subjects were recruited for stress. The subjects consisted of both cardiac patients and normal subjects. For rest, a total of 283 organs were measured across 60 scans. For stress, a total of 171 organs were measured across 25 scans. Effective dose estimates were calculated using the ICRP 60, 80, and 103 tissue weighting factors. Relative differences between this study and the published in-vivo estimates showed agreement for the lungs. Relative differences between this study and the blood flow models showed differences> 5 times in the thyroid contribution to the effective dose demonstrating a limitation in these models. Comparisons between rest and stress effective dose estimates revealed no significant difference. The average 'adult' effective dose for Rb-82 was found to be 0.00084+/-0.00018 mSv/MBq. The highest dose organs were the lungs, kidneys and stomach wall. These dose estimates for Rb-82 are the first to be measured directly with PET/CT in humans, and are 4 times lower than previous ICRP 60 values based on a theoretical blood flow model. The total adult effective dose from a typical Rb-82 study including CT for attenuation correction and potential Sr-85 breakthrough is 1.5 +/- 0.4 mSv.

  16. Radiation doses for pediatric nuclear medicine studies: comparing the North American consensus guidelines and the pediatric dosage card of the European Association of Nuclear Medicine.

    PubMed

    Grant, Frederick D; Gelfand, Michael J; Drubach, Laura A; Treves, S Ted; Fahey, Frederic H

    2015-04-01

    Estimated radiation dose is important for assessing and communicating the risks and benefits of pediatric nuclear medicine studies. Radiation dose depends on the radiopharmaceutical, the administered activity, and patient factors such as age and size. Most radiation dose estimates for pediatric nuclear medicine have not been based on administered activities of radiopharmaceuticals recommended by established practice guidelines. The dosage card of the European Association of Nuclear Medicine (EANM) and the North American consensus guidelines each provide recommendations of administered activities of radiopharmaceuticals in children, but there are substantial differences between these two guidelines. For 12 commonly performed pediatric nuclear medicine studies, two established pediatric radiopharmaceutical administration guidelines were used to calculate updated radiation dose estimates and to compare the radiation exposure resulting from the recommendations of each of the guidelines. Estimated radiation doses were calculated for 12 common procedures in pediatric nuclear medicine using administered activities recommended by the dosage card of the EANM (version 1.5.2008) and the 2010 North American consensus guidelines for radiopharmaceutical administered activities in pediatrics. Based on standard models and nominal age-based weights, radiation dose was estimated for typical patients at ages 1, 5, 10 and 15 years and adult. The resulting effective doses were compared, with differences greater than 20% considered significant. Following either the EANM dosage card or the 2010 North American guidelines, the highest effective doses occur with radiopharmaceuticals labeled with fluorine-18 and iodine-123. In 24% of cases, following the North American consensus guidelines would result in a substantially higher radiation dose. The guidelines of the EANM dosage card would lead to a substantially higher radiation dose in 39% of all cases, and in 62% of cases in which patients were age 5 years or younger. For 12 commonly performed pediatric nuclear medicine studies, updated radiation dose estimates can guide efforts to reduce radiation exposure and provide current information for discussing radiation exposure and risk with referring physicians, patients and families. There can be substantial differences in radiation exposure for the same procedure, depending upon which of these two guidelines is followed. This discordance identifies opportunities for harmonization of the guidelines, which may lead to further reduction in nuclear medicine radiation doses in children.

  17. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry.

    PubMed

    Bostani, Maryam; Mueller, Jonathon W; McMillan, Kyle; Cody, Dianna D; Cagnon, Chris H; DeMarco, John J; McNitt-Gray, Michael F

    2015-02-01

    The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. The calculated mean percent difference between TLD measurements and Monte Carlo simulations was -4.9% with standard deviation of 8.7% and a range of -22.7% to 5.7%. The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  18. Do fungi need to be included within environmental radiation protection assessment models?

    PubMed

    Guillén, J; Baeza, A; Beresford, N A; Wood, M D

    2017-09-01

    Fungi are used as biomonitors of forest ecosystems, having comparatively high uptakes of anthropogenic and naturally occurring radionuclides. However, whilst they are known to accumulate radionuclides they are not typically considered in radiological assessment tools for environmental (non-human biota) assessment. In this paper the total dose rate to fungi is estimated using the ERICA Tool, assuming different fruiting body geometries, a single ellipsoid and more complex geometries considering the different components of the fruit body and their differing radionuclide contents based upon measurement data. Anthropogenic and naturally occurring radionuclide concentrations from the Mediterranean ecosystem (Spain) were used in this assessment. The total estimated weighted dose rate was in the range 0.31-3.4 μGy/h (5 th -95 th percentile), similar to natural exposure rates reported for other wild groups. The total estimated dose was dominated by internal exposure, especially from 226 Ra and 210 Po. Differences in dose rate between complex geometries and a simple ellipsoid model were negligible. Therefore, the simple ellipsoid model is recommended to assess dose rates to fungal fruiting bodies. Fungal mycelium was also modelled assuming a long filament. Using these geometries, assessments for fungal fruiting bodies and mycelium under different scenarios (post-accident, planned release and existing exposure) were conducted, each being based on available monitoring data. The estimated total dose rate in each case was below the ERICA screening benchmark dose, except for the example post-accident existing exposure scenario (the Chernobyl Exclusion Zone) for which a dose rate in excess of 35 μGy/h was estimated for the fruiting body. Estimated mycelium dose rate in this post-accident existing exposure scenario was close to the 400 μGy/h benchmark for plants, although fungi are generally considered to be less radiosensitive than plants. Further research on appropriate mycelium geometries and their radionuclide content is required. Based on the assessments presented in this paper, there is no need to recommend that fungi should be added to the existing assessment tools and frameworks; if required some tools allow a geometry representing fungi to be created and used within a dose assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  20. Costs of delivering human papillomavirus vaccination to schoolgirls in Mwanza Region, Tanzania

    PubMed Central

    2012-01-01

    Background Cervical cancer is the leading cause of female cancer-related deaths in Tanzania. Vaccination against human papillomavirus (HPV) offers a new opportunity to control this disease. This study aimed to estimate the costs of a school-based HPV vaccination project in three districts in Mwanza Region (NCT ID: NCT01173900), Tanzania and to model incremental scaled-up costs of a regional vaccination program. Methods We first conducted a top-down cost analysis of the vaccination project, comparing observed costs of age-based (girls born in 1998) and class-based (class 6) vaccine delivery in a total of 134 primary schools. Based on the observed project costs, we then modeled incremental costs of a scaled-up vaccination program for Mwanza Region from the perspective of the Tanzanian government, assuming that HPV vaccines would be delivered through the Expanded Programme on Immunization (EPI). Results Total economic project costs for delivering 3 doses of HPV vaccine to 4,211 girls were estimated at about US$349,400 (including a vaccine price of US$5 per dose). Costs per fully-immunized girl were lower for class-based delivery than for age-based delivery. Incremental economic scaled-up costs for class-based vaccination of 50,290 girls in Mwanza Region were estimated at US$1.3 million. Economic scaled-up costs per fully-immunized girl were US$26.41, including HPV vaccine at US$5 per dose. Excluding vaccine costs, vaccine could be delivered at an incremental economic cost of US$3.09 per dose and US$9.76 per fully-immunized girl. Financial scaled-up costs, excluding costs of the vaccine and salaries of existing staff were estimated at US$1.73 per dose. Conclusions Project costs of class-based vaccination were found to be below those of age-based vaccination because of more eligible girls being identified and higher vaccine uptake. We estimate that vaccine can be delivered at costs that would make HPV vaccination a very cost-effective intervention. Potentially, integrating HPV vaccine delivery with cost-effective school-based health interventions and a reduction of vaccine price below US$5 per dose would further reduce the costs per fully HPV-immunized girl. PMID:23148516

  1. Costs of delivering human papillomavirus vaccination to schoolgirls in Mwanza Region, Tanzania.

    PubMed

    Quentin, Wilm; Terris-Prestholt, Fern; Changalucha, John; Soteli, Selephina; Edmunds, W John; Hutubessy, Raymond; Ross, David A; Kapiga, Saidi; Hayes, Richard; Watson-Jones, Deborah

    2012-11-13

    Cervical cancer is the leading cause of female cancer-related deaths in Tanzania. Vaccination against human papillomavirus (HPV) offers a new opportunity to control this disease. This study aimed to estimate the costs of a school-based HPV vaccination project in three districts in Mwanza Region (NCT ID: NCT01173900), Tanzania and to model incremental scaled-up costs of a regional vaccination program. We first conducted a top-down cost analysis of the vaccination project, comparing observed costs of age-based (girls born in 1998) and class-based (class 6) vaccine delivery in a total of 134 primary schools. Based on the observed project costs, we then modeled incremental costs of a scaled-up vaccination program for Mwanza Region from the perspective of the Tanzanian government, assuming that HPV vaccines would be delivered through the Expanded Programme on Immunization (EPI). Total economic project costs for delivering 3 doses of HPV vaccine to 4,211 girls were estimated at about US$349,400 (including a vaccine price of US$5 per dose). Costs per fully-immunized girl were lower for class-based delivery than for age-based delivery. Incremental economic scaled-up costs for class-based vaccination of 50,290 girls in Mwanza Region were estimated at US$1.3 million. Economic scaled-up costs per fully-immunized girl were US$26.41, including HPV vaccine at US$5 per dose. Excluding vaccine costs, vaccine could be delivered at an incremental economic cost of US$3.09 per dose and US$9.76 per fully-immunized girl. Financial scaled-up costs, excluding costs of the vaccine and salaries of existing staff were estimated at US$1.73 per dose. Project costs of class-based vaccination were found to be below those of age-based vaccination because of more eligible girls being identified and higher vaccine uptake. We estimate that vaccine can be delivered at costs that would make HPV vaccination a very cost-effective intervention. Potentially, integrating HPV vaccine delivery with cost-effective school-based health interventions and a reduction of vaccine price below US$5 per dose would further reduce the costs per fully HPV-immunized girl.

  2. A novel approach for estimating ingested dose associated with paracetamol overdose

    PubMed Central

    Zurlinden, Todd J.; Heard, Kennon

    2015-01-01

    Aim In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue‐specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow‐up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. Methods The core component of the computational framework was a physiologically‐based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter‐study variability, and facilitating the calculation of uncertainty in model outputs. Results Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Conclusions Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow‐up plan. PMID:26441245

  3. A novel approach for estimating ingested dose associated with paracetamol overdose.

    PubMed

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  4. EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...

  5. A Monte Carlo study of the impact of the choice of rectum volume definition on estimates of equivalent uniform doses and the volume parameter

    NASA Astrophysics Data System (ADS)

    Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav

    2004-08-01

    Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.

  6. Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans

    NASA Astrophysics Data System (ADS)

    McMillan, Kyle Lorin

    Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully-, partially- and indirectly-irradiated organ dose from TCM CT exams. By accounting for the effects of patient size in the organ dose estimates, a comprehensive set of patient-specific dose estimates from TCM CT exams was developed. These patient-specific organ dose estimates from TCM CT exams will provide a more complete understanding of the dose impact and risks associated with modern body CT scanning protocols.

  7. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy.

    PubMed

    Takada, Kenta; Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  8. Validation of the physical and RBE-weighted dose estimator based on PHITS coupled with a microdosimetric kinetic model for proton therapy

    PubMed Central

    Sato, Tatsuhiko; Kumada, Hiroaki; Koketsu, Junichi; Takei, Hideyuki; Sakurai, Hideyuki; Sakae, Takeji

    2018-01-01

    Abstract The microdosimetric kinetic model (MKM) is widely used for estimating relative biological effectiveness (RBE)-weighted doses for various radiotherapies because it can determine the surviving fraction of irradiated cells based on only the lineal energy distribution, and it is independent of the radiation type and ion species. However, the applicability of the method to proton therapy has not yet been investigated thoroughly. In this study, we validated the RBE-weighted dose calculated by the MKM in tandem with the Monte Carlo code PHITS for proton therapy by considering the complete simulation geometry of the clinical proton beam line. The physical dose, lineal energy distribution, and RBE-weighted dose for a 155 MeV mono-energetic and spread-out Bragg peak (SOBP) beam of 60 mm width were evaluated. In estimating the physical dose, the calculated depth dose distribution by irradiating the mono-energetic beam using PHITS was consistent with the data measured by a diode detector. A maximum difference of 3.1% in the depth distribution was observed for the SOBP beam. In the RBE-weighted dose validation, the calculated lineal energy distributions generally agreed well with the published measurement data. The calculated and measured RBE-weighted doses were in excellent agreement, except at the Bragg peak region of the mono-energetic beam, where the calculation overestimated the measured data by ~15%. This research has provided a computational microdosimetric approach based on a combination of PHITS and MKM for typical clinical proton beams. The developed RBE-estimator function has potential application in the treatment planning system for various radiotherapies. PMID:29087492

  9. SU-E-I-57: Estimating the Occupational Eye Lens Dose in Interventional Radiology Using Active Personal Dosimeters Worn On the Chest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, A; Marteinsdottir, M; Kadesjo, N

    Purpose: To provide a general formalism for determination of occupational eye lens dose based on the response of an active personal dosimeter (APD) worn at chest level above the radiation protection apron. Methods: The formalism consists of three factors: (1) APD conversion factor converting the reading at chest level (APDchest) to the corresponding personal dose equivalent at eye level, (2) Dose conversion factor transferring the measured dose quantity, Hp(10), into a dose quantity relevant for the eye lens dose, (3) Correction factor accounting for differences in exposure of the eye(s) compared to the exposure at chest level (e.g., due tomore » protective lead glasses).The different factors were investigated and evaluated based on phantom and clinical measurements performed in an x-ray angiography suite for interventional cardiology. Results: The eye lens dose can be conservatively estimated by assigning an appropriate numerical value to each factor entering the formalism that in most circumstances overestimates the dose. Doing so, the eye lens dose to the primary operator and assisting staff was estimated in this work as D-eye,primary = 2.0 APDchest and D-eye,assisting = 1.0 APDchest, respectively.The annual eye lens dose to three nurses and one cardiologist was estimated to be 2, 2, 2, and 13 mSv (Hp(0.07)), respectively, using a TLD dosimeter worn at eye level. In comparison, using the formalism and APDchest measurements, the respective doses were 2, 2, 2, and 16 mSv (Hp(3)). Conclusion: The formalism outlined in this work can be used to estimate the occupational eye lens dose from the response of an APD worn on the chest. The formalism is general and could be applied also to other types of dosimeters. However, the numerical value of the different factors may differ from those obtained with the APD’s used in this work due to differences in dosimeter properties.« less

  10. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  11. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  12. Quantitative dose-response assessment of inhalation exposures to toxic air pollutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarabek, A.M.; Foureman, G.L.; Gift, J.S.

    1997-12-31

    Implementation of the 1990 Clean Air Act Amendments, including evaluation of residual risks. requires accurate human health risk estimates of both acute and chronic inhalation exposures to toxic air pollutants. The U.S. Environmental Protection Agency`s National Center for Environmental Assessment, Research Triangle Park, NC, has a research program that addresses several key issues for development of improved quantitative approaches for dose-response assessment. This paper describes three projects underway in the program. Project A describes a Bayesian approach that was developed to base dose-response estimates on combined data sets and that expresses these estimates as probability density functions. A categorical regressionmore » model has been developed that allows for the combination of all available acute data, with toxicity expressed as severity categories (e.g., mild, moderate, severe), and with both duration and concentration as governing factors. Project C encompasses two refinements to uncertainty factors (UFs) often applied to extrapolate dose-response estimates from laboratory animal data to human equivalent concentrations. Traditional UFs have been based on analyses of oral administration and may not be appropriate for extrapolation of inhalation exposures. Refinement of the UF applied to account for the use of subchronic rather than chronic data was based on an analysis of data from inhalation exposures (Project C-1). Mathematical modeling using the BMD approach was used to calculate the dose-response estimates for comparison between the subchronic and chronic data so that the estimates were not subject to dose-spacing or sample size variability. The second UF that was refined for extrapolation of inhalation data was the adjustment for the use of a LOAEL rather than a NOAEL (Project C-2).« less

  13. Development of a biologically based dose response (BBDR) model for arsenic induced cancer

    EPA Science Inventory

    We are developing a biologically based dose response (BBDR) model for arsenic carcinogenicity in order to reduce uncertainty in estimates of low dose risk by maximizing the use of relevant data on the mode of action. Expert consultation and literature review are being conducted t...

  14. Estimated fluoride doses from toothpastes should be based on total soluble fluoride.

    PubMed

    Oliveira, Maria José L; Martins, Carolina C; Paiva, Saul M; Tenuta, Livia M A; Cury, Jaime A

    2013-11-01

    The fluoride dose ingested by young children may be overestimated if based on levels of total fluoride (TF) rather than levels of bioavailable fluoride (total soluble fluoride-TSF) in toothpaste. The aim of the present study was to compare doses of fluoride intake based on TF and TSF. Fluoride intake in 158 Brazilian children aged three and four years was determined after tooth brushing with their usual toothpaste (either family toothpaste (n = 80) or children's toothpaste (n = 78)). The estimated dose (mg F/day/Kg of body weight) of TF or TSF ingested was calculated from the chemical analysis of the toothpastes. Although the ingested dose of TF from the family toothpastes was higher than that from the children's toothpastes (0.074 ± 0.007 and 0.039 ± 0.003 mg F/day/Kg, respectively; p < 0.05), no difference between types of toothpaste was found regarding the ingested dose based on TSF (0.039 ± 0.005 and 0.039 ± 0.005 mg F/day/Kg, respectively; p > 0.05). The fluoride dose ingested by children from toothpastes may be overestimated if based on the TF of the product. This finding suggests that the ingested dose should be calculated based on TSF. Dose of TSF ingested by children is similar whether family or children's toothpaste is used.

  15. Estimated Fluoride Doses from Toothpastes Should be Based on Total Soluble Fluoride

    PubMed Central

    Oliveira, Maria José L.; Martins, Carolina C.; Paiva, Saul M.; Tenuta, Livia M. A.; Cury, Jaime A.

    2013-01-01

    The fluoride dose ingested by young children may be overestimated if based on levels of total fluoride (TF) rather than levels of bioavailable fluoride (total soluble fluoride—TSF) in toothpaste. The aim of the present study was to compare doses of fluoride intake based on TF and TSF. Fluoride intake in 158 Brazilian children aged three and four years was determined after tooth brushing with their usual toothpaste (either family toothpaste (n = 80) or children’s toothpaste (n = 78)). The estimated dose (mg F/day/Kg of body weight) of TF or TSF ingested was calculated from the chemical analysis of the toothpastes. Although the ingested dose of TF from the family toothpastes was higher than that from the children’s toothpastes (0.074 ± 0.007 and 0.039 ± 0.003 mg F/day/Kg, respectively; p < 0.05), no difference between types of toothpaste was found regarding the ingested dose based on TSF (0.039 ± 0.005 and 0.039 ± 0.005 mg F/day/Kg, respectively; p > 0.05). The fluoride dose ingested by children from toothpastes may be overestimated if based on the TF of the product. This finding suggests that the ingested dose should be calculated based on TSF. Dose of TSF ingested by children is similar whether family or children’s toothpaste is used. PMID:24189183

  16. Quantification of dose uncertainties for the bladder in prostate cancer radiotherapy based on dominant eigenmodes

    NASA Astrophysics Data System (ADS)

    Rios, Richard; Acosta, Oscar; Lafond, Caroline; Espinosa, Jairo; de Crevoisier, Renaud

    2017-11-01

    In radiotherapy for prostate cancer the dose at the treatment planning for the bladder may be a bad surrogate of the actual delivered dose as the bladder presents the largest inter-fraction shape variations during treatment. This paper presents PCA models as a virtual tool to estimate dosimetric uncertainties for the bladder produced by motion and deformation between fractions. Our goal is to propose a methodology to determine the minimum number of modes required to quantify dose uncertainties of the bladder for motion/deformation models based on PCA. We trained individual PCA models using the bladder contours available from three patients with a planning computed tomography (CT) and on-treatment cone-beam CTs (CBCTs). Based on the above models and via deformable image registration (DIR), we estimated two accumulated doses: firstly, an accumulated dose obtained by integrating the planning dose over the Gaussian probability distribution of the PCA model; and secondly, an accumulated dose obtained by simulating treatment courses via a Monte Carlo approach. We also computed a reference accumulated dose for each patient using his available images via DIR. Finally, we compared the planning dose with the three accumulated doses, and we calculated local dose variability and dose-volume histogram uncertainties.

  17. Validation of ELDO approaches for retrospective assessment of cumulative eye lens doses of interventional cardiologists-results from DoReMi project.

    PubMed

    Domienik, J; Farah, J; Struelens, L

    2016-12-01

    The first validation results of the two approaches developed in the ELDO project for retrospective assessment of eye lens doses for interventional cardiologists (ICs) are presented in this paper. The first approach (a) is based on both the readings from the routine whole body dosimeter worn above the lead apron and procedure-dependent conversion coefficients, while the second approach (b) is based on detailed information related to the occupational exposure history of the ICs declared in a questionnaire and eye lens dose records obtained from the relevant literature. The latter approach makes use of various published eye lens doses per procedure as well as the appropriate correction factors which account for the use of radiation protective tools designed to protect the eye lens. To validate both methodologies, comprehensive measurements were performed in several Polish clinics among recruited physicians. Two dosimeters measuring whole body and eye lens doses were worn by every physician for at least two months. The estimated cumulative eye lens doses, calculated from both approaches, were then compared against the measured eye lens dose value for every physician separately. Both approaches results in comparable estimates of eye lens doses and tend to overestimate rather than underestimate the eye lens doses. The measured and estimated doses do not differ, on average, by a factor higher than 2.0 in 85% and 62% of the cases used to validate approach (a) and (b), respectively. In specific cases, however, the estimated doses differ from the measured ones by as much as a factor of 2.7 and 5.1 for method (a) and (b), respectively. As such, the two approaches can be considered accurate when retrospectively estimating the eye lens doses for ICs and will be of great benefit for ongoing epidemiological studies.

  18. Conceptus radiation dose and risk from chest screen-film radiography.

    PubMed

    Damilakis, John; Perisinakis, Kostas; Prassopoulos, Panos; Dimovasili, Evangelia; Varveris, Haralambos; Gourtsoyiannis, Nicholas

    2003-02-01

    The objectives of the present study were to (a) estimate the conceptus radiation dose and risks for pregnant women undergoing posteroanterior and anteroposterior (AP) chest radiographs, (b) study the conceptus dose as a function of chest thickness of the patient undergoing chest radiograph, and (c) investigate the possibility of a conceptus to receive a dose of more than 10 mGy, the level above which specific measurements of conceptus doses may be necessary. Thermoluminescent dosimeters were used for dose measurements in anthropomorphic phantoms simulating pregnancy at the three trimesters of gestation. The effect of chest thickness on conceptus dose and risk was studied by adding slabs of lucite on the anterior and posterior surface of the phantom chest. The conceptus risk for radiation-induced childhood fatal cancer and hereditary effects was calculated based on appropriate risk factors. The average AP chest dimension (d(a)) was estimated for 51 women of childbearing age from chest CT examinations. The value of d(a) was estimated to be 22.3 cm (17.4-27.2 cm). The calculated maximum conceptus dose was 107 x 10(-3) mGy for AP chest radiographs performed during the third trimester of pregnancy with maternal chest thickness of 27.2 cm. This calculation was based on dose data obtained from measurements in the phantoms and d(a) estimated from the patient group. The corresponding average excess of childhood cancer was 10.7 per million patients. The risk for hereditary effects was 1.1 per million births. Radiation dose for a conceptus increases exponentially as chest thickness increases. The conceptus dose at the third trimester is higher than that of the second and first trimesters. The results of the current study suggest that chest radiographs carried out in women at any time during gestation will result in a negligible increase in risk of radiation-induced harmful effects to the unborn child. After a properly performed maternal chest X-ray, there is no need for individual conceptus dose estimations.

  19. Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.

    PubMed

    Horn, Simon; Barnard, Stephen; Rothkamm, Kai

    2011-01-01

    Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures.

  20. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for allmore » exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was −4.9% with standard deviation of 8.7% and a range of −22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.« less

  1. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  2. Estimation of body surface area in the musk shrew ( Suncus murinus): a small animal for testing chemotherapy-induced emesis.

    PubMed

    Eiseman, Julie L; Sciullo, Michael; Wang, Hong; Beumer, Jan H; Horn, Charles C

    2017-10-01

    Several cancer chemotherapies cause nausea and vomiting, which can be dose-limiting. Musk shrews are used as preclinical models for chemotherapy-induced emesis and for antiemetic effectiveness. Unlike rats and mice, shrews possess a vomiting reflex and demonstrate an emetic profile similar to humans, including acute and delayed phases. As with most animals, dosing of shrews is based on body weight, while translation of such doses to clinically equivalent exposure requires doses based on body surface area. In the current study body surface area in musk shrews was directly assessed to determine the Meeh constant (K m ) conversion factor (female = 9.97, male = 9.10), allowing estimation of body surface area based on body weight. These parameters can be used to determine dosing strategies for shrew studies that model human drug exposures, particularly for investigating the emetic liability of cancer chemotherapeutic agents.

  3. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    PubMed

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  4. Dose equivalent rate constants and barrier transmission data for nuclear medicine facility dose calculations and shielding design.

    PubMed

    Kusano, Maggie; Caldwell, Curtis B

    2014-07-01

    A primary goal of nuclear medicine facility design is to keep public and worker radiation doses As Low As Reasonably Achievable (ALARA). To estimate dose and shielding requirements, one needs to know both the dose equivalent rate constants for soft tissue and barrier transmission factors (TFs) for all radionuclides of interest. Dose equivalent rate constants are most commonly calculated using published air kerma or exposure rate constants, while transmission factors are most commonly calculated using published tenth-value layers (TVLs). Values can be calculated more accurately using the radionuclide's photon emission spectrum and the physical properties of lead, concrete, and/or tissue at these energies. These calculations may be non-trivial due to the polyenergetic nature of the radionuclides used in nuclear medicine. In this paper, the effects of dose equivalent rate constant and transmission factor on nuclear medicine dose and shielding calculations are investigated, and new values based on up-to-date nuclear data and thresholds specific to nuclear medicine are proposed. To facilitate practical use, transmission curves were fitted to the three-parameter Archer equation. Finally, the results of this work were applied to the design of a sample nuclear medicine facility and compared to doses calculated using common methods to investigate the effects of these values on dose estimates and shielding decisions. Dose equivalent rate constants generally agreed well with those derived from the literature with the exception of those from NCRP 124. Depending on the situation, Archer fit TFs could be significantly more accurate than TVL-based TFs. These results were reflected in the sample shielding problem, with unshielded dose estimates agreeing well, with the exception of those based on NCRP 124, and Archer fit TFs providing a more accurate alternative to TVL TFs and a simpler alternative to full spectral-based calculations. The data provided by this paper should assist in improving the accuracy and tractability of dose and shielding calculations for nuclear medicine facility design.

  5. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao Rui; Bernard, Damian; Turian, Julius

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less

  6. Reducing radiation dose to the female breast during conventional and dedicated breast computed tomography

    NASA Astrophysics Data System (ADS)

    Rupcich, Franco John

    The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT. A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the need to run Monte Carlo simulations. The database was used to estimate breast dose for simulated CT images acquired for a reference protocol and five protocols intended to reduce breast dose. For each protocol, the performance of two tasks (detection of signals with unknown locations) was compared over a range of breast dose levels using a task-based, signal-detectability metric: the estimator of the area under the exponential free-response relative operating characteristic curve, AFE. For large-diameter/medium-contrast signals, when maintaining equivalent AFE, the 80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded protocol increased breast dose by 68%. Results for the small-diameter/high-contrast signal followed similar trends, but with smaller magnitude of the percent changes in dose. The 80 kV protocols demonstrated the greatest reduction to breast dose, however, the subsequent increase in noise may be clinically unacceptable. Tube output for these protocols can be adjusted to achieve more desirable noise levels with lesser dose reduction. The improvement in CNR of optimally projection-based and image-based weighted images relative to photon-counting was investigated for six different energy bin combinations using a bench-top energy-resolving CT system with a cadmium zinc telluride (CZT) detector. The non-ideal spectral response reduced the CNR for the projection-based weighted images, while image-based weighting improved CNR for five out of the six investigated bin combinations, despite this non-ideal response, indicating potential for image-based weighting to reduce breast dose during dedicated breast CT.

  7. Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA

    Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less

  8. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    PubMed Central

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-01-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1–3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure. PMID:27445126

  9. Establishment of a γ-H2AX foci-based assay to determine biological dose of radon to red bone marrow in rats

    NASA Astrophysics Data System (ADS)

    Wang, Jing; He, Linfeng; Fan, Dunhuang; Ding, Defang; Wang, Xufei; Gao, Yun; Zhang, Xuxia; Li, Qiang; Chen, Honghong

    2016-07-01

    The biodosimetric information is critical for assessment of cancer risk in populations exposed to high radon. However, no tools are available for biological dose estimation following radon exposure. Here, we established a γ-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled rats. After 1-3 h of in vitro radon exposure, a specific pattern of γ-H2AX foci, linear tracks with individual p-ATM and p-DNA-PKcs foci, was observed, and the yield of γ-H2AX foci and its linear tracks displayed a linear dose-response manner in both rat peripheral blood lymphocytes (PBLs) and bone-marrow lymphocytes (BMLs). When the cumulative doses of radon inhaled by rats reached 14, 30 and 60 working level months (WLM), the yields of three types of foci markedly increased in both PBLs and BMLs, and γ-H2AX foci-based dose estimates to RBM were 0.97, 2.06 and 3.94 mGy, respectively. Notably, BMLs displayed a more profound increase of three types of foci than PBLs, and the absorbed dose ratio between BMLs and PBLs was similar between rats exposed to 30 and 60 WLM of radon. Taken together, γ-H2AX foci quantitation in PBLs is able to estimate RBM-absorbed doses with the dose-response curve of γ-H2AX foci after in vitro radon exposure and the ratio of RBM- to PBL-absorbed doses in rats following radon exposure.

  10. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates.

    PubMed

    Hou, X; Tanguay, J; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-01-21

    In response to the recognized fragility of reactor-produced (99)Mo supply, direct production of (99m)Tc via (100)Mo(p,2n)(99m)Tc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with (99m)Tc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical (99m)Tc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  11. Molybdenum target specifications for cyclotron production of 99mTc based on patient dose estimates

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-01-01

    In response to the recognized fragility of reactor-produced 99Mo supply, direct production of 99mTc via 100Mo(p,2n)99mTc reaction using medical cyclotrons has been investigated. However, due to the existence of other Molybdenum (Mo) isotopes in the target, in parallel with 99mTc, other technetium (Tc) radioactive isotopes (impurities) will be produced. They will be incorporated into the labeled radiopharmaceuticals and result in increased patient dose. The isotopic composition of the target and beam energy are main factors that determine production of impurities, thus also dose increases. Therefore, they both must be considered when selecting targets for clinical 99mTc production. Although for any given Mo target, the patient dose can be predicted based on complicated calculations of production yields for each Tc radioisotope, it would be very difficult to reverse these calculations to specify target composition based on dosimetry considerations. In this article, a relationship between patient dosimetry and Mo target composition is studied. A simple and easy algorithm for dose estimation, based solely on the knowledge of target composition and beam energy, is described. Using this algorithm, the patient dose increase due to every Mo isotope that could be present in the target is estimated. Most importantly, a technique to determine Mo target composition thresholds that would meet any given dosimetry requirement is proposed.

  12. ESTIMATING CHILDREN'S DERMAL AND NON-DIETARY INGESTION EXPOSURE AND DOSE WITH EPA'S SHEDS MODEL

    EPA Science Inventory

    A physically-based stochastic model (SHEDS) has been developed to estimate pesticide exposure and dose to children via dermal residue contact and non-dietary ingestion. Time-location-activity data are sampled from national survey results to generate a population of simulated ch...

  13. Fluence-to-dose conversion coefficients for heavy ions calculated using the PHITS code and the ICRP/ICRU adult reference computational phantoms.

    PubMed

    Sato, Tatsuhiko; Endo, Akira; Niita, Koji

    2010-04-21

    The fluence to organ-absorbed-dose and effective-dose conversion coefficients for heavy ions with atomic numbers up to 28 and energies from 1 MeV/nucleon to 100 GeV/nucleon were calculated using the PHITS code coupled to the ICRP/ICRU adult reference computational phantoms, following the instruction given in ICRP Publication 103 (2007 (Oxford: Pergamon)). The conversion coefficients for effective dose equivalents derived using the radiation quality factors of both Q(L) and Q(y) relationships were also estimated, utilizing the functions for calculating the probability densities of absorbed dose in terms of LET (L) and lineal energy (y), respectively, implemented in PHITS. The calculation results indicate that the effective dose can generally give a conservative estimation of the effective dose equivalent for heavy-ion exposure, although it is occasionally too conservative especially for high-energy lighter-ion irradiations. It is also found from the calculation that the conversion coefficients for the Q(y)-based effective dose equivalents are generally smaller than the corresponding Q(L)-based values because of the conceptual difference between LET and y as well as the numerical incompatibility between the Q(L) and Q(y) relationships. The calculated data of these dose conversion coefficients are very useful for the dose estimation of astronauts due to cosmic-ray exposure.

  14. Doses from external irradiation to Marshall Islanders from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Bouville, André; Beck, Harold L; Simon, Steven L

    2010-08-01

    Annual doses from external irradiation resulting from exposure to fallout from the 65 atmospheric nuclear weapons tests conducted in the Marshall Islands at Bikini and Enewetak between 1946 and 1958 have been estimated for the first time for Marshallese living on all inhabited atolls. All tests that deposited fallout on any of the 23 inhabited atolls or separate reef islands have been considered. The methodology used to estimate the radiation doses at the inhabited atolls is based on test- and location-specific radiation survey data, deposition density estimates of 137Cs, and fallout times-of-arrival provided in a companion paper (Beck et al.), combined with information on the radionuclide composition of the fallout at various times after each test. These estimates of doses from external irradiation have been combined with corresponding estimates of doses from internal irradiation, given in a companion paper (Simon et al.), to assess the cancer risks among the Marshallese population (Land et al.) resulting from exposure to radiation from the nuclear weapons tests.

  15. Estimated ultraviolet radiation doses in wetlands in six national parks

    USGS Publications Warehouse

    Diamond, S.A.; Trenham, P.C.; Adams, Michael J.; Hossack, B.R.; Knapp, R.A.; Stark, L.; Bradford, D.; Corn, P.S.; Czarnowski, K.; Brooks, P.D.; Fagre, D.B.; Breen, B.; Dentenbeck, N.E.; Tonnessen, K.

    2005-01-01

    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m−2 (range of 3.4–32.1 W-h m−2). The mean dose was lowest in Acadia (13.7 W-h m−2) and highest in Rocky (24.4 W-h m−2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 μW cm−2 (range 21.4–194.7 μW cm−2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L−1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms.

  16. ESTIMATION OF EXPOSURE DOSES FOR THE SAFE MANAGEMENT OF NORM WASTE DISPOSAL.

    PubMed

    Jeong, Jongtae; Ko, Nak Yul; Cho, Dong-Keun; Baik, Min Hoon; Yoon, Ki-Hoon

    2018-03-16

    Naturally occurring radioactive materials (NORM) wastes with different radiological characteristics are generated in several industries. The appropriate options for NORM waste management including disposal options should be discussed and established based on the act and regulation guidelines. Several studies calculated the exposure dose and mass of NORM waste to be disposed in landfill site by considering the activity concentration level and exposure dose. In 2012, the Korean government promulgated an act on the safety control of NORM around living environments to protect human health and the environment. For the successful implementation of this act, we suggest a reference design for a landfill for the disposal of NORM waste. Based on this reference landfill, we estimate the maximum exposure doses and the relative impact of each pathway to exposure dose for three scenarios: a reference scenario, an ingestion pathway exclusion scenario, and a low leach rate scenario. Also, we estimate the possible quantity of NORM waste disposal into a landfill as a function of the activity concentration level of U series, Th series and 40K and two kinds of exposure dose levels, 1 and 0.3 mSv/y. The results of this study can be used to support the establishment of technical bases of the management strategy for the safe disposal of NORM waste.

  17. Ceftazidime dosing in the elderly: economic implications.

    PubMed

    Vlasses, P H; Bastion, W A; Behal, R; Sirgo, M A

    1993-01-01

    This study evaluated the prevalence and resulting costs of ceftazidime dosing in excess of product labeling recommendations in elderly hospitalized patients. Ceftazidime is a beta-lactam antibiotic excreted via glomerular filtration. According to product labeling, ceftazidime dosing can frequently be decreased in the elderly because glomerular filtration declines with age. A multicenter, retrospective utilization audit involving 11 US academic medical centers examined 221 medical records of patients 65 years of age or older receiving ceftazidime (any brand, any indication). The creatinine clearance of each patient was estimated using the Cockcroft-Gault formula. Renal insufficiency, defined as an estimated creatinine clearance of less than 50 mL/min, was present in 111 of the patients (50 percent). Ceftazidime dosing in excess of product labeling recommendations was noted in 75 of those 111 (68 percent). The cost of excess ceftazidime dosing for those 75 patients (i.e., extra drug acquisition, preparation, administration) was $13,822.50. Although the dosage of ceftazidime required in a specific patient is based on many factors, ceftazidime is frequently overdosed in the elderly because renal function is not considered. Ceftazidime dose-adjustment in the elderly, based on the estimated creatinine clearance, can lead to cost savings. In the US, where hospital reimbursement by Medicare is based on diagnosis, institutions can realize direct cost savings.

  18. Predictive dose-based estimation of systemic exposure multiples in mouse and monkey relative to human for antisense oligonucleotides with 2'-o-(2-methoxyethyl) modifications.

    PubMed

    Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S

    2015-01-20

    Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.

  19. Doses and risks from the ingestion of Dounreay fuel fragments.

    PubMed

    Darley, P J; Charles, M W; Fell, T P; Harrison, J D

    2003-01-01

    The radiological implications of ingestion of nuclear fuel fragments present in the marine environment around Dounreay have been reassessed by using the Monte Carlo code MCNP to obtain improved estimates of the doses to target cells in the walls of the lower large intestine resulting from the passage of a fragment. The approach takes account of the reduction in dose due to attenuation within the intestinal wall and self-absorption of radiation in the fuel fragment itself. In addition, dose is calculated on the basis of a realistic estimate of the anatomical volume of the lumen, rather than being based on the average mass of the contents, as in the current ICRP model. Our best estimates of doses from the ingestion of the largest Dounreay particles are at least a factor of 30 lower than those predicted using the current ICRP model. The new ICRP model will address the issues raised here and provide improved estimates of dose.

  20. A bounding estimate of neutron dose based on measured photon dose around single pass reactors at the Hanford site.

    PubMed

    Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack

    2010-07-01

    Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.

  1. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  2. A reevaluation of cancer incidence near the Three Mile Island nuclear plant: the collision of evidence and assumptions.

    PubMed

    Wing, S; Richardson, D; Armstrong, D; Crawford-Brown, D

    1997-01-01

    Previous studies concluded that there was no evidence that the 1979 nuclear accident at Three Mile Island (TMI) affected cancer incidence in the surrounding area; however, there were logical and methodological problems in earlier reports that led us to reconsider data previously collected. A 10-mile area around TMI was divided into 69 study tracts, which were assigned radiation dose estimates based on radiation reading and models of atmospheric dispersion. Incident cancers from 1975 to 1985 were ascertained from hospital records and assigned to study tracts. Associations between accident doses and incidence rates of leukemia, lung cancer, and all cancer were assessed using relative dose estimates calculated by the earlier investigators. Adjustments were made for age, sex, socioeconomic characteristics, and preaccident variation in incidence. Considering a 2-year latency, the estimated percent increase per dose unit +/- standard error was 0.020 +/- 0.012 for all cancer, 0.082 +/- 0.032 for lung cancer, and 0.116 +/- 0.067 for leukemia. Adjustment for socioeconomic variables increased the estimates to 0.034 +/- 0.013, 0.103 +/- 0.035, and 0.139 +/- 0.073 for all cancer, lung cancer, and leukemia, respectively. Associations were generally larger considering a 5-year latency, but were based on smaller numbers of cases. Results support the hypothesis that radiation doses are related to increased cancer incidence around TMI. The analysis avoids medical detection bias, but suffers from inaccurate dose classification; therefore, results may underestimate the magnitude of the association between radiation and cancer incidence. These associations would not be expected, based on previous estimates of near-background levels of radiation exposure following the accident.

  3. ACUTE AND CHRONIC INTAKES OF FALLOUT RADIONUCLIDES BY MARSHALLESE FROM NUCLEAR WEAPONS TESTING AT BIKINI AND ENEWETAK AND RELATED INTERNAL RADIATION DOSES

    PubMed Central

    Simon, Steven L.; Bouville, André; Melo, Dunstana; Beck, Harold L.; Weinstock, Robert M.

    2014-01-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume. PMID:20622550

  4. Acute and chronic intakes of fallout radionuclides by Marshallese from nuclear weapons testing at Bikini and Enewetak and related internal radiation doses.

    PubMed

    Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L; Weinstock, Robert M

    2010-08-01

    Annual internal radiation doses resulting from both acute and chronic intakes of all important dose-contributing radionuclides occurring in fallout from nuclear weapons testing at Bikini and Enewetak from 1946 through 1958 have been estimated for the residents living on all atolls and separate reef islands of the Marshall Islands. Internal radiation absorbed doses to the tissues most at risk to cancer induction (red bone marrow, thyroid, stomach, and colon) have been estimated for representative persons of all population communities for all birth years from 1929 through 1968, and for all years of exposure from 1948 through 1970. The acute intake estimates rely on a model using, as its basis, historical urine bioassay data, for members of the Rongelap Island and Ailinginae communities as well as for Rongerik residents. The model also utilizes fallout times of arrival and radionuclide deposition densities estimated for all tests and all atolls. Acute intakes of 63 radionuclides were estimated for the populations of the 20 inhabited atolls and for the communities that were relocated during the testing years for reasons of safety and decontamination. The model used for chronic intake estimates is based on reported whole-body, urine, and blood counting data for residents of Utrik and Rongelap. Dose conversion coefficients relating intake to organ absorbed dose were developed using internationally accepted models but specifically tailored for intakes of particulate fallout by consideration of literature-based evidence to choose the most appropriate alimentary tract absorption fraction (f1) values. Dose estimates were much higher for the thyroid gland than for red marrow, stomach wall, or colon. The highest thyroid doses to adults were about 7,600 mGy for the people exposed on Rongelap; thyroid doses to adults were much lower, by a factor of 100 or more, for the people exposed on the populated atolls of Kwajalein and Majuro. The estimates of radionuclide intake and internal radiation dose to the Marshallese that are presented in this paper are the most complete available anywhere and were used to make projections of lifetime cancer risks to the exposed populations, which are presented in a companion paper in this volume.

  5. Dosimetry in MARS spectral CT: TOPAS Monte Carlo simulations and ion chamber measurements.

    PubMed

    Lu, Gray; Marsh, Steven; Damet, Jerome; Carbonez, Pierre; Laban, John; Bateman, Christopher; Butler, Anthony; Butler, Phil

    2017-06-01

    Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.

  6. Estimating peak skin and eye lens dose from neuroperfusion examinations: use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values.

    PubMed

    Zhang, Di; Cagnon, Chris H; Villablanca, J Pablo; McCollough, Cynthia H; Cody, Dianna D; Zankl, Maria; Demarco, John J; McNitt-Gray, Michael F

    2013-09-01

    CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%-65%, and overestimated eye lens dose by 33%-106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%-82% relative to voxelized model simulations. CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still useful as a conservative predictor of dose for CT neuroperfusion studies. AAPM Report No. 111 style measurements are a better predictor of both peak skin and eye lens dose than CTDIvol and ImPACT for the patient models used in this study. It should be remembered that both the AAPM Report No. 111 peak dose metric and CTDIvol dose metric are dose indices and were not intended to represent actual organ doses.

  7. Estimating peak skin and eye lens dose from neuroperfusion examinations: Use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values

    PubMed Central

    Zhang, Di; Cagnon, Chris H.; Villablanca, J. Pablo; McCollough, Cynthia H.; Cody, Dianna D.; Zankl, Maria; Demarco, John J.; McNitt-Gray, Michael F.

    2013-01-01

    Purpose: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Methods: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. Results: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%–65%, and overestimated eye lens dose by 33%–106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%–82% relative to voxelized model simulations. Conclusions: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still useful as a conservative predictor of dose for CT neuroperfusion studies. AAPM Report No. 111 style measurements are a better predictor of both peak skin and eye lens dose than CTDIvol and ImPACT for the patient models used in this study. It should be remembered that both the AAPM Report No. 111 peak dose metric and CTDIvol dose metric are dose indices and were not intended to represent actual organ doses. PMID:24007152

  8. Dosimetric variations due to interfraction organ deformation in cervical cancer brachytherapy.

    PubMed

    Kobayashi, Kazuma; Murakami, Naoya; Wakita, Akihisa; Nakamura, Satoshi; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Shigematsu, Naoyuki; Itami, Jun

    2015-12-01

    We quantitatively estimated dosimetric variations due to interfraction organ deformation in multi-fractionated high-dose-rate brachytherapy (HDRBT) for cervical cancer using a novel surface-based non-rigid deformable registration. As the number of consecutive HDRBT fractions increased, simple addition of dose-volume histogram parameters significantly overestimated the dose, compared with distribution-based dose addition. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. NCICT: a computational solution to estimate organ doses for pediatric and adult patients undergoing CT scans.

    PubMed

    Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les

    2015-12-01

    We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.

  10. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  11. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurementsmore » were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A{sup ~} was determined by the integration of measured {sup 131}I activity in the thyroid gland and based on T{sub eff}, respectively. No statistically significant relationship was found between therapeutic response and patients’ age, administered {sup 131}I activity (MBq), 24-h thyroid {sup 131}I uptake (%) or T{sub eff} (p ≥ 0.064); nonetheless, a good relationship was found between the therapeutic response and m{sub th} (p ≤ 0.035). Conclusions: According to the results of this study, the most effective thyroid absorbed dose to be targeted in GD therapy should not be based on a fixed dose but rather should be individualized based on the patient'sm{sub th} and A{sup ~}. To achieve a therapeutic success (i.e., durable euthyroidism or hypothyroidism) rate of at least 95%, a thyroid absorbed dose of 200 or 330 Gy is required depending on the methodology used for estimating m{sub th} and A{sup ~}.« less

  12. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan

    2014-02-01

    To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013.

  13. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern. PMID:26127043

  14. 3D delivered dose assessment using a 4DCT-based motion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basismore » DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images reconstructed from kV and MV projections compared to the ground truth, which is clinically comparable to 4DCT (0.093%). For the second XCAT phantom that has an irregular breathing pattern, the errors are 0.81% and 1.75% for kV and MV reconstructions, both of which are better than that of 4DCT (4.01%). In the case of real patient, although it is impossible to obtain the actual delivered dose, the dose estimation is clinically reasonable and demonstrates differences between 4DCT and MV reconstruction-based dose estimates. Conclusions: With the availability of kV or MV projection images, the proposed approach is able to assess delivered doses for all respiratory phases during treatment. Compared to the planning dose based on 4DCT, the dose estimation using reconstructed 3D fluoroscopic images was as good as 4DCT for regular respiratory pattern and was a better dose estimation for the irregular respiratory pattern.« less

  15. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, A; Bostani, M; McMillan, K

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  16. Comparison of estimated human dose of (68)Ga-MAA with (99m)Tc-MAA based on rat data.

    PubMed

    Shanehsazzadeh, Saeed; Lahooti, Afsaneh; Yousefnia, Hassan; Geramifar, Parham; Jalilian, Amir Reza

    2015-10-01

    (99m)Tc macroaggregated albumin ((99m)Tc-MAA) that had been used as a perfusion agent has been evaluated. In this study, we tried to estimate human absorbed dose of ⁶⁸Ga-MAA via commercially available kit from Pars-Isotopes, based on biodistribution data in wild-type rats, and compare our estimation with the available absorbed dose data from (99m)Tc-MAA. For biodistribution of ⁶⁸Ga-MAA, three rats were sacrificed at each selected times after injection (15, 30, 45, 60, and 120 min) and the percentage of injected dose per gram of each organ was measured by direct counting from rats data from 11 harvested organs. The medical internal radiation dose formulation was applied to extrapolate from rats to human and to project the absorbed radiation dose for various organs in humans. The biodistribution data for ⁶⁸Ga-MAA showed that the most of the activity was taken up by the lung (more than 97 %) in no time. Our dose prediction shows that a 185-MBq injection of ⁶⁸Ga-MAA into humans might result in an estimated absorbed dose of 4.31 mGy in the whole body. The highest absorbed doses are observed in the adrenals, spleen, pancreas, and red marrow with 0.36, 0.34, 0.26, and 0.19 mGy, respectively. Since the (99m)Tc-MAA remains longer than ⁶⁸Ga-MAA in the lung and ⁶⁸Ga-MAA has good image qualities and results in lower amounts of dose delivery to the critical organs such as gonads, red marrow, and adrenals, the use of ⁶⁸Ga-MAA is recommended.

  17. The Impact of AUC-Based Monitoring on Pharmacist-Directed Vancomycin Dose Adjustments in Complicated Methicillin-Resistant Staphylococcus aureus Infection.

    PubMed

    Stoessel, Andrew M; Hale, Cory M; Seabury, Robert W; Miller, Christopher D; Steele, Jeffrey M

    2018-01-01

    This study aimed to assess the impact of area under the curve (AUC)-based vancomycin monitoring on pharmacist-initiated dose adjustments after transitioning from a trough-only to an AUC-based monitoring method at our institution. A retrospective cohort study of patients treated with vancomycin for complicated methicillin-resistant Staphylococcus aureus (MRSA) infection between November 2013 and December 2016 was conducted. The frequency of pharmacist-initiated dose adjustments was assessed for patients monitored via trough-only and AUC-based approaches for trough ranges: 10 to 14.9 mg/L and 15 to 20 mg/L. Fifty patients were included: 36 in the trough-based monitoring and 14 in the AUC-based-monitoring group. The vancomycin dose was increased in 71.4% of patients when troughs were 10 to 14.9 mg/L when a trough-only approach was used and in only 25% of patients when using AUC estimation ( P = .048). In the AUC group, the dose was increased only when AUC/minimum inhibitory concentration (MIC) <400; unchanged regimens had an estimated AUC/MIC ≥400. The AUC-based monitoring did not significantly increase the frequency of dose reductions when trough concentrations were 15 to 20 mg/L (AUC: 33.3% vs trough: 4.6%; P = .107). The AUC-based monitoring resulted in fewer patients with dose adjustments when trough levels were 10 to 14.9 mg/L. The AUC-based monitoring has the potential to reduce unnecessary vancomycin exposure and warrants further investigation.

  18. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  19. USE OF EXPOSURE-RELATED DOSE ESTIMATING MODEL (ERDEM) FOR ASSESSMENT OF AGGREGATE EXPOSURE OF INFANT AND CHILDREN TO N-METHYL CARBAMATE INSECTICIDES

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed within the Exposure Related Dose Estimating Model (ERDEM) framework to investigate selected exposure inputs related to recognized exposure scenarios of infants and children to N-methyl carbamate pesticides as spec...

  20. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project: Draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  1. Estimation of 1945 to 1957 food consumption. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  2. Quantitative Comparison of PET and Bremsstrahlung SPECT for Imaging the In Vivo Yttrium-90 Microsphere Distribution after Liver Radioembolization

    PubMed Central

    Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.

    2013-01-01

    Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207

  3. Peak skin and eye lens radiation dose from brain perfusion CT based on Monte Carlo simulation.

    PubMed

    Zhang, Di; Cagnon, Chris H; Villablanca, J Pablo; McCollough, Cynthia H; Cody, Dianna D; Stevens, Donna M; Zankl, Maria; Demarco, John J; Turner, Adam C; Khatonabadi, Maryam; McNitt-Gray, Michael F

    2012-02-01

    The purpose of our study was to accurately estimate the radiation dose to skin and the eye lens from clinical CT brain perfusion studies, investigate how well scanner output (expressed as volume CT dose index [CTDI(vol)]) matches these estimated doses, and investigate the efficacy of eye lens dose reduction techniques. Peak skin dose and eye lens dose were estimated using Monte Carlo simulation methods on a voxelized patient model and 64-MDCT scanners from four major manufacturers. A range of clinical protocols was evaluated. CTDI(vol) for each scanner was obtained from the scanner console. Dose reduction to the eye lens was evaluated for various gantry tilt angles as well as scan locations. Peak skin dose and eye lens dose ranged from 81 mGy to 348 mGy, depending on the scanner and protocol used. Peak skin dose and eye lens dose were observed to be 66-79% and 59-63%, respectively, of the CTDI(vol) values reported by the scanners. The eye lens dose was significantly reduced when the eye lenses were not directly irradiated. CTDI(vol) should not be interpreted as patient dose; this study has shown it to overestimate dose to the skin or eye lens. These results may be used to provide more accurate estimates of actual dose to ensure that protocols are operated safely below thresholds. Tilting the gantry or moving the scanning region further away from the eyes are effective for reducing lens dose in clinical practice. These actions should be considered when they are consistent with the clinical task and patient anatomy.

  4. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data.

    PubMed

    St Charles, Frank Kelley; McAughey, John; Shepperd, Christopher J

    2013-06-01

    Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10(-5) Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10(-7) Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker.

  5. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  6. Estimation of 1945 to 1957 food consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.M.; Bates, D.J.; Marsh, T.L.

    This report details the methods used and the results of the study on the estimated historic levels of food consumption by individuals in the Hanford Environmental Dose Reconstruction (HEDR) study area from 1945--1957. This period includes the time of highest releases from Hanford and is the period for which data are being collected in the Hanford Thyroid Disease Study. These estimates provide the food-consumption inputs for the HEDR database of individual diets. This database will be an input file in the Hanford Environmental Dose Reconstruction Integrated Code (HEDRIC) computer model that will be used to calculate the radiation dose. Themore » report focuses on fresh milk, eggs, lettuce, and spinach. These foods were chosen because they have been found to be significant contributors to radiation dose based on the Technical Steering Panel dose decision level.« less

  7. A framework for organ dose estimation in x-ray angiography and interventional radiology based on dose-related data in DICOM structured reports

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Bujila, Robert; Fransson, Annette; Andreo, Pedro; Poludniowski, Gavin

    2016-04-01

    Although interventional x-ray angiography (XA) procedures involve relatively high radiation doses that can lead to deterministic tissue reactions in addition to stochastic effects, convenient and accurate estimation of absorbed organ doses has traditionally been out of reach. This has mainly been due to the absence of practical means to access dose-related data that describe the physical context of the numerous exposures during an XA procedure. The present work provides a comprehensive and general framework for the determination of absorbed organ dose, based on non-proprietary access to dose-related data by utilizing widely available DICOM radiation dose structured reports. The framework comprises a straightforward calculation workflow to determine the incident kerma and reconstruction of the geometrical relation between the projected x-ray beam and the patient’s anatomy. The latter is difficult in practice, as the position of the patient on the table top is unknown. A novel patient-specific approach for reconstruction of the patient position on the table is presented. The proposed approach was evaluated for 150 patients by comparing the estimated position of the primary irradiated organs (the target organs) with their position in clinical DICOM images. The approach is shown to locate the target organ position with a mean (max) deviation of 1.3 (4.3), 1.8 (3.6) and 1.4 (2.9) cm for neurovascular, adult and paediatric cardiovascular procedures, respectively. To illustrate the utility of the framework for systematic and automated organ dose estimation in routine clinical practice, a prototype implementation of the framework with Monte Carlo simulations is included.

  8. Inhalation and Ingestion Intakes with Associated Dose Estimates for Level II and Level III Personnel Using Capstone Study Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szrom, Fran; Falo, Gerald A.; Lodde, Gordon M.

    2009-03-01

    Depleted uranium (DU) intake rates and subsequent dose rates were estimated for personnel entering armored combat vehicles perforated with DU penetrators (level II and level III personnel) using data generated during the Capstone Depleted Uranium (DU) Aerosol Study. Inhalation intake rates and associated dose rates were estimated from cascade impactors worn by sample recovery personnel and from cascade impactors that served as area monitors. Ingestion intake rates and associated dose rates were estimated from cotton gloves worn by sample recovery personnel and from wipe test samples from the interior of vehicles perforated with large caliber DU munitions. The mean DUmore » inhalation intake rate for level II personnel ranged from 0.447 mg h-1 based on breathing zone monitor data (in and around a perforated vehicle) to 14.5 mg h-1 based on area monitor data (in a perforated vehicle). The mean DU ingestion intake rate for level II ranged from 4.8 mg h-1 to 38.9 mg h-1 based on the wipe test data including surface to glove transfer factors derived from the Capstone data. Based on glove contamination data, the mean DU ingestion intake rates for level II and level III personnel were 10.6 mg h-1 was and 1.78 mg h-1, respectively. Effective dose rates and peak kidney uranium concentration rates were calculated based on the intake rates. The peak kidney uranium concentration rate cannot be multiplied by the total exposure duration when multiple intakes occur because uranium will clear from the kidney between the exposures.« less

  9. A revised probabilistic estimate of the maternal methyl mercury intake dose corresponding to a measured cord blood mercury concentration.

    PubMed

    Stern, Alan H

    2005-02-01

    In 2001, the U.S. Environmental Protection Agency (EPA) adopted a revised reference dose (RfD) for methyl mercury (MeHg) of 0.1 microg/kg/day. The RfD is based on neurologic developmental effects measured in children associated with exposure in utero to MeHg from the maternal diet. The RfD derivation proceeded from a point of departure based on measured concentration of mercury in fetal cord blood (micrograms per liter). The RfD, however, is a maternal dose (micrograms per kilogram per day). Reconstruction of the maternal dose corresponding to this cord blood concentration, including the variability around this estimate, is a critical step in the RfD derivation. The dose reconstruction employed by the U.S. EPA using the one-compartment pharmacokinetic model contains two areas of significant uncertainty: It does not directly account for the influence of the ratio of cord blood: maternal blood Hg concentration, and it does not resolve uncertainty regarding the most appropriate central tendency estimates for pregnancy and third-trimester-specific model parameters. A probabilistic reassessment of this dose reconstruction was undertaken to address these areas of uncertainty and generally to reconsider the specification of model input parameters. On the basis of a thorough review of the literature and recalculation of the one-compartment model including sensitivity analyses, I estimated that the 95th and 99th percentiles (i.e., the lower 5th and 1st percentiles) of the maternal intake dose corresponding to a fetal cord blood Hg concentration of 58 microg/L are 0.3 and 0.2 microg/kg/day, respectively. For the 99th percentile, this is half the value previously estimated by the U.S. EPA.

  10. EXPOSURE RELATED DOSE ESTIMATING MODEL ( ERDEM ) A PHYSIOLOGICALLY-BASED PHARMACOKINETIC AND PHARMACODYNAMIC ( PBPK/PD ) MODEL FOR ASSESSING HUMAN EXPOSURE AND RISK

    EPA Science Inventory

    The Exposure Related Dose Estimating Model (ERDEM) is a PBPK/PD modeling system that was developed by EPA's National Exposure Research Laboratory (NERL). The ERDEM framework provides the flexibility either to use existing models and to build new PBPK and PBPK/PD models to address...

  11. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hub, Martina; Thieke, Christian; Kessler, Marc L.

    2012-04-15

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts formore » the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.« less

  12. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    PubMed Central

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P.

    2012-01-01

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well. PMID:22482640

  13. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  14. Radiation dosimetry estimates of (18)F-alfatide II based on whole-body PET imaging of mice.

    PubMed

    Wang, Si-Yang; Bao, Xiao; Wang, Ming-Wei; Zhang, Yong-Ping; Zhang, Ying-Jian; Zhang, Jian-Ping

    2015-11-01

    We estimated the dosimetry of (18)F-alfatide II with the method established by MIRD based on biodistribution data of mice. Six mice (three females and three males) were scanned for 160min on an Inveon MicroPET/CT scanner after injection of (18)F-alfatide II via tail vein. Eight source organs were delineated on the CT images and their residence times calculated. The data was then converted to human using scaling factors based on organ and body weight. The absorbed doses for human and the resulting effective dose were computed by OLINDA 1.1 software. The highest absorbed doses was observed in urinary bladder wall (male 0.102mGy/MBq, female 0.147mGy/MBq); and the lowest one was detected in brain (male 0.0030mGy/MBq, female 0.0036). The total effective doses were 0.0127mSv/MBq for male and 0.0166 mSv/MBq for female, respectively. A 370-MBq injection of (18)F-alfatide II led to an estimated effective dose of 4.70mSv for male and 6.14mSv for female. The potential radiation burden associated with (18)F-alfatide II/PET imaging therefore is comparable to other PET examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Estimating cancer risk from dental cone-beam CT exposures based on skin dosimetry

    NASA Astrophysics Data System (ADS)

    Pauwels, Ruben; Cockmartin, Lesley; Ivanauskaité, Deimante; Urbonienė, Ausra; Gavala, Sophia; Donta, Catherine; Tsiklakis, Kostas; Jacobs, Reinhilde; Bosmans, Hilde; Bogaerts, Ria; Horner, Keith; SEDENTEXCT Project Consortium, The

    2014-07-01

    The aim of this study was to measure entrance skin doses on patients undergoing cone-beam computed tomography (CBCT) examinations, to establish conversion factors between skin and organ doses, and to estimate cancer risk from CBCT exposures. 266 patients (age 8-83) were included, involving three imaging centres. CBCT scans were acquired using the SCANORA 3D (Soredex, Tuusula, Finland) and NewTom 9000 (QR, Verona, Italy). Eight thermoluminescent dosimeters were attached to the patient's skin at standardized locations. Using previously published organ dose estimations on various CBCTs with an anthropomorphic phantom, correlation factors to convert skin dose to organ doses were calculated and applied to estimate patient organ doses. The BEIR VII age- and gender-dependent dose-risk model was applied to estimate the lifetime attributable cancer risk. For the SCANORA 3D, average skin doses over the eight locations varied between 484 and 1788 µGy. For the NewTom 9000 the range was between 821 and 1686 µGy for Centre 1 and between 292 and 2325 µGy for Centre 2. Entrance skin dose measurements demonstrated the combined effect of exposure and patient factors on the dose. The lifetime attributable cancer risk, expressed as the probability to develop a radiation-induced cancer, varied between 2.7 per million (age >60) and 9.8 per million (age 8-11) with an average of 6.0 per million. On average, the risk for female patients was 40% higher. The estimated radiation risk was primarily influenced by the age at exposure and the gender, pointing out the continuing need for justification and optimization of CBCT exposures, with a specific focus on children.

  16. Evidence-Based Design of Fixed-Dose Combinations: Principles and Application to Pediatric Anti-Tuberculosis Therapy.

    PubMed

    Svensson, Elin M; Yngman, Gunnar; Denti, Paolo; McIlleron, Helen; Kjellsson, Maria C; Karlsson, Mats O

    2018-05-01

    Fixed-dose combination formulations where several drugs are included in one tablet are important for the implementation of many long-term multidrug therapies. The selection of optimal dose ratios and tablet content of a fixed-dose combination and the design of individualized dosing regimens is a complex task, requiring multiple simultaneous considerations. In this work, a methodology for the rational design of a fixed-dose combination was developed and applied to the case of a three-drug pediatric anti-tuberculosis formulation individualized on body weight. The optimization methodology synthesizes information about the intended use population, the pharmacokinetic properties of the drugs, therapeutic targets, and practical constraints. A utility function is included to penalize deviations from the targets; a sequential estimation procedure was developed for stable estimation of break-points for individualized dosing. The suggested optimized pediatric anti-tuberculosis fixed-dose combination was compared with the recently launched World Health Organization-endorsed formulation. The optimized fixed-dose combination included 15, 36, and 16% higher amounts of rifampicin, isoniazid, and pyrazinamide, respectively. The optimized fixed-dose combination is expected to result in overall less deviation from the therapeutic targets based on adult exposure and substantially fewer children with underexposure (below half the target). The development of this design tool can aid the implementation of evidence-based formulations, integrating available knowledge and practical considerations, to optimize drug exposures and thereby treatment outcomes.

  17. RADIANCE: An automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2011-01-01

    There is growing interest in the ability to monitor, track, and report exposure to radiation from medical imaging. Historically, however, dose information has been stored on an image-based dose sheet, an arrangement that precludes widespread indexing. Although scanner manufacturers are beginning to include dose-related parameters in the Digital Imaging and Communications in Medicine (DICOM) headers of imaging studies, there remains a vast repository of retrospective computed tomographic (CT) data with image-based dose sheets. Consequently, it is difficult for imaging centers to monitor their dose estimates or participate in the American College of Radiology (ACR) Dose Index Registry. An automated extraction software pipeline known as Radiation Dose Intelligent Analytics for CT Examinations (RADIANCE) has been designed that quickly and accurately parses CT dose sheets to extract and archive dose-related parameters. Optical character recognition of information in the dose sheet leads to creation of a text file, which along with the DICOM study header is parsed to extract dose-related data. The data are then stored in a relational database that can be queried for dose monitoring and report creation. RADIANCE allows efficient dose analysis of CT examinations and more effective education of technologists, radiologists, and referring physicians regarding patient exposure to radiation at CT. RADIANCE also allows compliance with the ACR's dose reporting guidelines and greater awareness of patient radiation dose, ultimately resulting in improved patient care and treatment.

  18. Dosimetry in x-ray-based breast imaging

    PubMed Central

    Dance, David R; Sechopoulos, Ioannis

    2016-01-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable. PMID:27617767

  19. Dosimetry in x-ray-based breast imaging

    NASA Astrophysics Data System (ADS)

    Dance, David R.; Sechopoulos, Ioannis

    2016-10-01

    The estimation of the mean glandular dose to the breast (MGD) for x-ray based imaging modalities forms an essential part of quality control and is needed for risk estimation and for system design and optimisation. This review considers the development of methods for estimating the MGD for mammography, digital breast tomosynthesis (DBT) and dedicated breast CT (DBCT). Almost all of the methodology used employs Monte Carlo calculated conversion factors to relate the measurable quantity, generally the incident air kerma, to the MGD. After a review of the size and composition of the female breast, the various mathematical models used are discussed, with particular emphasis on models for mammography. These range from simple geometrical shapes, to the more recent complex models based on patient DBCT examinations. The possibility of patient-specific dose estimates is considered as well as special diagnostic views and the effect of breast implants. Calculations using the complex models show that the MGD for mammography is overestimated by about 30% when the simple models are used. The design and uses of breast-simulating test phantoms for measuring incident air kerma are outlined and comparisons made between patient and phantom-based dose estimates. The most widely used national and international dosimetry protocols for mammography are based on different simple geometrical models of the breast, and harmonisation of these protocols using more complex breast models is desirable.

  20. On effective dose for radiotherapy based on doses to nontarget organs and tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselmann, Adam J., E-mail: ajuselmann@wisc.edu; Thomadsen, Bruce R.

    2015-02-15

    Purpose: The National Council for Radiation Protection and Measurement (NCRP) published estimates for the collective population dose and the mean effective dose to the population of the United States from medical imaging procedures for 1980/1982 and for 2006. The earlier report ignored the effective dose from radiotherapy and the latter gave a cursory discussion of the topic but again did not include it in the population exposure for various reasons. This paper explains the methodology used to calculate the effective dose in due to radiotherapy procedures in the latter NCRP report and revises the values based on more detailed modeling.more » Methods: This study calculated the dose to nontarget organs from radiotherapy for reference populations using CT images and published peripheral dose data. Results: Using International Commission on Radiological Protection (ICRP) 60 weighting factors, the total effective dose to nontarget organs in radiotherapy patients is estimated as 298 ± 194 mSv per patient, while the U.S. population effective dose is 0.939 ± 0.610 mSv per person, with a collective dose of 283 000 ± 184 000 person Sv per year. Using ICRP 103 weighting factors, the effective dose is 281 ± 183 mSv per patient, 0.887 ± 0.577 mSv per person in the U.S., and 268 000 ± 174 000 person Sv per year. The uncertainty in the calculations is largely governed by variations in patient size, which was accounted for by considering a range of patient sizes and taking the average treatment site to nontarget organ distance. Conclusions: The methods used to estimate the effective doses from radiotherapy used in NCRP Report No. 160 have been explained and the values updated.« less

  1. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study.

    PubMed

    Abend, M; Badie, C; Quintens, R; Kriehuber, R; Manning, G; Macaeva, E; Njima, M; Oskamp, D; Strunz, S; Moertl, S; Doucha-Senf, S; Dahlke, S; Menzel, J; Port, M

    2016-02-01

    The risk of a large-scale event leading to acute radiation exposure necessitates the development of high-throughput methods for providing rapid individual dose estimates. Our work addresses three goals, which align with the directive of the European Union's Realizing the European Network of Biodosimetry project (EU-RENB): 1. To examine the suitability of different gene expression platforms for biodosimetry purposes; 2. To perform this examination using blood samples collected from prostate cancer patients (in vivo) and from healthy donors (in vitro); and 3. To compare radiation-induced gene expression changes of the in vivo with in vitro blood samples. For the in vitro part of this study, EDTA-treated whole blood was irradiated immediately after venipuncture using single X-ray doses (1 Gy/min(-1) dose rate, 100 keV). Blood samples used to generate calibration curves as well as 10 coded (blinded) samples (0-4 Gy dose range) were incubated for 24 h in vitro, lysed and shipped on wet ice. For the in vivo part of the study PAXgene tubes were used and peripheral blood (2.5 ml) was collected from prostate cancer patients before and 24 h after the first fractionated 2 Gy dose of localized radiotherapy to the pelvis [linear accelerator (LINAC), 580 MU/min, exposure 1-1.5 min]. Assays were run in each laboratory according to locally established protocols using either microarray platforms (2 laboratories) or qRT-PCR (2 laboratories). Report times on dose estimates were documented. The mean absolute difference of estimated doses relative to the true doses (Gy) were calculated. Doses were also merged into binary categories reflecting aspects of clinical/diagnostic relevance. For the in vitro part of the study, the earliest report time on dose estimates was 7 h for qRT-PCR and 35 h for microarrays. Methodological variance of gene expression measurements (CV ≤10% for technical replicates) and interindividual variance (≤twofold for all genes) were low. Dose estimates based on one gene, ferredoxin reductase (FDXR), using qRT-PCR were as precise as dose estimates based on multiple genes using microarrays, but the precision decreased at doses ≥2 Gy. Binary dose categories comprising, for example, unexposed compared with exposed samples, could be completely discriminated with most of our methods. Exposed prostate cancer blood samples (n = 4) could be completely discriminated from unexposed blood samples (n = 4, P < 0.03, two-sided Fisher's exact test) without individual controls. This could be performed by introducing an in vitro-to-in vivo correction factor of FDXR, which varied among the laboratories. After that the in vitro-constructed calibration curves could be used for dose estimation of the in vivo exposed prostate cancer blood samples within an accuracy window of ±0.5 Gy in both contributing qRT-PCR laboratories. In conclusion, early and precise dose estimates can be performed, in particular at doses ≤2 Gy in vitro. Blood samples of prostate cancer patients exposed to 0.09-0.017 Gy could be completely discriminated from pre-exposure blood samples with the doses successfully estimated using adjusted in vitro-constructed calibration curves.

  2. Occupational radiation dose to eyes from interventional radiology procedures in light of the new eye lens dose limit from the International Commission on Radiological Protection

    PubMed Central

    Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G

    2015-01-01

    Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211

  3. Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus.

    PubMed

    Gavrilin, Y I; Khrouch, V T; Shinkarev, S M; Krysenko, N A; Skryabin, A M; Bouville, A; Anspaugh, L R

    1999-02-01

    The Chernobyl accident in April 1986 resulted in widespread contamination of the environment with radioactive materials, including (131)I and other radioiodines. This environmental contamination led to substantial radiation doses in the thyroids of many inhabitants of the Republic of Belarus. The reconstruction of thyroid doses received by Belarussians is based primarily on exposure rates measured against the neck of more than 200,000 people in the more contaminated territories; these measurements were carried out within a few weeks after the accident and before the decay of (131)I to negligible levels. Preliminary estimates of thyroid dose have been divided into 3 classes: Class 1 ("measured" doses), Class 2 (doses "derived by affinity"), and Class 3 ("empirically-derived" doses). Class 1 doses are estimated directly from the measured thyroidal (131)I content of the person considered, plus information on lifestyle and dietary habits. Such estimates are available for about 130,000 individuals from the contaminated areas of the Gomel and Mogilev Oblasts and from the city of Minsk. Maximum individual doses are estimated to range up to about 60 Gy. For every village with a sufficient number of residents with Class 1 doses, individual thyroid dose distributions are determined for several age groups and levels of milk consumption. These data are used to derive Class 2 thyroid dose estimates for unmeasured inhabitants of these villages. For any village where the number of residents with Class 1 thyroid doses is small or equal to zero, individual thyroid doses of Class 3 are derived from the relationship obtained between the mean adult thyroid dose and the deposition density of (131)I or 137Cs in villages with Class 2 thyroid doses presenting characteristics similar to those of the village considered. In order to improve the reliability of the Class 3 thyroid doses, an extensive program of measurement of (129)I in soils is envisaged.

  4. Practical applications of internal dose calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.

    1994-06-01

    Accurate estimates of intake magnitude and internal dose are the goal for any assessment of an actual intake of radioactivity. When only one datum is available on which to base estimates, the choices for internal dose assessment become straight-forward: apply the appropriate retention or excretion function, calculate the intake, and calculate the dose. The difficulty comes when multiple data and different types of data become available. Then practical decisions must be made on how to interpret conflicting data, or how to adjust the assumptions and techniques underlying internal dose assessments to give results consistent with the data. This article describesmore » nine types of adjustments which can be incorporated into calculations of intake and internal dose, and then offers several practical insights to dealing with some real-world internal dose puzzles.« less

  5. Effects of body and organ size on absorbed dose: there is no standard patient. [Radiation dose distribution in patients following radionuclide administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poston, J.W.

    1976-01-01

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patientmore » does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient. (auth)« less

  6. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    PubMed

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout.

  7. Estimation of Effective Dose from External Exposure in The Six Prefectures adjacent to Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Miyatake, Hirokazu; Yoshizawa, Nobuaki; Hirakawa, Sachiko; Murakami, Kana; Takizawa, Mari; Kawai, Masaki; Sato, Osamu; Takagi, Shunji; Suzuki, Gen

    2017-09-01

    The Fukushima Daiichi Nuclear Power Plant accident caused a release of radionuclides. Radionuclides were deposited on the ground not only in Fukushima prefecture but also in nearby prefectures. Since the accident, measurement of radiation in environment such as air dose rate and deposition density of radionuclides has been performed by many organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously and over wide areas. In our study, using the data measured by JAEA, we estimated effective dose from external exposure in the six prefectures adjacent to Fukushima prefecture. Since car-borne survey was started a few months later after the accident, measured air dose rate in this method is mainly contributed by 137Cs and 134Cs whose half-lives are relatively long. Therefore, based on air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-half-life nuclides to that of 137Cs and 134Cs, we also estimated effective dose contributed from not only 137Cs and 134Cs but also other short-half-life nuclides. We compared the effective dose estimated by the method above with that of UNSCEAR and measured data using personal dosimeters in some areas.

  8. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-01

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GE Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient’s clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDIvol) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDIvol underestimated dose to large organs in the scan coverage by 30%–48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by −57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by −63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients’ clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols. PMID:21361209

  9. Patient-specific radiation dose and cancer risk estimation in CT: Part II. Application to patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Samei, Ehsan; Segars, W. Paul

    2011-01-15

    Purpose: Current methods for estimating and reporting radiation dose from CT examinations are largely patient-generic; the body size and hence dose variation from patient to patient is not reflected. Furthermore, the current protocol designs rely on dose as a surrogate for the risk of cancer incidence, neglecting the strong dependence of risk on age and gender. The purpose of this study was to develop a method for estimating patient-specific radiation dose and cancer risk from CT examinations. Methods: The study included two patients (a 5-week-old female patient and a 12-year-old male patient), who underwent 64-slice CT examinations (LightSpeed VCT, GEmore » Healthcare) of the chest, abdomen, and pelvis at our institution in 2006. For each patient, a nonuniform rational B-spine (NURBS) based full-body computer model was created based on the patient's clinical CT data. Large organs and structures inside the image volume were individually segmented and modeled. Other organs were created by transforming an existing adult male or female full-body computer model (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. A Monte Carlo program previously developed and validated for dose simulation on the LightSpeed VCT scanner was used to estimate patient-specific organ dose, from which effective dose and risks of cancer incidence were derived. Patient-specific organ dose and effective dose were compared with patient-generic CT dose quantities in current clinical use: the volume-weighted CT dose index (CTDI{sub vol}) and the effective dose derived from the dose-length product (DLP). Results: The effective dose for the CT examination of the newborn patient (5.7 mSv) was higher but comparable to that for the CT examination of the teenager patient (4.9 mSv) due to the size-based clinical CT protocols at our institution, which employ lower scan techniques for smaller patients. However, the overall risk of cancer incidence attributable to the CT examination was much higher for the newborn (2.4 in 1000) than for the teenager (0.7 in 1000). For the two pediatric-aged patients in our study, CTDI{sub vol} underestimated dose to large organs in the scan coverage by 30%-48%. The effective dose derived from DLP using published conversion coefficients differed from that calculated using patient-specific organ dose values by -57% to 13%, when the tissue weighting factors of ICRP 60 were used, and by -63% to 28%, when the tissue weighting factors of ICRP 103 were used. Conclusions: It is possible to estimate patient-specific radiation dose and cancer risk from CT examinations by combining a validated Monte Carlo program with patient-specific anatomical models that are derived from the patients' clinical CT data and supplemented by transformed models of reference adults. With the construction of a large library of patient-specific computer models encompassing patients of all ages and weight percentiles, dose and risk can be estimated for any patient prior to or after a CT examination. Such information may aid in decisions for image utilization and can further guide the design and optimization of CT technologies and scan protocols.« less

  10. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within Tract A-18-2 for Land Conveyance and Transfer Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Whicker, Jeffrey Jay

    In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 specifically for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/y (< 10 μSv/y) for a hypothetical recreational user (compared to a dose limit of 25 mrem/y (250 μSv/y)). Dose estimates were based on the 95% upper confidence limits for radionuclide concentrations within the Tract. Additionally, dose estimates less than 3 mrem/y are considered to be As Low As Reasonably Achievable,more » so no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 and Policy 412.« less

  12. Using the Concept of "Population Dose" in Planning and Evaluating Community-Level Obesity Prevention Initiatives

    ERIC Educational Resources Information Center

    Cheadle, Allen; Schwartz, Pamela M.; Rauzon, Suzanne; Bourcier, Emily; Senter, Sandra; Spring, Rebecca; Beery, William L.

    2013-01-01

    When planning and evaluating community-level initiatives focused on policy and environment change, it is useful to have estimates of the impact on behavioral outcomes of particular strategies (e.g., building a new walking trail to promote physical activity). We have created a measure of estimated strategy-level impact--"population dose"--based on…

  13. Electron spin resonance analysis of tooth enamel does not indicate exposures to large radiation doses in a large proportion of distally-exposed A-bomb survivors.

    PubMed

    Hirai, Yuko; Kodama, Yoshiaki; Cullings, Harry M; Miyazawa, Chuzo; Nakamura, Nori

    2011-01-01

    The atomic bombs in Hiroshima and Nagasaki led to two different types of radiation exposure; one was direct and brief and the other was indirect and persistent. The latter (so-called exposure to residual radiation) resulted from the presence of neutron activation products in the soil, or from fission products present in the fallout. Compared with the doses from direct exposures, estimations of individual doses from residual radiation have been much more complicated, and estimates vary widely among researchers. The present report bases its conclusions on radiation doses recorded in tooth enamel from survivors in Hiroshima. Those survivors were present at distances of about 3 km or greater from the hypocenter at the time of the explosion, and have DS02 estimated doses (direct exposure doses) of less than 5 mGy (and are regarded as control subjects). Individual doses were estimated by measuring CO(2)(-) radicals in tooth enamel with the electron spin resonance (ESR; or electron paramagnetic resonance, EPR) method. The results from 56 molars donated by 49 survivors provided estimated doses which vary from -200 mGy to 500 mGy, and the median dose was 17 mGy (25% and 75% quartiles are -54 mGy and 137 mGy, respectively) for the buccal parts and 13 mGy (25% and 75% quartiles: -49 mGy and 87 mGy, respectively) for the lingual parts of the molars. Three molars had ESR-estimated doses of 300 to 400 mGy for both the buccal and lingual parts, which indicates possible exposures to excess doses of penetrating radiation, although the origin of such radiation remains to be determined. The results did not support claims that a large fraction of distally-exposed survivors received large doses (e.g. 1 Gy) of external penetrating radiation resulting from residual radiation.

  14. Pediatric Chest and Abdominopelvic CT: Organ Dose Estimation Based on 42 Patient Models

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.

    2014-01-01

    Purpose To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. Materials and Methods The institutional review board approved this HIPAA–compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0–16 years; weight range, 2–80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDIvol). The relationships between CTDIvol-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. Results For organs within the image coverage, CTDIvol-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R2 > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%–32%) mainly because of the effect of overranging. Conclusion It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDIvol. These CTDIvol-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013 PMID:24126364

  15. MONTE CARLO SIMULATION OF OUT-OF-FIELD ORGAN DOSES AND CANCER RISK IN TANZANIA FOR RADIATION THERAPY OF UNILATERAL RETINOBLASTOMA USING A 60Co UNIT.

    PubMed

    Suleiman, Suleiman Ameir; Qi, Yaping; Pi, Yifei; George Xu, X

    2018-05-01

    The use of 60Co teletherapy unit for the treatment of unilateral retinoblastoma (Rb) patients is a very common procedure in many developing countries including Tanzania. The aim of this study was to estimate organ-specific absorbed doses from an external beam radiation therapy 60Co unit for unilateral Rb and to assess the risks of the patients developing a secondary primary cancer. The absorbed dose estimations were based on a Monte Carlo method and a set of age-dependent computational male phantoms. The estimated doses were used to calculate the secondary cancer risks in out-of-field organs using the Biological Effects of Ionising Radiation VII risk models. The survival information and baseline cancer risks were based on relevant statistics for the Tanzanian population. The resulting out-of-field organ doses data showed that organs which are close to the target volume, such as the brain, salivary glands and thyroid glands, received the highest absorbed dose from scattered photons during the treatment of Rb. It was also found that the resulting photons dose to specific organs depends on the patient's age. Younger patients are more sensitive to radiation and also received higher dose contributions from the treatment head due to a larger part of the body exposed to the photon radiation. In all sites considered, the overall risks associated with radiation-induced secondary cancer were relatively lower than the baseline risks. Thus, the results in this article can help to provide good estimations of radiation-induced secondary cancer after radiation treatment of unilateral Rb using 60Co teletherapy unit in Tanzania and other developing countries.

  16. Perfusion CT of the Brain and Liver and of Lung Tumors: Use of Monte Carlo Simulation for Patient Dose Estimation for Examinations With a Cone-Beam 320-MDCT Scanner.

    PubMed

    Cros, Maria; Geleijns, Jacob; Joemai, Raoul M S; Salvadó, Marçal

    2016-01-01

    The purpose of this study was to estimate the patient dose from perfusion CT examinations of the brain, lung tumors, and the liver on a cone-beam 320-MDCT scanner using a Monte Carlo simulation and the recommendations of the International Commission on Radiological Protection (ICRP). A Monte Carlo simulation based on the Electron Gamma Shower Version 4 package code was used to calculate organ doses and the effective dose in the reference computational phantoms for an adult man and adult woman as published by the ICRP. Three perfusion CT acquisition protocols--brain, lung tumor, and liver perfusion--were evaluated. Additionally, dose assessments were performed for the skin and for the eye lens. Conversion factors were obtained to estimate effective doses and organ doses from the volume CT dose index and dose-length product. The sex-averaged effective doses were approximately 4 mSv for perfusion CT of the brain and were between 23 and 26 mSv for the perfusion CT body protocols. The eye lens dose from the brain perfusion CT examination was approximately 153 mGy. The sex-averaged peak entrance skin dose (ESD) was 255 mGy for the brain perfusion CT studies, 157 mGy for the lung tumor perfusion CT studies, and 172 mGy for the liver perfusion CT studies. The perfusion CT protocols for imaging the brain, lung tumors, and the liver performed on a 320-MDCT scanner yielded patient doses that are safely below the threshold doses for deterministic effects. The eye lens dose, peak ESD, and effective doses can be estimated for other clinical perfusion CT examinations from the conversion factors that were derived in this study.

  17. Methodologies for the quantitative estimation of toxicant dose to cigarette smokers using physical, chemical and bioanalytical data

    PubMed Central

    McAughey, John; Shepperd, Christopher J.

    2013-01-01

    Methodologies have been developed, described and demonstrated that convert mouth exposure estimates of cigarette smoke constituents to dose by accounting for smoke spilled from the mouth prior to inhalation (mouth-spill (MS)) and the respiratory retention (RR) during the inhalation cycle. The methodologies are applicable to just about any chemical compound in cigarette smoke that can be measured analytically and can be used with ambulatory population studies. Conversion of exposure to dose improves the relevancy for risk assessment paradigms. Except for urinary nicotine plus metabolites, biomarkers generally do not provide quantitative exposure or dose estimates. In addition, many smoke constituents have no reliable biomarkers. We describe methods to estimate the RR of chemical compounds in smoke based on their vapor pressure (VP) and to estimate the MS for a given subject. Data from two clinical studies were used to demonstrate dose estimation for 13 compounds, of which only 3 have urinary biomarkers. Compounds with VP > 10−5 Pa generally have RRs of 88% or greater, which do not vary appreciably with inhalation volume (IV). Compounds with VP < 10−7 Pa generally have RRs dependent on IV and lung exposure time. For MS, mean subject values from both studies were slightly greater than 30%. For constituents with urinary biomarkers, correlations with the calculated dose were significantly improved over correlations with mouth exposure. Of toxicological importance is that the dose correlations provide an estimate of the metabolic conversion of a constituent to its respective biomarker. PMID:23742081

  18. Phantom-derived estimation of effective dose equivalent from X rays with and without a lead apron.

    PubMed

    Mateya, C F; Claycamp, H G

    1997-06-01

    Organ dose equivalents were measured in a humanoid phantom in order to estimate effective dose equivalent (H(E)) and effective dose (E) from low-energy x rays and in the presence or absence of a protective lead apron. Plane-parallel irradiation conditions were approximated using direct x-ray beams of 76 and 104 kVp and resulting dosimetry data was adjusted to model exposures conditions in fluoroscopy settings. Values of H(E) and E estimated under-shielded conditions were compared to the results of several recent studies that used combinations of measured and calculated dosimetry to model exposures to radiologists. While the estimates of H(E) and E without the lead apron were within 0.2 to 20% of expected values, estimates based on personal monitors worn at the (phantom) waist (underneath the apron) underestimated either H(E) or E while monitors placed at the neck (above the apron) significantly overestimated both quantities. Also, the experimentally determined H(E) and E were 1.4 to 3.3 times greater than might be estimated using recently reported "two-monitor" algorithms for the estimation of effective dose quantities. The results suggest that accurate estimation of either H(E) or E from personal monitors under conditions of partial body exposures remains problematic and is likely to require the use of multiple monitors.

  19. Patient-specific radiation dose and cancer risk estimation in pediatric chest CT: a study in 30 patients

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2010-04-01

    Radiation-dose awareness and optimization in CT can greatly benefit from a dosereporting system that provides radiation dose and cancer risk estimates specific to each patient and each CT examination. Recently, we reported a method for estimating patientspecific dose from pediatric chest CT. The purpose of this study is to extend that effort to patient-specific risk estimation and to a population of pediatric CT patients. Our study included thirty pediatric CT patients (16 males and 14 females; 0-16 years old), for whom full-body computer models were recently created based on the patients' clinical CT data. Using a validated Monte Carlo program, organ dose received by the thirty patients from a chest scan protocol (LightSpeed VCT, 120 kVp, 1.375 pitch, 40-mm collimation, pediatric body scan field-of-view) was simulated and used to estimate patient-specific effective dose. Risks of cancer incidence were calculated for radiosensitive organs using gender-, age-, and tissue-specific risk coefficients and were used to derive patientspecific effective risk. The thirty patients had normalized effective dose of 3.7-10.4 mSv/100 mAs and normalized effective risk of 0.5-5.8 cases/1000 exposed persons/100 mAs. Normalized lung dose and risk of lung cancer correlated strongly with average chest diameter (correlation coefficient: r = -0.98 to -0.99). Normalized effective risk also correlated strongly with average chest diameter (r = -0.97 to -0.98). These strong correlations can be used to estimate patient-specific dose and risk prior to or after an imaging study to potentially guide healthcare providers in justifying CT examinations and to guide individualized protocol design and optimization.

  20. Body Weight Estimation for Dose-Finding and Health Monitoring of Lying, Standing and Walking Patients Based on RGB-D Data

    PubMed Central

    May, Stefan

    2018-01-01

    This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. PMID:29695098

  1. Body Weight Estimation for Dose-Finding and Health Monitoring of Lying, Standing and Walking Patients Based on RGB-D Data.

    PubMed

    Pfitzner, Christian; May, Stefan; Nüchter, Andreas

    2018-04-24

    This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.

  2. ESTIMATION OF EFFECTIVE DOSE FROM EXTERNAL EXPOSURE DUE TO SHORT-LIVED NUCLIDES IN THE PREFECTURES SURROUNDING FUKUSHIMA.

    PubMed

    Miyatake, Hirokazu; Yoshizawa, Nobuaki; Suzuki, Gen

    2018-05-11

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a release of radionuclides into the environment. Since the accident, measurements of radiation in the environment such as air dose rate and deposition density of radionuclides have been performed by various organizations and universities. In particular, Japan Atomic Energy Agency (JAEA) has been performing observations of air dose rate using a car-borne survey system continuously over widespread areas. Based on the data measured by JAEA, we estimated effective dose from external exposure in the prefectures surrounding Fukushima. Since car-borne survey started a few months after the accident, the main contribution to measured data comes from 137Cs and 134Cs whose half-lives are relatively long. Using air dose rate of 137Cs and 134Cs and the ratio of deposition density of short-lived nuclides to that of 137Cs and 134Cs, we also estimated contributions to the effective dose from other short-lived nuclides.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, A; Carver, D; Stabin, M

    Purpose: To validate a radiographic simulation in order to estimate patient dose due to clinically-used radiography protocols. Methods: A Monte Carlo simulation was created to simulate a radiographic x-ray beam using GEANT4. Initial validation was performed according to a portion of TG 195. Computational NURBS-based phantoms were used simulate patients of varying ages and sizes. The deposited energy in the phantom is output by the simulation. The exposure in air from a clinically used radiography unit was measured at 100 cm for various tube potentials. 10 million photons were simulated with 1 cubic centimeter of air located 100 cm frommore » the source, and the total absorbed dose was noted. The normalization factor was determined by taking a ratio of the measured dose in air to the simulated dose in air. Dose to individual voxels is calculated using the energy deposition map along with the voxelized and segmented phantom and the normalization factor. Finally, the effective dose is calculated using the ICRP methodology and tissue weighting factors. Results: This radiography simulation allows for the calculation and visualization of the energy deposition map within a voxelized phantom. The ratio of exposure, measured using an ionization chamber, to air in the simulation was determined. Since the simulation output is calibrated to match the exposure of a given clinical radiographic x-ray tube, the dose map may be visualized. This will also allow for absorbed dose estimation in specific organs or tissues as well as a whole body effective dose estimation. Conclusion: This work indicates that our Monte Carlo simulation may be used to estimate the radiation dose from clinical radiographic protocols. This will allow for an estimate of radiographic dose from various examinations without the use of traditional methods such as thermoluminescent dosimeters and body phantoms.« less

  4. Radiation exposure from consumer products and miscellaneous sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less

  5. MO-E-17A-08: Attenuation-Based Size Adjusted, Scanner-Independent Organ Dose Estimates for Head CT Exams: TG 204 for Head CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; Cagnon, C

    Purpose: AAPM Task Group 204 described size specific dose estimates (SSDE) for body scans. The purpose of this work is to use a similar approach to develop patient-specific, scanner-independent organ dose estimates for head CT exams using an attenuation-based size metric. Methods: For eight patient models from the GSF family of voxelized phantoms, dose to brain and lens of the eye was estimated using Monte Carlo simulations of contiguous axial scans for 64-slice MDCT scanners from four major manufacturers. Organ doses were normalized by scannerspecific 16 cm CTDIvol values and averaged across all scanners to obtain scanner-independent CTDIvol-to-organ-dose conversion coefficientsmore » for each patient model. Head size was measured at the first slice superior to the eyes; patient perimeter and effective diameter (ED) were measured directly from the GSF data. Because the GSF models use organ identification codes instead of Hounsfield units, water equivalent diameter (WED) was estimated indirectly. Using the image data from 42 patients ranging from 2 weeks old to adult, the perimeter, ED and WED size metrics were obtained and correlations between each metric were established. Applying these correlations to the GSF perimeter and ED measurements, WED was calculated for each model. The relationship between the various patient size metrics and CTDIvol-to-organ-dose conversion coefficients was then described. Results: The analysis of patient images demonstrated the correlation between WED and ED across a wide range of patient sizes. When applied to the GSF patient models, an exponential relationship between CTDIvol-to-organ-dose conversion coefficients and the WED size metric was observed with correlation coefficients of 0.93 and 0.77 for the brain and lens of the eye, respectively. Conclusion: Strong correlation exists between CTDIvol normalized brain dose and WED. For the lens of the eye, a lower correlation is observed, primarily due to surface dose variations. Funding Support: Siemens-UCLA Radiology Master Research Agreement; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski.« less

  6. Estimation of effective dose and lifetime attributable risk from multiple head CT scans in ventriculoperitoneal shunted children.

    PubMed

    Aw-Zoretic, J; Seth, D; Katzman, G; Sammet, S

    2014-10-01

    The purpose of this review is to determine the averaged effective dose and lifetime attributable risk factor from multiple head computed tomography (CT) dose data on children with ventriculoperitoneal shunts (VPS). A total of 422 paediatric head CT exams were found between October 2008 and January 2011 and retrospectively reviewed. The CT dose data was weighted with the latest IRCP 103 conversion factor to obtain the effective dose per study and the averaged effective dose was calculated. Estimates of the lifetime attributable risk were also calculated from the averaged effective dose using a conversion factor from the latest BEIR VII report. Our study found the highest effective doses in neonates and the lowest effective doses were observed in the 10-18 years age group. We estimated a 0.007% potential increase risk in neonates and 0.001% potential increased risk in teenagers over the base risk. Multiple head CTs in children equates to a slight potential increase risk in lifetime attributable risk over the baseline risk for cancer, slightly higher in neonates relative to teenagers. The potential risks versus clinical benefit must be assessed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality

    NASA Astrophysics Data System (ADS)

    Helge Østerås, Bjørn; Skaane, Per; Gullien, Randi; Catrine Trægde Martinsen, Anne

    2018-02-01

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra™). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra™. AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  8. Average glandular dose in paired digital mammography and digital breast tomosynthesis acquisitions in a population based screening program: effects of measuring breast density, air kerma and beam quality.

    PubMed

    Østerås, Bjørn Helge; Skaane, Per; Gullien, Randi; Martinsen, Anne Catrine Trægde

    2018-01-25

    The main purpose was to compare average glandular dose (AGD) for same-compression digital mammography (DM) and digital breast tomosynthesis (DBT) acquisitions in a population based screening program, with and without breast density stratification, as determined by automatically calculated breast density (Quantra ™ ). Secondary, to compare AGD estimates based on measured breast density, air kerma and half value layer (HVL) to DICOM metadata based estimates. AGD was estimated for 3819 women participating in the screening trial. All received craniocaudal and mediolateral oblique views of each breasts with paired DM and DBT acquisitions. Exposure parameters were extracted from DICOM metadata. Air kerma and HVL were measured for all beam qualities used to acquire the mammograms. Volumetric breast density was estimated using Quantra ™ . AGD was estimated using the Dance model. AGD reported directly from the DICOM metadata was also assessed. Mean AGD was 1.74 and 2.10 mGy for DM and DBT, respectively. Mean DBT/DM AGD ratio was 1.24. For fatty breasts: mean AGD was 1.74 and 2.27 mGy for DM and DBT, respectively. For dense breasts: mean AGD was 1.73 and 1.79 mGy, for DM and DBT, respectively. For breasts of similar thickness, dense breasts had higher AGD for DM and similar AGD for DBT. The DBT/DM dose ratio was substantially lower for dense compared to fatty breasts (1.08 versus 1.33). The average c-factor was 1.16. Using previously published polynomials to estimate glandularity from thickness underestimated the c-factor by 5.9% on average. Mean AGD error between estimates based on measurements (air kerma and HVL) versus DICOM header data was 3.8%, but for one mammography unit as high as 7.9%. Mean error of using the AGD value reported in the DICOM header was 10.7 and 13.3%, respectively. Thus, measurement of breast density, radiation dose and beam quality can substantially affect AGD estimates.

  9. Military Participants at U.S. Atmospheric Nuclear Weapons Testing— Methodology for Estimating Dose and Uncertainty

    PubMed Central

    Till, John E.; Beck, Harold L.; Aanenson, Jill W.; Grogan, Helen A.; Mohler, H. Justin; Mohler, S. Shawn; Voillequé, Paul G.

    2014-01-01

    Methods were developed to calculate individual estimates of exposure and dose with associated uncertainties for a sub-cohort (1,857) of 115,329 military veterans who participated in at least one of seven series of atmospheric nuclear weapons tests or the TRINITY shot carried out by the United States. The tests were conducted at the Pacific Proving Grounds and the Nevada Test Site. Dose estimates to specific organs will be used in an epidemiological study to investigate leukemia and male breast cancer. Previous doses had been estimated for the purpose of compensation and were generally high-sided to favor the veteran's claim for compensation in accordance with public law. Recent efforts by the U.S. Department of Defense (DOD) to digitize the historical records supporting the veterans’ compensation assessments make it possible to calculate doses and associated uncertainties. Our approach builds upon available film badge dosimetry and other measurement data recorded at the time of the tests and incorporates detailed scenarios of exposure for each veteran based on personal, unit, and other available historical records. Film badge results were available for approximately 25% of the individuals, and these results assisted greatly in reconstructing doses to unbadged persons and in developing distributions of dose among military units. This article presents the methodology developed to estimate doses for selected cancer cases and a 1% random sample of the total cohort of veterans under study. PMID:24758578

  10. The Internet's role in a biodosimetric response to a radiation mass casualty event.

    PubMed

    Sugarman, S L; Livingston, G K; Stricklin, D L; Abbott, M G; Wilkins, R C; Romm, H; Oestreicher, U; Yoshida, M A; Miura, T; Moquet, J E; Di Giorgio, M; Ferrarotto, C; Gross, G A; Christiansen, M E; Hart, C L; Christensen, D M

    2014-05-01

    Response to a large-scale radiological incident could require timely medical interventions to minimize radiation casualties. Proper medical care requires knowing the victim's radiation dose. When physical dosimetry is absent, radiation-specific chromosome aberration analysis can serve to estimate the absorbed dose in order to assist physicians in the medical management of radiation injuries. A mock exercise scenario was presented to six participating biodosimetry laboratories as one individual acutely exposed to Co under conditions suggesting whole-body exposure. The individual was not wearing a dosimeter and within 2-3 h of the incident began vomiting. The individual also had other medical symptoms indicating likelihood of a significant dose. Physicians managing the patient requested a dose estimate in order to develop a treatment plan. Participating laboratories in North and South America, Europe, and Asia were asked to evaluate more than 800 electronic images of metaphase cells from the patient to determine the dicentric yield and calculate a dose estimate with 95% confidence limits. All participants were blind to the physical dose until after submitting their estimates based on the dicentric chromosome assay (DCA). The exercise was successful since the mean biological dose estimate was 1.89 Gy whereas the actual physical dose was 2 Gy. This is well within the requirements for guidance of medical management. The exercise demonstrated that the most labor-intensive step in the entire process (visual evaluation of images) can be accelerated by taking advantage of world-wide expertise available on the Internet.

  11. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches.

    PubMed

    Tang, Haoye; Takigawa, Masayuki; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2013-09-01

    Using a high-resolution (40 × 40 km) chemical transport model coupled with the Regional Emission inventory in Asia (REAS), we simulated surface ozone concentrations ([O3 ]) and evaluated O3 -induced wheat production loss in China and India for the years 2000 and 2020 using dose-response functions based on AOT40 (accumulated [O3 ] above 40 ppb) and PODY (phytotoxic O3 dose, accumulated stomatal flux of O3 above a threshold of Y nmol m(-2) s(-1) ). Two O3 dose metrics (90 days AOT40 and POD6 ) were derived from European experiments, and the other two (75 days AOT40 and POD12 ) were adapted from Asian studies. Relative yield loss (RYL) of wheat in 2000 was estimated to be 6.4-14.9% for China and 8.2-22.3% for India. POD6 predicted greater RYL, especially for the warm regions of India, whereas the 90 days AOT40 gave the lowest estimates. For the future projection, all the O3 dose metrics gave comparable estimates of an increase in RYL from 2000 to 2020 in the range 8.1-9.4% and 5.4-7.7% for China and India, respectively. The lower projected increase in RYL for India may be due to conservative estimation of the emission increase in 2020. Sensitivity tests of the model showed that the PODY -based estimates of RYL are highly sensitive to perturbations in the meteorological inputs, but that the estimated increase in RYL from 2000 to 2020 is much more robust. The projected increase in wheat production loss in China and India in the near future is substantially larger than the uncertainties in the estimation and indicates an urgent need for curbing the rapid increase in surface [O3 ] in these regions. © 2013 John Wiley & Sons Ltd.

  12. Health-based ingestion exposure guidelines for Vibrio cholerae: Technical basis for water reuse applications.

    PubMed

    Watson, Annetta P; Armstrong, Anthony Q; White, George H; Thran, Brandolyn H

    2018-02-01

    U.S. military and allied contingency operations are increasingly occurring in locations with limited, unstable or compromised fresh water supplies. Non-potable graywater reuse is currently under assessment as a viable means to increase mission sustainability while significantly reducing the resources, logistics and attack vulnerabilities posed by transport of fresh water. Development of health-based (non-potable) exposure guidelines for the potential microbial components of graywater would provide a logical and consistent human-health basis for water reuse strategies. Such health-based strategies will support not only improved water security for contingency operations, but also sustainable military operations. Dose-response assessment of Vibrio cholerae based on adult human oral exposure data were coupled with operational water exposure scenario parameters common to numerous military activities, and then used to derive health risk-based water concentrations. The microbial risk assessment approach utilized oral human exposure V. cholerae dose studies in open literature. Selected studies focused on gastrointestinal illness associated with experimental infection by specific V. cholerae serogroups most often associated with epidemics and pandemics (O1 and O139). Nonlinear dose-response model analyses estimated V. cholerae effective doses (EDs) aligned with gastrointestinal illness severity categories characterized by diarrheal purge volume. The EDs and water exposure assumptions were used to derive Risk-Based Water Concentrations (CFU/100mL) for mission-critical illness severity levels over a range of water use activities common to military operations. Human dose-response studies, data and analyses indicate that ingestion exposures at the estimated ED 1 (50CFU) are unlikely to be associated with diarrheal illness while ingestion exposures at the lower limit (200CFU) of the estimated ED 10 are not expected to result in a level of diarrheal illness associated with degraded individual capability. The current analysis indicates that the estimated ED 20 (approximately 1000CFU) represents initiation of a more advanced stage of diarrheal illness associated with clinical care. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Do we need 3D tube current modulation information for accurate organ dosimetry in chest CT? Protocols dose comparisons.

    PubMed

    Lopez-Rendon, Xochitl; Zhang, Guozhi; Coudyzer, Walter; Develter, Wim; Bosmans, Hilde; Zanca, Federica

    2017-11-01

    To compare the lung and breast dose associated with three chest protocols: standard, organ-based tube current modulation (OBTCM) and fast-speed scanning; and to estimate the error associated with organ dose when modelling the longitudinal (z-) TCM versus the 3D-TCM in Monte Carlo simulations (MC) for these three protocols. Five adult and three paediatric cadavers with different BMI were scanned. The CTDI vol of the OBTCM and the fast-speed protocols were matched to the patient-specific CTDI vol of the standard protocol. Lung and breast doses were estimated using MC with both z- and 3D-TCM simulated and compared between protocols. The fast-speed scanning protocol delivered the highest doses. A slight reduction for breast dose (up to 5.1%) was observed for two of the three female cadavers with the OBTCM in comparison to the standard. For both adult and paediatric, the implementation of the z-TCM data only for organ dose estimation resulted in 10.0% accuracy for the standard and fast-speed protocols, while relative dose differences were up to 15.3% for the OBTCM protocol. At identical CTDI vol values, the standard protocol delivered the lowest overall doses. Only for the OBTCM protocol is the 3D-TCM needed if an accurate (<10.0%) organ dosimetry is desired. • The z-TCM information is sufficient for accurate dosimetry for standard protocols. • The z-TCM information is sufficient for accurate dosimetry for fast-speed scanning protocols. • For organ-based TCM schemes, the 3D-TCM information is necessary for accurate dosimetry. • At identical CTDI vol , the fast-speed scanning protocol delivered the highest doses. • Lung dose was higher in XCare than standard protocol at identical CTDI vol .

  14. Relative radiological risks derived from different TENORM wastes in Malaysia.

    PubMed

    Ismail, B; Teng, I L; Muhammad Samudi, Y

    2011-11-01

    In Malaysia technologically enhanced naturally occurring radioactive materials (TENORM) wastes are mainly the product of the oil and gas industry and mineral processing. Among these TENORM wastes are tin tailing, tin slag, gypsum and oil sludge. Mineral processing and oil and gas industries produce large volume of TENORM wastes that has become a radiological concern to the authorities. A study was carried out to assess the radiological risk related to workers working at these disposal sites and landfills as well as to the members of the public should these areas be developed for future land use. Radiological risk was assessed based on the magnitude of radiation hazard, effective dose rates and excess cancer risks. Effective dose rates and excess cancer risks were estimated using RESRAD 6.4 computer code. All data on the activity concentrations of NORM in wastes and sludges used in this study were obtained from the Atomic Energy Licensing Board, Malaysia, and they were collected over a period of between 5 and 10 y. Results obtained showed that there was a wide range in the total activity concentrations (TAC) of nuclides in the TENORM wastes. With the exception of tin slag and tin tailing-based TENORM wastes, all other TENORM wastes have TAC values comparable to that of Malaysia's soil. Occupational Effective Dose Rates estimated in all landfill areas were lower than the 20 mSv y(-1) permissible dose limit. The average Excess Cancer Risk Coefficient was estimated to be 2.77×10(-3) risk per mSv. The effective dose rates for residents living on gypsum and oil sludge-based TENORM wastes landfills were estimated to be lower than the permissible dose limit for members of the public, and was also comparable to that of the average Malaysia's ordinary soils. The average excess cancer risk coefficient was estimated to be 3.19×10(-3) risk per mSv. Results obtained suggest that gypsum and oil sludge-based TENORM wastes should be exempted from any radiological regulatory control and should be considered radiologically safe for future land use.

  15. Population Pharmacokinetics and Optimal Sampling Strategy for Model-Based Precision Dosing of Melphalan in Patients Undergoing Hematopoietic Stem Cell Transplantation.

    PubMed

    Mizuno, Kana; Dong, Min; Fukuda, Tsuyoshi; Chandra, Sharat; Mehta, Parinda A; McConnell, Scott; Anaissie, Elias J; Vinks, Alexander A

    2018-05-01

    High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity. The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy. A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m 2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients. A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08-0.19), 0.61 (0.33-0.90), 2.0 (1.3-2.7), and 4.0 (3.6-4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2  = 0.98; p < 0.01) with a mean bias of -2.2% and precision of 9.4%. A similar relationship was observed in children (R 2  = 0.99; p < 0.01). The developed pharmacokinetic model-based sparse sampling strategy promises to achieve the target area under the curve as part of precision dosing.

  16. Inter-Individual Variability in High-Throughput Risk ...

    EPA Pesticide Factsheets

    We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion

  17. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia.

    PubMed

    Poncin, Marc; Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-02-01

    To describe the implementation and feasibility of an innovative mass vaccination strategy - based on single-dose oral cholera vaccine - to curb a cholera epidemic in a large urban setting. In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign - 2.31 United States dollars (US$) per dose - included the relatively low cost of local delivery - US$ 0.41 per dose. We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered.

  18. [Regulatory radiation risks' for the population and natural objects within the Semipalatinsk Test Site].

    PubMed

    Spiridonov, S I; Teten'kin, V L; Mukusheva, M K; Solomatin, V M

    2008-01-01

    Advisability of using risks as indicators for estimating radiation impacts on environmental objects and humans has been jusified. Results are presented from identification of dose burdens distribution to various cohorts of the population living within the Semipalatinsk Test Site (STS) and consuming contaminated farm products. Parameters of dose burden distributions are estimated for areas of livestock grazing and the most contaminated sectors within these areas. Dose distributions to meadow plants for the above areas have been found. Regulatory radiation risks for the STS population and meadow ecosystem components have been calculated. Based on the parameters estimated, levels of radiation exposure of the population and herbaceous plants have been compared.

  19. Neutrons in active proton therapy: Parameterization of dose and dose equivalent.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Lomax, Tony

    2017-06-01

    One of the essential elements of an epidemiological study to decide if proton therapy may be associated with increased or decreased subsequent malignancies compared to photon therapy is an ability to estimate all doses to non-target tissues, including neutron dose. This work therefore aims to predict for patients using proton pencil beam scanning the spatially localized neutron doses and dose equivalents. The proton pencil beam of Gantry 1 at the Paul Scherrer Institute (PSI) was Monte Carlo simulated using GEANT. Based on the simulated neutron dose and neutron spectra an analytical mechanistic dose model was developed. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed model in order to calculate the neutron component of the delivered dose distribution for each treated patient. The neutron dose was estimated for two patient example cases. The analytical neutron dose model represents the three-dimensional Monte Carlo simulated dose distribution up to 85cm from the proton pencil beam with a satisfying precision. The root mean square error between Monte Carlo simulation and model is largest for 138MeV protons and is 19% and 20% for dose and dose equivalent, respectively. The model was successfully integrated into the PSI treatment planning system. In average the neutron dose is increased by 10% or 65% when using 160MeV or 177MeV instead of 138MeV. For the neutron dose equivalent the increase is 8% and 57%. The presented neutron dose calculations allow for estimates of dose that can be used in subsequent epidemiological studies or, should the need arise, to estimate the neutron dose at any point where a subsequent secondary tumour may occur. It was found that the neutron dose to the patient is heavily increased with proton energy. Copyright © 2016. Published by Elsevier GmbH.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Li-Min, E-mail: limin.sun@yahoo.com; Huang, Chih-Jen; Faculty of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ{sup 2} andmore » Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas.« less

  1. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

  2. Dose commitments due to radioactive releases from nuclear power plant sites: Methodology and data base. Supplement 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.A.

    1996-06-01

    This manual describes a dose assessment system used to estimate the population or collective dose commitments received via both airborne and waterborne pathways by persons living within a 2- to 80-kilometer region of a commercial operating power reactor for a specific year of effluent releases. Computer programs, data files, and utility routines are included which can be used in conjunction with an IBM or compatible personal computer to produce the required dose commitments and their statistical distributions. In addition, maximum individual airborne and waterborne dose commitments are estimated and compared to 10 CFR Part 50, Appendix 1, design objectives. Thismore » supplement is the last report in the NUREG/CR-2850 series.« less

  3. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  4. Space Radiation Organ Doses for Astronauts on Past and Future Missions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2007-01-01

    We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quantity, the lineal energy (y) spectra that is measured by a tissue equivalent proportional counter (TEPC). These data are used in conjunction with space radiation transport models to project organ specific doses used in cancer and other risk projection models. Biodosimetry data from Mir, STS, and ISS missions provide an alternative estimate of organ dose equivalents based on chromosome aberrations. The physical environments inside spacecraft are currently well understood with errors in organ dose projections estimated as less than plus or minus 15%, however understanding the biological risks from space radiation remains a difficult problem because of the many radiation types including protons, heavy ions, and secondary neutrons for which there are no human data to estimate risks. The accuracy of projections of organ dose equivalents described here must be supplemented with research on the health risks of space exposure to properly assess crew safety for exploration missions.

  5. A comparison study of size-specific dose estimate calculation methods.

    PubMed

    Parikh, Roshni A; Wien, Michael A; Novak, Ronald D; Jordan, David W; Klahr, Paul; Soriano, Stephanie; Ciancibello, Leslie; Berlin, Sheila C

    2018-01-01

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ c ) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI vol, there was poor correlation, ρ c <0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide acceptable dose estimates for pediatric patients <30 cm in body width. Body weight provides a quick and practical method to identify conversion factors that can be used to estimate SSDE with reasonable accuracy in pediatric patients with body width ≥20 cm.

  6. Estimating Likelihood of Fetal In Vivo Interactions Using In ...

    EPA Pesticide Factsheets

    Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug interaction studies, Cmax/AC50 (i.e., maximal in vivo blood concentration over the half-maximal in in vitro activity concentration), will give a useful approximation for concentrations where in vivo interactions are likely. Further, for doses where maternal blood concentrations are likely to elicit an interaction (Cmax/AC50>0.1), where do the compounds accumulate in fetal tissues? In order to estimate these doses based on Tox21 data, in silico parameters of chemical fraction unbound in plasma and intrinsic hepatic clearance were estimated from ADMET predictor (Simulations-Plus Inc.) and used in the HTTK R-package to obtain Cmax values from a physiologically-based toxicokinetics model. In silico estimated Cmax values predicted in vivo human Cmax with median absolute error of 0.81 for 93 chemicals, giving confidence in the R-package and in silico estimates. A case example evaluating Cmax/AC50 values for peroxisome proliferator-activated receptor gamma (PPARγ) and glucocorticoid receptor revealed known compounds (glitazones and corticosteroids, respectively) highest on the list at pharmacological doses. Doses required to elicit likely interactions across all Tox21/ToxCast assays were compared to

  7. Effectiveness of Haemophilus influenzae type b vaccines administered according to various schedules: systematic review and meta-analysis of observational data.

    PubMed

    Jackson, Charlotte; Mann, Andrea; Mangtani, Punam; Fine, Paul

    2013-11-01

    Conjugate vaccines against Haemophilus influenzae type b (Hib) are widely used. The full implications of Hib vaccination schedule for vaccine effectiveness (VE) are unclear. We searched the literature for observational studies reporting the effectiveness of conjugate Hib vaccines administered according to different schedules. We summarized dose-specific VE estimates, where appropriate, using random effects meta-analysis. Thirty-one eligible articles (reporting 30 studies conducted in 17 countries) were identified. Meta-analysis of case-control studies using community controls produced VE estimates against Hib meningitis of 55% (95% confidence interval: 2-80%, based on 3 studies), 96% (86-99%, 3 studies) and 96% (86-99%, 4 studies) after 1, 2 and 3 doses of vaccines other than the polyribosyl ribitol phosphate outer membrane protein vaccine. Estimates were similar using hospital controls. VE against invasive Hib disease in case-control studies was estimated as 59% (30-76%, 3 studies) and 97% (87-99%, 3 studies) for 1 and 3 doses (insufficient data were identified to estimate 2-dose VE). Point estimates from 2 studies suggested VE>90% after 1 dose of the polyribosyl ribitol phosphate outer membrane protein vaccine, but meta-analysis was not possible. Using data from 4 cohort studies, 3-dose VE was estimated as 94% (88-97%). There was some evidence that Hib vaccine was less effective when administered with acellular (rather than whole cell) pertussis vaccine. Weak evidence from 2 studies suggested that a booster confers some additional protection following full primary vaccination and may compensate for an incomplete primary series. Observational data suggest that ≥2 doses of Hib vaccine are required for high effectiveness, but do not strongly favor any particular schedule.

  8. SU-E-T-561: Monte Carlo-Based Organ Dose Reconstruction Using Pre-Contoured Human Model for Hodgkins Lymphoma Patients Treated by Cobalt-60 External Beam Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Pelletier, C; Lee, C

    Purpose: Organ doses for the Hodgkin’s lymphoma patients treated with cobalt-60 radiation were estimated using an anthropomorphic model and Monte Carlo modeling. Methods: A cobalt-60 treatment unit modeled in the BEAMnrc Monte Carlo code was used to produce phase space data. The Monte Carlo simulation was verified with percent depth dose measurement in water at various field sizes. Radiation transport through the lung blocks were modeled by adjusting the weights of phase space data. We imported a precontoured adult female hybrid model and generated a treatment plan. The adjusted phase space data and the human model were imported to themore » XVMC Monte Carlo code for dose calculation. The organ mean doses were estimated and dose volume histograms were plotted. Results: The percent depth dose agreement between measurement and calculation in water phantom was within 2% for all field sizes. The mean organ doses of heart, left breast, right breast, and spleen for the selected case were 44.3, 24.1, 14.6 and 3.4 Gy, respectively with the midline prescription dose of 40.0 Gy. Conclusion: Organ doses were estimated for the patient group whose threedimensional images are not available. This development may open the door to more accurate dose reconstruction and estimates of uncertainties in secondary cancer risk for Hodgkin’s lymphoma patients. This work was partially supported by the intramural research program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics.« less

  9. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.Soholt; G.Gonzales; P.Fresquez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses tomore » higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.« less

  10. Quantification of damage due to low-dose radiation exposure in mice: construction and application of a biodosimetric model using mRNA indicators in circulating white blood cells

    PubMed Central

    Ishihara, Hiroshi; Tanaka, Izumi; Yakumaru, Haruko; Tanaka, Mika; Yokochi, Kazuko; Fukutsu, Kumiko; Tajima, Katsushi; Nishimura, Mayumi; Shimada, Yoshiya; Akashi, Makoto

    2016-01-01

    Biodosimetry, the measurement of radiation damage in a biologic sample, is a reliable tool for increasing the accuracy of dose estimation. Although established chromosome analyses are suitable for estimating the absorbed dose after high-dose irradiation, biodosimetric methodology to measure damage following low-dose exposure is underdeveloped. RNA analysis of circulating blood containing radiation-sensitive cells is a candidate biodosimetry method. Here we quantified RNA from a small amount of blood isolated from mice following low-dose body irradiation (<0.5 Gy) aimed at developing biodosimetric tools for situations that are difficult to study in humans. By focusing on radiation-sensitive undifferentiated cells in the blood based on Myc RNA expression, we quantified the relative levels of RNA for DNA damage-induced (DDI) genes, such as Bax, Bbc3 and Cdkn1a. The RNA ratios of DDI genes/Myc in the blood increased in a dose-dependent manner 4 h after whole-body irradiation at doses ranging from 0.1 to 0.5 Gy (air-kerma) of X-rays, regardless of whether the mice were in an active or resting state. The RNA ratios were significantly increased after 0.014 Gy (air-kerma) of single X-ray irradiation. The RNA ratios were directly proportional to the absorbed doses in water ranging from 0.1 to 0.5 Gy, based on gamma-irradiation from 137Cs. Four hours after continuous irradiation with gamma-rays or by internal contamination with a beta-emitter, the increased RNA ratios resembled those following single irradiation. These findings indicate that the RNA status can be utilized as a biodosimetric tool to estimate low-dose radiation when focusing on undifferentiated cells in blood. PMID:26589759

  11. Characterization of optically stimulated luminescence dosimeters and investigating their potential for estimating pediatric organ doses in multi-slice computed tomography

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani Mohammed

    Recent epidemiologic studies have shown a strong association between the relatively high doses of pediatric CT and the risk of cancer. Quantifying organ doses, as a measure of the risk, is commonly based on either direct anthropomorphic phantom measurements or Monte Carlo simulation. The major disadvantage in the phantom approach is its high cost especially that, for pediatric CT dosimetry, various phantom sizes are required to represent different age groups of children. On the other hand, Monte Carlo simulation, although not considered costly, requires validation by anthropomorphic phantom measurements. The aim of this project was to develop two methods of organ dose estimation in pediatric CT: 1) from the measured surface dose using optically stimulated luminescence dosimeters (OSLDs) and 2) by measuring the circumference of the body part being scanned as well as knowing the scan parameters. The project was based on a study proposed by the surgery department to monitor radiation exposure to children during their CT examination in the ER. A total of 200 pediatric patients were enrolled in this study which used OSLDs to monitor the doses. Specific aim 1 of this project was to characterize the OSLDs in the diagnostic energy range. Specific aim 2(a) was to find relationships between the patients' doses from OSLDs and both scan CTDI and the measured circumference. In specific aim 2(b) we carried out measurements using CTDI phantoms to investigate the relationships studied in specific aim 2(a). Specific aim 3 was to come up with models to estimate select organ doses from measuring surface dose or by using the circumference of the body part. To do this, pediatric examinations were simulated using a set of pediatric anthropomorphic phantoms in which doses of select organs were measured.

  12. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... body in the field of health physics, nuclear medicine or radiology and if based on analysis of the... will be forwarded to the Under Secretary for Health, who will be responsible for preparation of a dose... the National Institutes of Health, who shall prepare a separate radiation dose estimate for...

  13. MOVING FROM EXTERNAL EXPOSURE CONCENTRATION TO INTERNAL DOSE: DURATION EXTRAPOLATION BASED ON PHYSIOLOGICALLY-BASED PHARMACOKINETIC-MODEL DERIVED ESTIMATES OF INTERNAL DOSE

    EPA Science Inventory

    The potential human health risk(s) from exposure to chemicals under conditions for which adequate human or animal data are not available must frequently be assessed. Exposure scenario is particularly important for the acute neurotoxic effects of volatile organic compounds (VOCs)...

  14. Individualized adjustments to reference phantom internal organ dosimetry—scaling factors given knowledge of patient external anatomy

    NASA Astrophysics Data System (ADS)

    Wayson, Michael B.; Bolch, Wesley E.

    2018-04-01

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  15. Individualized adjustments to reference phantom internal organ dosimetry-scaling factors given knowledge of patient external anatomy.

    PubMed

    Wayson, Michael B; Bolch, Wesley E

    2018-04-13

    Internal radiation dose estimates for diagnostic nuclear medicine procedures are typically calculated for a reference individual. Resultantly, there is uncertainty when determining the organ doses to patients who are not at 50th percentile on either height or weight. This study aims to better personalize internal radiation dose estimates for individual patients by modifying the dose estimates calculated for reference individuals based on easily obtainable morphometric characteristics of the patient. Phantoms of different sitting heights and waist circumferences were constructed based on computational reference phantoms for the newborn, 10 year-old, and adult. Monoenergetic photons and electrons were then simulated separately at 15 energies. Photon and electron specific absorbed fractions (SAFs) were computed for the newly constructed non-reference phantoms and compared to SAFs previously generated for the age-matched reference phantoms. Differences in SAFs were correlated to changes in sitting height and waist circumference to develop scaling factors that could be applied to reference SAFs as morphometry corrections. A further set of arbitrary non-reference phantoms were then constructed and used in validation studies for the SAF scaling factors. Both photon and electron dose scaling methods were found to increase average accuracy when sitting height was used as the scaling parameter (~11%). Photon waist circumference-based scaling factors showed modest increases in average accuracy (~7%) for underweight individuals, but not for overweight individuals. Electron waist circumference-based scaling factors did not show increases in average accuracy. When sitting height and waist circumference scaling factors were combined, modest average gains in accuracy were observed for photons (~6%), but not for electrons. Both photon and electron absorbed doses are more reliably scaled using scaling factors computed in this study. They can be effectively scaled using sitting height alone as patient-specific morphometric parameter.

  16. Testing the Capacity of the National Biological Dose Response Plan (NBDRP) EX40801

    DTIC Science & Technology

    2009-11-01

    Blood Collection All donors were volunteers that willingly responded to an advertising call for participation in a research proposal approved by...Scorers from the same laboratory are shown in the same colour . In Figure 2, the dose estimates based on QuickScan are shown. Figure 3 shows the doses

  17. Comparative analysis of the countermeasures taken to mitigate exposure of the public to radioiodine following the Chernobyl and Fukushima accidents: lessons from both accidents.

    PubMed

    Uyba, Vladimir; Samoylov, Alexander; Shinkarev, Sergey

    2018-04-01

    In the case of a severe radiation accident at a nuclear power station, the most important radiation hazard for the public is internal exposure of the thyroid to radioiodine. The purposes of this paper were (i) to compare countermeasures conducted (following the Chernobyl and Fukushima accidents) aimed at mitigation of exposure to the thyroid for the public, (ii) to present comparative estimates of doses to the thyroid and (iii) to derive lessons from the two accidents. The scale and time of countermeasures applied in the early phase of the accidents (sheltering, evacuation, and intake of stable iodine to block the thyroid) and at a later time (control of 131I concentration in foodstuffs) have been described. After the Chernobyl accident, the estimation of the thyroid doses for the public was mainly based on direct thyroid measurements of ~400 000 residents carried out within the first 2 months. The highest estimates of thyroid doses to children reached 50 Gy. After the Fukushima accident, the estimation of thyroid doses was based on radioecological models due to a lack of direct thyroid measurements (only slightly more than 1000 residents were measured). The highest estimates of thyroid doses to children were a few hundred mGy. Following the Chernobyl accident, ingestion of 131I through cows' milk was the dominant pathway. Following the Fukushima accident, it appears that inhalation of contaminated air was the dominant pathway. Some lessons learned following the Chernobyl and Fukushima accidents have been presented in this paper.

  18. Comparative analysis of the countermeasures taken to mitigate exposure of the public to radioiodine following the Chernobyl and Fukushima accidents: lessons from both accidents

    PubMed Central

    Uyba, Vladimir; Samoylov, Alexander; Shinkarev, Sergey

    2018-01-01

    Abstract In the case of a severe radiation accident at a nuclear power station, the most important radiation hazard for the public is internal exposure of the thyroid to radioiodine. The purposes of this paper were (i) to compare countermeasures conducted (following the Chernobyl and Fukushima accidents) aimed at mitigation of exposure to the thyroid for the public, (ii) to present comparative estimates of doses to the thyroid and (iii) to derive lessons from the two accidents. The scale and time of countermeasures applied in the early phase of the accidents (sheltering, evacuation, and intake of stable iodine to block the thyroid) and at a later time (control of 131I concentration in foodstuffs) have been described. After the Chernobyl accident, the estimation of the thyroid doses for the public was mainly based on direct thyroid measurements of ~400 000 residents carried out within the first 2 months. The highest estimates of thyroid doses to children reached 50 Gy. After the Fukushima accident, the estimation of thyroid doses was based on radioecological models due to a lack of direct thyroid measurements (only slightly more than 1000 residents were measured). The highest estimates of thyroid doses to children were a few hundred mGy. Following the Chernobyl accident, ingestion of 131I through cows’ milk was the dominant pathway. Following the Fukushima accident, it appears that inhalation of contaminated air was the dominant pathway. Some lessons learned following the Chernobyl and Fukushima accidents have been presented in this paper. PMID:29415268

  19. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    PubMed

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  20. Comparison of exposure assessment methods in a lung cancer case-control study: performance of a lifelong task-based questionnaire for asbestos and PAHs.

    PubMed

    Bourgkard, Eve; Wild, Pascal; Gonzalez, Maria; Févotte, Joëlle; Penven, Emmanuelle; Paris, Christophe

    2013-12-01

    To describe the performance of a lifelong task-based questionnaire (TBQ) in estimating exposures compared with other approaches in the context of a case-control study. A sample of 93 subjects was randomly selected from a lung cancer case-control study corresponding to 497 jobs. For each job, exposure assessments for asbestos and polycyclic aromatic hydrocarbons (PAHs) were obtained by expertise (TBQ expertise) and by algorithm using the TBQ (TBQ algorithm) as well as by expert appraisals based on all available occupational data (REFERENCE expertise) considered to be the gold standard. Additionally, a Job Exposure Matrix (JEM)-based evaluation for asbestos was also obtained. On the 497 jobs, the various evaluations were contrasted using Cohen's κ coefficient of agreement. Additionally, on the total case-control population, the asbestos dose-response relationship based on the TBQ algorithm was compared with the JEM-based assessment. Regarding asbestos, the TBQ-exposure estimates agreed well with the REFERENCE estimate (TBQ expertise: level-weighted κ (lwk)=0.68; TBQ algorithm: lwk=0.61) but less so with the JEM estimate (TBQ expertise: lwk=0.31; TBQ algorithm: lwk=0.26). Regarding PAHs, the agreements between REFERENCE expertise and TBQ were less good (TBQ expertise: lwk=0.43; TBQ algorithm: lwk=0.36). In the case-control study analysis, the dose-response relationship between lung cancer and cumulative asbestos based on the JEM is less steep than with the TBQ-algorithm exposure assessment and statistically non-significant. Asbestos-exposure estimates based on the TBQ were consistent with the REFERENCE expertise and yielded a steeper dose-response relationship than the JEM. For PAHs, results were less clear.

  1. Estimated human absorbed dose of a new (153)Sm bone seeking agent based on biodistribution data in mice: Comparison with (153)Sm-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh

    2015-11-01

    The main goal in radiotherapy is to deliver the absorbed dose within the target organs in highest possible amount, while the absorbed dose of the other organs, especially the critical organs, should be kept as low as possible. In this work, the absorbed dose to human organs for a new (153)Sm bone-seeking agent was investigated. (153)Sm-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid ((153)Sm-BPAMD) complex was successfully prepared. The biodistribution of the complex was investigated in male Syrian mice up to 48 h post injection. The human absorbed dose of the complex was estimated based on the biodistribution data of the mice by radiation absorbed dose assessment resource (RADAR) method. The target to non-target absorbed dose ratios for (153)Sm-BPAMD were compared with these ratios for (153)Sm-EDTMP. The highest absorbed dose for (153)Sm-BPAMD was observed in bone surface with 5.828 mGy/MBq. The dose ratios of the bone surface to the red marrow and to the total body for (153)Sm-BPAMD were 5.3 and 20.0, respectively, while these ratios for (153)Sm-EDTMP were 4.4 and 18.3, respectively. This means, for a given dose to the bone surface as the target organ, the red marrow (as the main critical organ) and the total body would receive lesser absorbed dose in the case of (153)Sm-BPAMD. Generally, the human absorbed dose estimation of (153)Sm-BPAMD indicated that all other tissues approximately received insignificant absorbed dose in comparison with bone surface and therefore can be regarded as a new potential agent for bone pain palliation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. The impact of variation in scaling factors on the estimation of ...

    EPA Pesticide Factsheets

    Many physiologically based pharmacokinetic (PBPK) models include values for metabolic rate parameters extrapolated from in vitro metabolism studies using scaling factors such as mg of microsomal protein per gram of liver (MPPGL) and liver mass (FVL). Variation in scaling factor values impacts metabolic rate parameter estimates (Vmax) and hence estimates of internal dose used in dose response analysis. The impacts of adult human variation in MPPGL and FVL on estimates of internal dose were assessed using a human PBPK model for BDCM for several internal dose metrics for two exposure scenarios (single 0.25 liter drink of water or 10 minute shower) under plausible (5 micrograms/L) and high level (20 micrograms/L) water concentrations. For both concentrations, all internal dose metrics were changed less than 5% for the showering scenario (combined inhalation and dermal exposure). In contrast, a 27-fold variation in area under the curve for BDCM in venous blood was observed at both oral exposure concentrations, whereas total amount of BDCM metabolized in liver was relatively unchanged. This analysis demonstrates that variability in the scaling factors used for in vitro to in vivo extrapolation (IVIVE) for metabolic rate parameters can have a significant route-dependent impact on estimates of internal dose under environmentally relevant exposure scenarios. This indicates the need to evaluate both uncertainty and variability for scaling factors used for IVIVE. Sca

  3. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  4. Patient-specific FDG dosimetry for adult males, adult females, and very low birth weight infants

    NASA Astrophysics Data System (ADS)

    Niven, Erin

    Fluorodeoxyglucose is the most commonly used radiopharmaceutical in Positron Emission Tomography, with applications in neurology, cardiology, and oncology. Despite its routine use worldwide, the radiation absorbed dose estimates from FDG have been based primarily on data obtained from two dogs studied in 1977 and 11 adults (most likely males) studied in 1982. In addition, the dose estimates calculated for FDG have been centered on the adult male, with little or no mention of variations in the dose estimates due to sex, age, height, weight, nationality, diet, or pathological condition. Through an extensive investigation into the Medical Internal Radiation Dose schema for calculating absorbed doses, I have developed a simple patient-specific equation; this equation incorporates the parameters necessary for alterations to the mathematical values of the human model to produce an estimate more representative of the individual under consideration. I have used this method to determine the range of absorbed doses to FDG from the collection of a large quantity of biological data obtained in adult males, adult females, and very low birth weight infants. Therefore, a more accurate quantification of the dose to humans from FDG has been completed. My results show that per unit administered activity, the absorbed dose from FDG is higher for infants compared to adults, and the dose for adult women is higher than for adult men. Given an injected activity of approximately 3.7 MBq kg-1, the doses for adult men, adult women, and full-term newborns would be on the order of 5.5, 7.1, and 2.8 mSv, respectively. These absorbed doses are comparable to the doses received from other nuclear medicine procedures.

  5. Dose Assessment of Los Alamos National Laboratory-Derived Residual Radionuclides in Soils within Tract A-18-2 for Land Conveyance and Transfer Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Whicker, Jeffrey Jay

    In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 at Los Alamos National Laboratory (LANL) for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/yr (<10 μSv/yr) for a hypothetical recreational user (compared with a dose limit of 25 mrem/yr [250 μSv/yr]). Dose estimates were based on the 95% upper confidence levels for radionuclide concentrations within the Tract. Dose estimates less than 3 mrem/yr are considered to be as lowmore » as reasonably achievable (ALARA), therefore no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 (DOE 2013) and Policy 412 (LANL 2014).« less

  6. Calculation of out-of-field dose distribution in carbon-ion radiotherapy by Monte Carlo simulation.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Namba, Masao

    2012-08-01

    Recent radiotherapy technologies including carbon-ion radiotherapy can improve the dose concentration in the target volume, thereby not only reducing side effects in organs at risk but also the secondary cancer risk within or near the irradiation field. However, secondary cancer risk in the low-dose region is considered to be non-negligible, especially for younger patients. To achieve a dose estimation of the whole body of each patient receiving carbon-ion radiotherapy, which is essential for risk assessment and epidemiological studies, Monte Carlo simulation plays an important role because the treatment planning system can provide dose distribution only in∕near the irradiation field and the measured data are limited. However, validation of Monte Carlo simulations is necessary. The primary purpose of this study was to establish a calculation method using the Monte Carlo code to estimate the dose and quality factor in the body and to validate the proposed method by comparison with experimental data. Furthermore, we show the distributions of dose equivalent in a phantom and identify the partial contribution of each radiation type. We proposed a calculation method based on a Monte Carlo simulation using the PHITS code to estimate absorbed dose, dose equivalent, and dose-averaged quality factor by using the Q(L)-L relationship based on the ICRP 60 recommendation. The values obtained by this method in modeling the passive beam line at the Heavy-Ion Medical Accelerator in Chiba were compared with our previously measured data. It was shown that our calculation model can estimate the measured value within a factor of 2, which included not only the uncertainty of this calculation method but also those regarding the assumptions of the geometrical modeling and the PHITS code. Also, we showed the differences in the doses and the partial contributions of each radiation type between passive and active carbon-ion beams using this calculation method. These results indicated that it is essentially important to include the dose by secondary neutrons in the assessment of the secondary cancer risk of patients receiving carbon-ion radiotherapy with active as well as passive beams. We established a calculation method with a Monte Carlo simulation to estimate the distribution of dose equivalent in the body as a first step toward routine risk assessment and an epidemiological study of carbon-ion radiotherapy at NIRS. This method has the advantage of being verifiable by the measurement.

  7. Neutron dose estimation via LET spectrometry using CR-39 detector for the reaction 9Be (p, n)

    PubMed Central

    Sahoo, G. S.; Tripathy, S. P.; Paul, S.; Sharma, S. D.; Sharma, S. C.; Joshi, D. S.; Bandyopadhyay, T.

    2014-01-01

    CR-39 detectors, widely used for neutron dosimetry in accelerator radiation environment, have also been applied in tissue microdosimetry by generating the linear energy transfer (LET) spectrum. In this work, the neutron dose has been estimated via LET spectrometry for 9Be (p, n) reaction which is useful for personnel monitoring around particle accelerators and accelerator based therapy facilities. Neutrons were generated by the interaction of protons of 6 different energies from 4–24 MeV with a thick Be target. The LET spectra were obtained from the major and minor radii of each track and the thickness of removed surface. From the LET spectra, the absorbed dose (DLET) and the dose equivalent (HLET) were estimated using Q-L relationship as given by International Commission on Radiological Protection (ICRP) 60. The track density in CR-39 detector and hence the neutron yield was found to be increasing with the increase in projectile (proton) energy. Similar observations were also obtained for absorbed dose (DLET) and dose equivalents (HLET). PMID:25525310

  8. Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2

    DOE PAGES

    Leggett, Richard W.

    2017-03-02

    Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less

  9. Basis for the ICRP’s updated biokinetic model for carbon inhaled as CO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard W.

    Here, the International Commission on Radiological Protection (ICRP) is updating its biokinetic and dosimetric models for occupational intake of radionuclides (OIR) in a series of reports called the OIR series. This paper describes the basis for the ICRP's updated biokinetic model for inhalation of radiocarbon as carbon dioxide (CO 2) gas. The updated model is based on biokinetic data for carbon isotopes inhaled as carbon dioxide or injected or ingested as bicarbonatemore » $$({{{\\rm{HCO}}}_{3}}^{-}).$$ The data from these studies are expected to apply equally to internally deposited (or internally produced) carbon dioxide and bicarbonate based on comparison of excretion rates for the two administered forms and the fact that carbon dioxide and bicarbonate are largely carried in a common form (CO 2–H$${{{\\rm{CO}}}_{3}}^{-})$$ in blood. Compared with dose estimates based on current ICRP biokinetic models for inhaled carbon dioxide or ingested carbon, the updated model will result in a somewhat higher dose estimate for 14C inhaled as CO 2 and a much lower dose estimate for 14C ingested as bicarbonate.« less

  10. Estimation of thyroid equivalent doses during evacuation based on body surface contamination levels in the nuclear accident of FDNPS in 2011

    NASA Astrophysics Data System (ADS)

    Ohba, Takashi; Hasegawa, Arifumi; Kohayakawa, Yoshitaka; Kondo, Hisayoshi; Suzuki, Gen

    2017-09-01

    To reduce uncertainty in thyroid dose estimation, residents' radiation protection behavior should be reflected in the estimation. Screening data of body surface contamination provide information on exposure levels during evacuation. Our purpose is to estimate thyroid equivalent doses based on body surface contamination levels using a new methodology. We obtained a record of 7,539 residents/evacuees. Geiger-Mueller survey meter measurement value in cpm was translated into Bq/cm2 according to the nuclides densities obtained by measuring clothing from two persons by germanium γ-spectrometer. The measurement value of body surface contamination on head was adjusted by a natural removal rate of 15 hours and radionuclides' physical half-life. Thyroid equivalent dose of 1-year-old children by inhalation was estimated by two-dimensional Monte Carlo simulation. The proportions of evacuees/residents with measurement value in cpm of Namie and Minamisoma groups were higher than those of other groups during both periods (p<0.01, Kruskal-Wallis). During 12-14 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were estimated as 2.7 and 86.0 mSv, respectively, for Namie group, and 4.2 and 17.2 mSv, respectively, for Minamisoma group, 0.1 and 1.0 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 0.2 and 2.1 mSv, respectively, for the other group. During 15- 17 March period, 50 and 95 percentiles of thyroid equivalent doses by inhalation were 0.8 and 15.7 mSv, respectively, for Namie group, and 1.6 and 8.4 mSv, respectively, for Minamisoma group, 0.2 and 13.2 mSv, respectively, for Tomioka/Okuma/Futaba/Naraha group, and 1.2 and 12.7 mSv, respectively, for the other group. It was indicated that inhalation dose was generally higher in Namie and Minamisoma groups during 12-14 March than those during 15-17 March might reflect different self-protective behavior to radioactive plumes from other groups.

  11. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  12. Budget impact of somatostatin analogs as treatment for metastatic gastroenteropancreatic neuroendocrine tumors in US hospitals.

    PubMed

    Ortendahl, Jesse D; Pulgar, Sonia J; Mirakhur, Beloo; Cox, David; Bentley, Tanya Gk; Phan, Alexandria T

    2017-01-01

    With the introduction of new therapies, hospitals have to plan spending limited resources in a cost-effective manner. To assist in identifying the optimal treatment for patients with locally advanced or metastatic gastroenteropancreatic neuroendocrine tumors, budget impact modeling was used to estimate the financial implications of adoption and diffusion of somatostatin analogs (SSAs). A hypothetical cohort of 500 gastroenteropancreatic neuroendocrine tumor patients was assessed in an economic model, with the proportion with metastatic disease treated with an SSA estimated using published data. Drug acquisition, preparation, and administration costs were based on national pricing databases and published literature. Octreotide dosing was based on published estimates of real-world data, whereas for lanreotide, real-world dosing was unavailable and we therefore used the highest indicated dosing. Alternative scenarios reflecting the proportion of patients receiving lanreotide or octreotide were considered to estimate the incremental budget impact to the hospital. In the base case, 313 of the initial 500 gastroenteropancreatic neuroendocrine tumor patients were treated with an SSA. The model-predicted per-patient cost was US$83,473 for lanreotide and US$89,673 for octreotide. With a hypothetical increase in lanreotide utilization from 5% to 30% of this population, the annual model-projected hospital costs decreased by US$488,615. When varying the inputs in one-way sensitivity analyses, the results were most sensitive to changes in dosing assumptions. Results suggest that factors beyond drug acquisition cost can influence the budget impact to a hospital. When considering preparation and administration time, and real-world dosing, use of lanreotide has the potential to reduce health care expenditures associated with metastatic gastroenteropancreatic neuroendocrine tumor treatments.

  13. Dose equivalent on the Moon contributed from cosmic rays and their secondary particles

    NASA Astrophysics Data System (ADS)

    Hayatsu, K.; Hareyama, Makoto; Hasebe, N.; Kobayashi, S.; Yamashita, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and in the future lunar bases. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays and solar energetic particles directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, those generate many secondary particles such as gamma rays, neutrons and other charged particles by interaction with soils under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study the ambient dose equivalent in the ICRU sphere at the surface and various depths of the Moon is estimated based on the latest galactic cosmic ray spectrum and its generating secondary particles calculated by the Geant4 code. On the surface the most dominant contribution for the dose are not protons and heliums, but heavy components of galactic cosmic rays such as iron, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 50 - 100 g/cm2 of lunar soil depth, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give a large dose. On the surface, the dose originated from GCR is quite sensitive for solar cycle activity, while that from secondary neutrons is not so sensitive. Inversely, under the surface, the dose from neutron is much sensitive for solar activity related to the flux of galactic cosmic rays. This difference should be considered to shield cosmic radiation for human activity on the Moon.

  14. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia

    PubMed Central

    Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-01-01

    Abstract Objective To describe the implementation and feasibility of an innovative mass vaccination strategy – based on single-dose oral cholera vaccine – to curb a cholera epidemic in a large urban setting. Method In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Findings Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign – 2.31 United States dollars (US$) per dose – included the relatively low cost of local delivery – US$ 0.41 per dose. Conclusion We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered. PMID:29403111

  15. Patient- and cohort-specific dose and risk estimation for abdominopelvic CT: a study based on 100 patients

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Frush, Donald P.; Samei, Ehsan

    2012-03-01

    The purpose of this work was twofold: (a) to estimate patient- and cohort-specific radiation dose and cancer risk index for abdominopelvic computer tomography (CT) scans; (b) to evaluate the effects of patient anatomical characteristics (size, age, and gender) and CT scanner model on dose and risk conversion coefficients. The study included 100 patient models (42 pediatric models, 58 adult models) and multi-detector array CT scanners from two commercial manufacturers (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). A previously-validated Monte Carlo program was used to simulate organ dose for each patient model and each scanner, from which DLP-normalized-effective dose (k factor) and DLP-normalized-risk index values (q factor) were derived. The k factor showed exponential decrease with increasing patient size. For a given gender, q factor showed exponential decrease with both increasing patient size and patient age. The discrepancies in k and q factors across scanners were on average 8% and 15%, respectively. This study demonstrates the feasibility of estimating patient-specific organ dose and cohort-specific effective dose and risk index in abdominopelvic CT requiring only the knowledge of patient size, gender, and age.

  16. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes.

    PubMed

    Austin, Peter C

    2018-01-01

    Propensity score methods are frequently used to estimate the effects of interventions using observational data. The propensity score was originally developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (e.g. pack-years of cigarettes smoked, dose of medication, or years of education). We describe how the GPS can be used to estimate the effect of continuous exposures on survival or time-to-event outcomes. To do so we modified the concept of the dose-response function for use with time-to-event outcomes. We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of quantitative exposures on survival or time-to-event outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. The use of methods based on the GPS was compared with the use of conventional G-computation and weighted G-computation. Conventional G-computation resulted in estimates of the dose-response function that displayed the lowest bias and the lowest variability. Amongst the two GPS-based methods, covariate adjustment using the GPS tended to have the better performance. We illustrate the application of these methods by estimating the effect of average neighbourhood income on the probability of survival following hospitalization for an acute myocardial infarction.

  17. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  18. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    PubMed

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  19. A correlation study of eye lens dose and personal dose equivalent for interventional cardiologists.

    PubMed

    Farah, J; Struelens, L; Dabin, J; Koukorava, C; Donadille, L; Jacob, S; Schnelzer, M; Auvinen, A; Vanhavere, F; Clairand, I

    2013-12-01

    This paper presents the dosimetry part of the European ELDO project, funded by the DoReMi Network of Excellence, in which a method was developed to estimate cumulative eye lens doses for past practices based on personal dose equivalent values, H(p)(10), measured above the lead apron at several positions at the collar, chest and waist levels. Measurement campaigns on anthropomorphic phantoms were carried out in typical interventional settings considering different tube projections and configurations, beam energies and filtration, operator positions and access routes and using both mono-tube and biplane X-ray systems. Measurements showed that eye lens dose correlates best with H(p)(10) measured on the left side of the phantom at the level of the collar, although this correlation implicates high spreads (41 %). Nonetheless, for retrospective dose assessment, H(p)(10) records are often the only option for eye dose estimates and the typically used chest left whole-body dose measurement remains useful.

  20. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  1. Comparison of skin dose measurement using nanoDot® dosimeter and machine readings of radiation dose during cardiac catheterization in children

    PubMed Central

    Balaguru, Duraisamy; Rodriguez, Matthew; Leon, Stephanie; Wagner, Louis K; Beasley, Charles W; Sultzer, Andrew; Numan, Mohammed T

    2018-01-01

    Objectives: Direct measurement of skin dose of radiation for children using optically stimulated luminescence (OSL) technology using nanoDot® (Landauer, Glenwood, IL, USA). Background: Radiation dose is estimated as cumulative air kerma (AK) and dosearea product based on standards established for adult size patients. Body size of pediatric patients who undergo cardiac catheterization for congenital heart disease vary widely from newborn to adolescence. Direct, skindose measurement applying OSL technology may eliminate errors in the estimate. Materials and Methods: The nanoDot® (1 cm × 1 cm × flat plastic cassette) is applied to patient's skin using adhesive tape during cardiac catheterization and radiation skin doses were read within 24 hrs. nanoDot® values were compared to the currently available cumulative AK values estimated and displayed on fluoroscopy monitor. Results: A total of 12 children were studied, aged 4 months to 18 years (median 1.1 years) and weight range 5.3–86 kg (median 8.4 kg). nanoDot® readings ranged from 2.58 mGy to 424.8 mGy (median 84.1 mGy). Cumulative AK ranged from 16.2 mGy to 571.2 mGy (median 171.1 mGy). Linear correlation was noted between nanoDot® values and AK values (R2 = 0.88, R = 0.94). nanoDot® readings were approximately 65% of the estimated cumulative AK estimated using the International Electrotechnical Commission standards. Conclusions: Application of OSL technology using nanoDot® provides an alternative to directly measure fluoroscopic skin dose in children during cardiac catheterization. Our data show that the actual skin dose for children is approximately one-third lower than the AK estimated using international standards for adult size patients. PMID:29440825

  2. Comparison of skin dose measurement using nanoDot® dosimeter and machine readings of radiation dose during cardiac catheterization in children.

    PubMed

    Balaguru, Duraisamy; Rodriguez, Matthew; Leon, Stephanie; Wagner, Louis K; Beasley, Charles W; Sultzer, Andrew; Numan, Mohammed T

    2018-01-01

    Direct measurement of skin dose of radiation for children using optically stimulated luminescence (OSL) technology using nanoDot ® (Landauer, Glenwood, IL, USA). Radiation dose is estimated as cumulative air kerma (AK) and dosearea product based on standards established for adult size patients. Body size of pediatric patients who undergo cardiac catheterization for congenital heart disease vary widely from newborn to adolescence. Direct, skindose measurement applying OSL technology may eliminate errors in the estimate. The nanoDot ® (1 cm × 1 cm × flat plastic cassette) is applied to patient's skin using adhesive tape during cardiac catheterization and radiation skin doses were read within 24 hrs. nanoDot ® values were compared to the currently available cumulative AK values estimated and displayed on fluoroscopy monitor. A total of 12 children were studied, aged 4 months to 18 years (median 1.1 years) and weight range 5.3-86 kg (median 8.4 kg). nanoDot® readings ranged from 2.58 mGy to 424.8 mGy (median 84.1 mGy). Cumulative AK ranged from 16.2 mGy to 571.2 mGy (median 171.1 mGy). Linear correlation was noted between nanoDot® values and AK values ( R 2 = 0.88, R = 0.94). nanoDot® readings were approximately 65% of the estimated cumulative AK estimated using the International Electrotechnical Commission standards. Application of OSL technology using nanoDot® provides an alternative to directly measure fluoroscopic skin dose in children during cardiac catheterization. Our data show that the actual skin dose for children is approximately one-third lower than the AK estimated using international standards for adult size patients.

  3. Postapplication Fipronil Exposure Following Use on Pets.

    PubMed

    Cochran, R C; Yu, Liu; Krieger, R I; Ross, J H

    2015-01-01

    Fipronil is a pyrazole acaricide and insecticide that may be used for insect, tick, lice, and mite control on pets. Residents' short-term and long-term postapplication exposures to fipronil, including secondary environmental exposures, were estimated using data from chemical-specific studies. Estimations of acute (24-h) absorbed doses for residents were based on U.S. Environmental Protection Agency (U.S. EPA) 2012 standard operating procedures (SOPs) for postapplication exposure. Chronic exposures were not estimated for residential use, as continuous, long-term application activities were unlikely to occur. Estimated acute postapplication absorbed doses were as high as 0.56 μg/kg-d for toddlers (1-2 yr) in households with treated pets based on current U.S. EPA SOPs. Acute toddler exposures estimated here were fivefold larger in comparison to adults. Secondary exposure from the household environment in which a treated pet lives that is not from contacting the pet, but from contacting the house interior to which pet residues were transferred, was estimated based on monitoring socks worn by pet owners. These secondary exposures were more than an order of magnitude lower than those estimated from contacting the pet and thus may be considered negligible.

  4. Determination of the uncertainties in radiation doses from ingestion of strontium-90

    NASA Astrophysics Data System (ADS)

    Apostoaei, Andrei Iulian

    Quantification of the uncertainties in the internal dosimetry is important because it can impact the outcome of dose reconstruction, risk assessment or epidemiological studies. This research focused on determination of the uncertainties in the dose factors from a single ingestion of 90Sr by adults, and analyzed the changes with age and the effect of gender. The uncertainties in the estimated dose factors are a factor of 6 for the bone surface, 5 for the red bone marrow, 2.5 for bladder and stomach, 2.2 for the small intestine, 2.1 for the upper large intestine and 2.7 for the lower large intestine. For the rest of the organs the uncertainty is a factor of 3. Only four parameters of the biokinetic model showed an age-dependency within the adult age group: the fractional transfers of strontium from plasma to cortical and trabecular bone, and the removal rates from the cortical and trabecular bone, respectively. When age-dependent biokinetic parameters were used, the estimated dose-factors are very close to the dose factors obtained using age-independent kinetics (within 40%). Thus, the dose factors based on age-independent parameters should suffice for most practical purposes. The dose factors and the associated uncertainties were also calculated as a function of age-at-exposure and attained age. These age dependent curves can be used for estimating doses from continuous intakes, or doses delivered over a limited portion of time. In addition to the committed dose, an expected dose is also estimated in this work. The expected dose is calculated using the dose rate weighted by the probability of surviving up to the age when the dose-rate is delivered. For exposure at young ages the expected dose and the committed dose are similar, but the committed dose decreases to zero when exposure occurs close to age 70, while the expected dose has elevated values pass age 70. No gender differences were found for bone surface, for red bone marrow, and the large intestine. The doses to the soft tissues for females are larger by 20% than the doses for males, because of the differences in the whole-body mass between males and females.

  5. Development of PARMA: PHITS-based analytical radiation model in the atmosphere.

    PubMed

    Sato, Tatsuhiko; Yasuda, Hiroshi; Niita, Koji; Endo, Akira; Sihver, Lembit

    2008-08-01

    Estimation of cosmic-ray spectra in the atmosphere has been essential for the evaluation of aviation doses. We therefore calculated these spectra by performing Monte Carlo simulation of cosmic-ray propagation in the atmosphere using the PHITS code. The accuracy of the simulation was well verified by experimental data taken under various conditions, even near sea level. Based on a comprehensive analysis of the simulation results, we proposed an analytical model for estimating the cosmic-ray spectra of neutrons, protons, helium ions, muons, electrons, positrons and photons applicable to any location in the atmosphere at altitudes below 20 km. Our model, named PARMA, enables us to calculate the cosmic radiation doses rapidly with a precision equivalent to that of the Monte Carlo simulation, which requires much more computational time. With these properties, PARMA is capable of improving the accuracy and efficiency of the cosmic-ray exposure dose estimations not only for aircrews but also for the public on the ground.

  6. CURRENT USE AND FUTURE NEEDS OF BIODOSIMETRY IN STUDIES OF LONG-TERM HEALTH RISK FOLLOWING RADIATION EXPOSURE

    PubMed Central

    Simon, Steven L.; Bouville, André; Kleinerman, Ruth

    2009-01-01

    Biodosimetry measurements can potentially be an important and integral part of the dosimetric methods used in long-term studies of health risk following radiation exposure. Such studies rely on accurate estimation of doses to the whole body or to specific organs of individuals in order to derive reliable estimates of cancer risk. However, dose estimates based on analytical dose reconstruction (i.e., models) or personnel monitoring measurements, e.g., film-badges, can have substantial uncertainty. Biodosimetry can potentially reduce uncertainty in health risk studies by corroboration of model-based dose estimates or by using them to assess bias in dose models. While biodosimetry has begun to play a more significant role in long-term health risk studies, its use is still generally limited in that context due to one or more factors including, inadequate limits of detection, large inter-individual variability of the signal measured, high per-sample cost, and invasiveness. Presently, the most suitable biodosimetry methods for epidemiologic studies are chromosome aberration frequencies from fluorescence in situ hybridization (FISH) of peripheral blood lymphocytes and electron paramagnetic resonance (EPR) measurements made on tooth enamel. Both types of measurements, however, are usually invasive and require difficult to obtain biological samples. Moreover, doses derived from these methods are not always directly relevant to the tissues of interest. To increase the value of biodosimetry to epidemiologic studies, a number of issues need to be considered including limits of detection, effects of inhomogenous exposure of the body, how to extrapolate from the tissue sampled to the tissues of interest, and how to adjust dosimetry models applied to large populations based on sparse biodosimetry measurements. The requirements of health risk studies suggest a set of characteristics that, if satisfied by new biodosimetry methods, would increase the overall usefulness of biodosimetry to determining radiation health risks. PMID:20065672

  7. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

    PubMed

    Wang, Yan; Yu, Biting; Wang, Lei; Zu, Chen; Lalush, David S; Lin, Weili; Wu, Xi; Zhou, Jiliu; Shen, Dinggang; Zhou, Luping

    2018-07-01

    Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields.

    PubMed

    Kelaranta, Anna; Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Bria M.; Brady, Samuel L., E-mail: samuel.brady@stjude.org; Kaufman, Robert A.

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (CF{sub SSDE}{sup organ}) were then multiplied by patient-specific SSDE to estimate patient organ dose. Themore » CF{sub SSDE}{sup organ} were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. IndividualCF{sub SSDE}{sup organ} were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and CF{sub SSDE}{sup organ}, was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (CF{sub SSDE}{sup organ}) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.« less

  10. Creatinine Versus Cystatin C: Differing Estimates of Renal Function in Hospitalized Veterans Receiving Anticoagulants.

    PubMed

    Wang, Christina Hao; Rubinsky, Anna D; Minichiello, Tracy; Shlipak, Michael G; Price, Erika Leemann

    2018-05-31

    Current practice in anticoagulation dosing relies on kidney function estimated by serum creatinine using the Cockcroft-Gault equation. However, creatinine can be unreliable in patients with low or high muscle mass. Cystatin C provides an alternative estimation of glomerular filtration rate (eGFR) that is independent of muscle. We compared cystatin C-based eGFR (eGFR cys ) with multiple creatinine-based estimates of kidney function in hospitalized patients receiving anticoagulants, to assess for discordant results that could impact medication dosing. Retrospective chart review of hospitalized patients over 1 year who received non-vitamin K antagonist anticoagulation, and who had same-day measurements of cystatin C and creatinine. Seventy-five inpatient veterans (median age 68) at the San Francisco VA Medical Center (SFVAMC). We compared the median difference between eGFR by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) study equation using cystatin C (eGFR cys ) and eGFRs using three creatinine-based equations: CKD-EPI (eGFR EPI ), Modified Diet in Renal Disease (eGFR MDRD ), and Cockcroft-Gault (eGFR CG ). We categorized patients into standard KDIGO kidney stages and into drug-dosing categories based on each creatinine equation and calculated proportions of patients reclassified across these categories based on cystatin C. Cystatin C predicted overall lower eGFR compared to creatinine-based equations, with a median difference of - 7.1 (IQR - 17.2, 2.6) mL/min/1.73 m 2 versus eGFR EPI , - 21.2 (IQR - 43.7, - 8.1) mL/min/1.73 m 2 versus eGFR MDRD , and - 25.9 (IQR - 46.8, - 8.7) mL/min/1.73 m 2 versus eGFR CG . Thirty-one to 52% of patients were reclassified into lower drug-dosing categories using cystatin C compared to creatinine-based estimates. We found substantial discordance in eGFR comparing cystatin C with creatinine in this group of anticoagulated inpatients. Our sample size was limited and included few women. Further investigation is needed to confirm these findings and evaluate implications for bleeding and other clinical outcomes. Not applicable.

  11. Summary of retrospective asbestos and welding fume exposure estimates for a nuclear naval shipyard and their correlation with radiation exposure estimates.

    PubMed

    Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P

    2009-07-01

    In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to asbestos and welding fume, that the absolute level of confounding exposure did not affect the risk estimates, and that weak relationships existed between monitored lifetime cumulative occupational radiation dose and asbestos or welding fume.

  12. A gradient of radioactive contamination in Dolon village near the SNTS and comparison of computed dose values with instrumental estimates for the 29 August, 1949 nuclear test.

    PubMed

    Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I

    2006-02-01

    Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068.

  13. Olfactory deposition of inhaled nanoparticles in humans

    PubMed Central

    Garcia, Guilherme J. M.; Schroeter, Jeffry D.; Kimbell, Julia S.

    2016-01-01

    Context Inhaled nanoparticles can migrate to the brain via the olfactory bulb, as demonstrated in experiments in several animal species. This route of exposure may be the mechanism behind the correlation between air pollution and human neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Objectives This manuscript aims to (1) estimate the dose of inhaled nanoparticles that deposit in the human olfactory epithelium during nasal breathing at rest and (2) compare the olfactory dose in humans with our earlier dose estimates for rats. Materials and methods An anatomically-accurate model of the human nasal cavity was developed based on computed tomography scans. The deposition of 1–100 nm particles in the whole nasal cavity and its olfactory region were estimated via computational fluid dynamics (CFD) simulations. Our CFD methods were validated by comparing our numerical predictions for whole-nose deposition with experimental data and previous CFD studies in the literature. Results In humans, olfactory dose of inhaled nanoparticles is highest for 1–2 nm particles with approximately 1% of inhaled particles depositing in the olfactory region. As particle size grows to 100 nm, olfactory deposition decreases to 0.01% of inhaled particles. Discussion and conclusion Our results suggest that the percentage of inhaled particles that deposit in the olfactory region is lower in humans than in rats. However, olfactory dose per unit surface area is estimated to be higher in humans due to their larger minute volume. These dose estimates are important for risk assessment and dose-response studies investigating the neurotoxicity of inhaled nanoparticles. PMID:26194036

  14. Using spatial information about recurrence risk for robust optimization of dose-painting prescription functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Edward T.

    Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less

  15. a Biokinetic Model for CESIUM-137 in the Fetus

    NASA Astrophysics Data System (ADS)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data. The uncertainty in the dose estimate was calculated by propagation of errors after determining the uncertainty in the fetal and placenta mass estimates and the effective half-life.

  16. Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.

    PubMed

    de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto

    2017-12-01

    The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.

  17. Estimate of the risk of radiation-induced cancers after linear-accelerator-based breast-cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Koh, Eui Kwan; Seo, Jungju; Baek, Tae Seong; Chung, Eun Ji; Yoon, Myonggeun; Lee, Hyun-ho

    2013-07-01

    The aim of this study is to assess and compare the excess absolute risks (EARs) of radiation-induced cancers following conformal (3D-CRT), fixed-field intensity-modulated (IMRT) and volumetric modulated arc (RapidArc) radiation therapy in patients with breast cancer. 3D-CRT, IMRT and RapidArc were planned for 10 breast cancer patients. The organ-specific EAR for cancer induction was estimated using the organ equivalent dose (OED) based on computed dose volume histograms (DVHs) and the secondary doses measured at various points from the field edge. The average secondary dose per Gy treatment dose from 3D-CRT, measured 10 to 50 cm from the field edge, ranged from 8.27 to 1.04 mGy. The secondary doses per Gy from IMRT and RapidArc, however, ranged between 5.86 and 0.54 mGy, indicating that IMRT and RapidArc are associated with smaller doses of secondary radiation than 3D-CRT. The organ specific EARs for out-of-field organs, such as the thyroid, liver and colon, were higher with 3D-CRT than with IMRT or RapidArc. In contrast, EARs for in-field organs were much lower with 3D-CRT than with IMRT or RapidArc. The overall estimate of EAR indicated that the radiation-induced cancer risk was 1.8-2.0 times lower with 3D-CRT than with IMRT or RapidArc. Comparisons of EARs during breast irradiation suggested that the predicted risk of secondary cancers was lower with 3D-CRT than with IMRT or RapidArc.

  18. Effective Dose Equivalent due to Cosmic Ray Particles and Their Secondary Particles on the Moon

    NASA Astrophysics Data System (ADS)

    Hayatsu, Kanako; Hareyama, Makoto; Kobayashi, Shingo; Karouji, Yuzuru; Sakurai, K.; Sihver, Lembit; Hasebe, N.

    Estimation of radiation dose on and under the lunar surface is quite important for human activity on the Moon and for the future lunar bases construction. Radiation environment on the Moon is much different from that on the Earth. Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) directly penetrate the lunar surface because of no atmosphere and no magnetic field around the Moon. Then, they generate many secondary particles such as neutrons, gamma rays and other charged particles by nuclear interactions with soils and regolith breccias under the lunar surface. Therefore, the estimation of radiation dose from them on the surface and the underground of the Moon are essential for safety human activities. In this study, the effective dose equivalents at the surface and various depths of the Moon were estimated using by the latest cosmic rays observation and developed calculation code. The largest contribution to the dose on the surface is primary charged particles in GCRs and SEPs, while in the ground, secondary neutrons are the most dominant. In particular, the dose from neutrons becomes maximal at 70-80 g/cm2 in depth of lunar soil, because fast neutrons with about 1.0 MeV are mostly produced at this depth and give the largest dose. On the lunar surface, the doses originated from large SEPs are very hazardous. We estimated the effective dose equivalents due to such large SEPs and the effects of aluminum shield for the large flare on the human body. In the presentation, we summarize and discuss the improved calculation results of radiation doses due to GCR particles and their secondary particles in the lunar subsurface. These results will provide useful data for the future exploration of the Moon.

  19. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short‐Acting β‐Agonist Formulations

    PubMed Central

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai

    2017-01-01

    Abstract Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3‐by‐1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration–recommended 3‐by‐1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3‐by‐1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90‐μg test dose and a 720‐μg reference dose (42% cost reduction). Combining a 180‐μg test dose and a 720‐μg reference dose produced an estimated 36% cost reduction. PMID:29281130

  20. WAZA-ARI: computational dosimetry system for X-ray CT examinations II: development of web-based system.

    PubMed

    Ban, Nobuhiko; Takahashi, Fumiaki; Ono, Koji; Hasegawa, Takayuki; Yoshitake, Takayasu; Katsunuma, Yasushi; Sato, Kaoru; Endo, Akira; Kai, Michiaki

    2011-07-01

    A web-based dose computation system, WAZA-ARI, is being developed for patients undergoing X-ray CT examinations. The system is implemented in Java on a Linux server running Apache Tomcat. Users choose scanning options and input parameters via a web browser over the Internet. Dose coefficients, which were calculated in a Japanese adult male phantom (JM phantom) are called upon user request and are summed over the scan range specified by the user to estimate a normalised dose. Tissue doses are finally computed based on the radiographic exposure (mA s) and the pitch factor. While dose coefficients are currently available only for limited CT scanner models, the system has achieved a high degree of flexibility and scalability without the use of commercial software.

  1. Statistical analysis of nonmonotonic dose-response relationships: research design and analysis of nasal cell proliferation in rats exposed to formaldehyde.

    PubMed

    Gaylor, David W; Lutz, Werner K; Conolly, Rory B

    2004-01-01

    Statistical analyses of nonmonotonic dose-response curves are proposed, experimental designs to detect low-dose effects of J-shaped curves are suggested, and sample sizes are provided. For quantal data such as cancer incidence rates, much larger numbers of animals are required than for continuous data such as biomarker measurements. For example, 155 animals per dose group are required to have at least an 80% chance of detecting a decrease from a 20% incidence in controls to an incidence of 10% at a low dose. For a continuous measurement, only 14 animals per group are required to have at least an 80% chance of detecting a change of the mean by one standard deviation of the control group. Experimental designs based on three dose groups plus controls are discussed to detect nonmonotonicity or to estimate the zero equivalent dose (ZED), i.e., the dose that produces a response equal to the average response in the controls. Cell proliferation data in the nasal respiratory epithelium of rats exposed to formaldehyde by inhalation are used to illustrate the statistical procedures. Statistically significant departures from a monotonic dose response were obtained for time-weighted average labeling indices with an estimated ZED at a formaldehyde dose of 5.4 ppm, with a lower 95% confidence limit of 2.7 ppm. It is concluded that demonstration of a statistically significant bi-phasic dose-response curve, together with estimation of the resulting ZED, could serve as a point-of departure in establishing a reference dose for low-dose risk assessment.

  2. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuemann, J; Grassberger, C; Paganetti, H

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50)more » were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend treatment plan verification using Monte Carlo simulations for patients with complex geometries.« less

  3. Correlation of Radiation Dose Estimates by DIC with the METREPOL Hematological Classes of Disease Severity.

    PubMed

    Port, M; Pieper, B; Dörr, H D; Hübsch, A; Majewski, M; Abend, M

    2018-05-01

    The degree of severity of hematologic acute radiation syndrome (HARS) may vary across the range of radiation doses, such that dose alone may be a less reliable predictor of clinical course. We sought to elucidate the relationship between absorbed dose and risk of clinically relevant HARS in humans. We used the database SEARCH (System for Evaluation and Archiving of Radiation Accidents based on Case Histories), which contains the histories of radiation accident victims. From 153 cases we extracted data on dose estimates using the dicentric assay to measure individual biological dosimetry. The data were analyzed according to the corresponding hematological response categories of clinical significance (H1-4). These categories are derived from the medical treatment protocols for radiation accident victims (METREPOL) and represent the clinical outcome of HARS based on severity categories ranging from 1-4. In addition, the category H0 represents a post-exposure hematological response that is within the normal range for nonexposed individuals. Age at exposure, gender and ethnicity were considered as potential confounders in unconditional cumulative logistic regression analysis. In most cases, victims were Caucasian (82.4%) and male (92.8%), who originated from either the Chernobyl (69.3%) or Goiânia (10.5%) accident, and nearly 60% were aged 20-40 years at time of exposure. All individuals were whole-body exposed (mean 3.8 Gy, stdev ±3.1), and single exposures were predominantly reported (79%). Seventy percent of victims in category H0 were exposed to ≤1 Gy, with rapidly decreasing proportions of H0 seen at doses up to 5 Gy. There were few HARS H4 cases reported at exposed dose of 1-2 Gy, while 82% of H4 cases received doses of >5 Gy. HARS H1-3 cases varied among dose ranges from 1-5 Gy. In summary, single whole-body radiation doses <1 Gy and >5 Gy corresponded in general with H0 and H3-4, respectively, and this was consistent with medical expectations. This underlines the usefulness of dose estimates for HARS prediction. However, whole-body doses between 1-5 Gy poorly corresponded to HARS H1-3. The dose range of 1-5 Gy was of limited value for medical decision-making regarding, e.g., hospitalization for H2-3, but not H1 and treatment decisions that differ between H1-3. Also, there were some H0 cases at high doses and H2-4 cases at low doses, thereby challenging an individual recommendation based solely on dose.

  4. Dose-dependent EEG effects of zolpidem provide evidence for GABA(A) receptor subtype selectivity in vivo.

    PubMed

    Visser, S A G; Wolters, F L C; van der Graaf, P H; Peletier, L A; Danhof, M

    2003-03-01

    Zolpidem is a nonbenzodiazepine GABA(A) receptor modulator that binds in vitro with high affinity to GABA(A) receptors expressing alpha(1) subunits but with relatively low affinity to receptors expressing alpha(2), alpha(3), and alpha(5) subunits. In the present study, it was investigated whether this subtype selectivity could be detected and quantified in vivo. Three doses (1.25, 5, and 25 mg) of zolpidem were administered to rats in an intravenous infusion over 5 min. The time course of the plasma concentrations was determined in conjunction with the change in the beta-frequency range of the EEG as pharmacodynamic endpoint. The concentration-effect relationship of the three doses showed a dose-dependent maximum effect and a dose-dependent potency. The data were analyzed for one- or two-site binding using two pharmacodynamic models based on 1) the descriptive model and 2) a novel mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model for GABA(A) receptor modulators that aims to separates drug- and system-specific properties, thereby allowing the estimation of in vivo affinity and efficacy. The application of two-site models significantly improved the fits compared with one-site models. Furthermore, in contrast to the descriptive model, the mechanism-based PK/PD model yielded dose-independent estimates for affinity (97 +/- 40 and 33,100 +/- 14,800 ng x ml(-1)). In conclusion, the mechanism-based PK/PD model is able to describe and explain the observed dose-dependent EEG effects of zolpidem and suggests the subtype selectivity of zolpidem in vivo.

  5. Log file-based patient dose calculations of double-arc VMAT for head-and-neck radiotherapy.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Majima, Kazuhiro; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2018-04-01

    The log file-based method cannot display dosimetric changes due to linac component miscalibration because of the insensitivity of log files to linac component miscalibration. The purpose of this study was to supply dosimetric changes in log file-based patient dose calculations for double-arc volumetric-modulated arc therapy (VMAT) in head-and-neck cases. Fifteen head-and-neck cases participated in this study. For each case, treatment planning system (TPS) doses were produced by double-arc and single-arc VMAT. Miscalibration-simulated log files were generated by inducing a leaf miscalibration of ±0.5 mm into the log files that were acquired during VMAT irradiation. Subsequently, patient doses were estimated using the miscalibration-simulated log files. For double-arc VMAT, regarding planning target volume (PTV), the change from TPS dose to miscalibration-simulated log file dose in D mean was 0.9 Gy and that for tumor control probability was 1.4%. As for organ-at-risks (OARs), the change in D mean was <0.7 Gy and normal tissue complication probability was <1.8%. A comparison between double-arc and single-arc VMAT for PTV showed statistically significant differences in the changes evaluated by D mean and radiobiological metrics (P < 0.01), even though the magnitude of these differences was small. Similarly, for OARs, the magnitude of these changes was found to be small. Using the log file-based method for PTV and OARs, the log file-based method estimate of patient dose using the double-arc VMAT has accuracy comparable to that obtained using the single-arc VMAT. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Role of the standard deviation in the estimation of benchmark doses with continuous data.

    PubMed

    Gaylor, David W; Slikker, William

    2004-12-01

    For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.

  7. Gemfibrozil is a strong inactivator of CYP2C8 in very small multiple doses.

    PubMed

    Honkalammi, J; Niemi, M; Neuvonen, P J; Backman, J T

    2012-05-01

    Therapeutic doses of gemfibrozil cause mechanism-based inactivation of CYP2C8 via formation of gemfibrozil 1-O-β-glucuronide. We investigated the extent of CYP2C8 inactivation caused by three different doses of gemfibrozil twice dailyfor 5 days, using repaglinide as a probe drug, in 10 healthy volunteers. At the end of this 5-day regimen, there were dose-dependent increases in the area under the plasma concentration–time curve from 0 to infinity (AUC0–∞) of repaglinide by3.4-, 5.5-, and 7.0-fold corresponding to 30, 100, and 600 mg of gemfibrozil, respectively, as compared with the control phase (P < 0.001). On the basis of a mechanism-based inactivation model involving gemfibrozil 1-O-β-glucuronide, a gemfibrozil dose of 30 mg twice daily was estimated to inhibit CYP2C8 by >70% and 100 mg twice daily was estimated to inhibit it by >90%. Hence, gemfibrozil is a strong inactivator of CYP2C8 even in very small, subtherapeutic, multiple doses. Administration of small gemfibrozil doses may be useful in optimizing the pharmacokinetics of CYP2C8 substrate drugs and in reducing the formation of their potentially toxic metabolites via CYP2C8.

  8. MODELING HUMAN EXPOSURES AND DOSE USING A 2-DIMENSIONAL MONTE-CARLO MODEL (SHEDS)

    EPA Science Inventory

    Since 1998, US EPA's National Exposure Research Laboratory (NERL) has been developing the Stochastic Human Exposure and Dose Simulation (SHEDS) model for various classes of pollutants. SHEDS is a physically-based probabilistic model intended for improving estimates of human ex...

  9. MODELING AGGREGATE CHLORPYRIFOS EXPOSURE AND DOSE TO CHILDREN

    EPA Science Inventory

    To help address the aggregate exposure assessment needs of the Food Quality Protection Act, a physically-based probabilistic model (SHEDS-Pesticides, version 3) has been applied to estimate aggregate chlorpyrifos exposure and dose to children. Two age groups (0-4, 5-9 years) a...

  10. Validation of an aggregate exposure model for substances in consumer products: a case study of diethyl phthalate in personal care products

    PubMed Central

    Delmaar, Christiaan; Bokkers, Bas; ter Burg, Wouter; Schuur, Gerlienke

    2015-01-01

    As personal care products (PCPs) are used in close contact with a person, they are a major source of consumer exposure to chemical substances contained in these products. The estimation of realistic consumer exposure to substances in PCPs is currently hampered by the lack of appropriate data and methods. To estimate aggregate exposure of consumers to substances contained in PCPs, a person-oriented consumer exposure model has been developed (the Probabilistic Aggregate Consumer Exposure Model, PACEM). The model simulates daily exposure in a population based on product use data collected from a survey among the Dutch population. The model is validated by comparing diethyl phthalate (DEP) dose estimates to dose estimates based on biomonitoring data. It was found that the model's estimates compared well with the estimates based on biomonitoring data. This suggests that the person-oriented PACEM model is a practical tool for assessing realistic aggregate exposures to substances in PCPs. In the future, PACEM will be extended with use pattern data on other product groups. This will allow for assessing aggregate exposure to substances in consumer products across different product groups. PMID:25352161

  11. Monte Carlo calculations for reporting patient organ doses from interventional radiology

    NASA Astrophysics Data System (ADS)

    Huo, Wanli; Feng, Mang; Pi, Yifei; Chen, Zhi; Gao, Yiming; Xu, X. George

    2017-09-01

    This paper describes a project to generate organ dose data for the purposes of extending VirtualDose software from CT imaging to interventional radiology (IR) applications. A library of 23 mesh-based anthropometric patient phantoms were involved in Monte Carlo simulations for database calculations. Organ doses and effective doses of IR procedures with specific beam projection, filed of view (FOV) and beam quality for all parts of body were obtained. Comparing organ doses for different beam qualities, beam projections, patients' ages and patient's body mass indexes (BMIs) which generated by VirtualDose-IR, significant discrepancies were observed. For relatively long time exposure, IR doses depend on beam quality, beam direction and patient size. Therefore, VirtualDose-IR, which is based on the latest anatomically realistic patient phantoms, can generate accurate doses for IR treatment. It is suitable to apply this software in clinical IR dose management as an effective tool to estimate patient doses and optimize IR treatment plans.

  12. Organ doses for reference pediatric and adolescent patients undergoing computed tomography estimated by Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel J.

    Purpose: To establish an organ dose database for pediatric and adolescent reference individuals undergoing computed tomography (CT) examinations by using Monte Carlo simulation. The data will permit rapid estimates of organ and effective doses for patients of different age, gender, examination type, and CT scanner model. Methods: The Monte Carlo simulation model of a Siemens Sensation 16 CT scanner previously published was employed as a base CT scanner model. A set of absorbed doses for 33 organs/tissues normalized to the product of 100 mAs and CTDI{sub vol} (mGy/100 mAs mGy) was established by coupling the CT scanner model with age-dependentmore » reference pediatric hybrid phantoms. A series of single axial scans from the top of head to the feet of the phantoms was performed at a slice thickness of 10 mm, and at tube potentials of 80, 100, and 120 kVp. Using the established CTDI{sub vol}- and 100 mAs-normalized dose matrix, organ doses for different pediatric phantoms undergoing head, chest, abdomen-pelvis, and chest-abdomen-pelvis (CAP) scans with the Siemens Sensation 16 scanner were estimated and analyzed. The results were then compared with the values obtained from three independent published methods: CT-Expo software, organ dose for abdominal CT scan derived empirically from patient abdominal circumference, and effective dose per dose-length product (DLP). Results: Organ and effective doses were calculated and normalized to 100 mAs and CTDI{sub vol} for different CT examinations. At the same technical setting, dose to the organs, which were entirely included in the CT beam coverage, were higher by from 40 to 80% for newborn phantoms compared to those of 15-year phantoms. An increase of tube potential from 80 to 120 kVp resulted in 2.5-2.9-fold greater brain dose for head scans. The results from this study were compared with three different published studies and/or techniques. First, organ doses were compared to those given by CT-Expo which revealed dose differences up to several-fold when organs were partially included in the scan coverage. Second, selected organ doses from our calculations agreed to within 20% of values derived from empirical formulae based upon measured patient abdominal circumference. Third, the existing DLP-to-effective dose conversion coefficients tended to be smaller than values given in the present study for all examinations except head scans. Conclusions: A comprehensive organ/effective dose database was established to readily calculate doses for given patients undergoing different CT examinations. The comparisons of our results with the existing studies highlight that use of hybrid phantoms with realistic anatomy is important to improve the accuracy of CT organ dosimetry. The comprehensive pediatric dose data developed here are the first organ-specific pediatric CT scan database based on the realistic pediatric hybrid phantoms which are compliant with the reference data from the International Commission on Radiological Protection (ICRP). The organ dose database is being coupled with an adult organ dose database recently published as part of the development of a user-friendly computer program enabling rapid estimates of organ and effective dose doses for patients of any age, gender, examination types, and CT scanner model.« less

  13. The linearized multistage model and the future of quantitative risk assessment.

    PubMed

    Crump, K S

    1996-10-01

    The linearized multistage (LMS) model has for over 15 years been the default dose-response model used by the U.S. Environmental Protection Agency (USEPA) and other federal and state regulatory agencies in the United States for calculating quantitative estimates of low-dose carcinogenic risks from animal data. The LMS model is in essence a flexible statistical model that can describe both linear and non-linear dose-response patterns, and that produces an upper confidence bound on the linear low-dose slope of the dose-response curve. Unlike its namesake, the Armitage-Doll multistage model, the parameters of the LMS do not correspond to actual physiological phenomena. Thus the LMS is 'biological' only to the extent that the true biological dose response is linear at low dose and that low-dose slope is reflected in the experimental data. If the true dose response is non-linear the LMS upper bound may overestimate the true risk by many orders of magnitude. However, competing low-dose extrapolation models, including those derived from 'biologically-based models' that are capable of incorporating additional biological information, have not shown evidence to date of being able to produce quantitative estimates of low-dose risks that are any more accurate than those obtained from the LMS model. Further, even if these attempts were successful, the extent to which more accurate estimates of low-dose risks in a test animal species would translate into improved estimates of human risk is questionable. Thus, it does not appear possible at present to develop a quantitative approach that would be generally applicable and that would offer significant improvements upon the crude bounding estimates of the type provided by the LMS model. Draft USEPA guidelines for cancer risk assessment incorporate an approach similar to the LMS for carcinogens having a linear mode of action. However, under these guidelines quantitative estimates of low-dose risks would not be developed for carcinogens having a non-linear mode of action; instead dose-response modelling would be used in the experimental range to calculate an LED10* (a statistical lower bound on the dose corresponding to a 10% increase in risk), and safety factors would be applied to the LED10* to determine acceptable exposure levels for humans. This approach is very similar to the one presently used by USEPA for non-carcinogens. Rather than using one approach for carcinogens believed to have a linear mode of action and a different approach for all other health effects, it is suggested herein that it would be more appropriate to use an approach conceptually similar to the 'LED10*-safety factor' approach for all health effects, and not to routinely develop quantitative risk estimates from animal data.

  14. Improved dose-volume histogram estimates for radiopharmaceutical therapy by optimizing quantitative SPECT reconstruction parameters

    NASA Astrophysics Data System (ADS)

    Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.

    2013-06-01

    In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.

  15. Estimation of child vaccination coverage at state and national levels in India

    PubMed Central

    Gupta, Satish; Kumar, Rakesh; Haldar, Pradeep; Sethi, Raman; Bahl, Sunil

    2016-01-01

    Abstract Objective To review the data, for 1999–2013, on state-level child vaccination coverage in India and provide estimates of coverage at state and national levels. Methods We collated data from administrative reports, population-based surveys and other sources and used them to produce annual estimates of vaccination coverage. We investigated bacille Calmette–Guérin vaccine, the first and third doses of vaccine against diphtheria, tetanus and pertussis, the third dose of oral polio vaccine and the first dose of vaccine against measles. We obtained relevant data covering the period 1999–2013 for each of 16 states and territories and the period 2001–2013 for the state of Jharkhand – which was only created in 2000. We aggregated the resultant state-level estimates, using a population-weighted approach, to give national values. Findings For each of the vaccinations we investigated, about half of the 253 estimates of annual coverage at state level that we produced were based on survey results. The rest were based on interpolation between – or extrapolation from – so-called anchor points or, more rarely, on administrative data. Our national estimates indicated that, for each of the vaccines we investigated, coverage gradually increased between 1999 and 2010 but then levelled off. Conclusion The delivery of routine vaccination services to Indian children appears to have improved between 1999 and 2013. There remains considerable scope to improve the recording and reporting of childhood vaccination coverage in India and regular systematic reviews of the coverage data are recommended. PMID:27843162

  16. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation.

    PubMed

    Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R

    2018-06-01

    This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.

  17. Radiation exposure to foetus and breasts from dental X-ray examinations: effect of lead shields

    PubMed Central

    Ekholm, Marja; Toroi, Paula; Kortesniemi, Mika

    2016-01-01

    Objectives: Dental radiography may involve situations where the patient is known to be pregnant or the pregnancy is noticed after the X-ray procedure. In such cases, the radiation dose to the foetus, though low, needs to be estimated. Uniform and widely used guidance on dental X-ray procedures during pregnancy are presently lacking, the usefulness of lead shields is unclear and practices vary. Methods: Upper estimates of radiation doses to the foetus and breasts of the pregnant patient were estimated with an anthropomorphic female phantom in intraoral, panoramic, cephalometric and CBCT dental modalities with and without lead shields. Results: The upper estimates of foetal doses varied from 0.009 to 6.9 μGy, and doses at the breast level varied from 0.602 to 75.4 μGy. With lead shields, the foetal doses varied from 0.005 to 2.1 μGy, and breast doses varied from 0.002 to 10.4 μGy. Conclusions: The foetal dose levels without lead shielding were <1% of the annual dose limit of 1 mSv for a member of the public. Albeit the relative shielding effect, the exposure-induced increase in the risk of breast cancer death for the pregnant patient (based on the breast dose only) and the exposure-induced increase in the risk of childhood cancer death for the unborn child are minimal, and therefore, need for foetal and breast lead shielding was considered irrelevant. Most important is that pregnancy is never a reason to avoid or to postpone a clinically justified dental radiographic examination. PMID:26313308

  18. Risks of secondary malignancies with heterotopic bone radiation therapy for patients younger than 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadieux, Catherine L., E-mail: ccadieux@umail.iu.edu; DesRosiers, Colleen; McMullen, Kevin

    Heterotopic ossification (HO) of the bone is defined as a benign condition in which abnormal bone formation occurs in soft tissue. One of the most common prophylactic treatments for HO is radiation therapy (RT). This study retrospectively reviewed 20 patients younger than the age of 40 who received radiation to prevent HO in a single fraction of 7 Gray. The purpose of this study is to assess the risk of a second malignancy in these patients by recreating their treatment fields and contouring organs at risk to estimate the radiation dose absorbed by normal tissues outside the radiation treatment field.more » Diagnostic computed tomography (CT) scans for each patient were used to recreate treatment fields and to calculate dose to structures of interest. The distance from the field edge to each structure and its depth was recorded. Dose measurements in a water phantom were performed for the range of depths, distances, and field sizes used in the actual treatment plans. Computer-generated doses were compared to estimates based on measurement. The structure dose recorded was the higher dose generated between the 2 methods. Scatter dose was recorded to the rectum, bladder, sigmoid colon, small bowel, ovaries and utero-cervix in female patients, and prostate and gonads in male patients. In some patients, there is considerable dose received by certain organs from scatter because of their proximity to the radiation field. The average dose to the ovarian region was 4.125 Gy with a range of 1.085 to 6.228 Gy. The risk estimate for these patients ranged from 0.16% to 0.93%. The average total lifetime risk estimate for the bladder in all patients is 0.22% and the average total lifetime risk estimate for the remainder organs in all patients is 1.25%. In conclusions, proper shielding created from multileaf collimators (MLCs), blocks, and shields should always be used when possible.« less

  19. Risk of fetal mortality after exposure to Listeria monocytogenes based on dose-response data from pregnant guinea pigs and primates.

    PubMed

    Williams, Denita; Castleman, Jennifer; Lee, Chi-Ching; Mote, Beth; Smith, Mary Alice

    2009-11-01

    One-third of the annual cases of listeriosis in the United States occur during pregnancy and can lead to miscarriage or stillbirth, premature delivery, or infection of the newborn. Previous risk assessments completed by the Food and Drug Administration/the Food Safety Inspection Service of the U.S. Department of Agriculture/the Centers for Disease Control and Prevention (FDA/USDA/CDC) and Food and Agricultural Organization/the World Health Organization (FAO/WHO) were based on dose-response data from mice. Recent animal studies using nonhuman primates and guinea pigs have both estimated LD(50)s of approximately 10(7) Listeria monocytogenes colony forming units (cfu). The FAO/WHO estimated a human LD(50) of 1.9 x 10(6) cfu based on data from a pregnant woman consuming contaminated soft cheese. We reevaluated risk based on dose-response curves from pregnant rhesus monkeys and guinea pigs. Using standard risk assessment methodology including hazard identification, exposure assessment, hazard characterization, and risk characterization, risk was calculated based on the new dose-response information. To compare models, we looked at mortality rate per serving at predicted doses ranging from 10(-4) to 10(12) L. monocytogenes cfu. Based on a serving of 10(6) L. monocytogenes cfu, the primate model predicts a death rate of 5.9 x 10(-1) compared to the FDA/USDA/CDC (fig. IV-12) predicted rate of 1.3 x 10(-7). Based on the guinea pig and primate models, the mortality rate calculated by the FDA/USDA/CDC is underestimated for this susceptible population.

  20. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. TU-H-CAMPUS-IeP1-03: Comparison of Monte Carlo Simulation and Conversion Factor Based Method On Estimation of Effective Dose in Pediatric Patients Undergoing Interventional Cardiac Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, K; Wong, M; Ng, Y

    Purpose: Interventional cardiac procedures utilize frequent fluoroscopy and cineangiography, which impose considerable radiation risk to patients, especially pediatric patients. Accurate calculation of effective dose is important in order to estimate cancer risk over the rest of their lifetime. This study evaluates the difference in effective dose calculated by Monte Carlo simulation with those estimated by locally-derived conversion factors (CF-local) and by commonly quoted conversion factors from Karambatsakidou et al (CF-K). Methods: Effective dose (E),of 12 pediatric patients, age between 2.5–19 years old, who had undergone interventional cardiac procedures, were calculated using PCXMC-2.0 software. Tube spectrum, irradiation geometry, exposure parameters andmore » dose-area product (DAP) of each projection were included in the software calculation. Effective doses for each patient were also estimated by two Methods: 1) CF-local: conversion factor derived locally by generalizing results of 12 patients, multiplied by DAP of each patient gives E-local. 2) CF-K: selected factor from above-mentioned literature, multiplied by DAP of each patient gives E-K. Results: Mean of E, E-local and E-K were 16.01 mSv, 16.80 mSv and 22.25 mSv respectively. A deviation of −29.35% to +34.85% between E and E-local, while a greater deviation of −28.96% to +60.86% between E and EK were observed. E-K overestimated the effective dose for patients at age 7.5–19. Conclusion: Effective dose obtained by conversion factors is simple and quick to estimate radiation risk of pediatric patients. This study showed that estimation by CF-local may bear an error of 35% when compared with Monte Carlo calculation. If using conversion factors derived by other studies may result in an even greater error, of up to 60%, due to factors that are not catered for in the estimation, including patient size, projection angles, exposure parameters, tube filtration, etc. Users must be aware of these potential inaccuracies when simple conversion method is employed.« less

  2. Estimating the dose response relationship for occupational radiation exposure measured with minimum detection level.

    PubMed

    Xue, Xiaonan; Shore, Roy E; Ye, Xiangyang; Kim, Mimi Y

    2004-10-01

    Occupational exposures are often recorded as zero when the exposure is below the minimum detection level (BMDL). This can lead to an underestimation of the doses received by individuals and can lead to biased estimates of risk in occupational epidemiologic studies. The extent of the exposure underestimation is increased with the magnitude of the minimum detection level (MDL) and the frequency of monitoring. This paper uses multiple imputation methods to impute values for the missing doses due to BMDL. A Gibbs sampling algorithm is developed to implement the method, which is applied to two distinct scenarios: when dose information is available for each measurement (but BMDL is recorded as zero or some other arbitrary value), or when the dose information available represents the summation of a series of measurements (e.g., only yearly cumulative exposure is available but based on, say, weekly measurements). Then the average of the multiple imputed exposure realizations for each individual is used to obtain an unbiased estimate of the relative risk associated with exposure. Simulation studies are used to evaluate the performance of the estimators. As an illustration, the method is applied to a sample of historical occupational radiation exposure data from the Oak Ridge National Laboratory.

  3. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit".

    PubMed

    El-Jaby, Samy

    2016-06-01

    A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children.

    PubMed

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-08-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children.

  5. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  6. Dosimetry of 64Cu-DOTA-AE105, a PET tracer for uPAR imaging.

    PubMed

    Persson, Morten; El Ali, Henrik H; Binderup, Tina; Pfeifer, Andreas; Madsen, Jacob; Rasmussen, Palle; Kjaer, Andreas

    2014-03-01

    (64)Cu-DOTA-AE105 is a novel positron emission tomography (PET) tracer specific to the human urokinase-type plasminogen activator receptor (uPAR). In preparation of using this tracer in humans, as a new promising method to distinguish between indolent and aggressive cancers, we have performed PET studies in mice to evaluate the in vivo biodistribution and estimate human dosimetry of (64)Cu-DOTA-AE105. Five mice received iv tail injection of (64)Cu-DOTA-AE105 and were PET/CT scanned 1, 4.5 and 22 h post injection. Volume-of-interest (VOI) were manually drawn on the following organs: heart, lung, liver, kidney, spleen, intestine, muscle, bone and bladder. The activity concentrations in the mentioned organs [%ID/g] were used for the dosimetry calculation. The %ID/g of each organ at 1, 4.5 and 22 h was scaled to human value based on a difference between organ and body weights. The scaled values were then exported to OLINDA software for computation of the human absorbed doses. The residence times as well as effective dose equivalent for male and female could be obtained for each organ. To validate this approach, of human projection using mouse data, five mice received iv tail injection of another (64)Cu-DOTA peptide-based tracer, (64)Cu-DOTA-TATE, and underwent same procedure as just described. The human dosimetry estimates were then compared with observed human dosimetry estimate recently found in a first-in-man study using (64)Cu-DOTA-TATE. Human estimates of (64)Cu-DOTA-AE105 revealed the heart wall to receive the highest dose (0.0918 mSv/MBq) followed by the liver (0.0815 mSv/MBq), All other organs/tissue were estimated to receive doses in the range of 0.02-0.04 mSv/MBq. The mean effective whole-body dose of (64)Cu-DOTA-AE105 was estimated to be 0.0317 mSv/MBq. Relatively good correlation between human predicted and observed dosimetry estimates for (64)Cu-DOTA-TATE was found. Importantly, the effective whole body dose was predicted with very high precision (predicted value: 0.0252 mSv/Mbq, Observed value: 0.0315 mSv/MBq) thus validating our approach for human dosimetry estimation. Favorable dosimetry estimates together with previously reported uPAR PET data fully support human testing of (64)Cu-DOTA-AE105. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. CHELSI: a portable neutron spectrometer for the 20-800 MeV region.

    PubMed

    McLean, T D; Olsher, R H; Romero, L L; Miles, L H; Devine, R T; Fallu-Labruyere, A; Grudberg, P

    2007-01-01

    CHELSI is a CsI-based portable spectrometer being developed at Los Alamos National Laboratory for use in high-energy neutron fields. Based on the inherent pulse shape discrimination properties of CsI(Tl), the instrument flags charged particle events produced via neutron-induced spallation events. Scintillation events are processed in real time using digital signal processing and a conservative estimate of neutron dose rate is made based on the charged particle energy distribution. A more accurate dose estimate can be made by unfolding the 2D charged particle versus pulse height distribution to reveal the incident neutron spectrum from which dose is readily obtained. A prototype probe has been assembled and data collected in quasi-monoenergetic fields at The Svedberg Laboratory (TSL) in Uppsala as well as at the Los Alamos Neutron Science Center (LANSCE). Preliminary efforts at deconvoluting the shape/energy data using empirical response functions derived from time-of-flight measurements are described.

  8. Weight-based dosing in medication use: what should we know?

    PubMed Central

    Pan, Sheng-dong; Zhu, Ling-ling; Chen, Meng; Xia, Ping; Zhou, Quan

    2016-01-01

    Background Weight-based dosing strategy is still challenging due to poor awareness and adherence. It is necessary to let clinicians know of the latest developments in this respect and the correct circumstances in which weight-based dosing is of clinical relevance. Methods A literature search was conducted using PubMed. Results Clinical indications, physiological factors, and types of medication may determine the applicability of weight-based dosing. In some cases, the weight effect may be minimal or the proper dosage can only be determined when weight is combined with other factors. Medications within similar therapeutic or structural class (eg, anticoagulants, antitumor necrosis factor medications, P2Y12-receptor antagonists, and anti-epidermal growth factor receptor antibodies) may exhibit differences in requirements on weight-based dosing. In some cases, weight-based dosing is superior to currently recommended fixed-dose regimen in adult patients (eg, hydrocortisone, vancomycin, linezolid, and aprotinin). On the contrary, fixed dosing is noninferior to or even better than currently recommended weight-based regimen in adult patients in some cases (eg, cyclosporine microemulsion, recombinant activated Factor VII, and epoetin α). Ideal body-weight-based dosing may be superior to the currently recommended total body-weight-based regimen (eg, atracurium and rocuronium). For dosing in pediatrics, whether weight-based dosing is better than body surface-area-based dosing is dependent on the particular medication (eg, methotrexate, prednisone, prednisolone, zidovudine, didanosine, growth hormone, and 13-cis-retinoic acid). Age-based dosing strategy is better than weight-based dosing in some cases (eg, intravenous busulfan and dalteparin). Dosing guided by pharmacogenetic testing did not show pharmacoeconomic advantage over weight-adjusted dosing of 6-mercaptopurine. The common viewpoint (ie, pediatric patients should be dosed on the basis of body weight) is not always correct. Effective weight-based dosing interventions include standardization of weight estimation, documentation and dosing determination, dosing chart, dosing protocol, order set, pharmacist participation, technological information, and educational measures. Conclusion Although dosing methods are specified in prescribing information for each drug and there are no principal pros and cons to be elaborated, this review of weight-based dosing strategy will enrich the knowledge of medication administration from the perspectives of safety, efficacy, and pharmacoeconomics, and will also provide research opportunities in clinical practice. Clinicians should be familiar with dosage and administration of the medication to be prescribed as well as the latest developments. PMID:27110105

  9. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    PubMed Central

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P < .002), lungs (P < .001), and bones (P < .001). By using the same reduced-dose acquisition, lesion detectability was better (38% [32 of 84 rated lesions]) or the same (62% [52 of 84 rated lesions]) with MBIR as compared with 100% ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental material is available for this article. PMID:24091359

  10. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moirano, J

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference pointmore » air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.« less

  11. SU-E-T-248: An Extended Generalized Equivalent Uniform Dose Accounting for Dose-Range Dependency of Radio-Biological Parameters.

    PubMed

    Troeller, A; Soehn, M; Yan, D

    2012-06-01

    Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way it is commonly done for the gEUD. © 2012 American Association of Physicists in Medicine.

  12. The development and validation of a Monte Carlo model for calculating the out-of-field dose from radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Kry, Stephen

    Introduction. External beam photon radiotherapy is a common treatment for many malignancies, but results in the exposure of the patient to radiation away from the treatment site. This out-of-field radiation irradiates healthy tissue and may lead to the induction of secondary malignancies. Out-of-field radiation is composed of photons and, at high treatment energies, neutrons. Measurement of this out-of-field dose is time consuming, often difficult, and is specific to the conditions of the measurements. Monte Carlo simulations may be a viable approach to determining the out-of-field dose quickly, accurately, and for arbitrary irradiation conditions. Methods. An accelerator head, gantry, and treatment vault were modeled with MCNPX and 6 MV and 18 MV beams were simulated. Photon doses were calculated in-field and compared to measurements made with an ion chamber in a water tank. Photon doses were also calculated out-of-field from static fields and compared to measurements made with thermoluminescent dosimeters in acrylic. Neutron fluences were calculated and compared to measurements made with gold foils. Finally, photon and neutron dose equivalents were calculated in an anthropomorphic phantom following intensity-modulated radiation therapy and compared to previously published dose equivalents. Results. The Monte Carlo model was able to accurately calculate the in-field dose. From static treatment fields, the model was also able to calculate the out-of-field photon dose within 16% at 6 MV and 17% at 18 MV and the neutron fluence within 19% on average. From the simulated IMRT treatments, the calculated out-of-field photon dose was within 14% of measurement at 6 MV and 13% at 18 MV on average. The calculated neutron dose equivalent was much lower than the measured value but is likely accurate because the measured neutron dose equivalent was based on an overestimated neutron energy. Based on the calculated out-of-field doses generated by the Monte Carlo model, it was possible to estimate the risk of fatal secondary malignancy, which was consistent with previous estimates except for the neutron discrepancy. Conclusions. The Monte Carlo model developed here is well suited to studying the out-of-field dose equivalent from photons and neutrons under a variety of irradiation configurations, including complex treatments on complex phantoms. Based on the calculated dose equivalents, it is possible to estimate the risk of secondary malignancy associated with out-of-field doses. The Monte Carlo model should be used to study, quantify, and minimize the out-of-field dose equivalent and associated risks received by patients undergoing radiation therapy.

  13. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study

    PubMed Central

    Azman, Andrew S.; Luquero, Francisco J.; Ciglenecki, Iza; Grais, Rebecca F.; Sack, David A.; Lessler, Justin

    2015-01-01

    Background In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both. Methods and Findings Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect surveillance data and uncertainty about the transmission dynamics of cholera in each setting. Conclusions Reactive vaccination campaigns using a single dose of OCV may avert more cases and deaths than a standard two-dose campaign when vaccine supplies are limited, while at the same time reducing logistical complexity. These findings should motivate consideration of the trade-offs between one- and two-dose campaigns in resource-constrained settings, though further field efficacy data are needed and should be a priority in any one-dose campaign. PMID:26305226

  14. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-01

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by −4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (−8.1%, 8.1%) and (−17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients. PMID:21361208

  15. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  16. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.

  17. DEVELOPMENT OF A MULTIMODAL MONTE CARLO BASED TREATMENT PLANNING SYSTEM.

    PubMed

    Kumada, Hiroaki; Takada, Kenta; Sakurai, Yoshinori; Suzuki, Minoru; Takata, Takushi; Sakurai, Hideyuki; Matsumura, Akira; Sakae, Takeji

    2017-10-26

    To establish boron neutron capture therapy (BNCT), the University of Tsukuba is developing a treatment device and peripheral devices required in BNCT, such as a treatment planning system. We are developing a new multimodal Monte Carlo based treatment planning system (developing code: Tsukuba Plan). Tsukuba Plan allows for dose estimation in proton therapy, X-ray therapy and heavy ion therapy in addition to BNCT because the system employs PHITS as the Monte Carlo dose calculation engine. Regarding BNCT, several verifications of the system are being carried out for its practical usage. The verification results demonstrate that Tsukuba Plan allows for accurate estimation of thermal neutron flux and gamma-ray dose as fundamental radiations of dosimetry in BNCT. In addition to the practical use of Tsukuba Plan in BNCT, we are investigating its application to other radiation therapies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Calculation of midplane dose for total body irradiation from entrance and exit dose MOSFET measurements.

    PubMed

    Satory, P R

    2012-03-01

    This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.

  19. SU-G-IeP3-05: Effects of Image Receptor Technology and Dose Reduction Software On Radiation Dose Estimates for Fluoroscopically-Guided Interventional (FGI) Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merritt, Z; Dave, J; Eschelman, D

    Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-areamore » product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based systems was not associated with dose reduction for the most frequently performed FGI procedures, substantial dose reduction was noted with relatively newer systems and dose reduction software.« less

  20. Uncertainties in estimating health risks associated with exposure to ionising radiation.

    PubMed

    Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E

    2013-09-01

    The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose-rate occupational and perhaps environmental exposures and for exposures to x rays and high-LET radiations used in medicine. The development of models for more reliably combining the epidemiology data with experimental laboratory animal and cellular data can enhance the overall risk assessment approach by providing biologically refined data to strengthen the estimation of effects at low doses as opposed to the sole use of mathematical models of epidemiological data that are primarily driven by medium/high doses. NASA's approach to radiation protection for astronauts, although a unique occupational group, indicates the possible applicability of estimates of risk and their uncertainty in a broader context for developing recommendations on: (1) dose limits for occupational exposure and exposure of members of the public; (2) criteria to limit exposures of workers and members of the public to radon and its short-lived decay products; and (3) the dosimetric quantity (effective dose) used in radiation protection.

  1. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    PubMed

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  2. Patient specific computerized phantoms to estimate dose in pediatric CT

    NASA Astrophysics Data System (ADS)

    Segars, W. P.; Sturgeon, G.; Li, X.; Cheng, L.; Ceritoglu, C.; Ratnanather, J. T.; Miller, M. I.; Tsui, B. M. W.; Frush, D.; Samei, E.

    2009-02-01

    We create a series of detailed computerized phantoms to estimate patient organ and effective dose in pediatric CT and investigate techniques for efficiently creating patient-specific phantoms based on imaging data. The initial anatomy of each phantom was previously developed based on manual segmentation of pediatric CT data. Each phantom was extended to include a more detailed anatomy based on morphing an existing adult phantom in our laboratory to match the framework (based on segmentation) defined for the target pediatric model. By morphing a template anatomy to match the patient data in the LDDMM framework, it was possible to create a patient specific phantom with many anatomical structures, some not visible in the CT data. The adult models contain thousands of defined structures that were transformed to define them in each pediatric anatomy. The accuracy of this method, under different conditions, was tested using a known voxelized phantom as the target. Errors were measured in terms of a distance map between the predicted organ surfaces and the known ones. We also compared calculated dose measurements to see the effect of different magnitudes of errors in morphing. Despite some variations in organ geometry, dose measurements from morphing predictions were found to agree with those calculated from the voxelized phantom thus demonstrating the feasibility of our methods.

  3. A Review of the “Bolus Guide,” A New Insulin Bolus Dosing Support Tool Based on Selection of Carbohydrate Ranges

    PubMed Central

    Pańkowska, Ewa

    2010-01-01

    In this issue of Journal of Diabetes Science and Technology, Shapira and colleagues present new concepts of carbohydrate load estimation in intensive insulin therapy. By using a mathematical model, they attempt to establish how accurately carbohydrate food content should be maintained in order to keep postprandial blood glucose levels in the recommended range. Their mathematical formula, the “bolus guide” (BG), is verified by simulating prandial insulin dosing and responding to proper blood glucose levels. Different variants such as insulin sensitivity factor, insulin-to-carbohydrate ratio, and target blood glucose were taken into this formula in establishing the calculated proper insulin dose. The new approach presented here estimates the carbohydrate content by rearranging the carbohydrate load instead of the simple point estimation that the current bolus calculators (BCs) use. Computerized estimations show that the BG directives, as compared to a BC, result in more glucose levels above 200 mg/dl and thus indicate less hypoglycemia readings. PMID:20663454

  4. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  5. [Retrospective Cytogenetic Dose Evaluation. II. Computer Data Processing in Persons Irradiated in Different Radiation Accidents].

    PubMed

    Nugis, V Yu; Khvostunov, I K; Goloub, E V; Kozlova, M G; Nadejinal, N M; Galstian, I A

    2015-01-01

    The method for retrospective dose assessment based on the analysis of cell distribution by the number of dicentrics and unstable aberrations using a special computer program was earlier developed based on the data about the persons irradiated as a result of the accident at the Chernobyl nuclear power plant. This method was applied for the same purpose for data processing of repeated cytogenetic studies of the patients exposed to γ-, γ-β- or γ-neutron radiation in various situations. As a whole, this group was followed up in more distant periods (17-50 years) after exposure than Chernobyl patients (up to 25 years). The use for retrospective dose assessment of the multiple regression equations obtained for the Chernobyl cohort showed that the equation, which includes computer recovered estimate of the dose and the time elapsed after irradiation, was generally unsatisfactory (r = 0.069 at p = 0.599). Similar equations with recovered estimate of the dose and frequency of abnormal chromosomes in a distant period or with all three parameters as variables gave better results (r = 0.686 at p = 0.000000001 and r = 0.542 at p = 0.000008, respectively).

  6. Glyphosate in the general population and in applicators: a critical review of studies on exposures.

    PubMed

    Solomon, Keith R

    2016-09-01

    The recent classification of glyphosate as a probable human carcinogen by the International Agency for Research on Cancer (IARC) was arrived at without a detailed assessment of exposure. Glyphosate is widely used as an herbicide, which might result in exposures of the general public and applicators. Exposures were estimated from information in the open literature and unpublished reports provided by Monsanto Company. Based on the maximum measured concentration in air, an exposure dose of 1.04 × 10  -   6  mg/kg body mass (b.m.)/d was estimated. Assuming consumption of surface water without treatment, the 90th centile measured concentration would result in a consumed dose of 2.25 × 10  -   5  mg/kg b.m./d. Estimates by the Food and Agriculture Organization of the United Nations (FAO) of consumed doses in food provided a median exposure of 0.005 mg/kg b.m./d (range 0.002-0.013). Based on tolerance levels, the conservative estimate by the US Environmental Protection Agency (US EPA) for exposure of the general population via food and water was 0.088 mg/kg b.m./d (range 0.058-0.23). For applicators, 90th centiles for systemic exposures based on biomonitoring and dosimetry (normalized for penetration through the skin) were 0.0014 and 0.021 mg/kg b.m./d, respectively. All of these exposures are less than the reference dose and the acceptable daily intakes proposed by several regulatory agencies, thus supporting a conclusion that even for these highly exposed populations the exposures were within regulatory limits.

  7. Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

    PubMed

    Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A

    2017-01-01

    We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

  8. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate.

    PubMed

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [ 18 F]FluorTriopride ([ 18 F]FTP) is a dopamine D 3 -receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [ 18 F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [ 18 F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [ 18 F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [ 18 F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination.

  9. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

  10. Regulatory Forum Opinion Piece*: Retrospective Evaluation of Doses in the 26-week Tg.rasH2 Mice Carcinogenicity Studies: Recommendation to Eliminate High Doses at Maximum Tolerated Dose in Future Studies. A Response to the Counterpoints.

    PubMed

    Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom J; Elbekai, Reem H

    2016-01-01

    We recently conducted a retrospective analysis of data collected from 29 Tg.rasH2 carcinogenicity studies conducted at our facility to determine how successful was the strategy of choosing the high dose of the 26-week studies based on an estimated maximum tolerated dose (MTD). As a result of our publication, 2 counterviews were expressed. Both counterviews illustrate very valid points in their interpretation of our data. In this article, we would like to highlight clarifications based on several points and issues they have raised in their papers, namely, the dose-level selection, determining if MTD was exceeded in 26-week studies, and a discussion on the number of dose groups to be used in the studies. © The Author(s) 2015.

  11. External dose assessment in the Ukraine following the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).

  12. Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami

    2014-05-01

    Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less

  13. Predictions of Leukemia Risks to Astronauts from Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Atwell, W.; Kim, M. Y.; George, K. A.; Ponomarev, A.; Nikjoo, H.; Wilson, J. W.

    2006-01-01

    Leukemias consisting of acute and chronic myeloid leukemia and acute lymphatic lymphomas represent the earliest cancers that appear after radiation exposure, have a high lethality fraction, and make up a significant fraction of the overall fatal cancer risk from radiation for adults. Several considerations impact the recommendation of a preferred model for the estimation of leukemia risks from solar particle events (SPE's): The BEIR VII report recommends several changes to the method of calculation of leukemia risk compared to the methods recommended by the NCRP Report No. 132 including the preference of a mixture model with additive and multiplicative components in BEIR VII compared to the additive transfer model recommended by NCRP Report No. 132. Proton fluences and doses vary considerably across marrow regions because of the characteristic spectra of primary solar protons making the use of an average dose suspect. Previous estimates of bone marrow doses from SPE's have used an average body-shielding distribution for marrow based on the computerized anatomical man model (CAM). We have developed an 82-point body-shielding distribution that faithfully reproduces the mean and variance of SPE doses in the active marrow regions (head and neck, chest, abdomen, pelvis and thighs) allowing for more accurate estimation of linear- and quadratic-dose components of the marrow response. SPE's have differential dose-rates and a pseudo-quadratic dose response term is possible in the peak-flux period of an event. Also, the mechanistic basis for leukemia risk continues to improve allowing for improved strategies in choosing dose-rate modulation factors and radiation quality descriptors. We make comparisons of the various choices of the components in leukemia risk estimates in formulating our preferred model. A major finding is that leukemia could be the dominant risk to astronauts for a major solar particle event.

  14. Enhancing Cytogenetic Biological Dosimetry Capabilities of the Philippines for Nuclear Incident Preparedness.

    PubMed

    Asaad, Celia O; Caraos, Gloriamaris L; Robles, Gerardo Jose M; Asa, Anie Day D C; Cobar, Maria Lucia C; Asaad, Al-Ahmadgaid

    2016-01-01

    The utility of a biological dosimeter based on the analysis of dicentrics is invaluable in the event of a radiological emergency wherein the estimated absorbed dose of an exposed individual is crucial in the proper medical management of patients. The technique is also used for routine monitoring of occupationally exposed workers to determine radiation exposure. An in vitro irradiation study of human peripheral blood lymphocytes was conducted to establish a dose-response curve for radiation-induced dicentric aberrations. Blood samples were collected from volunteer donors and together with optically stimulated luminescence (OSL) dosimeters and were irradiated at 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 4, and 6 Gy using a cobalt-60 radiotherapy unit. Blood samples were cultured for 48 h, and the metaphase chromosomes were prepared following the procedure of the International Atomic Energy Agency's Emergency Preparedness and Response - Biodosimetry 2011 manual. At least 100 metaphases were scored for dicentric aberrations at each dose point. The data were analyzed using R language program. The results indicated that the distribution of dicentric cells followed a Poisson distribution and the dose-response curve was established using the estimated model, Y dic = 0.0003 (±0.0003) +0.0336 (±0.0115) × D + 0.0236 (±0.0054) × D 2 . In this study, the reliability of the dose-response curve in estimating the absorbed dose was also validated for 2 and 4 Gy using OSL dosimeters. The data were fitted into the constructed curve. The result of the validation study showed that the obtained estimate for the absorbed exposure doses was close to the true exposure doses.

  15. Radiation dose from MDCT using Monte Carlo simulations: estimating fetal dose due to pulmonary embolism scans accounting for overscan

    NASA Astrophysics Data System (ADS)

    Angel, E.; Wellnitz, C.; Goodsitt, M.; DeMarco, J.; Cagnon, C.; Ghatali, M.; Cody, D.; Stevens, D.; McCollough, C.; Primak, A.; McNitt-Gray, M.

    2007-03-01

    Pregnant women with shortness of breath are increasingly referred for CT Angiography to rule out Pulmonary Embolism (PE). While this exam is typically focused on the lungs, extending scan boundaries and overscan can add to the irradiated volume and have implications on fetal dose. The purpose of this work was to estimate radiation dose to the fetus when various levels of overscan were encountered. Two voxelized models of pregnant patients derived from actual patient anatomy were created based on image data. The models represent an early (< 7 weeks) and late term pregnancy (36 weeks). A previously validated Monte Carlo model of an MDCT scanner was used that takes into account physical details of the scanner. Simulated helical scans used 120 kVp, 4x5 mm beam collimation, pitch 1, and varying beam-off locations (edge of the irradiated volume) were used to represent different protocols plus overscan. Normalized dose (mGy/100mAs) was calculated for each fetus. For the early term and the late term pregnancy models, fetal dose estimates for a standard thoracic PE exam were estimated to be 0.05 and 0.3 mGy/100mAs, respectively, increasing to 9 mGy/100mAs when the beam-off location was extended to encompass the fetus. When performing PE exams to rule out PE in pregnant patients, the beam-off location may have a large effect on fetal dose, especially for late term pregnancies. Careful consideration of ending location of the x-ray beam - and not the end of image data - could result in significant reduction in radiation dose to the fetus.

  16. ORGAN-SPECIFIC EXTERNAL DOSE COEFFICIENTS AND PROTECTIVE APRON TRANSMISSION FACTORS FOR HISTORICAL DOSE RECONSTRUCTION FOR MEDICAL PERSONNEL

    PubMed Central

    Simon, Steven L.

    2014-01-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel, e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies, e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs), i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma, those factors have been primarily published for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factors values for (i) continuous distributions of energy typical of diagnostic medical x rays (bremsstrahlung radiation), and (ii) for energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probability of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), heart, and brain. In addition, a series of functional relationships to predict DT per Ka values for RBM dependent on body mass index [BMI (kg m−2) ≡ weight per height2] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters, e.g., energy distribution, the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based. PMID:21617389

  17. Organ-specific external dose coefficients and protective apron transmission factors for historical dose reconstruction for medical personnel.

    PubMed

    Simon, Steven L

    2011-07-01

    While radiation absorbed dose (Gy) to the skin or other organs is sometimes estimated for patients from diagnostic radiologic examinations or therapeutic procedures, rarely is occupationally-received radiation absorbed dose to individual organs/tissues estimated for medical personnel; e.g., radiologic technologists or radiologists. Generally, for medical personnel, equivalent or effective radiation doses are estimated for compliance purposes. In the very few cases when organ doses to medical personnel are reconstructed, the data is usually for the purpose of epidemiologic studies; e.g., a study of historical doses and risks to a cohort of about 110,000 radiologic technologists presently underway at the U.S. National Cancer Institute. While ICRP and ICRU have published organ-specific external dose conversion coefficients (DCCs) (i.e., absorbed dose to organs and tissues per unit air kerma and dose equivalent per unit air kerma), those factors have been published primarily for mono-energetic photons at selected energies. This presents two related problems for historical dose reconstruction, both of which are addressed here. It is necessary to derive conversion factor values for (1) continuous distributions of energy typical of diagnostic medical x-rays (bremsstrahlung radiation), and (2) energies of particular radioisotopes used in medical procedures, neither of which are presented in published tables. For derivation of DCCs for bremsstrahlung radiation, combinations of x-ray tube potentials and filtrations were derived for different time periods based on a review of relevant literature. Three peak tube potentials (70 kV, 80 kV, and 90 kV) with four different amounts of beam filtration were determined to be applicable for historic dose reconstruction. The probabilities of these machine settings were assigned to each of the four time periods (earlier than 1949, 1949-1954, 1955-1968, and after 1968). Continuous functions were fit to each set of discrete values of the ICRP/ICRU mono-energetic DCCs and the functions integrated over the air-kerma weighted photon fluence of the 12 defined x-ray spectra. The air kerma-weighted DCCs in this work were developed specifically for an irradiation geometry of anterior to posterior (AP) and for the following tissues: thyroid, breast, ovary, lens of eye, lung, colon, testes, heart, skin (anterior side only), red bone marrow (RBM), and brain. In addition, a series of functional relationships to predict DT Ka-1 values for RBM dependent on body mass index [BMI (kg m-2) ≡ weight per height] and average photon energy were derived from a published analysis. Factors to account for attenuation of radiation by protective lead aprons were also developed. Because lead protective aprons often worn by radiology personnel not only reduce the intensity of x-ray exposure but also appreciably harden the transmitted fluence of bremsstrahlung x-rays, DCCs were separately calculated for organs possibly protected by lead aprons by considering three cases: no apron, 0.25 mm Pb apron, and 0.5 mm Pb apron. For estimation of organ doses from conducting procedures with radioisotopes, continuous functions of the reported mono-energetic values were developed, and DCCs were derived by estimation of the function at relevant energies. By considering the temporal changes in primary exposure-related parameters (e.g., energy distribution), the derived DCCs and transmission factors presented here allow for more realistic historical dose reconstructions for medical personnel when monitoring badge readings are the primary data on which estimation of an individual's organ doses are based.

  18. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    PubMed

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was <100 mGy yielded a risk ratio of 1.06 (95% CI 0.30, 1.83) for solid cancer mortality and 0.58 (95% CI 0.10, 1.06) for mortality + incidence data. The interpretation of a best estimate for a value of the DREF depends on the appropriateness of including the Mayak study. This study indicates a range of uncertainty in the value of DREF between 1 and about 2 after protracted radiation exposure. The LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used for radiation protection purposes.

  19. An algorithm for intelligent sorting of CT-related dose parameters.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin

    2012-02-01

    Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  20. An algorithm for intelligent sorting of CT-related dose parameters

    NASA Astrophysics Data System (ADS)

    Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin

    2011-03-01

    Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.

  1. SU-E-J-92: Validating Dose Uncertainty Estimates Produced by AUTODIRECT, An Automated Program to Evaluate Deformable Image Registration Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J; Pouliot, J

    2015-06-15

    Purpose: Deformable image registration (DIR) is a powerful tool with the potential to deformably map dose from one computed-tomography (CT) image to another. Errors in the DIR, however, will produce errors in the transferred dose distribution. We have proposed a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), which predicts voxel-specific dose mapping errors on a patient-by-patient basis. This work validates the effectiveness of AUTODIRECT to predict dose mapping errors with virtual and physical phantom datasets. Methods: AUTODIRECT requires 4 inputs: moving and fixed CT images and two noise scans of a water phantom (for noise characterization). Then,more » AUTODIRECT uses algorithms to generate test deformations and applies them to the moving and fixed images (along with processing) to digitally create sets of test images, with known ground-truth deformations that are similar to the actual one. The clinical DIR algorithm is then applied to these test image sets (currently 4) . From these tests, AUTODIRECT generates spatial and dose uncertainty estimates for each image voxel based on a Student’s t distribution. This work compares these uncertainty estimates to the actual errors made by the Velocity Deformable Multi Pass algorithm on 11 virtual and 1 physical phantom datasets. Results: For 11 of the 12 tests, the predicted dose error distributions from AUTODIRECT are well matched to the actual error distributions within 1–6% for 10 virtual phantoms, and 9% for the physical phantom. For one of the cases though, the predictions underestimated the errors in the tail of the distribution. Conclusion: Overall, the AUTODIRECT algorithm performed well on the 12 phantom cases for Velocity and was shown to generate accurate estimates of dose warping uncertainty. AUTODIRECT is able to automatically generate patient-, organ- , and voxel-specific DIR uncertainty estimates. This ability would be useful for patient-specific DIR quality assurance.« less

  2. Canadian Cytogenetic Emergency network (CEN) for biological dosimetry following radiological/nuclear accidents.

    PubMed

    Miller, Susan M; Ferrarotto, Catherine L; Vlahovich, Slavica; Wilkins, Ruth C; Boreham, Douglas R; Dolling, Jo-Anna

    2007-07-01

    To test the ability of the cytogenetic emergency network (CEN) of laboratories, currently under development across Canada, to provide rapid biological dosimetry using the dicentric assay for triage assessment, that could be implemented in the event of a large-scale radiation/nuclear emergency. A workshop was held in May 2004 in Toronto, Canada, to introduce the concept of CEN and recruit clinical cytogenetic laboratories at hospitals across the country. Slides were prepared for dicentric assay analysis following in vitro irradiation of blood to a range of gamma-ray doses. A minimum of 50 metaphases per slide were analyzed by 41 people at 22 different laboratories to estimate the exposure level. Dose estimates were calculated based on a dose response curve generated at Health Canada. There were a total of 104 dose estimates and 96 (92.3%) of them fell within the expected range using triage scoring criteria. Half of the laboratories analyzed 50 metaphases in

  3. Development of a Bayesian response-adaptive trial design for the Dexamethasone for Excessive Menstruation study.

    PubMed

    Holm Hansen, Christian; Warner, Pamela; Parker, Richard A; Walker, Brian R; Critchley, Hilary Od; Weir, Christopher J

    2017-12-01

    It is often unclear what specific adaptive trial design features lead to an efficient design which is also feasible to implement. This article describes the preparatory simulation study for a Bayesian response-adaptive dose-finding trial design. Dexamethasone for Excessive Menstruation aims to assess the efficacy of Dexamethasone in reducing excessive menstrual bleeding and to determine the best dose for further study. To maximise learning about the dose response, patients receive placebo or an active dose with randomisation probabilities adapting based on evidence from patients already recruited. The dose-response relationship is estimated using a flexible Bayesian Normal Dynamic Linear Model. Several competing design options were considered including: number of doses, proportion assigned to placebo, adaptation criterion, and number and timing of adaptations. We performed a fractional factorial study using SAS software to simulate virtual trial data for candidate adaptive designs under a variety of scenarios and to invoke WinBUGS for Bayesian model estimation. We analysed the simulated trial results using Normal linear models to estimate the effects of each design feature on empirical type I error and statistical power. Our readily-implemented approach using widely available statistical software identified a final design which performed robustly across a range of potential trial scenarios.

  4. Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B

    2006-01-01

    The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.

  5. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone.

    PubMed

    Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R

    2016-04-01

    The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    NASA Astrophysics Data System (ADS)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference in organ size and location limited the effectiveness of matching. For skin dose, patient-phantom matching was found most beneficial for estimating the dose during lateral and anterior-posterior projections. Patient-sculpting of the patient.s outer body contour was also investigated for use during skin dose estimation and highlighted as a substantial step towards better patient-specificity. In order to utilize the models for actual patient dosimetry, two programs were developed based on the newly released Radiation Dose Structured Report (RDSR). The first program allows for the visualization of skin dose by translating the reference point air kerma to the location of the patient.s skin characterized by a computational model. The program represents an innovative tool that can be used by the interventional physician to modify behavior when clinically appropriate. The second program operates by automatically generating an input file from the RDSR which can then be run within a Monte Carlo based radiation transport code. The program has great potential for initiating and promoting the concept of 'cloud dosimetry', where patient-specific radiation transport is performed off-site and returned via the internet. Both programs are non-proprietary and transferable, and also incorporate the most advanced computational phantoms developed to date. Using the tools developed in this work, there exist a tangible opportunity to improve patient care with the end goal being a better understanding of the risk/benefit relationship that accompanies the medical use of ionizing radiation.

  7. Improved patient size estimates for accurate dose calculations in abdomen computed tomography

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Lae

    2017-07-01

    The radiation dose of CT (computed tomography) is generally represented by the CTDI (CT dose index). CTDI, however, does not accurately predict the actual patient doses for different human body sizes because it relies on a cylinder-shaped head (diameter : 16 cm) and body (diameter : 32 cm) phantom. The purpose of this study was to eliminate the drawbacks of the conventional CTDI and to provide more accurate radiation dose information. Projection radiographs were obtained from water cylinder phantoms of various sizes, and the sizes of the water cylinder phantoms were calculated and verified using attenuation profiles. The effective diameter was also calculated using the attenuation of the abdominal projection radiographs of 10 patients. When the results of the attenuation-based method and the geometry-based method shown were compared with the results of the reconstructed-axial-CT-image-based method, the effective diameter of the attenuation-based method was found to be similar to the effective diameter of the reconstructed-axial-CT-image-based method, with a difference of less than 3.8%, but the geometry-based method showed a difference of less than 11.4%. This paper proposes a new method of accurately computing the radiation dose of CT based on the patient sizes. This method computes and provides the exact patient dose before the CT scan, and can therefore be effectively used for imaging and dose control.

  8. Risk analysis in cohort studies with heterogeneous strata. A global chi2-test for dose-response relationship, generalizing the Mantel-Haenszel procedure.

    PubMed

    Ahlborn, W; Tuz, H J; Uberla, K

    1990-03-01

    In cohort studies the Mantel-Haenszel estimator ORMH is computed from sample data and is used as a point estimator of relative risk. Test-based confidence intervals are estimated with the help of the asymptotic chi-squared distributed MH-statistic chi 2MHS. The Mantel-extension-chi-squared is used as a test statistic for a dose-response relationship. Both test statistics--the Mantel-Haenszel-chi as well as the Mantel-extension-chi--assume homogeneity of risk across strata, which is rarely present. Also an extended nonparametric statistic, proposed by Terpstra, which is based on the Mann-Whitney-statistics assumes homogeneity of risk across strata. We have earlier defined four risk measures RRkj (k = 1,2,...,4) in the population and considered their estimates and the corresponding asymptotic distributions. In order to overcome the homogeneity assumption we use the delta-method to get "test-based" confidence intervals. Because the four risk measures RRkj are presented as functions of four weights gik we give, consequently, the asymptotic variances of these risk estimators also as functions of the weights gik in a closed form. Approximations to these variances are given. For testing a dose-response relationship we propose a new class of chi 2(1)-distributed global measures Gk and the corresponding global chi 2-test. In contrast to the Mantel-extension-chi homogeneity of risk across strata must not be assumed. These global test statistics are of the Wald type for composite hypotheses.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. RENEB intercomparisons applying the conventional Dicentric Chromosome Assay (DCA).

    PubMed

    Oestreicher, Ursula; Samaga, Daniel; Ainsbury, Elizabeth; Antunes, Ana Catarina; Baeyens, Ans; Barrios, Leonardo; Beinke, Christina; Beukes, Philip; Blakely, William F; Cucu, Alexandra; De Amicis, Andrea; Depuydt, Julie; De Sanctis, Stefania; Di Giorgio, Marina; Dobos, Katalin; Dominguez, Inmaculada; Duy, Pham Ngoc; Espinoza, Marco E; Flegal, Farrah N; Figel, Markus; Garcia, Omar; Monteiro Gil, Octávia; Gregoire, Eric; Guerrero-Carbajal, C; Güçlü, İnci; Hadjidekova, Valeria; Hande, Prakash; Kulka, Ulrike; Lemon, Jennifer; Lindholm, Carita; Lista, Florigio; Lumniczky, Katalin; Martinez-Lopez, Wilner; Maznyk, Nataliya; Meschini, Roberta; M'kacher, Radia; Montoro, Alegria; Moquet, Jayne; Moreno, Mercedes; Noditi, Mihaela; Pajic, Jelena; Radl, Analía; Ricoul, Michelle; Romm, Horst; Roy, Laurence; Sabatier, Laure; Sebastià, Natividad; Slabbert, Jacobus; Sommer, Sylwester; Stuck Oliveira, Monica; Subramanian, Uma; Suto, Yumiko; Que, Tran; Testa, Antonella; Terzoudi, Georgia; Vral, Anne; Wilkins, Ruth; Yanti, LusiYanti; Zafiropoulos, Demetre; Wojcik, Andrzej

    2017-01-01

    Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.

  10. Evidence supporting radiation hormesis in atomic bomb survivor cancer mortality data.

    PubMed

    Doss, Mohan

    2012-12-01

    A recent update on the atomic bomb survivor cancer mortality data has concluded that excess relative risk (ERR) for solid cancers increases linearly with dose and that zero dose is the best estimate for the threshold, apparently validating the present use of the linear no threshold (LNT) model for estimating the cancer risk from low dose radiation. A major flaw in the standard ERR formalism for estimating cancer risk from radiation (and other carcinogens) is that it ignores the potential for a large systematic bias in the measured baseline cancer mortality rate, which can have a major effect on the ERR values. Cancer rates are highly variable from year to year and between adjacent regions and so the likelihood of such a bias is high. Calculations show that a correction for such a bias can lower the ERRs in the atomic bomb survivor data to negative values for intermediate doses. This is consistent with the phenomenon of radiation hormesis, providing a rational explanation for the decreased risk of cancer observed at intermediate doses for which there is no explanation based on the LNT model. The recent atomic bomb survivor data provides additional evidence for radiation hormesis in humans.

  11. Real Time Radiation Monitoring Using Nanotechnology

    NASA Technical Reports Server (NTRS)

    Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)

    2016-01-01

    System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.

  12. Aspects of operational radiation protection during dismantling of nuclear facilities relevant for the estimation of internal doses.

    PubMed

    Labarta, T

    2007-01-01

    Operational radiation protection of workers during the dismantling of nuclear facilities is based on the same radiation protection principles as that applied in its exploitation period with the objective of ensuring proper implementation of the as-low-as-reasonably-achievable (ALARA) principle. These principles are: prior determination of the nature and magnitude of radiological risk; classification of workplaces and workers depending on the risks; implementation of control measures; monitoring of zones and working conditions, including, if necessary, individual monitoring. From the experiences and the lessons learned during the dismantling processes carried out in Spain, several important aspects in the practical implementation of these principles that directly influence and ensure an adequate prevention of exposures and the estimation of internal doses are pointed out, with special emphasis on the estimation of internal doses due to transuranic intakes.

  13. Effect of Study Design on Sample Size in Studies Intended to Evaluate Bioequivalence of Inhaled Short-Acting β-Agonist Formulations.

    PubMed

    Zeng, Yaohui; Singh, Sachinkumar; Wang, Kai; Ahrens, Richard C

    2018-04-01

    Pharmacodynamic studies that use methacholine challenge to assess bioequivalence of generic and innovator albuterol formulations are generally designed per published Food and Drug Administration guidance, with 3 reference doses and 1 test dose (3-by-1 design). These studies are challenging and expensive to conduct, typically requiring large sample sizes. We proposed 14 modified study designs as alternatives to the Food and Drug Administration-recommended 3-by-1 design, hypothesizing that adding reference and/or test doses would reduce sample size and cost. We used Monte Carlo simulation to estimate sample size. Simulation inputs were selected based on published studies and our own experience with this type of trial. We also estimated effects of these modified study designs on study cost. Most of these altered designs reduced sample size and cost relative to the 3-by-1 design, some decreasing cost by more than 40%. The most effective single study dose to add was 180 μg of test formulation, which resulted in an estimated 30% relative cost reduction. Adding a single test dose of 90 μg was less effective, producing only a 13% cost reduction. Adding a lone reference dose of either 180, 270, or 360 μg yielded little benefit (less than 10% cost reduction), whereas adding 720 μg resulted in a 19% cost reduction. Of the 14 study design modifications we evaluated, the most effective was addition of both a 90-μg test dose and a 720-μg reference dose (42% cost reduction). Combining a 180-μg test dose and a 720-μg reference dose produced an estimated 36% cost reduction. © 2017, The Authors. The Journal of Clinical Pharmacology published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.

  14. Supplemental computational phantoms to estimate out-of-field absorbed dose in photon radiotherapy

    NASA Astrophysics Data System (ADS)

    Gallagher, Kyle J.; Tannous, Jaad; Nabha, Racile; Feghali, Joelle Ann; Ayoub, Zeina; Jalbout, Wassim; Youssef, Bassem; Taddei, Phillip J.

    2018-01-01

    The purpose of this study was to develop a straightforward method of supplementing patient anatomy and estimating out-of-field absorbed dose for a cohort of pediatric radiotherapy patients with limited recorded anatomy. A cohort of nine children, aged 2-14 years, who received 3D conformal radiotherapy for low-grade localized brain tumors (LBTs), were randomly selected for this study. The extent of these patients’ computed tomography simulation image sets were cranial only. To approximate their missing anatomy, we supplemented the LBT patients’ image sets with computed tomography images of patients in a previous study with larger extents of matched sex, height, and mass and for whom contours of organs at risk for radiogenic cancer had already been delineated. Rigid fusion was performed between the LBT patients’ data and that of the supplemental computational phantoms using commercial software and in-house codes. In-field dose was calculated with a clinically commissioned treatment planning system, and out-of-field dose was estimated with a previously developed analytical model that was re-fit with parameters based on new measurements for intracranial radiotherapy. Mean doses greater than 1 Gy were found in the red bone marrow, remainder, thyroid, and skin of the patients in this study. Mean organ doses between 150 mGy and 1 Gy were observed in the breast tissue of the girls and lungs of all patients. Distant organs, i.e. prostate, bladder, uterus, and colon, received mean organ doses less than 150 mGy. The mean organ doses of the younger, smaller LBT patients (0-4 years old) were a factor of 2.4 greater than those of the older, larger patients (8-12 years old). Our findings demonstrated the feasibility of a straightforward method of applying supplemental computational phantoms and dose-calculation models to estimate absorbed dose for a set of children of various ages who received radiotherapy and for whom anatomies were largely missing in their original computed tomography simulations.

  15. An updated dose assessment for resettlement options at Bikini Atoll--a U.S. nuclear test site.

    PubMed

    Robison, W L; Bogen, K T; Conrado, C L

    1997-07-01

    On 1 March 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. There has been a continuing effort since 1977 to refine dose assessments for resettlement options at Bikini Atoll. Here we provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island as part of our continuing research and monitoring program that began in 1978. The unique composition of coral soil greatly alters the relative contribution of 137Cs and 90Sr to the total estimated dose relative to expectations based on North American and European soils. Without counter measures, 137Cs produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The doses are calculated assuming a resettlement date of 1999. The estimated maximum annual effective dose for current island conditions is 4.0 mSv when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 91 mSv, 130 mSv, and 150 mSv, respectively. A detailed uncertainty analysis for these dose estimates is presented in a companion paper in this issue. We have evaluated various countermeasures to reduce 137Cs in food crops. Treatment with potassium reduces the uptake of 137Cs into food crops, and therefore the ingestion dose, to about 5% of pretreatment levels and has essentially no negative environmental consequences. We have calculated the dose for the rehabilitation scenario where the top 40 cm of soil is removed in the housing and village area, and the rest of the island is treated with potassium fertilizer; the maximum annual effective dose is 0.41 mSv and the 30-, 50-, and 70-y integral effective doses are 9.8 mSv, 14 mSv, and 16 mSv, respectively.

  16. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  17. A MODELING FRAMEWORK FOR ESTIMATING CHILDREN'S RESIDENTIAL EXPOSURE AND DOSE TO CHLORPYRIFOS VIA DERMAL RESIDUE CONTACT AND NON-DIETARY INGESTION

    EPA Science Inventory

    To help address the Food Quality Protection Act of 1996, a physically-based probabilistic model (Residential Stochastic Human Exposure and Dose Simulation Model for Pesticides; Residential-SHEDS) has been developed to quantify and analyze dermal and non-dietary ingestion exposu...

  18. Dose assessment of aircraft crew in The Netherlands.

    PubMed

    Van Dijk, J W E

    2003-01-01

    As the operator of the National Dose Registration and Information System, NRG has implemented a system for radiation exposure monitoring for the Dutch airlines. The system is based on the use of computer generated flight plans together with dose calculations using the CARI-6M program. Before installing the system a study was performed to estimate the uncertainty in the assessment of the annual dose of the crew members. It was concluded that the proposed system complies with international recommendations on the uncertainty in dose assessments in individual monitoring and that the operational costs of the system are low.

  19. SU-F-T-687: Comparison of SPECT/CT-Based Methodologies for Estimating Lung Dose from Y-90 Radioembolization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kost, S; Yu, N; Lin, S

    2016-06-15

    Purpose: To compare mean lung dose (MLD) estimates from 99mTc macroaggregated albumin (MAA) SPECT/CT using two published methodologies for patients treated with {sup 90}Y radioembolization for liver cancer. Methods: MLD was estimated retrospectively using two methodologies for 40 patients from SPECT/CT images of 99mTc-MAA administered prior to radioembolization. In these two methods, lung shunt fractions (LSFs) were calculated as the ratio of scanned lung activity to the activity in the entire scan volume or to the sum of activity in the lung and liver respectively. Misregistration of liver activity into the lungs during SPECT acquisition was overcome by excluding lungmore » counts within either 2 or 1.5 cm of the diaphragm apex respectively. Patient lung density was assumed to be 0.3 g/cm{sup 3} or derived from CT densitovolumetry respectively. Results from both approaches were compared to MLD determined by planar scintigraphy (PS). The effect of patient size on the difference between MLD from PS and SPECT/CT was also investigated. Results: Lung density from CT densitovolumetry is not different from the reference density (p = 0.68). The second method resulted in lung dose of an average 1.5 times larger lung dose compared to the first method; however the difference between the means of the two estimates was not significant (p = 0.07). Lung dose from both methods were statistically different from those estimated from 2D PS (p < 0.001). There was no correlation between patient size and the difference between MLD from PS and both SPECT/CT methods (r < 0.22, p > 0.17). Conclusion: There is no statistically significant difference between MLD estimated from the two techniques. Both methods are statistically different from conventional PS, with PS overestimating dose by a factor of three or larger. The difference between lung doses estimated from 2D planar or 3D SPECT/CT is not dependent on patient size.« less

  20. An update on modeling dose-response relationships: Accounting for correlated data structure and heterogeneous error variance in linear and nonlinear mixed models.

    PubMed

    Gonçalves, M A D; Bello, N M; Dritz, S S; Tokach, M D; DeRouchey, J M; Woodworth, J C; Goodband, R D

    2016-05-01

    Advanced methods for dose-response assessments are used to estimate the minimum concentrations of a nutrient that maximizes a given outcome of interest, thereby determining nutritional requirements for optimal performance. Contrary to standard modeling assumptions, experimental data often present a design structure that includes correlations between observations (i.e., blocking, nesting, etc.) as well as heterogeneity of error variances; either can mislead inference if disregarded. Our objective is to demonstrate practical implementation of linear and nonlinear mixed models for dose-response relationships accounting for correlated data structure and heterogeneous error variances. To illustrate, we modeled data from a randomized complete block design study to evaluate the standardized ileal digestible (SID) Trp:Lys ratio dose-response on G:F of nursery pigs. A base linear mixed model was fitted to explore the functional form of G:F relative to Trp:Lys ratios and assess model assumptions. Next, we fitted 3 competing dose-response mixed models to G:F, namely a quadratic polynomial (QP) model, a broken-line linear (BLL) ascending model, and a broken-line quadratic (BLQ) ascending model, all of which included heteroskedastic specifications, as dictated by the base model. The GLIMMIX procedure of SAS (version 9.4) was used to fit the base and QP models and the NLMIXED procedure was used to fit the BLL and BLQ models. We further illustrated the use of a grid search of initial parameter values to facilitate convergence and parameter estimation in nonlinear mixed models. Fit between competing dose-response models was compared using a maximum likelihood-based Bayesian information criterion (BIC). The QP, BLL, and BLQ models fitted on G:F of nursery pigs yielded BIC values of 353.7, 343.4, and 345.2, respectively, thus indicating a better fit of the BLL model. The BLL breakpoint estimate of the SID Trp:Lys ratio was 16.5% (95% confidence interval [16.1, 17.0]). Problems with the estimation process rendered results from the BLQ model questionable. Importantly, accounting for heterogeneous variance enhanced inferential precision as the breadth of the confidence interval for the mean breakpoint decreased by approximately 44%. In summary, the article illustrates the use of linear and nonlinear mixed models for dose-response relationships accounting for heterogeneous residual variances, discusses important diagnostics and their implications for inference, and provides practical recommendations for computational troubleshooting.

  1. Patient-specific dose estimation for pediatric abdomen-pelvis CT

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2009-02-01

    The purpose of this study is to develop a method for estimating patient-specific dose from abdomen-pelvis CT examinations and to investigate dose variation across patients in the same weight group. Our study consisted of seven pediatric patients in the same weight/protocol group, for whom full-body computer models were previously created based on the patients' CT data obtained for clinical indications. Organ and effective dose of these patients from an abdomen-pelvis scan protocol (LightSpeed VCT scanner, 120-kVp, 85-90 mA, 0.4-s gantry rotation period, 1.375-pitch, 40-mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated for the same CT system. The seven patients had effective dose of 2.4-2.8 mSv, corresponding to normalized effective dose of 6.6-8.3 mSv/100mAs (coefficient of variation: 7.6%). Dose variations across the patients were small for large organs in the scan coverage (mean: 6.6%; range: 4.9%-9.2%), larger for small organs in the scan coverage (mean: 10.3%; range: 1.4%-15.6%), and the largest for organs partially or completely outside the scan coverage (mean: 14.8%; range: 5.7%-27.7%). Normalized effective dose correlated strongly with body weight (correlation coefficient: r = -0.94). Normalized dose to the kidney and the adrenal gland correlated strongly with mid-liver equivalent diameter (kidney: r = -0.97; adrenal glands: r = -0.98). Normalized dose to the small intestine correlated strongly with mid-intestine equivalent diameter (r = -0.97). These strong correlations suggest that patient-specific dose may be estimated for any other child in the same size group who undergoes the abdomen-pelvis scan.

  2. Estimation of the radiation dose from radiotherapy for skin haemangiomas in childhood: the ICTA software for epidemiology

    NASA Astrophysics Data System (ADS)

    Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.

    2000-12-01

    Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).

  3. A new biostimulation approach based on the concept of remaining P for soil bioremediation.

    PubMed

    Júlio, Aline Daniela Lopes; Fernandes, Rita de Cássia Rocha; Costa, Maurício Dutra; Neves, Júlio César Lima; Rodrigues, Edmo Montes; Tótola, Marcos Rogério

    2018-02-01

    C:N:P ratio is generally adopted to estimate the amount of nitrogen and phosphorus to be added to soils to accelerate biodegradation of organic contaminants. However, differences in P fixation among soils lead to varying amounts of available P when a specific dose of the element is applied to different soils. Thus, the application of fertilizers to achieve a previously established C:P ratio leads to biodegradation rates that can be lower than the theoretical maximum. In this study, we developed an equation to estimate the dose of P required to maximize organic contaminant biodegradation in soils as a function of remaining P (P-rem), using diesel as a model contaminant. The soils were contaminated with diesel and received six doses of P. CO 2 emission was used to estimate biodegradation of hydrocarbons. Biodegradation increased with P doses. The P level that provided the highest hydrocarbon biodegradation rate showed linear and negative correlation with P-rem. The result shows that the requirement for P decreases as the P-rem of the soil increases (or the P-fixing capacity decreases). The dose of P recommended to maximize hydrocarbon biodegradation rate in soil can be estimated by the formula P (mg/dm 3 ) = 436.5-5.39 × P-rem (mg/L). Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A Web-based Tool to Aid the Identification of Chemicals Potentially Posing a Health Risk through Percutaneous Exposure.

    PubMed

    Gorman Ng, Melanie; Milon, Antoine; Vernez, David; Lavoué, Jérôme

    2016-04-01

    Occupational hygiene practitioners typically assess the risk posed by occupational exposure by comparing exposure measurements to regulatory occupational exposure limits (OELs). In most jurisdictions, OELs are only available for exposure by the inhalation pathway. Skin notations are used to indicate substances for which dermal exposure may lead to health effects. However, these notations are either present or absent and provide no indication of acceptable levels of exposure. Furthermore, the methodology and framework for assigning skin notation differ widely across jurisdictions resulting in inconsistencies in the substances that carry notations. The UPERCUT tool was developed in response to these limitations. It helps occupational health stakeholders to assess the hazard associated with dermal exposure to chemicals. UPERCUT integrates dermal quantitative structure-activity relationships (QSARs) and toxicological data to provide users with a skin hazard index called the dermal hazard ratio (DHR) for the substance and scenario of interest. The DHR is the ratio between the estimated 'received' dose and the 'acceptable' dose. The 'received' dose is estimated using physico-chemical data and information on the exposure scenario provided by the user (body parts exposure and exposure duration), and the 'acceptable' dose is estimated using inhalation OELs and toxicological data. The uncertainty surrounding the DHR is estimated with Monte Carlo simulation. Additional information on the selected substances includes intrinsic skin permeation potential of the substance and the existence of skin notations. UPERCUT is the only available tool that estimates the absorbed dose and compares this to an acceptable dose. In the absence of dermal OELs it provides a systematic and simple approach for screening dermal exposure scenarios for 1686 substances. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  5. Use of epidemiologic data in Integrated Risk Information System (IRIS) assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persad, Amanda S.; Cooper, Glinda S.

    2008-11-15

    In human health risk assessment, information from epidemiologic studies is typically utilized in the hazard identification step of the risk assessment paradigm. However, in the assessment of many chemicals by the Integrated Risk Information System (IRIS), epidemiologic data, both observational and experimental, have also been used in the derivation of toxicological risk estimates (i.e., reference doses [RfD], reference concentrations [RfC], oral cancer slope factors [CSF] and inhalation unit risks [IUR]). Of the 545 health assessments posted on the IRIS database as of June 2007, 44 assessments derived non-cancer or cancer risk estimates based on human data. RfD and RfC calculationsmore » were based on a spectrum of endpoints from changes in enzyme activity to specific neurological or dermal effects. There are 12 assessments with IURs based on human data, two assessments that extrapolated human inhalation data to derive CSFs and one that used human data to directly derive a CSF. Lung or respiratory cancer is the most common endpoint for cancer assessments based on human data. To date, only one chemical, benzene, has utilized human data for derivation of all three quantitative risk estimates (i.e., RfC, RfD, and dose-response modeling for cancer assessment). Through examples from the IRIS database, this paper will demonstrate how epidemiologic data have been used in IRIS assessments for both adding to the body of evidence in the hazard identification process and in the quantification of risk estimates in the dose-response component of the risk assessment paradigm.« less

  6. Neutron dose estimation in a zero power nuclear reactor

    NASA Astrophysics Data System (ADS)

    Triviño, S.; Vedelago, J.; Cantargi, F.; Keil, W.; Figueroa, R.; Mattea, F.; Chautemps, A.; Santibañez, M.; Valente, M.

    2016-10-01

    This work presents the characterization and contribution of neutron and gamma components to the absorbed dose in a zero power nuclear reactor. A dosimetric method based on Fricke gel was implemented to evaluate the separation between dose components in the mixed field. The validation of this proposed method was performed by means of direct measurements of neutron flux in different positions using Au and Mg-Ni activation foils. Monte Carlo simulations were conversely performed using the MCNP main code with a dedicated subroutine to incorporate the exact complete geometry of the nuclear reactor facility. Once nuclear fuel elements were defined, the simulations computed the different contributions to the absorbed dose in specific positions inside the core. Thermal/epithermal contributions of absorbed dose were assessed by means of Fricke gel dosimetry using different isotopic compositions aimed at modifying the sensitivity of the dosimeter for specific dose components. Clear distinctions between gamma and neutron capture dose were obtained. Both Monte Carlo simulations and experimental results provided reliable estimations about neutron flux rate as well as dose rate during the reactor operation. Simulations and experimental results are in good agreement in every positions measured and simulated in the core.

  7. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.

    PubMed

    Wang, Lilie; Ding, George X

    2018-06-12

    Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  8. Low-voltage chest CT: another way to reduce the radiation dose in asbestos-exposed patients.

    PubMed

    Macía-Suárez, D; Sánchez-Rodríguez, E; Lopez-Calviño, B; Diego, C; Pombar, M

    2017-09-01

    To assess whether low voltage chest computed tomography (CT) can be used to successfully diagnose disease in patients with asbestos exposure. Fifty-six former employees of the shipbuilding industry, who were candidates to receive a standard-dose chest CT due to their occupational exposure to asbestos, underwent a routine CT. Immediately after this initial CT, they underwent a second acquisition using low-dose chest CT parameters, based on a low potential (80 kV) and limited tube current. The findings of the two CT protocols were compared based on typical diseases associated with asbestos exposure. The kappa coefficient for each parameter and for an overall rating (grouping them based on mediastinal, pleural, and pulmonary findings) were calculated in order to test for correlations between the two protocols. A good correlation between routine and low-dose CT was demonstrated for most parameters with a mean radiation dose reduction of up to 83% of the effective dose based on the dose-length product between protocols. Low-dose chest CT, based on a limited tube potential, is useful for patients with an asbestos exposure background. Low-dose chest CT can be successfully used to minimise the radiation dose received by patients, as this protocol produced an estimated mean effective dose similar to that of an abdominal or pelvis plain film. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, S.; Bellamy, M.; Hertel, N.; ...

    2015-03-25

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  10. Estimated dose rates to members of the public from external exposure to patients with 131I thyroid treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, S.; Bellamy, M.; Hertel, N.

    The purpose of this study is to estimate dose rates that may result from exposure to patients who had been administered iodine-131 ( 131I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered 131I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with 131I. Tissue attenuation and iodine biokinetics were considered in the patient in a largermore » comprehensive effort to improve external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the 131I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of 131I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after 131I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of 131I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for 131I patients with normal thyroid uptake (peak thyroid uptake of ~27% of administered 131I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ~4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ~3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with 131I therapy, consideration must be given to (patient- and case-specific) administered 131I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. Finally, the method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  11. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    PubMed

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched 6LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-6LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-6LiOH phantom. The dual phantom technique using the combination of a pure water phantom and a 10%-6LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.

  12. Estimation of maximum tolerated dose for long-term bioassays from acute lethal dose and structure by QSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gombar, V.K.; Enslein, K.; Hart, J.B.

    1991-09-01

    A quantitative structure-activity relationship (QSAR) model has been developed to estimate maximum tolerated doses (MTD) from structural features of chemicals and the corresponding oral acute lethal doses (LD50) as determined in male rats. The model is based on a set of 269 diverse chemicals which have been tested under the National Cancer Institute/National Toxicology Program (NCI/NTP) protocols. The rat oral LD50 value was the strongest predictor. Additionally, 22 structural descriptors comprising nine substructural MOLSTAC(c) keys, three molecular connectivity indices, and sigma charges on 10 molecular fragments were identified as endpoint predictors. The model explains 76% of the variance and ismore » significant (F = 35.7) at p less than 0.0001 with a standard error of the estimate of 0.40 in the log (1/mol) units used in Hansch-type equations. Cross-validation showed that the difference between the average deleted residual square (0.179) and the model residual square (0.160) was not significant (t = 0.98).« less

  13. [Ranking of radionuclides and pathways according to their contribution to the dose burden to the population resulting from NPP releases].

    PubMed

    Spiridonov, S I; Karpenko, E I; Sharpan, L A

    2013-01-01

    Approaches are described towards estimating the consequences of radioactive contamination of ecosystems by nuclear fuel cycle enterprises with the rationale for the optimal specification level for nuclear power plants (NPP) operating in the normal mode. Calculations are made based on the initial data of the IAEA project, INPRO ENV, dealing with the ranking of radionuclides escaping to the environment from the operating NPPs. Influence of various factors on rankings of radionuclides and pathways of public exposure is demon- strated. An important factor is the controlled radionuclide composition of atmospheric NPP releases. It has been found that variation in the dose coefficients for some radionuclides leads to significant changes not only in the ranking results but also in the estimates of total dose burdens. Invariability is shown of the estimation concerning the greatest contribution of the peroral route to the population dose of irradiation in the situation considered. A conclusion was drawn on the need of taking into consideration uncertainties of different factors when comparing effects on the environment from enterprises of conventional and innovative nuclear fuel cycles.

  14. Estimation of skin entrance doses (SEDs) for common medical X-ray diagnostic examinations in India and proposed diagnostic reference levels (DRLs).

    PubMed

    Sonawane, A U; Shirva, V K; Pradhan, A S

    2010-02-01

    Skin entrance doses (SEDs) were estimated by carrying out measurements of air kerma from 101 X-ray machines installed in 45 major and selected hospitals in the country by using a silicon detector-based dose Test-O-Meter. 1209 number of air kerma measurements of diagnostic projections for adults have been analysed for seven types of common diagnostic examinations, viz. chest (AP, PA, LAT), lumbar spine (AP, LAT), thoracic spine (AP, LAT), abdomen (AP), pelvis (AP), hip joints (AP) and skull (PA, LAT) for different film-screen combinations. The values of estimated diagnostic reference levels (DRLs) (third quartile values of SEDs) were compared with guidance levels/DRLs of doses published by the IAEA-BSS-Safety Series No. 115, 1996; HPA (NRPB) (2000 and 2005), UK; CRCPD/CDRH (USA), European Commission and other national values. The values of DRLs obtained in this study are comparable with the values published by the IAEA-BSS-115 (1996); HPA (NRPB) (2000 and 2005) UK; EC and CRCPD/CDRH, USA including values obtained in previous studies in India.

  15. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-01

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individualmore » at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.« less

  16. Is more better than less? An analysis of children's mental health services.

    PubMed Central

    Foster, E M

    2000-01-01

    OBJECTIVE: To assess the dose-response relationship for outpatient therapy received by children and adolescents-that is, to determine the impact of added outpatient visits on key mental health outcomes (functioning and symptomatology). DATA SOURCES/STUDY SETTING: The results presented involve analyses of data from the Fort Bragg Demonstration and are based on a sample of 301 individuals using outpatient services. STUDY DESIGN: This article provides estimates of the impact of outpatient therapy based on comparisons of individuals receiving differing treatment doses. Those comparisons involve standard multiple regression analyses as well as instrumental variables estimation. The latter provides a means of adjusting comparisons for unobserved or unmeasured differences among individuals receiving differing doses, differences that would otherwise be confounded with the impact of treatment dose. DATA COLLECTION/EXTRACTION METHODS: Using structured diagnostic interviews and behavior checklists completed by the child and his or her caretaker, detailed data on psychopathology, symptomatology, and psychosocial functioning were collected on individuals included in these analyses. Information on the use of mental health services was taken from insurance claims and a management information system. Services data were used to describe the use of outpatient therapy within the year following entry into the study. PRINCIPAL FINDINGS/CONCLUSIONS: Instrumental variables estimation indicates that added outpatient therapy improves functioning among children and adolescents. The effect is statistically significant and of moderate practical magnitude. These results imply that conventional analyses of the dose-response relationship may understate the impact of additional treatment on functioning. This finding is robust to choice of functional form, length of time over which outcomes are measured, and model specification. Dose does not appear to influence symptomatology. PMID:11130814

  17. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes.

    PubMed

    Austin, Peter C

    2018-05-20

    Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G-computation. All methods resulted in essentially unbiased estimation of the population dose-response function. However, GPS-based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  18. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y; Waldron, T; Pennington, E

    Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for amore » single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.« less

  19. Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif

    2014-11-01

    Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less

  20. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development of analytical procedures for individual dose estimates.

  1. Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning.

    PubMed

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C

    2013-05-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Towards robust deconvolution of low-dose perfusion CT: Sparse perfusion deconvolution using online dictionary learning

    PubMed Central

    Fang, Ruogu; Chen, Tsuhan; Sanelli, Pina C.

    2014-01-01

    Computed tomography perfusion (CTP) is an important functional imaging modality in the evaluation of cerebrovascular diseases, particularly in acute stroke and vasospasm. However, the post-processed parametric maps of blood flow tend to be noisy, especially in low-dose CTP, due to the noisy contrast enhancement profile and the oscillatory nature of the results generated by the current computational methods. In this paper, we propose a robust sparse perfusion deconvolution method (SPD) to estimate cerebral blood flow in CTP performed at low radiation dose. We first build a dictionary from high-dose perfusion maps using online dictionary learning and then perform deconvolution-based hemodynamic parameters estimation on the low-dose CTP data. Our method is validated on clinical data of patients with normal and pathological CBF maps. The results show that we achieve superior performance than existing methods, and potentially improve the differentiation between normal and ischemic tissue in the brain. PMID:23542422

  3. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.

    PubMed

    van Der Wel, Antoinet; Nijsten, Sebastiaan; Hochstenbag, Monique; Lamers, Rob; Boersma, Liesbeth; Wanders, Rinus; Lutgens, Ludy; Zimny, Michael; Bentzen, Søren M; Wouters, Brad; Lambin, Philippe; De Ruysscher, Dirk

    2005-03-01

    With this modeling study, we wanted to estimate the potential gain from incorporating fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning in the radiotherapy treatment planning of CT Stage N2-N3M0 non-small-cell lung cancer (NSCLC) patients. Twenty-one consecutive patients with clinical CT Stage N2-N3M0 NSCLC were studied. For each patient, two three-dimensional conformal treatment plans were made: one with a CT-based planning target volume (PTV) and one with a PET-CT-based PTV, both to deliver 60 Gy in 30 fractions. From the dose-volume histograms and dose distributions on each plan, the dosimetric factors predicting esophageal and lung toxicity were analyzed and compared. For each patient, the maximal tolerable prescribed radiation dose for the CT PTV vs. PET-CT PTV was calculated according to the constraints for the lung, esophagus, and spinal cord. From these results, the tumor control probability (TCP) was estimated, assuming a clinical dose-response curve with a median toxic dose of 84.5 Gy and a gamma(50) of 2.0. Dose-response curves were modeled, taking into account geographic misses according to the accuracy of CT and PET in our institutions. The gross tumor volume of the nodes decreased from 13.7 +/- 3.8 cm(3) on the CT scan to 9.9 +/- 4.0 cm(3) on the PET-CT scan (p = 0.011). All dose-volume characteristics for the esophagus and lungs decreased in favor of PET-CT. The esophageal V(45) (the volume of the esophagus receiving 45 Gy) decreased from 45.2% +/- 4.9% to 34.0% +/- 5.8% (p = 0.003), esophageal V(55) (the volume of the esophagus receiving 55 Gy) from 30.6% +/- 3.2% to 21.9% +/- 3.8% (p = 0.004), mean esophageal dose from 29.8 +/- 2.5 Gy to 23.7 +/- 3.1 Gy (p = 0.004), lung V(20) (the volume of the lungs minus the PTV receiving 20 Gy) from 24.9% +/- 2.3% to 22.3% +/- 2.2% (p = 0.012), and mean lung dose from 14.7 +/- 1.3 Gy to 13.6 +/- 1.3 Gy (p = 0.004). For the same toxicity levels of the lung, esophagus, and spinal cord, the dose could be increased from 56.0 +/- 5.4 Gy with CT planning to 71.0 +/- 13.7 Gy with PET planning (p = 0.038). The TCP corresponding to these doses was estimated to be 14.2% +/- 5.6% for CT and 22.8% +/- 7.1% for PET-CT planning (p = 0.026). Adjusting for geographic misses by PET-CT vs. CT planning yielded TCP estimates of 12.5% and 18.3% (p = 0.009) for CT and PET-CT planning, respectively. In this group of clinical CT Stage N2-N3 NSCLC patients, use of FDG-PET scanning information in radiotherapy planning reduced the radiation exposure of the esophagus and lung, and thus allowed significant radiation dose escalation while respecting all relevant normal tissue constraints. This, together with a reduced risk of geographic misses using PET-CT, led to an estimated increase in TCP from 13% to 18%. The results of this modeling study support clinical trials investigating incorporation of FDG-PET information in CT-based radiotherapy planning.

  4. Measurements of long-term external and internal radiation exposure of inhabitants of some villages of the Bryansk region of Russia after the Chernobyl accident.

    PubMed

    Bernhardsson, C; Zvonova, I; Rääf, C; Mattsson, S

    2011-10-15

    A Nordic-Soviet programme was initiated in 1990 to evaluate the external and internal radiation exposure of the inhabitants of several villages in the Bryansk region of Russia. This area was one of the number of areas particularly affected by the nuclear accident at the Chernobyl Nuclear Power Plant in 1986. Measurements were carried out yearly until 1998 and after that more irregularly; in 2000, 2006 and 2008 respectively. The effective dose estimates were based on individual thermoluminescent dosemeters and on in vivo measurements of the whole body content of (137)Cs (and (134)Cs during the first years of the programme). The decrease in total effective dose during the almost 2 decade follow-up was due to a continuous decrease in the dominating external exposure and a less decreasing but highly variable exposure from internal irradiation. In 2008, the observed average effective dose (i.e. the sum of external and internal exposure) from Chernobyl (137)Cs to the residents was estimated to be 0.3mSv y(-1). This corresponds to 8% of the estimated annual dose in 1990 and to 1% of the estimated annual dose in 1986. As a mean for the population group and for the period of the present study (2006-2008), the average yearly effective dose from Chernobyl cesium was comparable to the absorbed dose obtained annually from external exposure to cosmic radiation plus internal exposure to naturally occurring radionuclides in the human body. Our data indicate that the effective dose from internal exposure is becoming increasingly important as the body burdens of Chernobyl (137)Cs are decreasing more slowly than the external exposure. However, over the years there have been large individual variations in both the external and internal effective doses, as well as differences between the villages investigated. These variations and differences are presented and discussed in this paper. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Estimating human papillomavirus vaccination coverage among young women in Victoria and reasons for non-vaccination.

    PubMed

    Brotherton, Julia M L; Piers, Leonard S; Vaughan, Loretta

    2016-04-01

    Background Adult Australian women aged 18 to 26 years were offered human papillomavirus (HPV) vaccine in a mass catch up campaign between 2007 and 2009. Not all doses administered were notified to Australia's HPV vaccine register and not all young women commenced or completed the vaccine course. We surveyed vaccine age-eligible women as part of the Victorian Population Health Survey 2011-2012, a population based telephone survey, to ascertain self-reported vaccine uptake and reasons for non-vaccination or non-completion of vaccination among young women resident in the state of Victoria, Australia. Among 956 women surveyed, 62.3 per cent (57.8-66.6%) had been vaccinated against HPV and coverage with three doses was estimated at 53.7 per cent (49.1-58.2%). These estimates are higher than register-based estimates for the same cohort, which were 57.8 per cent and 37.2 per cent respectively. A lack of awareness about needing three doses and simply forgetting, rather than fear or experience of side effects, were the most common reasons for failure to complete all three doses. Among women who were not vaccinated, the most frequent reasons were not knowing the vaccine was available, perceiving they were too old to benefit, or not being resident in Australia at the time. It is likely that at least half of Victoria's young women were vaccinated during the catch-up program. This high level of coverage is likely to explain the marked reductions in HPV infection, genital warts and cervical disease already observed in young women in Victoria.

  6. IDACstar: A MCNP Application to Perform Realistic Dose Estimations from Internal or External Contamination of Radiopharmaceuticals.

    PubMed

    Ören, Ünal; Hiller, Mauritius; Andersson, M

    2017-04-28

    A Monte Carlo-based stand-alone program, IDACstar (Internal Dose Assessment by Computer), was developed, dedicated to perform radiation dose calculations using complex voxel simulations. To test the program, two irradiation situations were simulated, one hypothetical contamination case with 600 MBq of 99mTc and one extravasation case involving 370 MBq of 18F-FDG. The effective dose was estimated to be 0.042 mSv for the contamination case and 4.5 mSv for the extravasation case. IDACstar has demonstrated that dosimetry results from contamination or extravasation cases can be acquired with great ease. An effective tool for radiation protection applications is provided with IDACstar allowing physicists at nuclear medicine departments to easily quantify the radiation risk of stochastic effects when a radiation accident has occurred. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Paulsson, A; Sneed, P

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to themore » thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.« less

  8. COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.

    PubMed

    Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang

    2017-04-20

    Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Quantitative simulation of intracellular signaling cascades in a Virtual Liver: estimating dose dependent changes in hepatocellular proliferation and apoptosis

    EPA Science Inventory

    The US EPA Virtual Liver (v-Liver™) is developing an approach to predict dose-dependent hepatotoxicity as an in vivo tissue level response using in vitro data. The v-Liver accomplishes this using an in silico agent-based systems model that dynamically integrates environmental exp...

  10. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  11. Elimination of Emergency Department Medication Errors Due To Estimated Weights.

    PubMed

    Greenwalt, Mary; Griffen, David; Wilkerson, Jim

    2017-01-01

    From 7/2014 through 6/2015, 10 emergency department (ED) medication dosing errors were reported through the electronic incident reporting system of an urban academic medical center. Analysis of these medication errors identified inaccurate estimated weight on patients as the root cause. The goal of this project was to reduce weight-based dosing medication errors due to inaccurate estimated weights on patients presenting to the ED. Chart review revealed that 13.8% of estimated weights documented on admitted ED patients varied more than 10% from subsequent actual admission weights recorded. A random sample of 100 charts containing estimated weights revealed 2 previously unreported significant medication dosage errors (.02 significant error rate). Key improvements included removing barriers to weighing ED patients, storytelling to engage staff and change culture, and removal of the estimated weight documentation field from the ED electronic health record (EHR) forms. With these improvements estimated weights on ED patients, and the resulting medication errors, were eliminated.

  12. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein

    2009-09-15

    Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less

  13. Impact of TGF for aircrew dosimetry: analysis of continuous onboard measurements

    NASA Astrophysics Data System (ADS)

    Trompier, Francois; Fuller, Nicolas; Bonnotte, Frank; Desmaris, Gérard; Musso, Angelica; Cale, Eric; Bottollier-Depois, Jean-François

    2014-05-01

    The actual assessment of the occupational exposure of aircrew to cosmic radiation is performed in routine by software based on the crossing of route flight data with dose rate maps of the atmosphere obtained by simulation or elaborated with model based on measured data. In addition of the galactic component, some of these softwares take into account also the possible increase of dose from solar flares. In several publications, terrestrial gamma-rays flashes (TGF) are also investigated as a possible source of exposure of aircrew. Up to now, the evaluation of the impact of TGF in terms of dose onboard aircraft has been performed only by calculation. According to these publications, if the airplane is located in or near the high-field region during the lightning discharge, doses could reach the order of 100 of mSv, which far exceed the annual dose limit for workers (1). To our knowledge, no measured data has been yet reported for such phenomena that could confirm or not the order of magnitude of dose from TGF or the frequency or the probability of occurrence of such phenomena. To investigate further the TGF effect, it is recommended to perform measurements onboard airplanes. Since the beginning of 2013, the Institute of Radiation Protection and nuclear Safety (IRSN) in cooperation with Air France is running a campaign of continuous measurements with active devices aiming to measure effect on dose rate of solar flare. These measurements are used to improve models used to estimate the doses from Ground Level Event (GLE). In addition, passive dosimeters were historically installed in Air France airplanes and read out every three months constituting a very large database of dose measurements. All these data will be analyzed to better characterize the possible influence on dose from TGF. The statistical analysis of these data offers the possibility to estimate the order of magnitude of possible additional doses to aircrew due to TGF and/or to evaluate the probability of occurrence of TGF events impacting significantly the exposure of aircrew. (1) J. R. Dwyer et al. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D09206, 10 PP., 2010, doi:10.1029/2009JD012039

  14. Patient-specific CT dosimetry calculation: a feasibility study.

    PubMed

    Fearon, Thomas; Xie, Huchen; Cheng, Jason Y; Ning, Holly; Zhuge, Ying; Miller, Robert W

    2011-11-15

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of "standard man". Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient-specific CT dosimetry. A radiation treatment planning system was modified to calculate patient-specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose-volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi-empirical, measured correction-based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point-by-point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%-20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient-specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation.

  15. A survival model for fractionated radiotherapy with an application to prostate cancer

    NASA Astrophysics Data System (ADS)

    Zaider, Marco; Zelefsky, Michael J.; Hanin, Leonid G.; Tsodikov, Alexander D.; Yakovlev, Andrei Y.; Leibel, Steven A.

    2001-10-01

    This paper explores the applicability of a mechanistic survival model, based on the distribution of clonogens surviving a course of fractionated radiation therapy, to clinical data on patients with prostate cancer. The study was carried out using data on 1100 patients with clinically localized prostate cancer who were treated with three-dimensional conformal radiation therapy. The patients were stratified by radiation dose (group 1: <67.5 Gy; group 2: 67.5-72.5 Gy; group 3: 72.5-77.5 Gy; group 4: 77.5-87.5 Gy) and prognosis category (favourable, intermediate and unfavourable as defined by pre-treatment PSA and Gleason score). A relapse was recorded when tumour recurrence was diagnosed or when three successive prostate specific antigen (PSA) elevations were observed from a post-treatment nadir PSA level. PSA relapse-free survival was used as the primary end point. The model, which is based on an iterated Yule process, is specified in terms of three parameters: the mean number of tumour clonogens that survive the treatment, the mean of the progression time of post-treatment tumour development and its standard deviation. The model parameters were estimated by the maximum likelihood method. The fact that the proposed model provides an excellent description both of the survivor function and of the hazard rate is prima facie evidence of the validity of the model because closeness of the two survivor functions (empirical and model-based) does not generally imply closeness of the corresponding hazard rates. The estimated cure probabilities for the favourable group are 0.80, 0.74 and 0.87 (for dose groups 1-3, respectively); for the intermediate group: 0.25, 0.51, 0.58 and 0.78 (for dose groups 1-4, respectively) and for the unfavourable group: 0.0, 0.27, 0.33 and 0.64 (for dose groups 1-4, respectively). The distribution of progression time to tumour relapse was found to be independent of prognosis group but dependent on dose. As the dose increases the mean progression time decreases (41, 28.5, 26.2 and 14.7 months for dose groups 1-4, respectively). This analysis confirms that, in terms of cure rate, dose escalation has a significant positive effect only in the intermediate and unfavourable groups. It was found that progression time is inversely proportional to dose, which means that patients recurring in higher dose groups have shorter recurrence times, yet these groups have better survival, particularly long-term. The explanation for this seemingly illogical observation lies in the fact that less aggressive tumours, potentially recurring after a long period of time, are cured by higher doses and do not contribute to the recurrence pattern. As a result, patients in higher dose groups are less likely to recur; however, if they do, they tend to recur earlier. The estimated hazard rates for prostate cancer pass through a clear-cut maximum, thus revealing a time period with especially high values of instantaneous cancer-specific risk; the estimates appear to be nonproportional across dose strata.

  16. Prediction of Therapy Tumor-Absorbed Dose Estimates in I-131 Radioimmunotherapy Using Tracer Data Via a Mixed-Model Fit to Time Activity

    PubMed Central

    Koral, Kenneth F.; Avram, Anca M.; Kaminski, Mark S.; Dewaraja, Yuni K.

    2012-01-01

    Abstract Background For individualized treatment planning in radioimmunotherapy (RIT), correlations must be established between tracer-predicted and therapy-delivered absorbed doses. The focus of this work was to investigate this correlation for tumors. Methods The study analyzed 57 tumors in 19 follicular lymphoma patients treated with I-131 tositumomab and imaged with SPECT/CT multiple times after tracer and therapy administrations. Instead of the typical least-squares fit to a single tumor's measured time-activity data, estimation was accomplished via a biexponential mixed model in which the curves from multiple subjects were jointly estimated. The tumor-absorbed dose estimates were determined by patient-specific Monte Carlo calculation. Results The mixed model gave realistic tumor time-activity fits that showed the expected uptake and clearance phases even with noisy data or missing time points. Correlation between tracer and therapy tumor-residence times (r=0.98; p<0.0001) and correlation between tracer-predicted and therapy-delivered mean tumor-absorbed doses (r=0.86; p<0.0001) were very high. The predicted and delivered absorbed doses were within±25% (or within±75 cGy) for 80% of tumors. Conclusions The mixed-model approach is feasible for fitting tumor time-activity data in RIT treatment planning when individual least-squares fitting is not possible due to inadequate sampling points. The good correlation between predicted and delivered tumor doses demonstrates the potential of using a pretherapy tracer study for tumor dosimetry-based treatment planning in RIT. PMID:22947086

  17. Evaluation of genotype-guided acenocoumarol dosing algorithms in Russian patients.

    PubMed

    Sychev, Dmitriy Alexeyevich; Rozhkov, Aleksandr Vladimirovich; Ananichuk, Anna Viktorovna; Kazakov, Ruslan Evgenyevich

    2017-05-24

    Acenocoumarol dose is normally determined via step-by-step adjustment process based on International Normalized Ratio (INR) measurements. During this time, the risk of adverse reactions is especially high. Several genotype-based acenocoumarol dosing algorithms have been created to predict ideal doses at the start of anticoagulant therapy. Nine dosing algorithms were selected through a literature search. These were evaluated using a cohort of 63 patients with atrial fibrillation receiving acenocoumarol therapy. None of the existing algorithms could predict the ideal acenocoumarol dose in 50% of Russian patients. The Wolkanin-Bartnik algorithtm based on European population was the best-performing one with the highest correlation values (r=0.397), mean absolute error (MAE) 0.82 (±0.61). EU-PACT also managed to give an estimate within the ideal range in 43% of the cases. The two least accurate results were yielded by the Indian population-based algorithms. Among patients receiving amiodarone, algorithms by Schie and Tong proved to be the most effective with the MAE of 0.48±0.42 mg/day and 0.56±0.31 mg/day, respectively. Patient ethnicity and amiodarone intake are factors that must be considered when building future algorithms. Further research is required to find the perfect dosing formula of acenocoumarol maintenance doses in Russian patients.

  18. SU-F-T-450: The Investigation of Radiotherapy Quality Assurance and Automatic Treatment Planning Based On the Kernel Density Estimation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J; Fan, J; Hu, W

    Purpose: To develop a fast automatic algorithm based on the two dimensional kernel density estimation (2D KDE) to predict the dose-volume histogram (DVH) which can be employed for the investigation of radiotherapy quality assurance and automatic treatment planning. Methods: We propose a machine learning method that uses previous treatment plans to predict the DVH. The key to the approach is the framing of DVH in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of the dose and the predictive features. The joint distribution provides an estimation of the conditionalmore » probability of the dose given the values of the predictive features. For the new patient, the prediction consists of estimating the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimation of the DVH. The 2D KDE is implemented to predict the joint probability distribution of the training set and the distribution of the predictive features for the new patient. Two variables, including the signed minimal distance from each OAR (organs at risk) voxel to the target boundary and its opening angle with respect to the origin of voxel coordinate, are considered as the predictive features to represent the OAR-target spatial relationship. The feasibility of our method has been demonstrated with the rectum, breast and head-and-neck cancer cases by comparing the predicted DVHs with the planned ones. Results: The consistent result has been found between these two DVHs for each cancer and the average of relative point-wise differences is about 5% within the clinical acceptable extent. Conclusion: According to the result of this study, our method can be used to predict the clinical acceptable DVH and has ability to evaluate the quality and consistency of the treatment planning.« less

  19. Graphical user interface for yield and dose estimations for cyclotron-produced technetium

    NASA Astrophysics Data System (ADS)

    Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.

    2014-07-01

    The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  20. Graphical user interface for yield and dose estimations for cyclotron-produced technetium.

    PubMed

    Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A

    2014-07-07

    The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.

  1. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    PubMed

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugano, Yasutaka; Mizuta, Masahiro; Takao, Seishin

    Purpose: Radiotherapy of solid tumors has been performed with various fractionation regimens such as multi- and hypofractionations. However, the ability to optimize the fractionation regimen considering the physical dose distribution remains insufficient. This study aims to optimize the fractionation regimen, in which the authors propose a graphical method for selecting the optimal number of fractions (n) and dose per fraction (d) based on dose–volume histograms for tumor and normal tissues of organs around the tumor. Methods: Modified linear-quadratic models were employed to estimate the radiation effects on the tumor and an organ at risk (OAR), where the repopulation of themore » tumor cells and the linearity of the dose-response curve in the high dose range of the surviving fraction were considered. The minimization problem for the damage effect on the OAR was solved under the constraint that the radiation effect on the tumor is fixed by a graphical method. Here, the damage effect on the OAR was estimated based on the dose–volume histogram. Results: It was found that the optimization of fractionation scheme incorporating the dose–volume histogram is possible by employing appropriate cell surviving models. The graphical method considering the repopulation of tumor cells and a rectilinear response in the high dose range enables them to derive the optimal number of fractions and dose per fraction. For example, in the treatment of prostate cancer, the optimal fractionation was suggested to lie in the range of 8–32 fractions with a daily dose of 2.2–6.3 Gy. Conclusions: It is possible to optimize the number of fractions and dose per fraction based on the physical dose distribution (i.e., dose–volume histogram) by the graphical method considering the effects on tumor and OARs around the tumor. This method may stipulate a new guideline to optimize the fractionation regimen for physics-guided fractionation.« less

  3. SU-F-T-222: Dose of Fetus and Infant Following Accidental Intakes of I-131 by the Mother

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y; Hu, P

    Purpose: To estimate the calculation of absorbed dose to the fetus and infants from intakes of I-131 by the mother. Thus provide some advice to the radioprotection of radioactive accident. Methods: In this clinical case, a staff of nuclear medicine accidently intake I-131 during (10–12 weeks) and after pregnancy. The infant was born at full term, but both lobes of the thyroid gland were found to be absent (bilobar thyroid agenesis). It was suspected that the fetal thyroid agenesis may be related with mother’s contamination of I-131 during pregnancy. Urine samples for 24h were collected at different times after administeredmore » and radioactivity were measured to calculate the dose of intake I-131. Calculate the intake I-131 by the results of personal TLD dosimeter. We adopted the mean of two calculated results as the I-131 intake. According to the dose of intake I-131 by the mother, effective dose and absorbed dose of thyroid for mother, fetus and infant were calculated. Results: The intake of I-131 was estimated for 8.18 mCi. I-131 intake was calculated for 7.9 mCi based on data of TLD dosimeter. We adopted the mean of two results as the I-131 intake. The final result was 8.0 mCi. Effective dose and absorbed dose of thyroid for mother were 7.3Sv and 164 Gy, effective dose and absorbed dose of thyroid for fetus were 2.035 Sv and 40.7 Gy, effective dose and absorbed dose of thyroid for infant were 16.25 Sv and 355Gy. Conclusion: The intake during pregnancy was about 1mCi. The absorbed dose of thyroid of the mother was 19.5Gy, whereas the effective of infant was estimated for 40.7Gy. The function of the mother’s thyroid was normal after diagnosis. But the infant was diagnosed as bilobar thyroid agenesis.« less

  4. Assessment of occupational cosmic radiation exposure of flight attendants using questionnaire data.

    PubMed

    Anderson, Jeri L; Waters, Martha A; Hein, Misty J; Schubauer-Berigan, Mary K; Pinkerton, Lynne E

    2011-11-01

    Female flight attendants may have a higher risk of breast and other cancers than the general population because of routine exposure to cosmic radiation. As part of a forthcoming study of breast and other cancer incidence, occupational cosmic radiation exposure of a cohort of female flight attendants was estimated. Questionnaire data were collected from living female cohort members who were formerly employed as flight attendants with Pan American World Airways. These data included airline at which the flight attendant was employed, assigned domicile, start and end dates for employment at domicile, and number of block hours and commuter segments flown per month. Questionnaire respondents were assigned daily absorbed and effective doses using a time-weighted dose rate specific to the domicile and/or work history era combined with self-reported work history information. Completed work history questionnaires were received from 5898 living cohort members. Mean employment time as a flight attendant was 7.4 yr at Pan Am and 12 yr in total. Estimated mean annual effective dose from all sources of occupational cosmic radiation exposure was 2.5 +/- 1.0 mSv, with a mean career dose of 30 mSv. Annual effective doses were similar to doses assessed for other flight attendant cohorts; however, questionnaire-based cumulative doses assessed in this study were on average higher than those assessed for other flight attendant cohorts using company-based records. The difference is attributed to the inclusion of dose from work at other airlines and commuter flights, which was made possible by using questionnaire data.

  5. Changes in the retreatment radiation tolerance of the spinal cord with time after the initial treatment.

    PubMed

    Woolley, Thomas E; Belmonte-Beitia, Juan; Calvo, Gabriel F; Hopewell, John W; Gaffney, Eamonn A; Jones, Bleddyn

    2018-06-01

    To estimate, from experimental data, the retreatment radiation 'tolerances' of the spinal cord at different times after initial treatment. A model was developed to show the relationship between the biological effective doses (BEDs) for two separate courses of treatment with the BED of each course being expressed as a percentage of the designated 'retreatment tolerance' BED value, denoted [Formula: see text] and [Formula: see text]. The primate data of Ang et al. ( 2001 ) were used to determine the fitted parameters. However, based on rodent data, recovery was assumed to commence 70 days after the first course was complete, and with a non-linear relationship to the magnitude of the initial BED (BED init ). The model, taking into account the above processes, provides estimates of the retreatment tolerance dose after different times. Extrapolations from the experimental data can provide conservative estimates for the clinic, with a lower acceptable myelopathy incidence. Care must be taken to convert the predicted [Formula: see text] value into a formal BED value and then a practical dose fractionation schedule. Used with caution, the proposed model allows estimations of retreatment doses with elapsed times ranging from 70 days up to three years after the initial course of treatment.

  6. DS02R1: Improvements to Atomic Bomb Survivors' Input Data and Implementation of Dosimetry System 2002 (DS02) and Resulting Changes in Estimated Doses.

    PubMed

    Cullings, H M; Grant, E J; Egbert, S D; Watanabe, T; Oda, T; Nakamura, F; Yamashita, T; Fuchi, H; Funamoto, S; Marumo, K; Sakata, R; Kodama, Y; Ozasa, K; Kodama, K

    2017-01-01

    Individual dose estimates calculated by Dosimetry System 2002 (DS02) for the Life Span Study (LSS) of atomic bomb survivors are based on input data that specify location and shielding at the time of the bombing (ATB). A multi-year effort to improve information on survivors' locations ATB has recently been completed, along with comprehensive improvements in their terrain shielding input data and several improvements to computational algorithms used in combination with DS02 at RERF. Improvements began with a thorough review and prioritization of original questionnaire data on location and shielding that were taken from survivors or their proxies in the period 1949-1963. Related source documents varied in level of detail, from relatively simple lists to carefully-constructed technical drawings of structural and other shielding and surrounding neighborhoods. Systematic errors were reduced in this work by restoring the original precision of map coordinates that had been truncated due to limitations in early data processing equipment and by correcting distortions in the old (WWII-era) maps originally used to specify survivors' positions, among other improvements. Distortion errors were corrected by aligning the old maps and neighborhood drawings to orthophotographic mosaics of the cities that were newly constructed from pre-bombing aerial photographs. Random errors that were reduced included simple transcription errors and mistakes in identifying survivors' locations on the old maps. Terrain shielding input data that had been originally estimated for limited groups of survivors using older methods and data sources were completely re-estimated for all survivors using new digital terrain elevation data. Improvements to algorithms included a fix to an error in the DS02 code for coupling house and terrain shielding, a correction for elevation at the survivor's location in calculating angles to the horizon used for terrain shielding input, an improved method for truncating high dose estimates to 4 Gy to reduce the effect of dose error, and improved methods for calculating averaged shielding transmission factors that are used to calculate doses for survivors without detailed shielding input data. Input data changes are summarized and described here in some detail, along with the resulting changes in dose estimates and a simple description of changes in risk estimates for solid cancer mortality. This and future RERF publications will refer to the new dose estimates described herein as "DS02R1 doses."

  7. A practical method of I-131 thyroid cancer therapy dose optimization using estimated effective renal clearance.

    PubMed

    Howard, Brandon A; James, Olga G; Perkins, Jennifer M; Pagnanelli, Robert A; Borges-Neto, Salvador; Reiman, Robert E

    2017-01-01

    In thyroid cancer patients with renal impairment or other complicating factors, it is important to maximize I-131 therapy efficacy while minimizing bone marrow and lung damage. We developed a web-based calculator based on a modified Benua and Leeper method to calculate the maximum I-131 dose to reduce the risk of these toxicities, based on the effective renal clearance of I-123 as measured from two whole-body I-123 scans, performed at 0 and 24 h post-administration.

  8. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    PubMed

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases with patient size, and the radiation dose received by larger patients as a result of more than 3 O-arm scans in standard mode may exceed the dose received during standard CT of the abdomen. Understanding radiation imparted to patients by cone-beam CT is important for assessing risks and benefits of this technology, especially when spinal surgical procedures require multiple intraoperative scans.

  9. Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation

    NASA Astrophysics Data System (ADS)

    Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad

    2016-09-01

    There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.

  10. Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task.

    PubMed

    Fitzpatrick, C M; Caballero-Puntiverio, M; Gether, U; Habekost, T; Bundesen, C; Vangkilde, S; Woldbye, D P D; Andreasen, J T; Petersen, A

    2017-03-01

    The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.

  11. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  12. EVALUATION OF EYE LENS DOSE TO WORKERS IN THE STEAM GENERATOR AT THE KOREAN OPTIMIZED POWER REACTOR 1000.

    PubMed

    Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong

    2018-03-15

    ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.

  13. The two-dimensional Monte Carlo: a new methodologic paradigm for dose reconstruction for epidemiological studies.

    PubMed

    Simon, Steven L; Hoffman, F Owen; Hofer, Eduard

    2015-01-01

    Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.

  14. Effects of incomplete residential histories on studies of environmental exposure with application to childhood leukaemia and background radiation.

    PubMed

    Nikkilä, Atte; Kendall, Gerald; Raitanen, Jani; Spycher, Ben; Lohi, Olli; Auvinen, Anssi

    2018-06-22

    When evaluating environmental exposures, residential exposures are often most relevant. In most countries, it is impossible to establish full residential histories. In recent publications, childhood leukaemia and background radiation have been studied with and without full residential histories. This paper investigates the consequences of lacking such full data. Data from a nationwide Finnish Case-Control study of Childhood Leukaemia and gamma rays were analysed. This included 1093 children diagnosed with leukaemia in Finland in 1990-2011. Each case was matched by gender and year of birth to three controls. Full residential histories were available. The dose estimates were based on outdoor background radiation measurements. The indoor dose rates were obtained with a dwelling type specific conversion coefficient and the individual time-weighted mean red bone marrow dose rates were calculated using age-specific indoor occupancy and the age and gender of the child. Radiation from Chernobyl fallout was included and a 2-year latency period assumed. The median separation between successive dwellings was 3.4 km and median difference in red bone marrow dose 2.9 nSv/h. The Pearson correlation between the indoor red bone marrow dose rates of successive dwellings was 0.62 (95% CI 0.60, 0.64). The odds ratio for a 10 nSv/h increase in dose rate with full residential histories was 1.01 (95% CI 0.97, 1.05). Similar odds ratios were calculated with dose rates based on only the first dwelling (1.02, 95% CI 0.99, 1.05) and only the last dwelling (1.00, 95% CI 0.98, 1.03) and for subjects who had lived only in a single dwelling (1.05, 95% CI 0.98, 1.10). Knowledge of full residential histories would always be the option of choice. However, due to the strong correlation between exposure estimates in successive dwellings and the uncertainty about the most relevant exposure period, estimation of overall exposure level from a single address is also informative. Error in dose estimation is likely to cause some degree of classical measurement error resulting in bias towards the null. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  16. SU-E-T-381: Evaluation of Calculated Dose Accuracy for Organs-At-Risk Located at Out-Of-Field in a Commercial Treatment Planning System for High Energy Photon Beams Produced From TrueBeam Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; Ding, G

    Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millenniummore » 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the resources of Varian research grant VUMC40590-R.« less

  17. Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric CT examinations

    PubMed Central

    Moore, Bria M.; Brady, Samuel L.; Mirro, Amy E.; Kaufman, Robert A.

    2014-01-01

    Purpose: To investigate the correlation of size-specific dose estimate (SSDE) with absorbed organ dose, and to develop a simple methodology for estimating patient organ dose in a pediatric population (5–55 kg). Methods: Four physical anthropomorphic phantoms representing a range of pediatric body habitus were scanned with metal oxide semiconductor field effect transistor (MOSFET) dosimeters placed at 23 organ locations to determine absolute organ dose. Phantom absolute organ dose was divided by phantom SSDE to determine correlation between organ dose and SSDE. Organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) were then multiplied by patient-specific SSDE to estimate patient organ dose. The \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were used to retrospectively estimate individual organ doses from 352 chest and 241 abdominopelvic pediatric CT examinations, where mean patient weight was 22 kg ± 15 (range 5–55 kg), and mean patient age was 6 yrs ± 5 (range 4 months to 23 yrs). Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm; thus, showing appropriate scalability of the phantoms across the entire pediatric population in this study. Individual\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ were determined for a total of 23 organs in the chest and abdominopelvic region across nine weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7–1.4) and abdominopelvic region (average 0.9; range 0.7–1.3) was near unity. For organ/tissue that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1–0.4) for both the chest and abdominopelvic regions, respectively. A means to estimate patient organ dose was demonstrated. Calculated patient organ dose, using patient SSDE and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ , was compared to previously published pediatric patient doses that accounted for patient size in their dose calculation, and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusions: For organs fully covered within the scan volume, the average correlation of SSDE and organ absolute dose was found to be better than ±10%. In addition, this study provides a complete list of organ dose correlation factors (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\rm CF}_{{\\rm SSDE}}^{{\\rm organ}}$\\end{document} CF SSDE organ ) for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE. PMID:24989395

  18. Doses for post-Chernobyl epidemiological studies: are they reliable?

    PubMed

    Drozdovitch, Vladimir; Chumak, Vadim; Kesminiene, Ausrele; Ostroumova, Evgenia; Bouville, André

    2016-09-01

    On 26 April 2016, thirty years will have elapsed since the occurrence of the Chernobyl accident, which has so far been the most severe in the history of the nuclear reactor industry. Numerous epidemiological studies were conducted to evaluate the possible health consequences of the accident. Since the credibility of the association between the radiation exposure and health outcome is highly dependent on the adequacy of the dosimetric quantities used in these studies, this paper makes an effort to overview the methods used to estimate individual doses and the associated uncertainties in the main analytical epidemiological studies (i.e. cohort or case-control) related to the Chernobyl accident. Based on the thorough analysis and comparison with other radiation studies, the authors conclude that individual doses for the Chernobyl analytical epidemiological studies have been calculated with a relatively high degree of reliability and well-characterized uncertainties, and that they compare favorably with many other non-Chernobyl studies. The major strengths of the Chernobyl studies are: (1) they are grounded on a large number of measurements, either performed on humans or made in the environment; and (2) extensive effort has been invested to evaluate the uncertainties associated with the dose estimates. Nevertheless, gaps in the methodology are identified and suggestions for the possible improvement of the current dose estimates are made.

  19. Streptomycin interference in Jaffe reaction - possible false positive creatinine estimation in excessive dose exposure.

    PubMed

    Syal, Kirtimaan; Srinivasan, Anand; Banerjee, Dibyajyoti

    2013-01-01

    To study the potential of commonly used aminoglycoside antibiotics to form non-creatinine chromogen with alkaline picrate reagent. We studied the non-creatinine chromogen formation of various concentrations of streptomycin, amikacin, kanamycin, netilmicin, gentamicin and tobramycin added to known creatinine concentrations by the Jaffe reaction based creatinine estimation. Only streptomycin above therapeutic concentrations of 10mg/mL interfered in the Jaffe reaction and acted as non-creatinine chromogen. Therapeutic doses of the aminoglycosides do not form non-creatinine chromogens. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  20. Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki; Hamasaki, Kanya; Cullings, Harry M; Cordova, Kismet A; Awa, Akio

    2017-10-01

    Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60 Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60 Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60 Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic trends or factors affecting physically estimated doses.

  1. SU-F-J-14: Kilovoltage Cone-Beam CT Dose Estimation of Varian On-Board Imager Using GMctdospp Monte Carlo Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Rangaraj, D

    2016-06-15

    Purpose: Although cone-beam CT (CBCT) imaging became popular in radiation oncology, its imaging dose estimation is still challenging. The goal of this study is to assess the kilovoltage CBCT doses using GMctdospp - an EGSnrc based Monte Carlo (MC) framework. Methods: Two Varian OBI x-ray tube models were implemented in the GMctpdospp framework of EGSnrc MC System. The x-ray spectrum of 125 kVp CBCT beam was acquired from an EGSnrc/BEAMnrc simulation and validated with IPEM report 78. Then, the spectrum was utilized as an input spectrum in GMctdospp dose calculations. Both full and half bowtie pre-filters of the OBI systemmore » were created by using egs-prism module. The x-ray tube MC models were verified by comparing calculated dosimetric profiles (lateral and depth) to ion chamber measurements for a static x-ray beam irradiation to a cuboid water phantom. An abdominal CBCT imaging doses was simulated in GMctdospp framework using a 5-year-old anthropomorphic phantom. The organ doses and effective dose (ED) from the framework were assessed and compared to the MOSFET measurements and convolution/superposition dose calculations. Results: The lateral and depth dose profiles in the water cuboid phantom were well matched within 6% except a few areas - left shoulder of the half bowtie lateral profile and surface of water phantom. The organ doses and ED from the MC framework were found to be closer to MOSFET measurements and CS calculations within 2 cGy and 5 mSv respectively. Conclusion: This study implemented and validated the Varian OBI x-ray tube models in the GMctdospp MC framework using a cuboid water phantom and CBCT imaging doses were also evaluated in a 5-year-old anthropomorphic phantom. In future study, various CBCT imaging protocols will be implemented and validated and consequently patient CT images will be used to estimate the CBCT imaging doses in patients.« less

  2. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low-dose-rate dose to the bone marrow (mean = 2.5 Gy) was consistent with the measured ERR (0.62, 95% Cl =-0.2 to 1.9). Conclusions: An extended, biologically based model for leukemia that includes HSC initiation, inactivation, proliferation, and, uniquely for leukemia, long-range HSC migration predicts, %Kith reasonable accuracy, risks for radiationinduced leukemia associated with exposure to therapeutic doses of radiation.

  3. RADRUE METHOD FOR RECONSTRUCTION OF EXTERNAL PHOTON DOSES TO CHERNOBYL LIQUIDATORS IN EPIDEMIOLOGICAL STUDIES

    PubMed Central

    Kryuchkov, Victor; Chumak, Vadim; Maceika, Evaldas; Anspaugh, Lynn R.; Cardis, Elisabeth; Bakhanova, Elena; Golovanov, Ivan; Drozdovitch, Vladimir; Luckyanov, Nickolas; Kesminiene, Ausrele; Voillequé, Paul; Bouville, André

    2010-01-01

    Between 1986 and 1990, several hundred thousand workers, called “liquidators” or “clean-up workers”, took part in decontamination and recovery activities within the 30-km zone around the Chernobyl nuclear power plant in Ukraine, where a major accident occurred in April 1986. The Chernobyl liquidators were mainly exposed to external ionizing radiation levels that depended primarily on their work locations and the time after the accident when the work was performed. Because individual doses were often monitored inadequately or were not monitored at all for the majority of liquidators, a new method of photon (i.e. gamma and x-rays) dose assessment, called “RADRUE” (Realistic Analytical Dose Reconstruction with Uncertainty Estimation) was developed to obtain unbiased and reasonably accurate estimates for use in three epidemiologic studies of hematological malignancies and thyroid cancer among liquidators. The RADRUE program implements a time-and-motion dose reconstruction method that is flexible and conceptually easy to understand. It includes a large exposure rate database and interpolation and extrapolation techniques to calculate exposure rates at places where liquidators lived and worked within ~70 km of the destroyed reactor. The RADRUE technique relies on data collected from subjects’ interviews conducted by trained interviewers, and on expert dosimetrists to interpret the information and provide supplementary information, when necessary, based upon their own Chernobyl experience. The RADRUE technique was used to estimate doses from external irradiation, as well as uncertainties, to the bone-marrow for 929 subjects and to the thyroid gland for 530 subjects enrolled in epidemiologic studies. Individual bone-marrow dose estimates were found to range from less than one μGy to 3,300 mGy, with an arithmetic mean of 71 mGy. Individual thyroid dose estimates were lower and ranged from 20 μGy to 507 mGy, with an arithmetic mean of 29 mGy. The uncertainties, expressed in terms of geometric standard deviations, ranged from 1.1 to 5.8, with an arithmetic mean of 1.9. PMID:19741357

  4. MO-F-CAMPUS-I-02: Accuracy in Converting the Average Breast Dose Into the Mean Glandular Dose (MGD) Using the F-Factor in Cone Beam Breast CT- a Monte Carlo Study Using Homogeneous and Quasi-Homogeneous Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, C; Zhong, Y; Wang, T

    2015-06-15

    Purpose: To investigate the accuracy in estimating the mean glandular dose (MGD) for homogeneous breast phantoms by converting from the average breast dose using the F-factor in cone beam breast CT. Methods: EGSnrc-based Monte Carlo codes were used to estimate the MGDs. 13-cm in diameter, 10-cm high hemi-ellipsoids were used to simulate pendant-geometry breasts. Two different types of hemi-ellipsoidal models were employed: voxels in quasi-homogeneous phantoms were designed as either adipose or glandular tissue while voxels in homogeneous phantoms were designed as the mixture of adipose and glandular tissues. Breast compositions of 25% and 50% volume glandular fractions (VGFs), definedmore » as the ratio of glandular tissue voxels to entire breast voxels in the quasi-homogeneous phantoms, were studied. These VGFs were converted into glandular fractions by weight and used to construct the corresponding homogeneous phantoms. 80 kVp x-rays with a mean energy of 47 keV was used in the simulation. A total of 109 photons were used to image the phantoms and the energies deposited in the phantom voxels were tallied. Breast doses in homogeneous phantoms were averaged over all voxels and then used to calculate the MGDs using the F-factors evaluated at the mean energy of the x-rays. The MGDs for quasi-homogeneous phantoms were computed directly by averaging the doses over all glandular tissue voxels. The MGDs estimated for the two types of phantoms were normalized to the free-in-air dose at the iso-center and compared. Results: The normalized MGDs were 0.756 and 0.732 mGy/mGy for the 25% and 50% VGF homogeneous breasts and 0.761 and 0.733 mGy/mGy for the corresponding quasi-homogeneous breasts, respectively. The MGDs estimated for the two types of phantoms were similar within 1% in this study. Conclusion: MGDs for homogeneous breast models may be adequately estimated by converting from the average breast dose using the F-factor.« less

  5. Cumulative organophosphate pesticide exposure and risk assessment among pregnant women living in an agricultural community: a case study from the CHAMACOS cohort.

    PubMed Central

    Castorina, Rosemary; Bradman, Asa; McKone, Thomas E; Barr, Dana B; Harnly, Martha E; Eskenazi, Brenda

    2003-01-01

    Approximately 230,000 kg of organophosphate (OP) pesticides are applied annually in California's Salinas Valley. These activities have raised concerns about exposures to area residents. We collected three spot urine samples from pregnant women (between 1999 and 2001) enrolled in CHAMACOS (Center for the Health Assessment of Mothers and Children of Salinas), a longitudinal birth cohort study, and analyzed them for six dialkyl phosphate metabolites. We used urine from 446 pregnant women to estimate OP pesticide doses with two deterministic steady-state modeling methods: method 1, which assumed the metabolites were attributable entirely to a single diethyl or dimethyl OP pesticide; and method 2, which adapted U.S. Environmental Protection Agency (U.S. EPA) draft guidelines for cumulative risk assessment to estimate dose from a mixture of OP pesticides that share a common mechanism of toxicity. We used pesticide use reporting data for the Salinas Valley to approximate the mixture to which the women were exposed. Based on average OP pesticide dose estimates that assumed exposure to a single OP pesticide (method 1), between 0% and 36.1% of study participants' doses failed to attain a margin of exposure (MOE) of 100 relative to the U.S. EPA oral benchmark dose(10) (BMD(10)), depending on the assumption made about the parent compound. These BMD(10) values are doses expected to produce a 10% reduction in brain cholinesterase activity compared with background response in rats. Given the participants' average cumulative OP pesticide dose estimates (method 2) and regardless of the index chemical selected, we found that 14.8% of the doses failed to attain an MOE of 100 relative to the BMD(10) of the selected index. An uncertainty analysis of the pesticide mixture parameter, which is extrapolated from pesticide application data for the study area and not directly quantified for each individual, suggests that this point estimate could range from 1 to 34%. In future analyses, we will use pesticide-specific urinary metabolites, when available, to evaluate cumulative OP pesticide exposures. PMID:14527844

  6. Accidental neutron dosimetry with human hair

    NASA Astrophysics Data System (ADS)

    Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan

    2014-11-01

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.

  7. Age-Based Methods to Explore Time-Related Variables in Occupational Epidemiology Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janice P. Watkins, Edward L. Frome, Donna L. Cragle

    2005-08-31

    Although age is recognized as the strongest predictor of mortality in chronic disease epidemiology, a calendar-based approach is often employed when evaluating time-related variables. An age-based analysis file, created by determining the value of each time-dependent variable for each age that a cohort member is followed, provides a clear definition of age at exposure and allows development of diverse analytic models. To demonstrate methods, the relationship between cancer mortality and external radiation was analyzed with Poisson regression for 14,095 Oak Ridge National Laboratory workers. Based on previous analysis of this cohort, a model with ten-year lagged cumulative radiation doses partitionedmore » by receipt before (dose-young) or after (dose-old) age 45 was examined. Dose-response estimates were similar to calendar-year-based results with elevated risk for dose-old, but not when film badge readings were weekly before 1957. Complementary results showed increasing risk with older hire ages and earlier birth cohorts, since workers hired after age 45 were born before 1915, and dose-young and dose-old were distributed differently by birth cohorts. Risks were generally higher for smokingrelated than non-smoking-related cancers. It was difficult to single out specific variables associated with elevated cancer mortality because of: (1) birth cohort differences in hire age and mortality experience completeness, and (2) time-period differences in working conditions, dose potential, and exposure assessment. This research demonstrated the utility and versatility of the age-based approach.« less

  8. Simulation of computed tomography dose based on voxel phantom

    NASA Astrophysics Data System (ADS)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  9. Optimal design of clinical trials with biologics using dose-time-response models.

    PubMed

    Lange, Markus R; Schmidli, Heinz

    2014-12-30

    Biologics, in particular monoclonal antibodies, are important therapies in serious diseases such as cancer, psoriasis, multiple sclerosis, or rheumatoid arthritis. While most conventional drugs are given daily, the effect of monoclonal antibodies often lasts for months, and hence, these biologics require less frequent dosing. A good understanding of the time-changing effect of the biologic for different doses is needed to determine both an adequate dose and an appropriate time-interval between doses. Clinical trials provide data to estimate the dose-time-response relationship with semi-mechanistic nonlinear regression models. We investigate how to best choose the doses and corresponding sample size allocations in such clinical trials, so that the nonlinear dose-time-response model can be precisely estimated. We consider both local and conservative Bayesian D-optimality criteria for the design of clinical trials with biologics. For determining the optimal designs, computer-intensive numerical methods are needed, and we focus here on the particle swarm optimization algorithm. This metaheuristic optimizer has been successfully used in various areas but has only recently been applied in the optimal design context. The equivalence theorem is used to verify the optimality of the designs. The methodology is illustrated based on results from a clinical study in patients with gout, treated by a monoclonal antibody. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.

    PubMed

    Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli

    2016-12-01

    According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.

  11. Effective dose to immuno-PET patients due to metastable impurities in cyclotron produced zirconium-89

    NASA Astrophysics Data System (ADS)

    Alfuraih, Abdulrahman; Alzimami, Khalid; Ma, Andy K.; Alghamdi, Ali; Al Jammaz, Ibrahim

    2014-11-01

    Immuno-PET is a nuclear medicine technique that combines positron emission tommography (PET) with radio-labeled monoclonal antibodies (mAbs) for tumor characterization and therapy. Zirconium-89 (89Zr) is an emerging radionuclide for immuno-PET imaging. Its long half-life (78.4 h) gives ample time for the production, the administering and the patient uptake of the tagged radiopharmaceutical. Furthermore, the nuclides will remain in the tumor cells after the mAbs are catabolized so that time series studies are possible without incurring further administration of radiopharmarceuticals. 89Zr can be produced in medical cyclotrons by bombarding an yttrium-89 (89Y) target with a proton beam through the 89Y(p,n)89Zr reaction. In this study, we estimated the effective dose to the head and neck cancer patients undergoing 89Zr-based immune-PET procedures. The production of 89Zr and the impurities from proton irradiation of the 89Y target in a cyclotron was calculated with the Monte Carlo code MCNPX and the nuclear reaction code TALYS. The cumulated activities of the Zr isotopes were derived from real patient data in literature and the effective doses were estimated using the MIRD specific absorbed fraction formalism. The estimated effective dose from 89Zr is 0.5±0.2 mSv/MBq. The highest organ dose is 1.8±0.2 mSv/MBq in the liver. These values are in agreement with those reported in literature. The effective dose from 89mZr is about 0.2-0.3% of the 89Zr dose in the worst case. Since the ratio of 89mZr to 89Zr depends on the cooling time as well as the irradiation details, contaminant dose estimation is an important aspect in optimizing the cyclotron irradiation geometry, energy and time.

  12. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  13. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  14. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditionsmore » in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the neutron and gamma-ray components along the central axis was performed at Heavy Water Neutron Irradiation Facility installed at Kyoto University Reactor using activation foils and thermoluminescent dosimeters, respectively. Results: Simulation results demonstrated that the absorbing effect for thermal neutrons occurred when the LiOH concentration was over 1%. The most effective Li-6 concentration was determined to be enriched {sup 6}LiOH with a solubility approaching its upper limit. Experiments confirmed that the thermal neutron flux and secondary gamma-ray dose rate decreased substantially; however, the fast neutron flux and primary gamma-ray dose rate were hardly affected in the 10%-{sup 6}LiOH phantom. It was confirmed that the dose contribution of fast neutrons is improved from approximately 10% in the pure water phantom to approximately 50% in the 10%-{sup 6}LiOH phantom. Conclusions: The dual phantom technique using the combination of a pure water phantom and a 10%-{sup 6}LiOH phantom developed in this work provides an effective method for dose estimation of the fast neutron component in BNCT. Improvement in the accuracy achieved with the proposed technique results in improved RBE estimation for biological experiments and clinical practice.« less

  15. TEMIS UV product validation using NILU-UV ground-based measurements in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina-Maria; van Geffen, Jos H. G. M.; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria-Elissavet; van Weele, Michiel; van der A, Ronald J.; Bais, Alkiviadis; Meleti, Charikleia; Balis, Dimitrios

    2017-06-01

    This study aims to cross-validate ground-based and satellite-based models of three photobiological UV effective dose products: the Commission Internationale de l'Éclairage (CIE) erythemal UV, the production of vitamin D in the skin, and DNA damage, using high-temporal-resolution surface-based measurements of solar UV spectral irradiances from a synergy of instruments and models. The satellite-based Tropospheric Emission Monitoring Internet Service (TEMIS; version 1.4) UV daily dose data products were evaluated over the period 2009 to 2014 with ground-based data from a Norsk Institutt for Luftforskning (NILU)-UV multifilter radiometer located at the northern midlatitude super-site of the Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (LAP/AUTh), in Greece. For the NILU-UV effective dose rates retrieval algorithm, a neural network (NN) was trained to learn the nonlinear functional relation between NILU-UV irradiances and collocated Brewer-based photobiological effective dose products. Then the algorithm was subjected to sensitivity analysis and validation. The correlation of the NN estimates with target outputs was high (r = 0. 988 to 0.990) and with a very low bias (0.000 to 0.011 in absolute units) proving the robustness of the NN algorithm. For further evaluation of the NILU NN-derived products, retrievals of the vitamin D and DNA-damage effective doses from a collocated Yankee Environmental Systems (YES) UVB-1 pyranometer were used. For cloud-free days, differences in the derived UV doses are better than 2 % for all UV dose products, revealing the reference quality of the ground-based UV doses at Thessaloniki from the NILU-UV NN retrievals. The TEMIS UV doses used in this study are derived from ozone measurements by the SCIAMACHY/Envisat and GOME2/MetOp-A satellite instruments, over the European domain in combination with SEVIRI/Meteosat-based diurnal cycle of the cloud cover fraction per 0. 5° × 0. 5° (lat × long) grid cells. TEMIS UV doses were found to be ˜ 12.5 % higher than the NILU NN estimates but, despite the presence of a visually apparent seasonal pattern, the R2 values were found to be robustly high and equal to 0.92-0.93 for 1588 all-sky coincidences. These results significantly improve when limiting the dataset to cloud-free days with differences of 0.57 % for the erythemal doses, 1.22 % for the vitamin D doses, and 1.18 % for the DNA-damage doses, with standard deviations of the order of 11-13 %. The improvement of the comparative statistics under cloud-free cases further testifies to the importance of the appropriate consideration of the contribution of clouds in the UV radiation reaching the Earth's surface. For the urban area of Thessaloniki, with highly variable aerosol, the weakness of the implicit aerosol information introduced to the TEMIS UV dose algorithm was revealed by comparison of the datasets to aerosol optical depths at 340 nm as reported by a collocated CIMEL sun photometer, operating in Thessaloniki at LAP/AUTh as part of the NASA Aerosol Robotic Network.

  16. Design and "As Flown" Radiation Environments for Materials in Low Earth Orbits

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Altstatt, Richard L.; McWilliams, Brett; Koontz, Steven L.

    2006-01-01

    The design estimate for the materials for the International Space Station (ISS) specified in SSP 30512 was a conservative estimate. The environment dose was over estimated. The materials originally qualified for approximately 10-15 years are anticipated to be acceptable for periods of up to 20-30 years based on SSP-30512 or 40-60 years based on 2x SSP-30512. This viewgraph presentation shows charts and graphs that review the altitude, the solar minimum and maximum, and the radiation exposure of other satellite, among other graphics.

  17. Toxicokinetic Model Development for the Insensitive Munitions Component 2,4-Dinitroanisole.

    PubMed

    Sweeney, Lisa M; Goodwin, Michelle R; Hulgan, Angela D; Gut, Chester P; Bannon, Desmond I

    2015-01-01

    The Armed Forces are developing new explosives that are less susceptible to unintentional detonation (insensitive munitions [IMX]). 2,4-Dinitroanisole (DNAN) is a component of IMX. Toxicokinetic data for DNAN are required to support interpretation of toxicology studies and refinement of dose estimates for human risk assessment. Male Sprague-Dawley rats were dosed by gavage (5, 20, or 80 mg DNAN/kg), and blood and tissue samples were analyzed to determine the levels of DNAN and its metabolite 2,4-dinitrophenol (DNP). These data and data from the literature were used to develop preliminary physiologically based pharmacokinetic (PBPK) models. The model simulations indicated saturable metabolism of DNAN in rats at higher tested doses. The PBPK model was extrapolated to estimate the toxicokinetics of DNAN and DNP in humans, allowing the estimation of human-equivalent no-effect levels of DNAN exposure from no-observed adverse effect levels determined in laboratory animals, which may guide the selection of exposure limits for DNAN. © The Author(s) 2015.

  18. New method for estimation of fluence complexity in IMRT fields and correlation with gamma analysis

    NASA Astrophysics Data System (ADS)

    Hanušová, T.; Vondráček, V.; Badraoui-Čuprová, K.; Horáková, I.; Koniarová, I.

    2015-01-01

    A new method for estimation of fluence complexity in Intensity Modulated Radiation Therapy (IMRT) fields is proposed. Unlike other previously published works, it is based on portal images calculated by the Portal Dose Calculation algorithm in Eclipse (version 8.6, Varian Medical Systems) in the plane of the EPID aS500 detector (Varian Medical Systems). Fluence complexity is given by the number and the amplitudes of dose gradients in these matrices. Our method is validated using a set of clinical plans where fluence has been smoothed manually so that each plan has a different level of complexity. Fluence complexity calculated with our tool is in accordance with the different levels of smoothing as well as results of gamma analysis, when calculated and measured dose matrices are compared. Thus, it is possible to estimate plan complexity before carrying out the measurement. If appropriate thresholds are determined which would distinguish between acceptably and overly modulated plans, this might save time in the re-planning and re-measuring process.

  19. Bleeding Risk with Long-Term Low-Dose Aspirin: A Systematic Review of Observational Studies

    PubMed Central

    García Rodríguez, Luis A.; Martín-Pérez, Mar; Hennekens, Charles H.; Rothwell, Peter M.; Lanas, Angel

    2016-01-01

    Background Low-dose aspirin has proven effectiveness in secondary and primary prevention of cardiovascular events, but is also associated with an increased risk of major bleeding events. For primary prevention, this absolute risk must be carefully weighed against the benefits of aspirin; such assessments are currently limited by a lack of data from general populations. Methods Systematic searches of Medline and Embase were conducted to identify observational studies published between 1946 and 4 March 2015 that reported the risks of gastrointestinal (GI) bleeding or intracranial hemorrhage (ICH) with long-term, low-dose aspirin (75–325 mg/day). Pooled estimates of the relative risk (RR) for bleeding events with aspirin versus non-use were calculated using random-effects models, based on reported estimates of RR (including odds ratios, hazard ratios, incidence rate ratios and standardized incidence ratios) in 39 articles. Findings The incidence of GI bleeding with low-dose aspirin was 0.48–3.64 cases per 1000 person-years, and the overall pooled estimate of the RR with low-dose aspirin was 1.4 (95% confidence interval [CI]: 1.2–1.7). For upper and lower GI bleeding, the RRs with low-dose aspirin were 2.3 (2.0–2.6) and 1.8 (1.1–3.0), respectively. Neither aspirin dose nor duration of use had consistent effects on RRs for upper GI bleeding. The estimated RR for ICH with low-dose aspirin was 1.4 (1.2–1.7) overall. Aspirin was associated with increased bleeding risks when combined with non-steroidal anti-inflammatory drugs, clopidogrel and selective serotonin reuptake inhibitors compared with monotherapy. By contrast, concomitant use of proton pump inhibitors decreased upper GI bleeding risks relative to aspirin monotherapy. Conclusions The risks of major bleeding with low-dose aspirin in real-world settings are of a similar magnitude to those reported in randomized trials. These data will help inform clinical judgements regarding the use of low-dose aspirin in prevention of cardiovascular events. PMID:27490468

  20. A Signal-to-Noise Crossover Dose as the Point of Departure for Health Risk Assessment

    PubMed Central

    Portier, Christopher J.; Krewski, Daniel

    2011-01-01

    Background: The U.S. National Toxicology Program (NTP) cancer bioassay database provides an opportunity to compare both existing and new approaches to determining points of departure (PoDs) for establishing reference doses (RfDs). Objectives: The aims of this study were a) to investigate the risk associated with the traditional PoD used in human health risk assessment [the no observed adverse effect level (NOAEL)]; b) to present a new approach based on the signal-to-noise crossover dose (SNCD); and c) to compare the SNCD and SNCD-based RfD with PoDs and RfDs based on the NOAEL and benchmark dose (BMD) approaches. Methods: The complete NTP database was used as the basis for these analyses, which were performed using the Hill model. We determined NOAELs and estimated corresponding extra risks. Lower 95% confidence bounds on the BMD (BMDLs) corresponding to extra risks of 1%, 5%, and 10% (BMDL01, BMDL05, and BMDL10, respectively) were also estimated. We introduce the SNCD as a new PoD, defined as the dose where the additional risk is equal to the “background noise” (the difference between the upper and lower bounds of the two-sided 90% confidence interval on absolute risk) or a specified fraction thereof. Results: The median risk at the NOAEL was approximately 10%, and the default uncertainty factor (UF = 100) was considered most applicable to the BMDL10. Therefore, we chose a target risk of 1/1,000 (0.1/100) to derive an SNCD-based RfD by linear extrapolation. At the median, this approach provided the same RfD as the BMDL10 divided by the default UF. Conclusions: Under a standard BMD approach, the BMDL10 is considered to be the most appropriate PoD. The SNCD approach, which is based on the lowest dose at which the signal can be reliably detected, warrants further development as a PoD for human health risk assessment. PMID:21813365

  1. Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.

    PubMed

    Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C

    2014-12-01

    D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.

  2. PWR design for low doses in the United Kingdom: The present and the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zodiates, A.M.; Willcock, A.

    1995-03-01

    The Pressurizer Water Reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS). This design was developed to meet the United Kingdom (UK) requirements and those improvements are embodied in the Sizewell B plant. Nuclear Electric plc is now looking to the design of the future PWRs to be built in the UK. These PWRs will be based as replicas of the Sizewell B design, but attention will be given to reducing operator doses further. This paper details the approach in operator protection improvements incorporated at Sizewall B,more » presents the estimated annual collective dose, and identifies the approach being adopted to reduce further operator doses in future plants.« less

  3. CYP2C8 activity recovers within 96 hours after gemfibrozil dosing: estimation of CYP2C8 half-life using repaglinide as an in vivo probe.

    PubMed

    Backman, Janne T; Honkalammi, Johanna; Neuvonen, Mikko; Kurkinen, Kaisa J; Tornio, Aleksi; Niemi, Mikko; Neuvonen, Pertti J

    2009-12-01

    Gemfibrozil 1-O-beta-glucuronide is a mechanism-based inhibitor of cytochrome P450 2C8. We studied the recovery of CYP2C8 activity after discontinuation of gemfibrozil treatment using repaglinide as a probe drug, to estimate the in vivo turnover half-life of CYP2C8. In a randomized five-phase crossover study, nine healthy volunteers ingested 0.25 mg of repaglinide alone or after different time intervals after a 3-day treatment with 600 mg of gemfibrozil twice daily. The area under the plasma concentration-time curve (AUC) from time 0 to infinity of repaglinide was 7.6-, 2.9-, 1.4- and 1.0-fold compared with the control phase when it was administered 1, 24, 48, or 96 h after the last gemfibrozil dose, respectively (P < 0.001 versus control for 1, 24, and 48 h after gemfibrozil). Thus, a strong CYP2C8 inhibitory effect persisted even after gemfibrozil and gemfibrozil 1-O-beta-glucuronide concentrations had decreased to less than 1% of their maximum (24-h dosing interval). In addition, the metabolite to repaglinide AUC ratios indicated that significant (P < 0.05) inhibition of repaglinide metabolism continued up to 48 h after gemfibrozil administration. Based on the recovery of repaglinide oral clearance, the in vivo turnover half-life of CYP2C8 was estimated to average 22 +/- 6 h (mean +/- S.D.). In summary, CYP2C8 activity is recovered gradually during days 1 to 4 after gemfibrozil discontinuation, which should be considered when CYP2C8 substrate dosing is planned. The estimated CYP2C8 half-life will be useful for in vitro-in vivo extrapolations of drug-drug interactions involving induction or mechanism-based inhibition of CYP2C8.

  4. Absorbed radiation dosimetry of the D3-specific PET radioligand [18F]FluorTriopride estimated using rodent and nonhuman primate

    PubMed Central

    Laforest, Richard; Karimi, Morvarid; Moerlein, Stephen M; Xu, Jinbin; Flores, Hubert P; Bognar, Christopher; Li, Aixiao; Mach, Robert H; Perlmutter, Joel S; Tu, Zhude

    2016-01-01

    [18F]FluorTriopride ([18F]FTP) is a dopamine D3-receptor preferring radioligand with potential for investigation of neuropsychiatric disorders including Parkinson disease, dystonia and schizophrenia. Here we estimate human radiation dosimetry for [18F]FTP based on the ex-vivo biodistribution in rodents and in vivo distribution in nonhuman primates. Biodistribution data were generated using male and female Sprague-Dawley rats injected with ~370 KBq of [18F]FTP and euthanized at 5, 30, 60, 120, and 240 min. Organs of interest were dissected, weighed and assayed for radioactivity content. PET imaging studies were performed in two male and one female macaque fascicularis administered 143-190 MBq of [18F]FTP and scanned whole-body in sequential sections. Organ residence times were calculated based on organ time activity curves (TAC) created from regions of Interest. OLINDA/EXM 1.1 was used to estimate human radiation dosimetry based on scaled organ residence times. In the rodent, the highest absorbed radiation dose was the upper large intestines (0.32-0.49 mGy/MBq), with an effective dose of 0.07 mSv/MBq in males and 0.1 mSv/MBq in females. For the nonhuman primate, however, the gallbladder wall was the critical organ (1.81 mGy/MBq), and the effective dose was 0.02 mSv/MBq. The species discrepancy in dosimetry estimates for [18F]FTP based on rat and primate data can be attributed to the slower transit of tracer through the hepatobiliary track of the primate compared to the rat, which lacks a gallbladder. Out findings demonstrate that the nonhuman primate model is more appropriate model for estimating human absorbed radiation dosimetry when hepatobiliary excretion plays a major role in radiotracer elimination. PMID:28078183

  5. Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation.

    PubMed

    Wheeler, Matthew W; Bailer, A John

    2007-06-01

    Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.

  6. From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions.

    PubMed

    Schumann, A; Priegnitz, M; Schoene, S; Enghardt, W; Rohling, H; Fiedler, F

    2016-10-07

    Range verification and dose monitoring in proton therapy is considered as highly desirable. Different methods have been developed worldwide, like particle therapy positron emission tomography (PT-PET) and prompt gamma imaging (PGI). In general, these methods allow for a verification of the proton range. However, quantification of the dose from these measurements remains challenging. For the first time, we present an approach for estimating the dose from prompt γ-ray emission profiles. It combines a filtering procedure based on Gaussian-powerlaw convolution with an evolutionary algorithm. By means of convolving depth dose profiles with an appropriate filter kernel, prompt γ-ray depth profiles are obtained. In order to reverse this step, the evolutionary algorithm is applied. The feasibility of this approach is demonstrated for a spread-out Bragg-peak in a water target.

  7. Cardiovascular risk with non-steroidal anti-inflammatory drugs: systematic review of population-based controlled observational studies.

    PubMed

    McGettigan, Patricia; Henry, David

    2011-09-01

    Randomised trials have highlighted the cardiovascular risks of non-steroidal anti-inflammatory drugs (NSAIDs) in high doses and sometimes atypical settings. Here, we provide estimates of the comparative risks with individual NSAIDs at typical doses in community settings. We performed a systematic review of community-based controlled observational studies. We conducted comprehensive literature searches, extracted adjusted relative risk (RR) estimates, and pooled the estimates for major cardiovascular events associated with use of individual NSAIDs, in different doses, and in populations with low and high background risks of cardiovascular events. We also compared individual drugs in pair-wise (within study) analyses, generating ratios of RRs (RRRs). Thirty case-control studies included 184,946 cardiovascular events, and 21 cohort studies described outcomes in >2.7 million exposed individuals. Of the extensively studied drugs (ten or more studies), the highest overall risks were seen with rofecoxib, 1.45 (95% CI 1.33, 1.59), and diclofenac, 1.40 (1.27, 1.55), and the lowest with ibuprofen, 1.18 (1.11, 1.25), and naproxen, 1.09 (1.02, 1.16). In a sub-set of studies, risk was elevated with low doses of rofecoxib, 1.37 (1.20, 1.57), celecoxib, 1.26 (1.09, 1.47), and diclofenac, 1.22 (1.12, 1.33), and rose in each case with higher doses. Ibuprofen risk was seen only with higher doses. Naproxen was risk-neutral at all doses. Of the less studied drugs etoricoxib, 2.05 (1.45, 2.88), etodolac, 1.55 (1.28, 1.87), and indomethacin, 1.30 (1.19, 1.41), had the highest risks. In pair-wise comparisons, etoricoxib had a higher RR than ibuprofen, RRR = 1.68 (99% CI 1.14, 2.49), and naproxen, RRR = 1.75 (1.16, 2.64); etodolac was not significantly different from naproxen and ibuprofen. Naproxen had a significantly lower risk than ibuprofen, RRR = 0.92 (0.87, 0.99). RR estimates were constant with different background risks for cardiovascular disease and rose early in the course of treatment. This review suggests that among widely used NSAIDs, naproxen and low-dose ibuprofen are least likely to increase cardiovascular risk. Diclofenac in doses available without prescription elevates risk. The data for etoricoxib were sparse, but in pair-wise comparisons this drug had a significantly higher RR than naproxen or ibuprofen. Indomethacin is an older, rather toxic drug, and the evidence on cardiovascular risk casts doubt on its continued clinical use. Please see later in the article for the Editors' Summary.

  8. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  9. Genotoxic effects of high dose rate X‐ray and low dose rate gamma radiation in ApcMin/+ mice

    PubMed Central

    Eide, Dag M.; Brede, Dag A.; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H.; Bouffler, Simon D.; Brunborg, Gunnar; Olsen, Ann Karin

    2017-01-01

    Risk estimates for radiation‐induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60Co‐γ‐rays at a LDR (2.2 mGy h−1) or acutely exposed to 2.6 Gy HDR X‐rays (1.3 Gy min−1). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig‐a gene mutation assay), and levels of DNA lesions (Comet assay, single‐strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3‐ and 10‐fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560–569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society PMID:28856770

  10. Economic analysis of measles elimination program in the Republic of Korea, 2001: a cost benefit analysis study.

    PubMed

    Bae, Geun-Ryang; Choe, Young June; Go, Un Yeong; Kim, Yong-Ik; Lee, Jong-Koo

    2013-05-31

    In this study, we modeled the cost benefit analysis for three different measles vaccination strategies based upon three different measles-containing vaccines in Korea, 2001. We employed an economic analysis model using vaccination coverage data and population-based measles surveillance data, along with available estimates of the costs for the different strategies. In addition, we have included analysis on benefit of reduction of complication by mumps and rubella. We evaluated four different strategies: strategy 1, keep-up program with a second dose measles-mumps-rubella (MMR) vaccine at 4-6 years without catch-up campaign; strategy 2, additional catch-up campaign with measles (M) vaccine; strategy 3, catch-up campaign with measles-rubella (MR) vaccine; and strategy 4, catch-up campaign with MMR vaccine. The cost of vaccination included cost for vaccines, vaccination practices and other administrative expenses. The direct benefit of estimated using data from National Health Insurance Company, a government-operated system that reimburses all medical costs spent on designated illness in Korea. With the routine one-dose MMR vaccination program, we estimated a baseline of 178,560 measles cases over the 20 years; when the catch-up campaign with M, MR or MMR vaccines was conducted, we estimated the measles cases would decrease to 5936 cases. Among all strategies, the two-dose MMR keep-up program with MR catch-up campaign showed the highest benefit-cost ratio of 1.27 with a net benefit of 51.6 billion KRW. Across different vaccination strategies, our finding suggest that MR catch-up campaign in conjunction with two-dose MMR keep-up program was the most appropriate option in terms of economic costs and public health effects associated with measles elimination strategy in Korea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Effects of Metal on Size Specific Dose Estimation (SSDE) in CT: A Phantom Study

    NASA Astrophysics Data System (ADS)

    Alsanea, Maram M.

    Over the past number of years there has been a significant increase in the awareness of radiation dose from use of computed tomography (CT). Efforts have been made to reduce radiation dose from CT and to better quantify dose being delivered. However, unfortunately, these dose metrics such as CTDI vol are not a specific patient dose. In 2011, the size-specific dose estimation (SSDE) was introduced by AAPM TG-204 which accounts for the physical size of the patient. However, the approach presented in TG-204 ignores the importance of the attenuation differences in the body. In 2014, a newer methodology that accounted for tissue attenuation was introduced by the AAPM TG-220 based on the concept of water equivalent diameter, Dw. One of the limitation of TG-220 is that there is no estimation of the dose while highly attenuating objects such as metal is present in the body. The purpose of this research is to evaluate the accuracy of size-specific dose estimates in CT in the presence of simulated metal prostheses using a conventional PMMA CTDI phantom at different phantom diameter (body and head) and beam energy. Titanium, Cobalt- chromium and stainless steel alloys rods were used in the study. Two approaches were used as introduced by AAPM TG-204 and 220 utilizing the effective diameter and the Dw calculations. From these calculations, conversion factors have been derived that could be applied to the measured CTDIvol to convert it to specific patient dose, or size specific dose estimate, (SSDE). Radiation dose in tissue (f-factor = 0.94) was measured at various chamber positions with the presence of metal. Following, an average weighted tissue dose (AWTD) was calculated in a manner similar to the weighted CTDI (CTDIw). In general, for the 32 cm body phantom SSDE220 provided more accurate estimates of AWTD than did SSDE204. For smaller patient size, represented by the 16 cm head phantom, the SSDE204 was a more accurate estimate of AWTD that that of SSDE220. However, as the quantity of metal increased it was shown that SSDE220 became more accurate where the percentage error was within +/-4% of the AWTD. In addition, the acquired axial CT images were reconstructed both with and without a single energy metal artifact reduction algorithm (SEMAR), to study the effect on Dw. The Dw calculations used to determine SSDE220 varied by less than 0.2% between the images reconstructed with and without the metal artifact reduction algorithm. For the majority of the scans percentage error observed with 100 kVp is less than that with 120 kVp for SSDE204. Finally, a comparison of the manually calculated SSDE220 and that calculated by the Radimetrics software, showed an overestimation of SSDE values reported by the software compared to the manually calculated measurements which is due to an underestimation of Dw values calculated by the software. This underestimation resulted from including the slices effected by the cone beam artifact in SSDE calculations.

  12. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  13. Characterization and prediction of monomer-based dose rate effects in electron-beam polymerization

    NASA Astrophysics Data System (ADS)

    Schissel, Sage M.; Lapin, Stephen C.; Jessop, Julie L. P.

    2017-12-01

    Properties of some materials produced by electron-beam (EB) induced polymerization appear dependent upon the rate at which the initiating dose was delivered. However, the magnitude of these dose rate effects (DREs) can vary greatly with different monomer formulations, suggesting DREs are dependent on chemical structure. The relationship among dose, dose rate, conversion, and the glass transition temperature (Tg) of the cured material was explored for an acrylate monomer series. A strong correlation was determined between the DRE magnitude and monomer size, and this correlation may be attributed to chain transfer. Using the Tg shift caused by changes in dose, a preliminary predictive relationship was developed to estimate the magnitude of the Tg DRE, enabling scale-up of process variables for polymers prone to dose rate effects.

  14. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  15. Normalized dose data for upper gastrointestinal tract contrast studies performed to infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Stratakis, John; Raissaki, Maria

    The aim of the current study was to (a) provide normalized dose data for the estimation of the radiation dose from upper gastrointestinal tract contrast (UGIC) studies carried out to infants and (b) estimate the average patient dose and risks associated with radiation from UGIC examinations performed in our institution. Organ and effective doses, normalized to entrance skin dose (ESD) and dose area product (DAP) were estimated for UGIC procedures utilizing the Monte Carlo N-particle (MCNP) transport code and two mathematical phantoms, one corresponding to the size of a newborn and one to the size of a 1-year-old child. Themore » validity of the MCNP results was verified by comparison with dose data obtained in physical anthropomorphic phantoms simulating a newborn and a 1-year-old infant using thermoluminescence dosimetry (TLD). Data were also collected from 25 consecutive UGIC examinations performed to infants. Study participants were (a) 12 infants aged from 0.5 to 5.9 months (group 1) and (b) 13 infants aged from 6 to 15 months (group 2). For each examination, ESD and dose to comforters were measured using TLD. Patient effective doses were estimated using normalized dose data obtained in the simulation study. The risk for fatal cancer induction was estimated using appropriate coefficients. The results consist of tabulated dose data normalized to ESD or DAP for the estimation of patient dose. Conversion coefficients were estimated for various tube potentials and beam filtration values. The mean total fluoroscopy time was 1.26 and 1.62 min for groups 1 and 2, respectively. The average effective dose was 1.6 mSv for group 1 and 1.9 mSv for group 2. The risk of cancer attributable to the radiation exposure associated with a typical UGIC study was found to be up to 3 per 10 000 infants undergoing an UGIC examination. The mean radiation dose absorbed by the hands of comforters was 47 {mu}Gy. In conclusion, estimation of radiation doses associated with UGIC studies performed to infants can be made using the normalized dose data provided in the current study. Radiation dose values associated with UGIC examinations carried out to infants are not low and should be minimized as much as possible.« less

  16. Reduced Radiation Dose with Model-based Iterative Reconstruction versus Standard Dose with Adaptive Statistical Iterative Reconstruction in Abdominal CT for Diagnosis of Acute Renal Colic.

    PubMed

    Fontarensky, Mikael; Alfidja, Agaïcha; Perignon, Renan; Schoenig, Arnaud; Perrier, Christophe; Mulliez, Aurélien; Guy, Laurent; Boyer, Louis

    2015-07-01

    To evaluate the accuracy of reduced-dose abdominal computed tomographic (CT) imaging by using a new generation model-based iterative reconstruction (MBIR) to diagnose acute renal colic compared with a standard-dose abdominal CT with 50% adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved prospective study included 118 patients with symptoms of acute renal colic who underwent the following two successive CT examinations: standard-dose ASIR 50% and reduced-dose MBIR. Two radiologists independently reviewed both CT examinations for presence or absence of renal calculi, differential diagnoses, and associated abnormalities. The imaging findings, radiation dose estimates, and image quality of the two CT reconstruction methods were compared. Concordance was evaluated by κ coefficient, and descriptive statistics and t test were used for statistical analysis. Intraobserver correlation was 100% for the diagnosis of renal calculi (κ = 1). Renal calculus (τ = 98.7%; κ = 0.97) and obstructive upper urinary tract disease (τ = 98.16%; κ = 0.95) were detected, and differential or alternative diagnosis was performed (τ = 98.87% κ = 0.95). MBIR allowed a dose reduction of 84% versus standard-dose ASIR 50% (mean volume CT dose index, 1.7 mGy ± 0.8 [standard deviation] vs 10.9 mGy ± 4.6; mean size-specific dose estimate, 2.2 mGy ± 0.7 vs 13.7 mGy ± 3.9; P < .001) without a conspicuous deterioration in image quality (reduced-dose MBIR vs ASIR 50% mean scores, 3.83 ± 0.49 vs 3.92 ± 0.27, respectively; P = .32) or increase in noise (reduced-dose MBIR vs ASIR 50% mean, respectively, 18.36 HU ± 2.53 vs 17.40 HU ± 3.42). Its main drawback remains the long time required for reconstruction (mean, 40 minutes). A reduced-dose protocol with MBIR allowed a dose reduction of 84% without increasing noise and without an conspicuous deterioration in image quality in patients suspected of having renal colic.

  17. Patient doses in the healing arts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Determinations of radiation doses to patients from x-ray procedures and radiopharmaceuticals are detailed in this chapter. Instructions are given for estimating doses from x-ray procedures. For selected pediatric procedures, the methodology developed by the Food and Drug Administration is presented. The effect of testicular and ovarian shielding is illustrated in tabular form. Estimates of the Genetically Significant Dose (GSD) and mean annual bone marrow dose from diagnostic x-ray examinations are presented for the US populations (1990). This chapter also provides tables of patient doses from selected nuclear medicine procedures and estimates of fetal doses from {sup 131}I.

  18. Statistical controversies in clinical research: building the bridge to phase II-efficacy estimation in dose-expansion cohorts.

    PubMed

    Boonstra, P S; Braun, T M; Taylor, J M G; Kidwell, K M; Bellile, E L; Daignault, S; Zhao, L; Griffith, K A; Lawrence, T S; Kalemkerian, G P; Schipper, M J

    2017-07-01

    Regulatory agencies and others have expressed concern about the uncritical use of dose expansion cohorts (DECs) in phase I oncology trials. Nonetheless, by several metrics-prevalence, size, and number-their popularity is increasing. Although early efficacy estimation in defined populations is a common primary endpoint of DECs, the types of designs best equipped to identify efficacy signals have not been established. We conducted a simulation study of six phase I design templates with multiple DECs: three dose-assignment/adjustment mechanisms multiplied by two analytic approaches for estimating efficacy after the trial is complete. We also investigated the effect of sample size and interim futility analysis on trial performance. Identifying populations in which the treatment is efficacious (true positives) and weeding out inefficacious treatment/populations (true negatives) are competing goals in these trials. Thus, we estimated true and false positive rates for each design. Adaptively updating the MTD during the DEC improved true positive rates by 8-43% compared with fixing the dose during the DEC phase while maintaining false positive rates. Inclusion of an interim futility analysis decreased the number of patients treated under inefficacious DECs without hurting performance. A substantial gain in efficiency is obtainable using a design template that statistically models toxicity and efficacy against dose level during expansion. Design choices for dose expansion should be motivated by and based upon expected performance. Similar to the common practice in single-arm phase II trials, cohort sample sizes should be justified with respect to their primary aim and include interim analyses to allow for early stopping. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Impact of the NTCP modeling on medical decision to select eligible patient for proton therapy: the usefulness of EUD as an indicator to rank modern photon vs proton treatment plans.

    PubMed

    Chaikh, Abdulhamid; Calugaru, Valentin; Bondiau, Pierre-Yves; Thariat, Juliette; Balosso, Jacques

    2018-06-07

    The aim of this study is to evaluate the impact of normal tissue complication probability (NTCP)-based radiobiological models on the estimated risk for late radiation lung damages. The second goal is to propose a medical decision-making approach to select the eligible patient for particle therapy. 14 pediatric patients undergoing cranio-spinal irradiation were evaluated. For each patient, two treatment plans were generated using photon and proton therapy with the same dose prescriptions. Late radiation damage to lung was estimated using three NTCP concepts: the Lyman-Kutcher-Burman, the equivalent uniform dose (EUD) and the mean lung dose according to the quantitative analysis of normal tissue effects in the clinic QUANTEC review. Wilcoxon paired test was used to calculate p-value. Proton therapy achieved lower lung EUD (Gy). The average NTCP values were significantly lower with proton plans, p < 0.05, using the three NTCP concepts. However, applying the same TD 50/5 using radiobiological models to compare NTCP from proton and photon therapy, the ΔNTCP was not a convincing method to measure the potential benefit of proton therapy. Late radiation pneumonitis estimated from the mean lung dose model correlated with QUANTEC data better. treatment effectiveness assessed on NTCP reduction depends on radiobiological predictions and parameters used as inputs for in silico evaluation. Since estimates of absolute NTCP values from LKB and GN models are imprecise due to EUD ≪ TD 50/5 , a reduction of the EUD value with proton plans would better predict a reduction of dose/toxicity. The EUD concept appears as a robust radiobiological surrogate of the dose distribution to select the optimal patient's plan.

  20. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarapata, A., E-mail: adrian.sarapata@tum.de; Stayman, J. W.; Siewerdsen, J. H.

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code themore » authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.« less

  1. Pharmacogenetics-based warfarin dosing algorithm decreases time to stable anticoagulation and the risk of major hemorrhage: an updated meta-analysis of randomized controlled trials.

    PubMed

    Wang, Zhi-Quan; Zhang, Rui; Zhang, Peng-Pai; Liu, Xiao-Hong; Sun, Jian; Wang, Jun; Feng, Xiang-Fei; Lu, Qiu-Fen; Li, Yi-Gang

    2015-04-01

    Warfarin is yet the most widely used oral anticoagulant for thromboembolic diseases, despite the recently emerged novel anticoagulants. However, difficulty in maintaining stable dose within the therapeutic range and subsequent serious adverse effects markedly limited its use in clinical practice. Pharmacogenetics-based warfarin dosing algorithm is a recently emerged strategy to predict the initial and maintaining dose of warfarin. However, whether this algorithm is superior over conventional clinically guided dosing algorithm remains controversial. We made a comparison of pharmacogenetics-based versus clinically guided dosing algorithm by an updated meta-analysis. We searched OVID MEDLINE, EMBASE, and the Cochrane Library for relevant citations. The primary outcome was the percentage of time in therapeutic range. The secondary outcomes were time to stable therapeutic dose and the risks of adverse events including all-cause mortality, thromboembolic events, total bleedings, and major bleedings. Eleven randomized controlled trials with 2639 participants were included. Our pooled estimates indicated that pharmacogenetics-based dosing algorithm did not improve percentage of time in therapeutic range [weighted mean difference, 4.26; 95% confidence interval (CI), -0.50 to 9.01; P = 0.08], but it significantly shortened the time to stable therapeutic dose (weighted mean difference, -8.67; 95% CI, -11.86 to -5.49; P < 0.00001). Additionally, pharmacogenetics-based algorithm significantly reduced the risk of major bleedings (odds ratio, 0.48; 95% CI, 0.23 to 0.98; P = 0.04), but it did not reduce the risks of all-cause mortality, total bleedings, or thromboembolic events. Our results suggest that pharmacogenetics-based warfarin dosing algorithm significantly improves the efficiency of International Normalized Ratio correction and reduces the risk of major hemorrhage.

  2. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    NASA Astrophysics Data System (ADS)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions and gas uptake of radionuclides in various regions of the lung. Variability in regional radionuclide deposition within lung compartments may significantly contribute to the overall uncertainty of the lung model. The uncertainty of lung deposition and biological clearance is dependent upon physiological and anatomical parameters of individuals as well as characteristic parameters of the particulate material. These parameters introduce uncertainty into internal dose estimates due to their inherent variability. Anatomical and physiological input parameters are age and gender dependent. This work has determined the uncertainty in internal dose estimates and the sensitive parameters involved in modeling particulate deposition and gas uptake of different physical and chemical forms of 131I with age and gender dependencies.

  3. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, M; Williams, C; Dhou, S

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion ofmore » the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.L.; Kerber, R.L.; Stevens, W.

    This paper discusses the dosimetry methodology used to estimate bone marrow dose and the results of dosimetry calculations for 6,507 subjects in an epidemiologic case. control study of leukemia among Utah residents. The estimated doses were used to determine if a higher incidence of leukemia among residents of Utah could have been attributed to exposure to radioactive fallout from above-ground nuclear weapons tests conducted at the Nevada Test Site. The objective of the dosimetry methodology was to estimate absorbed dose to active marrow specific to each case and each control subject. Data on the residence of each subject were availablemore » from records of the Church of Jesus Christ of Latter-day Saints. Deposition of fallout was determined from databases developed using historical measurements and exposure for each subject from each test was estimated using those data. Exposure was converted to dose by applying an age-dependent dose conversion factor and a factor for shielding. The median dose for all case and control subjects was 3.2 mGy. The maximum estimated mean dose for any case or control was 29 {plus_minus} 5.6 mGy (a resident of Washington County, UT). Uncertainties were estimated for each estimated dose. The results of the dosimetry calculations were applied in an epidemiological analysis.« less

  5. Cost-effectiveness of CT screening in the National Lung Screening Trial.

    PubMed

    Black, William C; Gareen, Ilana F; Soneji, Samir S; Sicks, JoRean D; Keeler, Emmett B; Aberle, Denise R; Naeim, Arash; Church, Timothy R; Silvestri, Gerard A; Gorelick, Jeremy; Gatsonis, Constantine

    2014-11-06

    The National Lung Screening Trial (NLST) showed that screening with low-dose computed tomography (CT) as compared with chest radiography reduced lung-cancer mortality. We examined the cost-effectiveness of screening with low-dose CT in the NLST. We estimated mean life-years, quality-adjusted life-years (QALYs), costs per person, and incremental cost-effectiveness ratios (ICERs) for three alternative strategies: screening with low-dose CT, screening with radiography, and no screening. Estimations of life-years were based on the number of observed deaths that occurred during the trial and the projected survival of persons who were alive at the end of the trial. Quality adjustments were derived from a subgroup of participants who were selected to complete quality-of-life surveys. Costs were based on utilization rates and Medicare reimbursements. We also performed analyses of subgroups defined according to age, sex, smoking history, and risk of lung cancer and performed sensitivity analyses based on several assumptions. As compared with no screening, screening with low-dose CT cost an additional $1,631 per person (95% confidence interval [CI], 1,557 to 1,709) and provided an additional 0.0316 life-years per person (95% CI, 0.0154 to 0.0478) and 0.0201 QALYs per person (95% CI, 0.0088 to 0.0314). The corresponding ICERs were $52,000 per life-year gained (95% CI, 34,000 to 106,000) and $81,000 per QALY gained (95% CI, 52,000 to 186,000). However, the ICERs varied widely in subgroup and sensitivity analyses. We estimated that screening for lung cancer with low-dose CT would cost $81,000 per QALY gained, but we also determined that modest changes in our assumptions would greatly alter this figure. The determination of whether screening outside the trial will be cost-effective will depend on how screening is implemented. (Funded by the National Cancer Institute; NLST ClinicalTrials.gov number, NCT00047385.).

  6. Dose-response assessment for influenza A virus based on data sets of infection with its live attenuated reassortants.

    PubMed

    Watanabe, Toru; Bartrand, Timothy A; Omura, Tatsuo; Haas, Charles N

    2012-03-01

    Reported data sets on infection of volunteers challenged with wild-type influenza A virus at graded doses are few. Alternatively, we aimed at developing a dose-response assessment for this virus based on the data sets for its live attenuated reassortants. Eleven data sets for live attenuated reassortants that were fit to beta-Poisson and exponential dose-response models. Dose-response relationships for those reassortants were characterized by pooling analysis of the data sets with respect to virus subtype (H1N1 or H3N2), attenuation method (cold-adapted or avian-human gene reassortment), and human age (adults or children). Furthermore, by comparing the above data sets to a limited number of reported data sets for wild-type virus, we quantified the degree of attenuation of wild-type virus with gene reassortment and estimated its infectivity. As a result, dose-response relationships of all reassortants were best described by a beta-Poisson model. Virus subtype and human age were significant factors determining the dose-response relationship, whereas attenuation method affected only the relationship of H1N1 virus infection to adults. The data sets for H3N2 wild-type virus could be pooled with those for its reassortants on the assumption that the gene reassortment attenuates wild-type virus by at least 63 times and most likely 1,070 times. Considering this most likely degree of attenuation, 10% infectious dose of H3N2 wild-type virus for adults was estimated at 18 TCID50 (95% CI = 8.8-35 TCID50). The infectivity of wild-type H1N1 virus remains unknown as the data set pooling was unsuccessful. © 2011 Society for Risk Analysis.

  7. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction.

    PubMed

    Kaasalainen, Touko; Palmu, Kirsi; Lampinen, Anniina; Reijonen, Vappu; Leikola, Junnu; Kivisaari, Riku; Kortesniemi, Mika

    2015-09-01

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality.

  8. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  9. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone beam computed tomography or acquisition runs acquired at large primary gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±35% for embolization procedures. Reference air kerma can be used without modification to set notification limits and substantial radiation dose levels, provided the displayed reference air kerma is accurate. These results can reasonably be extended to similar procedures, including vascular and interventional oncology. Considering these results, film dosimetry is likely an unnecessary effort for these types of procedures when indirect dose metrics are available.« less

  10. I-131 Dose Response for Incident Thyroid Cancers in Ukraine Related to the Chornobyl Accident

    PubMed Central

    Tronko, Mykola D.; Hatch, Maureen; Bogdanova, Tetyana I.; Oliynik, Valery A.; Lubin, Jay H.; Zablotska, Lydia B.; Tereschenko, Valery P.; McConnell, Robert J.; Zamotaeva, Galina A.; O’Kane, Patrick; Bouville, Andre C.; Chaykovskaya, Ludmila V.; Greenebaum, Ellen; Paster, Ihor P.; Shpak, Victor M.; Ron, Elaine

    2011-01-01

    Background: Current knowledge about Chornobyl-related thyroid cancer risks comes from ecological studies based on grouped doses, case–control studies, and studies of prevalent cancers. Objective: To address this limitation, we evaluated the dose–response relationship for incident thyroid cancers using measurement-based individual iodine-131 (I-131) thyroid dose estimates in a prospective analytic cohort study. Methods: The cohort consists of individuals < 18 years of age on 26 April 1986 who resided in three contaminated oblasts (states) of Ukraine and underwent up to four thyroid screening examinations between 1998 and 2007 (n = 12,514). Thyroid doses of I-131 were estimated based on individual radioactivity measurements taken within 2 months after the accident, environmental transport models, and interview data. Excess radiation risks were estimated using Poisson regression models. Results: Sixty-five incident thyroid cancers were diagnosed during the second through fourth screenings and 73,004 person-years (PY) of observation. The dose–response relationship was consistent with linearity on relative and absolute scales, although the excess relative risk (ERR) model described data better than did the excess absolute risk (EAR) model. The ERR per gray was 1.91 [95% confidence interval (CI), 0.43–6.34], and the EAR per 104 PY/Gy was 2.21 (95% CI, 0.04–5.78). The ERR per gray varied significantly by oblast of residence but not by time since exposure, use of iodine prophylaxis, iodine status, sex, age, or tumor size. Conclusions: I-131–related thyroid cancer risks persisted for two decades after exposure, with no evidence of decrease during the observation period. The radiation risks, although smaller, are compatible with those of retrospective and ecological post-Chornobyl studies. PMID:21406336

  11. Radiobiological and treatment planning study of a simultaneously integrated boost for canine nasal tumors using helical tomotherapy.

    PubMed

    Gutíerrez, Alonso N; Deveau, Michael; Forrest, Lisa J; Tomé, Wolfgang A; Mackie, Thomas R

    2007-01-01

    Feasibility of delivering a simultaneously integrated boost to canine nasal tumors using helical tomotherapy to improve tumor control probability (TCP) via an increase in total biological equivalent uniform dose (EUD) was evaluated. Eight dogs with varying size nasal tumors (5.8-110.9 cc) were replanned to 42 Gy to the nasal cavity and integrated dose boosts to gross disease of 45.2, 48.3, and 51.3 Gy in 10 fractions. EUD values were calculated for tumors and mean normalized total doses (NTD(mean)) for organs at risk (OAR). Normal Tissue Complication Probability (NTCP) values were obtained for OARs, and estimated TCP values were computed using a logistic dose-response model and based on deliverable EUD boost doses. Significant increases in estimated TCP to 54%, 74%, and 86% can be achieved with 10%, 23%, and 37% mean relative EUD boosts to the gross disease, respectively. NTCP values for blindness of either eye and for brain necrosis were < 0.01% for all boosts. Values for cataract development were 31%, 42%, and 46% for studied boost schemas, respectively. Average NTD(mean) to eyes and brain for mean EUD boosts were 10.2, 11.3, and 12.1 Gy3, and 7.5, 7.2, and 7.9 Gy2, respectively. Using helical tomotherapy, simultaneously integrated dose boosts can be delivered to increase the estimated TCP at 1-year without significantly increasing the NTD(mean) to eyes and brain. Delivery of these treatments in a prospective trial may allow quantification of a dose-response relationship in canine nasal tumors.

  12. Concordance of transcriptional and apical benchmark dose levels for conazole-induced liver effects in mice.

    PubMed

    Bhat, Virunya S; Hester, Susan D; Nesnow, Stephen; Eastmond, David A

    2013-11-01

    The ability to anchor chemical class-based gene expression changes to phenotypic lesions and to describe these changes as a function of dose and time informs mode-of-action determinations and improves quantitative risk assessments. Previous global expression profiling identified a 330-probe cluster differentially expressed and commonly responsive to 3 hepatotumorigenic conazoles (cyproconazole, epoxiconazole, and propiconazole) at 30 days. Extended to 2 more conazoles (triadimefon and myclobutanil), the present assessment encompasses 4 tumorigenic and 1 nontumorigenic conazole. Transcriptional benchmark dose levels (BMDL(T)) were estimated for a subset of the cluster with dose-responsive behavior and a ≥ 5-fold increase or decrease in signal intensity at the highest dose. These genes primarily encompassed CAR/RXR activation, P450 metabolism, liver hypertrophy- glutathione depletion, LPS/IL-1-mediated inhibition of RXR, and NRF2-mediated oxidative stress pathways. Median BMDL(T) estimates from the subset were concordant (within a factor of 2.4) with apical benchmark doses (BMDL(A)) for increased liver weight at 30 days for the 5 conazoles. The 30-day median BMDL(T) estimates were within one-half order of magnitude of the chronic BMDLA for hepatocellular tumors. Potency differences seen in the dose-responsive transcription of certain phase II metabolism, bile acid detoxification, and lipid oxidation genes mirrored each conazole's tumorigenic potency. The 30-day BMDL(T) corresponded to tumorigenic potency on a milligram per kilogram day basis with cyproconazole > epoxiconazole > propiconazole > triadimefon > myclobutanil (nontumorigenic). These results support the utility of measuring short-term gene expression changes to inform quantitative risk assessments from long-term exposures.

  13. A generic biokinetic model for noble gases with application to radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Marsh, James; Gregoratto, Demetrio

    The International Commission for Radiological Protection (ICRP) currently uses a dose conversion coefficient to calculate effective dose per unit exposure to radon and its progeny. The coefficient is derived by dividing the detriment associated with unit exposure to radon, as estimated from epidemiological studies, by the detriment per unit effective dose, as estimated mainly from atomic bomb survivor data and animal studies. In a recent statement the ICRP indicated that future guidance on exposure to radon and its progeny will be developed in the same way as guidance for any other radionuclide. That is, intake of radon and progeny willmore » be limited on the basis of effective dose coefficients derived from biokinetic and dosimetric models. This paper proposes a biokinetic model for systemic (absorbed) radon for use in the calculation of dose coefficients for inhaled or ingested radon. The model is based largely on physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions are shown to be consistent with results of controlled studies of the fate of internally deposited radon in human subjects.« less

  14. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  15. Estimation of Second Primary Cancer Risk After Treatment with Radioactive Iodine for Differentiated Thyroid Carcinoma.

    PubMed

    Corrêa, Nilton Lavatori; de Sá, Lidia Vasconcellos; de Mello, Rossana Corbo Ramalho

    2017-02-01

    An increase in the incidence of second primary cancers is the late effect of greatest concern that could occur in differentiated thyroid carcinoma (DTC) patients treated with radioactive iodine (RAI). The decision to treat a patient with RAI should therefore incorporate a careful risk-benefit analysis. The objective of this work was to adapt the risk-estimation models developed by the Biological Effects of Ionizing Radiation Committee to local epidemiological characteristics in order to assess the carcinogenesis risk from radiation in a population of Brazilian DTC patients treated with RAI. Absorbed radiation doses in critical organs were also estimated to determine whether they exceeded the thresholds for deterministic effects. A total of 416 DTC patients treated with RAI were retrospectively studied. Four organs were selected for absorbed dose estimation and subsequent calculation of carcinogenic risk: the kidney, stomach, salivary glands, and bone marrow. Absorbed doses were calculated by dose factors (absorbed dose per unit activity administered) previously established and based on standard human models. The lifetime attributable risk (LAR) of incidence of cancer as a function of age, sex, and organ-specific dose was estimated, relating it to the activity of RAI administered in the initial treatment. The salivary glands received the greatest absorbed doses of radiation, followed by the stomach, kidney, and bone marrow. None of these, however, surpassed the threshold for deterministic effects for a single administration of RAI. Younger patients received the same level of absorbed dose in the critical organs as older patients did. The lifetime attributable risk for stomach cancer incidence was by far the highest, followed in descending order by salivary-gland cancer, leukemia, and kidney cancer. RAI in a single administration is safe in terms of deterministic effects because even high-administered activities do not result in absorbed doses that exceed the thresholds for significant tissue reactions. The Biological Effects of Ionizing Radiation Committee mathematical models are a practical method of quantifying the risks of a second primary cancer, demonstrating a marked decrease in risk for younger patients with the administration of lower RAI activities and suggesting that only the smallest activities necessary to promote an effective ablation should be administered in low-risk DTC patients.

  16. Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah

    NASA Astrophysics Data System (ADS)

    Alharbi, N. D.; Mayhoub, A. B.

    2011-12-01

    For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.

  17. Health economic assessment of universal immunization of toddlers against Hepatitis A Virus (HAV) in Mexico

    PubMed Central

    Carlos, Fernando; Gómez, Jorge Alberto; Anaya, Pablo; Romano-Mazzotti, Luis

    2016-01-01

    Hepatitis A virus (HAV) has shifted from high to intermediate endemicity in Mexico, which may increase the risk of clinically significant HAV infections in older children, adolescents and adults. The objective of this study was to evaluate the cost-utility of single-dose or 2-dose universal infant HAV vaccination strategy in Mexico, compared with no vaccination. A previously published dynamic model estimated the expected number of HAV cases with each strategy, and a decision model was used to estimate the costs and quality-adjusted life-years (QALYs) expected with each strategy. The time horizon was 25 years (2012–2036) and the base case analysis was conducted from the perspective of the Mexican public health system. Costs and QALYs after the first year were discounted at 5% annually. Input data were taken from national databases and published sources where available. The single-dose HAV vaccination strategy had an incremental cost-utility ratio (ICUR) of Mexican peso (MXN) 2,270 per QALY gained, compared with no vaccination. The two-dose strategy had an ICUR of MXN 14,961/QALY compared with no vaccination, and an ICUR of MXN 78,280/QALY compared with the single-dose strategy. The estimated ICURs were below the threshold of 1 x Mexican gross domestic product per capita. When indirect costs were included (societal perspective), the single-dose HAV vaccination strategy would be expected to improve health outcomes and to be cost-saving. This analysis indicates that routine vaccination of toddlers against HAV would be cost-effective in Mexico using either a single-dose or a 2-dose vaccination strategy. GSK study identifier: HO-12-12877. PMID:26503702

  18. Health economic assessment of universal immunization of toddlers against Hepatitis A Virus (HAV) in Mexico.

    PubMed

    Carlos, Fernando; Gómez, Jorge Alberto; Anaya, Pablo; Romano-Mazzotti, Luis

    2016-01-01

    Hepatitis A virus (HAV) has shifted from high to intermediate endemicity in Mexico, which may increase the risk of clinically significant HAV infections in older children, adolescents and adults. The objective of this study was to evaluate the cost-utility of single-dose or 2-dose universal infant HAV vaccination strategy in Mexico, compared with no vaccination. A previously published dynamic model estimated the expected number of HAV cases with each strategy, and a decision model was used to estimate the costs and quality-adjusted life-years (QALYs) expected with each strategy. The time horizon was 25 years (2012-2036) and the base case analysis was conducted from the perspective of the Mexican public health system. Costs and QALYs after the first year were discounted at 5% annually. Input data were taken from national databases and published sources where available. The single-dose HAV vaccination strategy had an incremental cost-utility ratio (ICUR) of Mexican peso (MXN) 2,270 per QALY gained, compared with no vaccination. The two-dose strategy had an ICUR of MXN 14,961/QALY compared with no vaccination, and an ICUR of MXN 78,280/QALY compared with the single-dose strategy. The estimated ICURs were below the threshold of 1 x Mexican gross domestic product per capita. When indirect costs were included (societal perspective), the single-dose HAV vaccination strategy would be expected to improve health outcomes and to be cost-saving. This analysis indicates that routine vaccination of toddlers against HAV would be cost-effective in Mexico using either a single-dose or a 2-dose vaccination strategy. GSK study identifier: HO-12-12877.

  19. Organ doses for reference adult male and female undergoing computed tomography estimated by Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Choonsik; Kim, Kwang Pyo; Long, Daniel

    2011-03-15

    Purpose: To develop a computed tomography (CT) organ dose estimation method designed to readily provide organ doses in a reference adult male and female for different scan ranges to investigate the degree to which existing commercial programs can reasonably match organ doses defined in these more anatomically realistic adult hybrid phantomsMethods: The x-ray fan beam in the SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code MCNPX2.6. The simulated CT scanner model was validated through comparison with experimentally measured lateral free-in-air dose profiles and computed tomography dose index (CTDI) values. The reference adult malemore » and female hybrid phantoms were coupled with the established CT scanner model following arm removal to simulate clinical head and other body region scans. A set of organ dose matrices were calculated for a series of consecutive axial scans ranging from the top of the head to the bottom of the phantoms with a beam thickness of 10 mm and the tube potentials of 80, 100, and 120 kVp. The organ doses for head, chest, and abdomen/pelvis examinations were calculated based on the organ dose matrices and compared to those obtained from two commercial programs, CT-EXPO and CTDOSIMETRY. Organ dose calculations were repeated for an adult stylized phantom by using the same simulation method used for the adult hybrid phantom. Results: Comparisons of both lateral free-in-air dose profiles and CTDI values through experimental measurement with the Monte Carlo simulations showed good agreement to within 9%. Organ doses for head, chest, and abdomen/pelvis scans reported in the commercial programs exceeded those from the Monte Carlo calculations in both the hybrid and stylized phantoms in this study, sometimes by orders of magnitude. Conclusions: The organ dose estimation method and dose matrices established in this study readily provides organ doses for a reference adult male and female for different CT scan ranges and technical parameters. Organ doses from existing commercial programs do not reasonably match organ doses calculated for the hybrid phantoms due to differences in phantom anatomy, as well as differences in organ dose scaling parameters. The organ dose matrices developed in this study will be extended to cover different technical parameters, CT scanner models, and various age groups.« less

  20. TU-EF-204-01: Accurate Prediction of CT Tube Current Modulation: Estimating Tube Current Modulation Schemes for Voxelized Patient Models Used in Monte Carlo Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; McNitt-Gray, M

    2015-06-15

    Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate themore » complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less

  1. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874

  2. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  3. Proof of concept and dose estimation with binary responses under model uncertainty.

    PubMed

    Klingenberg, B

    2009-01-30

    This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.

  4. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this information, which is exhaustive throughout France, could help in estimating the telluric gamma dose rates. Such an approach is possible using multivariate geostatistics and cokriging. Multi-collocated cokriging has been performed on 1*1 km(2) cells over the domain. This model used gamma dose rate measurement results and GUP classes. Our results provide useful information on the variability of the natural terrestrial gamma radiation in France ('natural background') and exposure data for epidemiological studies and risk assessment from low dose chronic exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. CIE, Vitamin D and DNA Damage: A Synergetic Study in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Zempila, Melina Maria; Taylor, Michael; Fountoulakis, Ilias; Koukouli, Maria Elissavet; Bais, Alkiviadis; Arola, Antii; van Geffen, Jos; van Weele, Michiel; van der A, Ronald; Kouremeti, Natalia; Kazadzis, Stelios; Meleti, Chariklia; Balis, Dimitrios

    2016-08-01

    The present study aims to validate different approaches for the estimation of three photobiological effective doses: the erythemal UV, the vitamin D and that for DNA damage, using high temporal resolution surface- based measurements of solar UV from 2005-2015. Data from a UV spectrophotometer, a multi-filter radiometer, and a UV radiation pyranometer that are located in Thessaloniki, Greece are used together with empirical relations, algorithms and models in order to calculate the desired quantities. In addition to the surface-based dose retrievals, OMI/Aura and the combined SCIAMACHY/Envisat and GOME/MetopA satellite products are also used in order to assess the accuracy of each method for deriving the photobiological doses.

  6. Estimated human absorbed dose of ¹⁷⁷Lu-BPAMD based on mice data: Comparison with ¹⁷⁷Lu-EDTMP.

    PubMed

    Yousefnia, Hassan; Zolghadri, Samaneh; Shanehsazzadeh, Saeed

    2015-10-01

    In this work, the absorbed dose of human organs for (177)Lu-BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with (177)Lu-EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both (177)Lu-BPAMD and (177)Lu-EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, (177)Lu-BPAMD has considerable characteristics compared with (177)Lu-EDTMP and can be considered as a promising agent for the bone pain palliation therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Estimated dose rates to members of the public from external exposure to patients with {sup 131}I thyroid treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, S., E-mail: dewjisa@ornl.gov; Bellamy, M.; Leggett, R.

    Purpose: Estimated dose rates that may result from exposure to patients who had been administered iodine-131 ({sup 131}I) as part of medical therapy were calculated. These effective dose rate estimates were compared with simplified assumptions under United States Nuclear Regulatory Commission Regulatory Guide 8.39, which does not consider body tissue attenuation nor time-dependent redistribution and excretion of the administered {sup 131}I. Methods: Dose rates were estimated for members of the public potentially exposed to external irradiation from patients recently treated with {sup 131}I. Tissue attenuation and iodine biokinetics were considered in the patient in a larger comprehensive effort to improvemore » external dose rate estimates. The external dose rate estimates are based on Monte Carlo simulations using the Phantom with Movable Arms and Legs (PIMAL), previously developed by Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission. PIMAL was employed to model the relative positions of the {sup 131}I patient and members of the public in three exposure scenarios: (1) traveling on a bus in a total of six seated or standing permutations, (2) two nursing home cases where a caregiver is seated at 30 cm from the patient’s bedside and a nursing home resident seated 250 cm away from the patient in an adjacent bed, and (3) two hotel cases where the patient and a guest are in adjacent rooms with beds on opposite sides of the common wall, with the patient and guest both in bed and either seated back-to-back or lying head to head. The biokinetic model predictions of the retention and distribution of {sup 131}I in the patient assumed a single voiding of urinary bladder contents that occurred during the trip at 2, 4, or 8 h after {sup 131}I administration for the public transportation cases, continuous first-order voiding for the nursing home cases, and regular periodic voiding at 4, 8, or 12 h after administration for the hotel room cases. Organ specific activities of {sup 131}I in the thyroid, bladder, and combined remaining tissues were calculated as a function of time after administration. Exposures to members of the public were considered for {sup 131}I patients with normal thyroid uptake (peak thyroid uptake of ∼27% of administered {sup 131}I), differentiated thyroid cancer (DTC, 5% uptake), and hyperthyroidism (80% uptake). Results: The scenario with the patient seated behind the member of the public yielded the highest dose rate estimate of seated public transportation exposure cases. The dose rate to the adjacent room guest was highest for the exposure scenario in which the hotel guest and patient are seated by a factor of ∼4 for the normal and differentiated thyroid cancer uptake cases and by a factor of ∼3 for the hyperthyroid case. Conclusions: It was determined that for all modeled cases, the DTC case yielded the lowest external dose rates, whereas the hyperthyroid case yielded the highest dose rates. In estimating external dose to members of the public from patients with {sup 131}I therapy, consideration must be given to (patient- and case-specific) administered {sup 131}I activities and duration of exposure for a more complete estimate. The method implemented here included a detailed calculation model, which provides a means to determine dose rate estimates for a range of scenarios. The method was demonstrated for variations of three scenarios, showing how dose rates are expected to vary with uptake, voiding pattern, and patient location.« less

  8. Preliminary evaluation of the dosimetric accuracy of cone-beam computed tomography for cases with respiratory motion

    NASA Astrophysics Data System (ADS)

    Kim, Dong Wook; Bae, Sunhyun; Chung, Weon Kuu; Lee, Yoonhee

    2014-04-01

    Cone-beam computed tomography (CBCT) images are currently used for patient positioning and adaptive dose calculation; however, the degree of CBCT uncertainty in cases of respiratory motion remains an interesting issue. This study evaluated the uncertainty of CBCT-based dose calculations for a moving target. Using a phantom, we estimated differences in the geometries and the Hounsfield units (HU) between CT and CBCT. The calculated dose distributions based on CT and CBCT images were also compared using a radiation treatment planning system, and the comparison included cases with respiratory motion. The geometrical uncertainties of the CT and the CBCT images were less than 0.15 cm. The HU differences between CT and CBCT images for standard-dose-head, high-quality-head, normal-pelvis, and low-dose-thorax modes were 31, 36, 23, and 33 HU, respectively. The gamma (3%, 0.3 cm)-dose distribution between CT and CBCT was greater than 1 in 99% of the area. The gamma-dose distribution between CT and CBCT during respiratory motion was also greater than 1 in 99% of the area. The uncertainty of the CBCT-based dose calculation was evaluated for cases with respiratory motion. In conclusion, image distortion due to motion did not significantly influence dosimetric parameters.

  9. Feasibility assessment of yttrium-90 liver radioembolization imaging using amplitude-based gated PET/CT

    PubMed Central

    Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong

    2018-01-01

    Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124

  10. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Measurement of radiation dose at the north interaction point of BEPC II

    NASA Astrophysics Data System (ADS)

    Mo, Xiao-Hu; Zhang, Jian-Yong; Zhang, Tian-Bao; Zhang, Qing-Jiang; Achasov, Mikhail; Fu, Cheng-Dong; Muchnoi, Nikolay; Qin, Qing; Qu, Hua-Min; Wang, Yi-Fang; Wu, Jing-Min; Xu, Jin-Qiang; Yu, Bo-Xiang

    2009-10-01

    The technique details for measuring radiation dose are expounded. The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation. In addition, the photon radiation level move as background for future experiments is measured by a NaI(Tl) detector.

  11. Personalized cumulative UV tracking on mobiles & wearables.

    PubMed

    Dey, S; Sahoo, S; Agrawal, H; Mondal, A; Bhowmik, T; Tiwari, V N

    2017-07-01

    Maintaining a balanced Ultra Violet (UV) exposure level is vital for a healthy living as the excess of UV dose can lead to critical diseases such as skin cancer while the absence can cause vitamin D deficiency which has recently been linked to onset of cardiac abnormalities. Here, we propose a personalized cumulative UV dose (CUVD) estimation system for smartwatch and smartphone devices having the following novelty factors; (a) sensor orientation invariant measurement of UV exposure using a bootstrap resampling technique, (b) estimation of UV exposure using only light intensity (lux) sensor (c) optimal UV exposure dose estimation. Our proposed method will eliminate the need for a dedicated UV sensor thus widen the user base of the proposed solution, render it unobtrusive by eliminating the critical requirement of orienting the device in a direction facing the sun. The system is implemented on android mobile platform and validated on 1200 minutes of lux and UV index (UVI) data collected across several days covering morning to evening time frames. The result shows very impressive final UVI estimation accuracy. We believe our proposed solution will enable the future wearable and smartphone users to obtain a seamless personalized UV exposure dose across a day paving a way for simple yet very useful recommendations such as right skin protective measure for reducing risk factors of long term UV exposure related diseases like skin cancer and, cardiac abnormality.

  12. Radiation effects in interventional radiology using biological and physical dosimetry methods: a case-control study.

    PubMed

    Ramos, Miguel; Montoro, Alegria; Almonacid, Miguel; Ferrer, Silvia; Barquinero, Joan Francesc; Tortosa, Ricardo; Verdú, Gumersindo; Rodríguez, Pilar; Barrios, Lleonard; Villaescusa, Juan Ignacio

    2008-01-01

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation, which extend during all their professional activities. These exposures can derive, due to the irradiation of skin tissues and peripheral blood, in deterministic effects (radiodermitis, aged skin, hands depilation) or stochastic ones (skin and non-solid cancers incidence). Epidemiological studies of population exposed to ionizing radiation provide information of radio-induced effects. The radiation risk or radiological detriment has been estimated from a group of six exposed interventionist radiologists of the Hospital La Fe (Valencia, Spain). Dosimetry has been periodically registered from TLDs and wrist dosimeters (physical methods) and estimated through translocations in lymphocytes of peripheral blood (biological methods), by extrapolating the yield of translocations to their respective dose-effect curves. The probability of non-melanoma skin cancer and leukaemia (acute myelogenous, acute lymphocytic and chronic myelogenous leukaemia) incidence has been estimated through the software RADRISK. This software is based on a transport model from epidemiological studies of population exposed to external low-LET ionizing radiation [1]. Other non-solid carcinomas have not been considered due to their low statistical power, such as myeloid and non-Hodgkin lymphomas. The discrepancies observed between the physically recorded doses and biological estimated doses could indicate that exposed workers did not always wear their dosimeters or these dosimeters were not always exposed to the radiation field.

  13. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    NASA Astrophysics Data System (ADS)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  14. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident.

    PubMed

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  15. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  16. Modeling the public health impact of malaria vaccines for developers and policymakers

    PubMed Central

    2013-01-01

    Background Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model’s functionality is demonstrated through a hypothetical vaccine. Methods The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. Results The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is equivalent to 943 uncomplicated cases and 7 deaths averted per 1,000 vaccinees. In discounted 2011 US dollars, this represents $11 per uncomplicated case averted and $1,482 per death averted. If vaccine efficacy were reduced to 75%, the estimated uncomplicated cases and deaths averted over 10 years would decrease by 14% and 19%, respectively. Conclusions The MVM can provide valuable information to assist decision-making by vaccine developers and policymakers, information which will be refined and strengthened as field studies progress allowing further validation of modeling assumptions. PMID:23815273

  17. Modeling the public health impact of malaria vaccines for developers and policymakers.

    PubMed

    Nunes, Julia K; Cárdenas, Vicky; Loucq, Christian; Maire, Nicolas; Smith, Thomas; Shaffer, Craig; Måseide, Kårstein; Brooks, Alan

    2013-07-01

    Efforts to develop malaria vaccines show promise. Mathematical model-based estimates of the potential demand, public health impact, and cost and financing requirements can be used to inform investment and adoption decisions by vaccine developers and policymakers on the use of malaria vaccines as complements to existing interventions. However, the complexity of such models may make their outputs inaccessible to non-modeling specialists. This paper describes a Malaria Vaccine Model (MVM) developed to address the specific needs of developers and policymakers, who need to access sophisticated modeling results and to test various scenarios in a user-friendly interface. The model's functionality is demonstrated through a hypothetical vaccine. The MVM has three modules: supply and demand forecast; public health impact; and implementation cost and financing requirements. These modules include pre-entered reference data and also allow for user-defined inputs. The model includes an integrated sensitivity analysis function. Model functionality was demonstrated by estimating the public health impact of a hypothetical pre-erythrocytic malaria vaccine with 85% efficacy against uncomplicated disease and a vaccine efficacy decay rate of four years, based on internationally-established targets. Demand for this hypothetical vaccine was estimated based on historical vaccine implementation rates for routine infant immunization in 40 African countries over a 10-year period. Assumed purchase price was $5 per dose and injection equipment and delivery costs were $0.40 per dose. The model projects the number of doses needed, uncomplicated and severe cases averted, deaths and disability-adjusted life years (DALYs) averted, and cost to avert each. In the demonstration scenario, based on a projected demand of 532 million doses, the MVM estimated that 150 million uncomplicated cases of malaria and 1.1 million deaths would be averted over 10 years. This is equivalent to 943 uncomplicated cases and 7 deaths averted per 1,000 vaccinees. In discounted 2011 US dollars, this represents $11 per uncomplicated case averted and $1,482 per death averted. If vaccine efficacy were reduced to 75%, the estimated uncomplicated cases and deaths averted over 10 years would decrease by 14% and 19%, respectively. The MVM can provide valuable information to assist decision-making by vaccine developers and policymakers, information which will be refined and strengthened as field studies progress allowing further validation of modeling assumptions.

  18. Assessing dose of the representative person for the purpose of radiation protection of the public. ICRP publication 101. Approved by the Commission in September 2005.

    PubMed

    2006-01-01

    The Commission intended that its revised recommendations should be based on a simple, but widely applicable, system of protection that would clarify its objectives and provide a basis for the more formal systems needed by operating managers and regulators. The recommendations would establish quantified constraints, or limits, on individual dose from specified sources. These dose constraints apply to actual or representative people who encounter occupational, medical, and public exposures. This report updates the previous guidance for estimating dose to the public. Dose to the public cannot be measured directly and, in some cases, it cannot be measured at all. Therefore, for the purpose of protection of the public, it is necessary to characterise an individual, either hypothetical or specific, whose dose can be used for determining compliance with the relevant dose constraint. This individual is defined as the 'representative person'. The Commission's goal of protection of the public is achieved if the relevant dose constraint for this individual for a single source is met and radiological protection is optimised. This report explains the process of estimating annual dose and recognises that a number of different methods are available for this purpose. These methods range from deterministic calculations to more complex probabilistic techniques. In addition, a mixture of these techniques may be applied. In selecting characteristics of the representative person, three important concepts should be borne in mind: reasonableness, sustainability, and homogeneity. Each concept is explained and examples are provided to illustrate their roles. Doses to the public are prospective (may occur in the future) or retrospective (occurred in the past). Prospective doses are for hypothetical individuals who may or may not exist in the future, while retrospective doses are generally calculated for specific individuals. The Commission recognises that the level of detail afforded by its provision of dose coefficients for six age categories is not necessary in making prospective assessments of dose, given the inherent uncertainties usually associated with estimating dose to the public and with identification of the representative person. It now recommends the use of three age categories for estimating annual dose to the representative person for prospective assessments. These categories are 0-5 years (infant), 6-15 years (child), and 16-70 years (adult). For practical implementation of this recommendation, dose coefficients and habit data for a 1-year-old infant, a 10-year-old child, and an adult should be used to represent the three age categories. In a probabilistic assessment of dose, whether from a planned facility or an existing situation, the Commission recommends that the representative person should be defined such that the probability is less than about 5% that a person drawn at random from the population will receive a greater dose. If such an assessment indicates that a few tens of people or more could receive doses above the relevant constraint, the characteristics of these people need to be explored. If, following further analysis, it is shown that doses to a few tens of people are indeed likely to exceed the relevant dose constraint, actions to modify the exposure should be considered. The Commission recognises the role that stakeholders can play in identifying characteristics of the representative person. Involvement of stakeholders can significantly improve the quality, understanding, and acceptability of the characteristics of the representative person and the resulting estimated dose.

  19. An Integrated Web-Based Assessment Tool for Assessing Pesticide Exposure and Risks

    EPA Science Inventory

    Background/Question/Methods We have created an integrated web-based tool designed to estimate exposure doses and ecological risks under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) and the Endangered Species Act. This involved combining a number of disparat...

  20. USE OF A PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODEL TO ESTIMATE ABSORBED CARBARYL DOSE IN CHILDREN AFTER TURF APPLICATION

    EPA Science Inventory

    A physiologically based pharmacokinetic (PBPK) model was developed to investigate exposure scenarios of children to carbaryl following turf application. Physiological, pharmacokinetic and pharmacodynamic parameters describing the fate and effects of carbaryl in rats were scaled ...

  1. Fluence-based and microdosimetric event-based methods for radiation protection in space

    NASA Technical Reports Server (NTRS)

    Curtis, Stanley B.; Meinhold, C. B. (Principal Investigator)

    2002-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has recently published a report (Report #137) that discusses various aspects of the concepts used in radiation protection and the difficulties in measuring the radiation environment in spacecraft for the estimation of radiation risk to space travelers. Two novel dosimetric methodologies, fluence-based and microdosimetric event-based methods, are discussed and evaluated, along with the more conventional quality factor/LET method. It was concluded that for the present, any reason to switch to a new methodology is not compelling. It is suggested that because of certain drawbacks in the presently-used conventional method, these alternative methodologies should be kept in mind. As new data become available and dosimetric techniques become more refined, the question should be revisited and that in the future, significant improvement might be realized. In addition, such concepts as equivalent dose and organ dose equivalent are discussed and various problems regarding the measurement/estimation of these quantities are presented.

  2. Estimation of urinary stone composition by automated processing of CT images.

    PubMed

    Chevreau, Grégoire; Troccaz, Jocelyne; Conort, Pierre; Renard-Penna, Raphaëlle; Mallet, Alain; Daudon, Michel; Mozer, Pierre

    2009-10-01

    The objective of this article was developing an automated tool for routine clinical practice to estimate urinary stone composition from CT images based on the density of all constituent voxels. A total of 118 stones for which the composition had been determined by infrared spectroscopy were placed in a helical CT scanner. A standard acquisition, low-dose and high-dose acquisitions were performed. All voxels constituting each stone were automatically selected. A dissimilarity index evaluating variations of density around each voxel was created in order to minimize partial volume effects: stone composition was established on the basis of voxel density of homogeneous zones. Stone composition was determined in 52% of cases. Sensitivities for each compound were: uric acid: 65%, struvite: 19%, cystine: 78%, carbapatite: 33.5%, calcium oxalate dihydrate: 57%, calcium oxalate monohydrate: 66.5%, brushite: 75%. Low-dose acquisition did not lower the performances (P < 0.05). This entirely automated approach eliminates manual intervention on the images by the radiologist while providing identical performances including for low-dose protocols.

  3. Comparison of the radiological and chemical toxicity of lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.; Mott, S.

    1995-03-01

    This report estimates the worst-case radiological dose to an individual from ingested lead containing picocurie levels of radionuclides and then compares the calculated radiological health effects to the chemical toxic effects from that same lead. This comparison provides an estimate of the consequences of inadvertently recycling, in the commercial market, lead containing nominally undetectable concentrations of radionuclides. Quantitative expressions for the radiological and chemical toxicities of lead are based on concentrations of lead in the blood stream. The result shows that the chemical toxicity of lead is a greater health hazard, by orders of magnitude, than any probable companion radiationmore » dose.« less

  4. Application of radioisotope XRF and thermoluminescence (TL) dating in investigation of pottery from Tell AL-Kasra archaeological site, Syria.

    PubMed

    Abboud, R; Issa, H; Abed-Allah, Y D; Bakraji, E H

    2015-11-01

    Statistical analysis based on chemical composition, using radioisotope X-ray fluorescence, have been applied on 39 ancient pottery fragments coming from the excavation at Tell Al-Kasra archaeological site, Syria. Three groups were defined by applying Cluster and Factor analysis statistical methods. Thermoluminescence (TL) dating was investigated on three sherds taken from the bathroom (hammam) on the site. Multiple aliquot additive dose (MAAD) was used to estimate the paleodose value, and the gamma spectrometry was used to estimate the dose rate. The average age was found to be 715±36 year. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Radon measurements and effective dose from radon inhalation estimation in the Neapolitan catacombs.

    PubMed

    Quarto, M; Pugliese, M; Loffredo, F; Zambella, C; Roca, V

    2014-03-01

    In this study, the indoor radon activity concentrations have been measured in the Neapolitan catacombs using LR115 detectors. The detectors were exposed for two quarters, one in the warm season and the other in the cold. This has allowed one to evaluate the seasonal variations of concentrations, while the diurnal variations were evaluated performing continuous measurements by a Radim 5 monitor. The authors found that radon concentrations were lower in winter than in summer. Based on their values, taking into consideration the working hours in the catacombs and the equilibrium factor of 0.4, the effective dose to workers was estimated.

  6. Connecting the Dots: Linking Environmental Justice Indicators to Daily Dose Model Estimates

    EPA Science Inventory

    Many different quantitative techniques have been developed to either assess Environmental Justice (EJ) issues or estimate exposure and dose for risk assessment. However, very few approaches have been applied to link EJ factors to exposure dose estimate and identify potential impa...

  7. An alternative method for immediate dose estimation using CaSO4:Dy based TLD badges

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Menon, S. N.; Dhabekar, Bhushan; Kadam, Sonal; Chougaonkar, M. P.; Babu, D. A. R.

    2014-11-01

    CaSO4:Dy based Thermoluminescence dosimeters (TLDs) are being used in country wide personnel monitoring program in India. The TL glow curve of CaSO4:Dy consists of a dosimetric peak at 220 °C and a low temperature peak at 120 °C which is unstable at room temperature. The TL integral counts in CaSO4:Dy reduces by 15% in seven days after irradiation due to the thermal fading of 120 °C TL peak. As the dosimetric procedure involves total integrated counts for dose conversion, the dosimeters are typically read about a week after receiving. However in the event of a suspected over exposure, where urgent processing is expected, this poses limitation. Post irradiation annealing treatment is used in such cases of immediate readout of cards. In this paper we report a new and easier to use technique based on optical bleaching for the urgent processing of TLD cards. Optical bleaching with green LED (∼555 nm photons) of 25,000 lux for one and half hour removes the low temperature TL peak without affecting the dosimetric peak. This method can be used for immediate dose estimation using CaSO4:Dy based TLD badges.

  8. Patient-specific dose estimation for pediatric chest CT

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-01-01

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols. PMID:19175138

  9. Patient-specific dose estimation for pediatric chest CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Xiang; Samei, Ehsan; Segars, W. Paul

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structuresmore » were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for any other patient in the same size/protocol group who undergoes the chest scan. In summary, this work reported the first assessment of dose variations across pediatric CT patients in the same size/protocol group due to the variability of patient anatomy and body habitus and provided a previously unavailable method for patient-specific organ dose estimation, which will help in assessing patient risk and optimizing dose reduction strategies, including the development of scan protocols.« less

  10. Estimation of doses received in a dry-contaminated residential area in the Bryansk region, Russia, since the Chernobyl accident.

    PubMed

    Andersson, K G; Roed, J

    2006-01-01

    In nuclear preparedness, an essential requirement is the ability to adequately predict the likely consequences of a major accident situation. In this context it is very important to evaluate which contributions to dose are important, and which are not likely to have significance. As an example of this type of evaluation, a case study has been conducted to estimate the doses received over the first 17 years after the Chernobyl accident in a dry-contaminated residential area in the Bryansk region in Russia. Methodologies for estimation of doses received through nine different pathways, including contamination of streets, roofs, exterior walls, and landscape, are established, and best estimates are given for each of the dose contributions. Generally, contaminated soil areas were estimated to have given the highest dose contribution, but a number of other contributions to dose, e.g., from contaminated roofs and inhalation of contaminants during the passage of the contaminated plume, were of the same order of magnitude.

  11. Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT

    NASA Astrophysics Data System (ADS)

    Maspero, Matteo; Seevinck, Peter R.; Schubert, Gerald; Hoesl, Michaela A. U.; van Asselen, Bram; Viergever, Max A.; Lagendijk, Jan J. W.; Meijer, Gert J.; van den Berg, Cornelis A. T.

    2017-02-01

    Magnetic resonance (MR)-only radiotherapy treatment planning requires pseudo-CT (pCT) images to enable MR-based dose calculations. To verify the accuracy of MR-based dose calculations, institutions interested in introducing MR-only planning will have to compare pCT-based and computer tomography (CT)-based dose calculations. However, interpreting such comparison studies may be challenging, since potential differences arise from a range of confounding factors which are not necessarily specific to MR-only planning. Therefore, the aim of this study is to identify and quantify the contribution of factors confounding dosimetric accuracy estimation in comparison studies between CT and pCT. The following factors were distinguished: set-up and positioning differences between imaging sessions, MR-related geometric inaccuracy, pCT generation, use of specific calibration curves to convert pCT into electron density information, and registration errors. The study comprised fourteen prostate cancer patients who underwent CT/MRI-based treatment planning. To enable pCT generation, a commercial solution (MRCAT, Philips Healthcare, Vantaa, Finland) was adopted. IMRT plans were calculated on CT (gold standard) and pCTs. Dose difference maps in a high dose region (CTV) and in the body volume were evaluated, and the contribution to dose errors of possible confounding factors was individually quantified. We found that the largest confounding factor leading to dose difference was the use of different calibration curves to convert pCT and CT into electron density (0.7%). The second largest factor was the pCT generation which resulted in pCT stratified into a fixed number of tissue classes (0.16%). Inter-scan differences due to patient repositioning, MR-related geometric inaccuracy, and registration errors did not significantly contribute to dose differences (0.01%). The proposed approach successfully identified and quantified the factors confounding accurate MRI-based dose calculation in the prostate. This study will be valuable for institutions interested in introducing MR-only dose planning in their clinical practice.

  12. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, 8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  13. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  14. A reanalysis of cancer mortality in Canadian nuclear workers (1956-1994) based on revised exposure and cohort data.

    PubMed

    Zablotska, L B; Lane, R S D; Thompson, P A

    2014-01-07

    A 15-country study of nuclear workers reported significantly increased radiation-related risks of all cancers excluding leukaemia, with Canadian data a major factor behind the pooled results. We analysed mortality (1956-1994) in the updated Canadian cohort and provided revised risk estimates. Employment records were searched to verify and revise exposure data and to restore missing socioeconomic status. Excess relative risks per sievert (ERR/Sv) of recorded radiation dose and 95% confidence intervals (CIs) were estimated using Poisson regression. A significant heterogeneity of the dose-response for solid cancer was identified (P=0.02), with 3088 early (1956-1964) Atomic Energy of Canada Limited (AECL) workers having a significant increase (ERR/Sv=7.87, 95% CI: 1.88, 19.5), and no evidence of radiation risk for 42,228 workers employed by three nuclear power plant companies and post-1964 AECL (ERR/Sv=-1.20, 95% CI: <-1.47, 2.39). Radiation risks of leukaemia were negative in early AECL workers and non-significantly increased in other workers. In analyses with separate terms for tritium and gamma doses, there was no evidence of increased risk from tritium exposure. All workers had mortality lower than the general population. Significantly increased risks for early AECL workers are most likely due to incomplete transfer of AECL dose records to the National Dose Registry. Analyses of the remainder of the Canadian nuclear workers (93.2%) provided no evidence of increased risk, but the risk estimate was compatible with estimates that form the basis of radiation protection standards. Study findings suggest that the revised Canadian cohort, with the exclusion of early AECL workers, would likely have an important effect on the 15-country pooled risk estimate of radiation-related risks of all cancer excluding leukaemia by substantially reducing the size of the point estimate and its significance.

  15. The effect on esophagus after different radiotherapy techniques for early stage Hodgkin's lymphoma.

    PubMed

    Jørgensen, Anni Y S; Maraldo, Maja V; Brodin, Nils Patrik; Aznar, Marianne C; Vogelius, Ivan R; Rosenschöld, Per Munck Af; Petersen, Peter M; Specht, Lena

    2013-10-01

    The cure rate of early stage Hodgkin's lymphoma (HL) is excellent; investigating the late effects of treatment is thus important. Esophageal toxicity is a known side effect in patients receiving radiotherapy (RT) to the mediastinum, although little is known of this in HL survivors. This study investigates the dose to the esophagus in the treatment of early stage HL using different RT techniques. Estimated risks of early esophagitis, esophageal stricture and cancer are compared between treatments. We included 46 patients ≥ 15 years with supradiaphragmatic, clinical stage I-II HL, who received chemotherapy followed by involved node RT (INRT) to 30.6 Gy at our institution. INRT was planned with three-dimensional conformal RT (3DCRT). For each patient a volumetric modulated arc therapy (VMAT), proton therapy (PT) and mantle field (MF) treatment plan was simulated. Mean, maximum and minimum dose to the esophagus were extracted from the treatment plans. Risk estimates were based on dose-response models from clinical series with long-term follow-up. Statistical analyses were performed with repeated measures ANOVA using Bonferroni corrections. Mean dose to the esophagus was 16.4, 16.4, 14.7 and 34.2 Gy (p < 0.001) with 3DCRT, VMAT, PT and MF treatment, respectively. No differences were seen in the estimated risk of developing esophagitis, stricture or cancer with 3DCRT compared to VMAT (p = 1.000, p = 1.000, p = 0.356). PT performed significantly better with the lowest risk estimates on all parameters compared to the photon treatments, except compared to 3DCRT for stricture (p = 0.066). On all parameters the modern techniques were superior to MF treatment (p < 0.001). The estimated dose to the esophagus and the corresponding estimated risks of esophageal complications are decreased significantly with highly conformal RT compared to MF treatment. The number of patients presenting with late esophageal side effects will, thus, likely be minimal in the future.

  16. SU-E-T-503: IMRT Optimization Using Monte Carlo Dose Engine: The Effect of Statistical Uncertainty.

    PubMed

    Tian, Z; Jia, X; Graves, Y; Uribe-Sanchez, A; Jiang, S

    2012-06-01

    With the development of ultra-fast GPU-based Monte Carlo (MC) dose engine, it becomes clinically realistic to compute the dose-deposition coefficients (DDC) for IMRT optimization using MC simulation. However, it is still time-consuming if we want to compute DDC with small statistical uncertainty. This work studies the effects of the statistical error in DDC matrix on IMRT optimization. The MC-computed DDC matrices are simulated here by adding statistical uncertainties at a desired level to the ones generated with a finite-size pencil beam algorithm. A statistical uncertainty model for MC dose calculation is employed. We adopt a penalty-based quadratic optimization model and gradient descent method to optimize fluence map and then recalculate the corresponding actual dose distribution using the noise-free DDC matrix. The impacts of DDC noise are assessed in terms of the deviation of the resulted dose distributions. We have also used a stochastic perturbation theory to theoretically estimate the statistical errors of dose distributions on a simplified optimization model. A head-and-neck case is used to investigate the perturbation to IMRT plan due to MC's statistical uncertainty. The relative errors of the final dose distributions of the optimized IMRT are found to be much smaller than those in the DDC matrix, which is consistent with our theoretical estimation. When history number is decreased from 108 to 106, the dose-volume-histograms are still very similar to the error-free DVHs while the error in DDC is about 3.8%. The results illustrate that the statistical errors in the DDC matrix have a relatively small effect on IMRT optimization in dose domain. This indicates we can use relatively small number of histories to obtain the DDC matrix with MC simulation within a reasonable amount of time, without considerably compromising the accuracy of the optimized treatment plan. This work is supported by Varian Medical Systems through a Master Research Agreement. © 2012 American Association of Physicists in Medicine.

  17. Model-based meta-analysis to evaluate optimal doses of direct oral factor Xa inhibitors in atrial fibrillation patients

    PubMed Central

    Yoshioka, Hideki; Sato, Hiromi; Hatakeyama, Hiroto

    2018-01-01

    The noninferiority of direct oral factor Xa (FXa) inhibitors (rivaroxaban, apixaban, and edoxaban) in treatment of atrial fibrillation were demonstrated compared with warfarin by several large clinical trials; however, subsequent meta-analyses reported a higher risk of major bleeding with rivaroxaban than with the other FXa inhibitors. In the present study, we first estimated the changes of prothrombin time (PT) in 5 randomized trials based on reported population pharmacokinetic and pharmacodynamic models and then carried out a model-based meta-analysis to obtain models describing the relationship between PT changes and the event rates of ischemic stroke/systemic embolism (SE) and of major bleeding. By using the models, we simulated the optimal therapeutic doses for each FXa inhibitor. It was suggested that dose reduction of rivaroxaban from the current 20 mg/d to 10 mg/d would decrease patient deaths from major bleeding (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.64-0.74) with little increase in those for ischemic stroke/SE (HR, 1.11; 95% CI, 1.07-1.20). The overall decrease in the mortality caused by both events was estimated as 5.81 per 10 000 patient-years (95% CI, 3.92-8.16), with an HR of 0.87 (95% CI, 0.83-0.91). For apixaban and edoxaban, no distinct change in the overall mortality was simulated by dose modification. This study suggested that the current dose of rivaroxaban might be excessive and would need to be reduced to decrease the excess risk of major bleeding. PMID:29760204

  18. A novel approach to neutron dosimetry.

    PubMed

    Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C

    2016-11-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose.

  19. Calculated and TLD-based absorbed dose estimates for I-131-labeled 3F8 monoclonal antibody in a human neuroblastoma xenograft nude mouse model.

    PubMed

    Ugur, O; Scott, A M; Kostakoglu, L; Hui, T E; Masterson, M E; Febo, R; Sgouros, G; Rosa, E; Mehta, B M; Fisher, D R

    1995-01-01

    Preclinical evaluation of the therapeutic potential of radiolabeled antibodies is commonly performed in a xenografted nude mouse model. To assess therapeutic efficacy it is important to estimate the absorbed dose to the tumor and normal tissues of the nude mouse. The current study was designed to accurately measure radiation does to human neuroblastoma xenografts and normal organs in nude mice treated with I-131-labeled 3F8 monoclonal antibody (MoAb) against disialoganglioside GD2 antigen. Absorbed dose estimates were obtained using two different approaches: (1) measurement with teflon-imbedded CaSO4:Dy mini-thermoluminescent dosimeters (TLDs) and (2) calculations using mouse S-factors. The calculated total dose to tumor one week after i.v. injection of the 50 microCi I-131-3F8 MoAb was 604 cGy. The corresponding decay corrected and not corrected TLD measurements were 109 +/- 9 and 48.7 +/- 3.4 cGy respectively. The calculated to TLD-derived dose ratios for tumor ranged from 6.1 at 24 h to 5.5 at 1 week. The light output fading rate was found to depend upon the tissue type within which the TLDs were implanted. The decay rate in tumor, muscle, subcutaneous tissue and in vitro, were 9.5, 5.0, 3.7 and 0.67% per day, respectively. We have demonstrated that the type of tissue in which the TLD was implanted strongly influenced the in vivo decay of light output. Even with decay correction, a significant discrepancy was observed between MIRD-based calculated and CaSO4:Dy mini-TLD measured absorbed doses. Batch dependence, pH of the tumor or other variables associated with TLDs which are not as yet well known may account for this discrepancy.

  20. Perspectives of UV nowcasting to monitor personal pro-health outdoor activities.

    PubMed

    Krzyścin, Janusz W; Lesiak, Aleksandra; Narbutt, Joanna; Sobolewski, Piotr; Guzikowski, Jakub

    2018-07-01

    Nowcasting model for online monitoring of personal outdoor behaviour is proposed. It is envisaged that it will provide an effective e-tool used by smartphone users. The model could estimate maximum duration of safe (without erythema risk) outdoor activity. Moreover, there are options to estimate duration of sunbathing to get adequate amount of vitamin D 3 and doses necessary for the antipsoriatic heliotherapy. The application requires information of starting time of sunbathing and the user's phototype. At the beginning the user will be informed of the approximate duration of sunbathing required to get the minimum erythemal dose, adequate amount of vitamin D 3 , and the dose necessary for the antipsoriatic heliotherapy. After every 20-min the application will recalculate the remaining duration of sunbathing based on the UVI measured in the preceding 20 min. If the estimate of remaining duration is <20 min the user will be informed that the deadline of sunbathing is approaching. Finally, a warning signal will be sent to stop sunbathing if the measured dose reaches the required dose. The proposed model is verified using the data collected at two measuring sites for the warm period of 2017 (1st April-30th September) in large Polish cities (Warsaw and Lodz). First instrument represents the UVI monitoring station. The information concerning sunbathing duration, which is sent to a remote user, is evaluated on the basis of the UVI measurements collected by the second measuring unit in a distance of ~7 km and 10 km for Warsaw and Lodz, respectively. The statistical analysis of the differences between sunbathing duration by nowcasting model and observation shows that the model provides reliable doses received by the users during outdoor activities in proximity (~10 km) to the UVI source site. Standard 24 h UVI forecast based on prognostic values of total ozone and cloudiness appears to only be valid for sunny days. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Mathematical modeling improves EC50 estimations from classical dose-response curves.

    PubMed

    Nyman, Elin; Lindgren, Isa; Lövfors, William; Lundengård, Karin; Cervin, Ida; Sjöström, Theresia Arbring; Altimiras, Jordi; Cedersund, Gunnar

    2015-03-01

    The β-adrenergic response is impaired in failing hearts. When studying β-adrenergic function in vitro, the half-maximal effective concentration (EC50 ) is an important measure of ligand response. We previously measured the in vitro contraction force response of chicken heart tissue to increasing concentrations of adrenaline, and observed a decreasing response at high concentrations. The classical interpretation of such data is to assume a maximal response before the decrease, and to fit a sigmoid curve to the remaining data to determine EC50 . Instead, we have applied a mathematical modeling approach to interpret the full dose-response curve in a new way. The developed model predicts a non-steady-state caused by a short resting time between increased concentrations of agonist, which affect the dose-response characterization. Therefore, an improved estimate of EC50 may be calculated using steady-state simulations of the model. The model-based estimation of EC50 is further refined using additional time-resolved data to decrease the uncertainty of the prediction. The resulting model-based EC50 (180-525 nm) is higher than the classically interpreted EC50 (46-191 nm). Mathematical modeling thus makes it possible to re-interpret previously obtained datasets, and to make accurate estimates of EC50 even when steady-state measurements are not experimentally feasible. The mathematical models described here have been submitted to the JWS Online Cellular Systems Modelling Database, and may be accessed at http://jjj.bio.vu.nl/database/nyman. © 2015 FEBS.

  2. Using pharmacoeconomic modelling to determine value-based pricing for new pharmaceuticals in malaysia.

    PubMed

    Dranitsaris, George; Truter, Ilse; Lubbe, Martie S; Sriramanakoppa, Nitin N; Mendonca, Vivian M; Mahagaonkar, Sangameshwar B

    2011-10-01

    Decision analysis (DA) is commonly used to perform economic evaluations of new pharmaceuticals. Using multiples of Malaysia's per capita 2010 gross domestic product (GDP) as the threshold for economic value as suggested by the World Health Organization (WHO), DA was used to estimate a price per dose for bevacizumab, a drug that provides a 1.4-month survival benefit in patients with metastatic colorectal cancer (mCRC). A decision model was developed to simulate progression-free and overall survival in mCRC patients receiving chemotherapy with and without bevacizumab. Costs for chemotherapy and management of side effects were obtained from public and private hospitals in Malaysia. Utility estimates, measured as quality-adjusted life years (QALYs), were determined by interviewing 24 oncology nurses using the time trade-off technique. The price per dose was then estimated using a target threshold of US$44 400 per QALY gained, which is 3 times the Malaysian per capita GDP. A cost-effective price for bevacizumab could not be determined because the survival benefit provided was insufficient According to the WHO criteria, if the drug was able to improve survival from 1.4 to 3 or 6 months, the price per dose would be $567 and $1258, respectively. The use of decision modelling for estimating drug pricing is a powerful technique to ensure value for money. Such information is of value to drug manufacturers and formulary committees because it facilitates negotiations for value-based pricing in a given jurisdiction.

  3. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of severe internal exposure, the causation probability of a deterministic health effect can be derived from the dose distribution, and a high statistical value ( e.g., the 95th percentile of the distribution) can be used to determine the appropriate intervention. The distribution-based sensitivity analysis can also be used to quantify the contribution of each factor to the dose uncertainty, which is essential information for reducing and optimizing the uncertainty in the internal dose assessment. Therefore, the present study can contribute to retrospective dose assessment for accidental internal exposure scenarios, as well as to internal dose monitoring optimization and uncertainty reduction.

  4. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition.

    PubMed

    Falgreen, Steffen; Laursen, Maria Bach; Bødker, Julie Støve; Kjeldsen, Malene Krag; Schmitz, Alexander; Nyegaard, Mette; Johnsen, Hans Erik; Dybkær, Karen; Bøgsted, Martin

    2014-06-05

    In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves' dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Time independent summary statistics may aid the understanding of drugs' action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies.

  5. Exposure time independent summary statistics for assessment of drug dependent cell line growth inhibition

    PubMed Central

    2014-01-01

    Background In vitro generated dose-response curves of human cancer cell lines are widely used to develop new therapeutics. The curves are summarised by simplified statistics that ignore the conventionally used dose-response curves’ dependency on drug exposure time and growth kinetics. This may lead to suboptimal exploitation of data and biased conclusions on the potential of the drug in question. Therefore we set out to improve the dose-response assessments by eliminating the impact of time dependency. Results First, a mathematical model for drug induced cell growth inhibition was formulated and used to derive novel dose-response curves and improved summary statistics that are independent of time under the proposed model. Next, a statistical analysis workflow for estimating the improved statistics was suggested consisting of 1) nonlinear regression models for estimation of cell counts and doubling times, 2) isotonic regression for modelling the suggested dose-response curves, and 3) resampling based method for assessing variation of the novel summary statistics. We document that conventionally used summary statistics for dose-response experiments depend on time so that fast growing cell lines compared to slowly growing ones are considered overly sensitive. The adequacy of the mathematical model is tested for doxorubicin and found to fit real data to an acceptable degree. Dose-response data from the NCI60 drug screen were used to illustrate the time dependency and demonstrate an adjustment correcting for it. The applicability of the workflow was illustrated by simulation and application on a doxorubicin growth inhibition screen. The simulations show that under the proposed mathematical model the suggested statistical workflow results in unbiased estimates of the time independent summary statistics. Variance estimates of the novel summary statistics are used to conclude that the doxorubicin screen covers a significant diverse range of responses ensuring it is useful for biological interpretations. Conclusion Time independent summary statistics may aid the understanding of drugs’ action mechanism on tumour cells and potentially renew previous drug sensitivity evaluation studies. PMID:24902483

  6. Assessment of environmental consequences of the normal operations of the ESS facility

    NASA Astrophysics Data System (ADS)

    Ene, D.; Avila, R.; Hjerpe, T.; Bugay, D.; Stenberg, K.

    2018-06-01

    As other accelerator based facilities, the European Spallation Source ESS facility will interact with the environment. The Swedish legislation requires a demonstration that the sum of the doses resulting from the exposure of any member of the public to ionizing radiation dose does not exceed the specified limit of 50 μSv/year. A radiological assessment has been produced to provide that demonstration. This evaluation was based upon the actual status of the ESS design. A graded approach was adopted through over the assessment allowing estimating dose for all radionuclides and exposure pathways, but the degree of detail in the assessment depend upon their relative radiological importance. The total dose was obtained making the sum of the contribution of all-important radionuclides treated realistically with that of all screened out radionuclides, derived by means a conservative method.

  7. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dogan, N; Padgett, K; Evans, J

    Purpose: Adaptive Radiotherapy (ART) with frequent CT imaging has been used to improve dosimetric accuracy by accounting for anatomical variations, such as primary tumor shrinkage and/or body weight loss, in Head and Neck (H&N) patients. In most ART strategies, the difference between the planned and the delivered dose is estimated by generating new plans on repeated CT scans using dose-volume constraints used with the initial planning CT without considering already delivered dose. The aim of this study was to assess the dosimetric gains achieved by re-planning based on prior dose by comparing them to re-planning not based-on prior dose formore » H&N patients. Methods: Ten locally-advanced H&N cancer patients were selected for this study. For each patient, six weekly CT imaging were acquired during the course of radiotherapy. PTVs, parotids, cord, brainstem, and esophagus were contoured on both planning and six weekly CT images. ART with weekly re-plans were done by two strategies: 1) Generating a new optimized IMRT plan without including prior dose from previous fractions (NoPriorDose) and 2) Generating a new optimized IMRT plan based on the prior dose given from previous fractions (PriorDose). Deformable image registration was used to accumulate the dose distributions between planning and six weekly CT scans. The differences in accumulated doses for both strategies were evaluated using the DVH constraints for all structures. Results: On average, the differences in accumulated doses for PTV1, PTV2 and PTV3 for NoPriorDose and PriorDose strategies were <2%. The differences in Dmean to the cord and brainstem were within 3%. The esophagus Dmean was reduced by 2% using PriorDose. PriorDose strategy, however, reduced the left parotid D50 and Dmean by 15% and 14% respectively. Conclusion: This study demonstrated significant parotid sparing, potentially reducing xerostomia, by using ART with IMRT optimization based on prior dose for weekly re-planning of H&N cancer patients.« less

  9. Patient‐specific CT dosimetry calculation: a feasibility study

    PubMed Central

    Xie, Huchen; Cheng, Jason Y.; Ning, Holly; Zhuge, Ying; Miller, Robert W.

    2011-01-01

    Current estimation of radiation dose from computed tomography (CT) scans on patients has relied on the measurement of Computed Tomography Dose Index (CTDI) in standard cylindrical phantoms, and calculations based on mathematical representations of “standard man”. Radiation dose to both adult and pediatric patients from a CT scan has been a concern, as noted in recent reports. The purpose of this study was to investigate the feasibility of adapting a radiation treatment planning system (RTPS) to provide patient‐specific CT dosimetry. A radiation treatment planning system was modified to calculate patient‐specific CT dose distributions, which can be represented by dose at specific points within an organ of interest, as well as organ dose‐volumes (after image segmentation) for a GE Light Speed Ultra Plus CT scanner. The RTPS calculation algorithm is based on a semi‐empirical, measured correction‐based algorithm, which has been well established in the radiotherapy community. Digital representations of the physical phantoms (virtual phantom) were acquired with the GE CT scanner in axial mode. Thermoluminescent dosimeter (TLDs) measurements in pediatric anthropomorphic phantoms were utilized to validate the dose at specific points within organs of interest relative to RTPS calculations and Monte Carlo simulations of the same virtual phantoms (digital representation). Congruence of the calculated and measured point doses for the same physical anthropomorphic phantom geometry was used to verify the feasibility of the method. The RTPS algorithm can be extended to calculate the organ dose by calculating a dose distribution point‐by‐point for a designated volume. Electron Gamma Shower (EGSnrc) codes for radiation transport calculations developed by National Research Council of Canada (NRCC) were utilized to perform the Monte Carlo (MC) simulation. In general, the RTPS and MC dose calculations are within 10% of the TLD measurements for the infant and child chest scans. With respect to the dose comparisons for the head, the RTPS dose calculations are slightly higher (10%–20%) than the TLD measurements, while the MC results were within 10% of the TLD measurements. The advantage of the algebraic dose calculation engine of the RTPS is a substantially reduced computation time (minutes vs. days) relative to Monte Carlo calculations, as well as providing patient‐specific dose estimation. It also provides the basis for a more elaborate reporting of dosimetric results, such as patient specific organ dose volumes after image segmentation. PACS numbers: 87.55.D‐, 87.57.Q‐, 87.53.Bn, 87.55.K‐ PMID:22089016

  10. Model-based adaptive phase I trial design of post-transplant decitabine maintenance in myelodysplastic syndrome.

    PubMed

    Han, Seunghoon; Kim, Yoo-Jin; Lee, Jongtae; Jeon, Sangil; Hong, Taegon; Park, Gab-Jin; Yoon, Jae-Ho; Yahng, Seung-Ah; Shin, Seung-Hwan; Lee, Sung-Eun; Eom, Ki-Seong; Kim, Hee-Je; Min, Chang-Ki; Lee, Seok; Yim, Dong-Seok

    2015-10-23

    This report focuses on the adaptive phase I trial design aimed to find the clinically applicable dose for decitabine maintenance treatment after allogeneic hematopoietic stem cell transplantation in patients with higher-risk myelodysplastic syndrome and secondary acute myeloid leukemia. The first cohort (three patients) was given the same initial daily dose of decitabine (5 mg/m(2)/day, five consecutive days with 4-week intervals). In all cohorts, the doses for Cycles 2 to 4 were individualized using pharmacokinetic-pharmacodynamic modeling and simulations. The goal of dose individualization was to determine the maximum dose for each patient at which the occurrence of grade 4 (CTC-AE) toxicities for both platelet and neutrophil counts could be avoided. The initial doses for the following cohorts were also estimated with the data from the previous cohorts in the same manner. In all but one patient (14 out of 15), neutrophil count was the dose-limiting factor throughout the cycles. In cycles where doses were individualized, the median neutrophil nadir observed was 1100/mm(3) (grade 2) and grade 4 toxicity occurred in 5.1 % of all cycles (while it occurred in 36.8 % where doses were not individualized). The initial doses estimated for cohorts 2 to 5 were 4, 5, 5.5, and 5 mg/m(2)/day, respectively. The median maintenance dose was 7 mg/m(2)/day. We determined the acceptable starting dose and individualized the maintenance dose for each patient, while minimizing the toxicity using the adaptive approach. Currently, 5 mg/m(2)/day is considered to be the most appropriate starting dose for the regimen studied. Clinicaltrials.gov NCT01277484.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, P; Lins, L Nadler

    Purpose: There is a lack of studies with significant cohort data about patients using pacemaker (PM), implanted cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT) device undergoing radiotherapy. There is no literature comparing the cumulative doses delivered to those cardiac implanted electronic devices (CIED) calculated by different algorithms neither studies comparing doses with heterogeneity correction or not. The aim of this study was to evaluate the influence of the algorithms Pencil Beam Convolution (PBC), Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB) as well as heterogeneity correction on risk categorization of patients. Methods: A retrospective analysis of 19 3DCRT ormore » IMRT plans of 17 patients was conducted, calculating the dose delivered to CIED using three different calculation algorithms. Doses were evaluated with and without heterogeneity correction for comparison. Risk categorization of the patients was based on their CIED dependency and cumulative dose in the devices. Results: Total estimated doses at CIED calculated by AAA or AXB were higher than those calculated by PBC in 56% of the cases. In average, the doses at CIED calculated by AAA and AXB were higher than those calculated by PBC (29% and 4% higher, respectively). The maximum difference of doses calculated by each algorithm was about 1 Gy, either using heterogeneity correction or not. Values of maximum dose calculated with heterogeneity correction showed that dose at CIED was at least equal or higher in 84% of the cases with PBC, 77% with AAA and 67% with AXB than dose obtained with no heterogeneity correction. Conclusion: The dose calculation algorithm and heterogeneity correction did not change the risk categorization. Since higher estimated doses delivered to CIED do not compromise treatment precautions to be taken, it’s recommend that the most sophisticated algorithm available should be used to predict dose at the CIED using heterogeneity correction.« less

  12. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less

  13. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current:: A Human Cadaver Study.

    PubMed

    Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K

    2016-05-01

    The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  14. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    PubMed

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.

  15. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  16. Topogram-based tube current modulation of head computed tomography for optimizing image quality while protecting the eye lens with shielding.

    PubMed

    Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P

    2018-01-01

    Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.

  17. Calculating Radiation Dose for Biological Tissue

    NASA Image and Video Library

    2013-05-30

    This graph based on data from the RAD instrument onboard NASA Mars Science Laboratory spacecraft shows the flux of energetic particles vertical axis as a function of the estimated energy deposited in water horizontal axis.

  18. Assessing dose-response effects of national essential medicine policy in China: comparison of two methods for handling data with a stepped wedge-like design and hierarchical structure.

    PubMed

    Ren, Yan; Yang, Min; Li, Qian; Pan, Jay; Chen, Fei; Li, Xiaosong; Meng, Qun

    2017-02-22

    To introduce multilevel repeated measures (RM) models and compare them with multilevel difference-in-differences (DID) models in assessing the linear relationship between the length of the policy intervention period and healthcare outcomes (dose-response effect) for data from a stepped-wedge design with a hierarchical structure. The implementation of national essential medicine policy (NEMP) in China was a stepped-wedge-like design of five time points with a hierarchical structure. Using one key healthcare outcome from the national NEMP surveillance data as an example, we illustrate how a series of multilevel DID models and one multilevel RM model can be fitted to answer some research questions on policy effects. Routinely and annually collected national data on China from 2008 to 2012. 34 506 primary healthcare facilities in 2675 counties of 31 provinces. Agreement and differences in estimates of dose-response effect and variation in such effect between the two methods on the logarithm-transformed total number of outpatient visits per facility per year (LG-OPV). The estimated dose-response effect was approximately 0.015 according to four multilevel DID models and precisely 0.012 from one multilevel RM model. Both types of model estimated an increase in LG-OPV by 2.55 times from 2009 to 2012, but 2-4.3 times larger SEs of those estimates were found by the multilevel DID models. Similar estimates of mean effects of covariates and random effects of the average LG-OPV among all levels in the example dataset were obtained by both types of model. Significant variances in the dose-response among provinces, counties and facilities were estimated, and the 'lowest' or 'highest' units by their dose-response effects were pinpointed only by the multilevel RM model. For examining dose-response effect based on data from multiple time points with hierarchical structure and the stepped wedge-like designs, multilevel RM models are more efficient, convenient and informative than the multilevel DID models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies.

    PubMed

    Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O

    2017-04-01

    For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Dosimetry and prescription in liver radioembolization with 90Y microspheres: 3D calculation of tumor-to-liver ratio from global 99mTc-MAA SPECT information

    NASA Astrophysics Data System (ADS)

    Mañeru, Fernando; Abós, Dolores; Bragado, Laura; Fuentemilla, Naiara; Caudepón, Fernando; Pellejero, Santiago; Miquelez, Santiago; Rubio, Anastasio; Goñi, Elena; Hernández-Vitoria, Araceli

    2017-12-01

    Dosimetry in liver radioembolization with 90Y microspheres is a fundamental tool, both for the optimization of each treatment and for improving knowledge of the treatment effects in the tissues. Different options are available for estimating the administered activity and the tumor/organ dose, among them the so-called partition method. The key factor in the partition method is the tumor/normal tissue activity uptake ratio (T/N), which is obtained by a single-photon emission computed tomography (SPECT) scan during a pre-treatment simulation. The less clear the distinction between healthy and tumor parenchyma within the liver, the more difficult it becomes to estimate the T/N ratio; therefore the use of the method is limited. This study presents a methodology to calculate the T/N ratio using global information from the SPECT. The T/N ratio is estimated by establishing uptake thresholds consistent with previously performed volumetry. This dose calculation method was validated against 3D voxel dosimetry, and was also compared with the standard partition method based on freehand regions of interest (ROI) outlining on SPECT slices. Both comparisons were done on a sample of 20 actual cases of hepatocellular carcinoma treated with resin microspheres. The proposed method and the voxel dosimetry method yield similar results, while the ROI-based method tends to over-estimate the dose to normal tissues. In addition, the variability associated with the ROI-based method is more extreme than the other methods. The proposed method is simpler than either the ROI or voxel dosimetry approaches and avoids the subjectivity associated with the manual selection of regions.

Top