Sample records for dose estimates source

  1. Radiation exposure from consumer products and miscellaneous sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-01-01

    This review of the literature indicates that there is a variety of consumer products and miscellaneous sources of radiation that result in exposure to the U.S. population. A summary of the number of people exposed to each such source, an estimate of the resulting dose equivalents to the exposed population, and an estimate of the average annual population dose equivalent are tabulated. A review of the data in this table shows that the total average annual contribution to the whole-body dose equivalent of the U.S. population from consumer products is less than 5 mrem; about 70 percent of this arisesmore » from the presence of naturally-occurring radionuclides in building materials. Some of the consumer product sources contribute exposure mainly to localized tissues or organs. Such localized estimates include: 0.5 to 1 mrem to the average annual population lung dose equivalent (generalized); 2 rem to the average annual population bronchial epithelial dose equivalent (localized); and 10 to 15 rem to the average annual population basal mucosal dose equivalent (basal mucosa of the gum). Based on these estimates, these sources may be grouped or classified as those that involve many people and the dose equivalent is relative large or those that involve many people but the dose equivalent is relatively small, or the dose equivalent is relatively large but the number of people involved is small.« less

  2. Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT.

    PubMed

    Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W

    2012-04-01

    To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Assessment of the point-source method for estimating dose rates to members of the public from exposure to patients with 131I thyroid treatment

    DOE PAGES

    Dewji, Shaheen Azim; Bellamy, Michael B.; Hertel, Nolan E.; ...

    2015-09-01

    The U.S. Nuclear Regulatory Commission (USNRC) initiated a contract with Oak Ridge National Laboratory (ORNL) to calculate radiation dose rates to members of the public that may result from exposure to patients recently administered iodine-131 ( 131I) as part of medical therapy. The main purpose was to compare dose rate estimates based on a point source and target with values derived from more realistic simulations that considered the time-dependent distribution of 131I in the patient and attenuation of emitted photons by the patient’s tissues. The external dose rate estimates were derived using Monte Carlo methods and two representations of themore » Phantom with Movable Arms and Legs, previously developed by ORNL and the USNRC, to model the patient and a nearby member of the public. Dose rates to tissues and effective dose rates were calculated for distances ranging from 10 to 300 cm between the phantoms and compared to estimates based on the point-source method, as well as to results of previous studies that estimated exposure from 131I patients. The point-source method overestimates dose rates to members of the public in very close proximity to an 131I patient but is a broadly accurate method of dose rate estimation at separation distances of 300 cm or more at times closer to administration.« less

  4. Estimation of ambient dose equivalent distribution in the 18F-FDG administration room using Monte Carlo simulation.

    PubMed

    Nagamine, Shuji; Fujibuchi, Toshioh; Umezu, Yoshiyuki; Himuro, Kazuhiko; Awamoto, Shinichi; Tsutsui, Yuji; Nakamura, Yasuhiko

    2017-03-01

    In this study, we estimated the ambient dose equivalent rate (hereafter "dose rate") in the fluoro-2-deoxy-D-glucose (FDG) administration room in our hospital using Monte Carlo simulations, and examined the appropriate medical-personnel locations and a shielding method to reduce the dose rate during FDG injection using a lead glass shield. The line source was assumed to be the FDG feed tube and the patient a cube source. The dose rate distribution was calculated with a composite source that combines the line and cube sources. The dose rate distribution was also calculated when a lead glass shield was placed in the rear section of the lead-acrylic shield. The dose rate behind the automatic administration device decreased by 87 % with respect to that behind the lead-acrylic shield. Upon positioning a 2.8-cm-thick lead glass shield, the dose rate behind the lead-acrylic shield decreased by 67 %.

  5. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  6. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates.

  7. TU-H-CAMPUS-IeP1-05: A Framework for the Analytic Calculation of Patient-Specific Dose Distribution Due to CBCT Scan for IGRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, H; Jeon, H; Nam, J

    Purpose: To investigate the feasibility of an analytic framework to estimate patients’ absorbed dose distribution owing to daily cone-beam CT scan for image-guided radiation treatment. Methods: To compute total absorbed dose distribution, we separated the framework into primary and scattered dose calculations. Using the source parameters such as voltage, current, and bowtie filtration, for the primary dose calculation, we simulated the forward projection from the source to each voxel of an imaging object including some inhomogeneous inserts. Then we calculated the primary absorbed dose at each voxel based on the absorption probability deduced from the HU values and Beer’s law.more » In sequence, all voxels constructing the phantom were regarded as secondary sources to radiate scattered photons for scattered dose calculation. Details of forward projection were identical to that of the previous step. The secondary source intensities were given by using scatter-to- primary ratios provided by NIST. In addition, we compared the analytically calculated dose distribution with their Monte Carlo simulation results. Results: The suggested framework for absorbed dose estimation successfully provided the primary and secondary dose distributions of the phantom. Moreover, our analytic dose calculations and Monte Carlo calculations were well agreed each other even near the inhomogeneous inserts. Conclusion: This work indicated that our framework can be an effective monitor to estimate a patient’s exposure owing to cone-beam CT scan for image-guided radiation treatment. Therefore, we expected that the patient’s over-exposure during IGRT might be prevented by our framework.« less

  8. Using LiF:Mg,Cu,P TLDs to estimate the absorbed dose to water in liquid water around an 192Ir brachytherapy source.

    PubMed

    Lucas, P Avilés; Aubineau-Lanièce, I; Lourenço, V; Vermesse, D; Cutarella, D

    2014-01-01

    The absorbed dose to water is the fundamental reference quantity for brachytherapy treatment planning systems and thermoluminescence dosimeters (TLDs) have been recognized as the most validated detectors for measurement of such a dosimetric descriptor. The detector response in a wide energy spectrum as that of an (192)Ir brachytherapy source as well as the specific measurement medium which surrounds the TLD need to be accounted for when estimating the absorbed dose. This paper develops a methodology based on highly sensitive LiF:Mg,Cu,P TLDs to directly estimate the absorbed dose to water in liquid water around a high dose rate (192)Ir brachytherapy source. Different experimental designs in liquid water and air were constructed to study the response of LiF:Mg,Cu,P TLDs when irradiated in several standard photon beams of the LNE-LNHB (French national metrology laboratory for ionizing radiation). Measurement strategies and Monte Carlo techniques were developed to calibrate the LiF:Mg,Cu,P detectors in the energy interval characteristic of that found when TLDs are immersed in water around an (192)Ir source. Finally, an experimental system was designed to irradiate TLDs at different angles between 1 and 11 cm away from an (192)Ir source in liquid water. Monte Carlo simulations were performed to correct measured results to provide estimates of the absorbed dose to water in water around the (192)Ir source. The dose response dependence of LiF:Mg,Cu,P TLDs with the linear energy transfer of secondary electrons followed the same variations as those of published results. The calibration strategy which used TLDs in air exposed to a standard N-250 ISO x-ray beam and TLDs in water irradiated with a standard (137)Cs beam provided an estimated mean uncertainty of 2.8% (k = 1) in the TLD calibration coefficient for irradiations by the (192)Ir source in water. The 3D TLD measurements performed in liquid water were obtained with a maximum uncertainty of 11% (k = 1) found at 1 cm from the source. Radial dose values in water were compared against published results of the American Association of Physicists in Medicine and the European Society for Radiotherapy and Oncology and no significant differences (maximum value of 3.1%) were found within uncertainties except for one position at 9 cm (5.8%). At this location the background contribution relative to the TLD signal is relatively small and an unexpected experimental fluctuation in the background estimate may have caused such a large discrepancy. This paper shows that reliable measurements with TLDs in complex energy spectra require a study of the detector dose response with the radiation quality and specific calibration methodologies which model accurately the experimental conditions where the detectors will be used. The authors have developed and studied a method with highly sensitive TLDs and contributed to its validation by comparison with results from the literature. This methodology can be used to provide direct estimates of the absorbed dose rate in water for irradiations with HDR (192)Ir brachytherapy sources.

  9. Dose rate estimation around a 60Co gamma-ray irradiation source by means of 115mIn photoactivation.

    PubMed

    Murataka, Ayanori; Endo, Satoru; Kojima, Yasuaki; Shizuma, Kiyoshi

    2010-01-01

    Photoactivation of nuclear isomer (115m)In with a halflife of 4.48 h occurs by (60)Co gamma-ray irradiation. This is because the resonance gamma-ray absorption occurs at 1078 keV level for stable (115)In, and that energy gamma-rays are produced by Compton scattering of (60)Co primary gamma-rays. In this work, photoactivation of (115m)In was applied to estimate the dose rate distribution around a (60)Co irradiation source utilizing a standard dose rate taken by alanine dosimeter. The (115m)In photoactivation was measured at 10 to 160 cm from the (60)Co source. The derived dose rate distribution shows a good agreement with both alanine dosimeter data and Monte Carlo simulation. It is found that angular distribution of the dose rate along a circumference at radius 2.8 cm from the central axis shows +/- 10% periodical variation reflecting the radioactive strength of the source rods, but less periodic distribution at radius 10 and 20 cm. The (115m)In photoactivation along the vertical direction in the central irradiation port strongly depends on the height and radius as indicated by Monte Carlo simulation. It is demonstrated that (115m)In photoactivation is a convenient method to estimate the dose rate distribution around a (60)Co source.

  10. An environmental dose experiment

    NASA Astrophysics Data System (ADS)

    Peralta, Luis

    2017-11-01

    Several radiation sources worldwide contribute to the delivered dose to the human population. This radiation also acts as a natural background when detecting radiation, for instance from radioactive sources. In this work a medium-sized plastic scintillation detector is used to evaluate the dose delivered by natural radiation sources. Calibration of the detector involved the use of radioactive sources and Monte Carlo simulation of the energy deposition per disintegration. A measurement of the annual dose due to background radiation to the body was then estimated. A dose value compatible with the value reported by the United Nations Scientific Committee on the Effects of Atomic Radiation was obtained.

  11. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less

  12. Estimation of low-level neutron dose-equivalent rate by using extrapolation method for a curie level Am-Be neutron source.

    PubMed

    Li, Gang; Xu, Jiayun; Zhang, Jie

    2015-01-01

    Neutron radiation protection is an important research area because of the strong radiation biological effect of neutron field. The radiation dose of neutron is closely related to the neutron energy, and the connected relationship is a complex function of energy. For the low-level neutron radiation field (e.g. the Am-Be source), the commonly used commercial neutron dosimeter cannot always reflect the low-level dose rate, which is restricted by its own sensitivity limit and measuring range. In this paper, the intensity distribution of neutron field caused by a curie level Am-Be neutron source was investigated by measuring the count rates obtained through a 3 He proportional counter at different locations around the source. The results indicate that the count rates outside of the source room are negligible compared with the count rates measured in the source room. In the source room, 3 He proportional counter and neutron dosimeter were used to measure the count rates and dose rates respectively at different distances to the source. The results indicate that both the count rates and dose rates decrease exponentially with the increasing distance, and the dose rates measured by a commercial dosimeter are in good agreement with the results calculated by the Geant4 simulation within the inherent errors recommended by ICRP and IEC. Further studies presented in this paper indicate that the low-level neutron dose equivalent rates in the source room increase exponentially with the increasing low-energy neutron count rates when the source is lifted from the shield with different radiation intensities. Based on this relationship as well as the count rates measured at larger distance to the source, the dose rates can be calculated approximately by the extrapolation method. This principle can be used to estimate the low level neutron dose values in the source room which cannot be measured directly by a commercial dosimeter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. SU-F-T-258: Efficacy of Exit Fluence-Based Dose Calculation for Prostate Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, J; Gardner, J; Neal, B

    Purpose: To investigate the efficacy of exit-fluence-based dose computation for prostate radiotherapy by determining if it estimates true dose more accurately than the original planning dose. Methods: Virtual exit-fluencebased dose computation was performed for 19 patients, each with 9–12 repeat CT images. For each patient, a 78 Gy treatment plan was created utilizing 5 mm CTV-to-PTV and OAR-to-PRV margins. A Monte Carlo framework was used to compute dose and exit-fluence images for the planning image and for each repeat CT image based on boney-anatomyaligned and prostate-centroid-aligned CTs. Identical source particles were used for the MC dose-computations on the planning andmore » repeat CTs to maximize correlation. The exit-fluence-based dose and image were computed by multiplying source particle weights by FC(x,y)=FP(x,y)/FT(x,y), where (x,y) are the source particle coordinates projected to the exit-fluence plane and we denote the dose/fluence from the plan by (DP,FP), from the repeat-CT as (DT,FT), and the exit-fluence computation by (DFC,FFC). DFC mimics exit-fluence backprojection through the planning image as FT=FFC. Dose estimates were intercompared to judge the efficacy of exit-fluence-based dose computation. Results: Boney- and prostate-centroid aligned results are combined as there is no statistical difference between them, yielding 420 dose comparisons per dose-volume metric. DFC is more accurate than DP for 46%, 33%, and 44% of cases in estimating CTV D98, D50, and D2 respectively. DFC improved rectum D50 and D2 estimates 54% and 49% respectively and bladder D50 and D2 47 and 49% respectively. While averaged over all patients and images DFC and DP were within 3.1% of DT, they differed from DT by as much as 22% for GTV D98, 71% for the Bladder D50, 17% for Bladder D2, 19% for Rectum D2. Conclusion: Exit-fluence based dose computations infrequently improve CTV or OAR dose estimates and should be used with caution. Research supported in part by Varian Medical Systems.« less

  14. Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.

    PubMed

    de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto

    2017-12-01

    The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.

  15. Impact of interpatient variability on organ dose estimates according to MIRD schema: Uncertainty and variance-based sensitivity analysis.

    PubMed

    Zvereva, Alexandra; Kamp, Florian; Schlattl, Helmut; Zankl, Maria; Parodi, Katia

    2018-05-17

    Variance-based sensitivity analysis (SA) is described and applied to the radiation dosimetry model proposed by the Committee on Medical Internal Radiation Dose (MIRD) for the organ-level absorbed dose calculations in nuclear medicine. The uncertainties in the dose coefficients thus calculated are also evaluated. A Monte Carlo approach was used to compute first-order and total-effect SA indices, which rank the input factors according to their influence on the uncertainty in the output organ doses. These methods were applied to the radiopharmaceutical (S)-4-(3- 18 F-fluoropropyl)-L-glutamic acid ( 18 F-FSPG) as an example. Since 18 F-FSPG has 11 notable source regions, a 22-dimensional model was considered here, where 11 input factors are the time-integrated activity coefficients (TIACs) in the source regions and 11 input factors correspond to the sets of the specific absorbed fractions (SAFs) employed in the dose calculation. The SA was restricted to the foregoing 22 input factors. The distributions of the input factors were built based on TIACs of five individuals to whom the radiopharmaceutical 18 F-FSPG was administered and six anatomical models, representing two reference, two overweight, and two slim individuals. The self-absorption SAFs were mass-scaled to correspond to the reference organ masses. The estimated relative uncertainties were in the range 10%-30%, with a minimum and a maximum for absorbed dose coefficients for urinary bladder wall and heart wall, respectively. The applied global variance-based SA enabled us to identify the input factors that have the highest influence on the uncertainty in the organ doses. With the applied mass-scaling of the self-absorption SAFs, these factors included the TIACs for absorbed dose coefficients in the source regions and the SAFs from blood as source region for absorbed dose coefficients in highly vascularized target regions. For some combinations of proximal target and source regions, the corresponding cross-fire SAFs were found to have an impact. Global variance-based SA has been for the first time applied to the MIRD schema for internal dose calculation. Our findings suggest that uncertainties in computed organ doses can be substantially reduced by performing an accurate determination of TIACs in the source regions, accompanied by the estimation of individual source region masses along with the usage of an appropriate blood distribution in a patient's body and, in a few cases, the cross-fire SAFs from proximal source regions. © 2018 American Association of Physicists in Medicine.

  16. Milk cow feed intake and milk production and distribution estimates for Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, D.M.; Darwin, R.F.; Erickson, A.R.

    1992-04-01

    This report provides initial information on milk production and distribution in the Hanford Environmental Dose Reconstruction (HEDR) Project Phase I study area. The Phase I study area consists of eight countries in central Washington and two countries in northern Oregon. The primary objective of the HEDR Project is to develop estimates of the radiation doses populations could have received from Hanford operations. The objective of Phase I of the project was to determine the feasibility of reconstructing data, models, and development of preliminary dose estimates received by people living in the ten countries surrounding Hanford from 1944 to 1947. Onemore » of the most important contributors to radiation doses from Hanford during the period of interest was radioactive iodine. Consumption of milk from cows that ate vegetation contaminated with iodine is likely the dominant pathway of human exposure. To estimate the doses people could have received from this pathway, it is necessary to estimate the amount of milk that the people living in the Phase I area consumed, the source of the milk, and the type of feed that the milk cows ate. The objective of the milk model subtask is to identify the sources of milk supplied to residents of each community in the study area as well as the sources of feeds that were fed to the milk cows. In this report, we focus on Grade A cow's milk (fresh milk used for human consumption).« less

  17. Reduced Variance using ADVANTG in Monte Carlo Calculations of Dose Coefficients to Stylized Phantoms

    NASA Astrophysics Data System (ADS)

    Hiller, Mauritius; Bellamy, Michael; Eckerman, Keith; Hertel, Nolan

    2017-09-01

    The estimation of dose coefficients of external radiation sources to the organs in phantoms becomes increasingly difficult for lower photon source energies. This study focus on the estimation of photon emitters around the phantom. The computer time needed to calculate a result within a certain precision can be lowered by several orders of magnitude using ADVANTG compared to a standard run. Using ADVANTG which employs the DENOVO adjoint calculation package enables the user to create a fully populated set of weight windows and source biasing instructions for an MCNP calculation.

  18. Dosimetric evaluation of nanotargeted (188)Re-liposome with the MIRDOSE3 and OLINDA/EXM programs.

    PubMed

    Chang, Chih-Hsien; Chang, Ya-Jen; Lee, Te-Wei; Ting, Gann; Chang, Kwo-Ping

    2012-06-01

    The OLINDA/EXM computer code was created as a replacement for the widely used MIRDOSE3 code for radiation dosimetry in nuclear medicine. A dosimetric analysis with these codes was performed to evaluate nanoliposomes as carriers of radionuclides ((188)Re-liposomes) in colon carcinoma-bearing mice. Pharmacokinetic data for (188)Re-N, N-bis (2-mercaptoethyl)-N',N'-diethylethylenediamine ((188)Re-BMEDA) and (188)Re-liposome were obtained for estimation of absorbed doses in normal organs. Radiation dose estimates for normal tissues were calculated using the MIRDOSE3 and OLINDA/EXM programs for a colon carcinoma solid tumor mouse model. Mean absorbed doses derived from(188)Re-BMEDA and (188)Re-liposome in normal tissues were generally similar as calculated by MIRDOSE3 and OLINDA/EXM programs. One notable exception to this was red marrow, wherein MIRDOSE3 resulted in higher absorbed doses than OLINDA/EXM (1.53- and 1.60-fold for (188)Re-BMEDA and (188)Re-liposome, respectively). MIRDOSE3 and OLINDA have very similar residence times and organ doses. Bone marrow doses were estimated by designating cortical bone rather than bone marrow as a source organ. The bone marrow doses calculated by MIRDOSE3 are higher than those by OLINDA. If the bone marrow is designated as a source organ, the doses estimated by MIRDOSE3 and OLINDA programs will be very similar.

  19. A methodological approach to a realistic evaluation of skin absorbed doses during manipulation of radioactive sources by means of GAMOS Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio

    2018-05-01

    The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.

  20. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    PubMed

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.

  1. Incorporating a Capability for Estimating Inhalation Doses in ...

    EPA Pesticide Factsheets

    Report and Data Files This report presents the approach to be used to incorporate in the U.S. Environmental Protection Agency’s TEVA-SPOT software (U.S.EPA 2014) a capability for estimating inhalation doses that result from the most important sources of contaminated aerosols and volatile contaminants during a contamination event.

  2. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, B.; Miller, L.F.; Sparks, R.B.

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less

  3. Effects of Different Containers on Radioactivity Measurements using a Dose Calibrator with Special Reference to 111In and 123I.

    PubMed

    Inoue, Yusuke; Abe, Yutaka; Kikuchi, Kei; Miyatake, Hiroki; Watanabe, Atsushi

    2017-01-01

    Low-energy characteristic x-rays emitted by 111 In and 123 I sources are easily absorbed by the containers of the sources, affecting radioactivity measurements using a dose calibrator. We examined the effects of different containers on the estimated activities. The radioactivities of 111 In, 123 I, 201 Tl, and 99m Tc were measured in containers frequently employed in clinical practice in Japan. The 111 In measurements were performed in the vials A and B of the 111 In-pentetreotide preparation kit and in the plastic syringe. The activities of 123 I-metaiodobenzylguanidine and 201 Tl chloride were measured in the prefilled glass syringes and plastic syringes. The milking vial, vial A, vial B, and plastic syringe were used to assay 99m Tc. For 111 In and 123 I, measurements were performed with and without a copper filter. The filter was inserted into the well of the dose calibrator to absorb low-energy x-rays. The relative estimate was defined as the ratio of the activity estimated with the dose calibrator to the standard activity. The estimated activities varied greatly depending on the container when 111 In and 123 I sources were assayed without the copper filter. The relative estimates of 111 In were 0.908, 1.072, and 1.373 in the vial A, vial B, and plastic syringe, respectively. The relative estimates of 123 I were 1.052 and 1.352 in the glass syringe and plastic syringe, respectively. Use of the copper filter eliminated the container-dependence in 111 In and 123 I measurements. Container-dependence was demonstrated in neither 201 Tl nor 99m Tc measurements. The activities of 111 In and 123 I estimated with a dose calibrator differ greatly among the containers. Accurate estimation may be attained using the container-specific correction factor or using the copper filter.

  4. Exposure Dose Reconstruction from EPR Spectra of Tooth Enamel Exposed to the Combined Effect of X-rays and Gamma Radiation

    NASA Astrophysics Data System (ADS)

    Kirillov, V. A.; Kuchuro, J. I.

    2014-09-01

    We have used EPR dosimetry on tooth enamel to show that the combined effect of x-rays with effective energy 34 keV and gamma radiation with average energy 1250 keV leads to a significant increase in the reconstructed absorbed dose compared with the applied dose from a gamma source or from an x-ray source or from both sources of electromagnetic radiation. In simulation experiments, we develop an approach to estimating the contribution of diagnostic x-rays to the exposure dose formed in the tooth enamel by the combined effect of x-rays and gamma radiation.

  5. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  6. Hanford Environmental Dose Reconstruction Project monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact onmore » humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates.« less

  7. A macroscopic and microscopic study of radon exposure using Geant4 and MCNPX to estimate dose rates and DNA damage

    NASA Astrophysics Data System (ADS)

    van den Akker, Mary Evelyn

    Radon is considered the second-leading cause of lung cancer after smoking. Epidemiological studies have been conducted in miner cohorts as well as general populations to estimate the risks associated with high and low dose exposures. There are problems with extrapolating risk estimates to low dose exposures, mainly that the dose-response curve at low doses is not well understood. Calculated dosimetric quantities give average energy depositions in an organ or a whole body, but morphological features of an individual can affect these values. As opposed to human phantom models, Computed Tomography (CT) scans provide unique, patient-specific geometries that are valuable in modeling the radiological effects of the short-lived radon progeny sources. Monte Carlo particle transport code Geant4 was used with the CT scan data to model radon inhalation in the main bronchial bifurcation. The equivalent dose rates are near the lower bounds of estimates found in the literature, depending on source volume. To complement the macroscopic study, simulations were run in a small tissue volume in Geant4-DNA toolkit. As an expansion of Geant4 meant to simulate direct physical interactions at the cellular level, the particle track structure of the radon progeny alphas can be analyzed to estimate the damage that can occur in sensitive cellular structures like the DNA molecule. These estimates of DNA double strand breaks are lower than those found in Geant4-DNA studies. Further refinements of the microscopic model are at the cutting edge of nanodosimetry research.

  8. The effect of tandem-ovoid titanium applicator on points A, B, bladder, and rectum doses in gynecological brachytherapy using 192Ir.

    PubMed

    Sadeghi, Mohammad Hosein; Sina, Sedigheh; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani

    2018-02-01

    The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy.

  9. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, A; Ahmad, S; Chen, Y

    2015-06-15

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams withmore » no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object.« less

  10. ANALYSIS OF EPR AND FISH STUDIES OF RADIATION DOSES IN PERSONS WHO LIVED IN THE UPPER REACHES OF THE TECHA RIVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less

  11. Effect of an overhead shield on gamma-ray skyshine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stedry, M.H.; Shultis, J.K.; Faw, R.E.

    1996-06-01

    A hybrid Monte Carlo and integral line-beam method is used to determine the effect of a horizontal slab shield above a gamma-ray source on the resulting skyshine doses. A simplified Monte Carlo procedure is used to determine the energy and angular distribution of photons escaping the source shield into the atmosphere. The escaping photons are then treated as a bare, point, skyshine source, and the integral line-beam method is used to estimate the skyshine dose at various distances from the source. From results for arbitrarily collimated and shielded sources, the skyshine dose is found to depend primarily on the mean-free-pathmore » thickness of the shield and only very weakly on the shield material.« less

  12. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  13. Hanford Environmental Dose Reconstruction Project. Monthly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impactmore » on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed.« less

  14. Accounting for shared and unshared dosimetric uncertainties in the dose response for ultrasound-detected thyroid nodules after exposure to radioactive fallout.

    PubMed

    Land, Charles E; Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M; Simon, Steven L

    2015-02-01

    Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point "best estimates". In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.

  15. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  16. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A; Yue, N

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on themore » range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.« less

  17. RADIATION EXPOSURE OF THE POPULATION FROM 222Rn AND OTHER NATURAL RADIONUCLIDES AROUND MOCHOVCE NUCLEAR POWER PLANT, SLOVAKIA.

    PubMed

    Bulko, Martin; Holý, Karol; Pohronská, Žofia; Mullerová, Monika; Böhm, Radoslav; Holá, Ol'ga

    2017-11-01

    In this article, the effective dose to the population from natural sources of ionizing radiation in the vicinity of Mochovce nuclear power plant in Slovakia is presented. All major contributions to the effective dose were taken into account, including the contributions from gamma radiation of soil and rocks, cosmic radiation, and indoor and outdoor radon and thoron. On the basis of recent indoor radon measurements in Slovak cities and publicly available data about radon concentration in the soil air, a roughly linear relationship was found between these variables. Consequently, the annual effective dose from indoor radon and thoron was conservatively estimated. For the area of interest, a map of conservatively estimated potential effective doses was created. For the villages in the vicinity of Mochovce, the conservatively estimated effective dose to the population from natural sources ranged from 5.4 to 14.6 mSv, which is four orders of magnitude higher than the contribution of radioactive discharges from Mochovce nuclear power plant. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1993-12-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk. Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanford facilities inmore » a calendar year; therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  19. Commercial milk distribution profiles and production locations. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deonigi, D.E.; Anderson, D.M.; Wilfert, G.L.

    1994-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project was established to estimate radiation doses that people could have received from nuclear operations at the Hanford Site since 1944. For this period iodine-131 is the most important offsite contributor to radiation doses from Hanford operations. Consumption of milk from cows that ate vegetation contaminated by iodine-131 is the dominant radiation pathway for individuals who drank milk (Napier 1992). Information has been developed on commercial milk cow locations and commercial milk distribution during 1945 and 1951. The year 1945 was selected because during 1945 the largest amount of iodine-131 was released from Hanfordmore » facilities in a calendar year (Heeb 1993); therefore, 1945 was the year in which an individual was likely to have received the highest dose. The year 1951 was selected to provide data for comparing the changes that occurred in commercial milk flows (i.e., sources, processing locations, and market areas) between World War II and the post-war period. To estimate the doses people could have received from this milk flow, it is necessary to estimate the amount of milk people consumed, the source of the milk, the specific feeding regime used for milk cows, and the amount of iodine-131 contamination deposited on feed.« less

  20. The effect of tandem-ovoid titanium applicator on points A, B, bladder, and rectum doses in gynecological brachytherapy using 192Ir

    PubMed Central

    Sadeghi, Mohammad Hosein; Mehdizadeh, Amir; Faghihi, Reza; Moharramzadeh, Vahed; Meigooni, Ali Soleimani

    2018-01-01

    Purpose The dosimetry procedure by simple superposition accounts only for the self-shielding of the source and does not take into account the attenuation of photons by the applicators. The purpose of this investigation is an estimation of the effects of the tandem and ovoid applicator on dose distribution inside the phantom by MCNP5 Monte Carlo simulations. Material and methods In this study, the superposition method is used for obtaining the dose distribution in the phantom without using the applicator for a typical gynecological brachytherapy (superposition-1). Then, the sources are simulated inside the tandem and ovoid applicator to identify the effect of applicator attenuation (superposition-2), and the dose at points A, B, bladder, and rectum were compared with the results of superposition. The exact dwell positions, times of the source, and positions of the dosimetry points were determined in images of a patient and treatment data of an adult woman patient from a cancer center. The MCNP5 Monte Carlo (MC) code was used for simulation of the phantoms, applicators, and the sources. Results The results of this study showed no significant differences between the results of superposition method and the MC simulations for different dosimetry points. The difference in all important dosimetry points was found to be less than 5%. Conclusions According to the results, applicator attenuation has no significant effect on the calculated points dose, the superposition method, adding the dose of each source obtained by the MC simulation, can estimate the dose to points A, B, bladder, and rectum with good accuracy. PMID:29619061

  1. SU-E-T-769: T-Test Based Prior Error Estimate and Stopping Criterion for Monte Carlo Dose Calculation in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, X; Gao, H; Schuemann, J

    2015-06-15

    Purpose: The Monte Carlo (MC) method is a gold standard for dose calculation in radiotherapy. However, it is not a priori clear how many particles need to be simulated to achieve a given dose accuracy. Prior error estimate and stopping criterion are not well established for MC. This work aims to fill this gap. Methods: Due to the statistical nature of MC, our approach is based on one-sample t-test. We design the prior error estimate method based on the t-test, and then use this t-test based error estimate for developing a simulation stopping criterion. The three major components are asmore » follows.First, the source particles are randomized in energy, space and angle, so that the dose deposition from a particle to the voxel is independent and identically distributed (i.i.d.).Second, a sample under consideration in the t-test is the mean value of dose deposition to the voxel by sufficiently large number of source particles. Then according to central limit theorem, the sample as the mean value of i.i.d. variables is normally distributed with the expectation equal to the true deposited dose.Third, the t-test is performed with the null hypothesis that the difference between sample expectation (the same as true deposited dose) and on-the-fly calculated mean sample dose from MC is larger than a given error threshold, in addition to which users have the freedom to specify confidence probability and region of interest in the t-test based stopping criterion. Results: The method is validated for proton dose calculation. The difference between the MC Result based on the t-test prior error estimate and the statistical Result by repeating numerous MC simulations is within 1%. Conclusion: The t-test based prior error estimate and stopping criterion are developed for MC and validated for proton dose calculation. Xiang Hong and Hao Gao were partially supported by the NSFC (#11405105), the 973 Program (#2015CB856000) and the Shanghai Pujiang Talent Program (#14PJ1404500)« less

  2. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  3. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation

    PubMed Central

    Ozaki, Y.; Kaida, A.; Miura, M.; Nakagawa, K.; Toda, K.; Yoshimura, R.; Sumi, Y.; Kurabayashi, T.

    2017-01-01

    Abstract Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. PMID:28339846

  4. Uncertainty of inhalation dose coefficients for representative physical and chemical forms of iodine-131

    NASA Astrophysics Data System (ADS)

    Harvey, Richard Paul, III

    Releases of radioactive material have occurred at various Department of Energy (DOE) weapons facilities and facilities associated with the nuclear fuel cycle in the generation of electricity. Many different radionuclides have been released to the environment with resulting exposure of the population to these various sources of radioactivity. Radioiodine has been released from a number of these facilities and is a potential public health concern due to its physical and biological characteristics. Iodine exists as various isotopes, but our focus is on 131I due to its relatively long half-life, its prevalence in atmospheric releases and its contribution to offsite dose. The assumption of physical and chemical form is speculated to have a profound impact on the deposition of radioactive material within the respiratory tract. In the case of iodine, it has been shown that more than one type of physical and chemical form may be released to, or exist in, the environment; iodine can exist as a particle or as a gas. The gaseous species can be further segregated based on chemical form: elemental, inorganic, and organic iodides. Chemical compounds in each class are assumed to behave similarly with respect to biochemistry. Studies at Oak Ridge National Laboratories have demonstrated that 131I is released as a particulate, as well as in elemental, inorganic and organic chemical form. The internal dose estimate from 131I may be very different depending on the effect that chemical form has on fractional deposition, gas uptake, and clearance in the respiratory tract. There are many sources of uncertainty in the estimation of environmental dose including source term, airborne transport of radionuclides, and internal dosimetry. Knowledge of uncertainty in internal dosimetry is essential for estimating dose to members of the public and for determining total uncertainty in dose estimation. Important calculational steps in any lung model is regional estimation of deposition fractions and gas uptake of radionuclides in various regions of the lung. Variability in regional radionuclide deposition within lung compartments may significantly contribute to the overall uncertainty of the lung model. The uncertainty of lung deposition and biological clearance is dependent upon physiological and anatomical parameters of individuals as well as characteristic parameters of the particulate material. These parameters introduce uncertainty into internal dose estimates due to their inherent variability. Anatomical and physiological input parameters are age and gender dependent. This work has determined the uncertainty in internal dose estimates and the sensitive parameters involved in modeling particulate deposition and gas uptake of different physical and chemical forms of 131I with age and gender dependencies.

  5. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood

    PubMed Central

    Povinec, Pavel P.; Hirose, Katsumi

    2015-01-01

    Variations of Fukushima-derived radionuclides (90Sr, 134Cs and 137Cs) in seawater and biota offshore Fukushima and in the NW Pacific Ocean were investigated and radiation doses to the Japanese and world population from ingestion of seafood contaminated by Fukushima radionuclides were estimated and compared with those from other sources of anthropogenic and natural radionuclides. The total effective dose commitment from ingestion of radionuclides in fish, shellfish and seaweed caught in coastal waters off Fukushima was estimated to be 0.6 ± 0.4 mSv/y. The individual effective dose commitment from consumption of radioactive-contaminated fish caught in the open Pacific Ocean was estimated to be 0.07 ± 0.05 mSv/y. These doses are comparable or much lower than doses delivered from the consumption of natural 210Po in fish and in shellfish (0.7 mSv/y). The estimated individual doses have been below the levels when any health damage of the Japanese and world population could be expected. PMID:25761420

  6. Fukushima radionuclides in the NW Pacific, and assessment of doses for Japanese and world population from ingestion of seafood.

    PubMed

    Povinec, Pavel P; Hirose, Katsumi

    2015-03-12

    Variations of Fukushima-derived radionuclides ((90)Sr, (134)Cs and (137)Cs) in seawater and biota offshore Fukushima and in the NW Pacific Ocean were investigated and radiation doses to the Japanese and world population from ingestion of seafood contaminated by Fukushima radionuclides were estimated and compared with those from other sources of anthropogenic and natural radionuclides. The total effective dose commitment from ingestion of radionuclides in fish, shellfish and seaweed caught in coastal waters off Fukushima was estimated to be 0.6 ± 0.4 mSv/y. The individual effective dose commitment from consumption of radioactive-contaminated fish caught in the open Pacific Ocean was estimated to be 0.07 ± 0.05 mSv/y. These doses are comparable or much lower than doses delivered from the consumption of natural (210)Po in fish and in shellfish (0.7 mSv/y). The estimated individual doses have been below the levels when any health damage of the Japanese and world population could be expected.

  7. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.

    PubMed

    Duggan, Dennis M

    2004-12-01

    Improved cross-sections in a new version of the Monte-Carlo N-particle (MCNP) code may eliminate discrepancies between radial dose functions (as defined by American Association of Physicists in Medicine Task Group 43) derived from Monte-Carlo simulations of low-energy photon-emitting brachytherapy sources and those from measurements on the same sources with thermoluminescent dosimeters. This is demonstrated for two 125I brachytherapy seed models, the Implant Sciences Model ISC3500 (I-Plant) and the Amersham Health Model 6711, by simulating their radial dose functions with two versions of MCNP, 4c2 and 5.

  8. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  9. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  10. Organ Dose-Rate Calculations for Small Mammals at Maralinga, the Nevada Test Site, Hanford and Fukushima: A Comparison of Ellipsoidal and Voxelized Dosimetric Methodologies.

    PubMed

    Caffrey, Emily A; Johansen, Mathew P; Higley, Kathryn A

    2015-10-01

    Radiological dosimetry for nonhuman biota typically relies on calculations that utilize the Monte Carlo simulations of simple, ellipsoidal geometries with internal radioactivity distributed homogeneously throughout. In this manner it is quick and easy to estimate whole-body dose rates to biota. Voxel models are detailed anatomical phantoms that were first used for calculating radiation dose to humans, which are now being extended to nonhuman biota dose calculations. However, if simple ellipsoidal models provide conservative dose-rate estimates, then the additional labor involved in creating voxel models may be unnecessary for most scenarios. Here we show that the ellipsoidal method provides conservative estimates of organ dose rates to small mammals. Organ dose rates were calculated for environmental source terms from Maralinga, the Nevada Test Site, Hanford and Fukushima using both the ellipsoidal and voxel techniques, and in all cases the ellipsoidal method yielded more conservative dose rates by factors of 1.2-1.4 for photons and 5.3 for beta particles. Dose rates for alpha-emitting radionuclides are identical for each method as full energy absorption in source tissue is assumed. The voxel procedure includes contributions to dose from organ-to-organ irradiation (shown here to comprise 2-50% of total dose from photons and 0-93% of total dose from beta particles) that is not specifically quantified in the ellipsoidal approach. Overall, the voxel models provide robust dosimetry for the nonhuman mammals considered in this study, and though the level of detail is likely extraneous to demonstrating regulatory compliance today, voxel models may nevertheless be advantageous in resolving ongoing questions regarding the effects of ionizing radiation on wildlife.

  11. An assessment of the doses received by members of the public in Japan following the nuclear accident at Fukushima Daiichi nuclear power plant.

    PubMed

    Bedwell, P; Mortimer, K; Wellings, J; Sherwood, J; Leadbetter, S J; Haywood, S M; Charnock, T; Jones, A R; Hort, M C

    2015-12-01

    The earthquake and tsunami on 11 March 2011, centred off the east coast of Japan, caused considerable destruction and substantial loss of life along large swathes of the Japanese coastline. The tsunami damaged the Fukushima Daiichi nuclear power plant (NPP), resulting in prolonged releases of radioactive material into the environment. This paper assesses the doses received by members of the public in Japan. The assessment is based on an estimated source term and atmospheric dispersion modelling rather than monitoring data. It is evident from this assessment that across the majority of Japan the estimates of dose are very low, for example they are estimated to be less than the annual average dose from natural background radiation in Japan. Even in the regions local to Fukushima Daiichi NPP (and not affected by any form of evacuation) the maximum lifetime effective dose is estimated to be well below the cumulative natural background dose over the same period. The impact of the urgent countermeasures on the estimates of dose was considered. And the relative contribution to dose from the range of exposure pathways and radionuclides were evaluated. Analysis of estimated doses focused on the geographic irregularity and the impact of the meteorological conditions. For example the dose to an infant's thyroid received over the first year was estimated to be greater in Hirono than in the non-evacuated region of Naraha, despite Hirono being further from the release location. A number of factors were identified and thought to contribute towards this outcome, including the local wind pattern which resulted in the recirculation of part of the release. The non-uniform nature of dose estimates strengthens the case for evaluations based on dispersion modelling.

  12. Development and comparison of computational models for estimation of absorbed organ radiation dose in rainbow trout (Oncorhynchus mykiss) from uptake of iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Capello, K; Pinder, J E

    2014-12-01

    This study develops and compares different, increasingly detailed anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ absorbed radiation dose and dose rates from (131)I uptake in multiple organs. The models considered are: a simplistic geometry considering a single organ, a more specific geometry employing additional organs with anatomically relevant size and location, and voxel reconstruction of internal anatomy obtained from CT imaging (referred to as CSUTROUT). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling, and combined with estimated activity concentrations, to approximate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (131)I. The different computational models provided similar results, especially for source organs (less than 30% difference between estimated doses), and whole body DCFs for each model (∼3 × 10(-3) μGy d(-1) per Bq kg(-1)) were comparable to DCFs listed in ICRP 108 for (131)I. The main benefit provided by the computational models developed here is the ability to accurately determine organ dose. A conservative mass-ratio approach may provide reasonable results for sufficiently large organs, but is only applicable to individual source organs. Although CSUTROUT is the more anatomically realistic phantom, it required much more resource dedication to develop and is less flexible than the stylized phantom for similar results. There may be instances where a detailed phantom such as CSUTROUT is appropriate, but generally the stylized phantom appears to be the best choice for an ideal balance between accuracy and resource requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Patient-specific radiation dose and cancer risk estimation in CT: Part I. Development and validation of a Monte Carlo program

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Toncheva, Greta; Yoshizumi, Terry T.; Frush, Donald P.

    2011-01-01

    Purpose: Radiation-dose awareness and optimization in CT can greatly benefit from a dose-reporting system that provides dose and risk estimates specific to each patient and each CT examination. As the first step toward patient-specific dose and risk estimation, this article aimed to develop a method for accurately assessing radiation dose from CT examinations. Methods: A Monte Carlo program was developed to model a CT system (LightSpeed VCT, GE Healthcare). The geometry of the system, the energy spectra of the x-ray source, the three-dimensional geometry of the bowtie filters, and the trajectories of source motions during axial and helical scans were explicitly modeled. To validate the accuracy of the program, a cylindrical phantom was built to enable dose measurements at seven different radial distances from its central axis. Simulated radial dose distributions in the cylindrical phantom were validated against ion chamber measurements for single axial scans at all combinations of tube potential and bowtie filter settings. The accuracy of the program was further validated using two anthropomorphic phantoms (a pediatric one-year-old phantom and an adult female phantom). Computer models of the two phantoms were created based on their CT data and were voxelized for input into the Monte Carlo program. Simulated dose at various organ locations was compared against measurements made with thermoluminescent dosimetry chips for both single axial and helical scans. Results: For the cylindrical phantom, simulations differed from measurements by −4.8% to 2.2%. For the two anthropomorphic phantoms, the discrepancies between simulations and measurements ranged between (−8.1%, 8.1%) and (−17.2%, 13.0%) for the single axial scans and the helical scans, respectively. Conclusions: The authors developed an accurate Monte Carlo program for assessing radiation dose from CT examinations. When combined with computer models of actual patients, the program can provide accurate dose estimates for specific patients. PMID:21361208

  14. Dose rate prediction methodology for remote handled transuranic waste workers at the waste isolation pilot plant.

    PubMed

    Hayes, Robert

    2002-10-01

    An approach is described for estimating future dose rates to Waste Isolation Pilot Plant workers processing remote handled transuranic waste. The waste streams will come from the entire U.S. Department of Energy complex and can take on virtually any form found from the processing sequences for defense-related production, radiochemistry, activation and related work. For this reason, the average waste matrix from all generator sites is used to estimate the average radiation fields over the facility lifetime. Innovative new techniques were applied to estimate expected radiation fields. Non-linear curve fitting techniques were used to predict exposure rate profiles from cylindrical sources using closed form equations for lines and disks. This information becomes the basis for Safety Analysis Report dose rate estimates and for present and future ALARA design reviews when attempts are made to reduce worker doses.

  15. Estimation of organ cumulated activities and absorbed doses on intakes of several 11C labelled radiopharmaceuticals from external measurement with thermoluminescent dosimeters.

    PubMed

    Nakamura, T; Hayashi, Y; Watabe, H; Matsumoto, M; Horikawa, T; Fujiwara, T; Ito, M; Yanai, K

    1998-02-01

    We have developed a method for obtaining the cumulated activities in organs from radionuclides, which are injected into the patient in nuclear medicine procedures, by external exposure measurement with thermoluminescent dosimeters (TLDs) which are attached to the patient's body surface close to source organs to obtain information on body-surface doses. As the surface dose is connected to the cumulated activities in source organs through radiation transmission in the human body which can be estimated with the aid of a mathematical phantom, the organ cumulated activities can be obtained by the inverse transform method. The accuracy of this method was investigated by using a water phantom in which several gamma-ray volume sources of known activity were placed to simulate source organs. We then estimated by external measurements the organ cumulated activities and absorbed doses in subjects to whom the radiopharmaceuticals 11C-labelled Doxepin, 11C-labelled YM09151-2 and 11C-labelled Benzotropin were administered in clinical nuclear medicine procedures. The cumulated activities in the brain obtained with TLDs for Doxepin and YM09151-2 are 63.6 +/- 6.2 and 32.1 +/- 12.0 kBq h MBq-1 respectively, which are compared with the respective values of 33.3 +/- 9.9 and 23.9 +/- 6.2 kBq h MBq-1 with direct PET (positron emission tomography) measurements. The agreement between the two methods is within a factor of two. The effective doses of Doxepin, YM09151-2 and Benzotropin are determined as 6.92 x 10(-3), 7.08 x 10(-3) and 7.65 x 10(-3) mSv MBq-1 respectively with the TLD method. This method has great advantages, in that cumulated activities in several organs can be obtained easily with a single procedure, and the measurements of body surface doses are performed simultaneously with the nuclear medicine procedure, as TLDs are too small to interfere with other medical measurements.

  16. Hanford Environmental Dose Reconstruction Project. Monthly report, December 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-12-31

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  17. Hanford Environmental Dose Reconstruction Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.; McMakin, A.H.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, a representative of Native American tribes, and an individual representing the public.more » The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on human (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data; Demographics, Agriculture, Food Habits and; Environmental Pathways and Dose Estimates.« less

  18. Analysis of neutron propagation from the skyshine port of a fusion neutron source facility

    NASA Astrophysics Data System (ADS)

    Wakisaka, M.; Kaneko, J.; Fujita, F.; Ochiai, K.; Nishitani, T.; Yoshida, S.; Sawamura, T.

    2005-12-01

    The process of neutron leaking from a 14 MeV neutron source facility was analyzed by calculations and experiments. The experiments were performed at the Fusion Neutron Source (FNS) facility of the Japan Atomic Energy Institute, Tokai-mura, Japan, which has a port on the roof for skyshine experiments, and a 3He counter surrounded with a polyethylene moderator of different thicknesses was used to estimate the energy spectra and dose distributions. The 3He counter with a 3-cm-thick moderator was also used for dose measurements, and the doses evaluated by the counter counts and the calculated count-to-dose conversion factor agreed with the calculations to within ˜30%. The dose distribution was found to fit a simple analytical expression, D(r)=Q{exp(-r/λD)}/{r} and the parameters Q and λD are discussed.

  19. Estimation of the radiation dose from radiotherapy for skin haemangiomas in childhood: the ICTA software for epidemiology

    NASA Astrophysics Data System (ADS)

    Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.

    2000-12-01

    Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).

  20. Estimation of whole-body radiation exposure from brachytherapy for oral cancer using a Monte Carlo simulation.

    PubMed

    Ozaki, Y; Watanabe, H; Kaida, A; Miura, M; Nakagawa, K; Toda, K; Yoshimura, R; Sumi, Y; Kurabayashi, T

    2017-07-01

    Early stage oral cancer can be cured with oral brachytherapy, but whole-body radiation exposure status has not been previously studied. Recently, the International Commission on Radiological Protection Committee (ICRP) recommended the use of ICRP phantoms to estimate radiation exposure from external and internal radiation sources. In this study, we used a Monte Carlo simulation with ICRP phantoms to estimate whole-body exposure from oral brachytherapy. We used a Particle and Heavy Ion Transport code System (PHITS) to model oral brachytherapy with 192Ir hairpins and 198Au grains and to perform a Monte Carlo simulation on the ICRP adult reference computational phantoms. To confirm the simulations, we also computed local dose distributions from these small sources, and compared them with the results from Oncentra manual Low Dose Rate Treatment Planning (mLDR) software which is used in day-to-day clinical practice. We successfully obtained data on absorbed dose for each organ in males and females. Sex-averaged equivalent doses were 0.547 and 0.710 Sv with 192Ir hairpins and 198Au grains, respectively. Simulation with PHITS was reliable when compared with an alternative computational technique using mLDR software. We concluded that the absorbed dose for each organ and whole-body exposure from oral brachytherapy can be estimated with Monte Carlo simulation using PHITS on ICRP reference phantoms. Effective doses for patients with oral cancer were obtained. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Monte Carlo calculated TG-60 dosimetry parameters for the {beta}{sup -} emitter {sup 153}Sm brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi, Mahdi; Taghdiri, Fatemeh; Hamed Hosseini, S.

    Purpose: The formalism recommended by Task Group 60 (TG-60) of the American Association of Physicists in Medicine (AAPM) is applicable for {beta} sources. Radioactive biocompatible and biodegradable {sup 153}Sm glass seed without encapsulation is a {beta}{sup -} emitter radionuclide with a short half-life and delivers a high dose rate to the tumor in the millimeter range. This study presents the results of Monte Carlo calculations of the dosimetric parameters for the {sup 153}Sm brachytherapy source. Methods: Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate two-dimensional dose distributions around the source. The dosimetric parameters ofmore » AAPM TG-60 recommendations including the reference dose rate, the radial dose function, the anisotropy function, and the one-dimensional anisotropy function were obtained. Results: The dose rate value at the reference point was estimated to be 9.21{+-}0.6 cGy h{sup -1} {mu}Ci{sup -1}. Due to the low energy beta emitted from {sup 153}Sm sources, the dose fall-off profile is sharper than the other beta emitter sources. The calculated dosimetric parameters in this study are compared to several beta and photon emitting seeds. Conclusions: The results show the advantage of the {sup 153}Sm source in comparison with the other sources because of the rapid dose fall-off of beta ray and high dose rate at the short distances of the seed. The results would be helpful in the development of the radioactive implants using {sup 153}Sm seeds for the brachytherapy treatment.« less

  2. Accounting for Shared and Unshared Dosimetric Uncertainties in the Dose Response for Ultrasound-Detected Thyroid Nodules after Exposure to Radioactive Fallout

    PubMed Central

    Hoffman, F. Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M.; Simon, Steven L.

    2015-01-01

    Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semi-palatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response. PMID:25574587

  3. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    PubMed Central

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2018-01-01

    The goal of this study is to develop a generalized source model (GSM) for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology. PMID:28079526

  4. A measurement-based generalized source model for Monte Carlo dose simulations of CT scans

    NASA Astrophysics Data System (ADS)

    Ming, Xin; Feng, Yuanming; Liu, Ransheng; Yang, Chengwen; Zhou, Li; Zhai, Hezheng; Deng, Jun

    2017-03-01

    The goal of this study is to develop a generalized source model for accurate Monte Carlo dose simulations of CT scans based solely on the measurement data without a priori knowledge of scanner specifications. The proposed generalized source model consists of an extended circular source located at x-ray target level with its energy spectrum, source distribution and fluence distribution derived from a set of measurement data conveniently available in the clinic. Specifically, the central axis percent depth dose (PDD) curves measured in water and the cone output factors measured in air were used to derive the energy spectrum and the source distribution respectively with a Levenberg-Marquardt algorithm. The in-air film measurement of fan-beam dose profiles at fixed gantry was back-projected to generate the fluence distribution of the source model. A benchmarked Monte Carlo user code was used to simulate the dose distributions in water with the developed source model as beam input. The feasibility and accuracy of the proposed source model was tested on a GE LightSpeed and a Philips Brilliance Big Bore multi-detector CT (MDCT) scanners available in our clinic. In general, the Monte Carlo simulations of the PDDs in water and dose profiles along lateral and longitudinal directions agreed with the measurements within 4%/1 mm for both CT scanners. The absolute dose comparison using two CTDI phantoms (16 cm and 32 cm in diameters) indicated a better than 5% agreement between the Monte Carlo-simulated and the ion chamber-measured doses at a variety of locations for the two scanners. Overall, this study demonstrated that a generalized source model can be constructed based only on a set of measurement data and used for accurate Monte Carlo dose simulations of patients’ CT scans, which would facilitate patient-specific CT organ dose estimation and cancer risk management in the diagnostic and therapeutic radiology.

  5. TU-H-207A-08: Estimating Radiation Dose From Low-Dose Lung Cancer Screening CT Exams Using Tube Current Modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardy, A; Bostani, M; McMillan, K

    Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  6. Measures for curtailment of iatrogenic exposure. Guide to correct x-ray examinations (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misonoo, K.

    1973-08-01

    Of the coposure dose for humans from various radiation sources, introgenic exposure amounts to 1/2 to twice the natural radiation source. Although the mechanism of induction of malignant tumor by radiation is not clanified, it is evident that it is induced after receiving a dose above 100 rads. However, the presence of a threshold, under which it does not develop, is unknown. Tabulated were ICRP's calculations on the degree of risk of injury and the estimated values of genetic injury due to 1 rad. In order to estimate the harmful effect of exposure in x-ray diagnosis, the dose in themore » critical tissue of the human body and the types and the frequency of radiation examinations are important. The judgment of genetic injury is expressed by the genetically significant dose, which is calculated from the dose in the genital gland received by individuals. The impcrtant criterion for the judgment of physical injury is the mean annual dose per person in the marrow (mean dose in the red marrow). The dose in the genital organ is important as the dose related to the evaluation of the degree of genetic risk. The characteristics of iatrogenic exposure are partial and acute exposure and a high dose rate. Tabulated individually were the frequency of x-ray examinations, the mean dose in the genital organ according urce. The radiation dose during x-ray pelvimetry to 51 patients was estimated, and the cytogenetic response of peripheral lymphocytes was determined in 25 of their newborn babies. The calculations resulted in an average midline fetal dose of 1,035 and 1,860 mrads for the patients receiving 2 projections and more than 2 projections, respectively. There was no evidence of radioinduced chromosomal darnage in the newborn infants following x-ray exposure in utero. (auth)« less

  7. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-12-31

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  8. Hanford Environmental Dose Reconstruction Project monthly report, November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed members representing the states of Oregon, Washington. and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks: Source terms; environmental transport; environmental monitoring data; demography, food consumption and agriculture; environmentalmore » pathways and dose estimates.« less

  9. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  10. Technical Review of SRS Dose Reconstrruction Methods Used By CDC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpkins, Ali, A

    2005-07-20

    At the request of the Centers for Disease Control and Prevention (CDC), a subcontractor Advanced Technologies and Laboratories International, Inc.(ATL) issued a draft report estimating offsite dose as a result of Savannah River Site operations for the period 1954-1992 in support of Phase III of the SRS Dose Reconstruction Project. The doses reported by ATL differed than those previously estimated by Savannah River Site SRS dose modelers for a variety of reasons, but primarily because (1) ATL used different source terms, (2) ATL considered trespasser/poacher scenarios and (3) ATL did not consistently use site-specific parameters or correct usage parameters. Themore » receptors with the highest dose from atmospheric and liquid pathways were within about a factor of four greater than dose values previously reported by SRS. A complete set of technical comments have also been included.« less

  11. Dosimetry for a uterine cervix cancer treatment

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponce, Miguel; Rodríguez-Villafuerte, Mercedes; Sánchez-Castro, Ricardo

    2003-09-01

    The dose distribution around the 3M 137Cs brachytherapy source as well as the same source inside the Amersham ASN 8231 applicator was measured using thermoluminescent dosimeters and radiochromic films. Some of the results were compared with those obtained from a Monte Carlo simulation and a good agreement was observed. The teletherapy dose distribution was measured using a pin-point ionization chamber. In addition, the experimental measurements and the Monte Carlo results were used to estimate the dose received in the rectum and bladder of an hypothetical patient treated with brachytherapy and compared with the dose distribution obtained from the Hospital's brachytherapy planning system. A 20 % dose reduction to the rectum and bladder was observed in both Monte Carlo and experimental measurements, compared with the results of the planning system, which results in a better dose control to these structures.

  12. SOURCES AND ESTIMATED LOAD OF BIOAVAILABLE NITROGEN ATTRIBUTABLE TO CHRONIC NITROGEN EXPOSURE AND CHANGED ECOSYSTEM STRUCTURE AND FUNCTION

    EPA Science Inventory

    Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are not well known. Since...

  13. SOURCES AND ESTIMATED LOAD OF BIOAVAILABLE NITROGEN ATTRIBUTED TO CHRONIC NITROGEN EXPOSURE AND CHANGED ECOSYSTEM STRUCTURE AND FUNCTION

    EPA Science Inventory

    Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are under-appreciated. ...

  14. The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.

    PubMed

    Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J

    2003-02-01

    The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.

  15. Internal thyroid doses to Fukushima residents—estimation and issues remaining

    PubMed Central

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-01-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, 131I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data (131I) for 1080 children examined in the screening campaign, whole-body counter measurement data (134Cs, 137Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. PMID:27538842

  16. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, William P.; Hartmann-Siantar, Christine L.; Rathkopf, James A.

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  17. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOEpatents

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  18. Estimation of thyroid radiation doses for the hanford thyroid disease study: results and implications for statistical power of the epidemiological analyses.

    PubMed

    Kopecky, Kenneth J; Davis, Scott; Hamilton, Thomas E; Saporito, Mark S; Onstad, Lynn E

    2004-07-01

    Residents of eastern Washington, northeastern Oregon, and western Idaho were exposed to I released into the atmosphere from operations at the Hanford Nuclear Site from 1944 through 1972, especially in the late 1940's and early 1950's. This paper describes the estimated doses to the thyroid glands of the 3,440 evaluable participants in the Hanford Thyroid Disease Study, which investigated whether thyroid morbidity was increased in people exposed to radioactive iodine from Hanford during 1944-1957. The participants were born during 1940-1946 to mothers living in Benton, Franklin, Walla Walla, Adams, Okanogan, Ferry, or Stevens Counties in Washington State. Whenever possible someone with direct knowledge of the participant's early life (preferably the participant's mother) was interviewed about the participant's individual dose-determining characteristics (residence history, sources and quantities of food, milk, and milk products consumed, production and processing techniques for home-grown food and milk products). Default information was used if no interview respondent was available. Thyroid doses were estimated using the computer program Calculation of Individual Doses from Environmental Radionuclides (CIDER) developed by the Hanford Environmental Dose Reconstruction Project. CIDER provided 100 sets of doses to represent uncertainty of the estimates. These sets were not generated independently for each participant, but reflected the effects of uncertainties in characteristics shared by participants. Estimated doses (medians of each participant's 100 realizations) ranged from 0.0029 mGy to 2823 mGy, with mean and median of 174 and 97 mGy, respectively. The distribution of estimated doses provided the Hanford Thyroid Disease Study with sufficient statistical power to test for dose-response relationships between thyroid outcomes and exposure to Hanford's I.

  19. Evaluation of a lithium formate EPR dosimetry system for dose measurements around {sup 192}Ir brachytherapy sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonovic, Laura; Gustafsson, Haakan; Alm Carlsson, Gudrun

    2009-06-15

    A dosimetry system using lithium formate monohydrate (HCO{sub 2}Li{center_dot}H{sub 2}O) as detector material and electron paramagnetic resonance (EPR) spectroscopy for readout has been used to measure absorbed dose distributions around clinical {sup 192}Ir sources. Cylindrical tablets with diameter of 4.5 mm, height of 4.8 mm, and density of 1.26 g/cm{sup 3} were manufactured. Homogeneity test and calibration of the dosimeters were performed in a 6 MV photon beam. {sup 192}Ir irradiations were performed in a PMMA phantom using two different source models, the GammaMed Plus HDR and the microSelectron PDR-v1 model. Measured absorbed doses to water in the PMMA phantommore » were converted to the corresponding absorbed doses to water in water phantoms of dimensions used by the treatment planning systems (TPSs) using correction factors explicitly derived for this experiment. Experimentally determined absorbed doses agreed with the absorbed doses to water calculated by the TPS to within {+-}2.9%. Relative standard uncertainties in the experimentally determined absorbed doses were estimated to be within the range of 1.7%-1.3% depending on the radial distance from the source, the type of source (HDR or PDR), and the particular absorbed doses used. This work shows that a lithium formate dosimetry system is well suited for measurements of absorbed dose to water around clinical HDR and PDR {sup 192}Ir sources. Being less energy dependent than the commonly used thermoluminescent lithium fluoride (LiF) dosimeters, lithium formate monohydrate dosimeters are well suited to measure absorbed doses in situations where the energy dependence cannot easily be accounted for such as in multiple-source irradiations to verify treatment plans. Their wide dynamic range and linear dose response over the dose interval of 0.2-1000 Gy make them suitable for measurements on sources of the strengths used in clinical applications. The dosimeter size needs, however, to be reduced for application to single-source dosimetry.« less

  20. Biologically based modeling of multimedia, multipathway, multiroute population exposures to arsenic

    PubMed Central

    Georgopoulos, Panos G.; Wang, Sheng-Wei; Yang, Yu-Ching; Xue, Jianping; Zartarian, Valerie G.; Mccurdy, Thomas; Özkaynak, Halûk

    2011-01-01

    This article presents an integrated, biologically based, source-to-dose assessment framework for modeling multimedia/multipathway/multiroute exposures to arsenic. Case studies demonstrating this framework are presented for three US counties (Hunderton County, NJ; Pima County, AZ; and Franklin County, OH), representing substantially different conditions of exposure. The approach taken utilizes the Modeling ENvironment for TOtal Risk studies (MENTOR) in an implementation that incorporates and extends the approach pioneered by Stochastic Human Exposure and Dose Simulation (SHEDS), in conjunction with a number of available databases, including NATA, NHEXAS, CSFII, and CHAD, and extends modeling techniques that have been developed in recent years. Model results indicate that, in most cases, the food intake pathway is the dominant contributor to total exposure and dose to arsenic. Model predictions are evaluated qualitatively by comparing distributions of predicted total arsenic amounts in urine with those derived using biomarker measurements from the NHEXAS — Region V study: the population distributions of urinary total arsenic levels calculated through MENTOR and from the NHEXAS measurements are in general qualitative agreement. Observed differences are due to various factors, such as interindividual variation in arsenic metabolism in humans, that are not fully accounted for in the current model implementation but can be incorporated in the future, in the open framework of MENTOR. The present study demonstrates that integrated source-to-dose modeling for arsenic can not only provide estimates of the relative contributions of multipathway exposure routes to the total exposure estimates, but can also estimate internal target tissue doses for speciated organic and inorganic arsenic, which can eventually be used to improve evaluation of health risks associated with exposures to arsenic from multiple sources, routes, and pathways. PMID:18073786

  1. Comparison of Measured and Estimated CT Organ Doses for Modulated and Fixed Tube Current:: A Human Cadaver Study.

    PubMed

    Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K

    2016-05-01

    The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE PAGES

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.; ...

    2016-12-01

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  3. Bremsstrahlung Dose Yield for High-Intensity Short-Pulse Laser–Solid Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Taiee; Bauer, Johannes M.; Liu, James C.

    A bremsstrahlung source term has been developed by the Radiation Protection (RP) group at SLAC National Accelerator Laboratory for high-intensity short-pulse laser–solid experiments between 10 17 and 10 22 W cm –2. This source term couples the particle-in-cell plasma code EPOCH and the radiation transport code FLUKA to estimate the bremsstrahlung dose yield from laser–solid interactions. EPOCH characterizes the energy distribution, angular distribution, and laser-to-electron conversion efficiency of the hot electrons from laser–solid interactions, and FLUKA utilizes this hot electron source term to calculate a bremsstrahlung dose yield (mSv per J of laser energy on target). The goal of thismore » paper is to provide RP guidelines and hazard analysis for high-intensity laser facilities. In conclusion, a comparison of the calculated bremsstrahlung dose yields to radiation measurement data is also made.« less

  4. Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, D.E.

    1982-01-01

    This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less

  5. DS02R1: Improvements to Atomic Bomb Survivors' Input Data and Implementation of Dosimetry System 2002 (DS02) and Resulting Changes in Estimated Doses.

    PubMed

    Cullings, H M; Grant, E J; Egbert, S D; Watanabe, T; Oda, T; Nakamura, F; Yamashita, T; Fuchi, H; Funamoto, S; Marumo, K; Sakata, R; Kodama, Y; Ozasa, K; Kodama, K

    2017-01-01

    Individual dose estimates calculated by Dosimetry System 2002 (DS02) for the Life Span Study (LSS) of atomic bomb survivors are based on input data that specify location and shielding at the time of the bombing (ATB). A multi-year effort to improve information on survivors' locations ATB has recently been completed, along with comprehensive improvements in their terrain shielding input data and several improvements to computational algorithms used in combination with DS02 at RERF. Improvements began with a thorough review and prioritization of original questionnaire data on location and shielding that were taken from survivors or their proxies in the period 1949-1963. Related source documents varied in level of detail, from relatively simple lists to carefully-constructed technical drawings of structural and other shielding and surrounding neighborhoods. Systematic errors were reduced in this work by restoring the original precision of map coordinates that had been truncated due to limitations in early data processing equipment and by correcting distortions in the old (WWII-era) maps originally used to specify survivors' positions, among other improvements. Distortion errors were corrected by aligning the old maps and neighborhood drawings to orthophotographic mosaics of the cities that were newly constructed from pre-bombing aerial photographs. Random errors that were reduced included simple transcription errors and mistakes in identifying survivors' locations on the old maps. Terrain shielding input data that had been originally estimated for limited groups of survivors using older methods and data sources were completely re-estimated for all survivors using new digital terrain elevation data. Improvements to algorithms included a fix to an error in the DS02 code for coupling house and terrain shielding, a correction for elevation at the survivor's location in calculating angles to the horizon used for terrain shielding input, an improved method for truncating high dose estimates to 4 Gy to reduce the effect of dose error, and improved methods for calculating averaged shielding transmission factors that are used to calculate doses for survivors without detailed shielding input data. Input data changes are summarized and described here in some detail, along with the resulting changes in dose estimates and a simple description of changes in risk estimates for solid cancer mortality. This and future RERF publications will refer to the new dose estimates described herein as "DS02R1 doses."

  6. Estimation of breast dose reduction potential for organ-based tube current modulated CT with wide dose reduction arc

    NASA Astrophysics Data System (ADS)

    Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan

    2017-03-01

    This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.

  7. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h irradiation, respectively, considering a relative biological effectiveness of alpha particles of 5.5. The study confirmed that the Timepix detector can be used for transmission alpha particle dosimetry. If cross-calibrated using biological dosimetry, this method will give a good indication of the biological effects of alpha particles without the need for repeated biological dosimetry which is costly, time consuming, and not readily available.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, A; Carver, D; Stabin, M

    Purpose: To validate a radiographic simulation in order to estimate patient dose due to clinically-used radiography protocols. Methods: A Monte Carlo simulation was created to simulate a radiographic x-ray beam using GEANT4. Initial validation was performed according to a portion of TG 195. Computational NURBS-based phantoms were used simulate patients of varying ages and sizes. The deposited energy in the phantom is output by the simulation. The exposure in air from a clinically used radiography unit was measured at 100 cm for various tube potentials. 10 million photons were simulated with 1 cubic centimeter of air located 100 cm frommore » the source, and the total absorbed dose was noted. The normalization factor was determined by taking a ratio of the measured dose in air to the simulated dose in air. Dose to individual voxels is calculated using the energy deposition map along with the voxelized and segmented phantom and the normalization factor. Finally, the effective dose is calculated using the ICRP methodology and tissue weighting factors. Results: This radiography simulation allows for the calculation and visualization of the energy deposition map within a voxelized phantom. The ratio of exposure, measured using an ionization chamber, to air in the simulation was determined. Since the simulation output is calibrated to match the exposure of a given clinical radiographic x-ray tube, the dose map may be visualized. This will also allow for absorbed dose estimation in specific organs or tissues as well as a whole body effective dose estimation. Conclusion: This work indicates that our Monte Carlo simulation may be used to estimate the radiation dose from clinical radiographic protocols. This will allow for an estimate of radiographic dose from various examinations without the use of traditional methods such as thermoluminescent dosimeters and body phantoms.« less

  9. Environmental radiation and the lung

    PubMed Central

    Hamrick, Philip E.; Walsh, Phillip J.

    1974-01-01

    Environmental sources of radioactive materials and their relation to lung doses and lung burdens are described. The approaches used and the problems encountered in estimating lung doses are illustrated. Exposure to radon daughter products is contrasted to exposure to plutonium as particular examples of the hazards associated with radioactive materials of different chemical and physical characteristics. PMID:4620334

  10. Missing doses in the life span study of Japanese atomic bomb survivors.

    PubMed

    Richardson, David B; Wing, Steve; Cole, Stephen R

    2013-03-15

    The Life Span Study of atomic bomb survivors is an important source of risk estimates used to inform radiation protection and compensation. Interviews with survivors in the 1950s and 1960s provided information needed to estimate radiation doses for survivors proximal to ground zero. Because of a lack of interview or the complexity of shielding, doses are missing for 7,058 of the 68,119 proximal survivors. Recent analyses excluded people with missing doses, and despite the protracted collection of interview information necessary to estimate some survivors' doses, defined start of follow-up as October 1, 1950, for everyone. We describe the prevalence of missing doses and its association with mortality, distance from hypocenter, city, age, and sex. Missing doses were more common among Nagasaki residents than among Hiroshima residents (prevalence ratio = 2.05; 95% confidence interval: 1.96, 2.14), among people who were closer to ground zero than among those who were far from it, among people who were younger at enrollment than among those who were older, and among males than among females (prevalence ratio = 1.22; 95% confidence interval: 1.17, 1.28). Missing dose was associated with all-cancer and leukemia mortality, particularly during the first years of follow-up (all-cancer rate ratio = 2.16, 95% confidence interval: 1.51, 3.08; and leukemia rate ratio = 4.28, 95% confidence interval: 1.72, 10.67). Accounting for missing dose and late entry should reduce bias in estimated dose-mortality associations.

  11. Missing Doses in the Life Span Study of Japanese Atomic Bomb Survivors

    PubMed Central

    Richardson, David B.; Wing, Steve; Cole, Stephen R.

    2013-01-01

    The Life Span Study of atomic bomb survivors is an important source of risk estimates used to inform radiation protection and compensation. Interviews with survivors in the 1950s and 1960s provided information needed to estimate radiation doses for survivors proximal to ground zero. Because of a lack of interview or the complexity of shielding, doses are missing for 7,058 of the 68,119 proximal survivors. Recent analyses excluded people with missing doses, and despite the protracted collection of interview information necessary to estimate some survivors' doses, defined start of follow-up as October 1, 1950, for everyone. We describe the prevalence of missing doses and its association with mortality, distance from hypocenter, city, age, and sex. Missing doses were more common among Nagasaki residents than among Hiroshima residents (prevalence ratio = 2.05; 95% confidence interval: 1.96, 2.14), among people who were closer to ground zero than among those who were far from it, among people who were younger at enrollment than among those who were older, and among males than among females (prevalence ratio = 1.22; 95% confidence interval: 1.17, 1.28). Missing dose was associated with all-cancer and leukemia mortality, particularly during the first years of follow-up (all-cancer rate ratio = 2.16, 95% confidence interval: 1.51, 3.08; and leukemia rate ratio = 4.28, 95% confidence interval: 1.72, 10.67). Accounting for missing dose and late entry should reduce bias in estimated dose-mortality associations. PMID:23429722

  12. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies.

    PubMed

    Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O

    2017-04-01

    For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The two-dimensional Monte Carlo: a new methodologic paradigm for dose reconstruction for epidemiological studies.

    PubMed

    Simon, Steven L; Hoffman, F Owen; Hofer, Eduard

    2015-01-01

    Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.

  14. Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model.

    PubMed

    Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A

    2017-01-01

    We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity.more » Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.« less

  16. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate.

  17. Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches.

    PubMed

    Johansen, M P; Barnett, C L; Beresford, N A; Brown, J E; Černe, M; Howard, B J; Kamboj, S; Keum, D-K; Smodiš, B; Twining, J R; Vandenhove, H; Vives i Batlle, J; Wood, M D; Yu, C

    2012-06-15

    Radiological doses to terrestrial wildlife were examined in this model inter-comparison study that emphasised factors causing variability in dose estimation. The study participants used varying modelling approaches and information sources to estimate dose rates and tissue concentrations for a range of biota types exposed to soil contamination at a shallow radionuclide waste burial site in Australia. Results indicated that the dominant factor causing variation in dose rate estimates (up to three orders of magnitude on mean total dose rates) was the soil-to-organism transfer of radionuclides that included variation in transfer parameter values as well as transfer calculation methods. Additional variation was associated with other modelling factors including: how participants conceptualised and modelled the exposure configurations (two orders of magnitude); which progeny to include with the parent radionuclide (typically less than one order of magnitude); and dose calculation parameters, including radiation weighting factors and dose conversion coefficients (typically less than one order of magnitude). Probabilistic approaches to model parameterisation were used to encompass and describe variable model parameters and outcomes. The study confirms the need for continued evaluation of the underlying mechanisms governing soil-to-organism transfer of radionuclides to improve estimation of dose rates to terrestrial wildlife. The exposure pathways and configurations available in most current codes are limited when considering instances where organisms access subsurface contamination through rooting, burrowing, or using different localised waste areas as part of their habitual routines. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  18. A novel approach to neutron dosimetry.

    PubMed

    Balmer, Matthew J I; Gamage, Kelum A A; Taylor, Graeme C

    2016-11-01

    Having been overlooked for many years, research is now starting to take into account the directional distribution of neutron workplace fields. Existing neutron dosimetry instrumentation does not account for this directional distribution, resulting in conservative estimates of dose in neutron workplace fields (by around a factor of 2, although this is heavily dependent on the type of field). This conservatism could influence epidemiological studies on the health effects of radiation exposure. This paper reports on the development of an instrument which can estimate the effective dose of a neutron field, accounting for both the direction and the energy distribution. A 6 Li-loaded scintillator was used to perform neutron assays at a number of locations in a 20 × 20 × 17.5 cm 3 water phantom. The variation in thermal and fast neutron response to different energies and field directions was exploited. The modeled response of the instrument to various neutron fields was used to train an artificial neural network (ANN) to learn the effective dose and ambient dose equivalent of these fields. All experimental data published in this work were measured at the National Physical Laboratory (UK). Experimental results were obtained for a number of radionuclide source based neutron fields to test the performance of the system. The results of experimental neutron assays at 25 locations in a water phantom were fed into the trained ANN. A correlation between neutron counting rates in the phantom and neutron fluence rates was experimentally found to provide dose rate estimates. A radionuclide source behind shadow cone was used to create a more complex field in terms of energy and direction. For all fields, the resulting estimates of effective dose rate were within 45% or better of their calculated values, regardless of energy distribution or direction for measurement times greater than 25 min. This work presents a novel, real-time, approach to workplace neutron dosimetry. It is believed that in the research presented in this paper, for the first time, a single instrument has been able to estimate effective dose.

  19. Numerical Analysis of Organ Doses Delivered During Computed Tomography Examinations Using Japanese Adult Phantoms with the WAZA-ARI Dosimetry System.

    PubMed

    Takahashi, Fumiaki; Sato, Kaoru; Endo, Akira; Ono, Koji; Ban, Nobuhiko; Hasegawa, Takayuki; Katsunuma, Yasushi; Yoshitake, Takayasu; Kai, Michiaki

    2015-08-01

    A dosimetry system for computed tomography (CT) examinations, named WAZA-ARI, is being developed to accurately assess radiation doses to patients in Japan. For dose calculations in WAZA-ARI, organ doses were numerically analyzed using average adult Japanese male (JM) and female (JF) phantoms with the Particle and Heavy Ion Transport code System (PHITS). Experimental studies clarified the photon energy distribution of emitted photons and dose profiles on the table for some multi-detector row CT (MDCT) devices. Numerical analyses using a source model in PHITS could specifically take into account emissions of x rays from the tube to the table with attenuation of photons through a beam-shaping filter for each MDCT device based on the experiment results. The source model was validated by measuring the CT dose index (CTDI). Numerical analyses with PHITS revealed a concordance of organ doses with body sizes of the JM and JF phantoms. The organ doses in the JM phantoms were compared with data obtained using previously developed systems. In addition, the dose calculations in WAZA-ARI were verified with previously reported results by realistic NUBAS phantoms and radiation dose measurement using a physical Japanese model (THRA1 phantom). The results imply that numerical analyses using the Japanese phantoms and specified source models can give reasonable estimates of dose for MDCT devices for typical Japanese adults.

  20. Assessing vaccination coverage in infants, survey studies versus the Flemish immunisation register: achieving the best of both worlds.

    PubMed

    Braeckman, Tessa; Lernout, Tinne; Top, Geert; Paeps, Annick; Roelants, Mathieu; Hoppenbrouwers, Karel; Van Damme, Pierre; Theeten, Heidi

    2014-01-09

    Infant immunisation coverage in Flanders, Belgium, is monitored through repeated coverage surveys. With the increased use of Vaccinnet, the web-based ordering system for vaccines in Flanders set up in 2004 and linked to an immunisation register, this database could become an alternative to quickly estimate vaccination coverage. To evaluate its current accuracy, coverage estimates generated from Vaccinnet alone were compared with estimates from the most recent survey (2012) that combined interview data with data from Vaccinnet and medical files. Coverage rates from registrations in Vaccinnet were systematically lower than the corresponding estimates obtained through the survey (mean difference 7.7%). This difference increased by dose number for vaccines that require multiple doses. Differences in administration date between the two sources were observed for 3.8-8.2% of registered doses. Underparticipation in Vaccinnet thus significantly impacts on the register-based immunisation coverage estimates, amplified by underregistration of administered doses among vaccinators using Vaccinnet. Therefore, survey studies, despite being labour-intensive and expensive, currently provide more complete and reliable results than register-based estimates alone in Flanders. However, further improvement of Vaccinnet's completeness will likely allow more accurate estimates in the nearby future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue

    PubMed Central

    Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-01-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806

  2. Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.

    PubMed

    Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike

    2016-03-01

    Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.

  3. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator

    PubMed Central

    Putha, Suman Kumar; Saxena, P. U.; Banerjee, S.; Srinivas, Challapalli; Vadhiraja, B. M.; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K. Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (St) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. Sts were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (Diso,TPS), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (Diso,Transit) from the measured Sts. A locally fabricated pelvic phantom validated the estimations of Diso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The Diso,Transit agreement with Diso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is −1.37% ±2.03% (n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery. PMID:28144114

  4. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator.

    PubMed

    Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh

    2016-01-01

    Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.

  5. SU-E-T-366: Estimation of Whole Body Dose From Cranial Irradiation From C and Perfexion Series Gamma Knife Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, S; Indiana University School of Medicine, Indianapolis, IN, University Hospitals Case Medical Center, Cleaveland, OH; Andersen, A

    2015-06-15

    Purpose: The Leksell Gamma Knife (GK) B & C series contains 201 Cobalt-60 sources with a helmet. The new model, Perfexion uses 192 Cobalt-60 sources without a helmet; using IRIS system for collimation and stereotactic guidance to deliver SRS to brain tumors. Relative dose to extracranial organs at risk (OARs) is measured in phantom in this study for Perfexion and C-series GK. Materials & Methods: Measurements were performed in a Rando anthropomorphic phantom on both systems using a large ion chamber (Keithley-175) for each collimator. The Keithley-175 cc ion chamber was sandwiched between phantom slices at various locations in themore » phantom to correspond to different extracranial OARs (thyroid, heart, kidney, ovary and testis, etc.) The dose measurement was repeated with OSL detectors for each position and collimator. Results: A large variation is observed in the normalized dose between these two systems. The dose beyond the housing falls off exponentially for Perfexion. Dose beyond the C-series GK housing falls off exponentially from 0–20cm then remains relatively constant from 20–40cm and again falls off with distance but less rapidly. The variation of extracranial dose with distance for each collimator is found to be parallel to each other for both systems. Conclusion: Whole body dose is found to vary significantly between these systems. It is important to measure the extracranial dose, especially for young patients. It is estimated that dose falls off exponentially from the GK housing and is about 1% for large collimators at 75 cm. The dose is two-orders of magnitude smaller for the 4mm collimator. However, this small dose for patient may be significant radiologically.« less

  6. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Ensor, Joe E.; Pasciak, Alexander S.

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromicmore » film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone beam computed tomography or acquisition runs acquired at large primary gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±35% for embolization procedures. Reference air kerma can be used without modification to set notification limits and substantial radiation dose levels, provided the displayed reference air kerma is accurate. These results can reasonably be extended to similar procedures, including vascular and interventional oncology. Considering these results, film dosimetry is likely an unnecessary effort for these types of procedures when indirect dose metrics are available.« less

  7. Study of the biochemical indicators of chronic irradiation in rats.

    PubMed

    Szabo, L D; Benko, A B; Gyenge, L; Predmerszky, T

    1976-01-01

    Daily urinary excretion of pseudouridine, creatinine and creatine of chronically irradiated Wistar rats was estimated. The irradiation conditions were: 60Co gamma source, dose-rate 10 rad/day, total dose 200, 400 and 600 rad. Control groups were kept under similar conditions. Urine samples were taken three times after the end of the irradiation period. It was found that: (1) pseudouridine excretion seems more suitable for indicating radiation injury than the creatine/creatinine ratio in chronic irradiation in rats; (ii) there are significant changes in dose dependence of pseudouridine excretion in the post-irradiation period; (iii) a new method for pseudouridine estimation gives closely similar data to those of earlier investigations.

  8. Effect of blood activity on dosimetric calculations for radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Zvereva, Alexandra; Petoussi-Henss, Nina; Li, Wei Bo; Schlattl, Helmut; Oeh, Uwe; Zankl, Maria; Graner, Frank Philipp; Hoeschen, Christoph; Nekolla, Stephan G.; Parodi, Katia; Schwaiger, Markus

    2016-11-01

    The objective of this work was to investigate the influence of the definition of blood as a distinct source on organ doses, associated with the administration of a novel radiopharmaceutical for positron emission tomography-computed tomography (PET/CT) imaging—(S)-4-(3-18F-fluoropropyl)-L-glutamic acid (18F-FSPG). Personalised pharmacokinetic models were constructed based on clinical PET/CT images from five healthy volunteers and blood samples from four of them. Following an identifiability analysis of the developed compartmental models, person-specific model parameters were estimated using the commercial program SAAM II. Organ doses were calculated in accordance to the formalism promulgated by the Committee on Medical Internal Radiation Dose (MIRD) and the International Commission on Radiological Protection (ICRP) using specific absorbed fractions for photons and electrons previously derived for the ICRP reference adult computational voxel phantoms. Organ doses for two concepts were compared: source organ activities in organs parenchyma with blood as a separate source (concept-1); aggregate activities in perfused source organs without blood as a distinct source (concept-2). Aggregate activities comprise the activities of organs parenchyma and the activity in the regional blood volumes (RBV). Concept-1 resulted in notably higher absorbed doses for most organs, especially non-source organs with substantial blood contents, e.g. lungs (92% maximum difference). Consequently, effective doses increased in concept-1 compared to concept-2 by 3-10%. Not considering the blood as a distinct source region leads to an underestimation of the organ absorbed doses and effective doses. The pronounced influence of the blood even for a radiopharmaceutical with a rapid clearance from the blood, such as 18F-FSPG, suggests that blood should be introduced as a separate compartment in most compartmental pharmacokinetic models and blood should be considered as a distinct source in dosimetric calculations. Hence, blood samples should be included in all pharmacokinetic and dosimetric studies for new tracers if possible.

  9. Fetus dose estimation in thyroid cancer post-surgical radioiodine therapy.

    PubMed

    Mianji, Fereidoun A; Diba, Jila Karimi; Babakhani, Asad

    2015-01-01

    Unrecognised pregnancy during radioisotope therapy of thyroid cancer results in hardly definable embryo/fetus exposures, particularly when the thyroid gland is already removed. Sources of such difficulty include uncertainty in data like pregnancy commencing time, amount and distribution of metastasized thyroid cells in body, effect of the thyroidectomy on the fetus dose coefficient etc. Despite all these uncertainties, estimation of the order of the fetus dose in most cases is enough for medical and legal decision-making purposes. A model for adapting the dose coefficients recommended by the well-known methods to the problem of fetus dose assessment in athyrotic patients is proposed. The model defines a correction factor for the problem and ensures that the fetus dose in athyrotic pregnant patients is less than the normal patients. A case of pregnant patient undergone post-surgical therapy by I-131 is then studied for quantitative comparison of the methods. The results draw a range for the fetus dose in athyrotic patients using the derived factor. This reduces the concerns on under- or over-estimation of the embryo/fetus dose and is helpful for personal and/or legal decision-making on abortion. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Hanford Environmental Dose Reconstruction Project Monthly Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finch, S.M.

    1991-02-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon and Washington, cultural and technical experts nominated by the regional Native American tribes, and an individualmore » representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. Project reports and references used in the reports are made available to the public in a public reading room. Project progress is documented in this monthly report, which is available to the public. 3 figs., 3 tabs.« less

  11. Radiation exposure of aviation crewmembers and cancer.

    PubMed

    Bramlitt, Edward T; Shonka, Joseph J

    2015-01-01

    Crewmembers are exposed to galactic cosmic radiation on every flight and occasionally to solar protons on polar flights. Data are presented showing that the proton occasions are seven times more frequent than generally believed. Crewmembers are also exposed to neutrons and gamma rays from the sun and to gamma rays from terrestrial thunderstorms. Solar neutrons and gamma rays (1) expose the daylight side of Earth, (2) are most intense at lower latitudes, (3) may be as or more frequent than solar protons, and (4) have relativistic energies. The U.S. agency responsible for crewmember safety only considers the galactic component with respect to its recommended 20 mSv y(-1) limit, but it has an estimate for a thunderstorm dose of 30 mSv. In view of overlooked sources, possible over-limit doses, and lack of dosimetry, dose reconstructions are needed. However, using the agency dose estimates and the compensation procedure for U.S. nuclear weapon workers, the probability of crewmember cancers can be at least as likely as not. Ways to improve the quality of dose estimates are suggested, and a worker's compensation program specific to aviation crewmembers is recommended.

  12. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel; Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4

    2015-02-15

    Purpose: Radiation damage to mitochondria has been shown to alter cellular processes and even lead to apoptosis. Gold nanoparticles (AuNPs) may be used to enhance these effects in scenarios where they collect on the outer membranes of mitochondria. A Monte Carlo (MC) approach is used to estimate mitochondrial dose enhancement under a variety of conditions. Methods: The PENELOPE MC code was used to generate dose distributions resulting from photons striking a 13 nm diameter AuNP with various thicknesses of water-equivalent coatings. Similar dose distributions were generated with the AuNP replaced by water so as to estimate the gain in dosemore » on a microscopic scale due to the presence of AuNPs within an irradiated volume. Models of mitochondria with AuNPs affixed to their outer membrane were then generated—considering variation in mitochondrial size and shape, number of affixed AuNPs, and AuNP coating thickness—and exposed (in a dose calculation sense) to source spectra ranging from 6 MV to 90 kVp. Subsequently dose enhancement ratios (DERs), or the dose with the AuNPs present to that for no AuNPs, for the entire mitochondrion and its components were tallied under these scenarios. Results: For a representative case of a 1000 nm diameter mitochondrion affixed with 565 AuNPs, each with a 13 nm thick coating, the mean DER over the whole organelle ranged from roughly 1.1 to 1.6 for the kilovoltage sources, but was generally less than 1.01 for the megavoltage sources. The outer membrane DERs remained less than 1.01 for the megavoltage sources, but rose to 2.3 for 90 kVp. The voxel maximum DER values were as high as 8.2 for the 90 kVp source and increased further when the particles clustered together. The DER exhibited dependence on the mitochondrion dimensions, number of AuNPs, and the AuNP coating thickness. Conclusions: Substantial dose enhancement directly to the mitochondria can be achieved under the conditions modeled. If the mitochondrion dose can be directly enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.« less

  13. Application of computational models to estimate organ radiation dose in rainbow trout from uptake of molybdenum-99 with comparison to iodine-131.

    PubMed

    Martinez, N E; Johnson, T E; Pinder, J E

    2016-01-01

    This study compares three anatomical phantoms for rainbow trout (Oncorhynchus mykiss) for the purpose of estimating organ radiation dose and dose rates from molybdenum-99 ((99)Mo) uptake in the liver and GI tract. Model comparison and refinement is important to the process of determining accurate doses and dose rates to the whole body and the various organs. Accurate and consistent dosimetry is crucial to the determination of appropriate dose-effect relationships for use in environmental risk assessment. The computational phantoms considered are (1) a geometrically defined model employing anatomically relevant organ size and location, (2) voxel reconstruction of internal anatomy obtained from CT imaging, and (3) a new model utilizing NURBS surfaces to refine the model in (2). Dose Conversion Factors (DCFs) for whole body as well as selected organs of O. mykiss were computed using Monte Carlo modeling and combined with empirical models for predicting activity concentration to estimate dose rates and ultimately determine cumulative radiation dose (μGy) to selected organs after several half-lives of (99)Mo. The computational models provided similar results, especially for organs that were both the source and target of radiation (less than 30% difference between all models). Values in the empirical model as well as the 14 day cumulative organ doses determined from (99)Mo uptake are compared to similar models developed previously for (131)I. Finally, consideration is given to treating the GI tract as a solid organ compared to partitioning it into gut contents and GI wall, which resulted in an order of magnitude difference in estimated dose for most organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Impact of imaging approach on radiation dose and associated cancer risk in children undergoing cardiac catheterization

    PubMed Central

    Einstein, Andrew J.; Januzis, Natalie; Nguyen, Giao; Li, Jennifer S.; Fleming, Gregory A.; Yoshizumi, Terry K.

    2016-01-01

    Objectives To quantify the impact of image optimization on absorbed radiation dose and associated risk in children undergoing cardiac catheterization. Background Various imaging and fluoroscopy system technical parameters including camera magnification, source-to-image distance, collimation, anti-scatter grids, beam quality, and pulse rates, all affect radiation dose but have not been well studied in younger children. Methods We used anthropomorphic phantoms (ages: newborn and 5-years-old) to measure surface radiation exposure from various imaging approaches and estimated absorbed organ doses and effective doses (ED) using Monte Carlo simulations. Models developed in the National Academies’ Biological Effects of Ionizing Radiation VII report were used to compare an imaging protocol optimized for dose reduction versus suboptimal imaging (+20cm source-to-image-distance, +1 magnification setting, no collimation) on lifetime attributable risk (LAR) of cancer. Results For the newborn and 5-year-old phantoms respectively ED changes were as follows: +157% and +232% for an increase from 6-inch to 10-inch camera magnification; +61% and +59% for a 20cm increase in source-to-image-distance; −42% and −48% with addition of 1-inch periphery collimation; −31% and −46% with removal of the anti-scatter grid. Compared to an optimized protocol, suboptimal imaging increased ED by 2.75-fold (newborn) and 4-fold (5-year-old). Estimated cancer LAR from 30-minutes of postero-anterior fluoroscopy using optimized versus sub-optimal imaging respectively was: 0.42% versus 1.23% (newborn female), 0.20% vs 0.53% (newborn male), 0.47% versus 1.70% (5-year-old female) and 0.16% vs 0.69% (5-year-old male). Conclusions Radiation-related risks to children undergoing cardiac catheterization can be substantial but are markedly reduced with an optimized imaging approach. PMID:27315598

  15. Impact of imaging approach on radiation dose and associated cancer risk in children undergoing cardiac catheterization.

    PubMed

    Hill, Kevin D; Wang, Chu; Einstein, Andrew J; Januzis, Natalie; Nguyen, Giao; Li, Jennifer S; Fleming, Gregory A; Yoshizumi, Terry K

    2017-04-01

    To quantify the impact of image optimization on absorbed radiation dose and associated risk in children undergoing cardiac catheterization. Various imaging and fluoroscopy system technical parameters including camera magnification, source-to-image distance, collimation, antiscatter grids, beam quality, and pulse rates, all affect radiation dose but have not been well studied in younger children. We used anthropomorphic phantoms (ages: newborn and 5 years old) to measure surface radiation exposure from various imaging approaches and estimated absorbed organ doses and effective doses (ED) using Monte Carlo simulations. Models developed in the National Academies' Biological Effects of Ionizing Radiation VII report were used to compare an imaging protocol optimized for dose reduction versus suboptimal imaging (+20 cm source-to-image-distance, +1 magnification setting, no collimation) on lifetime attributable risk (LAR) of cancer. For the newborn and 5-year-old phantoms, respectively ED changes were as follows: +157% and +232% for an increase from 6-inch to 10-inch camera magnification; +61% and +59% for a 20 cm increase in source-to-image-distance; -42% and -48% with addition of 1-inch periphery collimation; -31% and -46% with removal of the antiscatter grid. Compared with an optimized protocol, suboptimal imaging increased ED by 2.75-fold (newborn) and fourfold (5 years old). Estimated cancer LAR from 30-min of posteroanterior fluoroscopy using optimized versus suboptimal imaging, respectively was 0.42% versus 1.23% (newborn female), 0.20% versus 0.53% (newborn male), 0.47% versus 1.70% (5-year-old female) and 0.16% versus 0.69% (5-year-old male). Radiation-related risks to children undergoing cardiac catheterization can be substantial but are markedly reduced with an optimized imaging approach. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  17. In vivo dose verification method in catheter based high dose rate brachytherapy.

    PubMed

    Jaselskė, Evelina; Adlienė, Diana; Rudžianskas, Viktoras; Urbonavičius, Benas Gabrielis; Inčiūra, Arturas

    2017-12-01

    In vivo dosimetry is a powerful tool for dose verification in radiotherapy. Its application in high dose rate (HDR) brachytherapy is usually limited to the estimation of gross errors, due to inability of the dosimetry system/ method to record non-uniform dose distribution in steep dose gradient fields close to the radioactive source. In vivo dose verification in interstitial catheter based HDR brachytherapy is crucial since the treatment is performed inserting radioactive source at the certain positions within the catheters that are pre-implanted into the tumour. We propose in vivo dose verification method for this type of brachytherapy treatment which is based on the comparison between experimentally measured and theoretical dose values calculated at well-defined locations corresponding dosemeter positions in the catheter. Dose measurements were performed using TLD 100-H rods (6 mm long, 1 mm diameter) inserted in a certain sequences into additionally pre-implanted dosimetry catheter. The adjustment of dosemeter positioning in the catheter was performed using reconstructed CT scans of patient with pre-implanted catheters. Doses to three Head&Neck and one Breast cancer patient have been measured during several randomly selected treatment fractions. It was found that the average experimental dose error varied from 4.02% to 12.93% during independent in vivo dosimetry control measurements for selected Head&Neck cancer patients and from 7.17% to 8.63% - for Breast cancer patient. Average experimental dose error was below the AAPM recommended margin of 20% and did not exceed the measurement uncertainty of 17.87% estimated for this type of dosemeters. Tendency of slightly increasing average dose error was observed in every following treatment fraction of the same patient. It was linked to the changes of theoretically estimated dosemeter positions due to the possible patient's organ movement between different treatment fractions, since catheter reconstruction was performed for the first treatment fraction only. These findings indicate potential for further average dose error reduction in catheter based brachytherapy by at least 2-3% in the case that catheter locations will be adjusted before each following treatment fraction, however it requires more detailed investigation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Internal thyroid doses to Fukushima residents-estimation and issues remaining.

    PubMed

    Kim, Eunjoo; Kurihara, Osamu; Kunishima, Naoaki; Momose, Takumaro; Ishikawa, Tetsuo; Akashi, Makoto

    2016-08-01

    Enormous quantities of radionuclides were released into the environment following the disastrous accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP) in March 2011. It is of great importance to determine the exposure doses received by the populations living in the radiologically affected areas; however, there has been significant difficulty in estimating the internal thyroid dose received through the intake of short-lived radionuclides (mainly, (131)I), because of the lack of early measurements on people. An estimation by the National Institute of Radiological Sciences for 1 April 2012 to 31 March 2013 was thus performed using a combination of the following three sources: thyroid measurement data ((131)I) for 1080 children examined in the screening campaign, whole-body counter measurement data ((134)Cs, (137)Cs) for 3000 adults, and atmospheric transport dispersion model simulations. In this study, the residents of Futaba town, Iitate village and Iwaki city were shown to have the highest thyroid equivalent dose, and their doses were estimated to be mostly below 30 mSv. However, this result involved a lot of uncertainties and provided only representative values for the residents. The present paper outlines a more recent dose estimation and preliminary analyses of personal behavior data used in the new method. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. SU-E-T-284: Revisiting Reference Dosimetry for the Model S700 Axxent 50 KV{sub p} Electronic Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, JR; Rivard, MJ

    2014-06-01

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft was characterized in 2006 by Rivard et al. The source design was modified in 2006 to include a plastic centering insert at the source tip to more accurately position the anode. The objectives of the current study were to establish an accurate Monte Carlo source model for simulation purposes, to dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and to determine dose differences between the source with and without the centering insert. Methods: Design information from dissected sources and vendor-supplied CAD drawings were used to devisemore » the source model for radiation transport simulations of dose distributions in a water phantom. Collision kerma was estimated as a function of radial distance, r, and polar angle, θ, for determination of reference TG-43 dosimetry parameters. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.03% at r=1 cm and 0.08% at r=10 cm. Results: The dose rate distribution the transverse plane did not change beyond 2% between the 2006 model and the current study. While differences exceeding 15% were observed near the source distal tip, these diminished to within 2% for r>1.5 cm. Differences exceeding a factor of two were observed near θ=150° and in contact with the source, but diminished to within 20% at r=10 cm. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% over a third of the available solid angle external from the source. For clinical applications using balloons or applicators with tissue located within 5 cm from the source, dose differences exceeding 2% were observed only for θ>110°. This study carefully examined the current source geometry and presents a modern reference TG-43 dosimetry dataset for the model S700 source.« less

  20. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

    PubMed

    Alnewaini, Zaid; Langer, Eric; Schaber, Philipp; David, Matthias; Kretz, Dominik; Steil, Volker; Hesser, Jürgen

    2017-03-01

    Dosimetric control of staff exposure during interventional procedures under fluoroscopy is of high relevance. In this paper, a novel ray casting approximation of radiation transport is presented and the potential and limitation vs. a full Monte Carlo transport and dose measurements are discussed. The x-ray source of a Siemens Axiom Artix C-arm is modeled by a virtual source model using single Gaussian-shaped source. A Geant4-based Monte Carlo simulation determines the radiation transport from the source to compute scatter from the patient, the table, the ceiling and the floor. A phase space around these scatterers stores all photon information. Only those photons are traced that hit a surface of phantom that represents medical staff in the treatment room, no indirect scattering is considered; and a complete dose deposition on the surface is calculated. To evaluate the accuracy of the approximation, both experimental measurements using Thermoluminescent dosimeters (TLDs) and a Geant4-based Monte Carlo simulation of dose depositing for different tube angulations of the C-arm from cranial-caudal angle 0° and from LAO (Left Anterior Oblique) 0°-90° are realized. Since the measurements were performed on both sides of the table, using the symmetry of the setup, RAO (Right Anterior Oblique) measurements were not necessary. The Geant4-Monte Carlo simulation agreed within 3% with the measured data, which is within the accuracy of measurement and simulation. The ray casting approximation has been compared to TLD measurements and the achieved percentage difference was -7% for data from tube angulations 45°-90° and -29% from tube angulations 0°-45° on the side of the x-ray source, whereas on the opposite side of the x-ray source, the difference was -83.8% and -75%, respectively. Ray casting approximation for only LAO 90° was compared to a Monte Carlo simulation, where the percentage differences were between 0.5-3% on the side of the x-ray source where the highest dose usually detected was mainly from primary scattering (photons), whereas percentage differences between 2.8-20% are found on the side opposite to the x-ray source, where the lowest doses were detected. Dose calculation time of our approach was 0.85 seconds. The proposed approach yields a fast scatter dose estimation where we could run the Monte Carlo simulation only once for each x-ray tube angulation to get the Phase Space Files (PSF) for being used later by our ray casting approach to calculate the dose from only photons which will hit an movable elliptical cylinder shaped phantom and getting an output file for the positions of those hits to be used for visualizing the scatter dose propagation on the phantom surface. With dose calculation times of less than one second, we are saving much time compared to using a Monte Carlo simulation instead. With our approach, larger deviations occur only in regions with very low doses, whereas it provides a high precision in high-dose regions. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  1. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.

    2011-02-15

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinicmore » for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Europeen de Curietherapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.« less

  2. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

    PubMed Central

    DeWerd, Larry A.; Ibbott, Geoffrey S.; Meigooni, Ali S.; Mitch, Michael G.; Rivard, Mark J.; Stump, Kurt E.; Thomadsen, Bruce R.; Venselaar, Jack L. M.

    2011-01-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie–European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments. PMID:21452716

  3. A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: report of AAPM Task Group No. 138 and GEC-ESTRO.

    PubMed

    DeWerd, Larry A; Ibbott, Geoffrey S; Meigooni, Ali S; Mitch, Michael G; Rivard, Mark J; Stump, Kurt E; Thomadsen, Bruce R; Venselaar, Jack L M

    2011-02-01

    This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.

  4. Beam shaping assembly of a D-T neutron source for BNCT and its dosimetry simulation in deeply-seated tumor

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Khalili, S.

    2013-08-01

    This article involves two aims for BNCT. First case includes a beam shaping assembly estimation for a D-T neutron source to find epi-thermal neutrons which are the goal in the BNCT. Second issue is the percent depth dose calculation in the adult Snyder head phantom. Monte-Carlo simulations and verification of a suggested beam shaping assembly (including internal neutron multiplier, moderator, filter, external neutron multiplier, collimator, and reflector dimensions) for thermalizing a D-T neutron source as well as increasing neutron flux are carried out and our results are given herein. Finally, we have simulated its corresponding doses for treatment planning of a deeply-seated tumor.

  5. Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.

    PubMed

    Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A

    2004-12-01

    Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.

  6. Detailed source term estimation of atmospheric release during the Fukushima Dai-ichi nuclear power plant accident by coupling atmospheric and oceanic dispersion models

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Chino, Masamichi; Terada, Hiroaki; Kobayashi, Takuya; Ota, Masakazu; Nagai, Haruyasu; Kajino, Mizuo

    2014-05-01

    Temporal variations of release amounts of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident and their dispersion process are essential to evaluate the environmental impacts and resultant radiological doses to the public. Here, we estimated a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data and coupling atmospheric and oceanic dispersion simulations by WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN developed by the authors. New schemes for wet, dry, and fog depositions of radioactive iodine gas (I2 and CH3I) and other particles (I-131, Te-132, Cs-137, and Cs-134) were incorporated into WSPEEDI-II. The deposition calculated by WSPEEDI-II was used as input data of ocean dispersion calculations by SEA-GEARN. The reverse estimation method based on the simulation by both models assuming unit release rate (1 Bq h-1) was adopted to estimate the source term at the FNPP1 using air dose rate, and air sea surface concentrations. The results suggested that the major release of radionuclides from the FNPP1 occurred in the following periods during March 2011: afternoon on the 12th when the venting and hydrogen explosion occurred at Unit 1, morning on the 13th after the venting event at Unit 3, midnight on the 14th when several openings of SRV (steam relief valve) were conducted at Unit 2, morning and night on the 15th, and morning on the 16th. The modified WSPEEDI-II using the newly estimated source term well reproduced local and regional patterns of air dose rate and surface deposition of I-131 and Cs-137 obtained by airborne observations. Our dispersion simulations also revealed that the highest radioactive contamination areas around FNPP1 were created from 15th to 16th March by complicated interactions among rainfall (wet deposition), plume movements, and phase properties (gas or particle) of I-131 and release rates associated with reactor pressure variations in Units 2 and 3.

  7. Assessing dose of the representative person for the purpose of radiation protection of the public. ICRP publication 101. Approved by the Commission in September 2005.

    PubMed

    2006-01-01

    The Commission intended that its revised recommendations should be based on a simple, but widely applicable, system of protection that would clarify its objectives and provide a basis for the more formal systems needed by operating managers and regulators. The recommendations would establish quantified constraints, or limits, on individual dose from specified sources. These dose constraints apply to actual or representative people who encounter occupational, medical, and public exposures. This report updates the previous guidance for estimating dose to the public. Dose to the public cannot be measured directly and, in some cases, it cannot be measured at all. Therefore, for the purpose of protection of the public, it is necessary to characterise an individual, either hypothetical or specific, whose dose can be used for determining compliance with the relevant dose constraint. This individual is defined as the 'representative person'. The Commission's goal of protection of the public is achieved if the relevant dose constraint for this individual for a single source is met and radiological protection is optimised. This report explains the process of estimating annual dose and recognises that a number of different methods are available for this purpose. These methods range from deterministic calculations to more complex probabilistic techniques. In addition, a mixture of these techniques may be applied. In selecting characteristics of the representative person, three important concepts should be borne in mind: reasonableness, sustainability, and homogeneity. Each concept is explained and examples are provided to illustrate their roles. Doses to the public are prospective (may occur in the future) or retrospective (occurred in the past). Prospective doses are for hypothetical individuals who may or may not exist in the future, while retrospective doses are generally calculated for specific individuals. The Commission recognises that the level of detail afforded by its provision of dose coefficients for six age categories is not necessary in making prospective assessments of dose, given the inherent uncertainties usually associated with estimating dose to the public and with identification of the representative person. It now recommends the use of three age categories for estimating annual dose to the representative person for prospective assessments. These categories are 0-5 years (infant), 6-15 years (child), and 16-70 years (adult). For practical implementation of this recommendation, dose coefficients and habit data for a 1-year-old infant, a 10-year-old child, and an adult should be used to represent the three age categories. In a probabilistic assessment of dose, whether from a planned facility or an existing situation, the Commission recommends that the representative person should be defined such that the probability is less than about 5% that a person drawn at random from the population will receive a greater dose. If such an assessment indicates that a few tens of people or more could receive doses above the relevant constraint, the characteristics of these people need to be explored. If, following further analysis, it is shown that doses to a few tens of people are indeed likely to exceed the relevant dose constraint, actions to modify the exposure should be considered. The Commission recognises the role that stakeholders can play in identifying characteristics of the representative person. Involvement of stakeholders can significantly improve the quality, understanding, and acceptability of the characteristics of the representative person and the resulting estimated dose.

  8. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    PubMed Central

    Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David

    2013-01-01

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455

  9. Reconstruction of Absorbed Doses to Fibroglandular Tissue of the Breast of Women undergoing Mammography (1960 to the Present)

    PubMed Central

    Thierry-Chef, Isabelle; Simon, Steven L.; Weinstock, Robert M.; Kwon, Deukwoo; Linet, Martha S.

    2013-01-01

    The assessment of potential benefits versus harms from mammographic examinations as described in the controversial breast cancer screening recommendations of the U.S. Preventive Task Force included limited consideration of absorbed dose to the fibroglandular tissue of the breast (glandular tissue dose), the tissue at risk for breast cancer. Epidemiological studies on cancer risks associated with diagnostic radiological examinations often lack accurate information on glandular tissue dose, and there is a clear need for better estimates of these doses. Our objective was to develop a quantitative summary of glandular tissue doses from mammography by considering sources of variation over time in key parameters including imaging protocols, x-ray target materials, voltage, filtration, incident air kerma, compressed breast thickness, and breast composition. We estimated the minimum, maximum, and mean values for glandular tissue dose for populations of exposed women within 5-year periods from 1960 to the present, with the minimum to maximum range likely including 90% to 95% of the entirety of the dose range from mammography in North America and Europe. Glandular tissue dose from a single view in mammography is presently about 2 mGy, about one-sixth the dose in the 1960s. The ratio of our estimates of maximum to minimum glandular tissue doses for average-size breasts was about 100 in the 1960s compared to a ratio of about 5 in recent years. Findings from our analysis provide quantitative information on glandular tissue doses from mammographic examinations which can be used in epidemiologic studies of breast cancer. PMID:21988547

  10. Examples for the importance of radiophysical measurements in clinical phototherapy.

    PubMed

    Schneider, Lars Alexander; Wlaschek, Meinhard; Dissemond, Joachim; Scharffetter-Kochanek, Karin

    2007-05-01

    Optimal UV therapy requires regular surveillance of the variables that influence therapeutic success. In daily practice, phototherapy equipment is often operated with an attitude of "autocontrol." This implies that thorough control measurements of the emission spectra and calibration of UV fluences are not routinely performed. For both quality control and patient safety, it is essential to regularly check whether a UV source is providing the right target spectrum with the correct dose to the skin. We have exemplarily taken three UV sources currently used in clinical practice and performed radiophysical measurements, i. e. determined emission spectra, radiation output and correctness of dose calculation. All three sources revealed either a largely inhomogeneous distribution pattern of radiation intensity, variation of radiation intensity over time or insufficient filtering of the UV lamp emission spectrum. Furthermore the dose calculation procedures had to be revised because of significant differences between the estimated and the administered UV doses. Radiophysical measurement of all UV-equipment in clinical use is a simple and effective way to improve the safety and reliability of phototherapy. Such measurements help to uncover technical flaws in radiation sources and prevent unnecessary side effects and UV exposure risks for the patient.

  11. DEEP, SHALLOW AND EYE LENS DOSES FROM 106Ru/106Rh-A COMPARSION.

    PubMed

    Kumar, Munish; Bakshi, A K; Rakesh, R B; Ratna, P; Kulkarni, M S; Datta, D

    2017-11-01

    106Ru/106Rh is unique amongst other commonly used beta sources such as 147Pm, 85Kr, 204Tl, 32P, natU and 90Sr/90Y in the sense that it is capable of simultaneously delivering shallow/skin, eye lens and deep/whole body doses (WBDs) and they differ from each other substantially. In view of this, the investigation of various quantities defined for individual monitoring is possible and this makes 106Ru/106Rh beta source, a classical example in radiation protection and dosimetry. This led us to estimate skin, eye lens and WBDs for 106Ru/106Rh beta source. Optically stimulated luminescence based ultra-thin α-Al2O3:C disc dosimeters were used in the present study. Typical values (relative) of the eye lens and whole body/deep doses with respective to the skin dose (100%) were experimentally measured as ~66 ± 4.6% and 17 ± 3.9%, respectively. The study shows that 106Ru/106Rh beta source is capable of delivering even WBD which is not the case with other beta sources. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Application of the Monte Carlo method to estimate doses due to neutron activation of different materials in a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Ródenas, José

    2017-11-01

    All materials exposed to some neutron flux can be activated independently of the kind of the neutron source. In this study, a nuclear reactor has been considered as neutron source. In particular, the activation of control rods in a BWR is studied to obtain the doses produced around the storage pool for irradiated fuel of the plant when control rods are withdrawn from the reactor and installed into this pool. It is very important to calculate these doses because they can affect to plant workers in the area. The MCNP code based on the Monte Carlo method has been applied to simulate activation reactions produced in the control rods inserted into the reactor. Obtained activities are introduced as input into another MC model to estimate doses produced by them. The comparison of simulation results with experimental measurements allows the validation of developed models. The developed MC models have been also applied to simulate the activation of other materials, such as components of a stainless steel sample introduced into a training reactors. These models, once validated, can be applied to other situations and materials where a neutron flux can be found, not only nuclear reactors. For instance, activation analysis with an Am-Be source, neutrography techniques in both medical applications and non-destructive analysis of materials, civil engineering applications using a Troxler, analysis of materials in decommissioning of nuclear power plants, etc.

  13. Multiple Testing, Cumulative Radiation Dose, and Clinical Indications in Patients Undergoing Myocardial Perfusion Imaging

    PubMed Central

    Einstein, Andrew J.; Weiner, Shepard D.; Bernheim, Adam; Kulon, Michal; Bokhari, Sabahat; Johnson, Lynne L.; Moses, Jeffrey W.; Balter, Stephen

    2013-01-01

    Context Myocardial perfusion imaging (MPI) is the single medical test with the highest radiation burden to the US population. While many patients undergoing MPI receive repeat MPI testing, or additional procedures involving ionizing radiation, no data are available characterizing their total longitudinal radiation burden and relating radiation burden with reasons for testing. Objective To characterize procedure counts, cumulative estimated effective doses of radiation, and clinical indications, for patients undergoing MPI. Design, Setting, Patients Retrospective cohort study evaluating, for 1097 consecutive patients undergoing index MPI during the first 100 days of 2006 at Columbia University Medical Center, all preceding medical imaging procedures involving ionizing radiation undergone beginning October 1988, and all subsequent procedures through June 2008, at that center. Main Outcome Measures Cumulative estimated effective dose of radiation, number of procedures involving radiation, and indications for testing. Results Patients underwent a median (interquartile range, mean) of 15 (6–32, 23.9) procedures involving radiation exposure; 4 (2–8, 6.5) were high-dose (≥3 mSv, i.e. one year's background radiation), including 1 (1–2, 1.8) MPI studies per patient. 31% of patients received cumulative estimated effective dose from all medical sources >100mSv. Multiple MPIs were performed in 39% of patients, for whom cumulative estimated effective dose was 121 (81–189, 149) mSv. Men and whites had higher cumulative estimated effective doses, and there was a trend towards men being more likely to undergo multiple MPIs than women (40.8% vs. 36.6%, Odds ratio 1.29, 95% confidence interval 0.98–1.69). Over 80% of initial and 90% of repeat MPI exams were performed in patients with known cardiac disease or symptoms consistent with it. Conclusion In this institution, multiple testing with MPI was very common, and in many patients associated with very high cumulative estimated doses of radiation. PMID:21078807

  14. Developing a Treatment Planning Software Based on TG-43U1 Formalism for Cs-137 LDR Brachytherapy.

    PubMed

    Sina, Sedigheh; Faghihi, Reza; Soleimani Meigooni, Ali; Siavashpour, Zahra; Mosleh-Shirazi, Mohammad Amin

    2013-08-01

    The old Treatment Planning Systems (TPSs) used for intracavitary brachytherapy with Cs-137 Selectron source utilize traditional dose calculation methods, considering each source as a point source. Using such methods introduces significant errors in dose estimation. As of 1995, TG-43 is used as the main dose calculation formalism in treatment TPSs. The purpose of this study is to design and establish a treatment planning software for Cs-137 Solectron brachytherapy source, based on TG-43U1 formalism by applying the effects of the applicator and dummy spacers. Two softwares used for treatment planning of Cs-137 sources in Iran (STPS and PLATO), are based on old formalisms. The purpose of this work is to establish and develop a TPS for Selectron source based on TG-43 formalism. In this planning system, the dosimetry parameters of each pellet in different places inside applicators were obtained by MCNP4c code. Then the dose distribution around every combination of active and inactive pellets was obtained by summing the doses. The accuracy of this algorithm was checked by comparing its results for special combination of active and inactive pellets with MC simulations. Finally, the uncertainty of old dose calculation formalism was investigated by comparing the results of STPS and PLATO softwares with those obtained by the new algorithm. For a typical arrangement of 10 active pellets in the applicator, the percentage difference between doses obtained by the new algorithm at 1cm distance from the tip of the applicator and those obtained by old formalisms is about 30%, while the difference between the results of MCNP and the new algorithm is less than 5%. According to the results, the old dosimetry formalisms, overestimate the dose especially towards the applicator's tip. While the TG-43U1 based software perform the calculations more accurately.

  15. Measured dose to ovaries and testes from Hodgkin's fields and determination of genetically significant dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niroomand-Rad, A.; Cumberlin, R.

    The purpose of this study was to determine the genetically significant dose from therapeutic radiation exposure with Hodgkin's fields by estimating the doses to ovaries and testes. Phantom measurements were performed to verify estimated doses to ovaries and testes from Hodgkin's fields. Thermoluminescent LiF dosimeters (TLD-100) of 1 x 3 x 3 mm[sup 3] dimensions were embedded in phantoms and exposed to standard mantle and paraaortic fields using Co-60, 4 MV, 6 MV, and 10 MV photon beams. The results show that measured doses to ovaries and testes are about two to five times higher than the corresponding graphically estimatedmore » doses for Co-60 and 4 MVX photon beams as depicted in ICRP publication 44. In addition, the measured doses to ovaries and testes are about 30% to 65% lower for 10 MV photon beams than for their corresponding Co-60 photon beams. The genetically significant dose from Hodgkin's treatment (less than 0.01 mSv) adds about 4% to the genetically significant dose contribution to medical procedures and adds less than 1% to the genetically significant dose from all sources. Therefore, the consequence to society is considered to be very small. The consequences for the individual patient are, likewise, small. 28 refs., 3 figs., 5 tabs.« less

  16. Uncertainty propagation for SPECT/CT-based renal dosimetry in 177Lu peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Gustafsson, Johan; Brolin, Gustav; Cox, Maurice; Ljungberg, Michael; Johansson, Lena; Sjögreen Gleisner, Katarina

    2015-11-01

    A computer model of a patient-specific clinical 177Lu-DOTATATE therapy dosimetry system is constructed and used for investigating the variability of renal absorbed dose and biologically effective dose (BED) estimates. As patient models, three anthropomorphic computer phantoms coupled to a pharmacokinetic model of 177Lu-DOTATATE are used. Aspects included in the dosimetry-process model are the gamma-camera calibration via measurement of the system sensitivity, selection of imaging time points, generation of mass-density maps from CT, SPECT imaging, volume-of-interest delineation, calculation of absorbed-dose rate via a combination of local energy deposition for electrons and Monte Carlo simulations of photons, curve fitting and integration to absorbed dose and BED. By introducing variabilities in these steps the combined uncertainty in the output quantity is determined. The importance of different sources of uncertainty is assessed by observing the decrease in standard deviation when removing a particular source. The obtained absorbed dose and BED standard deviations are approximately 6% and slightly higher if considering the root mean square error. The most important sources of variability are the compensation for partial volume effects via a recovery coefficient and the gamma-camera calibration via the system sensitivity.

  17. Assessing exposure to granite countertops--Part 1: Radiation.

    PubMed

    Myatt, Theodore A; Allen, Joseph G; Minegishi, Taeko; McCarthy, William B; Stewart, James H; Macintosh, David L; McCarthy, John F

    2010-05-01

    Humans are continuously exposed to low levels of ionizing radiation. Known sources include radon, soil, cosmic rays, medical treatment, food, and building products such as gypsum board and concrete. Little information exists about radiation emissions and associated doses from natural stone finish materials such as granite countertops in homes. To address this knowledge gap, gross radioactivity, gamma ray activity, and dose rate were determined for slabs of granite marketed for use as countertops. Annual effective radiation doses were estimated from measured dose rates and human activity patterns while accounting for the geometry of granite countertops in a model kitchen. Gross radioactivity, gamma activity, and dose rate varied significantly among and within slabs of granite with ranges for median levels at the slab surface of ND to 3000 cpm, ND to 98,000 cpm, and ND to 1.5E-4 mSv/h, respectively. The maximum activity concentrations of the (40)K, (232)Th, and (226)Ra series were 2715, 231, and 450 Bq/kg, respectively. The estimated annual radiation dose from spending 4 h/day in a hypothetical kitchen ranged from 0.005 to 0.18 mSv/a depending on the type of granite. In summary, our results show that the types of granite characterized in this study contain varying levels of radioactive isotopes and that their observed emissions are consistent with those reported in the scientific literature. We also conclude from our analyses that these emissions are likely to be a minor source of external radiation dose when used as countertop material within the home and present a negligible risk to human health.

  18. Whole-body biodistribution and estimation of radiation-absorbed doses of the dopamine D1 receptor radioligand 11C-NNC 112 in humans.

    PubMed

    Cropley, Vanessa L; Fujita, Masahiro; Musachio, John L; Hong, Jinsoo; Ghose, Subroto; Sangare, Janet; Nathan, Pradeep J; Pike, Victor W; Innis, Robert B

    2006-01-01

    The present study estimated radiation-absorbed doses of the dopamine D(1) receptor radioligand [(11)C]((+)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine) (NNC 112) in humans, based on dynamic whole-body PET in healthy subjects. Whole-body PET was performed on 7 subjects after injection of 710 +/- 85 MBq of (11)C-NNC 112. Fourteen frames were acquired for a total of 120 min in 7 segments of the body. Regions of interest were drawn on compressed planar images of source organs that could be identified. Radiation dose estimates were calculated from organ residence times using the OLINDA 1.0 program. The organs with the highest radiation-absorbed doses were the gallbladder, liver, lungs, kidneys, and urinary bladder wall. Biexponential fitting of mean bladder activity demonstrated that 15% of activity was excreted via the urine. With a 2.4-h voiding interval, the effective dose was 5.7 microSv/MBq (21.1 mrem/mCi). (11)C-NNC 112 displays a favorable radiation dose profile in humans and would allow multiple PET examinations per year to be performed on the same subject.

  19. 210Po in the diet at Seville (Spain) and its contribution to the dose by ingestion

    PubMed Central

    Díaz-Francés, I.; Mantero, J.; Díaz-Ruiz, J.; Manjón, G.; García-Tenorio, R.

    2016-01-01

    The activity concentrations of 210Po have been determined in a total of 24 representative diet samples from Seville (south of Spain), inferring from the obtained values the annual intakes of 210Po by ingestion of the affected population and the corresponding committed effective doses. The annual intakes of 210Po and, consequently, the corresponding doses of this radionuclide show a high variability in correspondence with the variability in the composition of the analysed samples over time, and their magnitude is comparable with the estimated ones in other regions/countries of the world with similar diet habits (countries where the marine products have a considerable weight in the diets). Committed effective doses by ingestion higher than 0.1 mSv y−1 have been estimated exclusively for 210Po, reflecting the importance of this radionuclide and this route of incorporation in the magnitude of the total doses received by the affected population from natural sources. PMID:25802464

  20. Merging Models and Biomonitoring Data to Characterize Sources andPathways of Human Exposure to Organophosphorous Pesticides in the SalinasValley of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKone, Thomas E.; Castorina, Rosemary; Kuwabara, Yu

    2006-06-01

    By drawing on human biomonitoring data and limited environmental samples together with outputs from the CalTOX multimedia, multipathway source-to-dose model, we characterize cumulative intake of organophosphorous (OP) pesticides in an agricultural region of California. We assemble regional OP pesticide use, environmental sampling, and biological tissue monitoring data for a large and geographically dispersed population cohort of 592 pregnant Latina women in California (the CHAMACOS cohort). We then use CalTOX with regional pesticide usage data to estimate the magnitude and uncertainty of exposure and intake from local sources. We combine model estimates of intake from local sources with food intake basedmore » on national residue data to estimate for the CHAMACOS cohort cumulative median OP intake, which corresponds to expected levels of urinary dialkylphosphate (DAP) metabolite excretion for this cohort. From these results we develop premises about relative contributions from different sources and pathways of exposure. We evaluate these premises by comparing the magnitude and variation of DAPs in the CHAMACOS cohort with the whole U.S. population using data from the National Health and Nutrition Evaluation Survey (NHANES). This comparison supports the premise that in both populations diet is the common and dominant exposure pathway. Both the model results and biomarker comparison supports the observation that the CHAMACOS population has a statistically significant higher intake of OP pesticides that appears as an almost constant additional dose among all participants. We attribute the magnitude and small variance of this intake to non-dietary exposure in residences from local sources.« less

  1. ESTIMATES OF RADIATION DOSES TO THE SKIN FOR PEOPLE CAMPED AT WALLATINNA DURING THE UK TOTEM 1 ATOMIC WEAPONS TEST.

    PubMed

    Williams, G A; O'Brien, R S; Grzechnik, M; Wise, K N

    2017-04-28

    A group of Aboriginal people was camped at Wallatinna in South Australia, ~170 km downwind from Emu Field, where an atomic test (the Totem 1 test) was carried out at 07.00 on 15 October 1953 local time (21.30 on 14 October 1953 GMT (Greenwich Mean Time)). They left the camp ~24 hours later. These people stated that a phenomenon that has become known as a 'black mist' rolled through their camp site ~5 hours after detonation and that some of them subsequently became sick, displaying skin reddening and nausea. They feared that the sickness was a result of exposure to high levels of radiation. The purpose of this paper is to determine if these people could have received ionising radiation doses high enough to cause the symptoms displayed. The methodology used for the dose estimates is described in the paper. The exposure modes considered were external exposure due to the passage of a contaminated plume over the camp site, inhalation of material from this plume, external exposure from material deposited on the ground as the plume passed, and consumption of contaminated food and water. The contaminants considered in the airborne cloud and the ground plume were fission products and unburnt plutonium from the nuclear detonation, and neutron activation products caused by vaporisation of the tower used to position the weapon. The source was approximated by a line source. An upper estimate of the effective doses received is ~4 mSv, which is well below the level at which acute radiation effects are observed. This estimate is consistent with earlier assessments, which did not consider inhalation of the contribution from neutron activation products. © Crown copyright 2016.

  2. AN ESTIMATION OF THE EXPOSURE OF THE POPULATION OF ISRAEL TO NATURAL SOURCES OF IONIZING RADIATION.

    PubMed

    Epstein, L; Koch, J; Riemer, T; Haquin, G; Orion, I

    2017-11-01

    The radiation dose to the population of Israel due to exposure to natural sources of ionizing radiation was assessed. The main contributor to the dose is radon that accounts for 60% of the exposure to natural sources. The dose due to radon inhalation was assessed by combining the results of a radon survey in single-family houses with the results of a survey in apartments in multi-storey buildings. The average annual dose due to radon inhalation was found to be 1.2 mSv. The dose rate due to exposure to cosmic radiation was assessed using a code that calculates the dose rate at different heights above sea level, taking into account the solar cycle. The annual dose was calculated based on the fraction of time spent indoors and the attenuation provided by buildings and was found to be 0.2 mSv. The annual dose due to external exposure to the terrestrial radionuclides was similarly assessed. The indoor dose rate was calculated using a model that takes into account the concentrations of the natural radionuclides in building materials, the density and the thickness of the walls. The dose rate outdoors was calculated based on the concentrations of the natural radionuclides in different geological units in Israel as measured in an aerial survey and measurements above ground. The annual dose was found to be 0.2 mSv. Doses due to internal exposure other than exposure to radon were also calculated and were found to be 0.4 mSv. The overall annual exposure of the population of Israel to natural sources of ionizing radiation is therefore 2 mSv and ranges between 1.7 and 2.7 mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less

  4. An Assessment of Common Approaches to Estimating Peak Skin Dose Resulting From Fluoroscopically Guided Interventions

    NASA Astrophysics Data System (ADS)

    Smith, Caleb Martin

    Fluoroscopy guided procedures are increasing in complexity, and with that, Peak Skin Doses (PSD) that produce cutaneous radiation injury are a growing concern. Direct measurement of PSD is possible, but the decision to do so must be made in advance. PSD estimates and correctly monitoring their possible deterministic skin injuries are important to patient care. Three methods of indirect PSD estimation are examined for nine cases at MedStar Georgetown University Hospital. The aim of the study is to determine the magnitude of variation between these three methods for estimating the PSD. Method 1 (Fluoroscopy Time and Maximum Entrance Skin Exposure) was used at MedStar Georgetown University Hospital up until 2016. Methods 2 and 3 incorporate procedure information (Reference Point Air Kerma, Source-to-Patent distance, and Backscatter Factor) from DICOM (Digital Imaging and Communications in Medicine) tags into PSD estimates. Method 1 PSD estimates are vastly different, by as much as 136%, than those from Methods 2 and 3. Method 2 and 3 PSD estimates differ very little, 7.3% or less. Governing bodies have discounted Method 1 as a reliable dose metric because of its poor correlation with PSD. The accuracy of Method 2 is suitable to determine PSD and which dose band a patient fits so their injuries can be accurately monitored. Method 3, the most time intensive approach, should only be used in the case of a sentinel event where a full investigation is warranted.

  5. Including non-dietary sources into an exposure assessment of the European Food Safety Authority: The challenge of multi-sector chemicals such as Bisphenol A.

    PubMed

    von Goetz, N; Pirow, R; Hart, A; Bradley, E; Poças, F; Arcella, D; Lillegard, I T L; Simoneau, C; van Engelen, J; Husoy, T; Theobald, A; Leclercq, C

    2017-04-01

    In the most recent risk assessment for Bisphenol A for the first time a multi-route aggregate exposure assessment was conducted by the European Food Safety Authority. This assessment includes exposure via dietary sources, and also contributions of the most important non-dietary sources. Both average and high aggregate exposure were calculated by source-to-dose modeling (forward calculation) for different age groups and compared with estimates based on urinary biomonitoring data (backward calculation). The aggregate exposure estimates obtained by forward and backward modeling are in the same order of magnitude, with forward modeling yielding higher estimates associated with larger uncertainty. Yet, only forward modeling can indicate the relative contribution of different sources. Dietary exposure, especially via canned food, appears to be the most important exposure source and, based on the central aggregate exposure estimates, contributes around 90% to internal exposure to total (conjugated plus unconjugated) BPA. Dermal exposure via thermal paper and to a lesser extent via cosmetic products may contribute around 10% for some age groups. The uncertainty around these estimates is considerable, but since after dermal absorption a first-pass metabolism of BPA by conjugation is lacking, dermal sources may be of equal or even higher toxicological relevance than dietary sources. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Radon and leukemia in the Danish study: another source of dose.

    PubMed

    Harley, Naomi H; Robbins, Edith S

    2009-10-01

    An epidemiologic study of childhood leukemia in Denmark (2,400 cases; 6,697 controls) from 1968 to 1994 suggested a weak, but statistically significant, association of residential radon exposure and acute childhood lymphoblastic leukemia (ALL). The Danish study estimated a relative risk (RR) = 1.56 (95% CI, 1.05-2.30) for a cumulative exposure of 1,000 Bq m-3 y. For an exposure duration of 10 y their RR corresponds to a radon concentration of 100 Bq m-3. There are two dose pathways of interest where alpha particles could damage potential stem cells for ALL. One is the alpha dose to bone marrow, and two is the dose to bronchial mucosa where an abundance of circulating lymphocytes is found. Compared with an exposure of about 1 mSv y-1 from natural external background, radon and decay products contribute an additional 10 to 60% to the bone marrow equivalent dose. The other pathway for exposure of T (or B) lymphocytes is within the tracheobronchial epithelium (BE). Inhaled radon decay products deposit on the relatively small area of airway surfaces and deliver a significant dose to the nearby basal or mucous cells implicated in human lung cancer. Lymphocytes are co-located with basal cells and are half as abundant. Using a 10-y exposure to 100 Bq m-3, our dose estimates suggest that the equivalent dose to these lymphocytes could approach 1 Sv. The relatively high dose estimate to lymphocytes circulating through the BE, potential precursor cells for ALL, provides a dose pathway for an association.

  7. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source.

    PubMed

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V(100) reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V(100) to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.

  8. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    NASA Astrophysics Data System (ADS)

    Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Eng, Tony; Papanikolaou, Nikos

    2010-09-01

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent™ x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V100 reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as compared to 95.2% in water phantoms without RBE enhancement (planned BED). About 10% increase in the source output is required to raise BED PTV V100 to 95%. As a conclusion, the composite effect of dose reduction in the target due to heterogeneities and RBE enhancement results in a net effect of 5.3% target BED coverage loss for electronic brachytherapy. Therefore, it is suggested that about 10% increase in the source output may be necessary to achieve sufficient target coverage higher than 95%.

  9. Dose estimates for the local inhabitants from 210Po ingestion via dietary sources at a proposed uranium mining site in India.

    PubMed

    Giri, Soma; Jha, V N; Singh, Gurdeep; Tripathi, R M

    2012-07-01

    To study the distribution of (210)Po activity in food in Bagjata in East Singhbhum, India. (210)Po were analyzed in the food samples of plant origin such as cereals, pulses, fruits, vegetables and food of animal origin such fish, chicken, egg, etc., in and around Bagjata uranium mining area as a part of baseline study after acid digestion. The intake and ingestion dose of the radionuclide was estimated. The general range of (210)Po activity in all the dietary components ranged widely from <0.2-36 Bqkg(-1)(fresh). In the food of plant origin, the minimum activity of (210)Po was estimated in vegetables while maximum in pulses. In food of animal origin, the observed minimum activity of (210)Po was in eggs and the maximum observed was in chicken samples. The intake of (210)Po considering all dietary components was found to be 464 Bq.Y(-1) while the ingestion dose was calculated to be 557 μSv.Y(-1), respectively. The estimated doses are reflecting the natural background dose via the route of ingestion, which is much below the 1 mSv limit set in the International Commission on Radiological Protection (ICRP) recommendations. The study confirms that current levels of (210)Po do not pose a significant radiological risk to the local inhabitants.

  10. A photon spectrometric dose-rate constant determination for the Advantage Pd-103 brachytherapy source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe Jay; Bongiorni, Paul; Nath, Ravinder

    Purpose: Although several dosimetric characterizations using Monte Carlo simulation and thermoluminescent dosimetry (TLD) have been reported for the new Advantage Pd-103 source (IsoAid, LLC, Port Richey, FL), no AAPM consensus value has been established for the dosimetric parameters of the source. The aim of this work was to perform an additional dose-rate constant ({Lambda}) determination using a recently established photon spectrometry technique (PST) that is independent of the published TLD and Monte Carlo techniques. Methods: Three Model IAPD-103A Advantage Pd-103 sources were used in this study. The relative photon energy spectrum emitted by each source along the transverse axis wasmore » measured using a high-resolution germanium spectrometer designed for low-energy photons. For each source, the dose-rate constant was determined from its emitted energy spectrum. The PST-determined dose-rate constant ({sub PST}{Lambda}) was then compared to those determined by TLD ({sub TLD}{Lambda}) and Monte Carlo ({sub MC}{Lambda}) techniques. A likely consensus {Lambda} value was estimated as the arithmetic mean of the average {Lambda} values determined by each of three different techniques. Results: The average {sub PST}{Lambda} value for the three Advantage sources was found to be (0.676{+-}0.026) cGyh{sup -1} U{sup -1}. Intersource variation in {sub PST}{Lambda} was less than 0.01%. The {sub PST}{Lambda} was within 2% of the reported {sub MC}{Lambda} values determined by PTRAN, EGSnrc, and MCNP5 codes. It was 3.4% lower than the reported {sub TLD}{Lambda}. A likely consensus {Lambda} value was estimated to be (0.688{+-}0.026) cGyh{sup -1} U{sup -1}, similar to the AAPM consensus values recommended currently for the Theragenics (Buford, GA) Model 200 (0.686{+-}0.033) cGyh{sup -1} U{sup -1}, the NASI (Chatsworth, CA) Model MED3633 (0.688{+-}0.033) cGyh{sup -1} U{sup -1}, and the Best Medical (Springfield, VA) Model 2335 (0.685{+-}0.033) cGyh{sup -1} U{sup -1} {sup 103}Pd sources. Conclusions: An independent {Lambda} determination has been performed for the Advantage Pd-103 source. The {sub PST}{Lambda} obtained in this work provides additional information needed for establishing a more accurate consensus {Lambda} value for the Advantage Pd-103 source.« less

  11. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu; Hsieh, Jiang

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. Themore » CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer. Conclusions: The simulation results showed that the deterministic method can be effectively used to estimate the absorbed dose in a CTDI phantom. The accuracy of the discrete ordinates method was close to that of a Monte Carlo simulation, and the primary benefit of the discrete ordinates method lies in its rapid computation speed. It is expected that further optimization of this method in routine clinical CT dose estimation will improve its accuracy and speed.« less

  12. On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.

    2017-10-01

    High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.

  13. Comparative analysis of radioecological monitoring dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, A.I.; Pol`skii, O.G.; Shanin, O.B.

    1995-03-01

    This paper describes comparative estimates of radiation doses measured by two types of thermoluminescence dosimeters and two types of background radiation radiometers. The dosimetry systems were tested by simultaneously recording background radiation and standard radiation sources at a radioactive waste storage facility. Statistical analysis of the measurement results is summarized. The maximum recorded exposure dose rate for the experiment was 19 microrads per hour. The DTK-2 dosimeter overestimated dose rates by 6 to 43% and the DTU-2 dosimeter underestimated dose rates by 7 to 21%. Both devices are recommended for radioecological monitoring in populated areas. 4 refs., 3 figs., 5more » tabs.« less

  14. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinicalmore » use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011).Conclusions: The authors have created an OSLD-based {sup 192}Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.« less

  15. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    PubMed

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  16. Dose conversion factors for radon: recent developments.

    PubMed

    Marsh, James W; Harrison, John D; Laurier, Dominique; Blanchardon, Eric; Paquet, François; Tirmarche, Margot

    2010-10-01

    Epidemiological studies of the occupational exposure of miners and domestic exposures of the public have provided strong and complementary evidence of the risks of lung cancer following inhalation of radon progeny. Recent miner epidemiological studies, which include low levels of exposure, long duration of follow-up, and good quality of individual exposure data, suggest higher risks of lung cancer per unit exposure than assumed previously by the International Commission on Radiological Protection (ICRP). Although risks can be managed by controlling exposures, dose estimates are required for the control of occupational exposures and are also useful for comparing sources of public exposure. Currently, ICRP calculates doses from radon and its progeny using dose conversion factors from exposure (WLM) to dose (mSv) based on miner epidemiological studies, referred to as the epidemiological approach. Revision of these dose conversion factors using risk estimates based on the most recent epidemiological data gives values that are in good agreement with the results of calculations using ICRP biokinetic and dosimetric models, the dosimetric approach. ICRP now proposes to treat radon progeny in the same way as other radionuclides and to publish dose coefficients calculated using models, for use within the ICRP system of protection.

  17. Ultrasound-Detected Thyroid Nodule Prevalence and Radiation Dose from Fallout

    PubMed Central

    Land, C. E.; Zhumadilov, Z.; Gusev, B. I.; Hartshorne, M. H.; Wiest, P. W.; Woodward, P. W.; Crooks, L. A.; Luckyanov, N. K.; Fillmore, C. M.; Carr, Z.; Abisheva, G.; Beck, H. L.; Bouville, A.; Langer, J.; Weinstock, R.; Gordeev, K. I.; Shinkarev, S.; Simon, S. L.

    2014-01-01

    Settlements near the Semipalatinsk Test Site (SNTS) in northeastern Kazakhstan were exposed to radioactive fallout during 1949–1962. Thyroid disease prevalence among 2994 residents of eight villages was ascertained by ultrasound screening. Malignancy was determined by cytopathology. Individual thyroid doses from external and internal radiation sources were reconstructed from fallout deposition patterns, residential histories and diet, including childhood milk consumption. Point estimates of individual external and internal dose averaged 0.04 Gy (range 0–0.65) and 0.31 Gy (0–9.6), respectively, with a Pearson correlation coefficient of 0.46. Ultrasound-detected thyroid nodule prevalence was 18% and 39% among males and females, respectively. It was significantly and independently associated with both external and internal dose, the main study finding. The estimated relative biological effectiveness of internal compared to external radiation dose was 0.33, with 95% confidence bounds of 0.09–3.11. Prevalence of papillary cancer was 0.9% and was not significantly associated with radiation dose. In terms of excess relative risk per unit dose, our dose–response findings for nodule prevalence are comparable to those from populations exposed to medical X rays and to acute radiation from the Hiroshima and Nagasaki atomic bombings. PMID:18363427

  18. Characterization of high-dose and high-energy implanted gate and source diode and analysis of lateral spreading of p gate profile in high voltage SiC static induction transistors

    NASA Astrophysics Data System (ADS)

    Onose, Hidekatsu; Kobayashi, Yutaka; Onuki, Jin

    2017-03-01

    The effect of the p gate dose on the characteristics of the gate-source diode in SiC static induction transistors (SIT) was investigated. It was found that a dose of 1.5 × 1014 cm-2 yields a pn junction breakdown voltage higher than 60 V and good forward characteristics. A normally on SiC SIT was fabricated and demonstrated. A blocking voltage higher than 2.0 kV at a gate-source voltage of -50 V and on-resistance of 70 mΩ cm2 were obtained. Device simulations were performed to investigate the effect of the lateral spreading. By comparing the measured I-V curves with simulation results, the lateral spreading factor was estimated to be about 0.5. The lateral spreading detrimentally affected the electrical properties of the SIT made using implantations at energies higher than 1 MeV.

  19. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  20. Preliminary design of a mobile lunar power supply

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Kenny, Barbara H.; Fulmer, Christopher R.

    1991-01-01

    A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program.

  1. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models.

    PubMed

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-07-13

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT'IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18 F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18 F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18 F-Amino acids, 18 F-Brain receptor substances, 18 F-FDG, 18 F-L-DOPA and 18 F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  2. Effects of body habitus on internal radiation dose calculations using the 5-year-old anthropomorphic male models

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-08-01

    Computational phantoms are commonly used in internal radiation dosimetry to assess the amount and distribution pattern of energy deposited in various parts of the human body from different internal radiation sources. Radiation dose assessments are commonly performed on predetermined reference computational phantoms while the argument for individualized patient-specific radiation dosimetry exists. This study aims to evaluate the influence of body habitus on internal dosimetry and to quantify the uncertainties in dose estimation correlated with the use of fixed reference models. The 5-year-old IT’IS male phantom was modified to match target anthropometric parameters, including body weight, body height and sitting height/stature ratio (SSR), determined from reference databases, thus enabling the creation of 125 5-year-old habitus-dependent male phantoms with 10th, 25th, 50th, 75th and 90th percentile body morphometries. We evaluated the absorbed fractions and the mean absorbed dose to the target region per unit cumulative activity in the source region (S-values) of F-18 in 46 source regions for the generated 125 anthropomorphic 5-year-old hybrid male phantoms using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code and calculated the absorbed dose and effective dose of five 18F-labelled radiotracers for children of various habitus. For most organs, the S-value of F-18 presents stronger statistical correlations with body weight, standing height and sitting height than BMI and SSR. The self-absorbed fraction and self-absorbed S-values of F-18 and the absorbed dose and effective dose of 18F-labelled radiotracers present with the strongest statistical correlations with body weight. For 18F-Amino acids, 18F-Brain receptor substances, 18F-FDG, 18F-L-DOPA and 18F-FBPA, the mean absolute effective dose differences between phantoms of different habitus and fixed reference models are 11.4%, 11.3%, 10.8%, 13.3% and 11.4%, respectively. Total body weight, standing height and sitting height have considerable effects on human internal dosimetry. Radiation dose calculations for individual subjects using the most closely matched habitus-dependent computational phantom should be considered as an alternative to improve the accuracy of the estimates.

  3. SU-F-T-49: Dosimetry Parameters and TPS Commissioning for the CivaSheet Directional Pd-103 Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, MJ

    2016-06-15

    Purpose: The CivaSheet is a new LDR Pd-103 brachytherapy device offering directional-radiation for preferentially irradiating malignancies with healthy-tissue sparing. Observations are presented on dosimetric characterization, TPS commissioning, and evaluation of the dosesuperposition- principle for summing individual elements comprising a planar CivaSheet Methods: The CivaSheet comprises individual sources (CivaDots, 0.05cm thick and 0.25cm diam.) inside a flexible bioabsorbable substrate with a 0.8cm center-to-center rectangular array. All non-radioactive components were measured to ensure accuracy of manufacturer-provided dimensional information. The Pd spatial distribution was gleaned from radioactive and inert samples, then modeled with the MCNP6 radiation-transport-code. A 6×6 array CivaSheet was modeled tomore » evaluate the dose superposition principle for treatment planning. Air-kerma-strength was estimated using the NIST WAFAC geometry. Absorbed dose was estimated in water with polar sampling covering 0.05≤r≤15cm in 0.05cm increments and 0°≤θ≤180° in 1° increments. These data were entered into VariSeed9.0 and tested for the dose-superposition-principle. Results: The dose-rate-constant was 0.579 cGy/h/U with g(r) determined along the rotational-axis of symmetry (0°) instead of 90°. gP(r) values at 0.1, 0.5, 2, 5, and 10cm were 1.884, 1.344, 0.558, 0.088, and 0.0046. F(r,θ) decreased between 0° and 180° by factors of 270, 23, and 5.1 at 0.1, 1, and 10cm. The highest dose-gradient was at 92°, changing by a factor of 3 within 1° due to Au-foil shielding. TPS commissioning from 0.1≤r≤11cm and 0°≤θ≤180° demonstrated 2% reproducibility of input data except at the high-dose-gradient where interpolations caused 3% differences. Dose superposition of CivaDots replicated a multi-source CivaSheet array within 2% except where another CivaDot was present. Following implantation, the device is not perfectly planar. TPS accuracy utilizing the dose-superposition-principle through geometric repositioning of CivaDots supersedes TPS limitations of intersource shielding effects Conclusion: Dosimetric characterization, source commissioning, and evaluation of the dose-superposition-principle with VariSeed9.0 permits treatment planning for the CivaSheet brachytherapy device. Research supported in part by CivaTech Oncology, Inc.« less

  4. Iatrogenic radiation exposure to patients with early onset spine and chest wall deformities.

    PubMed

    Khorsand, Derek; Song, Kit M; Swanson, Jonathan; Alessio, Adam; Redding, Gregory; Waldhausen, John

    2013-08-01

    Retrospective cohort series. Characterize average iatrogenic radiation dose to a cohort of children with thoracic insufficiency syndrome (TIS) during assessment and treatment at a single center with vertically expandable prosthetic titanium rib. Children with TIS undergo extensive evaluations to characterize their deformity. No standardized radiographical evaluation exists, but all reports use extensive imaging. The source and level of radiation these patients receive is not currently known. We evaluated a retrospective consecutive cohort of 62 children who had surgical treatment of TIS at our center from 2001-2011. Typical care included obtaining serial radiographs, spine and chest computed tomographic (CT) scans, ventilation/perfusion scans, and magnetic resonance images. Epochs of treatment were divided into time of initial evaluation to the end of initial vertically expandable prosthetic titanium rib implantation with each subsequent epoch delineated by the next surgical intervention. The effective dose for each examination was estimated within millisieverts (mSv). Plain radiographs were calculated from references. Effective dose was directly estimated for CT scans since 2007 and an average of effective dose from 2007-2011 was used for scans before 2007. Effective dose from fluoroscopy was directly estimated. All doses were reported in mSv. A cohort of 62 children had a total of 447 procedures. There were a total of 290 CT scans, 4293 radiographs, 147 magnetic resonance images, and 134 ventilation/perfusion scans. The average accumulated effective dose was 59.6 mSv for children who had completed all treatment, 13.0 mSv up to initial surgery, and 3.2 mSv for each subsequent epoch of treatment. CT scans accounted for 74% of total radiation dose. Children managed for TIS using a consistent protocol received iatrogenic radiation doses that were on average 4 times the estimated average US background radiation exposure of 3 mSv/yr. CT scans comprised 74% of the total dose. 3.

  5. Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-04-01

    The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique.

  6. Noise and Analyzer-Crystal Angular Position Analysis for Analyzer-Based Phase-Contrast Imaging

    PubMed Central

    Majidi, Keivan; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-01-01

    The analyzer-based phase-contrast X-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile (AIP) of the X-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér-Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this manuscript is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the Multiple-Image Radiography (MIR), Diffraction Enhanced Imaging (DEI) and Scatter Diffraction Enhanced Imaging (S-DEI) estimation techniques, though the proposed methodology can be used to evaluate any other ABI parametric image estimation technique. PMID:24651402

  7. SU-F-T-657: In-Room Neutron Dose From High Energy Photon Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christ, D; Ding, G

    Purpose: To estimate neutron dose inside the treatment room from photodisintegration events in high energy photon beams using Monte Carlo simulations and experimental measurements. Methods: The Monte Carlo code MCNP6 was used for the simulations. An Eberline ESP-1 Smart Portable Neutron Detector was used to measure neutron dose. A water phantom was centered at isocenter on the treatment couch, and the detector was placed near the phantom. A Varian 2100EX linear accelerator delivered an 18MV open field photon beam to the phantom at 400MU/min, and a camera captured the detector readings. The experimental setup was modeled in the Monte Carlomore » simulation. The source was modeled for two extreme cases: a) hemispherical photon source emitting from the target and b) cone source with an angle of the primary collimator cone. The model includes the target, primary collimator, flattening filter, secondary collimators, water phantom, detector and concrete walls. Energy deposition tallies were measured for neutrons in the detector and for photons at the center of the phantom. Results: For an 18MV beam with an open 10cm by 10cm field and the gantry at 180°, the Monte Carlo simulations predict the neutron dose in the detector to be 0.11% of the photon dose in the water phantom for case a) and 0.01% for case b). The measured neutron dose is 0.04% of the photon dose. Considering the range of neutron dose predicted by Monte Carlo simulations, the calculated results are in good agreement with measurements. Conclusion: We calculated in-room neutron dose by using Monte Carlo techniques, and the predicted neutron dose is confirmed by experimental measurements. If we remodel the source as an electron beam hitting the target for a more accurate representation of the bremsstrahlung fluence, it is feasible that the Monte Carlo simulations can be used to help in shielding designs.« less

  8. Radiation dosimetry estimates of (18)F-alfatide II based on whole-body PET imaging of mice.

    PubMed

    Wang, Si-Yang; Bao, Xiao; Wang, Ming-Wei; Zhang, Yong-Ping; Zhang, Ying-Jian; Zhang, Jian-Ping

    2015-11-01

    We estimated the dosimetry of (18)F-alfatide II with the method established by MIRD based on biodistribution data of mice. Six mice (three females and three males) were scanned for 160min on an Inveon MicroPET/CT scanner after injection of (18)F-alfatide II via tail vein. Eight source organs were delineated on the CT images and their residence times calculated. The data was then converted to human using scaling factors based on organ and body weight. The absorbed doses for human and the resulting effective dose were computed by OLINDA 1.1 software. The highest absorbed doses was observed in urinary bladder wall (male 0.102mGy/MBq, female 0.147mGy/MBq); and the lowest one was detected in brain (male 0.0030mGy/MBq, female 0.0036). The total effective doses were 0.0127mSv/MBq for male and 0.0166 mSv/MBq for female, respectively. A 370-MBq injection of (18)F-alfatide II led to an estimated effective dose of 4.70mSv for male and 6.14mSv for female. The potential radiation burden associated with (18)F-alfatide II/PET imaging therefore is comparable to other PET examinations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Retrospective dosimetry using OSL of tooth enamel and dental repair materials irradiated under wet and dry conditions.

    PubMed

    Geber-Bergstrand, Therése; Bernhardsson, Christian; Mattsson, Sören; Rääf, Christopher L

    2012-11-01

    Following a radiological or nuclear emergency event, there is a need for quick and reliable dose estimations of potentially exposed people. In situations where dosimeters are not readily available, the dose estimations must be carried out using alternative methods. In the present study, the optically stimulated luminescence (OSL) properties of tooth enamel and different dental repair materials have been examined. Specimens of the materials were exposed to gamma and beta radiation in different types of liquid environments to mimic the actual irradiation situation in the mouth. Measurements were taken using a Risø TL/OSL reader, and irradiations were made using a (90)Sr/(90)Y source and a linear accelerator (6 MV photons). Results show that the OSL signal from tooth enamel decreases substantially when the enamel is kept in a wet environment. Thus, tooth enamel is not reliable for retrospective dose assessment without further studies of the phenomenon. Dental repair materials, on the other hand, do not exhibit the same effect when exposed to liquids. In addition, dose-response and fading measurements of the dental repair materials show promising results, making these materials highly interesting for retrospective dosimetry. The minimum detectable dose for the dental repair materials has been estimated to be 20-185 mGy.

  10. Estimation of neutron dose equivalent at the mezzanine of the Advanced Light Source and the laboratory boundary using the ORNL program MORSE.

    PubMed

    Sun, R K

    1990-12-01

    To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.

  11. Source terms, shielding calculations and soil activation for a medical cyclotron.

    PubMed

    Konheiser, J; Naumann, B; Ferrari, A; Brachem, C; Müller, S E

    2016-12-01

    Calculations of the shielding and estimates of soil activation for a medical cyclotron are presented in this work. Based on the neutron source term from the 18 O(p,n) 18 F reaction produced by a 28 MeV proton beam, neutron and gamma dose rates outside the building were estimated with the Monte Carlo code MCNP6 (Goorley et al 2012 Nucl. Technol. 180 298-315). The neutron source term was calculated with the MCNP6 code and FLUKA (Ferrari et al 2005 INFN/TC_05/11, SLAC-R-773) code as well as with supplied data by the manufacturer. MCNP and FLUKA calculations yielded comparable results, while the neutron yield obtained using the manufacturer-supplied information is about a factor of 5 smaller. The difference is attributed to the missing channels in the manufacturer-supplied neutron source terms which considers only the 18 O(p,n) 18 F reaction, whereas the MCNP and FLUKA calculations include additional neutron reaction channels. Soil activation was performed using the FLUKA code. The estimated dose rate based on MCNP6 calculations in the public area is about 0.035 µSv h -1 and thus significantly below the reference value of 0.5 µSv h -1 (2011 Strahlenschutzverordnung, 9 Auflage vom 01.11.2011, Bundesanzeiger Verlag). After 5 years of continuous beam operation and a subsequent decay time of 30 d, the activity concentration of the soil is about 0.34 Bq g -1 .

  12. Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Rychert, Kevin M.; Zhu, Gang; Kmiec, Maciej M.; Nemani, Venkata K.; Williams, Benjamin B.; Flood, Ann B.; Swartz, Harold M.; Gimi, Barjor

    2015-03-01

    In an event where many thousands of people may have been exposed to levels of radiation that are sufficient to cause the acute radiation syndrome, we need technology that can estimate the absorbed dose on an individual basis for triage and meaningful medical decision making. Such dose estimates may be achieved using in vivo electron paramagnetic resonance (EPR) tooth biodosimetry, which measures the number of persistent free radicals that are generated in tooth enamel following irradiation. However, the accuracy of dose estimates may be impacted by individual variations in teeth, especially the amount and distribution of enamel in the inhomogeneous sensitive volume of the resonator used to detect the radicals. In order to study the relationship between interpersonal variations in enamel and EPR-based dose estimates, it is desirable to estimate these parameters nondestructively and without adding radiation to the teeth. Magnetic Resonance Imaging (MRI) is capable of acquiring structural and biochemical information without imparting additional radiation, which may be beneficial for many EPR dosimetry studies. However, the extremely short T2 relaxation time in tooth structures precludes tooth imaging using conventional MRI methods. Therefore, we used zero echo time (ZTE) MRI to image teeth ex vivo to assess enamel volumes and spatial distributions. Using these data in combination with the data on the distribution of the transverse radio frequency magnetic field from electromagnetic simulations, we then can identify possible sources of variations in radiation-induced signals detectable by EPR. Unlike conventional MRI, ZTE applies spatial encoding gradients during the RF excitation pulse, thereby facilitating signal acquisition almost immediately after excitation, minimizing signal loss from short T2 relaxation times. ZTE successfully provided volumetric measures of tooth enamel that may be related to variations that impact EPR dosimetry and facilitate the development of analytical procedures for individual dose estimates.

  13. Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J. Kenneth

    2000-10-15

    A two-step hybrid method is described for computationally efficient estimation of neutron and gamma-ray skyshine doses far from a shielded source. First, the energy and angular dependence of radiation escaping into the atmosphere from a source containment is determined by a detailed transport model such as MCNP. Then, an effective point source with this energy and angular dependence is used in the integral line-beam method to transport the radiation through the atmosphere up to 2500 m from the source. An example spent-fuel storage cask is analyzed with this hybrid method and compared to detailed MCNP skyshine calculations.

  14. Deposition of strontium-90 through October 1958; the global deposition of strontium-90 is discussed in relation to the absorption of the isotope by man.

    PubMed

    EISENBUD, M

    1959-07-10

    It is estimated that the global deposition of strontium-90 increased from 1.9 to 2.6 megacuries during the period from June 1957 to October 1958. During this time the stratospheric reservoir of strontium-90 increased from 1.4 to 4.3 megacuries. Approximately 90 percent of the deposition of debris now stored in the stratosphere will have occurred by 1970. In 1958, the strontium-90 content of powdered milk in the New York area averaged 5.9 micromicrocuries per gram of calcium in comparison with 3.9 micromicrocuries per gram of calcium for the previous year. For this region of the country, the strontium-90 content of milk appears to be increasing in proportion to the strontium-90 content of the soils from which the cows derive their forage. The upper limit of foreseeable contamination in milk can be estimated by assuming that this proportionality will continue until all of the strontium-90 has been deposited from the upper atmosphere. This procedure should yield estimates which tend to err on the side of safety. In this manner, it is estimated that the maximum foreseeable sustained level of milk contamination in the New York area is 11 micromicrocuries per gram of calcium. A child deriving its calcium from dairy sources may be expected to develop a skeleton having 5.5 micromicrocuries per gram of calcium. This estimate is double that made in June 1957 and reflects the increased stratospheric inventory due to U.S.S.R. detonations in 1958. The radiological dose to the skeleton from natural sources such as cosmic rays, radium, potassium, and so forth, is approximately 125 millirems per year. A skeletal burden of 5.5 micromicrocuries of strontium-90 per gram of calcium will deliver a dose of approximately 5.5 millirems per year to the bone marrow. The maximum foreseeable dose from strontium-90 in the New York area is thereby estimated to be about 5 percent of the dose due to natural radioactivity.

  15. History of dose specification in Brachytherapy: From Threshold Erythema Dose to Computational Dosimetry

    NASA Astrophysics Data System (ADS)

    Williamson, Jeffrey F.

    2006-09-01

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as a means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.

  16. Evaluation of a Proposed Biodegradable 188Re Source for Brachytherapy Application

    PubMed Central

    Khorshidi, Abdollah; Ahmadinejad, Marjan; Hamed Hosseini, S.

    2015-01-01

    Abstract This study aimed to evaluate dosimetric characteristics based on Monte Carlo (MC) simulations for a proposed beta emitter bioglass 188Re seed for internal radiotherapy applications. The bioactive glass seed has been developed using the sol-gel technique. The simulations were performed for the seed using MC radiation transport code to investigate the dosimetric factors recommended by the AAPM Task Group 60 (TG-60). Dose distributions due to the beta and photon radiation were predicted at different radial distances surrounding the source. The dose rate in water at the reference point was calculated to be 7.43 ± 0.5 cGy/h/μCi. The dosimetric factors consisting of the reference point dose rate, D(r0,θ0), the radial dose function, g(r), the 2-dimensional anisotropy function, F(r,θ), the 1-dimensional anisotropy function, φan(r), and the R90 quantity were estimated and compared with several available beta-emitting sources. The element 188Re incorporated in bioactive glasses produced by the sol-gel technique provides a suitable solution for producing new materials for seed implants applied to brachytherapy applications in prostate and liver cancers treatment. Dose distribution of 188Re seed was greater isotropic than other commercially attainable encapsulated seeds, since it has no end weld to attenuate radiation. The beta radiation-emitting 188Re source provides high doses of local radiation to the tumor tissue and the short range of the beta particles limit damage to the adjacent normal tissue. PMID:26181543

  17. ²¹⁰Po in the diet at Seville (Spain) and its contribution to the dose by ingestion.

    PubMed

    Díaz-Francés, I; Mantero, J; Díaz-Ruiz, J; Manjón, G; García-Tenorio, R

    2016-02-01

    The activity concentrations of (210)Po have been determined in a total of 24 representative diet samples from Seville (south of Spain), inferring from the obtained values the annual intakes of (210)Po by ingestion of the affected population and the corresponding committed effective doses. The annual intakes of (210)Po and, consequently, the corresponding doses of this radionuclide show a high variability in correspondence with the variability in the composition of the analysed samples over time, and their magnitude is comparable with the estimated ones in other regions/countries of the world with similar diet habits (countries where the marine products have a considerable weight in the diets). Committed effective doses by ingestion higher than 0.1 mSv y(-1) have been estimated exclusively for (210)Po, reflecting the importance of this radionuclide and this route of incorporation in the magnitude of the total doses received by the affected population from natural sources. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Estimate of radon exposure in geothermal spas in Poland.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Zmyślony, Marek

    2016-01-01

    Geothermal waters may contain soluble, radioactive radon gas. Spa facilities that use geothermal water may be a source of an increased radiation dose to people who stay there. It has been necessary to assess the exposure to radon among people: workers and visitors of spa centers that use geothermal waters. In 2013, workers of the Nofer Institute of Occupational Medicine measured concentrations of radon over the geothermal water surfaces in 9 selected Polish spa centers which use geothermal water for recreational and medicinal purposes. The measurements were performed by active dosimetry using Lucas scintillation cells. According to our research, the doses received by the personnel in Polish geothermal spas are < 0.6 mSv/year. In 1 of the investigated spas, the estimated annual dose to the staff may exceed 3 mSv/year. In Polish geothermal spas, neither the workers nor the visitors are at risk of receiving doses that exceed the safe limits. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. Dose Deposition Profiles in Untreated Brick Material

    DOE PAGES

    O'Mara, Ryan; Hayes, Robert

    2018-04-01

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  20. Dose Deposition Profiles in Untreated Brick Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Mara, Ryan; Hayes, Robert

    In nuclear forensics or accident dosimetry, building materials such as bricks can be used to retrospectively determine radiation fields using thermoluminescence and/or optically stimu-lated luminescence. A major problem with brick material is that significant chemical processing is generally necessary to isolate the quartz from the brick. In this study, a simplified treatment process has been tested in an effort to lessen the processing burden for retrospective dosimetry studies. It was found that by using thermoluminescence responses, the dose deposition profile of a brick sample could be reconstructed without any chemical treat-ment. This method was tested by estimating the gamma-ray ener-giesmore » of an 241Am source from the dose deposition in a brick. The results demonstrated the ability to retrospectively measure the source energy with an overall energy resolution of approximately 6 keV. This technique has the potential to greatly expedite dose re-constructions in the wake of nuclear accidents or for any related application where doses of interest are large compared to overall process system noise.« less

  1. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.

    PubMed

    Yoriyaz, Hélio; Moralles, Maurício; Siqueira, Paulo de Tarso Dalledone; Guimarães, Carla da Costa; Cintra, Felipe Belonsi; dos Santos, Adimir

    2009-11-01

    Radiopharmaceutical applications in nuclear medicine require a detailed dosimetry estimate of the radiation energy delivered to the human tissues. Over the past years, several publications addressed the problem of internal dose estimate in volumes of several sizes considering photon and electron sources. Most of them used Monte Carlo radiation transport codes. Despite the widespread use of these codes due to the variety of resources and potentials they offered to carry out dose calculations, several aspects like physical models, cross sections, and numerical approximations used in the simulations still remain an object of study. Accurate dose estimate depends on the correct selection of a set of simulation options that should be carefully chosen. This article presents an analysis of several simulation options provided by two of the most used codes worldwide: MCNP and GEANT4. For this purpose, comparisons of absorbed fraction estimates obtained with different physical models, cross sections, and numerical approximations are presented for spheres of several sizes and composed as five different biological tissues. Considerable discrepancies have been found in some cases not only between the different codes but also between different cross sections and algorithms in the same code. Maximum differences found between the two codes are 5.0% and 10%, respectively, for photons and electrons. Even for simple problems as spheres and uniform radiation sources, the set of parameters chosen by any Monte Carlo code significantly affects the final results of a simulation, demonstrating the importance of the correct choice of parameters in the simulation.

  2. Dispersal, deposition and collective doses after the Chernobyl disaster.

    PubMed

    Fairlie, Ian

    2007-01-01

    This article discusses the dispersal, deposition and collective doses of the radioactive fallout from the Chernobyl accident. It explains that, although Belarus, Ukraine and Russia were heavily contaminated by the Chernobyl fallout, more than half of the fallout was deposited outside these countries, particularly in Western Europe. Indeed, about 40 per cent of the surface area of Europe was contaminated. Collective doses are predicted to result in 30,000 to 60,000 excess cancer deaths throughout the northern hemisphere, mostly in western Europe. The article also estimates that the caesium-137 source term was about a third higher than official figures.

  3. Design and implementation of wireless dose logger network for radiological emergency decision support system.

    PubMed

    Gopalakrishnan, V; Baskaran, R; Venkatraman, B

    2016-08-01

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee-Pro wireless modules and PSoC controller for wireless interfacing, and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.

  4. Design and implementation of wireless dose logger network for radiological emergency decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopalakrishnan, V.; Baskaran, R.; Venkatraman, B.

    A decision support system (DSS) is implemented in Radiological Safety Division, Indira Gandhi Centre for Atomic Research for providing guidance for emergency decision making in case of an inadvertent nuclear accident. Real time gamma dose rate measurement around the stack is used for estimating the radioactive release rate (source term) by using inverse calculation. Wireless gamma dose logging network is designed, implemented, and installed around the Madras Atomic Power Station reactor stack to continuously acquire the environmental gamma dose rate and the details are presented in the paper. The network uses XBee–Pro wireless modules and PSoC controller for wireless interfacing,more » and the data are logged at the base station. A LabView based program is developed to receive the data, display it on the Google Map, plot the data over the time scale, and register the data in a file to share with DSS software. The DSS at the base station evaluates the real time source term to assess radiation impact.« less

  5. Field size dependent mapping of medical linear accelerator radiation leakage

    NASA Astrophysics Data System (ADS)

    Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima

    2015-03-01

    The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.

  6. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    PubMed Central

    Lakshminarayanan, Thilagam; Subbaiah, K. V.; Thayalan, K.; Kannan, S. E.

    2010-01-01

    Brachytherapy treatment planning system (TPS) is necessary to estimate the dose to target volume and organ at risk (OAR). TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC) results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i) Board of Radiation Isotope and Technology (BRIT) low dose rate (LDR) applicator and (ii) Fletcher Green type LDR applicator (iii) Fletcher Williamson high dose rate (HDR) applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron). The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5.5% for BRIT LDR applicator, found to vary from 2.6 to 5.1% for Fletcher green type LDR applicator and are up to −4.7% for Fletcher-Williamson HDR applicator. The isodose distribution plots also show good agreements with the results of previous literatures. The isodose distributions around the shielded vaginal cylinder computed using BrachyTPS code show better agreement (less than two per cent deviation) with MC results in the unshielded region compared to shielded region, where the deviations are observed up to five per cent. The present study implies that the accurate and fast validation of complicated treatment planning calculations is possible with the point kernel code package. PMID:20589118

  7. Analysis of the propagation of neutrons and gamma-rays from the fast neutron source reactor YAYOI

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeo; Murata, Isao; Nakagawa, Tsutomu; Saito, Isao

    2011-10-01

    The skyshine effect is crucial for designing appropriate shielding. To investigate the skyshine effect, the propagation of neutrons was measured and analyzed at the fast neutron source reactor YAYOI. Pulse height spectra and dose distributions of neutron and secondary gamma-ray were measured outside YAYOI, and analyzed with MCNP-5 and JENDL-3.3. Comparison with the experimental results showed good agreement. Also, a semi-empirical formula was successfully derived to describe the dose distribution. The formulae can be used to predict the skyshine effect at YAYOI, and will be useful for estimating the skyshine effect and designing the shield structure for fusion facilities.

  8. 238PuO 2 Fuel and Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Douglas R.; Rawool-Sullivan, Mohini; Garner, Scott Edward

    2016-06-01

    238Pu is an ideal material for use as a heat source with its half-life of 87.7 years and copious particle emissions. 238Pu radioisotope thermoelectric generators (RTGs) have found use for pacemakers, Apollo Space missions, Mars rovers, and Voyager spacecraft. In evaluating the dose to personnel and components near a 238Pu-based RTG, a number of additional nuclides and their daughter products must be considered to get an accurate estimate for γ-dose, and the amount of 17O and 18O for the neutron-dose must be considered. This paper looks at the contributing nuclides and their daughter products that add the most to themore » dose rates.« less

  9. Dose Calculation For Accidental Release Of Radioactive Cloud Passing Over Jeddah

    NASA Astrophysics Data System (ADS)

    Alharbi, N. D.; Mayhoub, A. B.

    2011-12-01

    For the evaluation of doses after the reactor accident, in particular for the inhalation dose, a thorough knowledge of the concentration of the various radionuclide in air during the passage of the plume is required. In this paper we present an application of the Gaussian Plume Model (GPM) to calculate the atmospheric dispersion and airborne radionuclide concentration resulting from radioactive cloud over the city of Jeddah (KSA). The radioactive cloud is assumed to be emitted from a reactor of 10 MW power in postulated accidental release. Committed effective doses (CEDs) to the public at different distance from the source to the receptor are calculated. The calculations were based on meteorological condition and data of the Jeddah site. These data are: pasquill atmospheric stability is the class B and the wind speed is 2.4m/s at 10m height in the N direction. The residence time of some radionuclides considered in this study were calculated. The results indicate that, the values of doses first increase with distance, reach a maximum value and then gradually decrease. The total dose received by human is estimated by using the estimated values of residence time of each radioactive pollutant at different distances.

  10. TU-D-201-07: Severity Indication in High Dose Rate Brachytherapy Emergency Response Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Rustad, F

    Purpose: Understanding the corresponding dose to different staff during the High Dose Rate (HDR) Brachytherapy emergency response procedure could help to develop a strategy in efficiency and effective action. In this study, the variation and risk analysis methodology was developed to simulation the HDR emergency response procedure based on severity indicator. Methods: A GammaMedplus iX HDR unit from Varian Medical System was used for this simulation. The emergency response procedure was decomposed based on risk management methods. Severity indexes were used to identify the impact of a risk occurrence on the step including dose to patient and dose to operationmore » staff by varying the time, HDR source activity, distance from the source to patient and staff and the actions. These actions in 7 steps were to press the interrupt button, press emergency shutoff switch, press emergency button on the afterloader keypad, turn emergency hand-crank, remove applicator from the patient, disconnect transfer tube and move afterloader from the patient, and execute emergency surgical recovery. Results: Given the accumulated time in second at the assumed 7 steps were 15, 5, 30, 15, 180, 120, 1800, and the dose rate of HDR source is 10 Ci, the accumulated dose in cGy to patient at 1cm distance were 188, 250, 625, 813, 3063, 4563 and 27063, and the accumulated exposure in rem to operator at outside the vault, 1m and 10cm distance were 0.0, 0.0, 0.1, 0.1, 22.6, 37.6 and 262.6. The variation was determined by the operators in action at different time and distance from the HDR source. Conclusion: The time and dose were estimated for a HDR unit emergency response procedure. It provided information in making optimal decision during the emergency procedure. Further investigation would be to optimize and standardize the responses for other emergency procedure by time-spatial-dose severity function.« less

  11. Simulation of computed tomography dose based on voxel phantom

    NASA Astrophysics Data System (ADS)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  12. SU-F-T-02: Estimation of Radiobiological Doses (BED and EQD2) of Single Fraction Electronic Brachytherapy That Equivalent to I-125 Eye Plaque: By Using Linear-Quadratic and Universal Survival Curve Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y; Waldron, T; Pennington, E

    Purpose: To test the radiobiological impact of hypofractionated choroidal melanoma brachytherapy, we calculated single fraction equivalent doses (SFED) of the tumor that equivalent to 85 Gy of I125-BT for 20 patients. Corresponding organs-at-risks (OARs) doses were estimated. Methods: Twenty patients treated with I125-BT were retrospectively examined. The tumor SFED values were calculated from tumor BED using a conventional linear-quadratic (L-Q) model and an universal survival curve (USC). The opposite retina (α/β = 2.58), macula (2.58), optic disc (1.75), and lens (1.2) were examined. The % doses of OARs over tumor doses were assumed to be the same as for amore » single fraction delivery. The OAR SFED values were converted into BED and equivalent dose in 2 Gy fraction (EQD2) by using both L-Q and USC models, then compared to I125-BT. Results: The USC-based BED and EQD2 doses of the macula, optic disc, and the lens were on average 118 ± 46% (p < 0.0527), 126 ± 43% (p < 0.0354), and 112 ± 32% (p < 0.0265) higher than those of I125-BT, respectively. The BED and EQD2 doses of the opposite retina were 52 ± 9% lower than I125-BT. The tumor SFED values were 25.2 ± 3.3 Gy and 29.1 ± 2.5 Gy when using USC and LQ models which can be delivered within 1 hour. All BED and EQD2 values using L-Q model were significantly larger when compared to the USC model (p < 0.0274) due to its large single fraction size (> 14 Gy). Conclusion: The estimated single fraction doses were feasible to be delivered within 1 hour using a high dose rate source such as electronic brachytherapy (eBT). However, the estimated OAR doses using eBT were 112 ∼ 118% higher than when using the I125-BT technique. Continued exploration of alternative dose rate or fractionation schedules should be followed.« less

  13. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Pasciak, A

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method,more » use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology. Film dosimetry is likely an unnecessary effort for these types of procedures.« less

  14. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Kubota, Yoshihisa; Takahashi, Hiroyuki; Watanabe, Yoshito; Fuma, Shoichi; Kawaguchi, Isao; Aoki, Masanari; Kubota, Masahide; Furuhata, Yoshiaki; Shigemura, Yusaku; Yamada, Fumio; Ishikawa, Takahiro; Obara, Satoshi; Yoshida, Satoshi

    2015-04-01

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium ((134)Cs and (137)Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h(-1) (1.2 mGy d(-1)), even 3 years after the accident. This dose rate exceeds 0.1-1 mGy d(-1) derived consideration reference level for Reference rat proposed by the International Commission on Radiological Protection (ICRP). Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Benefit-cost estimation for alternative drinking water maximum contaminant levels

    NASA Astrophysics Data System (ADS)

    Gurian, Patrick L.; Small, Mitchell J.; Lockwood, John R.; Schervish, Mark J.

    2001-08-01

    A simulation model for estimating compliance behavior and resulting costs at U.S. Community Water Suppliers is developed and applied to the evaluation of a more stringent maximum contaminant level (MCL) for arsenic. Probability distributions of source water arsenic concentrations are simulated using a statistical model conditioned on system location (state) and source water type (surface water or groundwater). This model is fit to two recent national surveys of source waters, then applied with the model explanatory variables for the population of U.S. Community Water Suppliers. Existing treatment types and arsenic removal efficiencies are also simulated. Utilities with finished water arsenic concentrations above the proposed MCL are assumed to select the least cost option compatible with their existing treatment from among 21 available compliance strategies and processes for meeting the standard. Estimated costs and arsenic exposure reductions at individual suppliers are aggregated to estimate the national compliance cost, arsenic exposure reduction, and resulting bladder cancer risk reduction. Uncertainties in the estimates are characterized based on uncertainties in the occurrence model parameters, existing treatment types, treatment removal efficiencies, costs, and the bladder cancer dose-response function for arsenic.

  16. Dosimetric characterization of a new directional low-dose rate brachytherapy source.

    PubMed

    Aima, Manik; DeWerd, Larry A; Mitch, Michael G; Hammer, Clifford G; Culberson, Wesley S

    2018-05-24

    CivaTech Oncology Inc. (Durham, NC) has developed a novel low-dose rate (LDR) brachytherapy source called the CivaSheet. TM The source is a planar array of discrete elements ("CivaDots") which are directional in nature. The CivaDot geometry and design are considerably different than conventional LDR cylindrically symmetric sources. Thus, a thorough investigation is required to ascertain the dosimetric characteristics of the source. This work investigates the repeatability and reproducibility of a primary source strength standard for the CivaDot and characterizes the CivaDot dose distribution by performing in-phantom measurements and Monte Carlo (MC) simulations. Existing dosimetric formalisms were adapted to accommodate a directional source, and other distinguishing characteristics including the presence of gold shield x-ray fluorescence were addressed in this investigation. Primary air-kerma strength (S K ) measurements of the CivaDots were performed using two free-air chambers namely, the Variable-Aperture Free-Air Chamber (VAFAC) at the University of Wisconsin Medical Radiation Research Center (UWMRRC) and the National Institute of Standards and Technology (NIST) Wide-Angle Free-Air Chamber (WAFAC). An intercomparison of the two free-air chamber measurements was performed along with a comparison of the different assumed CivaDot energy spectra and associated correction factors. Dose distribution measurements of the source were performed in a custom polymethylmethacrylate (PMMA) phantom using Gafchromic TM EBT3 film and thermoluminescent dosimeter (TLD) microcubes. Monte Carlo simulations of the source and the measurement setup were performed using MCNP6 radiation transport code. The CivaDot S K was determined using the two free-air chambers for eight sources with an agreement of better than 1.1% for all sources. The NIST measured CivaDot energy spectrum intensity peaks were within 1.8% of the MC-predicted spectrum intensity peaks. The difference in the net source-specific correction factor determined for the CivaDot free-air chamber measurements for the NIST WAFAC and UW VAFAC was 0.7%. The dose-rate constant analog was determined to be 0.555 cGy h -1 U -1 . The average difference observed in the estimated CivaDot dose-rate constant analog using measurements and MCNP6-predicted value (0.558 cGy h -1 U -1 ) was 0.6% ± 2.3% for eight CivaDot sources using EBT3 film, and -2.6% ± 1.7% using TLD microcube measurements. The CivaDot two-dimensional dose-to-water distribution measured in phantom was compared to the corresponding MC predictions at six depths. The observed difference using a pixel-by-pixel subtraction map of the measured and the predicted dose-to-water distribution was generally within 2-3%, with maximum differences up to 5% of the dose prescribed at the depth of 1 cm. Primary S K measurements of the CivaDot demonstrated good repeatability and reproducibility of the free-air chamber measurements. Measurements of the CivaDot dose distribution using the EBT3 film stack phantom and its subsequent comparison to Monte Carlo-predicted dose distributions were encouraging, given the overall uncertainties. This work will aid in the eventual realization of a clinically viable dosimetric framework for the CivaSheet based on the CivaDot dose distribution. © 2018 American Association of Physicists in Medicine.

  17. SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005.

    PubMed

    Huet, C; Lemosquet, A; Clairand, I; Rioual, J B; Franck, D; de Carlan, L; Aubineau-Lanièce, I; Bottollier-Depois, J F

    2009-01-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. This dose distribution can be assessed by physical dosimetric reconstruction methods. Physical dosimetric reconstruction can be achieved using experimental or numerical techniques. This article presents the laboratory-developed SESAME--Simulation of External Source Accident with MEdical images--tool specific to dosimetric reconstruction of radiological accidents through numerical simulations which combine voxel geometry and the radiation-material interaction MCNP(X) Monte Carlo computer code. The experimental validation of the tool using a photon field and its application to a radiological accident in Chile in December 2005 are also described.

  18. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  19. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    NASA Astrophysics Data System (ADS)

    Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.

    2013-04-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  20. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates on the other hand are observed routinely on a much denser grid and higher temporal resolution. Gamma dose rate measurements contain no explicit information on the observed spectrum of radionuclides and have to be interpreted carefully. Nevertheless, they provide valuable information for the inverse evaluation of the source term due to their availability (Saunier et al., 2013). We present a new inversion approach combining an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The gamma dose rates are calculated from the modelled activity concentrations. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008). The a priori information on the source term is a first guess. The gamma dose rate observations will be used with inverse modelling to improve this first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  1. Population array and agricultural data arrays for the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, K.W.; Duffy, S.; Kowalewsky, K.

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculatingmore » the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory.« less

  2. Potential Offsite Radiological Doses Estimated for the Proposed Divine Strake Experiment, Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ron Warren

    2006-12-01

    An assessment of the potential radiation dose that residents offsite of the Nevada Test Site (NTS) might receive from the proposed Divine Strake experiment was made to determine compliance with Subpart H of Part 61 of Title 40 of the Code of Federal Regulations, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities. The Divine Strake experiment, proposed by the Defense Threat Reduction Agency, consists of a detonation of 700 tons of heavy ammonium nitrate fuel oil-emulsion above the U16b Tunnel complex in Area 16 of the NTS. Both natural radionuclides suspended, and historicmore » fallout radionuclides resuspended from the detonation, have potential to be transported outside the NTS boundary by wind. They may, therefore, contribute radiological dose to the public. Subpart H states ''Emissions of radionuclides to the ambient air from Department of Energy facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem/yr'' (Title 40 of the Code of Federal Regulations [CFR] 61.92) where mrem/yr is millirem per year. Furthermore, application for U.S. Environmental Protection Agency (EPA) approval of construction of a new source or modification of an existing source is required if the effective dose equivalent, caused by all emissions from the new construction or modification, is greater than or equal to 0.1 mrem/yr (40 CFR 61.96). In accordance with Section 61.93, a dose assessment was conducted with the computer model CAP88-PC, Version 3.0. In addition to this model, a dose assessment was also conducted by the National Atmospheric Release Advisory Center (NARAC) at the Lawrence Livermore National Laboratory. This modeling was conducted to obtain dose estimates from a model designed for acute releases and which addresses terrain effects and uses meteorology from multiple locations. Potential radiation dose to a hypothetical maximally exposed individual at the closest NTS boundary to the proposed Divine Strake experiment, as estimated by the CAP88-PC model, was 0.005 mrem with wind blowing directly towards that location. Boundary dose, as modeled by NARAC, ranged from about 0.006 to 0.007 mrem. Potential doses to actual offsite populated locations were generally two to five times lower still, or about 40 to 100 times lower then the 0.1 mrem level at which EPA approval is required pursuant to Section 61.96.« less

  3. Inter-Individual Variability in High-Throughput Risk ...

    EPA Pesticide Factsheets

    We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have little or no existing TK data. Chemicals are prioritized based on model estimates of hazard and exposure, to decide which chemicals should be first in line for further study. Hazard may be estimated with in vitro HT screening assays, e.g., U.S. EPA’s ToxCast program. Bioactive ToxCast concentrations can be extrapolated to doses that produce equivalent concentrations in body tissues using a reverse TK approach in which generic TK models are parameterized with 1) chemical-specific parameters derived from in vitro measurements and predicted from chemical structure; and 2) with physiological parameters for a virtual population. Here we draw physiological parameters from realistic estimates of distributions of demographic and anthropometric quantities in the modern U.S. population, based on the most recent CDC NHANES data. A Monte Carlo approach, accounting for the correlation structure in physiological parameters, is used to estimate ToxCast equivalent doses for the most sensitive portion of the population. To quantify risk, ToxCast equivalent doses are compared to estimates of exposure rates based on Bayesian inferences drawn from NHANES urinary analyte biomonitoring data. The inclusion

  4. SU-F-T-329: Characteristic Study of a Rado-Photoluminescenct Glass Dosimeter with Accumulated Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; Chung, W; Chung, M

    Purpose: This study investigated the effect of accumulated dose on radiophotoluminescent glass dosimeter in megavoltage photon. Methods: 45 commercially-available radio-photoluminescence glass dosimeters (RPLGD; GD-302M, Asahi Techno Glass Co., Shizuoka, JAPAN) were irradiated to 10 × 10 cm{sup 2} open-field with 6, 10 and 15 MV photon beams at 100 cm of source to surface distance and dose maximum depths. Each energy has consists of five groups which is consists of three detectors. A group #1 and #2 was irradiated about 1 Gy to 100 Gy, and estimated the integral dose response with and without annealing procedure. A group #3 wasmore » read the dose after irradiated 10 Gy of dose by 10 times repeatedly to estimate the fading effect of RPLGD. A group #4 and #5 was produced same ways with different irradiation dose such as 50 Gy for group #4 and 100 Gy for group #5. Results: From the results of group #1 and #2, an annealed detector shows linear response to integral dose but other detectors without the annealing process, has supra linearity for integral dose especially close to 100 Gy dose. For group #3, #4 and #5, the dose response of repeated irradiation, the dose response was decreased about 15%, 12% and 7% for 6 MV, 10 MV and 15MV. Conclusion: It was found that RPLGD response to accumulated dose was supra linear and this respond was altered with amount of accumulated dose to the RPLGD. In addition, the fading effect need to be concern with RPLGD.« less

  5. Probabilistic quantitative microbial risk assessment model of norovirus from wastewater irrigated vegetables in Ghana using genome copies and fecal indicator ratio conversion for estimating exposure dose.

    PubMed

    Owusu-Ansah, Emmanuel de-Graft Johnson; Sampson, Angelina; Amponsah, Samuel K; Abaidoo, Robert C; Dalsgaard, Anders; Hald, Tine

    2017-12-01

    The need to replace the commonly applied fecal indicator conversions ratio (an assumption of 1:10 -5 virus to fecal indicator organism) in Quantitative Microbial Risk Assessment (QMRA) with models based on quantitative data on the virus of interest has gained prominence due to the different physical and environmental factors that might influence the reliability of using indicator organisms in microbial risk assessment. The challenges facing analytical studies on virus enumeration (genome copies or particles) have contributed to the already existing lack of data in QMRA modelling. This study attempts to fit a QMRA model to genome copies of norovirus data. The model estimates the risk of norovirus infection from the intake of vegetables irrigated with wastewater from different sources. The results were compared to the results of a corresponding model using the fecal indicator conversion ratio to estimate the norovirus count. In all scenarios of using different water sources, the application of the fecal indicator conversion ratio underestimated the norovirus disease burden, measured by the Disability Adjusted Life Years (DALYs), when compared to results using the genome copies norovirus data. In some cases the difference was >2 orders of magnitude. All scenarios using genome copies met the 10 -4 DALY per person per year for consumption of vegetables irrigated with wastewater, although these results are considered to be highly conservative risk estimates. The fecal indicator conversion ratio model of stream-water and drain-water sources of wastewater achieved the 10 -6 DALY per person per year threshold, which tends to indicate an underestimation of health risk when compared to using genome copies for estimating the dose. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Determination of spatial dose distribution in UCC treatments with LDR brachytherapy using Monte Carlo methods.

    PubMed

    Benites-Rengifo, Jorge Luis; Vega-Carrillo, Hector Rene

    2018-05-19

    Using Monte Carlos methods, with the MCNP5 code, a gynecological phantom and a vaginal cylinder were modeled. The spatial distribution of absorbed dose rates in Uterine Cervical Cancer treatment through low dose rate brachytherapy was determined. A liquid water gynecology computational phantom, including a vaginal cylinder applicator made of Lucite, was designed. The applicator has a linear array of four radioactive sources of Cesium 137. Around the vaginal cylinder, 13 water spherical cells of 0.5 cm-diameter were modeled to calculate absorbed dose emulating the procedure made by the treatment planning system. The gamma-ray fluence distribution was estimated, as well as the absorbed doses resulting approximately symmetrical for cells located at upper and lower of vaginal cylinder. Obtained results allow the use of the radioactive decay law to determine dose rate for Uterine Cervical Cancer using low dose rate brachytherapy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. [An investigation of ionizing radiation dose in a manufacturing enterprise of ion-absorbing type rare earth ore].

    PubMed

    Zhang, W F; Tang, S H; Tan, Q; Liu, Y M

    2016-08-20

    Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.

  8. Analysis of ovarian dose of women employed in the radium watch dial industry: A macrodosimetric and microdosimetric approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeske, J.C.; Stinchcomb, T.G.; Schieve, L.

    1999-01-01

    In the 1920s, painters in the radium watch dial industry frequently tipped their brushes with their tongues resulting in the ingestion of radium-226 and/or radium-228. Earlier dosimetric studies (1950--1990) attempted to correlate the magnitude of biological effects (e.g., increased cancer incidence) with variations in radium uptake. Recently, there is a renewed interest on the part of epidemiologists studying additional possible effects (e.g., low birthrate and sex ratio). The goal of this work is to review and update the determination of dose to the ovaries from both external and internal radiation hazards in an attempt to correlate ovarian dose with thesemore » additional possible effects. The dose to the ovaries can be attributed to four major sources: (1) external gamma irradiation from the containers of radium paint; (2) alpha and (3) beta particle emissions due to sources which decay within the ovaries; and (4) internal gamma irradiation released throughout the body. Data obtained in earlier dosimetric studies on the quantity of Ra-226 and/or Ra-228 ingested were used in this study. Dose is estimated on a macroscopic scale by calculating the average dose deposited within the entire ovary. In addition, a microdosimetric analysis is performed which considers the statistical variation of energy deposited within individual oocyte nuclei. Sources of uncertainty, and the use of these data in new epidemiological studies are discussed.« less

  9. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    NASA Astrophysics Data System (ADS)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  10. Evaluation of optimum room entry times for radiation therapists after high energy whole pelvic photon treatments.

    PubMed

    Ho, Lavine; White, Peter; Chan, Edward; Chan, Kim; Ng, Janet; Tam, Timothy

    2012-01-01

    Linear accelerators operating at or above 10 MV produce neutrons by photonuclear reactions and induce activation in machine components, which are a source of potential exposure for radiation therapists. This study estimated gamma dose contributions to radiation therapists during high energy, whole pelvic, photon beam treatments and determined the optimum room entry times, in terms of safety of radiation therapists. Two types of technique (anterior-posterior opposing and 3-field technique) were studied. An Elekta Precise treatment system, operating up to 18 MV, was investigated. Measurements with an area monitoring device (a Mini 900R radiation monitor) were performed, to calculate gamma dose rates around the radiotherapy facility. Measurements inside the treatment room were performed when the linear accelerator was in use. The doses received by radiation therapists were estimated, and optimum room entry times were determined. The highest gamma dose rates were approximately 7 μSv/h inside the treatment room, while the doses in the control room were close to background (~0 μSv/h) for all techniques. The highest personal dose received by radiation therapists was estimated at 5 mSv/yr. To optimize protection, radiation therapists should wait for up to11 min after beam-off prior to room entry. The potential risks to radiation therapists with standard safety procedures were well below internationally recommended values, but risks could be further decreased by delaying room entry times. Dependent on the technique used, optimum entry times ranged between 7 to 11 min. A balance between moderate treatment times versus reduction in measured equivalent doses should be considered.

  11. [Use of ionizing radiation sources in metallurgy: risk assessment].

    PubMed

    Giugni, U

    2012-01-01

    Use of ionizing radiation sources in the metallurgical industry: risk assessment. Radioactive sources and fixed or mobile X-ray equipment are used for both process and quality control. The use of ionizing radiation sources requires careful risk assessment. The text lists the characteristics of the sources and the legal requirements, and contains a description of the documentation required and the methods used for risk assessment. It describes how to estimate the doses to operators and the relevant classification criteria used for the purpose of radiation protection. Training programs must be organized in close collaboration between the radiation protection expert and the occupational physician.

  12. Measurements and PHITS Monte Carlo Estimations of Residual Activities Induced by the 181 MeV Proton Beam in the Injection Area at J-PARC RCS Ring

    NASA Astrophysics Data System (ADS)

    Yamakawa, Emi; Yoshimoto, Masahiro; Kinsho, Michikazu

    At the injection area of the RCS ring in the J-PARC, residual gamma dose at the rectangular ceramic ducts, especially immediately downstream of the charge-exchanged foil, has increased with the output beam power. In order to investigate the cause of high residual activities, residual gamma dose and radioactive sources produced at the exterior surface of the ducts have been measured by a GM survey meter and a handy type of Germanium (Ge) semiconductor detector in the case of 181 MeV injected proton beam energy. With these measurements, it is revealed that the radioactive sources produced by nuclear reactions cause the high activities at the injection area. For a better understanding of phenomena in the injection area, various simulations have been done with the PHITS Monte Carlo code. The distribution of radioactive sources and residual gamma dose rate obtained by the calculations are consistent with the measurement results. With this consistency, secondary neutrons and protons derived from nuclear reactions at the charge-exchanged foil are the dominant cause to high residual gamma dose at the ceramic ducts in the injection area. These measurements and calculations are unique approaches to reveal the cause of high residual dose around the foil. This study is essential for the future of high-intensity proton accelerators using a stripping foil.

  13. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    PubMed

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases with patient size, and the radiation dose received by larger patients as a result of more than 3 O-arm scans in standard mode may exceed the dose received during standard CT of the abdomen. Understanding radiation imparted to patients by cone-beam CT is important for assessing risks and benefits of this technology, especially when spinal surgical procedures require multiple intraoperative scans.

  15. Dosimetric characterization of two radium sources for retrospective dosimetry studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Karlsson, M.; Lundell, M.

    2015-05-15

    Purpose: During the first part of the 20th century, {sup 226}Ra was the most used radionuclide for brachytherapy. Retrospective accurate dosimetry, coupled with patient follow up, is important for advancing knowledge on long-term radiation effects. The purpose of this work was to dosimetrically characterize two {sup 226}Ra sources, commonly used in Sweden during the first half of the 20th century, for retrospective dose–effect studies. Methods: An 8 mg {sup 226}Ra tube and a 10 mg {sup 226}Ra needle, used at Radiumhemmet (Karolinska University Hospital, Stockholm, Sweden), from 1925 to the 1960s, were modeled in two independent Monte Carlo (MC) radiationmore » transport codes: GEANT4 and MCNP5. Absorbed dose and collision kerma around the two sources were obtained, from which the TG-43 parameters were derived for the secular equilibrium state. Furthermore, results from this dosimetric formalism were compared with results from a MC simulation with a superficial mould constituted by five needles inside a glass casing, placed over a water phantom, trying to mimic a typical clinical setup. Calculated absorbed doses using the TG-43 formalism were also compared with previously reported measurements and calculations based on the Sievert integral. Finally, the dose rate at large distances from a {sup 226}Ra point-like-source placed in the center of 1 m radius water sphere was calculated with GEANT4. Results: TG-43 parameters [including g{sub L}(r), F(r, θ), Λ, and s{sub K}] have been uploaded in spreadsheets as additional material, and the fitting parameters of a mathematical curve that provides the dose rate between 10 and 60 cm from the source have been provided. Results from TG-43 formalism are consistent within the treatment volume with those of a MC simulation of a typical clinical scenario. Comparisons with reported measurements made with thermoluminescent dosimeters show differences up to 13% along the transverse axis of the radium needle. It has been estimated that the uncertainty associated to the absorbed dose within the treatment volume is 10%–15%, whereas uncertainty of absorbed dose to distant organs is roughly 20%–25%. Conclusions: The results provided here facilitate retrospective dosimetry studies of {sup 226}Ra using modern treatment planning systems, which may be used to improve knowledge on long term radiation effects. It is surely important for the epidemiologic studies to be aware of the estimated uncertainty provided here before extracting their conclusions.« less

  16. Prevalence and pattern of occupational exposure to whole body vibration in Great Britain: findings from a national survey

    PubMed Central

    Palmer, K.; Griffin, M.; Bendall, H.; Pannett, B.; Coggon, D.

    2000-01-01

    OBJECTIVES—To estimate the number of workers in Great Britain with significant occupational exposure to whole body vibration (WBV) and to identify the common sources of exposure and the occupations and industries where such exposures arise.
METHODS—A postal questionnaire was posted to a random community sample of 22 194 men and women of working age. Among other things, the questionnaire asked about exposure to WBV in the past week, including occupational and common non-occupational sources. Responses were assessed by occupation and industry, and national prevalence estimates were derived from census information. Estimates were also made of the average estimated daily personal dose of vibration (eVDV).
RESULTS—From the 12 907 responses it was estimated that 7.2 million men and 1.8 million women in Great Britain are exposed to WBV at work in a 1 week period if the occupational use of cars, vans, buses, trains, and motor cycles is included within the definition of exposure. The eVDV of >374 000 men and 9000 women was estimated to exceed a proposed British Standard action level of 15 ms-1.75. Occupations in which the estimated exposures most often exceeded 15 ms-1.75 included forklift truck and mechanical truck drivers, farm owners and managers, farm workers, and drivers of road goods vehicles. These occupations also contributed the largest estimated numbers of workers in Great Britain with such levels of exposure. The highest estimated median occupational eVDVs were found in forklift truck drivers, drivers of road goods vehicles, bus and coach drivers, and technical and wholesale sales representatives, among whom a greater contribution to total dose was received from occupational exposures than from non-occupational ones; but in many other occupations the reverse applied. The most common sources of occupational exposure to WBV are cars, vans, forklift trucks, lorries, tractors, buses, and loaders.
CONCLUSIONS—Exposure to whole body vibration is common, but only a small proportion of exposures exceed the action level proposed in British standards, and in many occupations, non-occupational sources are more important than those at work. The commonest occupational sources of WBV and occupations with particularly high exposures have been identified, providing a basis for targeting future control activities.


Keywords: whole body vibration; population; prevalence; exposure PMID:10810108

  17. Patient adherence to prescribed antimicrobial drug dosing regimens.

    PubMed

    Vrijens, Bernard; Urquhart, John

    2005-05-01

    The aim of this article is to review current knowledge about the clinical impact of patients' variable adherence to prescribed anti-infective drug dosing regimens, with the aim of renewing interest and exploration of this important but largely neglected area of therapeutics. Central to the estimation of a patient's adherence to a prescribed drug regimen is a reliably compiled drug dosing history. Electronic monitoring methods have emerged as the virtual 'gold standard' for compiling drug dosing histories in ambulatory patients. Reliably compiled drug dosing histories are consistently downwardly skewed, with varying degrees of under-dosing. In particular, the consideration of time intervals between protease inhibitor doses has revealed that ambulatory patients' variable execution of prescribed dosing regimens is a leading source of variance in viral response. Such analyses reveal the need for a new discipline, called pharmionics, which is the study of how ambulatory patients use prescription drugs. Properly analysed, reliable data on the time-course of patients' actual intake of prescription drugs can eliminate a major source of unallocated variance in drug responses, including the non-response that occurs and is easily misinterpreted when a patient's complete non-execution of a prescribed drug regimen is unrecognized clinically. As such, reliable compilation of ambulatory patients' drug dosing histories has the promise of being a key step in reducing unallocated variance in drug response and in improving the informational yield of clinical trials. It is also the basis for sound, measurement-guided steps taken to improve a patient's execution of a prescribed dosing regimen.

  18. Health economic assessment of universal immunization of toddlers against Hepatitis A Virus (HAV) in Mexico

    PubMed Central

    Carlos, Fernando; Gómez, Jorge Alberto; Anaya, Pablo; Romano-Mazzotti, Luis

    2016-01-01

    Hepatitis A virus (HAV) has shifted from high to intermediate endemicity in Mexico, which may increase the risk of clinically significant HAV infections in older children, adolescents and adults. The objective of this study was to evaluate the cost-utility of single-dose or 2-dose universal infant HAV vaccination strategy in Mexico, compared with no vaccination. A previously published dynamic model estimated the expected number of HAV cases with each strategy, and a decision model was used to estimate the costs and quality-adjusted life-years (QALYs) expected with each strategy. The time horizon was 25 years (2012–2036) and the base case analysis was conducted from the perspective of the Mexican public health system. Costs and QALYs after the first year were discounted at 5% annually. Input data were taken from national databases and published sources where available. The single-dose HAV vaccination strategy had an incremental cost-utility ratio (ICUR) of Mexican peso (MXN) 2,270 per QALY gained, compared with no vaccination. The two-dose strategy had an ICUR of MXN 14,961/QALY compared with no vaccination, and an ICUR of MXN 78,280/QALY compared with the single-dose strategy. The estimated ICURs were below the threshold of 1 x Mexican gross domestic product per capita. When indirect costs were included (societal perspective), the single-dose HAV vaccination strategy would be expected to improve health outcomes and to be cost-saving. This analysis indicates that routine vaccination of toddlers against HAV would be cost-effective in Mexico using either a single-dose or a 2-dose vaccination strategy. GSK study identifier: HO-12-12877. PMID:26503702

  19. Health economic assessment of universal immunization of toddlers against Hepatitis A Virus (HAV) in Mexico.

    PubMed

    Carlos, Fernando; Gómez, Jorge Alberto; Anaya, Pablo; Romano-Mazzotti, Luis

    2016-01-01

    Hepatitis A virus (HAV) has shifted from high to intermediate endemicity in Mexico, which may increase the risk of clinically significant HAV infections in older children, adolescents and adults. The objective of this study was to evaluate the cost-utility of single-dose or 2-dose universal infant HAV vaccination strategy in Mexico, compared with no vaccination. A previously published dynamic model estimated the expected number of HAV cases with each strategy, and a decision model was used to estimate the costs and quality-adjusted life-years (QALYs) expected with each strategy. The time horizon was 25 years (2012-2036) and the base case analysis was conducted from the perspective of the Mexican public health system. Costs and QALYs after the first year were discounted at 5% annually. Input data were taken from national databases and published sources where available. The single-dose HAV vaccination strategy had an incremental cost-utility ratio (ICUR) of Mexican peso (MXN) 2,270 per QALY gained, compared with no vaccination. The two-dose strategy had an ICUR of MXN 14,961/QALY compared with no vaccination, and an ICUR of MXN 78,280/QALY compared with the single-dose strategy. The estimated ICURs were below the threshold of 1 x Mexican gross domestic product per capita. When indirect costs were included (societal perspective), the single-dose HAV vaccination strategy would be expected to improve health outcomes and to be cost-saving. This analysis indicates that routine vaccination of toddlers against HAV would be cost-effective in Mexico using either a single-dose or a 2-dose vaccination strategy. GSK study identifier: HO-12-12877.

  20. A comprehensive experimental characterization of the iPIX gamma imager

    NASA Astrophysics Data System (ADS)

    Amgarou, K.; Paradiso, V.; Patoz, A.; Bonnet, F.; Handley, J.; Couturier, P.; Becker, F.; Menaa, N.

    2016-08-01

    The results of more than 280 different experiments aimed at exploring the main features and performances of a newly developed gamma imager, called iPIX, are summarized in this paper. iPIX is designed to quickly localize radioactive sources while estimating the ambient dose equivalent rate at the measurement point. It integrates a 1 mm thick CdTe detector directly bump-bonded to a Timepix chip, a tungsten coded-aperture mask, and a mini RGB camera. It also represents a major technological breakthrough in terms of lightness, compactness, usability, response sensitivity, and angular resolution. As an example of its key strengths, an 241Am source with a dose rate of only few nSv/h can be localized in less than one minute.

  1. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B; Kanal, K; Dickinson, R

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structuredmore » Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides two-dimensional angulation dose maps for angiography/interventional procedures. Conclusion: REMS implementation has streamlined and consolidated the dosimetry data collection and analysis process at our institutions while eliminating manual entry error and providing immediate alerting and access to dosimetry data to both physicists and physicians. Brent Stewart has funded research through GE Healthcare.« less

  2. Skyshine at neutron energies less than or equal to 400 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsmiller, A.G. Jr.; Barish, J.; Childs, R.L.

    1980-10-01

    The dose equivalent at an air-ground interface as a function of distance from an assumed azimuthally symmetric point source of neutrons can be calculated as a double integral. The integration is over the source strength as a function of energy and polar angle weighted by an importance function that depends on the source variables and on the distance from the source to the filed point. The neutron importance function for a source 15 m above the ground emitting only into the upper hemisphere has been calculated using the two-dimensional discrete ordinates code, DOT, and the first collision source code, GRTUNCL,more » in the adjoint mode. This importance function is presented for neutron energies less than or equal to 400 MeV, for source cosine intervals of 1 to .8, .8 to .6 to .4, .4 to .2 and .2 to 0, and for various distances from the source to the field point. As part of the adjoint calculations a photon importance function is also obtained. This importance function for photon energies less than or equal to 14 MEV and for various source cosine intervals and source-to-field point distances is also presented. These importance functions may be used to obtain skyshine dose equivalent estimates for any known source energy-angle distribution.« less

  3. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less

  4. ANALYSIS OF THE MOMENTS METHOD EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloster, R.L.

    1959-09-01

    Monte Cario calculations show the effects of a plane water-air boundary on both fast neutron and gamma dose rates. Multigroup diffusion theory calculation for a reactor source shows the effects of a plane water-air boundary on thermal neutron dose rate. The results of Monte Cario and multigroup calculations are compared with experimental values. The predicted boundary effect for fast neutrons of 7.3% agrees within 16% with the measured effect of 6.3%. The gamma detector did not measure a boundary effect because it lacked sensitivity at low energies. However, the effect predicted for gamma rays of 5 to 10% is asmore » large as that for neutrons. An estimate of the boundary effect for thermal neutrons from a PoBe source is obtained from the results of muitigroup diffusion theory calcuiations for a reactor source. The calculated boundary effect agrees within 13% with the measured values. (auth)« less

  5. Human biodistribution and radiation dosimetry of 82Rb.

    PubMed

    Senthamizhchelvan, Srinivasan; Bravo, Paco E; Esaias, Caroline; Lodge, Martin A; Merrill, Jennifer; Hobbs, Robert F; Sgouros, George; Bengel, Frank M

    2010-10-01

    Prior estimates of radiation-absorbed doses from (82)Rb, a frequently used PET perfusion tracer, yielded discrepant results. We reevaluated (82)Rb dosimetry using human in vivo biokinetic measurements. Ten healthy volunteers underwent dynamic PET/CT (6 contiguous table positions, each with separate (82)Rb infusion). Source organ volumes of interest were delineated on the CT images and transferred to the PET images to obtain time-integrated activity coefficients. Radiation doses were estimated using OLINDA/EXM 1.0. The highest mean absorbed organ doses (μGy/MBq) were observed for the kidneys (5.81), heart wall (3.86), and lungs (2.96). Mean effective doses were 1.11 ± 0.22 and 1.26 ± 0.20 μSv/MBq using the tissue-weighting factors of the International Commission on Radiological Protection (ICRP), publications 60 and 103, respectively. Our current (82)Rb dosimetry suggests reasonably low radiation exposure. On the basis of this study, a clinical (82)Rb injection of 2 × 1,480 MBq (80 mCi) would result in a mean effective dose of 3.7 mSv using the weighting factors of the ICRP 103-only slightly above the average annual natural background exposure in the United States (3.1 mSv).

  6. Dosimetry study for a new in vivo X-ray fluorescence (XRF) bone lead measurement system

    NASA Astrophysics Data System (ADS)

    Nie, Huiling; Chettle, David; Luo, Liqiang; O'Meara, Joanne

    2007-10-01

    A new 109Cd γ-ray induced bone lead measurement system has been developed to reduce the minimum detectable limit (MDL) of the system. The system consists of four 16 mm diameter detectors. It requires a stronger source compared to the "conventional" system. A dosimetry study has been performed to estimate the dose delivered by this system. The study was carried out by using human-equivalent phantoms. Three sets of phantoms were made to estimate the dose delivered to three age groups: 5-year old, 10-year old and adults. Three approaches have been applied to evaluate the dose: calculations, Monte Carlo (MC) simulations, and experiments. Experimental results and analytical calculations were used to validate MC simulation. The experiments were performed by placing Panasonic UD-803AS TLDs at different places in phantoms that representing different organs. Due to the difficulty of obtaining the organ dose and the whole body dose solely by experiments and traditional calculations, the equivalent dose and effective dose were calculated by MC simulations. The result showed that the doses delivered to the organs other than the targeted lower leg are negligibly small. The total effective doses to the three age groups are 8.45/9.37 μSv (female/male), 4.20 μSv, and 0.26 μSv for 5-year old, 10-year old and adult, respectively. An approval to conduct human measurements on this system has been received from the Research Ethics Board based on this research.

  7. High-pitch computed tomography coronary angiography-a new dose-saving algorithm: estimation of radiation exposure.

    PubMed

    Ketelsen, Dominik; Buchgeister, Markus; Korn, Andreas; Fenchel, Michael; Schmidt, Bernhard; Flohr, Thomas G; Thomas, Christoph; Schabel, Christoph; Tsiflikas, Ilias; Syha, Roland; Claussen, Claus D; Heuschmid, Martin

    2012-01-01

    Purpose. To estimate effective dose and organ equivalent doses of prospective ECG-triggered high-pitch CTCA. Materials and Methods. For dose measurements, an Alderson-Rando phantom equipped with thermoluminescent dosimeters was used. The effective dose was calculated according to ICRP 103. Exposure was performed on a second-generation dual-source scanner (SOMATOM Definition Flash, Siemens Medical Solutions, Germany). The following scan parameters were used: 320 mAs per rotation, 100 and 120 kV, pitch 3.4 for prospectively ECG-triggered high-pitch CTCA, scan range of 13.5 cm, collimation 64 × 2 × 0.6 mm with z-flying focal spot, gantry rotation time 280 ms, and simulated heart rate of 60 beats per minute. Results. Depending on the applied tube potential, the effective whole-body dose of the cardiac scan ranged from 1.1 mSv to 1.6 mSv and from 1.2 to 1.8 mSv for males and females, respectively. The radiosensitive breast tissue in the range of the primary beam caused an increased female-specific effective dose of 8.6%±0.3% compared to males. Decreasing the tube potential, a significant reduction of the effective dose of 35.8% and 36.0% can be achieved for males and females, respectively (P < 0.001). Conclusion. The radiologist and the CT technician should be aware of this new dose-saving strategy to keep the radiation exposure as low as reasonablly achievable.

  8. Bayesian estimation of a source term of radiation release with approximately known nuclide ratios

    NASA Astrophysics Data System (ADS)

    Tichý, Ondřej; Šmídl, Václav; Hofman, Radek

    2016-04-01

    We are concerned with estimation of a source term in case of an accidental release from a known location, e.g. a power plant. Usually, the source term of an accidental release of radiation comprises of a mixture of nuclide. The gamma dose rate measurements do not provide a direct information on the source term composition. However, physical properties of respective nuclide (deposition properties, decay half-life) can be used when uncertain information on nuclide ratios is available, e.g. from known reactor inventory. The proposed method is based on linear inverse model where the observation vector y arise as a linear combination y = Mx of a source-receptor-sensitivity (SRS) matrix M and the source term x. The task is to estimate the unknown source term x. The problem is ill-conditioned and further regularization is needed to obtain a reasonable solution. In this contribution, we assume that nuclide ratios of the release is known with some degree of uncertainty. This knowledge is used to form the prior covariance matrix of the source term x. Due to uncertainty in the ratios the diagonal elements of the covariance matrix are considered to be unknown. Positivity of the source term estimate is guaranteed by using multivariate truncated Gaussian distribution. Following Bayesian approach, we estimate all parameters of the model from the data so that y, M, and known ratios are the only inputs of the method. Since the inference of the model is intractable, we follow the Variational Bayes method yielding an iterative algorithm for estimation of all model parameters. Performance of the method is studied on simulated 6 hour power plant release where 3 nuclide are released and 2 nuclide ratios are approximately known. The comparison with method with unknown nuclide ratios will be given to prove the usefulness of the proposed approach. This research is supported by EEA/Norwegian Financial Mechanism under project MSMT-28477/2014 Source-Term Determination of Radionuclide Releases by Inverse Atmospheric Dispersion Modelling (STRADI).

  9. Monte Carlo simulation of radiation transport and dose deposition from locally released gold nanoparticles labeled with 111In, 177Lu or 90Y incorporated into tissue implantable depots

    NASA Astrophysics Data System (ADS)

    Lai, Priscilla; Cai, Zhongli; Pignol, Jean-Philippe; Lechtman, Eli; Mashouf, Shahram; Lu, Yijie; Winnik, Mitchell A.; Jaffray, David A.; Reilly, Raymond M.

    2017-11-01

    Permanent seed implantation (PSI) brachytherapy is a highly conformal form of radiation therapy but is challenged with dose inhomogeneity due to its utilization of low energy radiation sources. Gold nanoparticles (AuNP) conjugated with electron emitting radionuclides have recently been developed as a novel form of brachytherapy and can aid in homogenizing dose through physical distribution of radiolabeled AuNP when injected intratumorally (IT) in suspension. However, the distribution is unpredictable and precise placement of many injections would be difficult. Previously, we reported the design of a nanoparticle depot (NPD) that can be implanted using PSI techniques and which facilitates controlled release of AuNP. We report here the 3D dose distribution resulting from a NPD incorporating AuNP labeled with electron emitters (90Y, 177Lu, 111In) of different energies using Monte Carlo based voxel level dosimetry. The MCNP5 Monte Carlo radiation transport code was used to assess differences in dose distribution from simulated NPD and conventional brachytherapy sources, positioned in breast tissue simulating material. We further compare these dose distributions in mice bearing subcutaneous human breast cancer xenografts implanted with 177Lu-AuNP NPD, or injected IT with 177Lu-AuNP in suspension. The radioactivity distributions were derived from registered SPECT/CT images and time-dependent dose was estimated. Results demonstrated that the dose distribution from NPD reduced the maximum dose 3-fold when compared to conventional seeds. For simulated NPD, as well as NPD implanted in vivo, 90Y delivered the most homogeneous dose distribution. The tumor radioactivity in mice IT injected with 177Lu-AuNP redistributed while radioactivity in the NPD remained confined to the implant site. The dose distribution from radiolabeled AuNP NPD were predictable and concentric in contrast to IT injected radiolabeled AuNP, which provided irregular and temporally variant dose distributions. The use of NPD may serve as an intermediate between PSI and radiation delivered by radiolabeled AuNP by providing a controlled method to improve delivery of prescribed doses as well as homogenize dose from low penetrating electron sources.

  10. Airline Pilot Cosmic Radiation and Circadian Disruption Exposure Assessment from Logbooks and Company Records

    PubMed Central

    Grajewski, Barbara; Waters, Martha A.; Yong, Lee C.; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli II, Rick T.

    2011-01-01

    Objectives: US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Methods: Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments’ block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Results: Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (Ptrend < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman’s r = 0.61–0.69). Conclusions: The methods developed provided an exposure profile of this group of US airline pilots, many of whom have been exposed to increasing cosmic radiation and circadian disruption from the 1990s through 2003. This assessment is likely to decrease exposure misclassification in health studies. PMID:21610083

  11. Airline pilot cosmic radiation and circadian disruption exposure assessment from logbooks and company records.

    PubMed

    Grajewski, Barbara; Waters, Martha A; Yong, Lee C; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli, Rick T

    2011-06-01

    US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments' block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (P(trend) < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman's r = 0.61-0.69). The methods developed provided an exposure profile of this group of US airline pilots, many of whom have been exposed to increasing cosmic radiation and circadian disruption from the 1990s through 2003. This assessment is likely to decrease exposure misclassification in health studies.

  12. Calibration and error analysis of metal-oxide-semiconductor field-effect transistor dosimeters for computed tomography radiation dosimetry.

    PubMed

    Trattner, Sigal; Prinsen, Peter; Wiegert, Jens; Gerland, Elazar-Lars; Shefer, Efrat; Morton, Tom; Thompson, Carla M; Yagil, Yoad; Cheng, Bin; Jambawalikar, Sachin; Al-Senan, Rani; Amurao, Maxwell; Halliburton, Sandra S; Einstein, Andrew J

    2017-12-01

    Metal-oxide-semiconductor field-effect transistors (MOSFETs) serve as a helpful tool for organ radiation dosimetry and their use has grown in computed tomography (CT). While different approaches have been used for MOSFET calibration, those using the commonly available 100 mm pencil ionization chamber have not incorporated measurements performed throughout its length, and moreover, no previous work has rigorously evaluated the multiple sources of error involved in MOSFET calibration. In this paper, we propose a new MOSFET calibration approach to translate MOSFET voltage measurements into absorbed dose from CT, based on serial measurements performed throughout the length of a 100-mm ionization chamber, and perform an analysis of the errors of MOSFET voltage measurements and four sources of error in calibration. MOSFET calibration was performed at two sites, to determine single calibration factors for tube potentials of 80, 100, and 120 kVp, using a 100-mm-long pencil ion chamber and a cylindrical computed tomography dose index (CTDI) phantom of 32 cm diameter. The dose profile along the 100-mm ion chamber axis was sampled in 5 mm intervals by nine MOSFETs in the nine holes of the CTDI phantom. Variance of the absorbed dose was modeled as a sum of the MOSFET voltage measurement variance and the calibration factor variance, the latter being comprised of three main subcomponents: ionization chamber reading variance, MOSFET-to-MOSFET variation and a contribution related to the fact that the average calibration factor of a few MOSFETs was used as an estimate for the average value of all MOSFETs. MOSFET voltage measurement error was estimated based on sets of repeated measurements. The calibration factor overall voltage measurement error was calculated from the above analysis. Calibration factors determined were close to those reported in the literature and by the manufacturer (~3 mV/mGy), ranging from 2.87 to 3.13 mV/mGy. The error σ V of a MOSFET voltage measurement was shown to be proportional to the square root of the voltage V: σV=cV where c = 0.11 mV. A main contributor to the error in the calibration factor was the ionization chamber reading error with 5% error. The usage of a single calibration factor for all MOSFETs introduced an additional error of about 5-7%, depending on the number of MOSFETs that were used to determine the single calibration factor. The expected overall error in a high-dose region (~30 mGy) was estimated to be about 8%, compared to 6% when an individual MOSFET calibration was performed. For a low-dose region (~3 mGy), these values were 13% and 12%. A MOSFET calibration method was developed using a 100-mm pencil ion chamber and a CTDI phantom, accompanied by an absorbed dose error analysis reflecting multiple sources of measurement error. When using a single calibration factor, per tube potential, for different MOSFETs, only a small error was introduced into absorbed dose determinations, thus supporting the use of a single calibration factor for experiments involving many MOSFETs, such as those required to accurately estimate radiation effective dose. © 2017 American Association of Physicists in Medicine.

  13. SKYSHINEIII. Calculating Effects of Structure Design on Neutron Dose Rates in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampley, C.M.; Andrews, C.M.; Wells, M.B.

    1988-12-01

    SKYSHINE was designed to aid in the evaluation of the effects of structure geometry on the gamma-ray dose rate at given detector positions outside of a building housing gamma-ray sources. The program considers a rectangular structure enclosed by four walls and a roof. Each of the walls and the roof of the building may be subdivided into up to nine different areas, representing different materials or different thicknesses of the same material for those positions of the wall or roof. Basic sets of iron and concrete slab transmission and reflection data for 6.2 MeV gamma-rays are part of the SKYSHINEmore » block data. These data, as well as parametric air transport data for line-beam sources at a number of energies between 0.6 MeV and 6.2 MeV and ranges to 3750 ft, are used to estimate the various components of the gamma-ray dose rate at positions outside of the building. The gamma-ray source is assumed to be a 6.2 MeV point-isotropic source. SKYSHINE-III provides an increase in versatility over the original SKYSHINE code in that it addresses both neutron and gamma-ray point sources. In addition, the emitted radiation may be characterized by an energy emission spectrum defined by the user. A new SKYSHINE data base is also included.« less

  14. Direct comparison of radiation dosimetry of six PET tracers using human whole-body imaging and murine biodistribution studies.

    PubMed

    Sakata, Muneyuki; Oda, Keiichi; Toyohara, Jun; Ishii, Kenji; Nariai, Tadashi; Ishiwata, Kiichi

    2013-04-01

    We investigated the whole-body biodistributions and radiation dosimetry of five (11)C-labeled and one (18)F-labeled radiotracers in human subjects, and compared the results to those obtained from murine biodistribution studies. The radiotracers investigated were (11)C-SA4503, (11)C-MPDX, (11)C-TMSX, (11)C-CHIBA-1001, (11)C-4DST, and (18)F-FBPA. Dynamic whole-body positron emission tomography (PET) was performed in three human subjects after a single bolus injection of each radiotracer. Emission scans were collected in two-dimensional mode in five bed positions. Regions of interest were placed over organs identified in reconstructed PET images. The OLINDA program was used to estimate radiation doses from the number of disintegrations of these source organs. These results were compared with the predicted human radiation doses on the basis of biodistribution data obtained from mice by dissection. The ratios of estimated effective doses from the human-derived data to those from the mouse-derived data ranged from 0.86 to 1.88. The critical organs that received the highest absorbed doses in the human- and mouse-derived studies differed for two of the six radiotracers. The differences between the human- and mouse-derived dosimetry involved not only the species differences, including faster systemic circulation of mice and differences in the metabolism, but also measurement methodologies. Although the mouse-derived effective doses were roughly comparable to the human-derived doses in most cases, considerable differences were found for critical organ dose estimates and pharmacokinetics in certain cases. Whole-body imaging for investigation of radiation dosimetry is desirable for the initial clinical evaluation of new PET probes prior to their application in subsequent clinical investigations.

  15. [Evaluation of Organ Dose Estimation from Indices of CT Dose Using Dose Index Registry].

    PubMed

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, dedicated software is too expensive for small scale hospitals. Not every hospital can estimate organ dose with dedicated software. The purpose of this study was to evaluate the simple method of organ dose estimation using some common indices of CT dose. The Monte Carlo simulation software Radimetrics (Bayer) was used for calculating organ dose and analysis relationship between indices of CT dose and organ dose. Multidetector CT scanners were compared with those from two manufactures (LightSpeed VCT, GE Healthcare; SOMATOM Definition Flash, Siemens Healthcare). Using stored patient data from Radimetrics, the relationships between indices of CT dose and organ dose were indicated as each formula for estimating organ dose. The accuracy of estimation method of organ dose was compared with the results of Monte Carlo simulation using the Bland-Altman plots. In the results, SSDE was the feasible index for estimation organ dose in almost organs because it reflected each patient size. The differences of organ dose between estimation and simulation were within 23%. In conclusion, our estimation method of organ dose using indices of CT dose is convenient for clinical with accuracy.

  16. Characterizing use-phase chemical releases, fate, and disposal for modeling longitudinal human exposures to consumer products

    EPA Science Inventory

    The US EPA’s Human Exposure Model (HEM) is an integrated modeling system to estimate human exposure to chemicals in household consumer products. HEM consists of multiple modules, which may be run either together, or independently. The Source-to-Dose (S2D) module in HEM use...

  17. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower energy sources. Such ablative magnitude dose enhancement in a relatively small endothelial volume may rapidly disrupt or cause severe biological damage to tumor endothelial cells, without increased toxicity to healthy tissues not containing AuNPs. The findings provide significant impetus for considering the application of AuNPs as VDAs during brachytherapy.

  18. Dosimetric calculations for uranium miners for epidemiological studies.

    PubMed

    Marsh, J W; Blanchardon, E; Gregoratto, D; Hofmann, W; Karcher, K; Nosske, D; Tomásek, L

    2012-05-01

    Epidemiological studies on uranium miners are being carried out to quantify the risk of cancer based on organ dose calculations. Mathematical models have been applied to calculate the annual absorbed doses to regions of the lung, red bone marrow, liver, kidney and stomach for each individual miner arising from exposure to radon gas, radon progeny and long-lived radionuclides (LLR) present in the uranium ore dust and to external gamma radiation. The methodology and dosimetric models used to calculate these organ doses are described and the resulting doses for unit exposure to each source (radon gas, radon progeny and LLR) are presented. The results of dosimetric calculations for a typical German miner are also given. For this miner, the absorbed dose to the central regions of the lung is dominated by the dose arising from exposure to radon progeny, whereas the absorbed dose to the red bone marrow is dominated by the external gamma dose. The uncertainties in the absorbed dose to regions of the lung arising from unit exposure to radon progeny are also discussed. These dose estimates are being used in epidemiological studies of cancer in uranium miners.

  19. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model.

    PubMed

    Hiatt, Jessica R; Davis, Stephen D; Rivard, Mark J

    2015-06-01

    The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10(10) histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an (125)I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.

  20. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J., E-mail: mark.j.rivard@gmail.com

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Montemore » Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose function ratio between the current and the 2006 model had a minimum of 0.980 at 0.4 cm, close to the source sheath and for large distances approached 1.014. 2D anisotropy function ratios were close to unity for 50° ≤ θ ≤ 110°, but exceeded 5% for θ < 40° at close distances to the sheath and exceeded 15% for θ > 140°, even at large distances. Photon energy fluence of the updated model as compared to the 2006 model showed a decrease in output with increasing distance; this effect was pronounced at the lowest energies. A decrease in photon fluence with increase in polar angle was also observed and was attributed to the silver epoxy component. Conclusions: Changes in source design influenced the overall dose rate and distribution by more than 2% in several regions. This discrepancy is greater than the dose calculation acceptance criteria as recommended in the AAPM TG-56 report. The effect of the design change on the TG-43 parameters would likely not result in dose differences outside of patient applicators. Adoption of this new dataset is suggested for accurate depiction of model S700 source dose distributions.« less

  1. Validation of an aggregate exposure model for substances in consumer products: a case study of diethyl phthalate in personal care products

    PubMed Central

    Delmaar, Christiaan; Bokkers, Bas; ter Burg, Wouter; Schuur, Gerlienke

    2015-01-01

    As personal care products (PCPs) are used in close contact with a person, they are a major source of consumer exposure to chemical substances contained in these products. The estimation of realistic consumer exposure to substances in PCPs is currently hampered by the lack of appropriate data and methods. To estimate aggregate exposure of consumers to substances contained in PCPs, a person-oriented consumer exposure model has been developed (the Probabilistic Aggregate Consumer Exposure Model, PACEM). The model simulates daily exposure in a population based on product use data collected from a survey among the Dutch population. The model is validated by comparing diethyl phthalate (DEP) dose estimates to dose estimates based on biomonitoring data. It was found that the model's estimates compared well with the estimates based on biomonitoring data. This suggests that the person-oriented PACEM model is a practical tool for assessing realistic aggregate exposures to substances in PCPs. In the future, PACEM will be extended with use pattern data on other product groups. This will allow for assessing aggregate exposure to substances in consumer products across different product groups. PMID:25352161

  2. Hundred joules plasma focus device as a potential pulsed source for in vitro cancer cell irradiation

    NASA Astrophysics Data System (ADS)

    Jain, J.; Moreno, J.; Andaur, R.; Armisen, R.; Morales, D.; Marcelain, K.; Avaria, G.; Bora, B.; Davis, S.; Pavez, C.; Soto, L.

    2017-08-01

    Plasma focus devices may arise as useful source to perform experiments aimed to study the effects of pulsed radiation on human cells in vitro. In the present work, a table top hundred joules plasma focus device, namely "PF-400J", was adapted to irradiate colorectal cancer cell line, DLD-1. For pulsed x-rays, the doses (energy absorbed per unit mass, measured in Gy) were measured using thermoluminescence detectors (TLD-100 dosimeters). The neutron fluence and the average energy were used to estimate the pulsed neutron doses. Fifty pulses of x-rays (0.12 Gy) and fifty pulses of neutrons (3.5 μGy) were used to irradiate the cancer cells. Irradiation-induced DNA damage and cell death were assessed at different time points after irradiation. Cell death was observed using pulsed neutron irradiation, at ultralow doses. Our results indicate that the PF-400J can be used for in vitro assessment of the effect of pulsed radiation in cancer cell research.

  3. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

    NASA Astrophysics Data System (ADS)

    Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.

    2002-03-01

    The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.

  4. Digital version of the European Atlas of natural radiation.

    PubMed

    Cinelli, Giorgia; Tollefsen, Tore; Bossew, Peter; Gruber, Valeria; Bogucarskis, Konstantins; De Felice, Luca; De Cort, Marc

    2018-02-26

    The European Atlas of Natural Radiation is a collection of maps displaying the levels of natural radioactivity caused by different sources. It has been developed and is being maintained by the Joint Research Centre (JRC) of the European Commission, in line with its mission, based on the Euratom Treaty: to collect, validate and report information on radioactivity levels in the environment of the EU Member States. This work describes the first version of the European Atlas of Natural Radiation, available in digital format through a web portal, as well as the methodology and results for the maps already developed. So far the digital Atlas contains: an annual cosmic-ray dose map; a map of indoor radon concentration; maps of uranium, thorium and potassium concentration in soil and in bedrock; a terrestrial gamma dose rate map; and a map of soil permeability. Through these maps, the public will be able to: familiarize itself with natural environmental radioactivity; be informed about the levels of natural radioactivity caused by different sources; have a more balanced view of the annual dose received by the European population, to which natural radioactivity is the largest contributor; and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence, to better assess the latter. Work will continue on the European Geogenic Radon Map and on estimating the annual dose that the public may receive from natural radioactivity, by combining all the information from the different maps. More maps could be added to the Atlas, such us radon in outdoor air and in water and concentration of radionuclides in water, even if these sources usually contribute less to the total exposure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. EVALUATION OF EYE LENS DOSE TO WORKERS IN THE STEAM GENERATOR AT THE KOREAN OPTIMIZED POWER REACTOR 1000.

    PubMed

    Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong

    2018-03-15

    ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organsmore » and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.« less

  7. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    PubMed

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalavagunta, C; Lasio, G; Yi, B

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquiredmore » for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.« less

  9. Monte Carlo study of out-of-field exposure in carbon-ion radiotherapy with a passive beam: Organ doses in prostate cancer treatment.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Akahane, Keiichi

    2018-04-23

    The aim of this work was to estimate typical dose equivalents to out-of-field organs during carbon-ion radiotherapy (CIRT) with a passive beam for prostate cancer treatment. Additionally, sensitivity analyses of organ doses for various beam parameters and phantom sizes were performed. Because the CIRT out-of-field dose depends on the beam parameters, the typical values of those parameters were determined from statistical data on the target properties of patients who received CIRT at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). Using these typical beam-parameter values, out-of-field organ dose equivalents during CIRT for typical prostate treatment were estimated by Monte Carlo simulations using the Particle and Heavy-Ion Transport Code System (PHITS) and the ICRP reference phantom. The results showed that the dose decreased with distance from the target, ranging from 116 mSv in the testes to 7 mSv in the brain. The organ dose equivalents per treatment dose were lower than those either in 6-MV intensity-modulated radiotherapy or in brachytherapy with an Ir-192 source for organs within 40 cm of the target. Sensitivity analyses established that the differences from typical values were within ∼30% for all organs, except the sigmoid colon. The typical out-of-field organ dose equivalents during passive-beam CIRT were shown. The low sensitivity of the dose equivalent in organs farther than 20 cm from the target indicated that individual dose assessments required for retrospective epidemiological studies may be limited to organs around the target in cases of passive-beam CIRT for prostate cancer. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Accelerator skyshine: Tyger, tyger, burning bright

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapleton, G.B.; O`Brien, K.; Thomas, R.H.

    1992-06-01

    Neutron skyshine is, in most cases, the dominant source of radiation exposure to the general public from operation of well-shielded, high-energy accelerators. To estimate this exposure, tabulated solutions of the transport of neutrons through the air are frequently used. In previous works on skyshine, these tabular data have been parameterized into simple empirical equations that are easy and fast to use but are limited to distances greater than a few hundred meters from the accelerator. Our current report has refined this earlier work by including more realistic assumptions of neutron differential energy spectrum and angular distribution. These improved calculations essentiallymore » endorse the earlier parameterizations but make possible reasonably accurate dose estimates much closer to the skyshine source than before.« less

  11. NESHAP Dose-Release Factor Isopleths for Five Source-to-Receptor Distances from the Center of Site and H-Area for all Compass Sectors at SRS using CAP88-PC Version 4.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trimor, P.

    The Environmental Protection Agency (EPA) requires the use of the computer model CAP88-PC to estimate the total effective doses (TED) for demonstrating compliance with 40 CFR 61, Subpart H (EPA 2006), the National Emission Standards for Hazardous Air Pollutants (NESHAP) regulations. As such, CAP88 Version 4.0 was used to calculate the receptor dose due to routine atmospheric releases at the Savannah River Site (SRS). For estimation, NESHAP dose-release factors (DRFs) have been supplied to Environmental Compliance and Area Closure Projects (EC&ACP) for many years. DRFs represent the dose to a maximum receptor exposed to 1 Ci of a specified radionuclidemore » being released into the atmosphere. They are periodically updated to include changes in the CAP88 version, input parameter values, site meteorology, and location of the maximally exposed individual (MEI). This report presents the DRFs of tritium oxide released at two onsite locations, center-of-site (COS) and H-Area, at 0 ft. elevation to maximally exposed individuals (MEIs) located 1000, 3000, 6000, 9000, and 12000 meters from the release areas for 16 compass sectors. The analysis makes use of area-specific meteorological data (Viner 2014).« less

  12. 75 FR 69706 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... is required: Reports of medical events, doses to an embryo/fetus or nursing child, or leaking sources... administration of byproduct material or radiation therefrom to humans for medical use. 7. An estimate of the... for the radiation safety of workers, the general public, patients, and human research subjects. The 10...

  13. Estimating the leakage contribution of phosphate dosed drinking water to environmental phosphorus pollution at the national-scale.

    PubMed

    Ascott, M J; Gooddy, D C; Lapworth, D J; Stuart, M E

    2016-12-01

    Understanding sources of phosphorus (P) to the environment is critical for the management of freshwater and marine ecosystems. Phosphate is added at water treatment works for a variety of reasons: to reduce pipe corrosion, to lower dissolved lead and copper concentrations at customer's taps and to reduce the formation of iron and manganese precipitates which can lead to deterioration in the aesthetic quality of water. However, the spatial distribution of leakage into the environment of phosphate added to mains water for plumbosolvency control has not been quantified to date. Using water company leakage rates, leak susceptibility and road network mapping, we quantify the total flux of P from leaking water mains in England and Wales at a 1km grid scale. This is validated against reported leaks for the UKs largest water utility. For 2014, we estimate the total flux of P from leaking mains to the environment to be c. 1.2ktP/year. Spatially, P flux is concentrated in urban areas where pipe density is highest, with major cities acting as a significant source of P (e.g. London into the Thames, with potentially 30% of total flux). The model suggests the majority (69%) of the P flux is likely to be to surface water. This is due to leakage susceptibility being a function of soil corrosivity and shrink-swell behaviour which are both controlled by presence of low-permeability clays. The location of major cities such as London close to the coast results in a potentially significant flux of P from mains leakage to estuarine environments. The contribution of leakage of phosphate dosed mains water should be considered in future source apportionment and ecosystem management. The methodology presented is generic and can be applied in other countries where phosphate dosing is undertaken or used prior to dosing during investment planning. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  14. A radiological assessment of nuclear power and propulsion operations near Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Bolch, Wesley E.; Thomas, J. Kelly; Peddicord, K. Lee; Nelson, Paul; Marshall, David T.; Busche, Donna M.

    1990-01-01

    Scenarios were identified which involve the use of nuclear power systems in the vicinity of Space Station Freedom (SSF) and their radiological impact on the SSF crew was quantified. Several of the developed scenarios relate to the use of SSF as an evolutionary transportation node for lunar and Mars missions. In particular, radiation doses delivered to SSF crew were calculated for both the launch and subsequent return of a Nuclear Electric Propulsion (NEP) cargo vehicle and a Nuclear Thermal Rocket (NTR) personnel vehicle to low earth orbit. The use of nuclear power on co-orbiting platforms and the storage and handling issues associated with radioisotope power systems were also explored as they relate to SSF. A central philosophy in these analyses was the utilization of a radiation dose budget, defined as the difference between recommended dose limits from all radiation sources and estimated doses received by crew members from natural space radiations. Consequently, for each scenario examined, the dose budget concept was used to identify and quantify constraints on operational parameters such as launch separation distances, returned vehicle parking distances, and reactor shutdown times prior to vehicle approach. The results indicate that realistic scenarios do not exist which would preclude the use of nuclear power sources in the vicinity of SSF. The radiation dose to the SSF crew can be maintained at safe levels solely by implementing proper and reasonable operating procedures.

  15. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose volume outcome relationships

    NASA Astrophysics Data System (ADS)

    El Naqa, I.; Suneja, G.; Lindsay, P. E.; Hope, A. J.; Alaly, J. R.; Vicic, M.; Bradley, J. D.; Apte, A.; Deasy, J. O.

    2006-11-01

    Radiotherapy treatment outcome models are a complicated function of treatment, clinical and biological factors. Our objective is to provide clinicians and scientists with an accurate, flexible and user-friendly software tool to explore radiotherapy outcomes data and build statistical tumour control or normal tissue complications models. The software tool, called the dose response explorer system (DREES), is based on Matlab, and uses a named-field structure array data type. DREES/Matlab in combination with another open-source tool (CERR) provides an environment for analysing treatment outcomes. DREES provides many radiotherapy outcome modelling features, including (1) fitting of analytical normal tissue complication probability (NTCP) and tumour control probability (TCP) models, (2) combined modelling of multiple dose-volume variables (e.g., mean dose, max dose, etc) and clinical factors (age, gender, stage, etc) using multi-term regression modelling, (3) manual or automated selection of logistic or actuarial model variables using bootstrap statistical resampling, (4) estimation of uncertainty in model parameters, (5) performance assessment of univariate and multivariate analyses using Spearman's rank correlation and chi-square statistics, boxplots, nomograms, Kaplan-Meier survival plots, and receiver operating characteristics curves, and (6) graphical capabilities to visualize NTCP or TCP prediction versus selected variable models using various plots. DREES provides clinical researchers with a tool customized for radiotherapy outcome modelling. DREES is freely distributed. We expect to continue developing DREES based on user feedback.

  16. Study of a selection of 10 historical types of dosemeter: variation of the response to Hp(10) with photon energy and geometry of exposure.

    PubMed

    Thierry-Chef, I; Pernicka, F; Marshall, M; Cardis, E; Andreo, P

    2002-01-01

    An international collaborative study of cancer risk among workers in the nuclear industry is tinder way to estimate direetly the cancer risk following protracted low-dose exposure to ionising radiation. An essential aspect of this study is the characterisation and quantification of errors in available dose estimates. One major source of errors is dosemeter response in workplace exposure conditions. Little information is available on energy and geometry response for most of the 124 different dosemeters used historically in participating facilities. Experiments were therefore set up to assess this. using 10 dosemeter types representative of those used over time. Results show that the largest errors were associated with the response of early dosemeters to low-energy photon radiation. Good response was found with modern dosemeters. even at low energy. These results are being used to estimate errors in the response for each dosemeter type, used in the participating facilities, so that these can be taken into account in the estimates of cancer risk.

  17. Point Organ Radiation Dose in Abdominal CT: Effect of Patient Off-Centering in an Experimental Human Cadaver Study.

    PubMed

    Ali Khawaja, Ranish Deedar; Singh, Sarabjeet; Padole, Atul; Otrakji, Alexi; Lira, Diego; Zhang, Da; Liu, Bob; Primak, Andrew; Xu, George; Kalra, Mannudeep K

    2017-08-01

    To determine the effect of patient off-centering on point organ radiation dose measurements in a human cadaver scanned with routine abdominal CT protocol. A human cadaver (88 years, body-mass-index 20 kg/m2) was scanned with routine abdominal CT protocol on 128-slice dual source MDCT (Definition Flash, Siemens). A total of 18 scans were performed using two scan protocols (a) 120 kV-200 mAs fixed-mA (CTDIvol 14 mGy) (b) 120 kV-125 ref mAs (7 mGy) with automatic exposure control (AEC, CareDose 4D) at three different positions (a) gantry isocenter, (b) upward off-centering and (c) downward off-centering. Scanning was repeated three times at each position. Six thimble (in liver, stomach, kidney, pancreas, colon and urinary bladder) and four MOSFET dosimeters (on cornea, thyroid, testicle and breast) were placed for calculation of measured point organ doses. Organ dose estimations were retrieved from dose-tracking software (eXposure, Radimetrics). Statistical analysis was performed using analysis of variance. There was a significant difference between the trends of point organ doses with AEC and fixed-mA at all three positions (p < 0.01). Variation in point doses between fixed-mA and AEC protocols were statistically significant across all organs at all Table positions (p < 0.001). There was up to 5-6% decrease in point doses with upward off-centering and in downward off-centering. There were statistical significant differences in point doses from dosimeters and dose-tracking software (mean difference for internal organs, 5-36% for fixed-mA & 7-48% for AEC protocols; p < 0.001; mean difference for surface organs, >92% for both protocols; p < 0.0001). For both protocols, the highest mean difference in point doses was found for stomach and lowest for colon. Measured absorbed point doses in abdominal CT vary with patient-centering in the gantry isocenter. Due to lack of consideration of patient positioning in the dose estimation on automatic software-over estimation of the doses up to 92% was reported. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  19. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  20. A Bayesian Model and Stochastic Exposure (Dose) Estimation for Relative Exposure Risk Comparison Involving Asbestos-Containing Dropped Ceiling Panel Installation and Maintenance Tasks.

    PubMed

    Boelter, Fred W; Xia, Yulin; Persky, Jacob D

    2017-09-01

    Assessing exposures to hazards in order to characterize risk is at the core of occupational hygiene. Our study examined dropped ceiling systems commonly used in schools and commercial buildings and lay-in ceiling panels that may have contained asbestos prior to the mid to late 1970s. However, most ceiling panels and tiles do not contain asbestos. Since asbestos risk relates to dose, we estimated the distribution of eight-hour TWA concentrations and one-year exposures (a one-year dose equivalent) to asbestos fibers (asbestos f/cc-years) for five groups of workers who may encounter dropped ceilings: specialists, generalists, maintenance workers, nonprofessional do-it-yourself (DIY) persons, and other tradespersons who are bystanders to ceiling work. Concentration data (asbestos f/cc) were obtained through two exposure assessment studies in the field and one chamber study. Bayesian and stochastic models were applied to estimate distributions of eight-hour TWAs and annual exposures (dose). The eight-hour TWAs for all work categories were below current and historic occupational exposure limits (OELs). Exposures to asbestos fibers from dropped ceiling work would be categorized as "highly controlled" for maintenance workers and "well controlled" for remaining work categories, according to the American Industrial Hygiene Association exposure control rating system. Annual exposures (dose) were found to be greatest for specialists, followed by maintenance workers, generalists, bystanders, and DIY. On a comparative basis, modeled dose and thus risk from dropped ceilings for all work categories were orders of magnitude lower than published exposures for other sources of banned friable asbestos-containing building material commonly encountered in construction trades. © 2016 The Authors Risk Analysis published by Wiley Periodicals, Inc. on behalf of Society for Risk Analysis.

  1. Is more better than less? An analysis of children's mental health services.

    PubMed Central

    Foster, E M

    2000-01-01

    OBJECTIVE: To assess the dose-response relationship for outpatient therapy received by children and adolescents-that is, to determine the impact of added outpatient visits on key mental health outcomes (functioning and symptomatology). DATA SOURCES/STUDY SETTING: The results presented involve analyses of data from the Fort Bragg Demonstration and are based on a sample of 301 individuals using outpatient services. STUDY DESIGN: This article provides estimates of the impact of outpatient therapy based on comparisons of individuals receiving differing treatment doses. Those comparisons involve standard multiple regression analyses as well as instrumental variables estimation. The latter provides a means of adjusting comparisons for unobserved or unmeasured differences among individuals receiving differing doses, differences that would otherwise be confounded with the impact of treatment dose. DATA COLLECTION/EXTRACTION METHODS: Using structured diagnostic interviews and behavior checklists completed by the child and his or her caretaker, detailed data on psychopathology, symptomatology, and psychosocial functioning were collected on individuals included in these analyses. Information on the use of mental health services was taken from insurance claims and a management information system. Services data were used to describe the use of outpatient therapy within the year following entry into the study. PRINCIPAL FINDINGS/CONCLUSIONS: Instrumental variables estimation indicates that added outpatient therapy improves functioning among children and adolescents. The effect is statistically significant and of moderate practical magnitude. These results imply that conventional analyses of the dose-response relationship may understate the impact of additional treatment on functioning. This finding is robust to choice of functional form, length of time over which outcomes are measured, and model specification. Dose does not appear to influence symptomatology. PMID:11130814

  2. Estimation of the indoor radon and the annual effective dose from granite samples

    NASA Astrophysics Data System (ADS)

    Sola, P.; Srinuttrakul, W.; Kewsuwan, P.

    2015-05-01

    Inhalation of radon and thoron daughters increases the risk of lung cancer. The main sources of indoor radon are building materials. The aim of this research is to estimate the indoor radon and the annual effective dose from the building materials. Eighteen granite samples bought from the markets in Thailand were measured using an ionization chamber (ATMOS 12 DPX) for the radon concentration in air. Radon exhalation rates were calculated from the radon concentration in chamber. The indoor radon from the granite samples ranged from 10.04 to 55.32 Bq·m-2·h-1 with an average value of 20.30 Bq·m-2·h-1 and the annual effective dose ranged from 0.25 to 1.39 mSv·y-1 with an average value of 0.48 mSv·y-1. The results showed that the annual effective doses of three granite samples were higher than the annual exposure limit for the general public (1 mSv·y-1) recommended by the International Commission on Radiological Protection (ICRP). In addition, the relationship between the colours and radon exhalation rates of granite samples was also explained.

  3. Heavy ion contributions to organ dose equivalent for the 1977 galactic cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Walker, Steven A.; Townsend, Lawrence W.; Norbury, John W.

    2013-05-01

    Estimates of organ dose equivalents for the skin, eye lens, blood forming organs, central nervous system, and heart of female astronauts from exposures to the 1977 solar minimum galactic cosmic radiation spectrum for various shielding geometries involving simple spheres and locations within the Space Transportation System (space shuttle) and the International Space Station (ISS) are made using the HZETRN 2010 space radiation transport code. The dose equivalent contributions are broken down by charge groups in order to better understand the sources of the exposures to these organs. For thin shields, contributions from ions heavier than alpha particles comprise at least half of the organ dose equivalent. For thick shields, such as the ISS locations, heavy ions contribute less than 30% and in some cases less than 10% of the organ dose equivalent. Secondary neutron production contributions in thick shields also tend to be as large, or larger, than the heavy ion contributions to the organ dose equivalents.

  4. Assessment of environmental consequences of the normal operations of the ESS facility

    NASA Astrophysics Data System (ADS)

    Ene, D.; Avila, R.; Hjerpe, T.; Bugay, D.; Stenberg, K.

    2018-06-01

    As other accelerator based facilities, the European Spallation Source ESS facility will interact with the environment. The Swedish legislation requires a demonstration that the sum of the doses resulting from the exposure of any member of the public to ionizing radiation dose does not exceed the specified limit of 50 μSv/year. A radiological assessment has been produced to provide that demonstration. This evaluation was based upon the actual status of the ESS design. A graded approach was adopted through over the assessment allowing estimating dose for all radionuclides and exposure pathways, but the degree of detail in the assessment depend upon their relative radiological importance. The total dose was obtained making the sum of the contribution of all-important radionuclides treated realistically with that of all screened out radionuclides, derived by means a conservative method.

  5. SU-F-P-47: Estimation of Skin Dose by Performing the Measurements On Cylindrical Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosma, S; Sanders, M; Aryal, P

    Purpose: To evaluate the skin dose by performing the measurements on cylindrical phantom with 6X beam. Methods: A cylindrical phantom was used to best model a patient surface. The source to surface distance (SSD) was 100 cm at phantom surface along central axis (CAX). The EBT2 films were cut into 2×2 cm2 pieces. Each piece of film was placed at CAX on phantom surface for each measurement at 0°, 15°, 30°, 45°, 60°, 75°, and 90° gantry angles for field sizes of 5×5, 10×10, 15×15, and 20×20 cm{sup 2} respectively. One hundred monitor units (MU) with 6X beam were deliveredmore » for each set up. Similarly, the measurements were repeated using lithium fluoride (LiF) thermoluminescent dosimeter (TLD) chips (1X1X1 mm{sup 3}). Two TLD chips were placed for each gantry angle and field size. The calibration curves were produced for both film and TLD. The computed tomography (CT) was also performed on the same cylindrical phantom and dose was evaluated at the phantom surface using Eclipse treatment planning system ( AAA algorithm) for skin dose comparison. Results: Data showed small differences at smaller angles among EBT2, TLD and Eclipse treatment planning system. But Eclipse treatment planning system under estimated the skin dose between 20% and 50% at larger gantry angles (between 40° and 80°) at all field sizes before dose differences began to converge. Conclusion: Given this data, we can conclude that Eclipse treatment planning system under estimated the dose especially between 40 and 80 degrees of obliquity compared to the measurements results. Ideally, this study can be applied largely to head and neck patients where contours differ drastically and where skin dose is paramount.« less

  6. NOTE: Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool

    NASA Astrophysics Data System (ADS)

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-01

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  7. Development of modified voxel phantoms for the numerical dosimetric reconstruction of radiological accidents involving external sources: implementation in SESAME tool.

    PubMed

    Courageot, Estelle; Sayah, Rima; Huet, Christelle

    2010-05-07

    Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.

  8. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.

    PubMed

    Wang, Lilie; Ding, George X

    2018-06-12

    Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Routine immunization in Pakistan: comparison of multiple data sources and identification of factors associated with vaccination.

    PubMed

    Imran, Hafsa; Raja, Dania; Grassly, Nicholas C; Wadood, M Zubair; Safdar, Rana M; O'Reilly, Kathleen M

    2018-03-01

    Within Pakistan, estimates of vaccination coverage with the pentavalent vaccine, oral polio vaccine (OPV) and measles vaccine (MV) in 2011 were reported to be 74%, 75% and 53%, respectively. These national estimates may mask regional variation. The reasons for this variation have not been explored. Data from the Multiple Indicator Cluster Surveys (MICS) for Balochistan and Punjab (2010-2011) are analysed to examine factors associated with receiving three or more doses of the pentavalent vaccine and one or more MVs using regression modelling. Pentavalent and OPV estimates from the MICS were compared to vaccine dose histories from surveillance for acute flaccid paralysis (AFP; poliomyelitis) to ascertain agreement. Adjusted coverage of children 12-23 months of age were estimated to be 16.0%, 75.5% and 34.2% in Balochistan and 58.0%, 87.7% and 72.6% in Punjab for the pentavalent vaccine, OPV and MV, respectively. Maternal education, healthcare utilization and wealth were associated with receiving the pentavalent vaccine and the MV. There was a strong correlation of district estimates of vaccination coverage between AFP and MICS data, but AFP estimates of pentavalent coverage in Punjab were biased toward higher values. National estimates mask variation and estimates from individual surveys should be considered alongside other estimates. The development of strategies targeted towards poorly educated parents within low-wealth quintiles that may not typically access healthcare could improve vaccination rates.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Jeffrey F.

    This paper briefly reviews the evolution of brachytherapy dosimetry from 1900 to the present. Dosimetric practices in brachytherapy fall into three distinct eras: During the era of biological dosimetry (1900-1938), radium pioneers could only specify Ra-226 and Rn-222 implants in terms of the mass of radium encapsulated within the implanted sources. Due to the high energy of its emitted gamma rays and the long range of its secondary electrons in air, free-air chambers could not be used to quantify the output of Ra-226 sources in terms of exposure. Biological dosimetry, most prominently the threshold erythema dose, gained currency as amore » means of intercomparing radium treatments with exposure-calibrated orthovoltage x-ray units. The classical dosimetry era (1940-1980) began with successful exposure standardization of Ra-226 sources by Bragg-Gray cavity chambers. Classical dose-computation algorithms, based upon 1-D buildup factor measurements and point-source superposition computational algorithms, were able to accommodate artificial radionuclides such as Co-60, Ir-192, and Cs-137. The quantitative dosimetry era (1980- ) arose in response to the increasing utilization of low energy K-capture radionuclides such as I-125 and Pd-103 for which classical approaches could not be expected to estimate accurate correct doses. This led to intensive development of both experimental (largely TLD-100 dosimetry) and Monte Carlo dosimetry techniques along with more accurate air-kerma strength standards. As a result of extensive benchmarking and intercomparison of these different methods, single-seed low-energy radionuclide dose distributions are now known with a total uncertainty of 3%-5%.« less

  11. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  12. Estimation of child vaccination coverage at state and national levels in India

    PubMed Central

    Gupta, Satish; Kumar, Rakesh; Haldar, Pradeep; Sethi, Raman; Bahl, Sunil

    2016-01-01

    Abstract Objective To review the data, for 1999–2013, on state-level child vaccination coverage in India and provide estimates of coverage at state and national levels. Methods We collated data from administrative reports, population-based surveys and other sources and used them to produce annual estimates of vaccination coverage. We investigated bacille Calmette–Guérin vaccine, the first and third doses of vaccine against diphtheria, tetanus and pertussis, the third dose of oral polio vaccine and the first dose of vaccine against measles. We obtained relevant data covering the period 1999–2013 for each of 16 states and territories and the period 2001–2013 for the state of Jharkhand – which was only created in 2000. We aggregated the resultant state-level estimates, using a population-weighted approach, to give national values. Findings For each of the vaccinations we investigated, about half of the 253 estimates of annual coverage at state level that we produced were based on survey results. The rest were based on interpolation between – or extrapolation from – so-called anchor points or, more rarely, on administrative data. Our national estimates indicated that, for each of the vaccines we investigated, coverage gradually increased between 1999 and 2010 but then levelled off. Conclusion The delivery of routine vaccination services to Indian children appears to have improved between 1999 and 2013. There remains considerable scope to improve the recording and reporting of childhood vaccination coverage in India and regular systematic reviews of the coverage data are recommended. PMID:27843162

  13. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francesco Ganda; Jasmina Vujic; Ehud Greenspan

    2010-12-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved withmore » the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.« less

  14. Assessment of occupational cosmic radiation exposure of flight attendants using questionnaire data.

    PubMed

    Anderson, Jeri L; Waters, Martha A; Hein, Misty J; Schubauer-Berigan, Mary K; Pinkerton, Lynne E

    2011-11-01

    Female flight attendants may have a higher risk of breast and other cancers than the general population because of routine exposure to cosmic radiation. As part of a forthcoming study of breast and other cancer incidence, occupational cosmic radiation exposure of a cohort of female flight attendants was estimated. Questionnaire data were collected from living female cohort members who were formerly employed as flight attendants with Pan American World Airways. These data included airline at which the flight attendant was employed, assigned domicile, start and end dates for employment at domicile, and number of block hours and commuter segments flown per month. Questionnaire respondents were assigned daily absorbed and effective doses using a time-weighted dose rate specific to the domicile and/or work history era combined with self-reported work history information. Completed work history questionnaires were received from 5898 living cohort members. Mean employment time as a flight attendant was 7.4 yr at Pan Am and 12 yr in total. Estimated mean annual effective dose from all sources of occupational cosmic radiation exposure was 2.5 +/- 1.0 mSv, with a mean career dose of 30 mSv. Annual effective doses were similar to doses assessed for other flight attendant cohorts; however, questionnaire-based cumulative doses assessed in this study were on average higher than those assessed for other flight attendant cohorts using company-based records. The difference is attributed to the inclusion of dose from work at other airlines and commuter flights, which was made possible by using questionnaire data.

  15. External dose assessment in the Ukraine following the Chernobyl accident

    NASA Astrophysics Data System (ADS)

    Frazier, Remi Jordan Lesartre

    While the physiological effects of radiation exposure have been well characterized in general, it remains unclear what the relationship is between large-scale radiological events and psychosocial behavior outcomes in individuals or populations. To investigate this, the National Science Foundation funded a research project in 2008 at the University of Colorado in collaboration with Colorado State University to expand the knowledge of complex interactions between radiation exposure, perception of risk, and psychosocial behavior outcomes by modeling outcomes for a representative sample of the population of the Ukraine which had been exposed to radiocontaminant materials released by the reactor accident at Chernobyl on 26 April 1986. In service of this project, a methodology (based substantially on previously published models specific to the Chernobyl disaster and the Ukrainian population) was developed for daily cumulative effective external dose and dose rate assessment for individuals in the Ukraine for as a result of the Chernobyl disaster. A software platform was designed and produced to estimate effective external dose and dose rate for individuals based on their age, occupation, and location of residence on each day between 26 April 1986 and 31 December 2009. A methodology was developed to transform published 137Cs soil deposition contour maps from the Comprehensive Atlas of Caesium Deposition on Europe after the Chernobyl Accident into a geospatial database to access these data as a radiological source term. Cumulative effective external dose and dose rate were computed for each individual in a 703-member cohort of Ukrainians randomly selected to be representative of the population of the country as a whole. Error was estimated for the resulting individual dose and dose rate values with Monte Carlo simulations. Distributions of input parameters for the dose assessment methodology were compared to computed dose and dose rate estimates to determine which parameters were driving the computed results. The mean external effective dose for all individuals in the cohort due to exposure to radiocontamination from the Chernobyl accident between 26 April 1986 and 31 December 2009 was found to be 1.2 mSv; the geometric mean was 0.84 mSv with a geometric standard deviation of 2.1. The mean value is well below the mean external effective dose expected due to typical background radiation (which in the United States over this time period would be 12.0 mSv). Sensitivity analysis suggests that the greatest driver of the distribution of individual dose estimates is lack of specific information about the daily behavior of each individual, specifically the portion of time each individual spent indoors (and shielded from radionuclides deposited on the soil) versus outdoors (and unshielded).

  16. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The inversion method uses a Bayesian formulation considering uncertainties for the a priori source term and the observations (Eckhardt et al., 2008, Stohl et al., 2012). The a priori information on the source term is a first guess. The gamma dose rate observations are used to improve the first guess and to retrieve a reliable source term. The details of this method will be presented at the conference. This work is funded by the Bundesamt für Strahlenschutz BfS, Forschungsvorhaben 3612S60026. References Davoine, X. and Bocquet, M., Atmos. Chem. Phys., 7, 1549-1564, 2007. Devell, L., et al., OCDE/GD(96)12, 1995. Eckhardt, S., et al., Atmos. Chem. Phys., 8, 3881-3897, 2008. Saunier, O., et al., Atmos. Chem. Phys., 13, 11403-11421, 2013. Stohl, A., et al., Atmos. Environ., 32, 4245-4264, 1998. Stohl, A., et al., Atmos. Chem. Phys., 5, 2461-2474, 2005. Stohl, A., et al., Atmos. Chem. Phys., 12, 2313-2343, 2012.

  17. Dose assessment in environmental radiological protection: State of the art and perspectives.

    PubMed

    Stark, Karolina; Goméz-Ros, José M; Vives I Batlle, Jordi; Lindbo Hansen, Elisabeth; Beaugelin-Seiller, Karine; Kapustka, Lawrence A; Wood, Michael D; Bradshaw, Clare; Real, Almudena; McGuire, Corynne; Hinton, Thomas G

    2017-09-01

    Exposure to radiation is a potential hazard to humans and the environment. The Fukushima accident reminded the world of the importance of a reliable risk management system that incorporates the dose received from radiation exposures. The dose to humans from exposure to radiation can be quantified using a well-defined system; its environmental equivalent, however, is still in a developmental state. Additionally, the results of several papers published over the last decade have been criticized because of poor dosimetry. Therefore, a workshop on environmental dosimetry was organized by the STAR (Strategy for Allied Radioecology) Network of Excellence to review the state of the art in environmental dosimetry and prioritize areas of methodological and guidance development. Herein, we report the key findings from that international workshop, summarise parameters that affect the dose animals and plants receive when exposed to radiation, and identify further research needs. Current dosimetry practices for determining environmental protection are based on simple screening dose assessments using knowledge of fundamental radiation physics, source-target geometry relationships, the influence of organism shape and size, and knowledge of how radionuclide distributions in the body and in the soil profile alter dose. In screening model calculations that estimate whole-body dose to biota the shapes of organisms are simply represented as ellipsoids, while recently developed complex voxel phantom models allow organ-specific dose estimates. We identified several research and guidance development priorities for dosimetry. For external exposures, the uncertainty in dose estimates due to spatially heterogeneous distributions of radionuclide contamination is currently being evaluated. Guidance is needed on the level of dosimetry that is required when screening benchmarks are exceeded and how to report exposure in dose-effect studies, including quantification of uncertainties. Further research is needed to establish whether and how dosimetry should account for differences in tissue physiology, organism life stages, seasonal variability (in ecology, physiology and radiation field), species life span, and the proportion of a population that is actually exposed. We contend that, although major advances have recently been made in environmental radiation protection, substantive improvements are required to reduce uncertainties and increase the reliability of environmental dosimetry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of Military Field-Water Quality. Volume 2. Constituents of Military Concern from Natural and Anthropogenic Sources. Part 3. Inorganic Chemicals and Physical Properties

    DTIC Science & Technology

    1988-01-01

    essential for the nutrition of certain laboratory animals, this essentiality has not been substantiated for humans. 40 Considerable information...ingestion of canned fruit juice . Therefore, 1 g/d of lead consumed per day over a period of 35 days can be considered an adequate estimation of a lethal dose...Chemical Species and Physical Properties and Their Estimated MLC Values in Field Water Our review of the water-quality monitoring data revealed 40 common

  19. Quantifying annual internal effective 137Cesium dose utilizing direct body-burden measurement and ecological dose modeling.

    PubMed

    Jelin, Benjamin A; Sun, Wenjie; Kravets, Alexandra; Naboka, Maryna; Stepanova, Eugenia I; Vdovenko, Vitaliy Y; Karmaus, Wilfried J; Lichosherstov, Alex; Svendsen, Erik R

    2016-11-01

    The Chernobyl Nuclear Power Plant (CNPP) accident represents one of the most significant civilian releases of 137 Cesium ( 137 Cs, radiocesium) in human history. In the Chernobyl-affected region, radiocesium is considered to be the greatest on-going environmental hazard to human health by radiobiologists and public health scientists. The goal of this study was to characterize dosimetric patterns and predictive factors for whole-body count (WBC)-derived radiocesium internal dose estimations in a CNPP-affected children's cohort, and cross-validate these estimations with a soil-based ecological dose estimation model. WBC data were used to estimate the internal effective dose using the International Commission on Radiological Protection (ICRP) 67 dose conversion coefficient for 137 Cs and MONDAL Version 3.01 software. Geometric mean dose estimates from each model were compared utilizing paired t-tests and intra-class correlation coefficients. Additionally, we developed predictive models for WBC-derived dose estimation in order to determine the appropriateness of EMARC to estimate dose for this population. The two WBC-derived dose predictive models identified 137 Cs soil concentration (P<0.0001) as the strongest predictor of annual internal effective dose from radiocesium validating the use of the soil-based EMARC model. The geometric mean internal effective dose estimate of the EMARC model (0.183 mSv/y) was the highest followed by the ICRP 67 dose estimates (0.165 mSv/y) and the MONDAL model estimates (0.149 mSv/y). All three models yielded significantly different geometric mean dose (P<0.05) estimates for this cohort when stratified by sex, age at time of exam and season of exam, except for the mean MONDAL and EMARC estimates for 15- and 16-year olds and mean ICRP and MONDAL estimates for children examined in Winter. Further prospective and retrospective radio-epidemiological studies utilizing refined WBC measurements and ecological model dose estimations, in conjunction with findings from animal toxicological studies, should help elucidate possible deterministic radiogenic health effects associated with chronic low-dose internal exposure to 137 Cs.

  20. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of technologically enhanced, localised contributions to dose rate values are also apparent in the data sets. Two detailed examples are provided that reveal the detectability of site-scale environmental impacts due to former industrial activities and the high dose values (>500 nGy h(-1)) that are associated with former, small-scale Uranium mining operations. Copyright © 2014. Published by Elsevier Ltd.

  1. Protracted exposure to fallout: the Rongelap and Utirik experience.

    PubMed

    Lessard, E T; Miltenberger, R P; Cohn, S H; Musolino, S V; Conard, R A

    1984-03-01

    From June 1946 to August 1958, the U.S. Department of Defense and the U.S. Atomic Energy Commission (AEC) conducted nuclear weapons tests in the Northern Marshall Islands. On 1 March 1954, BRAVO, an above-ground test in the Castle series, produced high levels of radioactive material, some of which subsequently fell on Rongelap and Utirik Atolls due to an unexpected wind shift. On 3 March 1954, the inhabitants of these atolls were moved out of the affected area. They later returned to Utirik in June 1954 and to Rongelap in June 1957. Comprehensive environmental and personnel radiological monitoring programs were initiated in the mid 1950s by Brookhaven National Laboratory to ensure that body burdens of the exposed Marshallese subjects remained within AEC guidelines. Their body-burden histories and calculated activity ingestion rate patterns post-return are presented along with estimates of internal committed effective dose equivalents. External exposure data are also included. In addition, relationships between body burden or urine-activity concentration and declining continuous intake were developed. The implications of these studies are: (1) the dietary intake of 137Cs was a major component contributing to the committed effective dose equivalent for the years after the initial contamination of the atolls; (2) for persons whose diet included fish, 65Zn was a major component of committed effective dose equivalent during the first years post-return; (3) a decline in the daily activity ingestion rate greater than that resulting from radioactive decay of the source was estimated for 137Cs, 65Zn, 90Sr and 60Co; (4) the relative impact of each nuclide on the estimate of committed effective dose equivalent was dependent upon the time interval between initial contamination and rehabilitation; and (5) the internal committed effective dose equivalent exceeded the external dose equivalent by a factor of 1.1 at Utirik and 1.5 at Rongelap during the rehabitation period. Few reliable 239Pu measurements on human excreta were made. An analysis of the tentative data leads to the conclusion that a reliable estimate of committed effective dose equivalent requires further research.

  2. Controversial issues confronting the BEIR III committee: implications for radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    This paper reviews the state-of-the-art for conducting risk assessment studies, especially known and unknown factors relative to radioinduced cancer or other diseases, sources of scientific and epidemiological data, dose-response models used, and uncertainties which limit precision of estimation of excess radiation risks. These are related to decision making for radiation protection policy. (PSB)

  3. Radiation environment and shielding for early manned Mars missions

    NASA Technical Reports Server (NTRS)

    Hall, Stephen B.; Mccann, Michael E.

    1986-01-01

    The problem of shielding a crew during early manned Mars missions is discussed. Requirements for shielding are presented in the context of current astronaut exposure limits, natural ionizing radiation sources, and shielding inherent in a particular Mars vehicle configuration. An estimated range for shielding weight is presented based on the worst solar flare dose, mission duration, and inherent vehicle shielding.

  4. Probability Distribution of Dose and Dose-Rate Effectiveness Factor for use in Estimating Risks of Solid Cancers From Exposure to Low-Let Radiation.

    PubMed

    Kocher, David C; Apostoaei, A Iulian; Hoffman, F Owen; Trabalka, John R

    2018-06-01

    This paper presents an analysis to develop a subjective state-of-knowledge probability distribution of a dose and dose-rate effectiveness factor for use in estimating risks of solid cancers from exposure to low linear energy transfer radiation (photons or electrons) whenever linear dose responses from acute and chronic exposure are assumed. A dose and dose-rate effectiveness factor represents an assumption that the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation, RL, differs from the risk per Gy at higher acute doses, RH; RL is estimated as RH divided by a dose and dose-rate effectiveness factor, where RH is estimated from analyses of dose responses in Japanese atomic-bomb survivors. A probability distribution to represent uncertainty in a dose and dose-rate effectiveness factor for solid cancers was developed from analyses of epidemiologic data on risks of incidence or mortality from all solid cancers as a group or all cancers excluding leukemias, including (1) analyses of possible nonlinearities in dose responses in atomic-bomb survivors, which give estimates of a low-dose effectiveness factor, and (2) comparisons of risks in radiation workers or members of the public from chronic exposure to low linear energy transfer radiation at low dose rates with risks in atomic-bomb survivors, which give estimates of a dose-rate effectiveness factor. Probability distributions of uncertain low-dose effectiveness factors and dose-rate effectiveness factors for solid cancer incidence and mortality were combined using assumptions about the relative weight that should be assigned to each estimate to represent its relevance to estimation of a dose and dose-rate effectiveness factor. The probability distribution of a dose and dose-rate effectiveness factor for solid cancers developed in this study has a median (50th percentile) and 90% subjective confidence interval of 1.3 (0.47, 3.6). The harmonic mean is 1.1, which implies that the arithmetic mean of an uncertain estimate of the risk of a solid cancer per Gy at low acute doses or low dose rates of low linear energy transfer radiation is only about 10% less than the mean risk per Gy at higher acute doses. Data were also evaluated to define a low acute dose or low dose rate of low linear energy transfer radiation, i.e., a dose or dose rate below which a dose and dose-rate effectiveness factor should be applied in estimating risks of solid cancers.

  5. Radiological environment within an NPP after a severe nuclear accident

    NASA Astrophysics Data System (ADS)

    Andgren, Karin; Fritioff, Karin; Buhr, Anna Maria Blixt; Huutoniemi, Tommi

    2017-09-01

    The radiological environment following a severe nuclear accident can be visualised on building layouts. The direct radiation in an area (or room) can be visualized on the layout by a colouring scheme depending on the dose rate level (for example orange for high gamma dose rate level and purple for an intermediate gamma dose rate level). Following the Fukushima accident, a need for update of these layouts has been identified at the Swedish nuclear power plant of Forsmark. Shielding calculations for areas where access is desired for severe accident management have been performed. Many different sources of radiation together with different types of shielding material contribute to the dose that would be received by a person entering the area. External radiation from radioactivity within e.g. pipes and components is considered and also external radiation from radioactivity in the air (originating from diffuse leakage of the containment atmosphere). Results are presented as dose rates for relevant dose points together with a method for estimating the dose rate levels for each of the rooms of the reactor building.

  6. Radiation Exposure to Relatives of Patients Treated with Iodine-131 for Thyroid Cancer at Siriraj Hospital.

    PubMed

    Tonnonchiang, Siriporn; Sritongkul, Nopamon; Chaudakshetrin, Pachee; Tuntawiroon, Malulee

    2016-02-01

    Thyroid cancer patients treated with 1-131 are potential source of radiation exposure to relatives who are knowingly and willingly exposed to ionizing radiation as a result of providing comfort to patients undergoing I-131 therapy. This study aims to determine radiation dose received by relatives who care for non self-supporting 1-131 patients at Siriraj Hospital. Twenty caregivers of 20 patients underwent I-131 therapy for thyroid cancer with a standard protocol were given specific instructions with regard to radiation safety and provided with electronic digital dosimeter to continuously measure radiation dose received on daily basis, three days in the hospital. On the day patient is released, thyroid uptake estimates were performed to assess internal radiation dose received by caregivers. The 3-day accumulative doses to caregivers to patients receiving 150 mCi (n = 11) and 200 mCi (n = 9) of I-131 ranged from 37 to 333 uSv and 176 to 1,920 pSv respectively depending on the level of supports required. Thyroid uptake estimates in all caregivers were undetectable. Dosimeter indicated a maximum whole-body dose of1.92 mSv was more than the public dose limit of] mSv but within the dose constraint of 5 mSv for caregivers. Radiation dose to caregivers of a non self-supporting hospitalized patient undergoing 1-131 therapy were well below the limits recommended by the ICRP. The patients can be comforted with confidence that dose to caregivers will be less than the limit. This study provides guidance for medical practitioners to obtain practical radiation safety concerns associated with hospitalized patients receiving I-131 therapy especially when patient needs assistance.

  7. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.

    PubMed

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2009-10-01

    Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy were identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.

  9. Incidental Testicular Irradiation From Prostate IMRT: It All Adds Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Christopher R., E-mail: crking@stanford.ed; Maxim, Peter G.; Hsu, Annie

    Purpose: To identify the technical aspects of image-guided intensity-modulated radiation therapy (IMRT) for localized prostate cancer that could result in a clinically meaningful incidental dose to the testes. Methods and Materials: We examined three sources that contribute incidental dose to the testes, namely, from internal photon scattering from IMRT small field and large pelvic nodal fields with 6 or 15 MV, from neutrons when >10-MV photons are used, and from daily image-guided fiducial-based portal imaging. Using clinical data from 10 patients who received IMRT for prostate cancer, and thermo-luminescent dosimeter measurements in phantom, we estimated the dose to the testesmore » from each of these sources. Results: A mean testicular dose of 172 and 220 cGy results from internal photon scatter for pelvic nodal fields and 68 and 93 cGy for prostate-only fields, for 6- and 15-MV energies, respectively. For 15-MV photon energies, the mean testicular dose from neutrons is 60 cGy for pelvic fields and 31 cGy for prostate-only fields. From daily portal MV image guidance, the testes-in-field mean dose is 350 cGy, whereas the testes-out-of-field scatter dose is 16 cGy. Dosimetric comparisons between IMRT using 6-MV and 15-MV photon energies are not significantly different. Worst-case scenarios can potentially deliver cumulative incidental mean testicular doses of 630 cGy, whereas best-case scenarios can deliver only 84 cGy. Conclusions: Incidental dose to the testes from prostate IMRT can be minimized by opting to restrict the use of elective pelvic nodal fields, by choosing photon energies <10 MV, and by using the smallest port sizes necessary for daily image guidance.« less

  10. The Fukushima releases: an inverse modelling approach to assess the source term by using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Saunier, Olivier; Mathieu, Anne; Didier, Damien; Tombette, Marilyne; Quélo, Denis; Winiarek, Victor; Bocquet, Marc

    2013-04-01

    The Chernobyl nuclear accident and more recently the Fukushima accident highlighted that the largest source of error on consequences assessment is the source term estimation including the time evolution of the release rate and its distribution between radioisotopes. Inverse modelling methods have proved to be efficient to assess the source term due to accidental situation (Gudiksen, 1989, Krysta and Bocquet, 2007, Stohl et al 2011, Winiarek et al 2012). These methods combine environmental measurements and atmospheric dispersion models. They have been recently applied to the Fukushima accident. Most existing approaches are designed to use air sampling measurements (Winiarek et al, 2012) and some of them use also deposition measurements (Stohl et al, 2012, Winiarek et al, 2013). During the Fukushima accident, such measurements are far less numerous and not as well distributed within Japan than the dose rate measurements. To efficiently document the evolution of the contamination, gamma dose rate measurements were numerous, well distributed within Japan and they offered a high temporal frequency. However, dose rate data are not as easy to use as air sampling measurements and until now they were not used in inverse modelling approach. Indeed, dose rate data results from all the gamma emitters present in the ground and in the atmosphere in the vicinity of the receptor. They do not allow one to determine the isotopic composition or to distinguish the plume contribution from wet deposition. The presented approach proposes a way to use dose rate measurement in inverse modeling approach without the need of a-priori information on emissions. The method proved to be efficient and reliable when applied on the Fukushima accident. The emissions for the 8 main isotopes Xe-133, Cs-134, Cs-136, Cs-137, Ba-137m, I-131, I-132 and Te-132 have been assessed. The Daiichi power plant events (such as ventings, explosions…) known to have caused atmospheric releases are well identified in the retrieved source term, except for unit 3 explosion where no measurement was available. The comparisons between the simulations of atmospheric dispersion and deposition of the retrieved source term show a good agreement with environmental observations. Moreover, an important outcome of this study is that the method proved to be perfectly suited to crisis management and should contribute to improve our response in case of a nuclear accident.

  11. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  12. Development of autonomous gamma dose logger for environmental monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less

  13. Development of autonomous gamma dose logger for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.

  14. Quantitation of Japanese cedar pollen and radiocesium adhered to nonwoven fabric masks worn by the general population.

    PubMed

    Higaki, Shogo; Shirai, Hideharu; Hirota, Masahiro; Takeda, Eisuke; Yano, Yukiko; Shibata, Akira; Mishima, Yoshitaka; Yamamoto, Hiromi; Miyazawa, Kiyoshi

    2014-08-01

    In the spring of 2012, a year after the Fukushima Daiichi nuclear disaster, radiocesium-contaminated Japanese cedar pollen may have caused internal exposure to the general population by inhalation. To determine if pollen had been contaminated through uptake of radiocesium by Japanese cedars and was therefore contributing to inhalation doses, the authors measured radiocesium and Japanese cedar pollen adhered to masks worn by 68 human subjects residing in eastern Japan, including Fukushima prefecture, for 8 wk in the spring of 2012. The maximum cumulative Cs and Cs radioactivities on masks worn by an individual were 21 ± 0.36 Bq and 15 ± 0.22 Bq, respectively, and the estimated effective dose during the 8 wk was 0.494 μSv. The average estimated effective dose during the 8 wk was 0.149 μSv in Fukushima prefecture and 0.015 μSv in other prefectures, including Tokyo metropolitan. The correlation between radiocesium activity and the Japanese cedar pollen count was moderate. However, imaging-plate and light microscopy observations showed that the main source of radiocesium adhered to masks was fugitive dust.

  15. Caffeine Increases the Linearity of the Visual BOLD Response

    PubMed Central

    Liu, Thomas T.; Liau, Joy

    2009-01-01

    Although the blood oxygenation level dependent (BOLD) signal used in most functional magnetic resonance imaging (fMRI) studies has been shown to exhibit nonlinear characteristics, most analyses assume that the BOLD signal responds in a linear fashion to stimulus. This assumption of linearity can lead to errors in the estimation of the BOLD response, especially for rapid event-related fMRI studies. In this study, we used a rapid event-related design and Volterra kernel analysis to assess the effect of a 200 mg oral dose of caffeine on the linearity of the visual BOLD response. The caffeine dose significantly (p < 0.02) increased the linearity of the BOLD response in a sample of 11 healthy volunteers studied on a 3 Tesla MRI system. In addition, the agreement between nonlinear and linear estimates of the hemodynamic response function was significantly increased (p= 0.013) with the caffeine dose. These findings indicate that differences in caffeine usage should be considered as a potential source of bias in the analysis of rapid event-related fMRI studies. PMID:19854278

  16. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children.

    PubMed

    Lee, Eunsol; Goo, Hyun Woo; Lee, Jae-Yeong

    2015-08-01

    It is necessary to develop a mechanism to estimate and analyze cumulative radiation risks from multiple CT exams in various clinical scenarios in children. To identify major contributors to high cumulative CT dose estimates using actual dose-length product values collected for 5 years in children. Between August 2006 and July 2011 we reviewed 26,937 CT exams in 13,803 children. Among them, we included 931 children (median age 3.5 years, age range 0 days-15 years; M:F = 533:398) who had 5,339 CT exams. Each child underwent at least three CT scans and had accessible radiation dose reports. Dose-length product values were automatically extracted from DICOM files and we used recently updated conversion factors for age, gender, anatomical region and tube voltage to estimate CT radiation dose. We tracked the calculated CT dose estimates to obtain a 5-year cumulative value for each child. The study population was divided into three groups according to the cumulative CT dose estimates: high, ≥30 mSv; moderate, 10-30 mSv; and low, <10 mSv. We reviewed clinical data and CT protocols to identify major contributors to high and moderate cumulative CT dose estimates. Median cumulative CT dose estimate was 5.4 mSv (range 0.5-71.1 mSv), and median number of CT scans was 4 (range 3-36). High cumulative CT dose estimates were most common in children with malignant tumors (57.9%, 11/19). High frequency of CT scans was attributed to high cumulative CT dose estimates in children with ventriculoperitoneal shunt (35 in 1 child) and malignant tumors (range 18-49). Moreover, high-dose CT protocols, such as multiphase abdomen CT (median 4.7 mSv) contributed to high cumulative CT dose estimates even in children with a low number of CT scans. Disease group, number of CT scans, and high-dose CT protocols are major contributors to higher cumulative CT dose estimates in children.

  17. Estimation of the total daily oral intake of NDMA attributable to drinking water.

    PubMed

    Fristachi, Anthony; Rice, Glenn

    2007-09-01

    Disinfection with chlorine and chloramine leads to the formation of many disinfection by-products including N-Nitrosodimethylamine (NDMA). Because NDMA is a probable human carcinogen, public health officials are concerned with its occurrence in drinking water. The goal of this study was to estimate NDMA concentrations from exogenous (i.e., drinking water and food) and endogenous (i.e., formed in the human body) sources, calculate average daily doses for ingestion route exposures and estimate the proportional oral intake (POI) of NDMA attributable to the consumption of drinking water relative to other ingestion sources of NDMA. The POI is predicted to be 0.02% relative to exogenous and endogenous NDMA sources combined. When only exogenous sources are considered, the POI was predicted to be 2.7%. The exclusion of endogenously formed NDMA causes the POI to increase dramatically, reflecting its importance as a potentially major source of exposure and uncertainty in the model. Although concentrations of NDMA in foods are small and human exposure to NDMA from foods is quite low, the contribution from food is predicted to be high relative to that of drinking water. The mean concentration of NDMA in drinking water would need to increase from 2.1 x 10(-3) microg/L to 0.10 microg/L, a 47-fold increase, for the POI to reach 1%, relative to all sources of NDMA considered in our model, suggesting that drinking water consumption is most likely a minor source of NDMA exposure.

  18. Estimating organ doses from tube current modulated CT examinations using a generalized linear model.

    PubMed

    Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F

    2017-04-01

    Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.

  19. Cognitive and subjective acute dose effects of intramuscular ketamine in healthy adults.

    PubMed

    Lofwall, Michelle R; Griffiths, Roland R; Mintzer, Miriam Z

    2006-11-01

    Ketamine is a noncompetitive N-methyl-D-aspartate (NMDA) antagonist. Given the purported role of the NMDA receptor in long-term potentiation, the primary purpose of the present study was to further understand the dose-related effects of ketamine on memory. The study was also designed to provide information about the relative effects of ketamine on memory versus nonmemory effects and to more fully characterize ketamine's overall pattern and time course of effects. Single intramuscular injections of ketamine (0.2 mg/kg, 0.4 mg/kg) were administered to 18 healthy adult volunteers using a double-blind, placebo-controlled, crossover design. Word lists were used to evaluate episodic memory (free recall, recognition memory, source memory) and metamemory. Working memory, time estimation, psychomotor performance, and subjective effects were assessed repeatedly for 5 hours after drug administration. Ketamine selectively impaired encoding (as measured by free recall) while sparing retrieval, working memory while sparing attention, and digit symbol substitution task speed while sparing accuracy. Ketamine did not significantly impair recognition or source memory, metamemory, or time estimation. There were no hallucinations or increases in mystical experiences with ketamine. Memory measures were less sensitive to ketamine effects than subjective or psychomotor measures. Subjective effects lasted longer than memory and most psychomotor impairments. Ketamine produces selective, transient, dose- and time-related effects. In conjunction with previous studies of drugs with different mechanisms of actions, the observed selectivity of effects enhances the understanding of the pharmacological mechanisms underlying memory, attention, psychomotor performance, and subjective experience.

  20. Estimates of radiological risk from depleted uranium weapons in war scenarios.

    PubMed

    Durante, Marco; Pugliese, Mariagabriella

    2002-01-01

    Several weapons used during the recent conflict in Yugoslavia contain depleted uranium, including missiles and armor-piercing incendiary rounds. Health concern is related to the use of these weapons, because of the heavy-metal toxicity and radioactivity of uranium. Although chemical toxicity is considered the more important source of health risk related to uranium, radiation exposure has been allegedly related to cancers among veterans of the Balkan conflict, and uranium munitions are a possible source of contamination in the environment. Actual measurements of radioactive contamination are needed to assess the risk. In this paper, a computer simulation is proposed to estimate radiological risk related to different exposure scenarios. Dose caused by inhalation of radioactive aerosols and ground contamination induced by Tomahawk missile impact are simulated using a Gaussian plume model (HOTSPOT code). Environmental contamination and committed dose to the population resident in contaminated areas are predicted by a food-web model (RESRAD code). Small values of committed effective dose equivalent appear to be associated with missile impacts (50-y CEDE < 5 mSv), or population exposure by water-independent pathways (50-y CEDE < 80 mSv). The greatest hazard is related to the water contamination in conditions of effective leaching of uranium in the groundwater (50-y CEDE < 400 mSv). Even in this worst case scenario, the chemical toxicity largely predominates over radiological risk. These computer simulations suggest that little radiological risk is associated to the use of depleted uranium weapons.

  1. Dioxin equivalency: Challenge to dose extrapolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.F. Jr.; Silkworth, J.B.

    1995-12-31

    Extensive research has shown that all biological effects of dioxin-like agents are mediated via a single biochemical target, the Ah receptor (AhR), and that the relative biologic potencies of such agents in any given system, coupled with their exposure levels, may be described in terms of toxic equivalents (TEQ). It has also shown that the TEQ sources include not only chlorinated species such as the dioxins (PCDDs), PCDFs, and coplanar PCBs, but also non-chlorinated substances such as the PAHs of wood smoke, the AhR agonists of cooked meat, and the indolocarbazol (ICZ) derived from cruciferous vegetables. Humans have probably hadmore » elevated exposures to these non-chlorinated TEQ sources ever since the discoveries of fire, cooking, and the culinary use of Brassica spp. Recent assays of CYP1A2 induction show that these ``natural`` or ``traditional`` AhR agonists are contributing 50--100 times as much to average human TEQ exposures as do the chlorinated xenobiotics. Currently, the safe doses of the xenobiotic TEQ sources are estimated from their NOAELs and large extrapolation factors, derived from arbitrary mathematical models, whereas the NOAELs themselves are regarded as the safe doses for the TEQs of traditional dietary components. Available scientific data can neither support nor refute either approach to assessing the health risk of an individual chemical substance. However, if two substances be toxicologically equivalent, then their TEQ-adjusted health risks must also be equivalent, and the same dose extrapolation procedure should be used for both.« less

  2. SU-F-P-19: Fetal Dose Estimate for a High-Dose Fluoroscopy Guided Intervention Using Modern Data Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moirano, J

    Purpose: An accurate dose estimate is necessary for effective patient management after a fetal exposure. In the case of a high-dose exposure, it is critical to use all resources available in order to make the most accurate assessment of the fetal dose. This work will demonstrate a methodology for accurate fetal dose estimation using tools that have recently become available in many clinics, and show examples of best practices for collecting data and performing the fetal dose calculation. Methods: A fetal dose estimate calculation was performed using modern data collection tools to determine parameters for the calculation. The reference pointmore » air kerma as displayed by the fluoroscopic system was checked for accuracy. A cumulative dose incidence map and DICOM header mining were used to determine the displayed reference point air kerma. Corrections for attenuation caused by the patient table and pad were measured and applied in order to determine the peak skin dose. The position and depth of the fetus was determined by ultrasound imaging and consultation with a radiologist. The data collected was used to determine a normalized uterus dose from Monte Carlo simulation data. Fetal dose values from this process were compared to other accepted calculation methods. Results: An accurate high-dose fetal dose estimate was made. Comparison to accepted legacy methods were were within 35% of estimated values. Conclusion: Modern data collection and reporting methods ease the process for estimation of fetal dose from interventional fluoroscopy exposures. Many aspects of the calculation can now be quantified rather than estimated, which should allow for a more accurate estimation of fetal dose.« less

  3. Thermoluminescence characteristics of Israeli household salts for retrospective dosimetry in radiological events

    NASA Astrophysics Data System (ADS)

    Druzhyna, S.; Datz, H.; Horowitz, Y. S.; Oster, L.; Orion, I.

    2016-06-01

    Following a nuclear accident or terror attack involving the dispersal of radioactive substances, radiation dose assessment to first responders and the members of the public is essential. The need for a retrospective assessment of the radiation dose to those possibly affected is, therefore, obligatory. The present study examines the potential use of Israeli household salt as a retrospective dosimeter (RD). The experiments were carried out on Israeli salt samples (NaCl) following a Nielsen market track survey based on scanning data representing the barcoded market, including organized and independent retail chains and a sample of private minimarkets and supermarkets. The technique used was thermoluminescence (TL) dosimetry. Salt samples were exposed to levels of dose from 0.5 mGy to 300 Gy at the Israeli Secondary Standard Dosimetry Laboratory of the Soreq Nuclear Research Center using a calibrated 137Cs source. Our emphasis has been on a detailed investigation of the basic dosimetric characteristics of the salts including: (i) glow curve analysis (ii) individual glow peak dose response (iii) reproducibility (iv) estimation of minimal measurable dose (v) effect of nitrogen readout, (vi) influence of humidity during pre-irradiation storage and (vii) light induced fading. The results are sufficiently favorable to lead to the conclusion that the Israeli household salts can serve as a pragmatic potential candidate for RD under certain restricted conditions. Occasional pre-calibration of the major salt brands in a dedicated laboratory may be essential depending on the required accuracy in the estimation of dose and consequent clinical evaluation.

  4. Impact of TGF for aircrew dosimetry: analysis of continuous onboard measurements

    NASA Astrophysics Data System (ADS)

    Trompier, Francois; Fuller, Nicolas; Bonnotte, Frank; Desmaris, Gérard; Musso, Angelica; Cale, Eric; Bottollier-Depois, Jean-François

    2014-05-01

    The actual assessment of the occupational exposure of aircrew to cosmic radiation is performed in routine by software based on the crossing of route flight data with dose rate maps of the atmosphere obtained by simulation or elaborated with model based on measured data. In addition of the galactic component, some of these softwares take into account also the possible increase of dose from solar flares. In several publications, terrestrial gamma-rays flashes (TGF) are also investigated as a possible source of exposure of aircrew. Up to now, the evaluation of the impact of TGF in terms of dose onboard aircraft has been performed only by calculation. According to these publications, if the airplane is located in or near the high-field region during the lightning discharge, doses could reach the order of 100 of mSv, which far exceed the annual dose limit for workers (1). To our knowledge, no measured data has been yet reported for such phenomena that could confirm or not the order of magnitude of dose from TGF or the frequency or the probability of occurrence of such phenomena. To investigate further the TGF effect, it is recommended to perform measurements onboard airplanes. Since the beginning of 2013, the Institute of Radiation Protection and nuclear Safety (IRSN) in cooperation with Air France is running a campaign of continuous measurements with active devices aiming to measure effect on dose rate of solar flare. These measurements are used to improve models used to estimate the doses from Ground Level Event (GLE). In addition, passive dosimeters were historically installed in Air France airplanes and read out every three months constituting a very large database of dose measurements. All these data will be analyzed to better characterize the possible influence on dose from TGF. The statistical analysis of these data offers the possibility to estimate the order of magnitude of possible additional doses to aircrew due to TGF and/or to evaluate the probability of occurrence of TGF events impacting significantly the exposure of aircrew. (1) J. R. Dwyer et al. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, D09206, 10 PP., 2010, doi:10.1029/2009JD012039

  5. Combined experimental and Monte Carlo verification of brachytherapy plans for vaginal applicators

    NASA Astrophysics Data System (ADS)

    Sloboda, Ron S.; Wang, Ruqing

    1998-12-01

    Dose rates in a phantom around a shielded and an unshielded vaginal applicator containing Selectron low-dose-rate sources were determined by experiment and Monte Carlo simulation. Measurements were performed with thermoluminescent dosimeters in a white polystyrene phantom using an experimental protocol geared for precision. Calculations for the same set-up were done using a version of the EGS4 Monte Carlo code system modified for brachytherapy applications into which a new combinatorial geometry package developed by Bielajew was recently incorporated. Measured dose rates agree with Monte Carlo estimates to within 5% (1 SD) for the unshielded applicator, while highlighting some experimental uncertainties for the shielded applicator. Monte Carlo calculations were also done to determine a value for the effective transmission of the shield required for clinical treatment planning, and to estimate the dose rate in water at points in axial and sagittal planes transecting the shielded applicator. Comparison with dose rates generated by the planning system indicates that agreement is better than 5% (1 SD) at most positions. The precision thermoluminescent dosimetry protocol and modified Monte Carlo code are effective complementary tools for brachytherapy applicator dosimetry.

  6. Effect of tissue composition on dose distribution in brachytherapy with various photon emitting sources

    PubMed Central

    Ghorbani, Mahdi; Salahshour, Fateme; Haghparast, Abbas; Knaup, Courtney

    2014-01-01

    Purpose The aim of this study is to compare the dose in various soft tissues in brachytherapy with photon emitting sources. Material and methods 103Pd, 125I, 169Yb, 192Ir brachytherapy sources were simulated with MCNPX Monte Carlo code, and their dose rate constant and radial dose function were compared with the published data. A spherical phantom with 50 cm radius was simulated and the dose at various radial distances in adipose tissue, breast tissue, 4-component soft tissue, brain (grey/white matter), muscle (skeletal), lung tissue, blood (whole), 9-component soft tissue, and water were calculated. The absolute dose and relative dose difference with respect to 9-component soft tissue was obtained for various materials, sources, and distances. Results There was good agreement between the dosimetric parameters of the sources and the published data. Adipose tissue, breast tissue, 4-component soft tissue, and water showed the greatest difference in dose relative to the dose to the 9-component soft tissue. The other soft tissues showed lower dose differences. The dose difference was also higher for 103Pd source than for 125I, 169Yb, and 192Ir sources. Furthermore, greater distances from the source had higher relative dose differences and the effect can be justified due to the change in photon spectrum (softening or hardening) as photons traverse the phantom material. Conclusions The ignorance of soft tissue characteristics (density, composition, etc.) by treatment planning systems incorporates a significant error in dose delivery to the patient in brachytherapy with photon sources. The error depends on the type of soft tissue, brachytherapy source, as well as the distance from the source. PMID:24790623

  7. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    PubMed

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The small-animal radiation research platform (SARRP): dosimetry of a focused lens system.

    PubMed

    Deng, Hua; Kennedy, Christopher W; Armour, Elwood; Tryggestad, Erik; Ford, Eric; McNutt, Todd; Jiang, Licai; Wong, John

    2007-05-21

    A small animal radiation platform equipped with on-board cone-beam CT and conformal irradiation capabilities is being constructed for translational research. To achieve highly localized dose delivery, an x-ray lens is used to focus the broad beam from a 225 kVp x-ray tube down to a beam with a full width half maximum (FWHM) of approximately 1.5 mm in the energy range 40-80 keV. Here, we report on the dosimetric characteristics of the focused beam from the x-ray lens subsystem for high-resolution dose delivery. Using the metric of the average dose within a 1.5 mm diameter area, the dose rates at a source-to-surface distance (SSD) of 34 cm are 259 and 172 cGy min(-1) at 6 mm and 2 cm depths, respectively, with an estimated uncertainty of +/-5%. The per cent depth dose is approximately 56% at 2 cm depth for a beam at 34 cm SSD.

  9. Calculated organ doses for Mayak production association central hall using ICRP and MCNP.

    PubMed

    Choe, Dong-Ok; Shelkey, Brenda N; Wilde, Justin L; Walk, Heidi A; Slaughter, David M

    2003-03-01

    As part of an ongoing dose reconstruction project, equivalent organ dose rates from photons and neutrons were estimated using the energy spectra measured in the central hall above the graphite reactor core located in the Russian Mayak Production Association facility. Reconstruction of the work environment was necessary due to the lack of personal dosimeter data for neutrons in the time period prior to 1987. A typical worker scenario for the central hall was developed for the Monte Carlo Neutron Photon-4B (MCNP) code. The resultant equivalent dose rates for neutrons and photons were compared with the equivalent dose rates derived from calculations using the conversion coefficients in the International Commission on Radiological Protection Publications 51 and 74 in order to validate the model scenario for this Russian facility. The MCNP results were in good agreement with the results of the ICRP publications indicating the modeling scenario was consistent with actual work conditions given the spectra provided. The MCNP code will allow for additional orientations to accurately reflect source locations.

  10. A comparison study on various low energy sources in interstitial prostate brachytherapy

    PubMed Central

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Knaup, Courtney; Meigooni, Ali S.

    2016-01-01

    Purpose Low energy sources are routinely used in prostate brachytherapy. 125I is one of the most commonly used sources. Low energy 131Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of 125I, 103Pd, and 131Cs sources in interstitial brachytherapy of prostate. Material and methods ProstaSeed 125I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of 103Pd and 131Cs were simulated with the same geometry as the ProstaSeed 125I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Results Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, 131Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the 103Pd source. Conclusions The higher initial absolute dose in cGy/(h.U) of 131Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the 103Pd source are advantages of this later brachytherapy source. Based on the total dose the 125I source has advantage over the others due to its longer half-life. PMID:26985200

  11. A comparison study on various low energy sources in interstitial prostate brachytherapy.

    PubMed

    Bakhshabadi, Mahdi; Ghorbani, Mahdi; Khosroabadi, Mohsen; Knaup, Courtney; Meigooni, Ali S

    2016-02-01

    Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

  12. Occupational exposures to antineoplastic drugs and ionizing radiation in Canadian veterinary settings: findings from a national surveillance project.

    PubMed

    Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E

    2013-11-01

    Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.

  13. Routine immunization in Pakistan: comparison of multiple data sources and identification of factors associated with vaccination

    PubMed Central

    Imran, Hafsa; Raja, Dania; Grassly, Nicholas C; Wadood, M Zubair; Safdar, Rana M; O’Reilly, Kathleen M

    2018-01-01

    Abstract Background Within Pakistan, estimates of vaccination coverage with the pentavalent vaccine, oral polio vaccine (OPV) and measles vaccine (MV) in 2011 were reported to be 74%, 75% and 53%, respectively. These national estimates may mask regional variation. The reasons for this variation have not been explored. Methods Data from the Multiple Indicator Cluster Surveys (MICS) for Balochistan and Punjab (2010–2011) are analysed to examine factors associated with receiving three or more doses of the pentavalent vaccine and one or more MVs using regression modelling. Pentavalent and OPV estimates from the MICS were compared to vaccine dose histories from surveillance for acute flaccid paralysis (AFP; poliomyelitis) to ascertain agreement. Results Adjusted coverage of children 12–23 months of age were estimated to be 16.0%, 75.5% and 34.2% in Balochistan and 58.0%, 87.7% and 72.6% in Punjab for the pentavalent vaccine, OPV and MV, respectively. Maternal education, healthcare utilization and wealth were associated with receiving the pentavalent vaccine and the MV. There was a strong correlation of district estimates of vaccination coverage between AFP and MICS data, but AFP estimates of pentavalent coverage in Punjab were biased toward higher values. Conclusions National estimates mask variation and estimates from individual surveys should be considered alongside other estimates. The development of strategies targeted towards poorly educated parents within low-wealth quintiles that may not typically access healthcare could improve vaccination rates. PMID:29432552

  14. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model

    NASA Astrophysics Data System (ADS)

    Swartling, Johannes; Höglund, Odd V.; Hansson, Kerstin; Södersten, Fredrik; Axelsson, Johan; Lagerstedt, Anne-Sofie

    2016-02-01

    Online light dosimetry with real-time feedback was applied for temoporfin-mediated interstitial photodynamic therapy (PDT) of dog prostate. The aim was to investigate the performance of online dosimetry by studying the correlation between light dose plans and the tissue response, i.e., extent of induced tissue necrosis and damage to surrounding organs at risk. Light-dose planning software provided dose plans, including light source positions and light doses, based on ultrasound images. A laser instrument provided therapeutic light and dosimetric measurements. The procedure was designed to closely emulate the procedure for whole-prostate PDT in humans with prostate cancer. Nine healthy dogs were subjected to the procedure according to a light-dose escalation plan. About 0.15 mg/kg temoporfin was administered 72 h before the procedure. The results of the procedure were assessed by magnetic resonance imaging, and gross pathology and histopathology of excised tissue. Light dose planning and online dosimetry clearly resulted in more focused effect and less damage to surrounding tissue than interstitial PDT without dosimetry. A light energy dose-response relationship was established where the threshold dose to induce prostate gland necrosis was estimated from 20 to 30 J/cm2.

  15. Determination of the spatial resolution required for the HEDR dose code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 007) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping calculation, of iodine in cow's milk; the third scoping calculation, which added additional pathways; the fifth calculation, which addressed the uncertainty of the dose estimates at a point; and the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain. A projectionmore » of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from-Feeding Regime 1 as described in scoping calculation 001.« less

  16. SU-E-T-381: Evaluation of Calculated Dose Accuracy for Organs-At-Risk Located at Out-Of-Field in a Commercial Treatment Planning System for High Energy Photon Beams Produced From TrueBeam Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; Ding, G

    Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millenniummore » 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the resources of Varian research grant VUMC40590-R.« less

  17. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  18. Gamma Radiation Dose Rate in Air due to Terrestrial Radionuclides in Southern Brazil: Synthesis by Geological Units and Lithotypes Covered by the Serra do Mar Sul Aero-Geophysical Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastos, Rodrigo O.; Appoloni, Carlos R.; Pinese, Jose P. P.

    2008-08-07

    The absorbed dose rates in air due to terrestrial radionuclides were estimated from aerial gamma spectrometric data for an area of 48,600 km{sup 2} in Southern Brazil. The source data was the Serra do Mar Sul Aero-Geophysical Project back-calibrated in a cooperative work among the Geological Survey of Brazil, the Geological Survey of Canada, and Paterson, Grant and Watson Ltd. The concentrations of eU (ppm), eTh (ppm) and K (%) were converted to dose rates in air (nGy{center_dot}h{sup -1}) by accounting for the contribution of each element's concentration. Regional variation was interpreted according to lithotypes and a synthesis was performedmore » according to the basic geological units present in the area. Higher values of total dose were estimated for felsic igneous and metamorphic rocks, with average values varying up to 119{+-}24 nGy{center_dot}h{sup -1}, obtained by Anitapolis syenite body. Sedimentary, metasedimentary and metamafic rocks presented the lower dose levels, and some beach deposits reached the lowest average total dose, 18.5{+-}8.2 nGy{center_dot}h{sup -1}. Thorium gives the main average contribution in all geological units, the highest value being reached by the nebulitic gneisses of Atuba Complex, 71{+-}23 nGy{center_dot}h{sup -1}. Potassium presents the lowest average contribution to dose rate in 53 of the 72 units analyzed, the highest contribution being obtained by intrusive alkaline bodies (28{+-}12 nGy{center_dot}h{sup -1}). The general pattern of geographic dose distribution respects well the hypotheses on geo-physicochemical behavior of radioactive elements.« less

  19. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Richardson, Richard B.

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.

  20. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    PubMed

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: Effect of ion chamber calibration and long-term stability

    PubMed Central

    Ravichandran, Ramamoorthy; Binukumar, Johnson Pichy; Davis, Cheriyathmanjiyil Antony

    2013-01-01

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL “dose intercomparison” for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy, and uncertainties are within reported values. PMID:24672156

  2. ANEMOS: A computer code to estimate air concentrations and ground deposition rates for atmospheric nuclides emitted from multiple operating sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.W.; Sjoreen, A.L.; Begovich, C.L.

    This code estimates concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operating Sources. ANEMOS is one component of an integrated Computerized Radiological Risk Investigation System (CRRIS) developed for the US Environmental Protection Agency (EPA) for use in performing radiological assessments and in developing radiation standards. The concentrations and deposition rates calculated by ANEMOS are used in subsequent portions of the CRRIS for estimating doses and risks to man. The calculations made in ANEMOS are based on the use of a straight-line Gaussian plume atmospheric dispersion model with both dry and wet deposition parameter options. Themore » code will accommodate a ground-level or elevated point and area source or windblown source. Adjustments may be made during the calculations for surface roughness, building wake effects, terrain height, wind speed at the height of release, the variation in plume rise as a function of downwind distance, and the in-growth and decay of daughter products in the plume as it travels downwind. ANEMOS can also accommodate multiple particle sizes and clearance classes, and it may be used to calculate the dose from a finite plume of gamma-ray-emitting radionuclides passing overhead. The output of this code is presented for 16 sectors of a circular grid. ANEMOS can calculate both the sector-average concentrations and deposition rates at a given set of downwind distances in each sector and the average of these quantities over an area within each sector bounded by two successive downwind distances. ANEMOS is designed to be used primarily for continuous, long-term radionuclide releases. This report describes the models used in the code, their computer implementation, the uncertainty associated with their use, and the use of ANEMOS in conjunction with other codes in the CRRIS. A listing of the code is included in Appendix C.« less

  3. Modeling of occupational exposure to accidentally released manufactured nanomaterials in a production facility and calculation of internal doses by inhalation

    PubMed Central

    Vaquero-Moralejo, Celina; Jaén, María; Lopez De Ipiña Peña, Jesús; Neofytou, Panagiotis

    2016-01-01

    Background Occupational exposure to manufactured nanomaterials (MNMs) and its potential health impacts are of scientific and practical interest, as previous epidemiological studies associate exposure to nanoparticles with health effects, including increased morbidity of the respiratory and the circulatory system. Objectives To estimate the occupational exposure and effective internal doses in a real production facility of TiO2 MNMs during hypothetical scenarios of accidental release. Methods Commercial software for geometry and mesh generation, as well as fluid flow and particle dispersion calculation, were used to estimate occupational exposure to MNMs. The results were introduced to in-house software to calculate internal doses in the human respiratory tract by inhalation. Results Depending on the accidental scenario, different areas of the production facility were affected by the released MNMs, with a higher dose exposure among individuals closer to the particles source. Conclusions Granted that the study of the accidental release of particles can only be performed by chance, this numerical approach provides valuable information regarding occupational exposure and contributes to better protection of personnel. The methodology can be used to identify occupational settings where the exposure to MNMs would be high during accidents, providing insight to health and safety officials. PMID:27670588

  4. Parameter uncertainty and variability in evaluative fate and exposure models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertwich, E.G.; McKone, T.E.; Pease, W.S.

    The human toxicity potential, a weighting scheme used to evaluate toxic emissions for life cycle assessment and toxics release inventories, is based on potential dose calculations and toxicity factors. This paper evaluates the variance in potential dose calculations that can be attributed to the uncertainty in chemical-specific input parameters as well as the variability in exposure factors and landscape parameters. A knowledge of the uncertainty allows us to assess the robustness of a decision based on the toxicity potential; a knowledge of the sources of uncertainty allows one to focus resources if the uncertainty is to be reduced. The potentialmore » does of 236 chemicals was assessed. The chemicals were grouped by dominant exposure route, and a Monte Carlo analysis was conducted for one representative chemical in each group. The variance is typically one to two orders of magnitude. For comparison, the point estimates in potential dose for 236 chemicals span ten orders of magnitude. Most of the variance in the potential dose is due to chemical-specific input parameters, especially half-lives, although exposure factors such as fish intake and the source of drinking water can be important for chemicals whose dominant exposure is through indirect routes. Landscape characteristics are generally of minor importance.« less

  5. GEANT4 and PHITS simulations of the shielding of neutrons from the 252Cf source

    NASA Astrophysics Data System (ADS)

    Shin, Jae Won; Hong, Seung-Woo; Bak, Sang-In; Kim, Do Yoon; Kim, Chong Yeal

    2014-09-01

    Monte Carlo simulations are performed by using the GEANT4 and the PHITS for studying the neutron-shielding abilities of several materials, such as graphite, iron, polyethylene, NS-4-FR and KRAFTON-HB. As a neutron source, 252Cf is considered. For the Monte Carlo simulations by using the GEANT4, high precision (G4HP) models with the G4NDL 4.2 based on ENDF/B-VII data are used. For the simulations by using the PHITS, the JENDL-4.0 library is used. The neutron-dose-equivalent rates with or without five different shielding materials are estimated and compared with the experimental values. The differences between the shielding abilities calculated by using the GEANT4 with the G4NDL 4.2 and the PHITS with the JENDL-4.0 are found not to be significant for all the cases considered in this work. The neutron-dose-equivalent rates obtained by using the GEANT4 and the PHITS are compared with experimental data and other simulation results. Our neutron-dose-equivalent rates agree well with the experimental dose-equivalent rates, within 20% errors, except for polyethylene. For polyethylene, the discrepancies between our calculations and the experiments are less than 40%, as observed in other simulation results.

  6. Dosimetry of {sup 210}Po in humans, caribou, and wolves in northern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.A.

    1994-06-01

    Effective doses from {sup 210}Po intake with caribou meat were determined for human residents in Baker Lake and Snowdrift in the Northwest Territories of Canada and compared to doses calculated from reported {sup 210}Po tissue activities in Alaskan and British residents. Effective doses were calculated to separate body tissues, using ICRP 60 human weighting factors and the ICRP 30 metabolic model for {sup 210}Po. Baker Lake and Alaskan effective doses were similar at 0.4 mSv y{sup {minus}1} and slightly higher than Snowdrift doses (0.3 mSv y{sup {minus}1}). Alaskan tissue activities indicated higher effective doses to liver, bone surfaces and redmore » marrow and lower doses to spleen than the {sup 210}Po metabolic model (ICRP 1979a) predicts. Effective doses to Baker Lake and Snowdrift caribou and wolves, calculated from tissue activities, ranged from 7-20 mSv y{sup {minus}1} using human weighting factors for comparison to human doses only. Effective doses to northern Canadians and wildlife were, respectively, 7-11% and 1.8-5 times an estimated human background of 4 mSv y{sup {minus}} from all sources. 51 refs., 2 figs., 9 tabs.« less

  7. Determination of the spatial resolution required for the HEDR dose code. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, B.A.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 007) examined the spatial distribution of potential doses resulting from releases in the year 1945. This study builds on the work initiated in the first scoping calculation, of iodine in cow`s milk; the third scoping calculation, which added additional pathways; the fifth calculation, which addressed the uncertainty of the dose estimates at a point; and the sixth calculation, which extrapolated the doses throughout the atmospheric transport domain. A projectionmore » of dose to representative individuals throughout the proposed HEDR atmospheric transport domain was prepared on the basis of the HEDR source term. Addressed in this calculation were the contributions to iodine-131 thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from-Feeding Regime 1 as described in scoping calculation 001.« less

  8. SU-E-T-352: Effects of Skull Attenuation and Missing Backscatter On Brain Dose in HDR Treatment of the Head with Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cifter, F; Dhou, S; Lewis, J

    2015-06-15

    Purpose: To calculate the effect of lack of backscatter from air and attenuation of bone on dose distributions in brachytherapy surface treatment of head. Existing treatment planning systems based on TG43 do not account for heterogeneities, and thus may overestimate the dose to the brain. While brachytherapy generally has rapid dose falloff, the dose to the deeper tissues (in this case, the brain) can become significant when treating large curved surfaces. Methods: Applicator geometries representing a range of clinical cases were simulated in MCNP5. An Ir-192 source was modeled using the energy spectrum presented by TG-43. The head phantom wasmore » modeled as a 7.5-cm radius water sphere, with a 7 -mm thick skull embedded 5-mm beneath the surface. Dose values were calculated at 20 points inside the head, in which 10 of them were on the central axis and the other 10 on the axis connecting the central of the phantom with the second to last source from the applicator edge. Results: Central and peripheral dose distributions for a range of applicator and head sizes are presented. The distance along the central axis at which the dose falls to 80% of the prescribed dose (D80) was 7 mm for a representative small applicator and 9 mm for a large applicator. Corresponding D50 and D30 for the same small applicator were 17 mm and 32 mm respectively. D50 and D30 for the larger applicator were 32 mm and 60 mm respectively. These results reflect the slower falloff expected for larger applicators on a curved surface. Conclusion: Our results can provide guidance for clinicians to calculate the dose reduction effect due to bone attenuation and the lack of backscatter from air to estimate the brain dose for the HDR treatments of surface lesions.« less

  9. Rapid Acute Dose Assessment Using MCNP6

    NASA Astrophysics Data System (ADS)

    Owens, Andrew Steven

    Acute radiation doses due to physical contact with a high-activity radioactive source have proven to be an occupational hazard. Multiple radiation injuries have been reported due to manipulating a radioactive source with bare hands or by placing a radioactive source inside a shirt or pants pocket. An effort to reconstruct the radiation dose must be performed to properly assess and medically manage the potential biological effects from such doses. Using the reference computational phantoms defined by the International Commission on Radiological Protection (ICRP) and the Monte Carlo N-Particle transport code (MCNP6), dose rate coefficients are calculated to assess doses for common acute doses due to beta and photon radiation sources. The research investigates doses due to having a radioactive source in either a breast pocket or pants back pocket. The dose rate coefficients are calculated for discrete energies and can be used to interpolate for any given energy of photon or beta emission. The dose rate coefficients allow for quick calculation of whole-body dose, organ dose, and/or skin dose if the source, activity, and time of exposure are known. Doses are calculated with the dose rate coefficients and compared to results from the International Atomic Energy Agency (IAEA) reports from accidents that occurred in Gilan, Iran and Yanango, Peru. Skin and organ doses calculated with the dose rate coefficients appear to agree, but there is a large discrepancy when comparing whole-body doses assessed using biodosimetry and whole-body doses assessed using the dose rate coefficients.

  10. Comparison of Chest Pain Protocols for Electrocardiography-Gated Dual-Source Cardiothoracic CT in Children and Adults: The Effect of Tube Current Saturation on Radiation Dose Reduction

    PubMed Central

    2018-01-01

    Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996

  11. Monte Carlo simulations to assess the effects of tube current modulation on breast dose for multidetector CT

    NASA Astrophysics Data System (ADS)

    Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2009-02-01

    Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.

  12. Cytogenetic damages in peripheral blood of monkey lymphocytes under simulation of cosmonauts irradiation.

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Ivanov, Alexandr; Barteneva, Svetlana; Snigiryeva, Galina; Shafirkin, Alexandr

    Earth modeling of crewmember exposure should be performed for correct estimating radiation hazard during the flight. Such modeling was planned in a monkey experiment for investigating consequences of exposure to a man during an interplanetary flight. It should reflect a chronic impact of galactic cosmic rays and acute and fractional irradiation specified for solar cosmic rays and radiation belts respectively. Due to the difficulty of modeling a chronic impact with the help of a charged particles accelerator it can be used the gamma source. While irradiating big animal groups during a long-term period of time it is preferably to replace chronic irradiation by an equal fractional one. In this case the chosen characteristics of fractional irradiation should ensure the appearances of radiobiological consequences equal to the ones caused by the modeled chronic exposure. So for developing an exposure scheme in the monkey experiment (with Macaca -Rhesus) the model of the acting residual dose, that takes into account repair and recovery processes in the exposed body was used. The total dose value was in the limits from 2.32 Gy up to 3.5 Gy depending on the exposure character. The acting residual dose in all versions of exposure was 2.0 Gy for every monkey. While performing the experiment all the requirements of bioethics for the work with animals were observed. The objects of interest were genomic damages in lymphocytes of monkey's peripheral blood. The data about the CAF during the exposure and at various time moments after exposure particularly directly after the completion of chronicle and fractional irradiation were analyzed. CAF -dose of acute single gamma-irradiation in the range 0 -1.5Gy relationship (calibration curve) was defined in vitro. In addition the rate of the aberrant cells elimination within three months after the irradiation completion was estimated. On the basis of the obtained CAF data we performed verification of applicability of cytogenetic analysis for estimating the monkey gamma -dose exposure in the experiment It was obtained that this method permits to estimate the acting residual dose with accuracy of 30

  13. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.

  14. Investigation of Main Radiation Source above Shield Plug of Unit 3 at Fukushima Daiichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Hiratama, Hideo; Kondo, Kenjiro; Suzuki, Seishiro; Tanimura, Yoshihiko; Iwanaga, Kohei; Nagata, Hiroshi

    2017-09-01

    Pulse height distributions were measured using a CdZnTe detector inside a lead collimator to investigate main source producing high dose rates above the shield plugs of Unit 3 at Fukushima Daiichi Nuclear Power Station. It was confirmed that low energy photons are dominant. Concentrations of Cs-137 under 60 cm concrete of the shield plug were estimated to be between 8.1E+9 and 5.7E+10 Bq/cm2 from the measured peak count rate of 0.662 MeV photons. If Cs-137 was distributed on the surfaces of the gaps with radius 6m and with the averaged concentration of 5 points, 2.6E+10 Bq/cm2, total amount of Cs-137 is estimated to be 30 PBq.

  15. Cost-Effectiveness Analysis of the Introduction of HPV Vaccination of 9-Year-Old-Girls in Iran.

    PubMed

    Yaghoubi, Mohsen; Nojomi, Marzieh; Vaezi, Atefeh; Erfani, Vida; Mahmoudi, Susan; Ezoji, Khadijeh; Zahraei, Seyed Mohsen; Chaudhri, Irtaza; Moradi-Lakeh, Maziar

    2018-04-23

    To estimate the cost effectiveness of introducing the quadrivalent human papillomavirus (HPV) vaccine into the national immunization program of Iran. The CERVIVAC cost-effectiveness model was used to calculate incremental cost per averted disability-adjusted life-year by vaccination compared with no vaccination from both governmental and societal perspectives. Calculations were based on epidemiologic parameters from the Iran National Cancer Registry and other national data sources as well as from literature review. We estimated all direct and indirect costs of cervical cancer treatment and vaccination program. All future costs and benefits were discounted at 3% per year and deterministic sensitivity analysis was used. During a 10-year period, HPV vaccination was estimated to avert 182 cervical cancer cases and 20 deaths at a total vaccination cost of US $23,459,897; total health service cost prevented because of HPV vaccination was estimated to be US $378,646 and US $691,741 from the governmental and societal perspective, respectively. Incremental cost per disability-adjusted life-year averted within 10 years was estimated to be US $15,205 and US $14,999 from the governmental and societal perspective, respectively, and both are higher than 3 times the gross domestic product per capita of Iran (US $14,289). Sensitivity analysis showed variation in vaccine price, and the number of doses has the greatest volatility on the incremental cost-effectiveness ratio. Using a two-dose vaccination program could be cost-effective from the societal perspective (incremental cost-effectiveness ratio = US $11,849). Introducing a three-dose HPV vaccination program is currently not cost-effective in Iran. Because vaccine supplies cost is the most important parameter in this evaluation, considering a two-dose schedule or reducing vaccine prices has an impact on final conclusions. Copyright © 2018. Published by Elsevier Inc.

  16. Effect of respiratory motion on internal radiation dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transportmore » code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic anatomical model provides more accurate internal radiation dosimetry estimates for the lungs and abdominal organs based on realistic modeling of respiratory motion. This work also contributes to a better understanding of model-induced uncertainties in internal radiation dosimetry.« less

  17. Evaluation of the risk of perchlorate exposure in a population of late-gestation pregnant women in the United States: Application of probabilistic biologically-based dose response modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumen, A, E-mail: Annie.Lumen@fda.hhs.gov

    The risk of ubiquitous perchlorate exposure and the dose-response on thyroid hormone levels in pregnant women in the United States (U.S.) have yet to be characterized. In the current work, we integrated a previously developed perchlorate submodel into a recently developed population-based pregnancy model to predict reductions in maternal serum free thyroxine (fT4) levels for late-gestation pregnant women in the U.S. Our findings indicated no significant difference in geometric mean estimates of fT4 when perchlorate exposure from food only was compared to no perchlorate exposure. The reduction in maternal fT4 levels reached statistical significance when an added contribution from drinkingmore » water (i.e., 15 μg/L, 20 μg/L, or 24.5 μg/L) was assumed in addition to the 90th percentile of food intake for pregnant women (0.198 μg/kg/day). We determined that a daily intake of 0.45 to 0.50 μg/kg/day of perchlorate was necessary to produce results that were significantly different than those obtained from no perchlorate exposure. Adjusting for this food intake dose, the relative source contribution of perchlorate from drinking water (or other non-dietary sources) was estimated to range from 0.25–0.3 μg/kg/day. Assuming a drinking water intake rate of 0.033 L/kg/day, the drinking water concentration allowance for perchlorate equates to 7.6–9.2 μg/L. In summary, we have demonstrated the utility of a probabilistic biologically-based dose-response model for perchlorate risk assessment in a sensitive life-stage at a population level; however, there is a need for continued monitoring in regions of the U.S. where perchlorate exposure may be higher. - Highlights: • Probabilistic risk assessment for perchlorate in U.S. pregnant women was conducted. • No significant change in maternal fT4 predicted due to perchlorate from food alone. • Drinking water concentration allowance for perchlorate estimated as 7.6–9.2 μg/L.« less

  18. In vivo urethral dose measurements: a method to verify high dose rate prostate treatments.

    PubMed

    Brezovich, I A; Duan, J; Pareek, P N; Fiveash, J; Ezekiel, M

    2000-10-01

    Radiation doses delivered in high dose rate (HDR) brachytherapy are susceptible to many inaccuracies and errors, including imaging, planning and delivery. Consequently, the dose delivered to the patient may deviate substantially from the treatment plan. We investigated the feasibility of using TLD measurements in the urethra to estimate the discrepancy in treatments for prostate cancer. The dose response of the 1 mm diam, 6 mm long LiF rods that we used for the in vivo measurements was calibrated with the 192Ir HDR source, as well as a 60Co teletherapy unit. A train of 20 rods contained in a sterile plastic tube was inserted into the urethral (Foley) catheter for the duration of a treatment fraction, and the measured doses were compared to the treatment plan. Initial results from a total of seven treatments in four patients show good agreement between theory and experiment. Analysis of any one treatment showed agreement within 11.7% +/- 6.2% for the highest dose encountered in the central prostatic urethra, and within 10.4% +/- 4.4% for the mean dose. Taking the average over all seven treatments shows agreement within 1.7% for the maximum urethral dose, and within 1.5% for the mean urethral dose. Based on these initial findings it seems that planned prostate doses can be accurately reproduced in the clinic.

  19. Keeping an eye on the ring: COMS plaque loading optimization for improved dose conformity and homogeneity.

    PubMed

    Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J

    2012-09-01

    To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.

  20. History by history statistical estimators in the BEAM code system.

    PubMed

    Walters, B R B; Kawrakow, I; Rogers, D W O

    2002-12-01

    A history by history method for estimating uncertainties has been implemented in the BEAMnrc and DOSXYznrc codes replacing the method of statistical batches. This method groups scored quantities (e.g., dose) by primary history. When phase-space sources are used, this method groups incident particles according to the primary histories that generated them. This necessitated adding markers (negative energy) to phase-space files to indicate the first particle generated by a new primary history. The new method greatly reduces the uncertainty in the uncertainty estimate. The new method eliminates one dimension (which kept the results for each batch) from all scoring arrays, resulting in memory requirement being decreased by a factor of 2. Correlations between particles in phase-space sources are taken into account. The only correlations with any significant impact on uncertainty are those introduced by particle recycling. Failure to account for these correlations can result in a significant underestimate of the uncertainty. The previous method of accounting for correlations due to recycling by placing all recycled particles in the same batch did work. Neither the new method nor the batch method take into account correlations between incident particles when a phase-space source is restarted so one must avoid restarts.

  1. Quantifying the radiant exposure and effective dose in patients treated for actinic keratoses with topical photodynamic therapy using daylight and LED white light

    NASA Astrophysics Data System (ADS)

    Manley, M.; Collins, P.; Gray, L.; O'Gorman, S.; McCavana, J.

    2018-02-01

    Daylight photodynamic therapy (dl-PDT) is as effective as conventional PDT (c-PDT) for treating actinic keratoses but has the advantage of reducing patient discomfort significantly. Topical dl-PDT and white light-PDT (wl-PDT) differ from c-PDT by way of light sources and methodology. We measured the variables associated with light dose delivery to skin surface and influence of geometry using a radiometer, a spectral radiometer and an illuminance meter. The associated errors of the measurement methods were assessed. The spectral and spatial distribution of the radiant energy from the LED white light source was evaluated in order to define the maximum treatment area, setup and treatment protocol for wl-PDT. We compared the data with two red LED light sources we use for c-PDT. The calculated effective light dose is the product of the normalised absorption spectrum of the photosensitizer, protoporphyrin IX (PpIX), the irradiance spectrum and the treatment time. The effective light dose from daylight ranged from 3  ±  0.4 to 44  ±  6 J cm-2due to varying weather conditions. The effective light dose for wl-PDT was reproducible for treatments but it varied across the treatment area between 4  ±  0.1 J cm-2 at the edge and 9  ±  0.1 J cm-2 centrally. The effective light dose for the red waveband (615-645 nm) was 0.42  ±  0.05 J cm-2 on a clear day, 0.05  ±  0.01 J cm-2 on an overcast day and 0.9  ±  0.01 J cm-2 using the white light. This compares with 0.95  ±  0.01 and 0.84  ±  0.01 J cm-2 for c-PDT devices. Estimated errors associated with indirect determination of daylight effective light dose were very significant, particularly for effective light doses less than 5 J cm-2 (up to 83% for irradiance calculations). The primary source of error is in establishment of the relationship between irradiance or illuminance and effective dose. Use of the O’Mahoney model is recommended using a calibrated logging illuminance meter with the detector in the plane of the treatment area.

  2. SU-E-T-594: Out-Of-Field Neutron and Gamma Dose Estimated Using TLD-600/700 Pairs in the Wobbling Proton Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Lin, Y; Medical Physics Research Center, Institute for Radiological Research, Chang Gung University / Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan

    Purpose: Secondary fast neutrons and gamma rays are mainly produced due to the interaction of the primary proton beam with the beam delivery nozzle. These secondary radiation dose to patients and radiation workers are unwanted. The purpose of this study is to estimate the neutron and gamma dose equivalent out of the treatment volume during the wobbling proton therapy system. Methods: Two types of thermoluminescent (TL) dosimeters, TLD-600 ({sup 6}LiF: Mg, Ti) and TLD-700 ({sup 7}LiF: Mg, Ti) were used in this study. They were calibrated in the standard neutron and gamma sources at National Standards Laboratory. Annealing procedure ismore » 400°C for 1 hour, 100°C for 2 hours and spontaneously cooling down to the room temperature in a programmable oven. Two-peak method (a kind of glow curve analysis technique) was used to evaluate the TL response corresponding to the neutron and gamma dose. The TLD pairs were placed outside the treatment field at the neutron-gamma mixed field with 190-MeV proton beam produced by the wobbling system through the polyethylene plate phantom. The results of TLD measurement were compared to the Monte Carlo simulation. Results: The initial experiment results of calculated dose equivalents are 0.63, 0.38, 0.21 and 0.13 mSv per Gy outside the field at the distance of 50, 100, 150 and 200 cm. Conclusion: The TLD-600 and TLD-700 pairs are convenient to estimate neutron and gamma dosimetry during proton therapy. However, an accurate and suitable glow curve analysis technique is necessary. During the wobbling system proton therapy, our results showed that the neutron and gamma doses outside the treatment field are noticeable. This study was supported by the grants from the Chang Gung Memorial Hospital (CMRPD1C0682)« less

  3. Perspectives of UV nowcasting to monitor personal pro-health outdoor activities.

    PubMed

    Krzyścin, Janusz W; Lesiak, Aleksandra; Narbutt, Joanna; Sobolewski, Piotr; Guzikowski, Jakub

    2018-07-01

    Nowcasting model for online monitoring of personal outdoor behaviour is proposed. It is envisaged that it will provide an effective e-tool used by smartphone users. The model could estimate maximum duration of safe (without erythema risk) outdoor activity. Moreover, there are options to estimate duration of sunbathing to get adequate amount of vitamin D 3 and doses necessary for the antipsoriatic heliotherapy. The application requires information of starting time of sunbathing and the user's phototype. At the beginning the user will be informed of the approximate duration of sunbathing required to get the minimum erythemal dose, adequate amount of vitamin D 3 , and the dose necessary for the antipsoriatic heliotherapy. After every 20-min the application will recalculate the remaining duration of sunbathing based on the UVI measured in the preceding 20 min. If the estimate of remaining duration is <20 min the user will be informed that the deadline of sunbathing is approaching. Finally, a warning signal will be sent to stop sunbathing if the measured dose reaches the required dose. The proposed model is verified using the data collected at two measuring sites for the warm period of 2017 (1st April-30th September) in large Polish cities (Warsaw and Lodz). First instrument represents the UVI monitoring station. The information concerning sunbathing duration, which is sent to a remote user, is evaluated on the basis of the UVI measurements collected by the second measuring unit in a distance of ~7 km and 10 km for Warsaw and Lodz, respectively. The statistical analysis of the differences between sunbathing duration by nowcasting model and observation shows that the model provides reliable doses received by the users during outdoor activities in proximity (~10 km) to the UVI source site. Standard 24 h UVI forecast based on prognostic values of total ozone and cloudiness appears to only be valid for sunny days. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Patient-based estimation of organ dose for a population of 58 adult patients across 13 protocol categories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahbaee, Pooyan, E-mail: psahbae@ncsu.edu; Segars, W. Paul; Samei, Ehsan

    2014-07-15

    Purpose: This study aimed to provide a comprehensive patient-specific organ dose estimation across a multiplicity of computed tomography (CT) examination protocols. Methods: A validated Monte Carlo program was employed to model a common CT system (LightSpeed VCT, GE Healthcare). The organ and effective doses were estimated from 13 commonly used body and neurological CT examination. The dose estimation was performed on 58 adult computational extended cardiac-torso phantoms (35 male, 23 female, mean age 51.5 years, mean weight 80.2 kg). The organ dose normalized by CTDI{sub vol} (h factor) and effective dose normalized by the dose length product (DLP) (k factor)more » were calculated from the results. A mathematical model was derived for the correlation between the h and k factors with the patient size across the protocols. Based on this mathematical model, a dose estimation iPhone operating system application was designed and developed to be used as a tool to estimate dose to the patients for a variety of routinely used CT examinations. Results: The organ dose results across all the protocols showed an exponential decrease with patient body size. The correlation was generally strong for the organs which were fully or partially located inside the scan coverage (Pearson sample correlation coefficient (r) of 0.49). The correlation was weaker for organs outside the scan coverage for which distance between the organ and the irradiation area was a stronger predictor of dose to the organ. For body protocols, the effective dose before and after normalization by DLP decreased exponentially with increasing patient's body diameter (r > 0.85). The exponential relationship between effective dose and patient's body diameter was significantly weaker for neurological protocols (r < 0.41), where the trunk length was a slightly stronger predictor of effective dose (0.15 < r < 0.46). Conclusions: While the most accurate estimation of a patient dose requires specific modeling of the patient anatomy, a first order approximation of organ and effective doses from routine CT scan protocols can be reasonably estimated using size specific factors. Estimation accuracy is generally poor for organ outside the scan range and for neurological protocols. The dose calculator designed in this study can be used to conveniently estimate and report the dose values for a patient across a multiplicity of CT scan protocols.« less

  5. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.

    PubMed

    Apostoaei, A Iulian

    2005-05-01

    A model describing transport of 131I in the environment was developed by SENES Oak Ridge, Inc., for assessment of radiation doses and excess lifetime risk from 131I atmospheric releases from Oak Ridge Reservation in Oak Ridge, Tennessee, and from Idaho National Engineering and Environmental Laboratory in southeast Idaho. This paper describes the results of an exercise designed to test the reliability of this model and to identify the main sources of uncertainty in doses and risks estimated by this model. The testing of the model was based on materials published by the International Atomic Energy Agency BIOMASS program, specifically environmental data collected after the release into atmosphere of 63 curies of 131I during 2-5 September 1963, after an accident at the Hanford PUREX Chemical Separations Plant, in Hanford, Washington. Measurements of activity in air, vegetation, and milk were collected in nine counties around Hanford during the first couple of months after the accident. The activity of 131I in the thyroid glands of two children was measured 47 d after the accident. The model developed by SENES Oak Ridge, Inc., was used to estimate concentrations of 131I in environmental media, thyroid doses for the general population, and the activity of 131I in thyroid glands of the two children. Predicted concentrations of 131I in pasture grass and milk and thyroid doses were compared with similar estimates produced by other modelers. The SENES model was also used to estimate excess lifetime risk of thyroid cancer due to the September 1963 releases of 131I from Hanford. The SENES model was first calibrated and then applied to all locations of interest around Hanford without fitting the model parameters to a given location. Predictions showed that the SENES model reproduces satisfactorily the time-dependent and the time-integrated measured concentrations in vegetation and milk, and provides reliable estimates of 131I activity in thyroids of children. SENES model generated concentrations of 131I closer to observed concentrations, as compared to the predictions produced with other models. The inter-model comparison showed that variation of thyroid doses among all participating models (SENES model included) was a factor of 3 for the general population, but a factor of 10 for the two studied children. As opposed to other models, SENES model allows a complete analysis of uncertainties in every predicted quantity, including estimated thyroid doses and risk of thyroid cancer. The uncertainties in the risk-per-unit-dose and the dose-per-unit-intake coefficients are major contributors to the uncertainty in the estimated lifetime risk and thyroid dose, respectively. The largest contributors to the uncertainty in the estimated concentration in milk are the feed-to-milk transfer factor (F(m)), the dry deposition velocity (V(d)), and the mass interception factor (r/Y)dry for the elemental form of iodine (I2). Exposure to the 1963 PUREX/Hanford accident produced low doses and risks for people living at the studied locations. The upper 97.5th percentile of the excess lifetime risk of thyroid cancer for the most extreme situations is about 10(-4). Measurements in pasture grass and milk at all locations around Hanford indicate a very low transfer of 131I from pasture to cow's milk (e.g., a feed-to-milk transfer coefficient, F(m), for commercial cows of about 0.0022 d L(-1)). These values are towards the low end of F(m) values measured elsewhere and they are low compared to the F(m) values used in other dose reconstruction studies, including the Hanford Environmental Dose Reconstruction.

  6. Error Analysis of non-TLD HDR Brachytherapy Dosimetric Techniques

    NASA Astrophysics Data System (ADS)

    Amoush, Ahmad

    The American Association of Physicists in Medicine Task Group Report43 (AAPM-TG43) and its updated version TG-43U1 rely on the LiF TLD detector to determine the experimental absolute dose rate for brachytherapy. The recommended uncertainty estimates associated with TLD experimental dosimetry include 5% for statistical errors (Type A) and 7% for systematic errors (Type B). TG-43U1 protocol does not include recommendation for other experimental dosimetric techniques to calculate the absolute dose for brachytherapy. This research used two independent experimental methods and Monte Carlo simulations to investigate and analyze uncertainties and errors associated with absolute dosimetry of HDR brachytherapy for a Tandem applicator. An A16 MicroChamber* and one dose MOSFET detectors† were selected to meet the TG-43U1 recommendations for experimental dosimetry. Statistical and systematic uncertainty analyses associated with each experimental technique were analyzed quantitatively using MCNPX 2.6‡ to evaluate source positional error, Tandem positional error, the source spectrum, phantom size effect, reproducibility, temperature and pressure effects, volume averaging, stem and wall effects, and Tandem effect. Absolute dose calculations for clinical use are based on Treatment Planning System (TPS) with no corrections for the above uncertainties. Absolute dose and uncertainties along the transverse plane were predicted for the A16 microchamber. The generated overall uncertainties are 22%, 17%, 15%, 15%, 16%, 17%, and 19% at 1cm, 2cm, 3cm, 4cm, and 5cm, respectively. Predicting the dose beyond 5cm is complicated due to low signal-to-noise ratio, cable effect, and stem effect for the A16 microchamber. Since dose beyond 5cm adds no clinical information, it has been ignored in this study. The absolute dose was predicted for the MOSFET detector from 1cm to 7cm along the transverse plane. The generated overall uncertainties are 23%, 11%, 8%, 7%, 7%, 9%, and 8% at 1cm, 2cm, 3cm, and 4cm, 5cm, 6cm, and 7cm, respectively. The Nucletron Freiburg flap applicator is used with the Nucletron remote afterloader HDR machine to deliver dose to surface cancers. Dosimetric data for the Nucletron 192Ir source were generated using Monte Carlo simulation and compared with the published data. Two dimensional dosimetric data were calculated at two source positions; at the center of the sphere of the applicator and between two adjacent spheres. Unlike the TPS dose algorithm, The Monte Carlo code developed for this research accounts for the applicator material, secondary electrons and delta particles, and the air gap between the skin and the applicator. *Standard Imaging, Inc., Middleton, Wisconsin USA † OneDose MOSFET, Sicel Technologies, Morrisville NC ‡ Los Alamos National Laboratory, NM USA

  7. Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.

    2009-09-01

    Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.

  8. Radioactive waste management complex low-level waste radiological composite analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less

  9. The postwar hospitalization experience of Gulf War Veterans possibly exposed to chemical munitions destruction at Khamisiyah, Iraq.

    PubMed

    Gray, G C; Smith, T C; Knoke, J D; Heller, J M

    1999-09-01

    Using Department of Defense hospital data, the authors examined the postwar hospitalization experience from March 1991 through September 1995 of US Gulf War veterans who were near Khamisiyah, Iraq, during nerve agent munition destruction in March 1991. Multiple sources of meteorologic, munition, and toxicology data were used to circumscribe geographic areas of low level, vaporized nerve agent for 4 days after the destruction. Plume estimates were overlaid on military unit positions, and exposure was estimated for the 349,291 US Army Gulf War veterans. Exposure was classified as not exposed (n = 224,804), uncertain low dose exposure (n = 75,717), and specific estimated subclinical exposure (n = 48,770) categorized into three groups for dose-response evaluation. Using Cox proportional hazard modeling, the authors compared the postwar experiences of these exposure groups for hospitalization due to any cause, for diagnoses in 15 unique categories, and for specific diagnoses an expert panel proposed as most likely to reflect latent disease from such subclinical exposure. There was little evidence that veterans possibly exposed to the nerve agent plumes experienced unusual postwar morbidity. While there were several differences in hospitalization risk, none of the models suggested a dose-response relation or neurologic sequelae. These data, having a number of limitations, do not support the hypothesis that Gulf War veterans are suffering postwar morbidity from subclinical nerve agent exposure.

  10. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 3, Results, Variability, and Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, David J.; Strom, Daniel J.

    This paper is part three of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. The radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I and 90Sr-90Y. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludesmore » intakes of radionuclides in occupational and medical settings. Part one reviewed, summarized, characterized, and grouped all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Part two described the methods used to organize the data collected in part one and segregate it into the ages and genders defined by the study, imputed missing values from the existing data, apportioned activity in bone, and imputed activity in hollow organ contents and the remainder of the body. This paper estimates equivalent doses to target tissues from source regions and maps target tissues to lists of tissues with International Commission on Radiation Protection (ICRP) tissue-weighting factors or to surrogate tissue regions when there is no direct match. Effective doses, using ICRP tissue-weighting factors recommended in 1977, 1990, and 2007, are then calculated, and an upper bound of variability of the effective dose is estimated by calculating the average coefficients of variation (CV), assuming all variance is due to variability. Most of the data were for adult males, whose average annual effective dose is estimated to be 337 μSv (CV = 0.65, geometric mean = 283 μSv, geometric standard deviation sG = 1.81) using 2007 ICRP tissue-weighting factors. This result is between the National Council on Radiation Protection & Measurements’ 1987 estimate of 390 μSv (using 1977 wTs) and its 2009 estimate of 285 μSv (using 2007 wTs) and is higher than the United Nations Scientific Committee on the Effects of Atomic Radiation’s 2000 estimate of 310 μSv (using 1990 wTs). The methods and software developed for this project are sufficiently detailed and sufficiently general to be usable with autopsy data from any or all countries.« less

  11. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  12. [Estimation of effective doses derived from radon in selected SPA centers that use geothermal waters based on the information of radon concentrations].

    PubMed

    Walczak, Katarzyna; Zmyślony, Marek

    2013-01-01

    Geothermal waters contain, among other components, soluble radon gas. Alpha radioactive radon is a health hazard to humans, especially when it gets into the respiratory tract. SPA facilities that use geothermal water can be a source of an increased radiation dose to people who stay there. Based on the available literature concerning radon concentrations, we assessed exposure to radon among people - workers and visitors of Spa centers that use geothermal waters. Radon concentrations were analyzed in 17 geothermal centers: in Greece (3 centers), Iran (5), China (4) and India (5). Doses recived by people in the SPA were estimated using the formula that 1 hour exposure to 1 Bq/m3 of radon concentration and equilibrium factor F = 0.4 corresponds to an effective dose of 3.2 nSv. We have found that radon levels in SPAs are from a few to several times higher than those in confined spaces, where geothermal waters are not used (e.g., residential buildings). In 82% of the analyzed SPAs, workers may receive doses above 1 mSv/year. According to the relevant Polish regulations, people receiving doses higher than 1 mSv/year are included in category B of radiation exposure and require regular dosimetric monitoring. Doses received by SPA visitors are much lower because the time of their exposure to radon released from geothermal water is rather short. The analysis of radon concentration in SPA facilities shows that the radiological protection of people working with geothermal waters plays an important role. It seems reasonable to include SPA workers staying close to geotermal waters into a dosimetric monitoring program.

  13. Convolution-based estimation of organ dose in tube current modulated CT

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan

    2016-05-01

    Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).

  14. Comparison of TLD calibration methods for  192Ir dosimetry

    PubMed Central

    Butler, Duncan J.; Wilfert, Lisa; Ebert, Martin A.; Todd, Stephen P.; Hayton, Anna J.M.; Kron, Tomas

    2013-01-01

    For the purpose of dose measurement using a high‐dose rate  192Ir source, four methods of thermoluminescent dosimeter (TLD) calibration were investigated. Three of the four calibration methods used the  192Ir source. Dwell times were calculated to deliver 1 Gy to the TLDs irradiated either in air or water. Dwell time calculations were confirmed by direct measurement using an ionization chamber. The fourth method of calibration used 6 MV photons from a medical linear accelerator, and an energy correction factor was applied to account for the difference in sensitivity of the TLDs in  192Ir and 6 M V. The results of the four TLD calibration methods are presented in terms of the results of a brachytherapy audit where seven Australian centers irradiated three sets of TLDs in a water phantom. The results were in agreement within estimated uncertainties when the TLDs were calibrated with the  192Ir source. Calibrating TLDs in a phantom similar to that used for the audit proved to be the most practical method and provided the greatest confidence in measured dose. When calibrated using 6 MV photons, the TLD results were consistently higher than the  192Ir−calibrated TLDs, suggesting this method does not fully correct for the response of the TLDs when irradiated in the audit phantom. PACS number: 87 PMID:23318392

  15. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: Identification of the main source and reduction in the secondary neutron dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonai, Shunsuke; Matsufuji, Naruhiro; Kanai, Tatsuaki

    Purpose: Recent successful results in passive carbon-ion radiotherapy allow the patient to live for a longer time and allow younger patients to receive the radiotherapy. Undesired radiation exposure in normal tissues far from the target volume is considerably lower than that close to the treatment target, but it is considered to be non-negligible in the estimation of the secondary cancer risk. Therefore, it is very important to reduce the undesired secondary neutron exposure in passive carbon-ion radiotherapy without influencing the clinical beam. In this study, the source components in which the secondary neutrons are produced during passive carbon-ion radiotherapy weremore » identified and the method to reduce the secondary neutron dose effectively based on the identification of the main sources without influencing the clinical beam was investigated. Methods: A Monte Carlo study with the PHITS code was performed by assuming the beamline at the Heavy-Ion Medical Accelerator in Chiba (HIMAC). At first, the authors investigated the main sources of secondary neutrons in passive carbon-ion radiotherapy. Next, they investigated the reduction in the neutron dose with various modifications of the beamline device that is the most dominant in the neutron production. Finally, they investigated the use of an additional shield for the patient. Results: It was shown that the main source is the secondary neutrons produced in the four-leaf collimator (FLC) used as a precollimator at HIAMC, of which contribution in the total neutron ambient dose equivalent is more than 70%. The investigations showed that the modification of the FLC can reduce the neutron dose at positions close to the beam axis by 70% and the FLC is very useful not only for the collimation of the primary beam but also the reduction in the secondary neutrons. Also, an additional shield for the patient is very effective to reduce the neutron dose at positions farther than 50 cm from the beam axis. Finally, they showed that the neutron dose can be reduced by approximately 70% at any position without influencing the primary beam used in treatment. Conclusions: This study was performed by assuming the HIMAC beamline; however, this study provides important information for reoptimizing the arrangement and the materials of beamline devices and designing a new facility for passive carbon-ion radiotherapy and probably passive proton radiotherapy.« less

  16. SU-E-T-86: A Systematic Method for GammaKnife SRS Fetal Dose Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneser, S; Paulsson, A; Sneed, P

    Purpose: Estimating fetal dose is critical to the decision-making process when radiation treatment is indicated during pregnancy. Fetal doses less than 5cGy confer no measurable non-cancer developmental risks but can produce a threefold increase in developing childhood cancer. In this study, we estimate fetal dose for a patient receiving Gamma Knife stereotactic radiosurgery (GKSRS) treatment and develop a method to estimate dose directly from plan details. Methods: A patient underwent GKSRS on a Perfexion unit for eight brain metastases (two infratentorial and one brainstem). Dose measurements were performed using a CC13, head phantom, and solid water. Superficial doses to themore » thyroid, sternum, and pelvis were measured using MOSFETs during treatment. Because the fetal dose was too low to accurately measure, we obtained measurements proximally to the isocenter, fitted to an exponential function, and extrapolated dose to the fundus of the uterus, uterine midpoint, and pubic synthesis for both the preliminary and delivered plans. Results: The R-squared fit for the delivered doses was 0.995. The estimated fetal doses for the 72 minute preliminary and 138 minute delivered plans range from 0.0014 to 0.028cGy and 0.07 to 0.38cGy, respectively. MOSFET readings during treatment were just above background for the thyroid and negligible for all inferior positions. The method for estimating fetal dose from plan shot information was within 0.2cGy of the measured values at 14cm cranial to the fetal location. Conclusion: Estimated fetal doses for both the preliminary and delivered plan were well below the 5cGy recommended limit. Due to Pefexion shielding, internal dose is primarily governed by attenuation and drops off exponentially. This is the first work that reports fetal dose for a GK Perfexion unit. Although multiple lesions were treated and the duration of treatment was long, the estimated fetal dose remained very low.« less

  17. A MODEL TO EVALUATE PAST EXPOSURE TO 2,3,7,8 ...

    EPA Pesticide Factsheets

    Data from several studies suggest that concentrations of dioxins rose in the environment from the 1930s to about the 1960s/70s and have been declining over the last decade or two. The most direct evidence of this trend comes from lake core sediments, which can be used to estimate past atmospheric depositions of dioxins. The primary source of human exposure to dioxins is through the food supply. The pathway relating atmospheric depositions to concentrations in food is quite complex, and accordingly, it is not known to what extent the trend in human exposure mirrors the trend in atmospheric depositions. This paper describes an attempt to statistically reconstruct the pattern of past human exposure to the most toxic dioxin congener, 2,3,7,8-TCDD (abbreviated TCDD), through use of a simple pharmacokinetic (PK) model which included a time-varying TCDD exposure dose. This PK model was fit to TCDD body burden data (i.e., TCDD concentrations in lipid) from five U.S. studies dating from 1972 to 1987 and covering a wide age range. A Bayesian statistical approach was used to fit TCDD exposure; model parameters other than exposure were all previously known or estimated from other data sources. The primary results of the analysis are as follows: 1.) use of a time-varying exposure dose provided a far better fit to the TCDD body burden data than did using a dose that was constant over time; this is strong evidence that exposure to TCDD has, in fact, varied during the

  18. MAGIC with formaldehyde applied to dosimetry of HDR brachytherapy source

    NASA Astrophysics Data System (ADS)

    Marques; T; Fernandes; J; Barbi; G; Nicolucci; P; Baffa; O

    2009-05-01

    The use of polymer gel dosimeters in brachytherapy can allow the determination of three-dimensional dose distributions in large volumes and with high spatial resolution if an adequate calibration process is performed. One of the major issues in these experiments is the polymer gel response dependence on dose rate when high dose rate sources are used and the doses in the vicinity of the sources are to be determinated. In this study, the response of a modified MAGIC polymer gel with formaldehyde around an Iridium-192 HDR brachytherapy source is presented. Experimental results obtained with this polymer gel were compared with ionization chamber measurements and with Monte Carlo simulation with PENELOPE. A maximum difference of 3.10% was found between gel dose measurements and Monte Carlo simulation at a radial distance of 18 mm from the source. The results obtained show that the gel's response is strongly influenced by dose rate and that a different calibration should be used for the vicinity of the source and for regions of lower dose rates. The results obtained in this study show that, provided the proper calibration is performed, MAGIC with formaldehyde can be successfully used to accurate determinate dose distributions form high dose rate brachytherapy sources.

  19. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. Themore » variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.« less

  20. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative surface deposition of total 131I and 137Cs and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (Modèle Lagrangien de Dispersion de Particules d'ordre zéro: MLDP0, Hybrid Single Particle Lagrangian Integrated Trajectory Model: HYSPLIT, and Met Office's Numerical Atmospheric-dispersion Modelling Environment: NAME) for regional and global calculations, and the calculated results showed good agreement with observed air concentration and surface deposition of 137Cs in eastern Japan.

  1. Association of fluoride in water for consumption and chronic pain of body parts in residents of San Kamphaeng district, Chiang Mai, Thailand.

    PubMed

    Namkaew, Montakarn; Wiwatanadate, Phongtape

    2012-09-01

    To assess the dose response of fluoride exposure from water and chronic pain. Using a retrospective cohort design, the study was conducted in two sub-districts of San Kamphaeng district, Poo-kha and On-tai. Five hundred and thirty-four residents aged ≥50 years of age were interviewed about their sources of drinking water and assessed for chronic pain. Each water source was sampled for fluoride measurement, from which the average daily fluoride dose was estimated. Binary logistic regression with forward stepwise (likelihood ratio) model selection technique was used to examine the association between the average daily fluoride dose and chronic pain. We found associations between the average daily fluoride dose and lower back pain [odds ratio (OR) = 5.12; 95% confidence interval (CI), 1.59-16.98], and between the high fluoride area vs. the low fluoride area (OR = 1.58; 95% CI, 1.10-2.28; relative risk= 1.22 with 95% CI, 1.14-1.31) to lower back pain. Other risk factors, such as family history of body pain and a history of injury of the lower body, were also associated with lower back pain. However, there were no relationships between the average daily fluoride dose and leg and knee pains. To prevent further lower back pain, we recommend that the water in this area be treated to reduce its fluoride content. © 2012 Blackwell Publishing Ltd.

  2. ASSESSMENT OF INHALATION DOSE FROM THE INDOOR 222Rn AND 220Rn USING RAD7 AND PINHOLE CUP DOSEMETERS.

    PubMed

    Mehra, R; Jakhu, R; Bangotra, P; Kaur, K; Mittal, H M

    2016-10-01

    Radon is the most important source of natural radiation and is responsible for approximately half of the received dose from all sources. Most of this dose is from inhalation of the radon progeny, especially in closed atmospheres. Concentration of radon ( 222 Rn) and thoron ( 220 Rn) in the different villages of Jalandhar and Kapurthala district of Punjab has been calculated by pinhole cup dosemeters and RAD7. On an average, it has been observed from the study that the values of all the parameters calculated are higher in case of active monitoring than the passive monitoring. The calculated equilibrium equivalent 222 Rn concentration (EEC Rn ) and equilibrium equivalent 220 Rn concentration (EEC Th ) fluctuate in the range from 5.58 to 34.29 and from 0.35 to 2.7 Bq m -3 as estimated by active technique, respectively. Similarly, the observed mean value of the potential alpha energy concentration of 222 Rn (PAEC Rn ) and 220 Rn (PAEC Th ) is 4.55 and 4.34 mWL, respectively. The dose rate to the soft tissues and lung from indoor 222 Rn varies from 0.06 to 0.38 and from 0.50 to 3.05 nGy h -1 , respectively. The total annual effective dose for the residents of the study area is less than 10 mSv. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The Utility of Focus Group Interviews to Capture Dietary Consumption Data in the Distant Past: Dairy Consumption in Kazakhstan Villages 50 Years Ago

    PubMed Central

    Schwerin, Michael; Schonfeld, Sara; Drozdovitch, Vladimir; Akimzhanov, Kuat; Aldyngurov, Daulet; Bouville, André; Land, Charles; Luckyanov, Nicholas; Mabuchi, Kiyohiko; Semenova, Yulia; Simon, Steven; Tokaeva, Alma; Zhumadilov, Zhaxybay; Potischman, Nancy

    2013-01-01

    From 1949 to 1962, residents of several villages in Kazakhstan Abstract: received substantial doses of radiation to the thyroid gland resulting from nuclear tests conducted at the Semipalatinsk Nuclear Test Site. The primary source of radiation was internal from an intake of radioactive iodine by consumption of contaminated dairy products. A previous research study of childhood exposure and thyroid disease in this region gathered limited data on study participants’ dairy intake at the time of the fallout for the purpose of estimating past radiation doses. Because many subjects were too young at the time of the nuclear tests to recall dietary consumption and existing sources of archival data are limited, it was necessary to interview parents and other village residents who cared for children during this time; older adults ranging in age from 75 to 90 years old. Results from 11 focus group interviews conducted in 2007 with 82 women from 4 villages in Kazakhstan yielded group-level estimates of age-, gender-, ethnicity- and village-specific dairy consumption patterns in rural Kazakhstan during the 1950s. Children typically consumed cow’s milk with limited consumption of mare, goat, and sheep milk; and consumed dairy products such as sour milk (airan), soft cottage cheese (tvorog), and fermented mare milk (koumiss) with the greatest amounts of koumiss reported at ages 15–21. The consumption patterns differed by age and between Kazakh and Russian children, which should lead to different estimates of radiation exposure to the thyroid. This study demonstrated the utility of focus groups to obtain quantitative estimates for dietary intake in the distant past. PMID:24286002

  4. Impact of the Revised 10 CFR 835 on the Neutron Dose Rates at LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2009-01-13

    In June 2007, 10 CFR 835 [1] was revised to include new radiation weighting factors for neutrons, updated dosimetric models, and dose terms consistent with the newer ICRP recommendations. A significant aspect of the revised 10 CFR 835 is the adoption of the recommendations outlined in ICRP-60 [2]. The recommended new quantities demand a review of much of the basic data used in protection against exposure to sources of ionizing radiation. The International Commission on Radiation Units and Measurements has defined a number of quantities for use in personnel and area monitoring [3,4,5] including the ambient dose equivalent H*(d) tomore » be used for area monitoring and instrument calibrations. These quantities are used in ICRP-60 and ICRP-74. This report deals only with the changes in the ambient dose equivalent and ambient dose rate equivalent for neutrons as a result of the implementation of the revised 10 CFR 835. In the report, the terms neutron dose and neutron dose rate will be used for convenience for ambient neutron dose and ambient neutron dose rate unless otherwise stated. This report provides a qualitative and quantitative estimate of how much the neutron dose rates at LLNL will change with the implementation of the revised 10 CFR 835. Neutron spectra and dose rates from selected locations at the LLNL were measured with a high resolution spectroscopic neutron dose rate system (ROSPEC) as well as with a standard neutron rem meter (a.k.a., a remball). The spectra obtained at these locations compare well with the spectra from the Radiation Calibration Laboratory's (RCL) bare californium source that is currently used to calibrate neutron dose rate instruments. The measurements obtained from the high resolution neutron spectrometer and dose meter ROSPEC and the NRD dose meter compare within the range of {+-}25%. When the new radiation weighting factors are adopted with the implementation of the revised 10 CFR 835, the measured dose rates will increase by up to 22%. The health physicists should consider this increase for any areas that have dose rates near a posting limit, such as near the 100 mrem/hr for a high radiation area, as this increase in measured dose rate may result in some changes to postings and consequent radiological controls.« less

  5. Radionuclide production and dose rate estimation during the commissioning of the W-Ta spallation target

    NASA Astrophysics Data System (ADS)

    Yu, Q. Z.; Liang, T. J.

    2018-06-01

    China Spallation Neutron Source (CSNS) is intended to begin operation in 2018. CSNS is an accelerator-base multidisciplinary user facility. The pulsed neutrons are produced by a 1.6GeV short-pulsed proton beam impinging on a W-Ta spallation target, at a beam power of100 kW and a repetition rate of 25 Hz. 20 neutron beam lines are extracted for the neutron scattering and neutron irradiation research. During the commissioning and maintenance scenarios, the gamma rays induced from the W-Ta target can cause the dose threat to the personal and the environment. In this paper, the gamma dose rate distributions for the W-Ta spallation are calculated, based on the engineering model of the target-moderator-reflector system. The shipping cask is analyzed to satisfy the dose rate limit that less than 2 mSv/h at the surface of the shipping cask. All calculations are performed by the Monte carlo code MCNPX2.5 and the activation code CINDER’90.

  6. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  7. Using the Monte Carlo technique to calculate dose conversion coefficients for medical professionals in interventional radiology

    NASA Astrophysics Data System (ADS)

    Santos, W. S.; Carvalho, A. B., Jr.; Hunt, J. G.; Maia, A. F.

    2014-02-01

    The objective of this study was to estimate doses in the physician and the nurse assistant at different positions during interventional radiology procedures. In this study, effective doses obtained for the physician and at points occupied by other workers were normalised by air kerma-area product (KAP). The simulations were performed for two X-ray spectra (70 kVp and 87 kVp) using the radiation transport code MCNPX (version 2.7.0), and a pair of anthropomorphic voxel phantoms (MASH/FASH) used to represent both the patient and the medical professional at positions from 7 cm to 47 cm from the patient. The X-ray tube was represented by a point source positioned in the anterior posterior (AP) and posterior anterior (PA) projections. The CC can be useful to calculate effective doses, which in turn are related to stochastic effects. With the knowledge of the values of CCs and KAP measured in an X-ray equipment, at a similar exposure, medical professionals will be able to know their own effective dose.

  8. A novel tool for user-friendly estimation of natural, diagnostic and professional radiation risk: Radio-Risk software.

    PubMed

    Carpeggiani, Clara; Paterni, Marco; Caramella, Davide; Vano, Eliseo; Semelka, Richard C; Picano, Eugenio

    2012-11-01

    Awareness of radiological risk is low among doctors and patients. An educational/decision tool that considers each patient' s cumulative lifetime radiation exposure would facilitate provider-patient communication. The purpose of this work was to develop user-friendly software for simple estimation and communication of radiological risk to patients and doctors as a part of the SUIT-Heart (Stop Useless Imaging Testing in Heart disease) Project of the Tuscany Region. We developed a novel software program (PC-platform, Windows OS fully downloadable at http://suit-heart.ifc.cnr.it) considering reference dose estimates from American Heart Association Radiological Imaging 2009 guidelines and UK Royal College of Radiology 2007 guidelines. Cancer age and gender-weighted risk were derived from Biological Effects of Ionising Radiation VII Committee, 2006. With simple input functions (demographics, age, gender) the user selects from a predetermined menu variables relating to natural (e.g., airplane flights and geo-tracked background exposure), professional (e.g., cath lab workers) and medical (e.g., CT, cardiac scintigraphy, coronary stenting) sources. The program provides a simple numeric (cumulative effective dose in milliSievert, mSv, and equivalent number of chest X-rays) and graphic (cumulative temporal trends of exposure, cancer cases out of 100 exposed persons) display. A simple software program allows straightforward estimation of cumulative dose (in multiples of chest X-rays) and risk (in extra % lifetime cancer risk), with simple numbers quantifying lifetime extra cancer risk. Pictorial display of radiation risk may be valuable for increasing radiological awareness in cardiologists. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  10. Measuring temporal stability of positron emission tomography standardized uptake value bias using long-lived sources in a multicenter network.

    PubMed

    Byrd, Darrin; Christopfel, Rebecca; Arabasz, Grae; Catana, Ciprian; Karp, Joel; Lodge, Martin A; Laymon, Charles; Moros, Eduardo G; Budzevich, Mikalai; Nehmeh, Sadek; Scheuermann, Joshua; Sunderland, John; Zhang, Jun; Kinahan, Paul

    2018-01-01

    Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network. Repeated measurements of the sources were performed on PET scanners and in dose calibrators. The measured scanner and dose calibrator signal biases were used to compute the bias in SUVs at multiple time points for each site over a 14-month period. Estimation of absolute SUV accuracy was confounded by bias from the solid phantoms' physical properties. On average, the intrascanner coefficient of variation for SUV measurements was 3.5%. Over the entire length of the study, single-scanner SUV values varied over a range of 11%. Dose calibrator bias was not correlated with scanner bias. Calibration factors from the image metadata were nearly as variable as scanner signal, and were correlated with signal for many scanners. SUVs often showed low intrascanner variability between successive measurements but were also prone to shifts in apparent bias, possibly in part due to scanner recalibrations that are part of regular scanner quality control. Biases of key factors in the computation of SUVs were not correlated and their temporal variations did not cancel out of the computation. Long-lived sources and image metadata may provide a check on the recalibration process.

  11. Treatment of solid tumors by interstitial release of recoiling short-lived alpha emitters

    NASA Astrophysics Data System (ADS)

    Arazi, L.; Cooks, T.; Schmidt, M.; Keisari, Y.; Kelson, I.

    2007-08-01

    A new method utilizing alpha particles to treat solid tumors is presented. Tumors are treated with interstitial radioactive sources which continually release short-lived alpha emitting atoms from their surface. The atoms disperse inside the tumor, delivering a high dose through their alpha decays. We implement this scheme using thin wire sources impregnated with 224Ra, which release by recoil 220Rn, 216Po and 212Pb atoms. This work aims to demonstrate the feasibility of our method by measuring the activity patterns of the released radionuclides in experimental tumors. Sources carrying 224Ra activities in the range 10-130 kBq were used in experiments on murine squamous cell carcinoma tumors. These included gamma spectroscopy of the dissected tumors and major organs, Fuji-plate autoradiography of histological tumor sections and tissue damage detection by Hematoxylin-Eosin staining. The measurements focused on 212Pb and 212Bi. The 220Rn/216Po distribution was treated theoretically using a simple diffusion model. A simplified scheme was used to convert measured 212Pb activities to absorbed dose estimates. Both physical and histological measurements confirmed the formation of a 5-7 mm diameter necrotic region receiving a therapeutic alpha-particle dose around the source. The necrotic regions shape closely corresponded to the measured activity patterns. 212Pb was found to leave the tumor through the blood at a rate which decreased with tumor mass. Our results suggest that the proposed method, termed DART (diffusing alpha-emitters radiation therapy), may potentially be useful for the treatment of human patients.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, Anik

    Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result ofmore » calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.« less

  13. Can the risk of secondary cancer induction after breast conserving therapy be reduced using intraoperative radiotherapy (IORT) with low-energy x-rays?

    PubMed

    Aziz, Muhammad Hammad; Schneider, Frank; Clausen, Sven; Blank, Elena; Herskind, Carsten; Afzal, Muhammad; Wenz, Frederik

    2011-12-16

    Radiation induced secondary cancers are a rare but severe late effect after breast conserving therapy. Intraoperative radiotherapy (IORT) is increasingly used during breast conserving surgery. The purpose of this analysis was to estimate secondary cancer risks after IORT compared to other modalities of breast radiotherapy (APBI - accelerated partial breast irradiation, EBRT - external beam radiotherapy). Computer-tomography scans of an anthropomorphic phantom were acquired with an INTRABEAM IORT applicator (diameter 4 cm) in the outer quadrant of the breast and transferred via DICOM to the treatment planning system. Ipsilateral breast, contralateral breast, ipsilateral lung, contralateral lung, spine and heart were contoured. An INTRABEAM source (50 kV) was defined with the tip of the drift tube at the center of the spherical applicator. A dose of 20 Gy at 0 mm depth from the applicator surface was prescribed for IORT and 34 Gy (5 days × 2 × 3.4 Gy) at 10 mm depth for APBI. For EBRT a total dose of 50 Gy in 2 Gy fractions was planned using two tangential fields with wedges. The mean and maximal doses, DVHs and volumes receiving more than 0.1 Gy and 4 Gy of organs at risk (OAR) were calculated and compared. The life time risk for secondary cancers was estimated according to NCRP report 116. IORT delivered the lowest maximal doses to contralateral breast (< 0.3 Gy), ipsilateral (1.8 Gy) and contralateral lung (< 0.3 Gy), heart (1 Gy) and spine (< 0.3 Gy). In comparison, maximal doses for APBI were 2-5 times higher. EBRT delivered a maximal dose of 10.4 Gy to the contralateral breast and 53 Gy to the ipsilateral lung. OAR volumes receiving more than 4 Gy were 0% for IORT, < 2% for APBI and up to 10% for EBRT (ipsilateral lung). The estimated risk for secondary cancer in the respective OAR is considerably lower after IORT and/or APBI as compared to EBRT. The calculations for maximal doses and volumes of OAR suggest that the risk of secondary cancer induction after IORT is lower than compared to APBI and EBRT.

  14. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Kino, A; Newman, B

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CTmore » Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.« less

  15. Cytogenetic Reconstruction of Gamma-Ray Doses Delivered to Atomic Bomb Survivors: Dealing with Wide Distributions of Photon Energies and Contributions from Hematopoietic Stem/Progenitor Cells.

    PubMed

    Nakamura, Nori; Hirai, Yuko; Kodama, Yoshiaki; Hamasaki, Kanya; Cullings, Harry M; Cordova, Kismet A; Awa, Akio

    2017-10-01

    Retrospective estimation of the doses received by atomic bomb (A-bomb) survivors by cytogenetic methods has been hindered by two factors: One is that the photon energies released from the bomb were widely distributed, and since the aberration yield varies depending on the energy, the use of monoenergetic 60 Co gamma radiation to construct a calibration curve may bias the estimate. The second problem is the increasing proportion of newly formed lymphocytes entering into the lymphocyte pool with increasing time intervals since the exposures. These new cells are derived from irradiated precursor/stem cells whose radiosensitivity may differ from that of blood lymphocytes. To overcome these problems, radiation doses to tooth enamel were estimated using the electron spin resonance (ESR; or EPR, electron paramagnetic resonance) method and compared with the cytogenetically estimated doses from the same survivors. The ESR method is only weakly dependent on the photon energy and independent of the years elapsed since an exposure. Both ESR and cytogenetic doses were estimated from 107 survivors. The latter estimates were made by assuming that although a part of the cells examined could be lymphoid stem or precursor cells at the time of exposure, all the cells had the same radiosensitivity as blood lymphocytes, and that the A-bomb gamma-ray spectrum was the same as that of the 60 Co gamma rays. Subsequently, ESR and cytogenetic endpoints were used to estimate the kerma doses using individual DS02R1 information on shielding conditions. The results showed that the two sets of kerma doses were in close agreement, indicating that perhaps no correction is needed in estimating atomic bomb gamma-ray doses from the cytogenetically estimated 60 Co gamma-ray equivalent doses. The present results will make it possible to directly compare cytogenetic doses with the physically estimated doses of the survivors, which would pave the way for testing whether or not there are any systematic trends or factors affecting physically estimated doses.

  16. Measurement of doses to the extremities of nuclear medicine staff

    NASA Astrophysics Data System (ADS)

    Shousha, Hany A.; Farag, Hamed; Hassan, Ramadan A.

    2010-01-01

    Medical uses of ionizing radiation now represent>95% of all man-made radiation exposure, and is the largest single radiation source after natural background radiation. Therefore, it is important to quantify the amount of radiation received by occupational individuals to optimize the working conditions for staff, and further, to compare doses in different departments to ensure compatibility with the recommended standards. For some groups working with unsealed sources in nuclear medicine units, the hands are more heavily exposed to ionizing radiation than the rest of the body. A personal dosimetry service runs extensively in Egypt. But doses to extremities have not been measured to a wide extent. The purpose of this study was to investigate the equivalent radiation doses to the fingers for five different nuclear medicine staff occupational groups for which heavy irradiation of the hands was suspected. Finger doses were measured for (1) nuclear medicine physicians, (2) technologists, (3) nurses and (4) physicists. The fifth group contains three technicians handling 131I, while the others handled 99mTc. Each staff member working with the radioactive material wore two thermoluminescent dosimeters (TLDs) during the whole testing period, which lasted from 1 to 4 weeks. Staff performed their work on a regular basis throughout the month, and mean annual doses were calculated for these groups. Results showed that the mean equivalent doses to the fingers of technologist, nurse and physicist groups were 30.24±14.5, 30.37±17.5 and 16.3±7.7 μSv/GBq, respectively. Equivalent doses for the physicians could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts (mSv) that accumulated in one week. Similarly, the dose to the fingers of individuals in Group 5 was estimated to be 126.13±38.2 μSv/GBq. The maximum average finger dose, in this study, was noted in the technologists who handled therapeutic 131I (2.5 mSv). In conclusion, the maximum expected annual dose to extremities is less than the annual limit (500 mSv/y).

  17. Radiological assessment. A textbook on environmental dose analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Till, J.E.; Meyer, H.R.

    1983-09-01

    Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. Themore » material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.« less

  18. Analysis of percent density estimates from digital breast tomosynthesis projection images

    NASA Astrophysics Data System (ADS)

    Bakic, Predrag R.; Kontos, Despina; Zhang, Cuiping; Yaffe, Martin J.; Maidment, Andrew D. A.

    2007-03-01

    Women with dense breasts have an increased risk of breast cancer. Breast density is typically measured as the percent density (PD), the percentage of non-fatty (i.e., dense) tissue in breast images. Mammographic PD estimates vary, in part, due to the projective nature of mammograms. Digital breast tomosynthesis (DBT) is a novel radiographic method in which 3D images of the breast are reconstructed from a small number of projection (source) images, acquired at different positions of the x-ray focus. DBT provides superior visualization of breast tissue and has improved sensitivity and specificity as compared to mammography. Our long-term goal is to test the hypothesis that PD obtained from DBT is superior in estimating cancer risk compared with other modalities. As a first step, we have analyzed the PD estimates from DBT source projections since the results would be independent of the reconstruction method. We estimated PD from MLO mammograms (PD M) and from individual DBT projections (PD T). We observed good agreement between PD M and PD T from the central projection images of 40 women. This suggests that variations in breast positioning, dose, and scatter between mammography and DBT do not negatively affect PD estimation. The PD T estimated from individual DBT projections of nine women varied with the angle between the projections. This variation is caused by the 3D arrangement of the breast dense tissue and the acquisition geometry.

  19. New estimation method of neutron skyshine for a high-energy particle accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Jung, Nam-Suk; Lee, Hee-Seock; Ko, Seung-Kook

    2016-09-01

    A skyshine is the dominant component of the prompt radiation at off-site. Several experimental studies have been done to estimate the neutron skyshine at a few accelerator facilities. In this work, the neutron transports from a source place to off-site location were simulated using the Monte Carlo codes, FLUKA and PHITS. The transport paths were classified as skyshine, direct (transport), groundshine and multiple-shine to understand the contribution of each path and to develop a general evaluation method. The effect of each path was estimated in the view of the dose at far locations. The neutron dose was calculated using the neutron energy spectra obtained from each detector placed up to a maximum of 1 km from the accelerator. The highest altitude of the sky region in this simulation was set as 2 km from the floor of the accelerator facility. The initial model of this study was the 10 GeV electron accelerator, PAL-XFEL. Different compositions and densities of air, soil and ordinary concrete were applied in this calculation, and their dependences were reviewed. The estimation method used in this study was compared with the well-known methods suggested by Rindi, Stevenson and Stepleton, and also with the simple code, SHINE3. The results obtained using this method agreed well with those using Rindi's formula.

  20. Radiation doses in volume-of-interest breast computed tomography—A Monte Carlo simulation study

    PubMed Central

    Lai, Chao-Jen; Zhong, Yuncheng; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.

    2015-01-01

    Purpose: Cone beam breast computed tomography (breast CT) with true three-dimensional, nearly isotropic spatial resolution has been developed and investigated over the past decade to overcome the problem of lesions overlapping with breast anatomical structures on two-dimensional mammographic images. However, the ability of breast CT to detect small objects, such as tissue structure edges and small calcifications, is limited. To resolve this problem, the authors proposed and developed a volume-of-interest (VOI) breast CT technique to image a small VOI using a higher radiation dose to improve that region’s visibility. In this study, the authors performed Monte Carlo simulations to estimate average breast dose and average glandular dose (AGD) for the VOI breast CT technique. Methods: Electron–Gamma-Shower system code-based Monte Carlo codes were used to simulate breast CT. The Monte Carlo codes estimated were validated using physical measurements of air kerma ratios and point doses in phantoms with an ion chamber and optically stimulated luminescence dosimeters. The validated full cone x-ray source was then collimated to simulate half cone beam x-rays to image digital pendant-geometry, hemi-ellipsoidal, homogeneous breast phantoms and to estimate breast doses with full field scans. 13-cm in diameter, 10-cm long hemi-ellipsoidal homogeneous phantoms were used to simulate median breasts. Breast compositions of 25% and 50% volumetric glandular fractions (VGFs) were used to investigate the influence on breast dose. The simulated half cone beam x-rays were then collimated to a narrow x-ray beam with an area of 2.5 × 2.5 cm2 field of view at the isocenter plane and to perform VOI field scans. The Monte Carlo results for the full field scans and the VOI field scans were then used to estimate the AGD for the VOI breast CT technique. Results: The ratios of air kerma ratios and dose measurement results from the Monte Carlo simulation to those from the physical measurements were 0.97 ± 0.03 and 1.10 ± 0.13, respectively, indicating that the accuracy of the Monte Carlo simulation was adequate. The normalized AGD with VOI field scans was substantially reduced by a factor of about 2 over the VOI region and by a factor of 18 over the entire breast for both 25% and 50% VGF simulated breasts compared with the normalized AGD with full field scans. The normalized AGD for the VOI breast CT technique can be kept the same as or lower than that for a full field scan with the exposure level for the VOI field scan increased by a factor of as much as 12. Conclusions: The authors’ Monte Carlo estimates of normalized AGDs for the VOI breast CT technique show that this technique can be used to markedly increase the dose to the breast and thus the visibility of the VOI region without increasing the dose to the breast. The results of this investigation should be helpful for those interested in using VOI breast CT technique to image small calcifications with dose concern. PMID:26127058

  1. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE PAGES

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    2017-03-17

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  2. Addressing as low as reasonably achievable (ALARA) issues: investigation of worker collective external and extremity dose data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael Edward; Costigan, Stephen Andrew; Schreiber, Stephen Bruce

    Plutonium emits both neutrons and photons and when it is stored or handled inside a glovebox, both photons and neutrons are significant external radiation hazards. Doses to the extremities are usually dominated by gamma radiation in typical plutonium glovebox operations. Excess external dose can generates stochastic effects consisting of cancer and benign tumors in some organs. Direct doses from radiation sources external to the body are measured by thermoluminescent dosimeters (TLDs) placed on the glovebox worker between the neck and waist. Wrist dosimeters are used to assess externally penetrating radiation including neutrons and provide an estimate of neutron radiation exposuremore » to the extremities. Both TLDs and wrist dosimeters are processed monthly for most glovebox workers. Here, worker collective extremity and external dose data have been analyzed to prevent and mitigate external radiation events through the use of Lean Manufacturing and Six Sigma business practices (LSS). Employing LSS, statistically significant variations (trends) are identified in worker collective extremity and external dose data. Finally, the research results presented in this paper are pivotal to the ultimate focus of this program, which is to minimize external radiation events.« less

  3. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-08-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv 94.0%, <2 mSv 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected.

  4. The Fukushima Health Management Survey: estimation of external doses to residents in Fukushima Prefecture

    PubMed Central

    Ishikawa, Tetsuo; Yasumura, Seiji; Ozasa, Kotaro; Kobashi, Gen; Yasuda, Hiroshi; Miyazaki, Makoto; Akahane, Keiichi; Yonai, Shunsuke; Ohtsuru, Akira; Sakai, Akira; Sakata, Ritsu; Kamiya, Kenji; Abe, Masafumi

    2015-01-01

    The Fukushima Health Management Survey (including the Basic Survey for external dose estimation and four detailed surveys) was launched after the Fukushima Dai-ichi Nuclear Power Plant accident. The Basic Survey consists of a questionnaire that asks Fukushima Prefecture residents about their behavior in the first four months after the accident; and responses to the questionnaire have been returned from many residents. The individual external doses are estimated by using digitized behavior data and a computer program that included daily gamma ray dose rate maps drawn after the accident. The individual external doses of 421,394 residents for the first four months (excluding radiation workers) had a distribution as follows: 62.0%, <1 mSv; 94.0%, <2 mSv; 99.4%, <3 mSv. The arithmetic mean and maximum for the individual external doses were 0.8 and 25 mSv, respectively. While most dose estimation studies were based on typical scenarios of evacuation and time spent inside/outside, the Basic Survey estimated doses considering individually different personal behaviors. Thus, doses for some individuals who did not follow typical scenarios could be revealed. Even considering such extreme cases, the estimated external doses were generally low and no discernible increased incidence of radiation-related health effects is expected. PMID:26239643

  5. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  6. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  7. Development of a Geant4 application to characterise a prototype neutron detector based on three orthogonal 3He tubes inside an HDPE sphere.

    PubMed

    Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A

    2017-01-01

    The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal 3 He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.

    A case is reported of a 39-yr-old dentist who realized that his dental x- ray machine had been on for about 90 min. During this time he was near the machine constantly, with his back usually toward the source of radiation. The estimated dose to the back of his head and upper torso was 180 r. The dentist saffered some anxiety, but no acute symptoms of radiation sickness. Physical examination gave negative results. There was no evidence of acute radiation damage. Study of temporal scalp hair revealed an estimated maximum dose received by the hair follicles of approximates 50 tomore » 75 r. The direct technical cause of the accident was a loose washer in the timer mechanism, making contact and completing the switching circuit, thereby causing the unit to go on. It is suggested that dentists and their assistants should wear radiation exposure badges at all times. In addition, equipment shouid be systcmatically and regularly checked so that maximum operating efficiency can be combined with minimum exposure. (P.C.H.)« less

  9. Ford Motor Company NDE facility shielding design.

    PubMed

    Metzger, Robert L; Van Riper, Kenneth A; Jones, Martin H

    2005-01-01

    Ford Motor Company proposed the construction of a large non-destructive evaluation laboratory for radiography of automotive power train components. The authors were commissioned to design the shielding and to survey the completed facility for compliance with radiation doses for occupationally and non-occupationally exposed personnel. The two X-ray sources are Varian Linatron 3000 accelerators operating at 9-11 MV. One performs computed tomography of automotive transmissions, while the other does real-time radiography of operating engines and transmissions. The shield thickness for the primary barrier and all secondary barriers were determined by point-kernel techniques. Point-kernel techniques did not work well for skyshine calculations and locations where multiple sources (e.g. tube head leakage and various scatter fields) impacted doses. Shielding for these areas was determined using transport calculations. A number of MCNP [Briesmeister, J. F. MCNPCA general Monte Carlo N-particle transport code version 4B. Los Alamos National Laboratory Manual (1997)] calculations focused on skyshine estimates and the office areas. Measurements on the operational facility confirmed the shielding calculations.

  10. Half-dose non-contrast CT in the investigation of urolithiasis: image quality improvement with third-generation integrated circuit CT detectors.

    PubMed

    Wang, Jun; Kang, Tony; Arepalli, Chesnal; Barrett, Sarah; O'Connell, Tim; Louis, Luck; Nicolaou, Savvakis; McLaughlin, Patrick

    2015-06-01

    The objective of this study is to establish the effect of third-generation integrated circuit (IC) CT detector on objective image quality in full- and half-dose non-contrast CT of the urinary tract. 51 consecutive patients with acute renal colic underwent non-contrast CT of the urinary tract using a 128-slice dual-source CT before (n = 24) and after (n = 27) the installation of third-generation IC detectors. Half-dose images were generated using projections from detector A using the dual-source RAW data. Objective image noise in the liver, spleen, right renal cortex, and right psoas muscle was compared between DC and IC cohorts for full-dose and half-dose images reconstructed with FBP and IR algorithms using 1 cm(2) regions of interest. Presence and size of obstructing ureteric calculi were also compared for full-dose and half-dose reconstructions using DC and IC detectors. No statistical difference in age and lateral body size was found between patients in the IC and DC cohorts. Radiation dose, as measured by size-specific dose estimates, did not differ significantly either between the two cohorts (10.02 ± 4.54 mGy IC vs. 12.28 ± 7.03 mGy DC). At full dose, objective image noise was not significantly lower in the IC cohort as compared to the DC cohort for the liver, spleen, and right psoas muscle. At half dose, objective image noise was lower in the IC cohort as compared to DC cohort at the liver (21.32 IC vs. 24.99 DC, 14.7% decrease, p < 0.001), spleen (19.33 IC vs. 20.83 DC, 7.20% decrease, p = 0.02), and right renal cortex (20.28 IC vs. 22.98 DC, 11.7% decrease, p = 0.005). Mean obstructing ureteric calculi size was not significantly different when comparison was made between full-dose and half-dose images, regardless of detector type (p > 0.05 for all comparisons). Third-generation IC detectors result in lower objective image noise at full- and half-radiation dose levels as compared with traditional DC detectors. The magnitude of noise reduction was greater at half-radiation dose indicating that the benefits of using novel IC detectors are greater in low and ultra-low-dose CT imaging.

  11. Calibration of helical tomotherapy machine using EPR/alanine dosimetry.

    PubMed

    Perichon, Nicolas; Garcia, Tristan; François, Pascal; Lourenço, Valérie; Lesven, Caroline; Bordy, Jean-Marc

    2011-03-01

    Current codes of practice for clinical reference dosimetry of high-energy photon beams in conventional radiotherapy recommend using a 10 x 10 cm2 square field, with the detector at a reference depth of 10 cm in water and 100 cm source to surface distance (SSD) (AAPM TG-51) or 100 cm source-to-axis distance (SAD) (IAEA TRS-398). However, the maximum field size of a helical tomotherapy (HT) machine is 40 x 5 cm2 defined at 85 cm SAD. These nonstandard conditions prevent a direct implementation of these protocols. The purpose of this study is twofold: To check the absorbed dose in water and dose rate calibration of a tomotherapy unit as well as the accuracy of the tomotherapy treatment planning system (TPS) calculations for a specific test case. Both topics are based on the use of electron paramagnetic resonance (EPR) using alanine as transfer dosimeter between the Laboratoire National Henri Becquerel (LNHB) 60Co-gamma-ray reference beam and the Institut Curie's HT beam. Irradiations performed in the LNHB reference 60Co-gamma-ray beam allowed setting up the calibration method, which was then implemented and tested at the LNHB 6 MV linac x-ray beam, resulting in a deviation of 1.6% (at a 1% standard uncertainty) relative to the reference value determined with the standard IAEA TRS-398 protocol. HT beam dose rate estimation shows a difference of 2% with the value stated by the manufacturer at a 2% standard uncertainty. A 4% deviation between measured dose and the calculation from the tomotherapy TPS was found. The latter was originated by an inadequate representation of the phantom CT-scan values and, consequently, mass densities within the phantom. This difference has been explained by the mass density values given by the CT-scan and used by the TPS which were not the true ones. Once corrected using Monte Carlo N-Particle simulations to validate the accuracy of this process, the difference between corrected TPS calculations and alanine measured dose values was then found to be around 2% (with 2% standard uncertainty on TPS doses and 1.5% standard uncertainty on EPR measurements). Beam dose rate estimation results were found to be in good agreement with the reference value given by the manufacturer at 2% standard uncertainty. Moreover, the dose determination method was set up with a deviation around 2% (at a 2% standard uncertainty).

  12. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  13. Comparing risk estimates following diagnostic CT radiation exposures employing different methodological approaches.

    PubMed

    Kashcheev, Valery V; Pryakhin, Evgeny A; Menyaylo, Alexander N; Chekin, Sergey Yu; Ivanov, Viktor K

    2014-06-01

    The current study has two aims: the first is to quantify the difference between radiation risks estimated with the use of organ or effective doses, particularly when planning pediatric and adult computed tomography (CT) examinations. The second aim is to determine the method of calculating organ doses and cancer risk using dose-length product (DLP) for typical routine CT examinations. In both cases, the radiation-induced cancer risks from medical CT examinations were evaluated as a function of gender and age. Lifetime attributable risk values from CT scanning were estimated with the use of ICRP (Publication 103) risk models and Russian national medical statistics data. For populations under the age of 50 y, the risk estimates based on organ doses usually are 30% higher than estimates based on effective doses. In older populations, the difference can be up to a factor of 2.5. The typical distributions of organ doses were defined for Chest Routine, Abdominal Routine, and Head Routine examinations. The distributions of organ doses were dependent on the anatomical region of scanning. The most exposed organs/tissues were thyroid, breast, esophagus, and lungs in cases of Chest Routine examination; liver, stomach, colon, ovaries, and bladder in cases of Abdominal Routine examination; and brain for Head Routine examinations. The conversion factors for calculation of typical organ doses or tissues at risk using DLP were determined. Lifetime attributable risk of cancer estimated with organ doses calculated from DLP was compared with the risk estimated on the basis of organ doses measured with the use of silicon photodiode dosimeters. The estimated difference in LAR is less than 29%.

  14. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Nigg, D. W.; Wheeler, F. J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and the capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.

  15. Preliminary skyshine calculations for the Poloidal Diverter Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigg, D.W.; Wheeler, F.J.

    1981-01-01

    A calculational model is presented to estimate the radiation dose, due to the skyshine effect, in the control room and at the site boundary of the Poloidal Diverter Experiment (PDX) facility at Princeton University which requires substantial radiation shielding. The required composition and thickness of a water-filled roof shield that would reduce this effect to an acceptable level is computed, using an efficient one-dimensional model with an Sn calculation in slab geometry. The actual neutron skyshine dose is computed using a Monte Carlo model with the neutron source at the roof surface obtained from the slab Sn calculation, and themore » capture gamma dose is computed using a simple point-kernel single-scatter method. It is maintained that the slab model provides the exact probability of leakage out the top surface of the roof and that it is nearly as accurate as and much less costly than multi-dimensional techniques.« less

  16. Evaluation of dose uncertainty in radiation processing using EPR spectroscopy and butylated hydroxytoluene rods as dosimetry system

    NASA Astrophysics Data System (ADS)

    Alkhorayef, M.; Mansour, A.; Sulieman, A.; Alnaaimi, M.; Alduaij, M.; Babikir, E.; Bradley, D. A.

    2017-12-01

    Butylatedhydroxytoluene (BHT) rods represent a potential dosimeter in radiation processing, with readout via electron paramagnetic resonance (EPR) spectroscopy. Among the possible sources of uncertainty are those associated with the performance of the dosimetric medium and the conditions under which measurements are made, including sampling and environmental conditions. Present study makes estimate of the uncertainties, investigating physical response in different resonance regions. BHT, a white crystalline solid with a melting point of between 70-73 °C, was investigated using 60Co gamma irradiation over the dose range 0.1-100 kGy. The intensity of the EPR signal increases linearly in the range 0.1-35 kGy, the uncertainty budget for high doses being 3.3% at the 2σ confidence level. The rod form represents an excellent alternative dosimeter for high level dosimetry, of small uncertainty compared to powder form.

  17. Directional interstitial brachytherapy from simulation to application

    NASA Astrophysics Data System (ADS)

    Lin, Liyong

    Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the design optimization and construction of the first prototype directional source. Potential clinical applications and potential benefits of directional sources have been shown for prostate and breast tumors.

  18. Properties of model-averaged BMDLs: a study of model averaging in dichotomous response risk estimation.

    PubMed

    Wheeler, Matthew W; Bailer, A John

    2007-06-01

    Model averaging (MA) has been proposed as a method of accounting for model uncertainty in benchmark dose (BMD) estimation. The technique has been used to average BMD dose estimates derived from dichotomous dose-response experiments, microbial dose-response experiments, as well as observational epidemiological studies. While MA is a promising tool for the risk assessor, a previous study suggested that the simple strategy of averaging individual models' BMD lower limits did not yield interval estimators that met nominal coverage levels in certain situations, and this performance was very sensitive to the underlying model space chosen. We present a different, more computationally intensive, approach in which the BMD is estimated using the average dose-response model and the corresponding benchmark dose lower bound (BMDL) is computed by bootstrapping. This method is illustrated with TiO(2) dose-response rat lung cancer data, and then systematically studied through an extensive Monte Carlo simulation. The results of this study suggest that the MA-BMD, estimated using this technique, performs better, in terms of bias and coverage, than the previous MA methodology. Further, the MA-BMDL achieves nominal coverage in most cases, and is superior to picking the "best fitting model" when estimating the benchmark dose. Although these results show utility of MA for benchmark dose risk estimation, they continue to highlight the importance of choosing an adequate model space as well as proper model fit diagnostics.

  19. Attenuation-based estimation of patient size for the purpose of size specific dose estimation in CT. Part II. Implementation on abdomen and thorax phantoms using cross sectional CT images and scanned projection radiograph images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jia; Christner, Jodie A.; Duan Xinhui

    2012-11-15

    Purpose: To estimate attenuation using cross sectional CT images and scanned projection radiograph (SPR) images in a series of thorax and abdomen phantoms. Methods: Attenuation was quantified in terms of a water cylinder with cross sectional area of A{sub w} from both the CT and SPR images of abdomen and thorax phantoms, where A{sub w} is the area of a water cylinder that would absorb the same dose as the specified phantom. SPR and axial CT images were acquired using a dual-source CT scanner operated at 120 kV in single-source mode. To use the SPR image for estimating A{sub w},more » the pixel values of a SPR image were calibrated to physical water attenuation using a series of water phantoms. A{sub w} and the corresponding diameter D{sub w} were calculated using the derived attenuation-based methods (from either CT or SPR image). A{sub w} was also calculated using only geometrical dimensions of the phantoms (anterior-posterior and lateral dimensions or cross sectional area). Results: For abdomen phantoms, the geometry-based and attenuation-based methods gave similar results for D{sub w}. Using only geometric parameters, an overestimation of D{sub w} ranging from 4.3% to 21.5% was found for thorax phantoms. Results for D{sub w} using the CT image and SPR based methods agreed with each other within 4% on average in both thorax and abdomen phantoms. Conclusions: Either the cross sectional CT or SPR images can be used to estimate patient attenuation in CT. Both are more accurate than use of only geometrical information for the task of quantifying patient attenuation. The SPR based method requires calibration of SPR pixel values to physical water attenuation and this calibration would be best performed by the scanner manufacturer.« less

  20. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates associated with reactor pressure changes in Units 2 and 3. The modified WSPEEDI-II simulation using the new source term reproduced local and regional patterns of cumulative surface deposition of total 131I and 137Cs and air dose rate obtained by airborne surveys. The new source term was also tested using three atmospheric dispersion models (MLDP0, HYSPLIT, and NAME) for regional and global calculations and showed good agreement between calculated and observed air concentration and surface deposition of 137Cs in East Japan. Moreover, HYSPLIT model using the new source term also reproduced the plume arrivals at several countries abroad showing a good correlation with measured air concentration data. A large part of deposition pattern of total 131I and 137Cs in East Japan was explained by in-cloud particulate scavenging. However, for the regional scale contaminated areas, there were large uncertainties due to the overestimation of rainfall amounts and the underestimation of fogwater and drizzle depositions. The computations showed that approximately 27% of 137Cs discharged from FNPS1 deposited to the land in East Japan, mostly in forest areas.

  1. A novel approach for estimating ingested dose associated with paracetamol overdose

    PubMed Central

    Zurlinden, Todd J.; Heard, Kennon

    2015-01-01

    Aim In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue‐specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow‐up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. Methods The core component of the computational framework was a physiologically‐based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter‐study variability, and facilitating the calculation of uncertainty in model outputs. Results Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Conclusions Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow‐up plan. PMID:26441245

  2. A novel approach for estimating ingested dose associated with paracetamol overdose.

    PubMed

    Zurlinden, Todd J; Heard, Kennon; Reisfeld, Brad

    2016-04-01

    In cases of paracetamol (acetaminophen, APAP) overdose, an accurate estimate of tissue-specific paracetamol pharmacokinetics (PK) and ingested dose can offer health care providers important information for the individualized treatment and follow-up of affected patients. Here a novel methodology is presented to make such estimates using a standard serum paracetamol measurement and a computational framework. The core component of the computational framework was a physiologically-based pharmacokinetic (PBPK) model developed and evaluated using an extensive set of human PK data. Bayesian inference was used for parameter and dose estimation, allowing the incorporation of inter-study variability, and facilitating the calculation of uncertainty in model outputs. Simulations of paracetamol time course concentrations in the blood were in close agreement with experimental data under a wide range of dosing conditions. Also, predictions of administered dose showed good agreement with a large collection of clinical and emergency setting PK data over a broad dose range. In addition to dose estimation, the platform was applied for the determination of optimal blood sampling times for dose reconstruction and quantitation of the potential role of paracetamol conjugate measurement on dose estimation. Current therapies for paracetamol overdose rely on a generic methodology involving the use of a clinical nomogram. By using the computational framework developed in this study, serum sample data, and the individual patient's anthropometric and physiological information, personalized serum and liver pharmacokinetic profiles and dose estimate could be generated to help inform an individualized overdose treatment and follow-up plan. © 2015 The British Pharmacological Society.

  3. Normalized dose data for upper gastrointestinal tract contrast studies performed to infants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Stratakis, John; Raissaki, Maria

    The aim of the current study was to (a) provide normalized dose data for the estimation of the radiation dose from upper gastrointestinal tract contrast (UGIC) studies carried out to infants and (b) estimate the average patient dose and risks associated with radiation from UGIC examinations performed in our institution. Organ and effective doses, normalized to entrance skin dose (ESD) and dose area product (DAP) were estimated for UGIC procedures utilizing the Monte Carlo N-particle (MCNP) transport code and two mathematical phantoms, one corresponding to the size of a newborn and one to the size of a 1-year-old child. Themore » validity of the MCNP results was verified by comparison with dose data obtained in physical anthropomorphic phantoms simulating a newborn and a 1-year-old infant using thermoluminescence dosimetry (TLD). Data were also collected from 25 consecutive UGIC examinations performed to infants. Study participants were (a) 12 infants aged from 0.5 to 5.9 months (group 1) and (b) 13 infants aged from 6 to 15 months (group 2). For each examination, ESD and dose to comforters were measured using TLD. Patient effective doses were estimated using normalized dose data obtained in the simulation study. The risk for fatal cancer induction was estimated using appropriate coefficients. The results consist of tabulated dose data normalized to ESD or DAP for the estimation of patient dose. Conversion coefficients were estimated for various tube potentials and beam filtration values. The mean total fluoroscopy time was 1.26 and 1.62 min for groups 1 and 2, respectively. The average effective dose was 1.6 mSv for group 1 and 1.9 mSv for group 2. The risk of cancer attributable to the radiation exposure associated with a typical UGIC study was found to be up to 3 per 10 000 infants undergoing an UGIC examination. The mean radiation dose absorbed by the hands of comforters was 47 {mu}Gy. In conclusion, estimation of radiation doses associated with UGIC studies performed to infants can be made using the normalized dose data provided in the current study. Radiation dose values associated with UGIC examinations carried out to infants are not low and should be minimized as much as possible.« less

  4. HDR {sup 192}Ir source speed measurements using a high speed video camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Gabriel P.; Viana, Rodrigo S. S.; Yoriyaz, Hélio

    Purpose: The dose delivered with a HDR {sup 192}Ir afterloader can be separated into a dwell component, and a transit component resulting from the source movement. The transit component is directly dependent on the source speed profile and it is the goal of this study to measure accurate source speed profiles. Methods: A high speed video camera was used to record the movement of a {sup 192}Ir source (Nucletron, an Elekta company, Stockholm, Sweden) for interdwell distances of 0.25–5 cm with dwell times of 0.1, 1, and 2 s. Transit dose distributions were calculated using a Monte Carlo code simulatingmore » the source movement. Results: The source stops at each dwell position oscillating around the desired position for a duration up to (0.026 ± 0.005) s. The source speed profile shows variations between 0 and 81 cm/s with average speed of ∼33 cm/s for most of the interdwell distances. The source stops for up to (0.005 ± 0.001) s at nonprogrammed positions in between two programmed dwell positions. The dwell time correction applied by the manufacturer compensates the transit dose between the dwell positions leading to a maximum overdose of 41 mGy for the considered cases and assuming an air-kerma strength of 48 000 U. The transit dose component is not uniformly distributed leading to over and underdoses, which is within 1.4% for commonly prescribed doses (3–10 Gy). Conclusions: The source maintains its speed even for the short interdwell distances. Dose variations due to the transit dose component are much lower than the prescribed treatment doses for brachytherapy, although transit dose component should be evaluated individually for clinical cases.« less

  5. Patient doses in the healing arts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Determinations of radiation doses to patients from x-ray procedures and radiopharmaceuticals are detailed in this chapter. Instructions are given for estimating doses from x-ray procedures. For selected pediatric procedures, the methodology developed by the Food and Drug Administration is presented. The effect of testicular and ovarian shielding is illustrated in tabular form. Estimates of the Genetically Significant Dose (GSD) and mean annual bone marrow dose from diagnostic x-ray examinations are presented for the US populations (1990). This chapter also provides tables of patient doses from selected nuclear medicine procedures and estimates of fetal doses from {sup 131}I.

  6. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune.

    PubMed

    Hall, E J

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  7. Organ shielding and doses in Low-Earth orbit calculated for spherical and anthropomorphic phantoms

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Reitz, Günther

    2013-08-01

    Humans in space are exposed to elevated levels of radiation compared to ground. Different sources contribute to the total exposure with galactic cosmic rays being the most important component. The application of numerical and anthropomorphic phantoms in simulations allows the estimation of dose rates from galactic cosmic rays in individual organs and whole body quantities such as the effective dose. The male and female reference phantoms defined by the International Commission on Radiological Protection and the hermaphrodite numerical RANDO phantom are voxel implementations of anthropomorphic phantoms and contain all organs relevant for radiation risk assessment. These anthropomorphic phantoms together with a spherical water phantom were used in this work to translate the mean shielding of organs in the different anthropomorphic voxel phantoms into positions in the spherical phantom. This relation allows using a water sphere as surrogate for the anthropomorphic phantoms in both simulations and measurements. Moreover, using spherical phantoms in the calculation of radiation exposure offers great advantages over anthropomorphic phantoms in terms of computational time. In this work, the mean shielding of organs in the different voxel phantoms exposed to isotropic irradiation is presented as well as the corresponding depth in a water sphere. Dose rates for Low-Earth orbit from galactic cosmic rays during solar minimum conditions were calculated using the different phantoms and are compared to the results for a spherical water phantom in combination with the mean organ shielding. For the spherical water phantom the impact of different aluminium shielding between 1 g/cm2 and 100 g/cm2 was calculated. The dose equivalent rates were used to estimate the effective dose rate.

  8. Genomic instability, bystander effect, cytoplasmic irradiation and other phenomena that may achieve fame without fortune

    NASA Technical Reports Server (NTRS)

    Hall, E. J.

    2001-01-01

    The possible risk of induced malignancies in astronauts, as a consequence of the radiation environment in space, is a factor of concern for long term missions. Cancer risk estimates for high doses of low LET radiation are available from the epidemiological studies of the A-bomb survivors. Cancer risks at lower doses cannot be detected in epidemiological studies and must be inferred by extrapolation from the high dose risks. The standard setting bodies, such as the ICRP recommend a linear, no-threshold extrapolation of risks from high to low doses, but this is controversial. A study of mechanisms of carcinogenesis may shed some light on the validity of a linear extrapolation. The multi-step nature of carcinogenesis suggests that the role of radiation may be to induce a mutation leading to a mutator phenotype. High energy Fe ions, such as those encountered in space are highly effective in inducing genomic instability. Experiments involving the single particle microbeam have demonstrated a "bystander effect", ie a biological effect in cells not themselves hit, but in close proximity to those that are, as well as the induction of mutations in cells where only the cytoplasm, and not the nucleus, have been traversed by a charged particle. These recent experiments cast doubt on the validity of a simple linear extrapolation, but the data are so far fragmentary and conflicting. More studies are necessary. While mechanistic studies cannot replace epidemiology as a source of quantitative risk estimates, they may shed some light on the shape of the dose response relationship and therefore on the limitations of a linear extrapolation to low doses.

  9. Long-term fate of depleted uranium at Aberdeen and Yuma Proving Grounds: Human health and ecological risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebinger, M.H.; Beckman, R.J.; Myers, O.B.

    1996-09-01

    The purpose of this study was to evaluate the immediate and long-term consequences of depleted uranium (DU) in the environment at Aberdeen Proving Ground (APG) and Yuma Proving Ground (YPG) for the Test and Evaluation Command (TECOM) of the US Army. Specifically, we examined the potential for adverse radiological and toxicological effects to humans and ecosystems caused by exposure to DU at both installations. We developed contaminant transport models of aquatic and terrestrial ecosystems at APG and terrestrial ecosystems at YPG to assess potential adverse effects from DU exposure. Sensitivity and uncertainty analyses of the initial models showed the portionsmore » of the models that most influenced predicted DU concentrations, and the results of the sensitivity analyses were fundamental tools in designing field sampling campaigns at both installations. Results of uranium (U) isotope analyses of field samples provided data to evaluate the source of U in the environment and the toxicological and radiological doses to different ecosystem components and to humans. Probabilistic doses were estimated from the field data, and DU was identified in several components of the food chain at APG and YPG. Dose estimates from APG data indicated that U or DU uptake was insufficient to cause adverse toxicological or radiological effects. Dose estimates from YPG data indicated that U or DU uptake is insufficient to cause radiological effects in ecosystem components or in humans, but toxicological effects in small mammals (e.g., kangaroo rats and pocket mice) may occur from U or DU ingestion. The results of this study were used to modify environmental radiation monitoring plans at APG and YPG to ensure collection of adequate data for ongoing ecological and human health risk assessments.« less

  10. High-dose inactivated influenza vaccine is associated with cost savings and better outcomes compared to standard-dose inactivated influenza vaccine in Canadian seniors.

    PubMed

    Becker, Debbie L; Chit, Ayman; DiazGranados, Carlos A; Maschio, Michael; Yau, Eddy; Drummond, Michael

    2016-12-01

    Seasonal influenza infects approximately 10-20% of Canadians each year, causing an estimated 12,200 hospitalizations and 3,500 deaths annually, mostly occurring in adults ≥65 years old (seniors). A 32,000-participant, randomized controlled clinical trial (FIM12; Clinicaltrials.gov NCT01427309) showed that high-dose inactivated influenza vaccine (IIV-HD) is superior to standard-dose vaccine (SD) in preventing laboratory-confirmed influenza illness in seniors. In this study, we performed a cost-utility analysis (CUA) of IIV-HD versus SD in FIM12 participants from a Canadian perspective. Healthcare resource utilization data collected in FIM12 included: medications, non-routine/urgent care and emergency room visits, and hospitalizations. Unit costs were applied using standard Canadian cost sources to estimate the mean direct medical and societal costs associated with each vaccine (2014 CAD). Clinical illness data from the trial were mapped to quality-of-life data from the literature to estimate differences in effectiveness between vaccines. Time horizon was one influenza season, however, quality-adjusted life-years (QALYs) lost due to death during the study were captured over a lifetime. A probabilistic sensitivity analysis (PSA) was also performed. Average per-participant medical costs were $47 lower and societal costs $60 lower in the IIV-HD arm. Hospitalizations contributed 91% of the total cost and were less frequent in the IIV-HD arm. IIV-HD provided a gain in QALYs and, due to cost savings, dominated SD in the CUA. The PSA indicated that IIV-HD is 89% likely to be cost saving. In Canada, IIV-HD is expected to be a less costly and more effective alternative to SD, driven by a reduction in hospitalizations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, S.L.; Kerber, R.L.; Stevens, W.

    This paper discusses the dosimetry methodology used to estimate bone marrow dose and the results of dosimetry calculations for 6,507 subjects in an epidemiologic case. control study of leukemia among Utah residents. The estimated doses were used to determine if a higher incidence of leukemia among residents of Utah could have been attributed to exposure to radioactive fallout from above-ground nuclear weapons tests conducted at the Nevada Test Site. The objective of the dosimetry methodology was to estimate absorbed dose to active marrow specific to each case and each control subject. Data on the residence of each subject were availablemore » from records of the Church of Jesus Christ of Latter-day Saints. Deposition of fallout was determined from databases developed using historical measurements and exposure for each subject from each test was estimated using those data. Exposure was converted to dose by applying an age-dependent dose conversion factor and a factor for shielding. The median dose for all case and control subjects was 3.2 mGy. The maximum estimated mean dose for any case or control was 29 {plus_minus} 5.6 mGy (a resident of Washington County, UT). Uncertainties were estimated for each estimated dose. The results of the dosimetry calculations were applied in an epidemiological analysis.« less

  12. Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events

    NASA Astrophysics Data System (ADS)

    Manigrasso, M.; Stabile, L.; Avino, P.; Buonanno, G.

    2013-03-01

    Aerosol generation events due to combustion processes are characterized by high particle emissions in the nucleation mode range. Such particles are characterized by very short atmospheric lifetimes, leading to rapid decay in time and space from the emission point. Therefore, the deposited fraction of inhaled particles (dose) also changes. In fact, close to the emission source, high short-term peak exposures occur. The related exposure estimates should therefore rely on measurements of aerosol number-size distributions able to track rapid aerosol dynamics. In order to study the influence of the time resolution on such estimates, simultaneous measurements were carried out via Scanning Mobility Particle Sizer (SMPS) and Fast Mobility Particle Sizer (FMPS) spectrometers during particle generation events in both indoor (cooking activities) and outdoor (airstrip and urban street canyons) microenvironments. Aerosol size distributions in the range 16-520 nm were measured by SMPS and FMPS at frequencies of 0.007 s-1 and 1 s-1, respectively. Based on the two datasets, respiratory dosimetry estimates were made on the basis of the deposition model of the International Commission on Radiological Protection. During cooking activities, SMPS measurements give an approximate representation of aerosol temporal evolution. Consequently, the related instant doses can be approximated to a fair degree. In the two outdoor microenvironments considered, aerosol size distributions change rapidly: the FMPS is able to follow such evolution, whereas the SMPS is not. The high short-term peak concentrations, and the consequent respiratory doses, evidenced by FMPS data are hardly described by SMPS, which is unable to track the fast aerosol changes. The health relevance of such short peak exposures has not been thoroughly investigated in scientific literature, therefore, in the present paper highly time-resolved and size-resolved dosimetry estimates were provided in order to deepen this aspect.

  13. Assessment of impact of urbanisation on background radiation exposure and human health risk estimation in Kuala Lumpur, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Hassan, W M S W; Lee, M H; Izham, A; Said, M N; Wagiran, H; Heryanshah, A

    2017-07-01

    Kuala Lumpur has been undergoing rapid urbanisation process, mainly in infrastructure development. The opening of new township and residential in former tin mining areas, particularly in the heavy mineral- or tin-bearing alluvial soil in Kuala Lumpur, is a contentious subject in land-use regulation. Construction practices, i.e. reclamation and dredging in these areas are potential to enhance the radioactivity levels of soil and subsequently, increase the existing background gamma radiation levels. This situation is worsened with the utilisation of tin tailings as construction materials apart from unavoidable soil pollutions due to naturally occurring radioactive materials in construction materials, e.g. granitic aggregate, cement and red clay brick. This study was conducted to assess the urbanisation impacts on background gamma radiation in Kuala Lumpur. The study found that the mean value of measured dose rate was 251±6nGyh -1 (156-392nGyh -1 ) and 4 times higher than the world average value. High radioactivity levels of 238 U (95±12Bqkg -1 ), 232 Th (191±23Bqkg -1 ,) and 40 K (727±130Bqkg -1 ) in soil were identified as the major source of high radiation exposure. Based on statistical ANOVA, t-test, and analyses of cumulative probability distribution, this study has statistically verified the dose enhancements in the background radiation. The effective dose was estimated to be 0.31±0.01mSvy -1 per man. The recommended ICRP reference level (1-20mSvy -1 ) is applicable to the involved existing exposure situation in this study. The estimated effective dose in this study is lower than the ICRP reference level and too low to cause deterministic radiation effects. Nevertheless based on estimations of lifetime radiation exposure risks, this study found that there was small probability for individual in Kuala Lumpur being diagnosed with cancer and dying of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In Vivo Dosimetry for Single-Fraction Targeted Intraoperative Radiotherapy (TARGIT) for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, David J., E-mail: davideaton@nhs.net; Best, Bronagh; Brew-Graves, Chris

    Purpose: In vivo dosimetry provides an independent check of delivered dose and gives confidence in the introduction or consistency of radiotherapy techniques. Single-fraction intraoperative radiotherapy of the breast can be performed with the Intrabeam compact, mobile 50 kV x-ray source (Carl Zeiss Surgical, Oberkochen, Germany). Thermoluminescent dosimeters (TLDs) can be used to estimate skin doses during these treatments. Methods and Materials: Measurements of skin doses were taken using TLDs for 72 patients over 3 years of clinical treatments. Phantom studies were also undertaken to assess the uncertainties resulting from changes in beam quality and backscatter conditions in vivo. Results: Themore » mean measured skin dose was 2.9 {+-} 1.6 Gy, with 11% of readings higher than the prescription dose of 6 Gy, but none of these patients showed increased complications. Uncertainties due to beam hardening and backscatter reduction were small compared with overall accuracy. Conclusions: TLDs are a useful and effective method to measure in vivo skin doses in intraoperative radiotherapy and are recommended for the initial validation or any modification to the delivery of this technique. They are also an effective tool to show consistent and safe delivery on a more frequent basis or to determine doses to other critical structures as required.« less

  15. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols.

    PubMed

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners.

  16. Recent Update on Radiation Dose Assessment for the State-of-the-Art Coronary Computed Tomography Angiography Protocols

    PubMed Central

    Tan, Sock Keow; Yeong, Chai Hong; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah; Sun, Zhonghua

    2016-01-01

    Objectives This study aimed to measure the absorbed doses in selected organs for prospectively ECG-triggered coronary computed tomography angiography (CCTA) using five different generations CT scanners in a female adult anthropomorphic phantom and to estimate the effective dose (HE). Materials and Methods Prospectively ECG-triggered CCTA was performed using five commercially available CT scanners: 64-detector-row single source CT (SSCT), 2 × 32-detector-row-dual source CT (DSCT), 2 × 64-detector-row DSCT and 320-detector-row SSCT scanners. Absorbed doses were measured in 34 organs using pre-calibrated optically stimulated luminescence dosimeters (OSLDs) placed inside a standard female adult anthropomorphic phantom. HE was calculated from the measured organ doses and compared to the HE derived from the air kerma-length product (PKL) using the conversion coefficient of 0.014 mSv∙mGy-1∙cm-1 for the chest region. Results Both breasts and lungs received the highest radiation dose during CCTA examination. The highest HE was received from 2 × 32-detector-row DSCT scanner (6.06 ± 0.72 mSv), followed by 64-detector-row SSCT (5.60 ± 0.68 and 5.02 ± 0.73 mSv), 2 × 64-detector-row DSCT (1.88 ± 0.25 mSv) and 320-detector-row SSCT (1.34 ± 0.48 mSv) scanners. HE calculated from the measured organ doses were about 38 to 53% higher than the HE derived from the PKL-to-HE conversion factor. Conclusion The radiation doses received from a prospectively ECG-triggered CCTA are relatively small and are depending on the scanner technology and imaging protocols. HE as low as 1.34 and 1.88 mSv can be achieved in prospectively ECG-triggered CCTA using 320-detector-row SSCT and 2 × 64-detector-row DSCT scanners. PMID:27552224

  17. (⁹⁹m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with ¹⁶⁶Ho-microspheres.

    PubMed

    Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M

    2014-10-01

    Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.

  18. A GREEN'S FUNCTION APPROACH FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathan, S.

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package in compliance with 10 CFR Part 71 external radiation level limits regulations. The neutron and photon sources were calculated using both ORIGEN-S and RASTA. The response from a unit source in each neutron and photon group was calculated using MCNP5 with eachmore » unshielded and shielded container configuration. Effects of self-shielding on both neutron and photon response were evaluated by including either plutonium oxide or iron in the source region for the case with no shielded container. For the cases of actinides mixed with light elements, beryllium is the bounding light element. The added beryllium (10 to 90 percent of the actinide mass) in the cases studied represents between 9 and 47 percent concentration of the total mixture mass. For beryllium concentrations larger than 50 percent, the increase in the neutron source term and dose rate tend to increase at a much lower rate than at concentrations lower than 50%. The intimately mixed actinide-beryllium form used in these models is very conservative and thus the limits presented in this report are practical bounds on the mass that can be safely shipped. The calculated dose rate from one gram of each isotope was then used to determin the maximum amount of a single isotope that could be shipped in the Model 9977 Package (or packagings having the same or larger external dimensions as well as similar structural materials) and have the external radiation level within the regulatory dose limits at the surface of the package. The estimates of the mass limits presented would also serve as conservative limits for both the Models 9975 and 9978 packages. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. It should be noted that the SGQ masses presented in this report represent limits that would comply with the external radiation limits under 10CFR Part 71. They do not necessarily bound lower limits that may be required to comply with other factors such as heat load of the package.« less

  19. Proof of concept and dose estimation with binary responses under model uncertainty.

    PubMed

    Klingenberg, B

    2009-01-30

    This article suggests a unified framework for testing Proof of Concept (PoC) and estimating a target dose for the benefit of a more comprehensive, robust and powerful analysis in phase II or similar clinical trials. From a pre-specified set of candidate models, we choose the ones that best describe the observed dose-response. To decide which models, if any, significantly pick up a dose effect, we construct the permutation distribution of the minimum P-value over the candidate set. This allows us to find critical values and multiplicity adjusted P-values that control the familywise error rate of declaring any spurious effect in the candidate set as significant. Model averaging is then used to estimate a target dose. Popular single or multiple contrast tests for PoC, such as the Cochran-Armitage, Dunnett or Williams tests, are only optimal for specific dose-response shapes and do not provide target dose estimates with confidence limits. A thorough evaluation and comparison of our approach to these tests reveal that its power is as good or better in detecting a dose-response under various shapes with many more additional benefits: It incorporates model uncertainty in PoC decisions and target dose estimation, yields confidence intervals for target dose estimates and extends to more complicated data structures. We illustrate our method with the analysis of a Phase II clinical trial. Copyright (c) 2008 John Wiley & Sons, Ltd.

  20. Risks of fatal cancer from inhalation of 239,240plutonium by humans: a combined four-method approach with uncertainty evaluation.

    PubMed

    Grogan, H A; Sinclair, W K; Voillequé, P G

    2001-05-01

    The risk per unit dose to the four primary cancer sites for plutonium inhalation exposure (lung, liver, bone, bone marrow) is estimated by combining the risk estimates that are derived from four independent approaches. Each approach represents a fundamentally different source of data from which plutonium risk estimates can be derived. These are: (1) epidemiologic studies of workers exposed to plutonium; (2) epidemiologic studies of persons exposed to low-LET radiation combined with a factor for the relative biological effectiveness (RBE) of plutonium alpha particles appropriate for each cancer site of concern; (3) epidemiologic studies of persons exposed to alpha-emitting radionuclides other than plutonium; and (4) controlled studies of animals exposed to plutonium and other alpha-emitting radionuclides extrapolated to humans. This procedure yielded the following organ-specific estimates of the distribution of mortality risk per unit dose from exposure to plutonium expressed as the median estimate with the 5th to 95th percentiles of the distribution in parentheses: lung 0.13 Gy(-1) (0.022-0.53 Gy(-1)); liver 0.057 Gy(-1) (0.011-0.47 Gy(-1)); bone 0.0013 Gy(-1) (0.000060-0.025 Gy(-1)); bone marrow (leukemia), 0.013 Gy(-1) (0.00061-0.05 Gy(-1)). Because the different tissues do not receive the same dose following an inhalation exposure, the mortality risk per unit intake of activity via inhalation of a 1-microm AMAD plutonium aerosol also was determined. To do this, inhalation dose coefficients based on the most recent ICRP models and accounting for input parameter uncertainties were combined with the risk coefficients described above. The following estimates of the distribution of mortality risk per unit intake were determined for a 1-microm AMAD plutonium aerosol with a geometric standard deviation of 2.5: lung 5.3 x 10(-7) Bq(-1) (0.65-35 x 10(-7) Bq(-1)), liver 1.2 x 10(-7) Bq(-1) (0.091-20 x 10(-7) Bq(-1)), bone 0.11 x 10(-7) Bq(-1) (0.0030-4.3 x 10(-7) Bq(-1)), bone marrow (leukemia) 0.049 x 10(-7) Bq(-1) (0.0017-0.59 x 10(-7) Bq(-1)). The cancer mortality risk for all sites was estimated to be 10 x 10(-7) Bq(-1) (2.1-55 x 10(-7) Bq(-1))--a result that agrees very well with other recent estimates. The large uncertainties in the risks per unit intake of activity reflect the combined uncertainty in the dose and risk coefficients.

  1. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    NASA Astrophysics Data System (ADS)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  2. The reference individual of radiation protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, K.F.; Cristy, M.

    1995-12-31

    The 70-kg {open_quotes}standard man{close_quotes} representing a typical Western adult male has been used in physiological models since at least the 1920s. In 1949 at the Chalk River conference, health physicists from the U.S., UK, and Canada agreed on the concept of a standard man to facilitate comparison of internal dose estimates. The 70-kg standard man included specifications of the masses of 25 organs and tissues, total body content of 15 elements, total water intake and output, water content of the body, and some anatomical and physiological data for the respiratory and gastrointestinal tracts. In 1959, in its Publication 2{sup 2}more » on permissible doses for internal radiation the International Commission on Radiological Protection (ICRP) modified standard man. In 1963 the ICRP established a task group to revise and extend the standard man concept. The name was changed later to Reference Man and the task group`s work was published in 1975 as ICRP Publication 23{sup 3}. Publication 23 similar to Publication 2, updates and documents the sources of the data. Data on women, children, and fetuses were also collected, where available, but these data were limited primarily to anatomical data and only a few reference values were established for these groups. Information assembled during the course of the effort on the Reference Man report was used at Oak Ridge National Laboratory (ORNL) to construct a mathematical representation of the body (a phantom) that was suitable for use with Monte Carlo methods in the calculation of organ doses. That effort was undertaken to improve estimates of dose from photon-emitting radionuclides residing within organs, so-called internal emitters. The phantom, although updated throughout the years, remains today as the basis for organ dose estimates in nuclear medicine and radiation protection and underlies the radiation risk data derived from the epidemiologic studies of the atomic bomb survivors of Hiroshima and Nagasaki.« less

  3. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident

    NASA Astrophysics Data System (ADS)

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-04-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  4. NIRS external dose estimation system for Fukushima residents after the Fukushima Dai-ichi NPP accident.

    PubMed

    Akahane, Keiichi; Yonai, Shunsuke; Fukuda, Shigekazu; Miyahara, Nobuyuki; Yasuda, Hiroshi; Iwaoka, Kazuki; Matsumoto, Masaki; Fukumura, Akifumi; Akashi, Makoto

    2013-01-01

    The great east Japan earthquake and subsequent tsunamis caused Fukushima Dai-ichi Nuclear Power Plant (NPP) accident. National Institute of Radiological Sciences (NIRS) developed the external dose estimation system for Fukushima residents. The system is being used in the Fukushima health management survey. The doses can be obtained by superimposing the behavior data of the residents on the dose rate maps. For grasping the doses, 18 evacuation patterns of the residents were assumed by considering the actual evacuation information before using the survey data. The doses of the residents from the deliberate evacuation area were relatively higher than those from the area within 20 km radius. The estimated doses varied from around 1 to 6 mSv for the residents evacuated from the representative places in the deliberate evacuation area. The maximum dose in 18 evacuation patterns was estimated to be 19 mSv.

  5. A pharmacometric case study regarding the sensitivity of structural model parameter estimation to error in patient reported dosing times.

    PubMed

    Knights, Jonathan; Rohatagi, Shashank

    2015-12-01

    Although there is a body of literature focused on minimizing the effect of dosing inaccuracies on pharmacokinetic (PK) parameter estimation, most of the work centers on missing doses. No attempt has been made to specifically characterize the effect of error in reported dosing times. Additionally, existing work has largely dealt with cases in which the compound of interest is dosed at an interval no less than its terminal half-life. This work provides a case study investigating how error in patient reported dosing times might affect the accuracy of structural model parameter estimation under sparse sampling conditions when the dosing interval is less than the terminal half-life of the compound, and the underlying kinetics are monoexponential. Additional effects due to noncompliance with dosing events are not explored and it is assumed that the structural model and reasonable initial estimates of the model parameters are known. Under the conditions of our simulations, with structural model CV % ranging from ~20 to 60 %, parameter estimation inaccuracy derived from error in reported dosing times was largely controlled around 10 % on average. Given that no observed dosing was included in the design and sparse sampling was utilized, we believe these error results represent a practical ceiling given the variability and parameter estimates for the one-compartment model. The findings suggest additional investigations may be of interest and are noteworthy given the inability of current PK software platforms to accommodate error in dosing times.

  6. SU-E-T-13: Comparison of Dose Rates with and without Gold Backing of USC #9 Radioactive Eye Plaque Using MCNP5.

    PubMed

    Aryal, P; Molloy, J

    2012-06-01

    To show the effect of gold backing on dose rates for the USC #9 radioactive eye plaque. An I125 source (IsoAid model IAI-125A) and gold backing was modeled using MCNP5 Monte Carlo code. A single iodine seed was simulated with and without gold backing. Dose rates were calculated in two orthogonal planes. Dose calculation points were structured in two orthogonal planes that bisect the center of the source. A 2×2 cm matrix of spherical points of radius 0.2 mm was created in a water phantom of 10 cm radius. 0.2 billion particle histories were tracked. Dose differences with and without the gold backing were analyzed using Matlab. The gold backing produced a 3% increase in the dose rate near the source surface (<1mm) relative to that without the backing. This was presumably caused by fluorescent photons from the gold. At distances between 1 and 2 cm, the gold backing reduced the dose rate by up to 12%, which we attribute to a lack of scatter resulting from the attenuation from the gold. Dose differences were most pronounced in the radial direction near the source center but off axis. The dose decreased by 25%, 65% and 81% at 1, 2, and 3 mm off axis at a distance of 1 mm from the source surface. These effects were less pronounced in the perpendicular dimension near the source tip, where maximum dose decreases of 2% were noted. I 125 sources embedded directly into gold troughs display dose differences of 2 - 90%, relative to doses without the gold backing. This is relevant for certain types of plaques used in treatment of ocular melanoma. Large dose reductions can be observed and may have implications for scleral dose reduction. © 2012 American Association of Physicists in Medicine.

  7. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficientlymore » optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS).« less

  8. Assessment of thunderstorm neutron radiation environment at altitudes of aviation flights

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Grigoriev, A.; Malyshkin, Y.

    2013-02-01

    High-energy radiation emitted from thunderclouds supposes generation of neutrons in photonuclear reactions of the gamma photons with air. This observation is supported by registration of neutrons during thunderstorm activity in a number of experiments, most of which established correlation with lightning. In this work we perform a modeling of the neutron generation and propagation processes at low atmospheric altitudes using current knowledge of the TGF source properties. On this basis we obtain dosimetric maps of thunderstorm neutron radiation and investigate possible radiation threat for aircraft flights. We estimate the maximal effective neutron dose that potentially can be received on board an aircraft in close proximity to the gamma source, to be of the order of 0.54 mSv over a time less than 0.1 s. This dose is considerably less than estimations obtained earlier for the associated electron and gamma radiation; nevertheless, this value is quite large by itself and under some circumstances the neutron component seems to be the most important for the dosimetric effect. Due to wide distribution in space, the thunderstorm neutrons are thought to also provide a convenient means for experimental investigation of gamma emissions from thunderclouds. To register neutrons from powerful gamma flashes that occur at the tops of thunderclouds, however, in the most favorable case one has to take a location above the 2 km level that is appropriate to mountains or aircraft facilities.

  9. Diagnostic Accuracy of CT Enterography for Active Inflammatory Terminal Ileal Crohn Disease: Comparison of Full-Dose and Half-Dose Images Reconstructed with FBP and Half-Dose Images with SAFIRE.

    PubMed

    Gandhi, Namita S; Baker, Mark E; Goenka, Ajit H; Bullen, Jennifer A; Obuchowski, Nancy A; Remer, Erick M; Coppa, Christopher P; Einstein, David; Feldman, Myra K; Kanmaniraja, Devaraju; Purysko, Andrei S; Vahdat, Noushin; Primak, Andrew N; Karim, Wadih; Herts, Brian R

    2016-08-01

    Purpose To compare the diagnostic accuracy and image quality of computed tomographic (CT) enterographic images obtained at half dose and reconstructed with filtered back projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) with those of full-dose CT enterographic images reconstructed with FBP for active inflammatory terminal or neoterminal ileal Crohn disease. Materials and Methods This retrospective study was compliant with HIPAA and approved by the institutional review board. The requirement to obtain informed consent was waived. Ninety subjects (45 with active terminal ileal Crohn disease and 45 without Crohn disease) underwent CT enterography with a dual-source CT unit. The reference standard for confirmation of active Crohn disease was active terminal ileal Crohn disease based on ileocolonoscopy or established Crohn disease and imaging features of active terminal ileal Crohn disease. Data from both tubes were reconstructed with FBP (100% exposure); data from the primary tube (50% exposure) were reconstructed with FBP and SAFIRE strengths 3 and 4, yielding four datasets per CT enterographic examination. The mean volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) at full dose were 13.1 mGy (median, 7.36 mGy) and 15.9 mGy (median, 13.06 mGy), respectively, and those at half dose were 6.55 mGy (median, 3.68 mGy) and 7.95 mGy (median, 6.5 mGy). Images were subjectively evaluated by eight radiologists for quality and diagnostic confidence for Crohn disease. Areas under the receiver operating characteristic curves (AUCs) were estimated, and the multireader, multicase analysis of variance method was used to compare reconstruction methods on the basis of a noninferiority margin of 0.05. Results The mean AUCs with half-dose scans (FBP, 0.908; SAFIRE 3, 0.935; SAFIRE 4, 0.924) were noninferior to the mean AUC with full-dose FBP scans (0.908; P < .003). The proportion of images with inferior quality was significantly higher with all half-dose reconstructions than with full-dose FBP (mean proportion: 0.117 for half-dose FBP, 0.054 for half-dose SAFIRE 3, 0.054 for half-dose SAFIRE 4, and 0.017 for full-dose FBP; P < .001). Conclusion The diagnostic accuracy of half-dose CT enterography with FBP and SAFIRE is statistically noninferior to that of full-dose CT enterography for active inflammatory terminal ileal Crohn disease, despite an inferior subjective image quality. (©) RSNA, 2016 Online supplemental material is available for this article.

  10. Connecting the Dots: Linking Environmental Justice Indicators to Daily Dose Model Estimates

    EPA Science Inventory

    Many different quantitative techniques have been developed to either assess Environmental Justice (EJ) issues or estimate exposure and dose for risk assessment. However, very few approaches have been applied to link EJ factors to exposure dose estimate and identify potential impa...

  11. Estimation of doses received in a dry-contaminated residential area in the Bryansk region, Russia, since the Chernobyl accident.

    PubMed

    Andersson, K G; Roed, J

    2006-01-01

    In nuclear preparedness, an essential requirement is the ability to adequately predict the likely consequences of a major accident situation. In this context it is very important to evaluate which contributions to dose are important, and which are not likely to have significance. As an example of this type of evaluation, a case study has been conducted to estimate the doses received over the first 17 years after the Chernobyl accident in a dry-contaminated residential area in the Bryansk region in Russia. Methodologies for estimation of doses received through nine different pathways, including contamination of streets, roofs, exterior walls, and landscape, are established, and best estimates are given for each of the dose contributions. Generally, contaminated soil areas were estimated to have given the highest dose contribution, but a number of other contributions to dose, e.g., from contaminated roofs and inhalation of contaminants during the passage of the contaminated plume, were of the same order of magnitude.

  12. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Dose Estimating Application Software Modification: Additional Function of a Size-Specific Effective Dose Calculator and Auto Exposure Control.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Suzuki, Shouichi; Matsunaga, Yuta; Haba, Tomonobu; Kawaguchi, Ai; Daioku, Tomihiko; Toyama, Hiroshi; Kato, Ryoichi

    2017-05-01

    Adequate dose management during computed tomography is important. In the present study, the dosimetric application software ImPACT was added to a functional calculator of the size-specific dose estimate and was part of the scan settings for the auto exposure control (AEC) technique. This study aimed to assess the practicality and accuracy of the modified ImPACT software for dose estimation. We compared the conversion factors identified by the software with the values reported by the American Association of Physicists in Medicine Task Group 204, and we noted similar results. Moreover, doses were calculated with the AEC technique and a fixed-tube current of 200 mA for the chest-pelvis region. The modified ImPACT software could estimate each organ dose, which was based on the modulated tube current. The ability to perform beneficial modifications indicates the flexibility of the ImPACT software. The ImPACT software can be further modified for estimation of other doses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Nonparametric estimation of benchmark doses in environmental risk assessment

    PubMed Central

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  15. Probabilistic dose assessment of normal operations and accident conditions for an assured isolation facility in Texas

    NASA Astrophysics Data System (ADS)

    Arno, Matthew Gordon

    Texas is investigating building a long-term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground low-level radioactive waste storage facility that is actively maintained and from which waste may be retrieved. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using the computer code Monte Carlo N-Particle (MCNP) to model the facility in greater detail. Accidental release scenarios have been studied in more depth to better assess the potential dose to off-site individuals. Using bounding source term assumptions, the projected radiation doses and dose rates are estimated to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma rooms," where the waste with the highest concentration of gamma emitting radioactive material is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is estimated at 86 mrem, below the 100 mrem annual limit for exposure of the public. Within the site perimeter, the dose rates are lowered sufficiently such that it is not necessary to categorize many workers and contractor personnel as radiation workers, saving on costs as well as being advisable under ALARA principles. A detailed analysis of bounding accidents incorporating information on the local meteorological conditions indicate that the maximum committed effective dose equivalent from the passage of a plume of material released in an accident at any of the cities near the facility is 59 :rem in the city of Eunice, NM based on the combined day and night meteorological conditions. Using the daytime meteorological conditions, the maximum dose at any city is 7 :rem, also in the city of Eunice. The maximum dose at the site boundary was determined to be 230 mrem using the combined day and night meteorological conditions and 33 mrem using the daytime conditions.

  16. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    PubMed

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  17. Interpretation of the margin of exposure for genotoxic carcinogens - elicitation of expert knowledge about the form of the dose response curve at human relevant exposures.

    PubMed

    Boobis, Alan; Flari, Villie; Gosling, John Paul; Hart, Andy; Craig, Peter; Rushton, Lesley; Idahosa-Taylor, Ehi

    2013-07-01

    The general approach to risk assessment of genotoxic carcinogens has been to advise reduction of exposure to "as low as reasonably achievable/practicable" (ALARA/P). However, whilst this remains the preferred risk management option, it does not provide guidance on the urgency or extent of risk management actions necessary. To address this, the "Margin of Exposure" (MOE) approach has been proposed. The MOE is the ratio between the point of departure for carcinogenesis and estimated human exposure. However, interpretation of the MOE requires implicit or explicit consideration of the shape of the dose-response curve at human relevant exposures. In a structured elicitation exercise, we captured expert opinion on available scientific evidence for low dose-response relationships for genotoxic carcinogens. This allowed assessment of: available evidence for the nature of dose-response relationships at human relevant exposures; the generality of judgments about such dose-response relationships; uncertainties affecting judgments on the nature of such dose-response relationships; and whether this last should differ for different classes of genotoxic carcinogens. Elicitation results reflected the variability in experts' views on the form of the dose-response curve for low dose exposure and major sources of uncertainty affecting the assumption of a linear relationship. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry.

    PubMed

    Whitney, Heather M; Gochberg, Daniel F; Gore, John C

    2008-12-21

    The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.

  19. SU-G-JeP3-06: Lower KV Image Dose Are Expected From a Limited-Angle Intra-Fractional Verification (LIVE) System for SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, G; Yin, F; Ren, L

    Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code,more » BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the treatment.« less

  20. Prediction of Normal Organ Absorbed Doses for [177Lu]Lu-PSMA-617 Using [44Sc]Sc-PSMA-617 Pharmacokinetics in Patients With Metastatic Castration Resistant Prostate Carcinoma.

    PubMed

    Khawar, Ambreen; Eppard, Elisabeth; Sinnes, Jean Phlippe; Roesch, Frank; Ahmadzadehfar, Hojjat; Kürpig, Stefan; Meisenheimer, Michael; Gaertner, Florian C; Essler, Markus; Bundschuh, Ralph A

    2018-04-23

    In vivo pharmacokinetic analysis of [Sc]Sc-PSMA-617 was used to determine the normal organ-absorbed doses that may result from therapeutic activity of [Lu]Lu-PSMA-617 and to predict the maximum permissible activity of [Lu]Lu-PSMA-617 for patients with metastatic castration-resistant prostate carcinoma. Pharmacokinetics of [Sc]Sc-PSMA-617 was evaluated in 5 patients with metastatic castration-resistant prostate carcinoma using dynamic PET/CT, followed by 3 static PET/CT acquisitions and blood sample collection over 19.5 hours, as well as urine sample collection at 2 time points. Total activity measured in source organs by PET imaging, as well as counts per milliliter measured in blood and urine samples, was decay corrected back to the time of injection using the half-life of Sc. Afterward, forward decay correction using the half-life of Lu was performed, extrapolating the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617. Source organs residence times and organ-absorbed doses for [Lu]Lu-PSMA-617 were calculated using OLINDA/EXM software. Bone marrow self-dose was determined with indirect blood-based method, and urinary bladder contents residence time was estimated by trapezoidal approximation. The maximum permissible activity of [Lu]Lu-PSMA-617 was calculated for each patient considering external beam radiotherapy toxicity limits for radiation absorbed doses to kidneys, bone marrow, salivary glands, and whole body. The predicted mean organ-absorbed doses were highest in the kidneys (0.44 mSv/MBq), followed by the salivary glands (0.23 mSv/MBq). The maximum permissible activity was highly variable among patients; limited by whole body-absorbed dose (1 patient), marrow-absorbed dose (1 patient), and kidney-absorbed dose (3 patients). [Sc]Sc-PSMA-617 PET/CT imaging is feasible and allows theoretical extrapolation of the pharmacokinetics of [Sc]Sc-PSMA-617 to that of [Lu]Lu-PSMA-617, with the intent of predicting normal organ-absorbed doses and maximum permissible activity in patients scheduled for therapy with [Lu]Lu-PSMA-617.

  1. Estimating Toxicity Pathway Activating Doses for High Throughput Chemical Risk Assessments

    EPA Science Inventory

    Estimating a Toxicity Pathway Activating Dose (TPAD) from in vitro assays as an analog to a reference dose (RfD) derived from in vivo toxicity tests would facilitate high throughput risk assessments of thousands of data-poor environmental chemicals. Estimating a TPAD requires def...

  2. SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, J; Zhang, Z; Wang, J

    2016-06-15

    Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less

  3. SOME PROBLEMS OF "SAFE DOSE" ESTIMATION

    EPA Science Inventory

    In environmental carcinogenic risk assessment, the usually defined "safe doses" appear subjective in some sense. n this paper a method of standardizing "safe doses" based on some objective parameters is introduced and a procedure of estimating safe doses under the competing risks...

  4. Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.

    2006-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.

  5. Estimating Children's Soil/Dust Ingestion Rates through Retrospective Analyses of Blood Lead Biomonitoring from the Bunker Hill Superfund Site in Idaho.

    PubMed

    von Lindern, Ian; Spalinger, Susan; Stifelman, Marc L; Stanek, Lindsay Wichers; Bartrem, Casey

    2016-09-01

    Soil/dust ingestion rates are important variables in assessing children's health risks in contaminated environments. Current estimates are based largely on soil tracer methodology, which is limited by analytical uncertainty, small sample size, and short study duration. The objective was to estimate site-specific soil/dust ingestion rates through reevaluation of the lead absorption dose-response relationship using new bioavailability data from the Bunker Hill Mining and Metallurgical Complex Superfund Site (BHSS) in Idaho, USA. The U.S. Environmental Protection Agency (EPA) in vitro bioavailability methodology was applied to archived BHSS soil and dust samples. Using age-specific biokinetic slope factors, we related bioavailable lead from these sources to children's blood lead levels (BLLs) monitored during cleanup from 1988 through 2002. Quantitative regression analyses and exposure assessment guidance were used to develop candidate soil/dust source partition scenarios estimating lead intake, allowing estimation of age-specific soil/dust ingestion rates. These ingestion rate and bioavailability estimates were simultaneously applied to the U.S. EPA Integrated Exposure Uptake Biokinetic Model for Lead in Children to determine those combinations best approximating observed BLLs. Absolute soil and house dust bioavailability averaged 33% (SD ± 4%) and 28% (SD ± 6%), respectively. Estimated BHSS age-specific soil/dust ingestion rates are 86-94 mg/day for 6-month- to 2-year-old children and 51-67 mg/day for 2- to 9-year-old children. Soil/dust ingestion rate estimates for 1- to 9-year-old children at the BHSS are lower than those commonly used in human health risk assessment. A substantial component of children's exposure comes from sources beyond the immediate home environment. von Lindern I, Spalinger S, Stifelman ML, Stanek LW, Bartrem C. 2016. Estimating children's soil/dust ingestion rates through retrospective analyses of blood lead biomonitoring from the Bunker Hill Superfund Site in Idaho. Environ Health Perspect 124:1462-1470; http://dx.doi.org/10.1289/ehp.1510144.

  6. Chlorine truck attack consequences and mitigation.

    PubMed

    Barrett, Anthony Michael; Adams, Peter J

    2011-08-01

    We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors. © 2011 Society for Risk Analysis.

  7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less

  8. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.

    PubMed

    Wang, R; Li, X A

    2001-02-01

    The dose parameters for the beta-particle emitting 90Sr/90Y source for intravascular brachytherapy (IVBT) have been calculated by different investigators. At a distant distance from the source, noticeable differences are seen in these parameters calculated using different Monte Carlo codes. The purpose of this work is to quantify as well as to understand these differences. We have compared a series of calculations using an EGS4, an EGSnrc, and the MCNP Monte Carlo codes. Data calculated and compared include the depth dose curve for a broad parallel beam of electrons, and radial dose distributions for point electron sources (monoenergetic or polyenergetic) and for a real 90Sr/90Y source. For the 90Sr/90Y source, the doses at the reference position (2 mm radial distance) calculated by the three code agree within 2%. However, the differences between the dose calculated by the three codes can be over 20% in the radial distance range interested in IVBT. The difference increases with radial distance from source, and reaches 30% at the tail of dose curve. These differences may be partially attributed to the different multiple scattering theories and Monte Carlo models for electron transport adopted in these three codes. Doses calculated by the EGSnrc code are more accurate than those by the EGS4. The two calculations agree within 5% for radial distance <6 mm.

  9. Evaluation of Terrorist Interest in Radioactive Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFee, J.N.; Langsted, J.M.; Young, M.E.

    2006-07-01

    Since September 11, 2001, intelligence gathered from Al Qaeda training camps in Afghanistan, and the ensuing terrorist activities, indicates nuclear material security concerns are valid. This paper reviews available information on sealed radioactive sources thought to be of interest to terrorists, and then examines typical wastes generated during environmental management activities to compare their comparative 'attractiveness' for terrorist diversion. Sealed radioactive sources have been evaluated in numerous studies to assess their security and attractiveness for use as a terrorist weapon. The studies conclude that tens of thousands of curies in sealed radioactive sources are available for potential use in amore » terrorist attack. This risk is mitigated by international efforts to find lost and abandoned sources and bring them under adequate security. However, radioactive waste has not received the same level of scrutiny to ensure security. This paper summarizes the activity and nature of radioactive sources potentially available to international terrorists. The paper then estimates radiation doses from use of radioactive sources as well as typical environmental restoration or decontamination and decommissioning wastes in a radioactive dispersal device (RDD) attack. These calculated doses indicate that radioactive wastes are, as expected, much less of a health risk than radioactive sources. The difference in radiation doses from wastes used in an RDD are four to nine orders of magnitude less than from sealed sources. We then review the International Atomic Energy Agency (IAEA) definition of 'dangerous source' in an adjusted comparison to common radioactive waste shipments generated in environmental management activities. The highest waste dispersion was found to meet only category 1-3.2 of the five step IAEA scale. A category '3' source by the IAEA standard 'is extremely unlikely, to cause injury to a person in the immediate vicinity'. The obvious conclusion of the analysis is that environmental management generated radioactive wastes have substantially less impact than radioactive sources if dispersed by terrorist-induced explosion or fire. From a health standpoint, the impact is very small. However, there is no basis to conclude that wastes are totally unattractive for use in a disruptive or economic damage event. Waste managers should be cognizant of this potential and take measures to ensure security of stored waste and waste shipments. (authors)« less

  10. RADON AND PROGENY SOURCED DOSE ASSESSMENT OF SPA EMPLOYEES IN BALNEOLOGICAL SITES.

    PubMed

    Uzun, Sefa Kemal; Demiröz, Işık

    2016-09-01

    This study was conducted in the scope of IAEA project with the name 'Establishing a Systematic Radioactivity Survey and Total Effective Dose Assessment in Natural Balneological Sites' (TUR/9/018), at the Health Physics department of Sarayköy Nuclear Research and Training Center (SANAEM). The aim of this study is estimation of radon and progeny sourced effective dose for the people who are working at the spa facilities by measuring radon activity concentration (RAC) at the ambient air of indoor spa pools and dressing rooms. As it is known, the source of the radon gas is the radium content of the earth crust. Therefore, thermal waters coming from ground may contain dissolved radon and the radon can diffuse water to air. So the ambient air of spa pools can contain serious RAC that depends on a lot of parameters. In this regard, RAC measurements were executed at the 70 spa facilities in Turkey. The measurements were done with both active and passive methods at ambient air of spa pools and dressing rooms. Thus, active measurements were carried out by using the Alphaguard(®) with diffusion mode during half an hour, and passive measurements were carried out by using the humidity resistive CR-39 radon detectors during 2 months. Results show that RAC values at ambient air of spa pools varies between 13 Bq m(-3) and 10 kBq m(-3) Because long-term measurements are more reliable, if it is available, for dose calculations passive radon measurements (with CR-39 detectors) at ambient air of spa pools and dressing rooms were used, otherwise active measurement results were used. With the measurement by the conversion coefficients of ICRP 65 and occupational data of the employees has got from questionary forms, effective dose values were calculated. According to the calculations, spa employees are exposed to annual average dose between 0.05 and 29 mSv because of radon and progeny. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. NEUROTOXIC EFFECTS OF ENVIRONMENTAL AGENTS: DATA GAPS THAT CHALLENGE DOSE-RESPONSE ESTIMATION

    EPA Science Inventory

    Neurotoxic effects of environmental agents: Data gaps that challenge dose-response estimation
    S Gutter*, P Mendola+, SG Selevan**, D Rice** (*UNC Chapel Hill; +US EPA, NHEERL; **US EPA, NCEA)

    Dose-response estimation is a critical feature of risk assessment. It can be...

  12. Limitations of current dosimetry for intracavitary accelerated partial breast irradiation with high dose rate iridium-192 and electronic brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Raffi, Julie A.

    Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.

  13. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries.

    PubMed

    Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin

    2016-12-01

    Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to prevent mercury exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Prospective ECG-triggered, axial 4-D imaging of the aortic root, valvular, and left ventricular structures: a lower radiation dose option for preprocedural TAVR imaging.

    PubMed

    Bolen, Michael A; Popovic, Zoran B; Dahiya, Arun; Kapadia, Samir R; Tuzcu, E Murat; Flamm, Scott D; Halliburton, Sandra S; Schoenhagen, Paul

    2012-01-01

    Transcatheter valve interventions rely on imaging for patient selection, preprocedural planning, and intraprocedural guidance. We explored the use of prospective electrocardiogram (ECG)-triggered 4-dimensional (4-D) CT imaging in patients evaluated for transcatheter aortic valve replacement (TAVR). A total of 47 consecutive patients underwent 128-slice dual-source CT with wide-window dose-modulated prospective ECG-triggered, axial acquisition of the aortic root, reconstructed during diastolic and systolic cardiac phases. Image quality was evaluated, aortic root and left ventricular (LV) geometry and function were analyzed, and radiation exposure was estimated. Image quality was generally good, with 41 of 47 (87%) patients scored as good or excellent. The mean aortic valve area was 0.93 ± 0.24 cm(2). Mean LV ejection fraction was 56.8% ± 16.4%, and mean LV mass was 130.4 ± 43.8 g. The minor diameter of the annulus was larger in systole (systole, 2.29 ± 0.24 cm; diastole, 2.14 ± 0.25 cm; P = 0.006), but the mean and major diameters did not vary significantly between systole and diastole. The mean estimated effective dose was 5.9 ± 2.4 mSv. Multiphase, prospective ECG-triggered axial image acquisition is a lower dose acquisition technique for 4-D aortic root imaging in patients being considered for TAVR. Copyright © 2012 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  16. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  17. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  18. Optically stimulated luminescence dating of Holocene alluvial fans, East Anatolian Fault System, Turkey

    NASA Astrophysics Data System (ADS)

    Dogan, Tamer; Cetin, Hasan; Yegingil, Zehra; Topaksu, Mustafa; Yüksel, Mehmet; Duygun, Fırat; Nur, Necmettin; Yegingil, İlhami

    2015-07-01

    In this study, the optically stimulated luminescence dating technique was used to determine the time of deposition of alluvial sediment samples from the Türkoğlu-Antakya segment of the East Anatolian Fault System (EAFS) in Turkey. The double-single aliquot regenerative dose protocol on fine grain samples was used to estimate equivalent doses (De). Annual dose rate was computed using elemental concentration of uranium (U) and thorium (Th) determined by using thick-source alpha counting and potassium (K) concentrations using X-ray fluorescence and/or atomic absorption spectroscopy. The environmental dose was measured in situ using α-Al2O3:C chips inside plastic tubes for a year. The two different bulk sediment samples collected from the Islahiye trench yielded ages of 4.54 ± 0.28 and 2.91 ± 0.23 ka. We also obtained a 2.60 ± 0.18 ka age for the alluvial deposit in the Kıranyurdu trench and 2.31 ± 0.14 ka age for an excavation area called Malzeme Ocağı. These ages were consistent with the corresponding calibrated Carbon-14 (14C) ages of the region. The differences between the determined ages were insufficient to clearly distinguish the disturbance event from the effects of bioturbation, biological mixing, or other sources of De variation in the region. They provide a record of alluvial aggradation in the region and may determine undocumented historical earthquake events.

  19. Spectral correction factors for conventional neutron dosemeters used in high-energy neutron environments.

    PubMed

    Lee, K W; Sheu, R J

    2015-04-01

    High-energy neutrons (>10 MeV) contribute substantially to the dose fraction but result in only a small or negligible response in most conventional moderated-type neutron detectors. Neutron dosemeters used for radiation protection purpose are commonly calibrated with (252)Cf neutron sources and are used in various workplace. A workplace-specific correction factor is suggested. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing (252)Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this paper presents recommendations for neutron field characterisation and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons. The correction depends on the estimated percentage of high-energy neutrons in the spectrum or the ratio between the measured responses of two Bonner spheres (the 4P6_8 extended-range sphere versus the 6″ standard sphere). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Pediatric chest and abdominopelvic CT: organ dose estimation based on 42 patient models.

    PubMed

    Tian, Xiaoyu; Li, Xiang; Segars, W Paul; Paulson, Erik K; Frush, Donald P; Samei, Ehsan

    2014-02-01

    To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. The institutional review board approved this HIPAA-compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0-16 years; weight range, 2-80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDI(vol)). The relationships between CTDI(vol)-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. For organs within the image coverage, CTDI(vol)-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R(2) > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%-32%) mainly because of the effect of overranging. It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDI(vol). These CTDI(vol)-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles across patient populations within a practice. © RSNA, 2013.

  1. Street-level noise in an urban setting: assessment and contribution to personal exposure.

    PubMed

    McAlexander, Tara P; Gershon, Robyn R M; Neitzel, Richard L

    2015-02-28

    The urban soundscape, which represents the totality of noise in the urban setting, is formed from a wide range of sources. One of the most ubiquitous and least studied of these is street-level (i.e., sidewalk) noise. Mainly associated with vehicular traffic, street level noise is hard to ignore and hard to escape. It is also potentially dangerous, as excessive noise from any source is an important risk factor for adverse health effects. This study was conducted to better characterize the urban soundscape and the role of street level noise on overall personal noise exposure in an urban setting. Street-level noise measures were obtained at 99 street sites located throughout New York City (NYC), along with data on time, location, and sources of environmental noise. The relationship between street-level noise measures and potential predictors of noise was analyzed using linear and logistic regression models, and geospatial modeling was used to evaluate spatial trends in noise. Daily durations of street-level activities (time spent standing, sitting, walking and running on streets) were estimated via survey from a sample of NYC community members recruited at NYC street fairs. Street-level noise measurements were then combined with daily exposure durations for each member of the sample to estimate exposure to street noise, as well as exposure to other sources of noise. The mean street noise level was 73.4 dBA, with substantial spatial variation (range 55.8-95.0 dBA). Density of vehicular (road) traffic was significantly associated with excessive street level noise levels. Exposure duration data for street-level noise and other common sources of noise were collected from 1894 NYC community members. Based on individual street-level exposure estimates, and in consideration of all other sources of noise exposure in an urban population, we estimated that street noise exposure contributes approximately 4% to an average individual's annual noise dose. Street-level noise exposure is a potentially important source of overall noise exposure, and the reduction of environmental sources of excessive street- level noise should be a priority for public health and urban planning.

  2. Exposure Estimation and Interpretation of Occupational Risk: Enhanced Information for the Occupational Risk Manager

    PubMed Central

    Waters, Martha; McKernan, Lauralynn; Maier, Andrew; Jayjock, Michael; Schaeffer, Val; Brosseau, Lisa

    2015-01-01

    The fundamental goal of this article is to describe, define, and analyze the components of the risk characterization process for occupational exposures. Current methods are described for the probabilistic characterization of exposure, including newer techniques that have increasing applications for assessing data from occupational exposure scenarios. In addition, since the probability of health effects reflects variability in the exposure estimate as well as the dose-response curve—the integrated considerations of variability surrounding both components of the risk characterization provide greater information to the occupational hygienist. Probabilistic tools provide a more informed view of exposure as compared to use of discrete point estimates for these inputs to the risk characterization process. Active use of such tools for exposure and risk assessment will lead to a scientifically supported worker health protection program. Understanding the bases for an occupational risk assessment, focusing on important sources of variability and uncertainty enables characterizing occupational risk in terms of a probability, rather than a binary decision of acceptable risk or unacceptable risk. A critical review of existing methods highlights several conclusions: (1) exposure estimates and the dose-response are impacted by both variability and uncertainty and a well-developed risk characterization reflects and communicates this consideration; (2) occupational risk is probabilistic in nature and most accurately considered as a distribution, not a point estimate; and (3) occupational hygienists have a variety of tools available to incorporate concepts of risk characterization into occupational health and practice. PMID:26302336

  3. A summary of evidence on radiation exposures received near to the Semipalatinsk nuclear weapons test site in Kazakhstan.

    PubMed

    Simon, Steven L; Baverstock, Keith F; Lindholm, Carita

    2003-06-01

    The presently available evidence about the magnitude of doses received by members of the public living in villages in the vicinity of Semipalatinsk nuclear test in Kazakhstan, particularly with respect to external radiation, while preliminary, is conflicting. The village of Dolon, in particular, has been identified for many years as the most highly exposed location in the vicinity of the test site. Previous publications cited external doses of more than 2 Gy to residents of Dolon while an expert group assembled by the WHO in 1997 estimated that external doses were likely to have been less than 0.5 Gy. In 2001, a larger expert group workshop was held in Helsinki jointly by the WHO, the National Cancer Institute of the United States, and the Radiation and Nuclear Safety Authority of Finland, with the expressed purpose to acquire data to evaluate the state of knowledge concerning doses received in Kazakhstan. This paper summarizes evidence presented at that workshop. External dose estimates from calculations based on sparse physical measurements and bio-dosimetric estimates based on chromosome abnormalities and electron paramagnetic resonance from a relatively small sample of teeth do not agree well. The physical dose estimates are generally higher than the biodosimetric estimates (1 Gy or more compared to 0.5 Gy or less). When viewed in its entirety, the present body of evidence does not appear to support external doses greater than 0.5 Gy; however, research is continuing to try and resolve the difference in dose estimates from the different methods. Thyroid doses from internal irradiation, which can only be estimated via calculation, are expected to have been several times greater than the doses from external irradiation, especially where received by small children.

  4. A single-dose cytomegalovirus-based vaccine encoding tetanus toxin fragment C induces sustained levels of protective tetanus toxin antibodies in mice.

    PubMed

    Tierney, Rob; Nakai, Toru; Parkins, Christopher J; Caposio, Patrizia; Fairweather, Neil F; Sesardic, Dorothea; Jarvis, Michael A

    2012-04-26

    The current commercially available vaccine used to prevent tetanus disease following infection with the anaerobic bacterium Clostridium tetani is safe and effective. However, tetanus remains a major source of mortality in developing countries. In 2008, neonatal tetanus was estimated to have caused >59,000 deaths, accounting for 1% of worldwide infant mortality, primarily in poorer nations. The cost of multiple vaccine doses administered by injection necessary to achieve protective levels of anti-tetanus toxoid antibodies is the primary reason for low vaccine coverage. Herein, we show that a novel vaccine strategy using a cytomegalovirus (CMV)-based vaccine platform induces protective levels of anti-tetanus antibodies that are durable (lasting >13 months) in mice following only a single dose. This study demonstrates the ability of a 'single-dose' CMV-based vaccine strategy to induce durable protection, and supports the potential for a tetanus vaccine based on CMV to impact the incidence of tetanus in developing countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. SU-E-I-98: Dose Comparison for Pulmonary Embolism CT Studies: Single Energy Vs. Dual Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, U; Erdi, Y

    Purpose: The purpose of this study was to assess and compare the size specific dose estimate (SSDE), dose length product (DLP) and noise relationship for pulmonary embolism studies evaluated by single source dual energy computed tomography (DECT) against conventional CT (CCT) studies in a busy cancer center and to determine the dose savings provided by DECT. Methods: An IRB-approved retrospective study was performed to determine the CTDIvol and DLP from a subset of patients scanned with both DECT and CCT over the past five years. We were able to identify 30 breast cancer patients (6 male, 24 female, age rangemore » 24 to 81) who had both DECT and CCT studies performed. DECT scans were performed with a GE HD 750 scanner (140/80 kVp, 480 mAs and 40 mm) and CCT scans were performed with a GE Lightspeed 16 slice scanner (120 kVp, 352 mAs, 20 mm). Image noise was measured by placing an ROI and recording the standard deviation of the mean HU along the descending aorta. Results: The average DECT patient size specific dose estimate was to be 14.2 ± 1.7 mGy as compared to 22.4 ± 2.7 mGy from CCT PE studies, which is a 37% reduction in the SSDE. The average DECT DLP was 721.8 ± 84.6 mGy-cm as compared to 981.8 ± 106.1 mGy-cm for CCT, which is a 26% decrease. Compared to CCT the image noise was found to decrease by 19% when using DECT for PE studies. Conclusion: DECT SSDE and DLP measurements indicate dose savings and image noise reduction when compared to CCT. In an environment that heavily debates CT patient doses, this study confirms the effectiveness of DECT in PE imaging.« less

  6. Assessment of radiation doses from residential smoke detectors that contain americium-241

    NASA Astrophysics Data System (ADS)

    Odonnell, F. R.; Etnier, E. L.; Holton, G. A.; Travis, C. C.

    1981-10-01

    External dose equivalents and internal dose commitments were estimated for individuals and populations from annual distribution, use, and disposal of 10 million ionization chamber smoke detectors that contain 110 kBq americium-241 each. Under exposure scenarios developed for normal distribution, use, and disposal using the best available information, annual external dose equivalents to average individuals were estimated to range from 4 fSv to 20 nSv for total body and from 7 fSv to 40 nSv for bone. Internal dose commitments to individuals under post disposal scenarios were estimated to range from 0.006 to 80 micro-Sv (0.0006 to 8 mrem) to total body and from 0.06 to 800 micro-Sv to bone. The total collective dose (the sum of external dose equivalents and 50-year internal dose commitments) for all individuals involved with distribution, use, or disposal of 10 million smoke detectors was estimated to be about 0.38 person-Sv (38 person-rem) to total body and 00 ft squared.

  7. Estimated collective effective dose to the population from nuclear medicine examinations in Slovenia

    PubMed Central

    Skrk, Damijan; Zontar, Dejan

    2013-01-01

    Background A national survey of patient exposure from nuclear medicine diagnostic procedures was performed by Slovenian Radiation Protection Administration in order to estimate their contribution to the collective effective dose to the population of Slovenia. Methods A set of 36 examinations with the highest contributions to the collective effective dose was identified. Data about frequencies and average administered activities of radioisotopes used for those examinations were collected from all nuclear medicine departments in Slovenia. A collective effective dose to the population and an effective dose per capita were estimated from the collected data using dose conversion factors. Results The total collective effective dose to the population from nuclear medicine diagnostic procedures in 2011 was estimated to 102 manSv, giving an effective dose per capita of 0.05 mSv. Conclusions The comparison of results of this study with studies performed in other countries indicates that the nuclear medicine providers in Slovenia are well aware of the importance of patient protection measures and of optimisation of procedures. PMID:24133396

  8. Biodistribution and radiation dosimetry in healthy volunteers of a novel tumour-specific probe for PET/CT imaging: BAY 85-8050.

    PubMed

    Smolarz, Kamilla; Krause, Bernd Joachim; Graner, Frank Philipp; Wagner, Franziska Martina; Wester, Hans-Jürgen; Sell, Tina; Bacher-Stier, Claudia; Fels, Lüder; Dinkelborg, Ludger; Schwaiger, Markus

    2013-12-01

    Novel tracers for the diagnosis of malignant disease with PET and PET/CT are being developed as the most commonly used (18)F deoxyglucose (FDG) tracer shows certain limitations. Employing radioactively labelled glutamate derivatives for specific imaging of the truncated citrate cycle potentially allows more specific tumour imaging. Radiation dosimetry of the novel tracer BAY 85-8050, a glutamate derivative, was calculated and the effective dose (ED) was compared with that of FDG. Five healthy volunteers were included in the study. Attenuation-corrected whole-body PET/CT scans were performed from 0 to 90 min, at 120 and at 240 min after injection of 305.0 ± 17.6 MBq of BAY 85-8050. Organs with moderate to high uptake at any of the imaging time points were used as source organs. Total activity in each organ at each time point was measured. Time-activity curves (TAC) were determined for the whole body and all source organs. The resulting TACs were fitted to exponential equations and accumulated activities were determined. OLINDA/EXM software was used to calculate individual organ doses and the whole-body ED from the acquired data. Uptake of the tracer was highest in the kidneys due to renal excretion of the tracer, followed by the pancreas, heart wall and osteogenic cells. The mean organ doses were: kidneys 38.4 ± 11.2 μSv/MBq, pancreas 23.2 ± 3.8 μSv/MBq, heart wall 17.4 ± 4.1 μSv/MBq, and osteogenic cells 13.6 ± 3.5 μSv/MBq. The calculated ED was 8.9 ± 1.5 μSv/MBq. Based on the distribution and dose estimates, the calculated radiation dose of BAY 85-8050 is 2.67 ± 0.45 mSv at a patient dose of 300 MBq, which compares favourably with the radiation dose of FDG (5.7 mSv).

  9. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less

  10. Effective biological dose from occupational exposure during nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Demou, Evangelia; Tran, Lang; Housiadas, Christos

    2009-02-01

    Nanomaterial and nanotechnology safety require the characterization of occupational exposure levels for completing a risk assessment. However, equally important is the estimation of the effective internal dose via lung deposition, transport and clearance mechanisms. An integrated source-to-biological dose assessment study is presented using real monitoring data collected during nanoparticle synthesis. Experimental monitoring data of airborne exposure levels during nanoparticle synthesis of CaSO4 and BiPO4 nanoparticles in a research laboratory is coupled with a human lung transport and deposition model, which solves in an Eulerian framework the general dynamic equation for polydisperse aerosols using particle specific physical-chemical properties. Subsequently, the lung deposition model is coupled with a mathematical particle clearance model providing the effective biological dose as well as the time course of the biological dose build-up after exposure. The results for the example of BiPO4 demonstrate that even short exposures throughout the day can lead to particle doses of 1.10·E+08#/(kg-bw·8h-shift), with the majority accumulating in the pulmonary region. Clearance of particles is slow and is not completed within a working shift following a 1 hour exposure. It mostly occurs via macrophage activity in the alveolar region, with small amounts transported to the interstitium and less to the lymph nodes.

  11. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this information, which is exhaustive throughout France, could help in estimating the telluric gamma dose rates. Such an approach is possible using multivariate geostatistics and cokriging. Multi-collocated cokriging has been performed on 1*1 km(2) cells over the domain. This model used gamma dose rate measurement results and GUP classes. Our results provide useful information on the variability of the natural terrestrial gamma radiation in France ('natural background') and exposure data for epidemiological studies and risk assessment from low dose chronic exposures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Rectal Dose and Source Strength of the High-Dose-Rate Iridium-192 Both Affect Late Rectal Bleeding After Intracavitary Radiation Therapy for Uterine Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isohashi, Fumiaki, E-mail: isohashi@radonc.med.osaka-u.ac.j; Yoshioka, Yasuo; Koizumi, Masahiko

    2010-07-01

    Purpose: The purpose of this study was to reconfirm our previous findings that the rectal dose and source strength both affect late rectal bleeding after high-dose-rate intracavitary brachytherapy (HDR-ICBT), by using a rectal dose calculated in accordance with the definitions of the International Commission on Radiation Units and Measurements Report 38 (ICRU{sub RP}) or of dose-volume histogram (DVH) parameters by the Groupe Europeen de Curietherapie of the European Society for Therapeutic Radiology and Oncology. Methods and Materials: Sixty-two patients who underwent HDR-ICBT and were followed up for 1 year or more were studied. The rectal dose for ICBT was calculatedmore » by using the ICRP{sub RP} based on orthogonal radiographs or the DVH parameters based on computed tomography (CT). The total dose was calculated as the biologically equivalent dose expressed in 2-Gy fractions (EQD{sub 2}). The relationship between averaged source strength or the EQD{sub 2} and late rectal bleeding was then analyzed. Results: When patients were divided into four groups according to rectal EQD{sub 2} ({>=} or =} or <2.4 cGy.m{sup 2}.h{sup -1}), the group with both a high EQD{sub 2} and a high source strength showed a significantly greater probability of rectal bleeding for ICRU{sub RP}, D{sub 2cc}, and D{sub 1cc}. The patients with a median rectal dose above the threshold level did not show a greater frequency of rectal bleeding unless the source strength exceeded 2.4 cGy.m{sup 2}.h{sup -1}. Conclusions: Our results obtained with data based on ICRU{sub RP} and CT-based DVH parameters indicate that rectal dose and source strength both affect rectal bleeding after HDR-ICBT.« less

  13. SU-C-207-02: A Method to Estimate the Average Planar Dose From a C-Arm CBCT Acquisition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, MP

    2015-06-15

    Purpose: The planar average dose in a C-arm Cone Beam CT (CBCT) acquisition had been estimated in the past by averaging the four peripheral dose measurements in a CTDI phantom and then using the standard 2/3rds peripheral and 1/3 central CTDIw method (hereafter referred to as Dw). The accuracy of this assumption has not been investigated and the purpose of this work is to test the presumed relationship. Methods: Dose measurements were made in the central plane of two consecutively placed 16cm CTDI phantoms using a 0.6cc ionization chamber at each of the 4 peripheral dose bores and in themore » central dose bore for a C-arm CBCT protocol. The same setup was scanned with a circular cut-out of radiosensitive gafchromic film positioned between the two phantoms to capture the planar dose distribution. Calibration curves for color pixel value after scanning were generated from film strips irradiated at different known dose levels. The planar average dose for red and green pixel values was calculated by summing the dose values in the irradiated circular film cut out. Dw was calculated using the ionization chamber measurements and film dose values at the location of each of the dose bores. Results: The planar average dose using both the red and green pixel color calibration curves were within 10% agreement of the planar average dose estimated using the Dw method of film dose values at the bore locations. Additionally, an average of the planar average doses calculated using the red and green calibration curves differed from the ionization chamber Dw estimate by only 5%. Conclusion: The method of calculating the planar average dose at the central plane of a C-arm CBCT non-360 rotation by calculating Dw from peripheral and central dose bore measurements is a reasonable approach to estimating the planar average dose. Research Grant, Siemens AG.« less

  14. Manned Mars mission radiation environment and radiobiology

    NASA Technical Reports Server (NTRS)

    Nachtwey, D. S.

    1986-01-01

    Potential radiation hazards to crew members on manned Mars missions are discussed. It deals briefly with radiation sources and environments likely to be encountered during various phases of such missions, providing quantitative estimates of these environments. Also provided are quantitative data and discussions on the implications of such radiation on the human body. Various sorts of protective measures are suggested. Recent re-evaluation of allowable dose limits by the National Council of Radiation Protection is discussed, and potential implications from such activity are assessed.

  15. Impact of the 1980 BEIR-III report on low-level radiation risk assessment, radiation protection guides, and public health policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-06-01

    The author deals with the scientific basis for establishing appropriate radiation protection guides, and this effect on evaluation of societal activities concerned with the health effects in human populations exposed to low-level radiation. Methodology is discussed for estimating risks of radio-induced cancer and genetically related ill-health in man, the sources of data, the dose-response models used, and the precision ascribed to the process. (PSB)

  16. Role of step size and max dwell time in anatomy based inverse optimization for prostate implants

    PubMed Central

    Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha

    2013-01-01

    In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an optimal choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source step size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the step size and maximum source dwell time during anatomy-based, inverse-planned optimization. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm step size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other step sizes. The target coverage for this step size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The step size plays a significant role in plan optimization for prostate implants. Our study supports use of a 0.5 cm step size for prostate implants. PMID:24049323

  17. Study of dose calculation on breast brachytherapy using prism TPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fendriani, Yoza; Haryanto, Freddy

    2015-09-30

    PRISM is one of non-commercial Treatment Planning System (TPS) and is developed at the University of Washington. In Indonesia, many cancer hospitals use expensive commercial TPS. This study aims to investigate Prism TPS which been applied to the dose distribution of brachytherapy by taking into account the effect of source position and inhomogeneities. The results will be applicable for clinical Treatment Planning System. Dose calculation has been implemented for water phantom and CT scan images of breast cancer using point source and line source. This study used point source and line source and divided into two cases. On the firstmore » case, Ir-192 seed source is located at the center of treatment volume. On the second case, the source position is gradually changed. The dose calculation of every case performed on a homogeneous and inhomogeneous phantom with dimension 20 × 20 × 20 cm{sup 3}. The inhomogeneous phantom has inhomogeneities volume 2 × 2 × 2 cm{sup 3}. The results of dose calculations using PRISM TPS were compared to literature data. From the calculation of PRISM TPS, dose rates show good agreement with Plato TPS and other study as published by Ramdhani. No deviations greater than ±4% for all case. Dose calculation in inhomogeneous and homogenous cases show similar result. This results indicate that Prism TPS is good in dose calculation of brachytherapy but not sensitive for inhomogeneities. Thus, the dose calculation parameters developed in this study were found to be applicable for clinical treatment planning of brachytherapy.« less

  18. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database

    DOE PAGES

    Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.

    2017-07-01

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less

  19. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database.

    PubMed

    Scofield, Patricia A; Smith, Linda L; Johnson, David N

    2017-07-01

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.

  20. Oak Ridge Reservation Environmental Protection Rad Neshaps Radionuclide Inventory Web Database and Rad Neshaps Source and Dose Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.

    The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less

  1. Estimation of median human lethal radiation dose computed from data on occupants of reinforced concrete structures in Nagasaki, Japan.

    PubMed

    Levin, S G; Young, R W; Stohler, R L

    1992-11-01

    This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.

  2. An influential factor for external radiation dose estimation for residents after the Fukushima Daiichi Nuclear Power Plant accident-time spent outdoors for residents in Iitate Village.

    PubMed

    Ishikawa, Tetsuo; Yasumura, Seiji; Ohtsuru, Akira; Sakai, Akira; Akahane, Keiichi; Yonai, Shunsuke; Sakata, Ritsu; Ozasa, Kotaro; Hayashi, Masayuki; Ohira, Tetsuya; Kamiya, Kenji; Abe, Masafumi

    2016-06-01

    Many studies have been conducted on radiation doses to residents after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Time spent outdoors is an influential factor for external dose estimation. Since little information was available on actual time spent outdoors for residents, different values of average time spent outdoors per day have been used in dose estimation studies on the FDNPP accident. The most conservative value of 24 h was sometimes used, while 2.4 h was adopted for indoor workers in the UNSCEAR 2013 report. Fukushima Medical University has been estimating individual external doses received by residents as a part of the Fukushima Health Management Survey by collecting information on the records of moves and activities (the Basic Survey) after the accident from each resident. In the present study, these records were analyzed to estimate an average time spent outdoors per day. As an example, in Iitate Village, its arithmetic mean was 2.08 h (95% CI: 1.64-2.51) for a total of 170 persons selected from respondents to the Basic Survey. This is a much smaller value than commonly assumed. When 2.08 h is used for the external dose estimation, the dose is about 25% (23-26% when using the above 95% CI) less compared with the dose estimated for the commonly used value of 8 h.

  3. Individual dose monitoring of the nuclear medicine departments staff controlled by Central Laboratory for Radiological Protection.

    PubMed

    Szewczak, Kamil; Jednoróg, Sławomir; Krajewski, Paweł

    2013-01-01

    Presented paper describes the results of the individual doses measurements for ionizing radiation, carried out by the Laboratory of Individual and Environmental Doses Monitoring (PDIS) of the Central Laboratory for Radiological Protection in Warsaw (CLOR) for the medical staff employees in several nuclear medicine (NM) departments across Poland. In total there are48 NM departments in operation in Poland [1] (consultation in Nuclear Atomic Agency). Presented results were collected over the period from January 2011 to December 2011 at eight NM departments located in Krakow, Warszawa (two departments), Rzeszow (two departments), Opole, Przemysl and Gorzow Wielkopolski. For radiation monitoring three kinds of thermo luminescence dosimeters (TLD) were used. The first TLD h collected information about whole body (C) effective dose, the second dosimeter was mounted in the ring (P) meanwhile the third on the wrist (N) of the tested person. Reading of TLDs was performed in quarterly periods. As a good approximation of effective and equivalent dose assessment of operational quantities both the individual dose equivalent Hp(10) and the Hp(0.07) were used. The analysis of the data was performed using two methods The first method was based on quarterly estimations of Hp(10)q and Hp(0.07)q while the second measured cumulative annual doses Hp(10)a and Hp(0.07)a. The highest recorded value of the radiation dose for quarterly assessments reached 24.4 mSv and was recorded by the wrist type dosimeter worn by a worker involved in source preparation procedure. The mean values of Hp(10)q(C type dosimeter) and Hp(0.07)q (P and N type dosimeter) for all monitored departments were respectively 0.46 mSv and 3.29 mSv. There was a strong correlation between the performed job and the value of the received dose. The highest doses always were absorbed by those staff members who were involved in sources preparation. The highest annual cumulative dose for a particular worker in the considered time period was 4.22 mSv for Hp(10)a and 67.7 mSv for Hp(0.07)a. In 2011 no case of exceeding the allowed dose limits was noted.

  4. Beyond dose assessment: using risk with full disclosure of uncertainty in public and scientific communication.

    PubMed

    Hoffman, F Owen; Kocher, David C; Apostoaei, A Iulian

    2011-11-01

    Evaluations of radiation exposures of workers and the public traditionally focus on assessments of radiation dose, especially annual dose, without explicitly evaluating the health risk associated with those exposures, principally the risk of radiation-induced cancer. When dose is the endpoint of an assessment, opportunities to communicate the significance of exposures are limited to comparisons with dose criteria in regulations, doses due to natural background or medical x-rays, and doses above which a statistically significant increase of disease has been observed in epidemiologic studies. Risk assessment generally addresses the chance (probability) that specific diseases might be induced by past, present, or future exposure. The risk of cancer per unit dose will vary depending on gender, age, exposure type (acute or chronic), and radiation type. It is not uncommon to find that two individuals with the same effective dose will have substantially different risks. Risk assessment has shown, for example, that: (a) medical exposures to computed tomography scans have become a leading source of future risk to the general population, and that the risk would be increased above recently published estimates if the incidence of skin cancer and the increased risk from exposure to x-rays compared with high-energy photons were taken into account; (b) indoor radon is a significant contributor to the baseline risk of lung cancer, particularly among people who have never smoked; and (c) members of the public who were exposed in childhood to I in fallout from atmospheric nuclear weapons tests and were diagnosed with thyroid cancer later in life would frequently meet criteria established for federal compensation of cancers experienced by energy workers and military participants at atmospheric weapons tests. Risk estimation also enables comparisons of impacts of exposures to radiation and chemical carcinogens and other hazards to life and health. Communication of risk with uncertainty is essential for reaching informed consent, whether communicating to a larger community debating the tradeoffs of risks and benefits of an action that involves radiation exposure or communicating at the level of a physician and patient.

  5. SU-F-P-44: A Direct Estimate of Peak Skin Dose for Interventional Fluoroscopy Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    Purpose: There is an increasing demand for medical physicist to calculate peak skin dose (PSD) for interventional fluoroscopy procedures. The dose information (Dose-Area-Product and Air Kerma) displayed in the console cannot directly be used for this purpose. Our clinical experience shows that the use of the existing methods may overestimate or underestimate PSD. This study attempts to develop a direct estimate of PSD from the displayed dose metrics. Methods: An anthropomorphic torso phantom was used for dose measurements for a common fluoroscopic procedure. Entrance skin doses were measured with a Piranha solid state point detector placed on the table surfacemore » below the torso phantom. An initial “reference dose rate” (RE) measurement was conducted by comparing the displayed dose rate (mGy/min) to the dose rate measured. The distance from table top to focal spot was taken as the reference distance (RD at the RE. Table height was then adjusted. The displayed air kerma and DAP were recorded and sent to three physicists to estimate PSD. An inverse square correction was applied to correct displayed air kerma at various table heights. The PSD estimated by physicists and the PSD by the proposed method were then compared with the measurements. The estimated DAPs were compared to displayed DAP readings (mGycm2). Results: The difference between estimated PSD by the proposed method and direct measurements was less than 5%. For the same set of data, the estimated PSD by each of three physicists is different from measurements by ±52%. The DAP calculated by the proposed method and displayed DAP readings in the console is less than 20% at various table heights. Conclusion: PSD may be simply estimated from displayed air kerma or DAP if the distance between table top and tube focal spot or if x-ray beam area on table top is available.« less

  6. Chemical and radioactive carcinogens in cigarettes: associated health impacts and responses of the tobacco industry, U.S. Congress, and federal regulatory agencies.

    PubMed

    Moeller, Dade W; Sun, Lin-Shen C

    2010-11-01

    ²¹⁰Po and ²¹⁰Pb were discovered in tobacco in 1964. This was followed by detailed assessments of the nature of their deposition, and accompanying dose rates to the lungs of cigarette smokers. Subsequent studies revealed: (1) the sources and pathways through which they gain access to tobacco; (2) the mechanisms through which they preferentially deposit in key segments of the bronchial epithelium; and (3) the fact that the accompanying alpha radiation plays a synergistic role in combination with the chemical carcinogens, to increase the fatal cancer risk coefficient in cigarette smokers by a factor of 8 to 25. Nonetheless, it was not until 2009 that Congress mandated that the Food and Drug Administration require that the cigarette industry reveal the presence of these carcinogens. In the meantime, cigarette smoking has become not only the number one source of cancer deaths in the United States, but also a major contributor to heart disease and other health impacts. If the latter effects are included, smoking is estimated to have caused an average of 443,000 deaths and 5.1 million years of potential life lost among the U.S. population each year from 2000 through 2004. The estimated associated collective dose is more than 36 times that to the workers at all the U.S. nuclear power plants, U.S. Department of Energy nuclear weapons facilities, and crews of all the vessels in the U.S. Nuclear Navy. This unnecessary source of lung cancer deaths demands the utmost attention of the radiation protection and public health professions.

  7. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Neeharika; Cifter, Gizem; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using themore » Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application with in situ dose painting administered via gold nanoparticle eluters for prostate cancer.« less

  8. Effects of irradiation source and dose level on quality characteristics of processed meat products

    NASA Astrophysics Data System (ADS)

    Ham, Youn-Kyung; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Choi, Yun-Sang; Song, Beom-Seok; Park, Jong-Heum; Kim, Cheon-Jei

    2017-01-01

    The effect of irradiation source (gamma-ray, electron-beam, and X-ray) and dose levels on the physicochemical, organoleptic and microbial properties of cooked beef patties and pork sausages was studied, during 10 days of storage at 30±1 °C. The processed meat products were irradiated at 0, 2.5, 5, 7.5, and 10 kGy by three different irradiation sources. The pH of cooked beef patties and pork sausages was unaffected by irradiation sources or their doses. The redness of beef patties linearly decreased with increasing dose level (P<0.05), obviously by e-beam irradiation compared to gamma-ray and X-ray (P<0.05). The redness of pork sausages was increased by gamma-ray irradiation, whereas it decreased by e-beam irradiation depending on absorbed dose level. No significant changes in overall acceptability were observed for pork sausages regardless of irradiation source (P>0.05), while gamma-ray irradiated beef patties showed significantly decreased overall acceptability in a dose-dependent manner (P<0.05). Lipid oxidation of samples was accelerated by irradiation depending on irradiation sources and dose levels during storage at 30 °C. E-beam reduced total aerobic bacteria of beef patties more effectively, while gamma-ray considerably decreased microbes in pork sausages as irradiation dose increased. The results of this study indicate that quality attributes of meat products, in particular color, lipid oxidation, and microbial properties are significantly influenced by the irradiation sources.

  9. Assessment of simulated high-dose partial-body irradiation by PCC-R assay.

    PubMed

    Romero, Ivonne; García, Omar; Lamadrid, Ana I; Gregoire, Eric; González, Jorge E; Morales, Wilfredo; Martin, Cécile; Barquinero, Joan-Francesc; Voisin, Philippe

    2013-09-01

    The estimation of the dose and the irradiated fraction of the body is important information in the primary medical response in case of a radiological accident. The PCC-R assay has been developed for high-dose estimations, but little attention has been given to its applicability for partial-body irradiations. In the present work we estimated the doses and the percentage of the irradiated fraction in simulated partial-body radiation exposures at high doses using the PCC-R assay. Peripheral whole blood of three healthy donors was exposed to doses from 0-20 Gy, with ⁶⁰Co gamma radiation. To simulate partial body irradiations, irradiated and non-irradiated blood was mixed to obtain proportions of irradiated blood from 10-90%. Lymphocyte cultures were treated with Colcemid and Calyculin-A before harvest. Conventional and triage scores were performed for each dose, proportion of irradiated blood and donor. The Papworth's u test was used to evaluate the PCC-R distribution per cell. A dose-response relationship was fitted according to the maximum likelihood method using the frequencies of PCC-R obtained from 100% irradiated blood. The dose to the partially irradiated blood was estimated using the Contaminated Poisson method. A new D₀ value of 10.9 Gy was calculated and used to estimate the initial fraction of irradiated cells. The results presented here indicate that by PCC-R it is possible to distinguish between simulated partial- and whole-body irradiations by the u-test, and to accurately estimate the dose from 10-20 Gy, and the initial fraction of irradiated cells in the interval from 10-90%.

  10. Biological dosimetry in a group of radiologists by the analysis of dicentrics and translocations.

    PubMed

    Montoro, A; Rodríguez, P; Almonacid, M; Villaescusa, J I; Verdú, G; Caballín, M R; Barrios, L; Barquinero, J F

    2005-11-01

    The results of a cytogenetic study carried out in a group of nine radiologists are presented. Chromosome aberrations were detected by fluorescence plus Giemsa staining and fluorescence in situ hybridization. Dose estimates were obtained by extrapolating the yield of dicentrics and translocations to their respective dose-effect curves. In seven individuals, the 95% confidence limits of the doses estimated by dicentrics did not include 0 Gy. The 99 dicentrics observed in 17,626 cells gave a collective estimated dose of 115 mGy (95% confidence limits 73-171). For translocations, five individuals had estimated doses that were clearly higher than the total accumulated recorded dose. The 82 total apparently simple translocations observed in 9722 cells gave a collective estimated dose of 275 mGy (132-496). The mean genomic frequencies (x100 +/- SE) of complete and total apparently simple translocations observed in the group of radiologists (1.91 +/- 0.30 and 2.67 +/- 0.34, respectively) were significantly higher than those observed in a matched control group (0.53 +/- 0.10 and 0.87 +/- 0.13, P < 0.01 in both cases) and in another occupationally exposed matched group (0.79 +/- 0.12 and 1.14 +/-0.14, P < 0.03 and P < 0.01, respectively). The discrepancies observed between the physically recorded doses and the biologically estimated doses indicate that the radiologists did not always wear their dosimeters or that the dosimeters were not always in the radiation field.

  11. Temporal analysis of the October 1989 proton flare using computerized anatomical models

    NASA Technical Reports Server (NTRS)

    Simonsen, L. C.; Cucinotta, F. A.; Atwell, W.; Nealy, J. E.

    1993-01-01

    The GOES-7 time history data of hourly averaged integral proton fluxes at various particle kinetic energies are analyzed for the solar proton event that occurred between October 19 and 29, 1989. By analyzing the time history data, the dose rates which may vary over many orders of magnitude in the early phases of the flare can be estimated as well as the cumulative dose as a function of time. Basic transport calculations are coupled with detailed body organ thickness distributions from computerized anatomical models to estimate dose rates and cumulative doses to 20 critical body organs. For a 5-cm-thick water shield, cumulative skin, eye, and blood-forming-organ dose equivalents of 1.27, 1.23, and 0.41 Sv, respectively, are estimated. These results are approximately 40-50 percent less than the widely used 0- and 5-cm slab dose estimates. The risk of cancer incidence and mortality are also estimated for astronauts protected by various water shield thicknesses.

  12. Radiation dose optimization in the decommissioning plan for Loviisa NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmberg, R.; Eurajoki, T.

    1995-03-01

    Finnish rules for nuclear power require a detailed decommissioning plan to be made and kept up to date already during plant operation. The main reasons for this {open_quotes}premature{close_quotes} plan, is, firstly, the need to demonstrate the feasibility of decommissioning, and, secondly, to make realistic cost estimates in order to fund money for this future operation. The decomissioning for Lovissa Nuclear Power Plant (NPP) (2{times}445 MW, PWR) was issued in 1987. It must be updated about every five years. One important aspect of the plant is an estimate of radiation doses to the decomissioning workers. The doses were recently re-estimated becausemore » of a need to decrease the total collective dose estimate in the original plan, 23 manSv. In the update, the dose was reduced by one-third. Part of the reduction was due to changes in the protection and procedures, in which ALARA considerations were taken into account, and partly because of re-estimation of the doses.« less

  13. Potential health risks from postulated accidents involving the Pu-238 RTG on the Ulysses solar exploration mission

    NASA Technical Reports Server (NTRS)

    Goldman, Marvin; Hoover, Mark D.; Nelson, Robert C.; Templeton, William; Bollinger, Lance; Anspaugh, Lynn

    1991-01-01

    Potential radiation impacts from launch of the Ulysses solar exploration experiment were evaluated using eight postulated accident scenarios. Lifetime individual dose estimates rarely exceeded 1 mrem. Most of the potential health effects would come from inhalation exposures immediately after an accident, rather than from ingestion of contaminated food or water, or from inhalation of resuspended plutonium from contaminated ground. For local Florida accidents (that is, during the first minute after launch), an average source term accident was estimated to cause a total added cancer risk of up to 0.2 deaths. For accidents at later time after launch, a worldwide cancer risk of up to three cases was calculated (with a four in a million probability). Upper bound estimates were calculated to be about 10 times higher.

  14. WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; Paganetti, H; Schuemann, J

    2014-06-15

    Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MVmore » photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.« less

  15. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.« less

  16. Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols

    PubMed Central

    Sathiyan, S.; Ravikumar, M.

    2008-01-01

    In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700

  17. SU-F-19A-05: Experimental and Monte Carlo Characterization of the 1 Cm CivaString 103Pd Brachytherapy Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J; Micka, J; Culberson, W

    Purpose: To determine the in-air azimuthal anisotropy and in-water dose distribution for the 1 cm length of the CivaString {sup 103}Pd brachytherapy source through measurements and Monte Carlo (MC) simulations. American Association of Physicists in Medicine Task Group No. 43 (TG-43) dosimetry parameters were also determined for this source. Methods: The in-air azimuthal anisotropy of the source was measured with a NaI scintillation detector and simulated with the MCNP5 radiation transport code. Measured and simulated results were normalized to their respective mean values and compared. The TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function for this sourcemore » were determined from LiF:Mg,Ti thermoluminescent dosimeter (TLD) measurements and MC simulations. The impact of {sup 103}Pd well-loading variability on the in-water dose distribution was investigated using MC simulations by comparing the dose distribution for a source model with four wells of equal strength to that for a source model with strengths increased by 1% for two of the four wells. Results: NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy showed that ≥95% of the normalized data were within 1.2% of the mean value. TLD measurements and MC simulations of the TG-43 dose-rate constant, line-source radial dose function, and 2D anisotropy function agreed to within the experimental TLD uncertainties (k=2). MC simulations showed that a 1% variability in {sup 103}Pd well-loading resulted in changes of <0.1%, <0.1%, and <0.3% in the TG-43 dose-rate constant, radial dose distribution, and polar dose distribution, respectively. Conclusion: The CivaString source has a high degree of azimuthal symmetry as indicated by the NaI scintillation detector measurements and MC simulations of the in-air azimuthal anisotropy. TG-43 dosimetry parameters for this source were determined from TLD measurements and MC simulations. {sup 103}Pd well-loading variability results in minimal variations in the in-water dose distribution according to MC simulations. This work was partially supported by CivaTech Oncology, Inc. through an educational grant for Joshua Reed, John Micka, Wesley Culberson, and Larry DeWerd and through research support for Mark Rivard.« less

  18. Estimation of resist sensitivity for extreme ultraviolet lithography using an electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Tomoko Gowa, E-mail: ohyama.tomoko@qst.go.jp; Oshima, Akihiro; Tagawa, Seiichi, E-mail: tagawa@sanken.osaka-u.ac.jp

    2016-08-15

    It is a challenge to obtain sufficient extreme ultraviolet (EUV) exposure time for fundamental research on developing a new class of high sensitivity resists for extreme ultraviolet lithography (EUVL) because there are few EUV exposure tools that are very expensive. In this paper, we introduce an easy method for predicting EUV resist sensitivity by using conventional electron beam (EB) sources. If the chemical reactions induced by two ionizing sources (EB and EUV) are the same, the required absorbed energies corresponding to each required exposure dose (sensitivity) for the EB and EUV would be almost equivalent. Based on this theory, wemore » calculated the resist sensitivities for the EUV/soft X-ray region. The estimated sensitivities were found to be comparable to the experimentally obtained sensitivities. It was concluded that EB is a very useful exposure tool that accelerates the development of new resists and sensitivity enhancement processes for 13.5 nm EUVL and 6.x nm beyond-EUVL (BEUVL).« less

  19. Small field depth dose profile of 6 MV photon beam in a simple air-water heterogeneity combination: A comparison between anisotropic analytical algorithm dose estimation with thermoluminescent dosimeter dose measurement.

    PubMed

    Mandal, Abhijit; Ram, Chhape; Mourya, Ankur; Singh, Navin

    2017-01-01

    To establish trends of estimation error of dose calculation by anisotropic analytical algorithm (AAA) with respect to dose measured by thermoluminescent dosimeters (TLDs) in air-water heterogeneity for small field size photon. TLDs were irradiated along the central axis of the photon beam in four different solid water phantom geometries using three small field size single beams. The depth dose profiles were estimated using AAA calculation model for each field sizes. The estimated and measured depth dose profiles were compared. The over estimation (OE) within air cavity were dependent on field size (f) and distance (x) from solid water-air interface and formulated as OE = - (0.63 f + 9.40) x2+ (-2.73 f + 58.11) x + (0.06 f2 - 1.42 f + 15.67). In postcavity adjacent point and distal points from the interface have dependence on field size (f) and equations are OE = 0.42 f2 - 8.17 f + 71.63, OE = 0.84 f2 - 1.56 f + 17.57, respectively. The trend of estimation error of AAA dose calculation algorithm with respect to measured value have been formulated throughout the radiation path length along the central axis of 6 MV photon beam in air-water heterogeneity combination for small field size photon beam generated from a 6 MV linear accelerator.

  20. Dose Equivalents for Antipsychotic Drugs: The DDD Method.

    PubMed

    Leucht, Stefan; Samara, Myrto; Heres, Stephan; Davis, John M

    2016-07-01

    Dose equivalents of antipsychotics are an important but difficult to define concept, because all methods have weaknesses and strongholds. We calculated dose equivalents based on defined daily doses (DDDs) presented by the World Health Organisation's Collaborative Center for Drug Statistics Methodology. Doses equivalent to 1mg olanzapine, 1mg risperidone, 1mg haloperidol, and 100mg chlorpromazine were presented and compared with the results of 3 other methods to define dose equivalence (the "minimum effective dose method," the "classical mean dose method," and an international consensus statement). We presented dose equivalents for 57 first-generation and second-generation antipsychotic drugs, available as oral, parenteral, or depot formulations. Overall, the identified equivalent doses were comparable with those of the other methods, but there were also outliers. The major strength of this method to define dose response is that DDDs are available for most drugs, including old antipsychotics, that they are based on a variety of sources, and that DDDs are an internationally accepted measure. The major limitations are that the information used to estimate DDDS is likely to differ between the drugs. Moreover, this information is not publicly available, so that it cannot be reviewed. The WHO stresses that DDDs are mainly a standardized measure of drug consumption, and their use as a measure of dose equivalence can therefore be misleading. We, therefore, recommend that if alternative, more "scientific" dose equivalence methods are available for a drug they should be preferred to DDDs. Moreover, our summary can be a useful resource for pharmacovigilance studies. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Top