Comparison of treatment plans: a retrospective study by the method of radiobiological evaluation
NASA Astrophysics Data System (ADS)
Puzhakkal, Niyas; Kallikuzhiyil Kochunny, Abdullah; Manthala Padannayil, Noufal; Singh, Navin; Elavan Chalil, Jumanath; Kulangarakath Umer, Jamshad
2016-09-01
There are many situations in radiotherapy where multiple treatment plans need to be compared for selection of an optimal plan. In this study we performed the radiobiological method of plan evaluation to verify the treatment plan comparison procedure of our clinical practice. We estimated and correlated various radiobiological dose indices with physical dose metrics for a total of 30 patients representing typical cases of head and neck, prostate and brain tumors. Three sets of plans along with a clinically approved plan (final plan) treated by either Intensity Modulated Radiation Therapy (IMRT) or Rapid Arc (RA) techniques were considered. The study yielded improved target coverage for final plans, however, no appreciable differences in doses and the complication probabilities of organs at risk were noticed. Even though all four plans showed adequate dose distributions, from dosimetric point of view, the final plan had more acceptable dose distribution. The estimated biological outcome and dose volume histogram data showed least differences between plans for IMRT when compared to RA. Our retrospective study based on 120 plans, validated the radiobiological method of plan evaluation. The tumor cure or normal tissue complication probabilities were found to be correlated with the corresponding physical dose indices.
Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee
2016-04-01
The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Develop real-time dosimetry concepts and instrumentation for long term missions
NASA Technical Reports Server (NTRS)
Braby, L. A.
1982-01-01
The development of a rugged portable instrument to evaluate dose and dose equivalent is described. A tissue-equivalent proportional counter simulating a 2 micrometer spherical tissue volume was operated satisfactorily for over a year. The basic elements of the electronic system were designed and tested. And finally, the most suitable mathematical technique for evaluating dose equivalent with a portable instrument was selected. Design and fabrication of a portable prototype, based on the previously tested circuits, is underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, James K.; Armeson, Kent E.; Richardson, Susan, E-mail: srichardson@radonc.wustl.edu
2012-05-01
Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% ofmore » ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.« less
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Vučićević, Katarina; Jovanović, Marija; Golubović, Bojana; Kovačević, Sandra Vezmar; Miljković, Branislava; Martinović, Žarko; Prostran, Milica
2015-02-01
The present study aimed to establish population pharmacokinetic model for phenobarbital (PB), examining and quantifying the magnitude of PB interactions with other antiepileptic drugs concomitantly used and to demonstrate its use for individualization of PB dosing regimen in adult epileptic patients. In total 205 PB concentrations were obtained during routine clinical monitoring of 136 adult epilepsy patients. PB steady state concentrations were measured by homogeneous enzyme immunoassay. Nonlinear mixed effects modelling (NONMEM) was applied for data analyses and evaluation of the final model. According to the final population model, significant determinant of apparent PB clearance (CL/F) was daily dose of concomitantly given valproic acid (VPA). Typical value of PB CL/F for final model was estimated at 0.314 l/h. Based on the final model, co-therapy with usual VPA dose of 1000 mg/day, resulted in PB CL/F average decrease of about 25 %, while 2000 mg/day leads to an average 50 % decrease in PB CL/F. Developed population PB model may be used in estimating individual CL/F for adult epileptic patients and could be applied for individualizing dosing regimen taking into account dose-dependent effect of concomitantly given VPA.
Approaches for the Application of Physiologically Based ...
EPA released the final report, Approaches for the Application of Physiologically Based Pharmacokinetic (PBPK) Models and Supporting Data in Risk Assessment as announced in a September 22 2006 Federal Register Notice.This final report addresses the application and evaluation of PBPK models for risk assessment purposes. These models represent an important class of dosimetry models that are useful for predicting internal dose at target organs for risk assessment applications. EPA is releasing a final report describing the evaluation and applications of physiologically based pharmacokinetic (PBPK) models in health risk assessment. This was announced in the September 22 2006 Federal Register Notice.
Carrez, Laurent; Bouchoud, Lucie; Fleury-Souverain, Sandrine; Combescure, Christophe; Falaschi, Ludivine; Sadeghipour, Farshid; Bonnabry, Pascal
2017-03-01
Background and objectives Centralized chemotherapy preparation units have established systematic strategies to avoid errors. Our work aimed to evaluate the accuracy of manual preparations associated with different control methods. Method A simulation study in an operational setting used phenylephrine and lidocaine as markers. Each operator prepared syringes that were controlled using a different method during each of three sessions (no control, visual double-checking, and gravimetric control). Eight reconstitutions and dilutions were prepared in each session, with variable doses and volumes, using different concentrations of stock solutions. Results were analyzed according to qualitative (choice of stock solution) and quantitative criteria (accurate, <5% deviation from the target concentration; weakly accurate, 5%-10%; inaccurate, 10%-30%; wrong, >30% deviation). Results Eleven operators carried out 19 sessions. No final preparation (n = 438) contained a wrong drug. The protocol involving no control failed to detect 1 of 3 dose errors made and double-checking failed to detect 3 of 7 dose errors. The gravimetric control method detected all 5 out of 5 dose errors. The accuracy of the doses measured was equivalent across the control methods ( p = 0.63 Kruskal-Wallis). The final preparations ranged from 58% to 60% accurate, 25% to 27% weakly accurate, 14% to 17% inaccurate and 0.9% wrong. A high variability was observed between operators. Discussion Gravimetric control was the only method able to detect all dose errors, but it did not improve dose accuracy. A dose accuracy with <5% deviation cannot always be guaranteed using manual production. Automation should be considered in the future.
Solar radiation alert system : final report.
DOT National Transportation Integrated Search
2009-03-01
The Solar Radiation Alert (SRA) system continuously evaluates measurements of high-energy protons made by instruments on GOES satellites. If the measurements indicate a substantial elevation of effective dose rates at aircraft flight altitudes, the C...
Surgical Responses of Medial Rectus Muscle Recession in Thyroid Eye Disease-Related Esotropia
Lyu, In Jeong; Lee, Ju-Yeun; Kong, Mingui; Park, Kyung-Ah; Oh, Sei Yeul
2016-01-01
We evaluate the surgical outcomes and surgical responses of medial rectus muscle (MR) recession patients with thyroid eye disease (TED)-related esotropia (ET). The surgical dose-response curves 1 week postoperatively and at the final visit were analyzed. Univariable and multivariable linear regression analyses were applied to investigate factors influencing surgical dose-response. A total of 43 patients with TED-related ET that underwent MR recession were included. The final success rate was 86.0% and the rate of undercorrection was 14.0%. The surgical dose-response curves of TED-related ET showed a gentle slope compared with those of standard surgical tables. In the univariable model, simultaneous vertical rectus muscle recession was the only significant factor influencing surgical dose-response of MR recession in TED-related ET (β = -0.397, P = 0.044). In a model adjusted for age, sex, type of surgery, and preoperative horizontal angle of deviation, simultaneous vertical rectus muscle recession showed marginal significance (β = -0.389, P = 0.064). The surgical dose-response curve of TED-related ET was unique. Simultaneous vertical rectus muscle recession was associated with increased surgical dose-response in TED-related ET. PMID:26796354
Carneiro, Luciene Moraes; Mousquer, Gina Jonasson; Pinheiro, Raquel Silva; Castro, Ana Rita Coimbra Motta; França, Divânia Dias Da Silva; Caetano, Karlla Antonieta Amorim; Carneiro, Megmar Aparecida dos Santos; Martins, Regina Maria Bringel; Matos, Marcos André de; Castro, Lisie; Rezende, Grazielli; Teles, Sheila Araujo
2014-01-01
To evaluate the hepatitis B immunization status of female sex workers (FSWs) in Central-West Brazil and to evaluate their compliance with and immune response to hepatitis B vaccination delivered using outreach strategies. A total of 721 FSWs recruited in 2 large cities in Central-West Brazil were interviewed and screened for the presence of hepatitis B virus (HBV) markers. Hepatitis B vaccine was offered to all women susceptible to HBV, using outreach strategies. The immune response of FSWs who received a full course of vaccine was assessed following the final vaccine dose. We found that 27.6% of FSWs, the majority of whom were aged 18 to 25 years, had serological evidence of previous hepatitis B vaccination. A total of 434 FSWs were eligible for vaccination, 389 (89.6%) of whom accepted the first hepatitis B vaccine dose. Of those, 64% received a second dose and 37.5% received all three doses. Through the outreach strategy, there was a 52.2% increase in the number of women who received the second dose and a 67% increase in the number who received the third dose. Of the 146 women who received a full course of vaccine, 105 accepted testing for quantitative anti-HBs (hepatitis B surface antibody) following the final vaccine dose, and 92.4% of those tested had developed protective levels of anti-HBs. Lower education level, workplace, and length of prostitution were predictors of full-vaccine acceptance. The present findings illustrate the benefits of using outreach strategies to overcome the difficulties of vaccinating hard-to-reach populations such as FSWs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S; Jung, H; Kim, M
2014-06-01
Purpose: The objective of this study is to evaluate radiation sensitivity of optical stimulated luminance dosimeters (OSLDs) by accumulated dose and high dose. Methods: This study was carried out in Co-60 unit (Theratron 780, AECL, and Canada) and used InLight MicroStar reader (Landauer, Inc., Glenwood, IL) for reading. We annealed for 30 min using optical annealing system which contained fluorescent lamps (Osram lumilux, 24 W, 280 ∼780 nm). To evaluate change of OSLDs sensitivity by repeated irradiation, the dosimeters were repeatedly irradiated with 1 Gy. And whenever a repeated irradiation, we evaluated OSLDs sensitivity. To evaluate OSLDs sensitivity after accumulatedmore » dose with 5 Gy, We irradiated dose accumulatively (from 1 Gy to 5 Gy) without annealing. And OSLDs was also irradiated with 15, 20, 30 Gy to certify change of OSLDs sensitivity after high dose irradiation. After annealing them, they were irradiated with 1Gy, repeatedly. Results: The OSLDs sensitivity increased up to 3% during irradiating seven times and decreased continuously above 8 times. That dropped by about 0.35 Gy per an irradiation. Finally, after 30 times irradiation, OSLDs sensitivity decreased by about 7%. For accumulated dose from 1 Gy to 5 Gy, OSLDs sensitivity about 1 Gy increased until 4.4% after second times accumulated dose compared with before that. OSLDs sensitivity about 1 Gy decreased by 1.6% in five times irradiation. When OSLDs were irradiated ten times with 1Gy after irradiating high dose (10, 15, 20 Gy), OSLDs sensitivity decreased until 6%, 9%, 12% compared with it before high dose irradiation, respectively. Conclusion: This study certified OSLDs sensitivity by accumulated dose and high dose. When irradiated with 1Gy, repeatedly, OSLDs sensitivity decreased linearly and the reduction rate of OSLDs sensitivity after high dose irradiation had dependence on irradiated dose.« less
Xu, Hongmei; Zhou, Wangda; Zhou, Diansong; Li, Jianguo; Al-Huniti, Nidal
2017-03-01
Aztreonam is a monocyclic β-lactam antibiotic often used to treat infections caused by Enterobacteriaceae or Pseudomonas aeruginosa. Despite the long history of clinical use, population pharmacokinetic modeling of aztreonam in renally impaired patients is not yet available. The aims of this study were to assess the impact of renal impairment on aztreonam exposure and to evaluate dosing regimens for patients with renal impairment. A population model describing aztreonam pharmacokinetics following intravenous administration was developed using plasma concentrations from 42 healthy volunteers and renally impaired patients from 2 clinical studies. The final pharmacokinetic model was used to predict aztreonam plasma concentrations and evaluate the probability of pharmacodynamic target attainment (PTA) in patients with different levels of renal function. A 2-compartment model with first-order elimination adequately described aztreonam pharmacokinetics. The population mean estimates of aztreonam clearance, intercompartmental clearance, volume of distribution of the central compartment, and volume of distribution of the peripheral compartment were 4.93 L/h, 9.26 L/h, 7.43 L, and 6.44 L, respectively. Creatinine clearance and body weight were the most significant variables to explain patient variability in aztreonam clearance and volume of distribution, respectively. Simulations using the final pharmacokinetic model resulted in a clinical susceptibility break point of 4 and 8 mg/L, respectively, based on the clinical use of 1- and 2-g loading doses with the same or reduced maintenance dose every 8 hours for various renal deficiency patients. The population pharmacokinetic modeling and PTA estimation support adequate PTAs (>90% PTA) from the aztreonam label for dose adjustment of aztreonam in patients with moderate and severe renal impairment. © 2016, The American College of Clinical Pharmacology.
IRIS Toxicological Review of Beryllium and Compounds (2008 ...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Beryllium that when finalized will appear on the Integrated Risk Information System (IRIS) database. An IRIS Toxicological Review of Beryllium and Compounds was published in 1988 and reassessed in 1998. The current draft (2007) only focuses on the cancer assessment and does not re-evaluate posted reference doses or reference concentrations.
Can contrast media increase organ doses in CT examinations? A clinical study.
Amato, Ernesto; Salamone, Ignazio; Naso, Serena; Bottari, Antonio; Gaeta, Michele; Blandino, Alfredo
2013-06-01
The purpose of this article is to quantify the CT radiation dose increment in five organs resulting from the administration of iodinated contrast medium. Forty consecutive patients who underwent both un-enhanced and contrast-enhanced thoracoabdominal CT were included in our retrospective study. The dose increase between CT before and after contrast agent administration was evaluated in the portal phase for the thyroid, liver, spleen, pancreas, and kidneys by applying a previously validated method. An increase in radiation dose was noted in all organs studied. Average dose increments were 19% for liver, 71% for kidneys, 33% for spleen and pancreas, and 41% for thyroid. Kidneys exhibited the maximum dose increment, whereas the pancreas showed the widest variance because of the differences in fibro-fatty involution. Finally, thyroids with high attenuation values on unenhanced CT showed a lower Hounsfield unit increase and, thus, a smaller increment in the dose. Our study showed an increase in radiation dose in several parenchymatous tissues on contrast-enhanced CT. Our method allowed us to evaluate the dose increase from the change in attenuation measured in Hounsfield units. Because diagnostic protocols require multiple acquisitions after the contrast agent administration, such a dose increase should be considered when optimizing these protocols.
Evaluation of the Carcinogenicity of Ethylene Oxide (2006 External Review Draft)
EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of ethylene oxide (cancer) that when finalized will appear on the Integrated Risk Information System (IRIS) database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denine, E.P.; Stout, L.D.; Peckham, J.C.
1978-11-10
Dose-limiting gastrointestinal toxicosis was qualitatively similar in dogs, monkeys, and mice. In dogs and monkeys, anorexia and/or oligodipsia were cardinal signs. Severity of intoxication was indicated by progression to a diarrheal syndrome. Intoxication of the erythron was indicated in the dog and monkey studies. Quantitatively, mice were the most resistant to toxicity, and monkeys were more resistant than dogs. In dogs, fractionation of a single dose to five daily doses resulted in marked cumulative toxicity. Further fractionation to 10 daily doses produced only additive intoxication. Fractionation of a single dose to weekly doses offered some protection from additive toxicity. Similarmore » results were obtained when 5 daily doses were fractionated to three 5-day courses of treatment separated by 9-day rest periods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Michael; Battista, Jerry; Chen, Jeff
Purpose: To develop a radiotherapy dose tracking and plan evaluation technique using cone-beam computed tomography (CBCT) images. Methods: We developed a patient-specific method of calibrating CBCT image sets for dose calculation. The planning CT was first registered with the CBCT using deformable image registration (DIR). A scatter plot was generated between the CT numbers of the planning CT and CBCT for each slice. The CBCT calibration curve was obtained by least-square fitting of the data, and applied to each CBCT slice. The calibrated CBCT was then merged with original planning CT to extend the small field of view of CBCT.more » Finally, the treatment plan was copied to the merged CT for dose tracking and plan evaluation. The proposed patient-specific calibration method was also compared to two methods proposed in literature. To evaluate the accuracy of each technique, 15 head-and-neck patients requiring plan adaptation were arbitrarily selected from our institution. The original plan was calculated on each method’s data set, including a second planning CT acquired within 48 hours of the CBCT (serving as gold standard). Clinically relevant dose metrics and 3D gamma analysis of dose distributions were compared between the different techniques. Results: Compared to the gold standard of using planning CTs, the patient-specific CBCT calibration method was shown to provide promising results with gamma pass rates above 95% and average dose metric agreement within 2.5%. Conclusions: The patient-specific CBCT calibration method could potentially be used for on-line dose tracking and plan evaluation, without requiring a re-planning CT session.« less
SU-F-T-50: Evaluation of Monte Carlo Simulations Performance for Pediatric Brachytherapy Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatzipapas, C; Kagadis, G; Papadimitroulas, P
Purpose: Pediatric tumors are generally treated with multi-modal procedures. Brachytherapy can be used with pediatric tumors, especially given that in this patient population low toxicity on normal tissues is critical as is the suppression of the probability for late malignancies. Our goal is to validate the GATE toolkit on realistic brachytherapy applications, and evaluate brachytherapy plans on pediatrics for accurate dosimetry on sensitive and critical organs of interest. Methods: The GATE Monte Carlo (MC) toolkit was used. Two High Dose Rate (HDR) 192Ir brachytherapy sources were simulated (Nucletron mHDR-v1 and Varian VS2000), and fully validated using the AAPM and ESTROmore » protocols. A realistic brachytherapy plan was also simulated using the XCAT anthropomorphic computational model .The simulated data were compared to the clinical dose points. Finally, a 14 years old girl with vaginal rhabdomyosarcoma was modelled based on clinical procedures for the calculation of the absorbed dose per organ. Results: The MC simulations resulted in accurate dosimetry in terms of dose rate constant (Λ), radial dose gL(r) and anisotropy function F(r,θ) for both sources.The simulations were executed using ∼1010 number of primaries resulting in statistical uncertainties lower than 2%.The differences between the theoretical values and the simulated ones ranged from 0.01% up to 3.3%, with the largest discrepancy (6%) being observed in the dose rate constant calculation.The simulated DVH using an adult female XCAT model was also compared to a clinical one resulting in differences smaller than 5%. Finally, a realistic pediatric brachytherapy simulation was performed to evaluate the absorbed dose per organ and to calculate DVH with respect to heterogeneities of the human anatomy. Conclusion: GATE is a reliable tool for brachytherapy simulations both for source modeling and for dosimetry in anthropomorphic voxelized models. Our project aims to evaluate a variety of pediatric brachytherapy schemes using a population of pediatric phantoms for several pathological cases. This study is part of a project that has received funding from the European Union Horizon2020 research and innovation programme under the MarieSklodowska-Curiegrantagreement.No691203.The results published in this study reflect only the authors view and the Research Executive Agency (REA) and the European Commission is not responsible for any use that may be madeof the information it contains.« less
EFFECTS OF IONIZING RADIATION IN CHIMPANZEES. Final Report, February 28, 1962-October 31, 1962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riopelle, A.J.; Rogers, C.M.
1963-10-31
Results are reported from studies of the psychological, hematological, and pathological effects of a second dose of radiation to a group of chimpanzees irradiated several years before. The effects of a large dose of radiation to the head alone on previously nonirradiated animals were evaluated in 4 animals. Findings are summarized for each animal. No evidence of damage to neural tissue was seen following exposure to the head to 2000 r gamma radiation. (C.H.)
Bittner, C J; Crawford, G I; Berger, L L; Holt, S; Pritchard, R R; Platter, W J; Van Koevering, M T; Pyatt, N A; Erickson, G E
2016-12-01
Three experiments evaluated the effects of ractopamine hydrochloride (RAC) dose and duration on growth performance and carcass characteristics of feedlot steers. In total, 1,509 crossbred steers (530 kg initial BW [SD 22]) were used in a randomized complete block design using a 3 × 3 factorial treatment structure. Treatments consisted of RAC dose (0, 100, or 200 mg/steer daily) and duration (28, 35, or 42 d) of RAC feeding prior to harvest. Initiation of RAC dose was staggered (7 d apart) based on RAC duration, which resulted in common days on feed among treatments. Data from the 3 experiments were combined for statistical analyses. There were no RAC dose × duration interactions ( ≥ 0.85) for growth performance. Live final BW was not different ( ≥ 0.24) as RAC dose increased. Dry matter intake linearly decreased ( < 0.01) as RAC dose increased. Live ADG and G:F linearly increased ( ≤ 0.01) as RAC dose increased. Carcass-adjusted ADG and G:F linearly increased ( ≤ 0.02) as RAC dose increased. Compared with steers fed 0 mg RAC/steer daily, G:F was improved by 5.0 and 13.0% when steers were fed 100 ( = 0.31) and 200 ( = 0.01) mg RAC/steer daily, respectively. Hot carcass weight tended ( = 0.10) to linearly increase as RAC dose increased, with carcasses from steers fed 100 ( = 0.38) and 200 ( = 0.10) mg RAC/steer daily being 2.2 and 4.1 kg heavier, respectively, than carcasses from steers fed 0 mg RAC/steer daily. Increasing RAC dose linearly ( < 0.01) increased LM area and linearly ( = 0.02) decreased marbling score. Live final BW was not different ( ≥ 0.60) among RAC durations. Carcass-adjusted final BW, ADG, and G:F were not different ( ≥ 0.41) as RAC duration increased. Carcass traits did not differ ( ≥ 0.18) among RAC duration. Feeding 200 mg RAC/steer daily improved ADG, feed efficiency, and HCW. Increasing the feeding duration of RAC had no effect of growth performance or carcass characteristics. These data indicate that feeding 200 mg RAC/steer daily for 28 d improves steer growth performance.
The Impact of the Grid Size on TomoTherapy for Prostate Cancer
Kawashima, Motohiro; Kawamura, Hidemasa; Onishi, Masahiro; Takakusagi, Yosuke; Okonogi, Noriyuki; Okazaki, Atsushi; Sekihara, Tetsuo; Ando, Yoshitaka; Nakano, Takashi
2017-01-01
Discretization errors due to the digitization of computed tomography images and the calculation grid are a significant issue in radiation therapy. Such errors have been quantitatively reported for a fixed multifield intensity-modulated radiation therapy using traditional linear accelerators. The aim of this study is to quantify the influence of the calculation grid size on the dose distribution in TomoTherapy. This study used ten treatment plans for prostate cancer. The final dose calculation was performed with “fine” (2.73 mm) and “normal” (5.46 mm) grid sizes. The dose distributions were compared from different points of view: the dose-volume histogram (DVH) parameters for planning target volume (PTV) and organ at risk (OAR), the various indices, and dose differences. The DVH parameters were used Dmax, D2%, D2cc, Dmean, D95%, D98%, and Dmin for PTV and Dmax, D2%, and D2cc for OARs. The various indices used were homogeneity index and equivalent uniform dose for plan evaluation. Almost all of DVH parameters for the “fine” calculations tended to be higher than those for the “normal” calculations. The largest difference of DVH parameters for PTV was Dmax and that for OARs was rectal D2cc. The mean difference of Dmax was 3.5%, and the rectal D2cc was increased up to 6% at the maximum and 2.9% on average. The mean difference of D95% for PTV was the smallest among the differences of the other DVH parameters. For each index, whether there was a significant difference between the two grid sizes was determined through a paired t-test. There were significant differences for most of the indices. The dose difference between the “fine” and “normal” calculations was evaluated. Some points around high-dose regions had differences exceeding 5% of the prescription dose. The influence of the calculation grid size in TomoTherapy is smaller than traditional linear accelerators. However, there was a significant difference. We recommend calculating the final dose using the “fine” grid size. PMID:28974860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derewonko, H.; Bosella, A.; Pataut, G.
1996-06-01
An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less
Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2017-12-01
The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.
Lenz, Robert A; Pritchett, Yili L; Berry, Scott M; Llano, Daniel A; Han, Shu; Berry, Donald A; Sadowsky, Carl H; Abi-Saab, Walid M; Saltarelli, Mario D
2015-01-01
ABT-089, an α4β2 neuronal nicotinic receptor partial agonist, was evaluated for efficacy and safety in mild to moderate Alzheimer disease patients receiving stable doses of acetylcholinesterase inhibitors. This phase 2 double-blind, placebo-controlled, proof-of-concept, and dose-finding study adaptively randomized patients to receive ABT-089 (5, 10, 15, 20, 30, or 35 mg once daily) or placebo for 12 weeks. The primary efficacy endpoint was the Alzheimer's Disease Assessment Scale, cognition subscale (ADAS-Cog) total score. A Bayesian response-adaptive randomization algorithm dynamically assigned allocation probabilities based on interim ADAS-Cog total scores. A normal dynamic linear model for dose-response relationships and a longitudinal model for predicting final ADAS-cog score were employed in the algorithm. Stopping criteria for futility or success were defined. The futility stopping criterion was met, terminating the study with 337 patients randomized. No dose-response relationship was observed and no dose demonstrated statistically significant improvement over placebo on ADAS-Cog or any secondary endpoint. ABT-089 was well tolerated at all dose levels. When administered as adjunctive therapy to acetylcholinesterase inhibitors, ABT-089 was not efficacious in mild to moderate Alzheimer disease. The adaptive study design enabled the examination of a broad dose range, enabled rapid determination of futility, and reduced patient exposure to nonefficacious doses of the investigational compound.
Miao, Li; Shi, Liwei; Yang, Yi; Yan, Kunming; Sun, Hongliang; Mo, Zhaojun; Li, Li
2018-04-01
This study evaluated the immunological effect of an aGV rabies virus strain using the Essen and Zagreb immunization programs. A total of 1,944 subjects were enrolled and divided into three groups: the Essen test group, Essen control group, and Zagreb test group. Neutralizing antibody levels and antibody seroconversion rates were determined at 7 and 14 days after the initial inoculations and then 14 days after the final inoculation in all of the subjects. The seroconversion rates for the Essen test group, Essen control group, and Zagreb test group, which were assessed 7 days after the first dosing in a susceptible population, were 35.74%, 26.92%, and 45.49%, respectively, and at 14 days, the seroconversion rates in this population were 100%, 100%, and 99.63%, respectively. At 14 days after the final dosing, the seroconversion rates were 100% in all three of the groups. The neutralizing serum antibody levels of the Essen test group, Essen control group, and Zagreb test group at 7 days after the first dosing in the susceptible population were 0.37, 0.26, and 0.56 IU/mL, respectively, and at 14 days after the initial dosing, these levels were 16.71, 13.85, and 16.80 IU/mL. At 14 days after the final dosing, the neutralizing antibody levels were 22.9, 16.3, and 18.62 IU/mL, respectively. The results of this study suggested that the aGV rabies vaccine using the Essen program resulted in a good serum immune response, and the seroconversion rates and the neutralizing antibody levels generated with the Zagreb regimen were higher than those with the Essen regimen when measured 7 days after the first dose.
R. Hoyos, Luis; Khan, Sana; Dai, Jing; Singh, Manvinder; P. Diamond, Michael; E. Puscheck, Elizabeth; O. Awonuga, Awoniyi
2017-01-01
Background: Currently, there is no agreement on the optimal urinary derived human chorionic gonadotropin (u-hCG) dose requirement for initiating final oocyte maturation prior to oocyte collection in in vitro fertilization (IVF), but doses that range from 2500- 15000 IU have been used. We intended to determine whether low dose u-hCG was effective for oocyte maturation in IVF/intracytoplasmic sperm injection (ICSI) cycles independent of body mass index (BMI). Materials and Methods: We retrospectively evaluated a cohort of 295 women who underwent their first IVF/ICSI cycles between January 2003 and December 2010 at the Division of Reproductive Endocrinology and Infertility, Wayne State University, Detroit, MI, USA. Treatment cycles were divided into 3 groups based on BMI (kg/ m2): <25 (n=136), 25- <30 (n=84), and ≥30 (n=75) women. Patients received 5000, 10000 or 15000 IU u-hCG for final maturation prior to oocyte collection. The primary outcome was clinical pregnancy rates (CPRs) and secondary outcome was live birth rates (LBRs). Results: Only maternal age negatively impacted (P<0.001) CPR [odds ratio (OR=0.85, confidence interval (CI: 0.79-0.91)] and LBR (OR=0.84, CI: 0.78-0.90). Conclusion: Administration of lower dose u-hCG was effective for oocyte maturation in IVF and did not affect the CPRs and LBRs irrespective of BMI. Women’s BMI need not be taken into consideration in choosing the appropriate dose of u-hCG for final oocyte maturation prior to oocyte collection in IVF. Only maternal age at the time of IVF negatively influenced CPRs and LBRs in this study. PMID:28367299
Botsis, Taxiarchis; Foster, Matthew; Arya, Nina; Kreimeyer, Kory; Pandey, Abhishek; Arya, Deepa
2017-04-26
To evaluate the feasibility of automated dose and adverse event information retrieval in supporting the identification of safety patterns. We extracted all rabbit Anti-Thymocyte Globulin (rATG) reports submitted to the United States Food and Drug Administration Adverse Event Reporting System (FAERS) from the product's initial licensure in April 16, 1984 through February 8, 2016. We processed the narratives using the Medication Extraction (MedEx) and the Event-based Text-mining of Health Electronic Records (ETHER) systems and retrieved the appropriate medication, clinical, and temporal information. When necessary, the extracted information was manually curated. This process resulted in a high quality dataset that was analyzed with the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA) to explore the association of rATG dosing with post-transplant lymphoproliferative disorder (PTLD). Although manual curation was necessary to improve the data quality, MedEx and ETHER supported the extraction of the appropriate information. We created a final dataset of 1,380 cases with complete information for rATG dosing and date of administration. Analysis in PANACEA found that PTLD was associated with cumulative doses of rATG >8 mg/kg, even in periods where most of the submissions to FAERS reported low doses of rATG. We demonstrated the feasibility of investigating a dose-related safety pattern for a particular product in FAERS using a set of automated tools.
Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein
2009-09-15
Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less
Population pharmacokinetics of transdermal fentanyl in patients with cancer-related pain.
Kokubun, Hideya; Ebinuma, Keiichi; Matoba, Motohiro; Takayanagi, Risa; Yamada, Yasuhiko; Yago, Kazuo
2012-06-01
Determining the appropriate dose of transdermal fentanyl (TDF) for the alleviation of cancer pain requires determining the factors causing variations in serum fentanyl concentration after TDF treatment. The objective of this study was to identify these factors and incorporate them into a formula that can be used to predict serum fentanyl concentration after application of a TDF patch. Blood samples of cancer patients treated with a TDF patch for the alleviation of pain were collected at 24, 48, and 72 hours after application to evaluate population pharmacokinetics using the nonlinear mixed-effect model (NONMEM). Based upon this evaluation, Child-Pugh Score and use of a cytochrome P450 3A4 (CYP3A4) inducer were identified as the most significant factors in variations in serum fentanyl concentration and incorporated into the following Final Model formula: CL(fenta) (L/h) = 3.53 × (15 - Child-Pugh Score) × (1 + 1.38 × use or no use of CYP3A4 inducer). Bootstrap evaluation of the Final Model revealed a high convergence rate, suggesting that the model formula is a reliable and useful tool for determining TDF dose for the alleviation of cancer pain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Hoon Shin; Young Wook Lee; Young Ho Cho
2006-07-01
In the nuclear energy field, there are so many difficult things that even people who are working in this field are not much familiar with, such as, Dose evaluation, Dose management, etc. Thus, so many efforts have been done to achieve the knowledge and data for understanding. Although some data had been achieved, the applications of these data to necessary cases were more difficult job. Moreover, the type of Dose evaluation program until now was 'Console type' which is not easy enough to use for the beginners. To overcome the above causes of difficulties, the window-based integrated program and databasemore » management were developed in our research lab. The program, called as INSREC, consists of four sub-programs as follow; INSREC-NOM, INSREC-ACT, INSREC-MED, and INSREC-EXI. In ICONE 11 conference, INSREC-program(ICONE-36203) which can evaluates on/off-site dose of nuclear power plant in normal operation was introduced. Upgraded INSREC-program which will be presented in ICONE 14 conference has three additional codes comparing with pre-presented INSREC-program. Those subprograms can evaluate on/off-site Dose of nuclear power plant in accident cases. And they also have the functions of 'Dose evaluation and management' in the hospital and provide the 'Expert system' based on knowledge related to nuclear energy/radiation field. The INSREC-NOM, one of subprograms, is composed of 'Source term evaluation program', 'Atmospheric diffusion factor evaluation program', 'Off-site dose evaluation program', and 'On-site database program'. The INSREC-ACT is composed of 'On/Off-site dose evaluation program' and 'Result analysis program' and the INSREC-MED is composed of 'Workers/patients dose database program' and 'Dose evaluation program for treatment room'. The final one, INSREC-EXI, is composed of 'Database searching program based on artificial intelligence', 'Instruction program,' and 'FAQ/Q and A boards'. Each program was developed by using of Visual C++, Microsoft Access mainly. To verify the reliability, some suitable programs were selected such as AZAP and Stardose programs for the comparison. The AZAP program was selected for the on/off-site dose evaluation during the normal operation of nuclear reactor and Stardose program was used for the on/off-site dose evaluation in accident. The MCNP code was used for the dose evaluation and management in the hospital. Each comparison result was acceptable in errors analysis. According to the reliable verification results, it was concluded that INSREC program had an acceptable reliability for dose calculation and could give many proper dada for the sites. To serve the INSREC to people, the proper server system was constructed. We gave chances for the people (user) to utilize the INSREC through network connected to server system. The reactions were pretty much good enough to be satisfied. For the future work, many efforts will be given to improve the better user-interface and more necessary data will be provided to more people through database supplement and management. (authors)« less
De Cock, R. F. W.; Allegaert, K.; Vanhaesebrouck, S.; Danhof, M.; Knibbe, C. A. J.
2015-01-01
Based on a previously derived population pharmacokinetic model, a novel neonatal amikacin dosing regimen was developed. The aim of the current study was to prospectively evaluate this dosing regimen. First, early (before and after second dose) therapeutic drug monitoring (TDM) observations were evaluated for achieving target trough (<3 mg/liter) and peak (>24 mg/liter) levels. Second, all observed TDM concentrations were compared with model-predicted concentrations, whereby the results of a normalized prediction distribution error (NPDE) were considered. Subsequently, Monte Carlo simulations were performed. Finally, remaining causes limiting amikacin predictability (i.e., prescription errors and disease characteristics of outliers) were explored. In 579 neonates (median birth body weight, 2,285 [range, 420 to 4,850] g; postnatal age 2 days [range, 1 to 30 days]; gestational age, 34 weeks [range, 24 to 41 weeks]), 90.5% of the observed early peak levels reached 24 mg/liter, and 60.2% of the trough levels were <3 mg/liter (93.4% ≤5 mg/liter). Observations were accurately predicted by the model without bias, which was confirmed by the NPDE. Monte Carlo simulations showed that peak concentrations of >24 mg/liter were reached at steady state in almost all patients. Trough values of <3 mg/liter at steady state were documented in 78% to 100% and 45% to 96% of simulated cases with and without ibuprofen coadministration, respectively; suboptimal trough levels were found in patients with postnatal age <14 days and current weight of >2,000 g. Prospective evaluation of a model-based neonatal amikacin dosing regimen resulted in optimized peak and trough concentrations in almost all patients. Slightly adapted dosing for patient subgroups with suboptimal trough levels was proposed. This model-based approach improves neonatal dosing individualization. PMID:26248375
Bautista, Francisco; Moreno, Lucas; Marshall, Lynley; Pearson, Andrew D J; Geoerger, Birgit; Paoletti, Xavier
2017-11-01
Dose-escalation trials aim to identify the maximum tolerated dose and, importantly, the recommended phase II dose (RP2D) and rely on the occurrence of dose-limiting toxicities (DLTs) during the first treatment cycle. Molecularly targeted agents (MTAs) often follow continuous and prolonged administrations, displaying a distinct toxicity profile compared to conventional chemotherapeutics, and classical DLT criteria might not be appropriate to evaluate MTAs' toxicity. We investigated this issue in children. The Innovative Therapies for Children with Cancer Consortium (ITCC) phase I trials of novel anticancer agents between 2004 and 2015 were analysed. Data from investigational product, trial design, items defining DLT/RP2D were extracted. A survey on dose-escalation process, DLTs and RP2D definition was conducted among the ITCC clinical trials committee members. Thirteen phase I trials with 15 dose-escalation cohorts were analysed. They explored 11 MTAs and 2 novel cytotoxics; 12 evaluated DLT during cycle 1. Definition of DLT was heterogeneous: Grade III-IV haematologic toxicities that were transient or asymptomatic and grade III-IV non-haematological toxicities manageable with adequate supportive care were often excluded, whereas some included dose intensity or grade II toxicities into DLT. None of the studies considered delayed toxicity into the RP2D definition. DLTs should be homogeneously defined across trials, limiting the number of exceptions due to specific toxicities. Dose escalation should still be based on safety data from cycle 1, but delayed and overall toxicities, pharmacokinetic parameters and pharmacodynamic data should be considered to refine the final RP2D. The evaluation of long-term toxicity in the developing child cannot be adequately addressed in early trials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiopharmaceutical considerations for using Tc-99m MAA in lung transplant patients.
Ponto, James A
2010-01-01
To elucidate radiopharmaceutical considerations for using technetium Tc-99m albumin aggregated (Tc-99m MAA) in lung transplant patients and to establish an appropriate routine dose and preparation procedure. Tertiary care academic hospital during May 2007 to May 2009. Nuclear pharmacist working in nuclear medicine department. Radiopharmaceutical considerations deemed important for the use of Tc-99m MAA in lung transplant patients included radioactivity dose, particulate dose, rate of the radiolabeling reaction (preparation time), and final radiochemical purity. Evaluation of our initial 12-month experience, published literature, and professional practice guidelines provided the basis for establishing an appropriate dose and preparation procedure of Tc-99m MAA for use in lung transplant patients. Radiochemical purity at typical incubation times and image quality in subsequent lung transplant patients imaged during the next 12 months. Based on considerations of radioactivity dose, particulate dose, rate of the radiolabeling reaction (preparation time), and final radiochemical purity, a routine dose consisting of 3 mCi (111 MBq) and 100,000 particles of Tc-99m MAA for planar perfusion lung imaging of adult lung transplant patients was established as reasonable and appropriate. MAA kits were prepared with a more reasonable amount of Tc-99m and yielded high radiochemical purity values in typical incubation times. Images have continued to be of high diagnostic quality. Tc-99m MAA used for lung transplant imaging can be readily prepared with high radiochemical purity to provide a dose of 3 mCi (111 GBq)/100,000 particles, which provides images of high diagnostic quality.
Scheinberg, Morton; Goldenberg, José; Feldman, Daniel P; Nóbrega, João Luiz
2008-08-01
We determined, in our surrounding environment, the proportion of patients being treated with infliximab who required a therapeutic scheme escalation (an infliximab dose increase surpassing the level of 3 mg/kg every 8 weeks and/or a decrease on the current between infusions' interval). This was a study of the retrospective analysis of data from the 41 rheumatoid arthritis (RA) patients receiving an infliximab therapy at the Albert Einstein Israelita Hospital, from January 2001 up to December 2005. A questionnaire was applied to these patients, assessing their clinical and laboratory data, adverse events, and individual information regarding the infliximab administration. Therapeutic dose information was available in 68% (28/41) of the RA patients, with 46% of these (13/28) receiving a dose increase, and 30% (8/27) experiencing a shortening of the between infusions' interval. The average final infliximab dose (4.21 mg/kg) was significantly greater than their average initial dose (3.29 mg/kg). The average time intervals between the initial and final infusions, though shortened, were not significantly different. A proportion of 73% (30/41) of these patients demonstrated improvement in at least one of the assessed clinical parameters, and 50% of these patients (15/30) experienced a dose increase, while 20% (6/30) experienced shortening of the between treatments' interval. A total of 20% (8/41) of the original patients experienced adverse events. Although infliximab is effective in the control of RA, dose adjustment and/or shortening of the between treatments' interval is frequently required.
German, U; Weinstein, M; Abraham, A; Alfassi, Z B
2007-01-01
The location of the glow peaks depends on the heating rate. It takes some time until the crystal reaches the heater temperature, and this time lag has a direct effect on the shift of peaks towards higher temperatures. Some information on the high-temperature peaks may be lost if the readout conditions (mainly length of time) are not properly chosen. Step heating profiles to a varying final temperature between 300 degrees C and 125 degrees C were used to study the time dependence of the collected information in the glow curves of (6)LiF:Mg,Ti crystals, and the minimal heating time for evaluation of thermal neutron doses was determined.
Matfin, Glenn; Van Brunt, Kate; Zimmermann, Alan G; Threlkeld, Rebecca; Ignaut, Debra A
2015-04-21
This 4-week, phase 3b, multicenter, open-label, single-arm, outpatient study demonstrated the safe and effective use of the dulaglutide single-dose pen containing 0.5 mL of placebo for subcutaneous injection in injection-naïve adult patients with type 2 diabetes (T2D), with A1C ≤ 8.5% (69 mmol/mol), BMI ≥ 23 kg/m2 and ≤ 45 kg/m(2). Patients completed a modified self-injecting subscale of the Diabetes Fear of Injecting and Self-Testing Questionnaire (mD-FISQ) and were trained to self-inject with the single-dose pen. Patients completed the initial self-injection at the site, injected at home for 2 subsequent weeks, and returned to the site for the final injection. The initial and final self-injections were evaluated for success; the final (initial) self-injection success rate was the primary (secondary) outcome measure, and the primary (secondary) objective was to demonstrate this success rate as being significantly greater than 80%. Patients recorded their level of pain after each injection. After the final injection, patients completed the mD-FISQ and the Medication Delivery Device Assessment Battery (MDDAB) to assess their perceptions of the single-dose pen, including ease of use and experience with the device. Among 211 patients (mean age: 61 years), the primary objective was met, with a final injection success rate of 99.1% (95% CI: 96.6% to 99.7%). Among 214 patients, the initial injection success rate was 97.2% (95% CI: 94.0% to 98.7%), meeting the key secondary objective. Overall, most patients (>96%) found the device easy to use, were satisfied with the device, and would be willing to continue to use the single-dose pen after the study. There was a significant reduction (P < .001) from baseline to study end in patients' fear of self-injecting, as measured by the mD-FISQ. The dulaglutide single-dose pen was found to be a safe and effective device for use by patients with T2D who were injection-naïve. A positive injection experience is an important factor for patients and providers when initiating injectable therapy. © 2015 Diabetes Technology Society.
Matfin, Glenn; Van Brunt, Kate; Zimmermann, Alan G.; Threlkeld, Rebecca; Ignaut, Debra A.
2015-01-01
Background: This 4-week, phase 3b, multicenter, open-label, single-arm, outpatient study demonstrated the safe and effective use of the dulaglutide single-dose pen containing 0.5 mL of placebo for subcutaneous injection in injection-naïve adult patients with type 2 diabetes (T2D), with A1C ≤ 8.5% (69 mmol/mol), BMI ≥ 23 kg/m2 and ≤ 45 kg/m2. Method: Patients completed a modified self-injecting subscale of the Diabetes Fear of Injecting and Self-Testing Questionnaire (mD-FISQ) and were trained to self-inject with the single-dose pen. Patients completed the initial self-injection at the site, injected at home for 2 subsequent weeks, and returned to the site for the final injection. The initial and final self-injections were evaluated for success; the final (initial) self-injection success rate was the primary (secondary) outcome measure, and the primary (secondary) objective was to demonstrate this success rate as being significantly greater than 80%. Patients recorded their level of pain after each injection. After the final injection, patients completed the mD-FISQ and the Medication Delivery Device Assessment Battery (MDDAB) to assess their perceptions of the single-dose pen, including ease of use and experience with the device. Results: Among 211 patients (mean age: 61 years), the primary objective was met, with a final injection success rate of 99.1% (95% CI: 96.6% to 99.7%). Among 214 patients, the initial injection success rate was 97.2% (95% CI: 94.0% to 98.7%), meeting the key secondary objective. Overall, most patients (>96%) found the device easy to use, were satisfied with the device, and would be willing to continue to use the single-dose pen after the study. There was a significant reduction (P < .001) from baseline to study end in patients’ fear of self-injecting, as measured by the mD-FISQ. Conclusions: The dulaglutide single-dose pen was found to be a safe and effective device for use by patients with T2D who were injection-naïve. A positive injection experience is an important factor for patients and providers when initiating injectable therapy. PMID:25901022
Depigmentation with tert-butyl hydroquinone using black guinea pigs.
Patrick, E; Juberg, D R; O'Donoghue, J; Maibach, H I
1999-01-01
tert-Butyl hydroquinone (TBHQ) has important and functional uses in consumer and commercial applications, some of which involve human exposure primarily through dermal contact. To assist in the safety evaluation of TBHQ, this study was conducted to determine whether TBHQ would produce changes in skin pigmentation after repeated dermal application to black guinea pigs. Hydroquinone (HQ) and hydroquinone monomethyl ether (HQMME) were used as positive controls. TBHQ and HQ were tested at concentrations of 0.1, 1.0 and 5.0%, while HQMME was tested at a concentration of 10.0%. Groups of five males and five females were dosed with TBHQ, HQ, or the vehicle (hydrophilic ointment) daily (M-F) for 13 weeks. In addition, animals (five males, five females) treated with HQMME received 13 doses over a 3-week period. The application site was evaluated weekly for degree of pigmentation loss and irritation. Twenty-four hours after final application, sites were evaluated for depigmentation, irritation and hyperpigmentation. Subsequently, the application site was depilated and re-evaluated for the same endpoints. Repetitive exposure to concentrations of 1.0% and 5.0% TBHQ and HQ were slightly to moderately irritating, while 0.1% of each of these test materials produced only weak irritant responses. No irritant responses to hydrophilic ointment were observed and HQMME produced weak irritant responses after 2 weeks. Neither 0.1% TBHQ nor HQ produced depigmentation, while 20% of animals dosed with 1.0% TBHQ and 30% of animals dosed with 1.0% HQ had spotty or uniform loss of pigment at the site of treatment. Approximately 40% of animals dosed with 5% TBHQ or HQ were depigmented at the treatment site at the final evaluation. HQMME produced complete depigmentation of the skin and hair in all animals. Hyperpigmentation of the treatment site was observed in 80-100% of animals in all groups (with the exception of HQMME-treated animals, treated for only 3 weeks), which may be attributable to the use of hydrophilic ointment as the vehicle, the application procedure, or simply clipping hair from the skin. Thus, this study showed that TBHQ causes depigmentation in black guinea pigs at concentrations of 1% or greater, but that a no-effect threshold for this endpoint exists at a concentration between 0.1 and 1.0%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Bradford A.; Mettu, Pradeep; Vajzovic, Lejla
2014-05-01
Purpose: To investigate, in the treatment of uveal melanomas, how tumor control, radiation toxicity, and visual outcomes are affected by the radiation dose at the tumor apex. Methods and Materials: A retrospective review was performed to evaluate patients treated for uveal melanoma with {sup 125}I plaques between 1988 and 2010. Radiation dose is reported as dose to tumor apex and dose to 5 mm. Primary endpoints included time to local failure, distant failure, and death. Secondary endpoints included eye preservation, visual acuity, and radiation-related complications. Univariate and multivariate analyses were performed to determine associations between radiation dose and the endpointmore » variables. Results: One hundred ninety patients with sufficient data to evaluate the endpoints were included. The 5-year local control rate was 91%. The 5-year distant metastases rate was 10%. The 5-year overall survival rate was 84%. There were no differences in outcome (local control, distant metastases, overall survival) when dose was stratified by apex dose quartile (<69 Gy, 69-81 Gy, 81-89 Gy, >89 Gy). However, increasing apex dose and dose to 5-mm depth were correlated with greater visual acuity loss (P=.02, P=.0006), worse final visual acuity (P=.02, P<.0001), and radiation complications (P<.0001, P=.0009). In addition, enucleation rates were worse with increasing quartiles of dose to 5 mm (P=.0001). Conclusions: Doses at least as low as 69 Gy prescribed to the tumor apex achieve rates of local control, distant metastasis–free survival, and overall survival that are similar to radiation doses of 85 Gy to the tumor apex, but with improved visual outcomes.« less
SU-F-P-56: On a New Approach to Reconstruct the Patient Dose From Phantom Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bangtsson, E; Vries, W de
Purpose: The development of complex radiation treatment schemes emphasizes the need for advanced QA analysis methods to ensure patient safety. One such tool is the Delta4 DVH Anatomy software, where the patient dose is reconstructed from phantom measurements. Deviations in the measured dose are transferred to the patient anatomy and their clinical impact is evaluated in situ. Results from the original algorithm revealed weaknesses that may introduce artefacts in the reconstructed dose. These can lead to false negatives or obscure the effects of minor dose deviations from delivery failures. Here, we will present results from a new patient dose reconstructionmore » algorithm. Methods: The main steps of the new algorithm are: (1) the dose delivered to a phantom is measured in a number of detector positions. (2) The measured dose is compared to an internally calculated dose distribution evaluated in said positions. The so-obtained dose difference is (3) used to calculate an energy fluence difference. This entity is (4) used as input to a patient dose correction calculation routine. Finally, the patient dose is reconstructed by adding said patient dose correction to the planned patient dose. The internal dose calculation in step (2) and (4) is based on the Pencil Beam algorithm. Results: The new patient dose reconstruction algorithm have been tested on a number of patients and the standard metrics dose deviation (DDev), distance-to-agreement (DTA) and Gamma index are improved when compared to the original algorithm. In a certain case the Gamma index (3%/3mm) increases from 72.9% to 96.6%. Conclusion: The patient dose reconstruction algorithm is improved. This leads to a reduction in non-physical artefacts in the reconstructed patient dose. As a consequence, the possibility to detect deviations in the dose that is delivered to the patient is improved. An increase in Gamma index for the PTV can be seen. The corresponding author is an employee of ScandiDos.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneru, F; Gracia, M; Gallardo, N
2015-06-15
Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less
Rossi, Andrea P; Facchinetti, Roberto; Ferrari, Elena; Nori, Nicole; Sant, Selena; Masciocchi, Elena; Zoico, Elena; Fantin, Francesco; Mazzali, Gloria; Zamboni, Mauro
2018-05-14
There is a general lack of studies evaluating medication adherence with self-report scales for elderly patients in treatment with direct oral anticoagulants (DOACs). The aim of the study was to assess the degree of adherence to DOAC therapy in a population of elderly outpatients aged 65 years or older affected by non-valvular atrial fibrillation (NVAF), using the 4-item Morisky Medication Adherence Scale, and to identify potential factors, including the geriatric multidimensional evaluation, which can affect adherence in the study population. A total of 103 subjects, anticoagulated with DOACs for NVAF in primary or secondary prevention, were eligible; 76 showed adequate adhesion to anticoagulant therapy, while 27 showed inadequate adherence. Participants underwent biochemical assessment and Morisky Scale, Instrumental Activities of Daily Living, CHA2DS2-VASc, HAS-BLED, mental status and nutritional evaluations were performed. 2% of subjects assumed Dabigatran at low dose, while 7.8% at standard dose, 9.7% assumed low-dose of Rivaroxaban and 30.1% at standard dose, 6.8% assumed Apixaban at low dose and 39.7% at standard dose, and finally 1% assumed Edoxaban at low dose and 2.9% at standard dose. Most subjects took the DOACs without help (80.6%), while 16 subjects were helped by a family member (15.5%) and 4 were assisted by a caregiver (3.9%). Binary logistic regression considered inappropriate adherence as a dependent variable, while age, male sex, polypharmacotherapy, cognitive decay, caregiver help for therapy assumption, duration of DOAC therapy and double daily administration were considered as independent variables. The double daily administration was an independent factor, determining inappropriate adherence with an OR of 2.88 (p = 0.048, CI 1.003-8.286).
Bizzarri, Carla; Improda, Nicola; Maggioli, Chiara; Capalbo, Donatella; Roma, Silvia; Porzio, Ottavia; Salerno, Mariacarolina; Cappa, Marco
2017-05-01
Poor linear growth is one of the main concerns in children with congenital adrenal hyperplasia (CAH). We aimed to analyze factors affecting growth trajectory in children with classical CAH. Clinical records of children followed from infancy up to the end of growth at two Italian tertiary referral hospitals were reviewed. Fifty-seven patients (31 males), treated with hydrocortisone and fludrocortisone only, were included. Clinical observations were divided into three groups: 0 to 2 years, 172 observations; from 2 years to puberty onset, 813 observations; after puberty onset, 527 observations. Height velocity, pubertal growth spurt, and final height were evaluated as outcomes. Final height standard deviation score (SDS) was lower than target height SDS (-0.74 ± 1.1 versus -0.31 ± 1.01; P<.001). Target-adjusted final height SDS was -0.44 ± 1.8 in males and -0.13 ± 1.1 in females (P = .001). Total pubertal growth was 21.9 ± 7.3 cm in males and 19.2 ± 8.2 cm in females (P = .19). Hydrocortisone dose increased and height-velocity SDS decreased during puberty. At multivariable analysis, height-velocity SDS was adversely affected by hydrocortisone dose (P = .038) and directly related to adrenocorticotropic hormone (ACTH) levels (P = .023). Target-adjusted final-height SDS was adversely affected by hydrocortisone dose (P<.001) and positively related to mineralocorticoid therapy (P = .001) and ACTH levels (P = .02). Total pubertal growth (cm) was positively related to ACTH levels (P = .01). Height outcome of CAH patients is now better than previously reported. During puberty, the lowest effective dose of hydrocortisone should be used to optimize pubertal growth spurt and final height. 17-OHP = 17-alpha-hydroxyprogesterone ACTH = adrenocorticotropic hormone BMI = body mass index CAH = congenital adrenal hyperplasia GH = growth hormone HPA = hypothalamus-pituitary-adrenal PRA = plasma renin activity SDS = standard deviation score SV = simple virilizing SW = salt-wasting.
Dose as a Tool for Planning and Implementing Community-Based Health Strategies.
Kuo, Elena S; Harner, Lisa T; Frost, Madeline C; Cheadle, Allen; Schwartz, Pamela M
2018-05-01
A major challenge in community-based health promotion is implementing strategies that could realistically improve health at the population level. Population dose methodology was developed to help understand the combined impact of multiple strategies on population-level health behaviors. This paper describes one potential use of dose: as a tool for working collaboratively with communities to increase impact when planning and implementing community-level initiatives. Findings are presented from interviews conducted with 11 coordinators who used dose for planning and implementing local efforts with community coalitions. During early-stage planning, dose was used as a tool for strategic planning, and as a framework to build consensus among coalition partners. During implementation, a dose lens was used to revise strategies to increase their reach (the number of people exposed to the intervention) or strength (the relative change in behavior for each exposed person) to create population-level impact. A case study is presented, illustrating how some community coalitions and evaluators currently integrate dose into the planning and implementation of place-based healthy eating and active living strategies. Finally, a planning checklist was developed for program coordinators and evaluators. This article is part of a supplement entitled Building Thriving Communities Through Comprehensive Community Health Initiatives, which is sponsored by Kaiser Permanente, Community Health. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
Sheen, Jae Jon; Jiang, Yuan Yuan; Kim, Young Eun; Maeng, Jun Young; Kim, Tae-Il; Lee, Deok Hee
2018-03-23
Onyx embolization is a treatment for brain arteriovenous malformations (AVMs). However, multistage embolization usually involves the presence of radiodense Onyx cast from the previous sessions, which may influence the fluoroscopic radiation dose. We compared the fluoroscopic dose between the initial and final embolization sessions. From January 2014 to September 2016, 18 patients underwent multistage Onyx embolization (more than twice) for brain AVMs. The total fluoroscopic duration (minutes), dose-area product (DAP, Gy×cm 2 ), and cumulative air kerma (CAK, mGy) of both the frontal and lateral planes were obtained. We compared the frontal and lateral fluoroscopic dose rates (dose/time) of the final embolization session with those of the initial session. The relationship between the injected Onyx volume and radiation dose was tested. The initial and final procedures on the frontal plane showed significantly different fluoroscopic dose rates (DAP: initial 0.668 Gy×cm 2 /min, final 0.848 Gy×cm 2 /min, P=0.02; CAK: initial 12.7 mGy/min, final 23.1 mGy/min, P=0.007). Those on the lateral plane also showed a similar pattern (DAP: initial 0.365 Gy×cm 2 /min, final 0.519 Gy×cm 2 /min, P=0.03; CAK: initial 6.2 mGy/min, final 12.9 mGy/min, P=0.01). The correlation between the cumulative Onyx volume (vials) and radiation dose ratio of both planes showed an increasing trend (rho 0.4325-0.7053; P=0.0011-0.0730). Owing to the automatic exposure control function during fluoroscopy, successive Onyx embolization procedures increase the fluoroscopic radiation dose in multistage brain AVM embolization because of the presence of radiodense Onyx mass. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Population Pharmacokinetics of Metronidazole Evaluated Using Scavenged Samples from Preterm Infants
Ouellet, Daniele; Smith, P. Brian; James, Laura P.; Ross, Ashley; Sullivan, Janice E.; Walsh, Michele C.; Zadell, Arlene; Newman, Nancy; White, Nicole R.; Kashuba, Angela D. M.; Benjamin, Daniel K.
2012-01-01
Pharmacokinetic (PK) studies in preterm infants are rarely conducted due to the research challenges posed by this population. To overcome these challenges, minimal-risk methods such as scavenged sampling can be used to evaluate the PK of commonly used drugs in this population. We evaluated the population PK of metronidazole using targeted sparse sampling and scavenged samples from infants that were ≤32 weeks of gestational age at birth and <120 postnatal days. A 5-center study was performed. A population PK model using nonlinear mixed-effect modeling (NONMEM) was developed. Covariate effects were evaluated based on estimated precision and clinical significance. Using the individual Bayesian PK estimates from the final population PK model and the dosing regimen used for each subject, the proportion of subjects achieving the therapeutic target of trough concentrations >8 mg/liter was calculated. Monte Carlo simulations were performed to evaluate the adequacy of different dosing recommendations per gestational age group. Thirty-two preterm infants were enrolled: the median (range) gestational age at birth was 27 (22 to 32) weeks, postnatal age was 41 (0 to 97) days, postmenstrual age (PMA) was 32 (24 to 43) weeks, and weight was 1,495 (678 to 3,850) g. The final PK data set contained 116 samples; 104/116 (90%) were scavenged from discarded clinical specimens. Metronidazole population PK was best described by a 1-compartment model. The population mean clearance (CL; liter/h) was determined as 0.0397 × (weight/1.5) × (PMA/32)2.49 using a volume of distribution (V) (liter) of 1.07 × (weight/1.5). The relative standard errors around parameter estimates ranged between 11% and 30%. On average, metronidazole concentrations in scavenged samples were 30% lower than those measured in scheduled blood draws. The majority of infants (>70%) met predefined pharmacodynamic efficacy targets. A new, simplified, postmenstrual-age-based dosing regimen is recommended for this population. Minimal-risk methods such as scavenged PK sampling provided meaningful information related to development of metronidazole PK models and dosing recommendations. PMID:22252819
Cocaine self-administration under variable-dose schedules in squirrel monkeys.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2006-06-01
Squirrel monkeys self-administered cocaine under a variable-dose schedule, with the dose varied from injection to injection. As in earlier studies with rats, post-injection pauses varied as a monotonic function of dose, allowing a cocaine dose-effect curve to be obtained during each session. These curves were shifted by pretreatment with dopamine antagonists, demonstrating that this procedure may provide an efficient means of evaluating treatments that affect drug self-administration. However, drug intake eventually became "dysregulated" after extensive training (100-300 sessions), with relatively short pauses following all doses. Dose-sensitivity was restored by adding a 60-s timeout period after each injection, suggesting that dysregulation occurred because the monkeys developed a tendency to self-administer another injection before the previous injection had been adequately distributed. Finally, when the response requirement under the variable-dose schedule was increased from 1 to 10, both the post-injection pause and the rate of responding following the pause ("run rates") were found to vary with dose. The dose-dependency of run rates suggests that post-injection pauses reflect not only motivational factors, such as satiety, but also the direct effects of cocaine on leverpressing.
da Costa Lopes, L; Albano, F; Augusto Travassos Laranja, G; Marques Alves, L; Fernando Martins e Silva, L; Poubel de Souza, G; de Magalhães Araujo, I; Firmino Nogueira-Neto, J; Felzenszwalb, I; Kovary, K
2000-08-16
Toxicity of an aqueous extract prepared from Echinodorus macrophyllus dried leaves, a plant used in folk medicine to treat inflammation and kidney malfunctions, was estimated by different bioassays. Mutagenicity of the aqueous extract was evaluated in the Salmonella/microsome assay (TA97a, TA98, TA100 and TA102 strains), with or without metabolic activation. No mutagenic activity (lyophilized extract tested up to 50 mg/plate) could be detected to any of the tester strain. Furthermore, no cytotoxic effect has been observed when a crude extract of E. macrophyllus (up to 7.5 mg/ml) was tested on the exponential growth of hepatoma and normal kidney epithelial cells in culture. Toxicity of E. macrophyllus was also evaluated in male Swiss mice after 6 weeks of continuous ingestion of the aqueous extract in drinking water. Average daily ingested doses were 3, 23 and 297 mg/kg for a lyophilized extract, and 2200 mg/kg for a crude extract, with dose two being equivalent to the daily dose recommended to humans. At the end of the treatment, all animals revealed a deficit in final body weight ranging from 5 to 47%. Biochemical analysis of the plasma revealed some minor alterations indicating subclinical hepatic toxicity. Genotoxic effect on liver, kidney and blood cells has been also evaluated by the comet assay, being negative to liver and blood cells. However, DNA analyses of the kidney cells detected some genotoxic activity for the highest dose tested of E. macrophyllus extract, either lyophilized or crude. On the other hand, exposure dose of 23 mg/kg, equivalent to the daily dose recommended to humans, did not revealed any genotoxic effect and hence this herb seems to be safe to human organism.
Applying DOE's Graded Approach for assessing radiation impacts to non-human biota at the INL.
Morris, Randall C
2006-01-01
In July 2002, The US Department of Energy (DOE) released a new technical standard entitled A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. DOE facilities are annually required to demonstrate that routine radioactive releases from their sites are protective of non-human receptors and sites are encouraged to use the Graded Approach for this purpose. Use of the Graded Approach requires completion of several preliminary steps, to evaluate the degree to which the site environmental monitoring program is appropriate for evaluating impacts to non-human biota. We completed these necessary activities at the Idaho National Laboratory (INL) using the following four tasks: (1) develop conceptual models and evaluate exposure pathways; (2) define INL evaluation areas; (3) evaluate sampling locations and media; (4) evaluate data gaps. All of the information developed in the four steps was incorporated, data sources were identified, departures from the Graded Approach were justified, and a step-by-step procedure for biota dose assessment at the INL was specified. Finally, we completed a site-wide biota dose assessment using the 2002 environmental surveillance data and an offsite assessment using soil and surface water data collected since 1996. These assessments demonstrated the environmental concentrations of radionuclides measured on and near the INL do not present significant risks to populations of non-human biota.
Wigal, Sharon B; Childress, Ann; Berry, Sally A; Belden, Heidi W; Chappell, Phillip; Wajsbrot, Dalia B; Nagraj, Praneeta; Abbas, Richat; Palumbo, Donna
2018-06-01
To examine methylphenidate extended-release chewable tablets (MPH ERCT) dose patterns, attention-deficit/hyperactivity disorder (ADHD) symptom scores, and safety during the 6-week, open-label (OL) dose-optimization period of a phase 3, laboratory classroom study. Boys and girls (6-12 years) diagnosed with ADHD were enrolled. MPH ERCT was initiated at 20 mg/day; participants were titrated in 10-20 mg/day increments weekly based on efficacy and tolerability (maximum dose, 60 mg/day). Dose-optimization period efficacy assessments included the ADHD Rating Scale (ADHD-RS-IV), analyzed by week in a post hoc analysis using a mixed-effects model for repeated measures with final optimized dose (20, 30/40, or 50/60 mg), visit, final optimized dose and visit interaction, and baseline score as terms. Adverse events (AEs) and concomitant medications were collected throughout the study. Mean MPH ERCT daily dose increased weekly from 29.4 mg/day after the first dose adjustment at week 1 (n = 90) to 42.8 mg/day after the final adjustment at week 5 (n = 86). Final optimized MPH ERCT dose ranged from 20 to 60 mg/day. Mean final optimized MPH ERCT dose ranged from 40.0 mg/day in 6-8 year-old participants to 44.8 mg/day for 11-12 year-old participants. There was a progressive decrease in mean (standard deviation) ADHD-RS-IV total score from 40.1 (8.72) at baseline to 12.4 (7.88) at OL week 5, with similar improvement patterns for hyperactivity/impulsivity and inattentiveness subscale scores. Participants optimized to MPH ERCT 50/60 mg/day had a significantly higher mean (standard error) ADHD-RS-IV score at baseline compared with participants optimized to MPH ERCT 20 mg/day (42.4 [1.34] vs. 35.1 [2.55]; p = 0.013). Treatment-emergent AEs were reported by 65/90 (72.2%) participants in the dose-optimization period. Dose-optimization period results describing relationships between change in ADHD symptom scores and final optimized MPH ERCT dose will be valuable for clinicians optimizing MPH ERCT dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, C.T.; Menton, R.G.; Kiser, R.C.
This task was conducted to determine the minimum dose of pyridostigmine (PYR), and the associated level of erythrocyte acetycholinesterase inhibition (AChE-I), that provides protection from 5 X 48-br GD LD50 of untreated monkeys. Monkeys were injected im with GD and treated with 0.4 mg atropine (ATR) free base and 25.7 mg pralidoxime (2-PAM) per kg BW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, E; Kim, S; Lee, C
Purpose: Epidemiological studies of second cancer risks in breast cancer radiotherapy patients often use generic patient anatomy to reconstruct normal tissue doses when CT images of patients are not available. To evaluate the uncertainty involved in the dosimetry approach, we evaluated the esophagus dose in five sample patients by simulating breast cancer treatments. Methods: We obtained the diagnostic CT images of five anonymized adult female patients in different Body Mass Index (BMI) categories (16– 36kg/m2) from National Institutes of Health Clinical Center. We contoured the esophagus on the CT images and imported them into a Treatment Planning System (TPS) tomore » create treatment plans and calculate esophagus doses. Esophagus dose was calculated once again via experimentally-validated Monte Carlo (MC) transport code, XVMC under the same geometries. We compared the esophagus doses from TPS and the MC method. We also investigated the degree of variation in the esophagus dose across the five patients and also the relationship between the patient characteristics and the esophagus doses. Results: Eclipse TPS using Analytical Anisotropic Algorithm (AAA) significantly underestimates the esophagus dose in breast cancer radiotherapy compared to MC. In the worst case, the esophagus dose from AAA was only 40% of the MC dose. The Coefficient of Variation across the patients was 48%. We found that the maximum esophagus dose was up to 2.7 times greater than the minimum. We finally observed linear relationship (Dose = 0.0218 × BMI – 0.1, R2=0.54) between patient’s BMI and the esophagus doses. Conclusion: We quantified the degree of uncertainty in the esophagus dose in five sample breast radiotherapy patients. The results of the study underscore the importance of individualized dose reconstruction for the study cohort to avoid misclassification in the risk analysis of second cancer. We are currently extending the number of patients up to 30.« less
Soror, Tamer; Kovács, György; Seibold, Nina; Melchert, Corinna; Baumann, Kristin; Wenzel, Eike; Stojanovic-Rundic, Suzana
2017-05-01
Patients with early-stage breast cancer can benefit from adjuvant accelerated partial breast irradiation (APBI) following breast-conserving surgery (BCS). This work reports on cosmetic results following APBI using multicatheter high-dose-rate interstitial brachytherapy (HDR-IBT). Between 2006 and 2014, 114 patients received adjuvant APBI using multicatheter HDR-IBT. For each patient, two photographs were analyzed: the first was taken after surgery (baseline image) and the second at the last follow-up visit. Cosmesis was assessed by a multigender multidisciplinary team using the Harvard Breast Cosmesis Scale. Dose-volume histogram (DVH) parameters and the observed cosmetic results were investigated for potential correlations. The median follow-up period was 3.5 years (range 0.6-8.5 years). The final cosmetic scores were 30% excellent, 52% good, 14.5% fair, and 3.5% poor. Comparing the baseline and follow-up photographs, 59.6% of patients had the same score, 36% had a better final score, and 4.4% had a worse final score. Only lower target dose nonuniformity ratio (DNR) values (0.3 vs. 0.26; p = 0.009) were significantly associated with improved cosmetic outcome vs. same/worse cosmesis. APBI using multicatheter HDR-IBT adjuvant to BCS results in favorable final cosmesis. Deterioration in breast cosmesis occurs in less than 5% of patients. The final breast cosmetic outcome in patients treated with BCS and APBI using multicatheter HDR-IBT is influenced primarily by the cosmetic result of the surgery. A lower DNR value is significantly associated with a better cosmetic outcome.
IRIS Toxicological Review of Tetrahydrofuran (THF) (External ...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of tetrahydrofuran (THF) that when finalized will appear on the Integrated Risk Information System (IRIS) database. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for tetrahydrofuran. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Weigang; Graff, Pierre; Boettger, Thomas
2011-04-15
Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generatedmore » based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillion, O; Gingras, L; Archambault, L
2015-06-15
Purpose: The knowledge of dose accumulation in the patient tissues in radiotherapy helps in determining the treatment outcomes. This project aims at providing a workflow to map cumulative doses that takes into account interfraction organ motion without the need for manual re-contouring. Methods: Five prostate cancer patients were studied. Each patient had a planning CT (pCT) and 5 to 13 CBCT scans. On each series, a physician contoured the prostate, rectum, bladder, seminal vesicles and the intestine. First, a deformable image registration (DIR) of the pCTs onto the daily CBCTs yielded registered CTs (rCT) . This rCT combined the accuratemore » CT numbers of the pCT with the daily anatomy of the CBCT. Second, the original plans (220 cGy per fraction for 25 fractions) were copied on the rCT for dose re-calculation. Third, the DIR software Elastix was used to find the inverse transform from the rCT to the pCT. This transformation was then applied to the rCT dose grid to map the dose voxels back to their pCT location. Finally, the sum of these deformed dose grids for each patient was applied on the pCT to calculate the actual dose delivered to organs. Results: The discrepancy between the planned D98 and D2 and these indices re-calculated on the rCT, are, on average, of −1 ± 1 cGy and 1 ± 2 cGy per fraction, respectively. For fractions with large anatomical motion, the D98 discrepancy on the re-calculated dose grid mapped onto the pCT can raise to −17 ± 4 cGy. The obtained cumulative dose distributions illustrate the same behavior. Conclusion: This approach allowed the evaluation of cumulative doses to organs with the help of uncontoured daily CBCT scans. With this workflow, the easy evaluation of doses delivered for EBRT treatments could ultimately lead to a better follow-up of prostate cancer patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.C.
1963-10-31
Results are reported from an evaluation of the effects of radiation processing on the quality and storage life of cauliflower, broccoli, and strawberries after storage at temperatures slightly above freezing for periods up to 12 months. Irradiation was effective in preventing visible spoilage, even at a dose of 0.3 Mrad. Acceptability of samples stored at 35 deg F declined with each succeeding evaluation. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadad, K; Zoherhvand, M; Faghihi, R
2014-06-01
Purpose: Nasopharnx carcinoma (NPC) treatment is being carried out using Ir-192 HDR seeds in Mehdieh Hospital in Hamadan, Iran. The Oncentra™ TPS is based on optimized TG-43 formalism which disregards heterogeneity in the treatment area. Due to abundant heterogeneity in head and neck, comparison of the Oncentra™ TPS dose evaluation and an accurate dose calculation method in NPC brachytherapy is the objective of this study. Methods: CT DICOMs of a patient with NPC obtained from Mehdieh Hospital used to create 3D voxel phantom with CTCREATE utility of EGSnrc code package. The voxel phantom together with Ir-192 HDR brachytherapy source weremore » the input to DOSXYZnrc to calculate the 3D dose distribution. The sources were incorporate with type 6 source in DOSXYZnrc and their dwell times were taken into account in final dose calculations. Results: The direct comparison between isodoses as well as DVHs for the GTV, PTV and CTV obtained by Oncentra™ and EGSnrc Monte Carlo code are made. EGSnrc results are obtained using 5×10{sup 9} histories to reduce the statistical error below 1% in GTV and 5% in 5% dose areas. The standard ICRP700 cross section library is employed in DOSXYZnrc dose calculation. Conclusion: A direct relationship between increased dose differences and increased material density (hence heterogeneity) is observed when isodoses contours of the TPS and DOSXYZnrc are compared. Regarding the point dose calculations, the differences range from 1.2% in PTV to 5.6% for cavity region and 7.8% for bone regions. While Oncentra™ TPS overestimates the dose in cavities, it tends to underestimate dose depositions within bones.« less
Hughes, Timothy P; Munhoz, Eduardo; Aurelio Salvino, Marco; Ong, Tee Chuan; Elhaddad, Alaa; Shortt, Jake; Quach, Hang; Pavlovsky, Carolina; Louw, Vernon J; Shih, Lee-Yung; Turkina, Anna G; Meillon, Luis; Jin, Yu; Acharya, Sandip; Dalal, Darshan; Lipton, Jeffrey H
2017-10-01
The Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Extending Molecular Responses (ENESTxtnd) study was conducted to evaluate the kinetics of molecular response to nilotinib in patients with newly diagnosed chronic myeloid leukaemia in chronic phase and the impact of novel dose-optimization strategies on patient outcomes. The ENESTxtnd protocol allowed nilotinib dose escalation (from 300 to 400 mg twice daily) in the case of suboptimal response or treatment failure as well as dose re-escalation for patients with nilotinib dose reductions due to adverse events. Among 421 patients enrolled in ENESTxtnd, 70·8% (95% confidence interval, 66·2-75·1%) achieved major molecular response (BCR-ABL1 ≤ 0·1% on the International Scale) by 12 months (primary endpoint). By 24 months, 81·0% of patients achieved major molecular response, including 63·6% (56 of 88) of those with dose escalations for lack of efficacy and 74·3% (55 of 74) of those with dose reductions due to adverse events (including 43 of 54 patients with successful re-escalation). The safety profile of nilotinib was consistent with prior studies. The most common non-haematological adverse events were headache, rash, and nausea; cardiovascular events were reported in 4·5% of patients (grade 3/4, 3·1%). The study was registered at clinicaltrials.gov (NCT01254188). © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Field size dependent mapping of medical linear accelerator radiation leakage
NASA Astrophysics Data System (ADS)
Vũ Bezin, Jérémi; Veres, Attila; Lefkopoulos, Dimitri; Chavaudra, Jean; Deutsch, Eric; de Vathaire, Florent; Diallo, Ibrahima
2015-03-01
The purpose of this study was to investigate the suitability of a graphics library based model for the assessment of linear accelerator radiation leakage. Transmission through the shielding elements was evaluated using the build-up factor corrected exponential attenuation law and the contribution from the electron guide was estimated using the approximation of a linear isotropic radioactive source. Model parameters were estimated by a fitting series of thermoluminescent dosimeter leakage measurements, achieved up to 100 cm from the beam central axis along three directions. The distribution of leakage data at the patient plane reflected the architecture of the shielding elements. Thus, the maximum leakage dose was found under the collimator when only one jaw shielded the primary beam and was about 0.08% of the dose at isocentre. Overall, we observe that the main contributor to leakage dose according to our model was the electron beam guide. Concerning the discrepancies between the measurements used to calibrate the model and the calculations from the model, the average difference was about 7%. Finally, graphics library modelling is a readily and suitable way to estimate leakage dose distribution on a personal computer. Such data could be useful for dosimetric evaluations in late effect studies.
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y.; Liao, Li; Zhu, Ronald X.; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D.; Lim, Gino; Zhang, Xiaodong
2015-01-01
Purpose The primary aim of this study was to evaluate the impact of interplay effects for intensity-modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of iso-layered re-scanning for mitigating these interplay effects. Methods and Materials Single-fraction 4D dynamic dose without considering re-scanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on moving patient described by 4D computed tomography (4DCT) during the IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase corresponding to the life span of that spot, and the final dose was accumulated to a reference CT phase by using deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected. Results The CTV prescription coverage for the 7 patients were 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53%, calculated with use of the 4D composite dose, and were 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% with use of the 1FX dynamic dose. For the 7 patients, the CTV coverage, calculated by using single-fraction dynamic dose, were 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, using maximum MU limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. Conclusions Single-fraction 4D dynamic dose without re-scanning was validated as a surrogate to evaluate the interplay effects for IMPT for lung cancer in the clinical setting. The interplay effects can be potentially mitigated by increasing the number of iso-layered re-scanning in each fraction delivery. PMID:25407877
Kardar, Laleh; Li, Yupeng; Li, Xiaoqiang; Li, Heng; Cao, Wenhua; Chang, Joe Y; Liao, Li; Zhu, Ronald X; Sahoo, Narayan; Gillin, Michael; Liao, Zhongxing; Komaki, Ritsuko; Cox, James D; Lim, Gino; Zhang, Xiaodong
2014-01-01
The primary aim of this study was to evaluate the impact of the interplay effects of intensity modulated proton therapy (IMPT) plans for lung cancer in the clinical setting. The secondary aim was to explore the technique of isolayered rescanning to mitigate these interplay effects. A single-fraction 4-dimensional (4D) dynamic dose without considering rescanning (1FX dynamic dose) was used as a metric to determine the magnitude of dosimetric degradation caused by 4D interplay effects. The 1FX dynamic dose was calculated by simulating the machine delivery processes of proton spot scanning on a moving patient, described by 4D computed tomography during IMPT delivery. The dose contributed from an individual spot was fully calculated on the respiratory phase that corresponded to the life span of that spot, and the final dose was accumulated to a reference computed tomography phase by use of deformable image registration. The 1FX dynamic dose was compared with the 4D composite dose. Seven patients with various tumor volumes and motions were selected for study. The clinical target volume (CTV) prescription coverage for the 7 patients was 95.04%, 95.38%, 95.39%, 95.24%, 95.65%, 95.90%, and 95.53% when calculated with the 4D composite dose and 89.30%, 94.70%, 85.47%, 94.09%, 79.69%, 91.20%, and 94.19% when calculated with the 1FX dynamic dose. For these 7 patients, the CTV coverage calculated by use of a single-fraction dynamic dose was 95.52%, 95.32%, 96.36%, 95.28%, 94.32%, 95.53%, and 95.78%, with a maximum monitor unit limit value of 0.005. In other words, by increasing the number of delivered spots in each fraction, the degradation of CTV coverage improved up to 14.6%. A single-fraction 4D dynamic dose without rescanning was validated as a surrogate to evaluate the interplay effects of IMPT for lung cancer in the clinical setting. The interplay effects potentially can be mitigated by increasing the amount of isolayered rescanning in each fraction delivery.
GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms.
Lacornerie, Thomas; Lisbona, Albert; Mirabel, Xavier; Lartigau, Eric; Reynaert, Nick
2014-10-16
The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions.
NASA Astrophysics Data System (ADS)
Rubeaux, Mathieu; Simon, Antoine; Gnep, Khemara; Colliaux, Jérémy; Acosta, Oscar; de Crevoisier, Renaud; Haigron, Pascal
2013-03-01
Image-Guided Radiation Therapy (IGRT) aims at increasing the precision of radiation dose delivery. In the context of prostate cancer, a planning Computed Tomography (CT) image with manually defined prostate and organs at risk (OAR) delineations is usually associated with daily Cone Beam Computed Tomography (CBCT) follow-up images. The CBCT images allow to visualize the prostate position and to reposition the patient accordingly. They also should be used to evaluate the dose received by the organs at each fraction of the treatment. To do so, the first step is a prostate and OAR segmentation on the daily CBCTs, which is very timeconsuming. To simplify this task, CT to CBCT non-rigid registration could be used in order to propagate the original CT delineations in the CBCT images. For this aim, we compared several non-rigid registration methods. They are all based on the Mutual Information (MI) similarity measure, and use a BSpline transformation model. But we add different constraints to this global scheme in order to evaluate their impact on the final results. These algorithms are investigated on two real datasets, representing a total of 70 CBCT on which a reference delineation has been realized. The evaluation is led using the Dice Similarity Coefficient (DSC) as a quality criteria. The experiments show that a rigid penalty term on the bones improves the final registration result, providing high quality propagated delineations.
Dose escalation methods in phase I cancer clinical trials.
Le Tourneau, Christophe; Lee, J Jack; Siu, Lillian L
2009-05-20
Phase I clinical trials are an essential step in the development of anticancer drugs. The main goal of these studies is to establish the recommended dose and/or schedule of new drugs or drug combinations for phase II trials. The guiding principle for dose escalation in phase I trials is to avoid exposing too many patients to subtherapeutic doses while preserving safety and maintaining rapid accrual. Here we review dose escalation methods for phase I trials, including the rule-based and model-based dose escalation methods that have been developed to evaluate new anticancer agents. Toxicity has traditionally been the primary endpoint for phase I trials involving cytotoxic agents. However, with the emergence of molecularly targeted anticancer agents, potential alternative endpoints to delineate optimal biological activity, such as plasma drug concentration and target inhibition in tumor or surrogate tissues, have been proposed along with new trial designs. We also describe specific methods for drug combinations as well as methods that use a time-to-event endpoint or both toxicity and efficacy as endpoints. Finally, we present the advantages and drawbacks of the various dose escalation methods and discuss specific applications of the methods in developmental oncotherapeutics.
Evaluation and implementation of triple‐channel radiochromic film dosimetry in brachytherapy
Bradley, David; Nisbet, Andrew
2014-01-01
The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple‐channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple‐channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation, film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single‐channel dosimetry. Triple‐channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple‐channel dosimetry separates dose and dose‐independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier‐like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple‐channel dosimetry and specific film scan and evaluation methodologies. PACS numbers: 87.55.Qr, 87.56.bg, 87.55.km PMID:25207417
Muselík, Jan; Franc, Aleš; Doležel, Petr; Goněc, Roman; Krondlová, Anna; Lukášová, Ivana
2014-09-01
The article describes the development and production of tablets using direct compression of powder mixtures. The aim was to describe the impact of filler particle size and the time of lubricant addition during mixing on content uniformity according to the Good Manufacturing Practice (GMP) process validation requirements. Processes are regulated by complex directives, forcing the producers to validate, using sophisticated methods, the content uniformity of intermediates as well as final products. Cutting down of production time and material, shortening of analyses, and fast and reliable statistic evaluation of results can reduce the final price without affecting product quality. The manufacturing process of directly compressed tablets containing the low dose active pharmaceutical ingredient (API) warfarin, with content uniformity passing validation criteria, is used as a model example. Statistic methods have proved that the manufacturing process is reproducible. Methods suitable for elucidation of various properties of the final blend, e.g., measurement of electrostatic charge by Faraday pail and evaluation of mutual influences of researched variables by partial least square (PLS) regression, were used. Using these methods, it was proved that the filler with higher particle size increased the content uniformity of both blends and the ensuing tablets. Addition of the lubricant, magnesium stearate, during the blending process improved the content uniformity of blends containing the filler with larger particles. This seems to be caused by reduced sampling error due to the suppression of electrostatic charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzelman, K M; Mansfield, W G
This document evaluates the expected radiation dose due to the consumption of several specific food classes (dairy, meat, produce, etc.) contaminated with specific radionuclides, and relates concentration levels in food to the detection abilities of typical aboratory analysis/measurement methods. The attached charts present the limiting organ dose as a function of the radionuclide concentration in a particular food class, and allow the user to compare these concentrations and doses to typical analytical detection apabilities. The expected radiation dose depends on several factors: the age of the individual; the radionuclide present in the food; the concentration of the radionuclide in themore » food; and the amount of food consumed. Food consumption rates for individuals of various ges were taken from the 1998 United States Food and Drug Administration (FDA) document, Accidental Radioactive Contamination of HUman Food and Animal Feeds: Recommendations for State and Local Agencies. In that document, the FDA defines the erived Intervention Level (DIL), which is the concentration of a particular radionuclide in food that if consumed could result in an individual receiving a radiation dose exceeding the Protection Action Guide (PAG) thresholds for intervention. This document also resents odified, food class specific DIL, which is calculated using a somewhat modified version of the FDA's procedure. This document begins with an overview of the FDA's DIL calculation, followed by a description of the food class specific DIL calculations, and finally charts of the radiation dose per radioactivity concentration for several food class/radionuclide combinations.« less
Zvada, Simbarashe P; Denti, Paolo; Donald, Peter R; Schaaf, H Simon; Thee, Stephanie; Seddon, James A; Seifart, Heiner I; Smith, Peter J; McIlleron, Helen M; Simonsson, Ulrika S H
2014-05-01
To describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children and evaluate the adequacy of steady-state exposures. We used previously published data for 76 South African children with tuberculosis to describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid. Monte Carlo simulations were used to predict steady-state exposures in children following doses in fixed-dose combination tablets in accordance with the revised guidelines. Reference exposures were derived from an ethnically similar adult population with tuberculosis taking currently recommended doses. The final models included allometric scaling of clearance and volume of distribution using body weight. Maturation was included for clearance of isoniazid and clearance and absorption transit time of rifampicin. For a 2-year-old child weighing 12.5 kg, the estimated typical oral clearances of rifampicin and pyrazinamide were 8.15 and 1.08 L/h, respectively. Isoniazid typical oral clearance (adjusted for bioavailability) was predicted to be 4.44, 11.6 and 14.6 L/h for slow, intermediate and fast acetylators, respectively. Higher oral clearance values in intermediate and fast acetylators also resulted from 23% lower bioavailability compared with slow acetylators. Simulations based on our models suggest that with the new WHO dosing guidelines and utilizing available paediatric fixed-dose combinations, children will receive adequate rifampicin exposures when compared with adults, but with a larger degree of variability. However, pyrazinamide and isoniazid exposures in many children will be lower than in adults. Further studies are needed to confirm these findings in children administered the revised dosages and to optimize pragmatic approaches to dosing.
NASA Astrophysics Data System (ADS)
Steinman, Rebecca Lee
Radioactive materials play an important role in modern society. In addition to providing electrical power and supporting national defense, radioisotopes play significant roles in the fields of medicine, research, manufacturing, and industry. Since most of these materials are not manufactured or disposed of at the site where they are used, they must be transported between various processing, use, storage, and disposal facilities. This dissertation examines the mathematical model used to predict the collective dose to the population that resides along a potential transport route, commonly called the off-link dose. The currently accepted RADTRAN and RISKIND transient dose models are reviewed. Then three new individual transient dose models are derived by assuming that a point, line, or surface cylinder can approximate the actual transport package. Groundscatter effects were investigated using a Monte Carlo simulation of the surface cylinder model and found to contribute no more than 12% to the total individual dose from a passing shipment of radioactive material, thus not warranting explicit inclusion in the newly derived transient dose models. All five of the individual transient dose models were evaluated for representative shipments of spent nuclear fuel and low-level waste within the State of Michigan and compared to experimentally measured doses. The individual dose for the Michigan shipment scenarios was found to be on the order of 1 murem. Comparison to the experimental measurements revealed that RISKIND consistently predicts the best estimate of the measured dose, followed closely by the surface cylinder model. RADTRAN consistently over predicted the measured dose by at least a factor of two. Finally, the line dose model is integrated over strips of uniform population along the transport route to arrive at the collective off-link population dose. This off-link dose model was incorporated into an ArcView application using the Avenue scripting language. Then this script was used to investigate the off-link dose to Michigan residents for the previously mentioned representative transport scenarios. The off-link dose was found to be less than 3 person-rem for all of the scenarios investigated.
Solano, Gabriela; Gómez, Aarón; León, Guillermo
2015-10-01
Snake antivenoms are parenterally administered; therefore, endotoxin content must be strictly controlled. Following international indications to calculate endotoxin limits, it was determined that antivenom doses between 20 mL and 120 mL should not exceed 17.5 Endotoxin Units per milliliter (EU/mL) and 2.9 EU/mL, respectively. The rabbit pyrogen test (RPT) has been used to evaluate endotoxin contamination in antivenoms, but some laboratories have recently implemented the LAL assay. We compared the capability of both tests to evaluate endotoxin contamination in antivenoms, and we found that both methods can detect all endotoxin concentrations in the range of the antivenom specifications. The acceptance criteria of RPT and LAL must be harmonized by calculating the endotoxin limit as the quotient of the threshold pyrogenic dose and the therapeutic dose and the dose administered to rabbits as the quotient of the threshold pyrogenic dose and the endotoxin limit. Since endotoxins from Gram-negative bacteria exert different pyrogenicity, if contamination occurred, antivenom batches that induce pyrogenic reactions may be found in spite of passing LAL specifications. Although LAL assay can be used to assess endotoxin content throughout the antivenom manufacturing process, we recommend that the release of final products be based on the results of both methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Karamah, Eva F.; Ghaudenson, Rioneli; Amalia, Fitri; Bismo, Setijo
2017-11-01
This research aims to evaluate the performance of hybrid method of ozonation and hydrodynamic cavitation with orifice plate on E.coli bacteria disinfection. In this research, ozone dose, circulation flowrate, and disinfection method were varied. Ozone was produced by commercial ozonator with ozone dose of 64.83 mg/hour, 108.18 mg/hour, and 135.04 mg/hour. Meanwhile, hydrodynamic cavitation was generated by an orifice plate. The disinfection method compared in this research were: hydrodynamic cavitation, ozonation, and the combination of both. The best result on each method was achieved on the 60th minutes and with a circulation flowrate of 7 L/min. The hybrid method attained final concentration of 0 CFU/mL from the initial concentration of 2.10 × 105 CFU/mL. The ozonation method attained final concentration of 0 CFU/mL from the initial concentration of 1.32 × 105 CFU/mL. Cavitation method gives the least disinfection with final concentration of 5.20 × 104 CFU/mL from the initial concentration of 2.17 × 105 CFU/mL. In conclusion, hybrid method gives a faster and better disinfection of E.coli than each method on its own.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Huet, C; Barraux, V
Purpose: Advanced stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. The purpose of this study was to evaluate the accuracy of dose calculation algorithms, Raytracing and Monte Carlo (MC), implemented in the MultiPlan treatment planning system (TPS) in presence of heterogeneities. Methods: First, the LINAC of a CyberKnife radiotherapy facility was modeled with the PENELOPE MC code. A protocol for the measurement of dose distributions with EBT3 films was established and validated thanks to comparison between experimental dose distributions and calculated dose distributions obtained with MultiPlan Raytracing and MCmore » algorithms as well as with the PENELOPE MC model for treatments planned with the homogenous Easycube phantom. Finally, bones and lungs inserts were used to set up a heterogeneous Easycube phantom. Treatment plans with the 10, 7.5 or the 5 mm field sizes were generated in Multiplan TPS with different tumor localizations (in the lung and at the lung/bone/soft tissue interface). Experimental dose distributions were compared to the PENELOPE MC and Multiplan calculations using the gamma index method. Results: Regarding the experiment in the homogenous phantom, 100% of the points passed for the 3%/3mm tolerance criteria. These criteria include the global error of the method (CT-scan resolution, EBT3 dosimetry, LINAC positionning …), and were used afterwards to estimate the accuracy of the MultiPlan algorithms in heterogeneous media. Comparison of the dose distributions obtained in the heterogeneous phantom is in progress. Conclusion: This work has led to the development of numerical and experimental dosimetric tools for small beam dosimetry. Raytracing and MC algorithms implemented in MultiPlan TPS were evaluated in heterogeneous media.« less
Reinhardt, Michael J; Brink, Ingo; Joe, Alexius Y; Von Mallek, Dirk; Ezziddin, Samer; Palmedo, Holger; Krause, Thomas M
2002-09-01
This study was performed with three aims. The first was to analyse the effectiveness of radioiodine therapy in Graves' disease patients with and without goitres under conditions of mild iodine deficiency using several tissue-absorbed doses. The second aim was to detect further parameters which might be predictive for treatment outcome. Finally, we wished to determine the deviation of the therapeutically achieved dose from that intended. Activities of 185-2,220 MBq radioiodine were calculated by means of Marinelli's formula to deliver doses of 150, 200 or 300 Gy to the thyroids of 224 patients with Graves' disease and goitres up to 130 ml in volume. Control of hyperthyroidism, change in thyroid volume and thyrotropin-receptor antibodies were evaluated 15+/-9 months after treatment for each dose. The results were further evaluated with respect to pre-treatment parameters which might be predictive for therapy outcome. Thyroidal radioiodine uptake was measured every day during therapy to determine the therapeutically achieved target dose and its coefficient of variation. There was a significant dose dependency in therapeutic outcome: frequency of hypothyroidism increased from 27.4% after 150 Gy to 67.7% after 300 Gy, while the frequency of persistent hyperthyroidism decreased from 27.4% after 150 Gy to 8.1% after 300 Gy. Patients who became hypothyroid had a maximum thyroid volume of 42 ml and received a target dose of 256+/-80 Gy. The coefficient of variation for the achieved target dose ranged between 27.7% for 150 Gy and 17.8% for 300 Gy. When analysing further factors which might influence therapeutic outcome, only pre-treatment thyroid volume showed a significant relationship to the result of treatment. It is concluded that a target dose of 250 Gy is essential to achieve hypothyroidism within 1 year after radioiodine therapy in Graves' disease patients with goitres up to 40 ml in volume. Patients with larger goitres might need higher doses.
Brooks, Antone L
2015-04-01
This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.
Kolb, Hildegard; Snowden, Austyn; Stevens, Elaine; Atherton, Iain
2018-05-09
Identification of risk factors predicting the development of death rattle. Respiratory tract secretions, often called death rattle, are among the most common symptoms in dying patients around the world. It is unknown whether death rattle causes distress in patients, but it has been globally reported that distress levels can be high in family members. Although there is a poor evidence base, treatment with antimuscarinic medication is standard practice worldwide and prompt intervention is recognised as crucial for effectiveness. The identification of risk factors for the development of death rattle would allow for targeted interventions. A case ̶ control study was designed to retrospectively review two hundred consecutive medical records of mainly cancer patients who died in a hospice inpatient setting between 2009 - 2011. Fifteen potential risk factors including the original factors weight, smoking, final opioid dose and final Midazolam dose were investigated. Binary logistic regression to identify risk factors for death rattle development. Univariate analysis showed death rattle was significantly associated with final Midazolam doses and final opioid doses, length of dying phase and anticholinergic drug load in the pre-terminal phase. In the final logistic regression model only Midazolam was statistically significant and only at final doses of 20 mg/24hrs or over (OR 3.81 CI 1.41-10.34). Dying patients with a requirement for a high dose of Midazolam have an increased likelihood of developing death rattle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Weinrich, Julius Matthias; Bannas, Peter; Regier, Marc; Keller, Sarah; Kluth, Luis; Adam, Gerhard; Henes, Frank Oliver
2018-03-01
The purpose of this study is to assess the diagnostic yield of low-dose (LD) CT for alternative diagnoses in patients with suspected urolithiasis. In this retrospective study, we included 776 consecutive patients who underwent unenhanced abdominal CT for evaluation of suspected urolithiasis. All examinations were performed with an LD CT protocol; images were reconstructed using iterative reconstruction. The leading LD CT diagnosis was recorded for each patient and compared with the final clinical diagnosis, which served as the reference standard. The mean (± SD) effective dose of CT was 1.9 ± 0.6 mSv. The frequency of urolithiasis was 82.5% (640/776). LD CT reached a sensitivity of 94.1% (602/640), a specificity of 100.0% (136/136), and an accuracy of 95.1% (738/776) for the detection of urolithiasis. In 93 of 136 patients (68.4%) without urolithiasis, alternative diagnoses were established as the final clinical diagnoses. Alternative diagnoses were most commonly located in the genitourinary (n = 53) and gastrointestinal (n = 18) tracts. LD CT correctly provided alternative diagnoses for 57 patients (61.3%) and was false-negative for five patients (5.4%). The most common clinical alternative diagnoses were urinary tract infections (n = 22). Seven diagnoses missed at LD CT were located outside the FOV. For 43 of all 776 patients (5.5%), neither LD CT nor clinical workup could establish a final diagnosis. The sensitivity, specificity, and accuracy of LD CT for the detection of alternative diagnoses were 91.9% (57/62), 95.6% (43/45), and 93.5% (100/107), respectively. LD CT enables the diagnosis of most alternative diagnoses in the setting of suspected urolithiasis. The most frequent alternative diagnoses missed by LD CT are urinary tract infections or diagnoses located outside the FOV of the abdominopelvic CT scan.
Tworowska, Izabela; Ranganathan, David; Thamake, Sanjay; Delpassand, Ebrahim; Mojtahedi, Alireza; Schultz, Michael K.; Zhernosekov, Konstantin; Marx, Sebastian
2017-01-01
Introduction 68Ga-DOTATATE is a radiolabeled peptide-based agonist that targets somatostatin receptors overexpressed in neuroendocrine tumors. Here, we present our results on validation of organic matrix 68Ge/68Ga generators (ITG GmbH) applied for radiosynthesis of the clinical doses of 68Ga-DOTATATE (GalioMedixTM). Methods The clinical grade of DOTATATE (25 µg±5µg) compounded in 1MNaOAc at pH=5.5 was labeled manually with 514±218MBq (13.89±5.9 mCi) of 68Ga eluate in 0.05 N HCl at 95 °C for 10 min. The radiochemical purity of the final dose was validated using radio-TLC. The quality control of clinical doses included tests of their osmolarity, endotoxin level, radionuclide identity, filter integrity, pH, sterility and 68Ge breakthrough. Results The final dose of 272±126MBq (7.35±3.4 mCi) of 68Ga-DOTATATE was produced with a radiochemical yield (RCY) of 99%±1%. The total time required for completion of radiolabeling and quality control averaged approximately 35 min. This resulted in delivery of 50% ± 7% of 68Ga-DOTATATE at the time of calibration (not decay corrected). Conclusions 68Ga eluted from the generator was directly applied for labeling of DOTA-peptide with no additional pre-concentration or pre-purification of isotope. The low acidity of 68Ga eluate allows for facile synthesis of clinical doses with radiochemical and radionuclide purity higher than 98% and average activity of 272 ± 126 MBq (7.3 ± 3 mCi). There is no need for post-labeling C18 Sep-Pak purification of final doses of radiotracer. Advances in knowledge and implications for patient care. The clinical interest in validation of 68Galabeled agents has increased in the past years due to availability of generators from different vendors (Eckert-Ziegler, ITG, iThemba), favorable approach of U.S. FDA agency to initiate clinical trials, and collaboration of U.S. centers with leading EU clinical sites. The list of 68Ga-labeled tracers evaluated in clinical studies should growth because of the sensitivity of PET technique, the simplicity of the shakebake approach for the dose preparation and reliability of 68Ge/68Ga generators. Our studies have confirmed the reproducible elution profile, and high reliability of ITG GmbH generators required for routine doses preparation according to FDA recommendations. PMID:26702783
Tworowska, Izabela; Ranganathan, David; Thamake, Sanjay; Delpassand, Ebrahim; Mojtahedi, Alireza; Schultz, Michael K; Zhernosekov, Konstantin; Marx, Sebastian
2016-01-01
68Ga-DOTATATE is a radiolabeled peptide-based agonist that targets somatostatin receptors overexpressed in neuroendocrine tumors. Here, we present our results on validation of organic matrix 68Ge/68Ga generators (ITG GmbH) applied for radiosynthesis of the clinical doses of 68Ga-DOTATATE (GalioMedixTM). The clinical grade of DOTATATE (25 μg±5 μg) compounded in 1 M NaOAc at pH=5.5 was labeled manually with 514±218 MBq (13.89±5.9 mCi) of 68Ga eluate in 0.05 N HCl at 95°C for 10 min. The radiochemical purity of the final dose was validated using radio-TLC. The quality control of clinical doses included tests of their osmolarity, endotoxin level, radionuclide identity, filter integrity, pH, sterility and 68Ge breakthrough. The final dose of 272±126 MBq (7.35±3.4 mCi) of 68Ga-DOTATATE was produced with a radiochemical yield (RCY) of 99%±1%. The total time required for completion of radiolabeling and quality control averaged approximately 35 min. This resulted in delivery of 50%±7% of 68Ga-DOTATATE at the time of calibration (not decay corrected). 68Ga eluted from the generator was directly applied for labeling of DOTA-peptide with no additional pre-concentration or pre-purification of isotope. The low acidity of 68Ga eluate allows for facile synthesis of clinical doses with radiochemical and radionuclide purity higher than 98% and average activity of 272±126 MBq (7.3±3 mCi). There is no need for post-labeling C18 Sep-Pak purification of final doses of radiotracer. Advances in knowledge and implications for patient care. The clinical interest in validation of 68Galabeled agents has increased in the past years due to availability of generators from different vendors (Eckert-Ziegler, ITG, iThemba), favorable approach of U.S. FDA agency to initiate clinical trials, and collaboration of U.S. centers with leading EU clinical sites. The list of 68Ga-labeled tracers evaluated in clinical studies should growth because of the sensitivity of PET technique, the simplicity of the shakebake approach for the dose preparation and reliability of 68Ge/68Ga generators. Our studies have confirmed the reproducible elution profile, and high reliability of ITG GmbH generators required for routine doses preparation according to FDA recommendations. Copyright © 2015 Elsevier Inc. All rights reserved.
Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria
2013-09-01
The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.
Ionizing Radiation Dose Due to the Use of Agricultural Fertilizers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umisedo, Nancy K.; Okuno, Emico; Medina, Nilberto H.
2008-08-07
The transference of radionuclides from the fertilizers to/and from soils to the foodstuffs can represent an increment in the internal dose when the vegetables are consumed by the human beings. This work evaluates the contribution of fertilizers to the increase of radiation level in the environment and of dose to the people. Samples of fertilizers, soils and vegetables produced in farms located in the neighbourhood of Sao Paulo city in the State of Sao Paulo, Brazil were analysed through gamma spectroscopy. The values of specific activity of {sup 40}K, {sup 238}U and {sup 232}Th show that there is no significantmore » transference of natural radionuclides from fertilizers to the final product of the food chain. The annual committed effective dose due to the ingestion of {sup 40}K contained in the group of consumed vegetables analysed in this work resulted in the very low value of 0.882 {mu}Sv.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santucci, P.; Guetat, P.
1993-12-31
This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activitymore » unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.« less
"Coffee, tea and me": moderate doses of caffeine affect sexual behavior in female rats.
Guarraci, Fay A; Benson, Anastasia
2005-11-01
The present study evaluated the effects of acute caffeine administration on paced mating behavior and partner preference in ovariectomized rats primed with estrogen and progesterone. In Experiment 1, female rats were tested for paced mating behavior following acute administration of caffeine (15 mg/kg). Caffeine shortened the latency to return to a male following an ejaculation. Although this dose of caffeine did not alter the likelihood of leaving a male after receiving sexual stimulation, locomotor activity did increase significantly. Experiment 2 evaluated the dose response characteristics of caffeine (7.5, 15, 30 mg/kg) administration on paced mating behavior. Replicating Experiment 1, caffeine at the lower doses shortened the latency to return to a male following an ejaculation. Finally, to determine whether the effects of caffeine (15 mg/kg) on contact-return latency reflect a change in sexual motivation or merely an inability to inhibit locomotion, rats were tested for partner preference (intact male vs. estrous female) following caffeine administration (Experiment 3). Although caffeine did not disrupt preference for a sexual partner, caffeine selectively increased visits to the male when physical contact was possible. Collectively, these results suggest that the effects of caffeine on female mating behavior may reflect an increase in both sexual motivation and locomotor activity.
Imanaka, Tetsuji; Fukutani, Satoshi; Yamamoto, Masayoshi; Sakaguchi, Aya; Hoshi, Masaharu
2006-02-01
Dolon village, located about 60 km from the border of the Semipalatinsk Nuclear Test Site, is known to be heavily contaminated by local fallout from the first USSR atomic bomb test in 1949. External radiation in Dolon was evaluated based on recent 137Cs data in soil and calculation of temporal change in the fission product composition. After fitting a log-normal distribution to the soil data, a 137Cs deposition of 32 kBq m-2, which corresponds to the 90th-percentile of the distribution, was tentatively chosen as a value to evaluate the radiation situation in 1949. Our calculation indicated that more than 95% of the cumulative dose for 50 y had been delivered within 1 y after the deposition. The resulting cumulative dose for 1 y after the deposition, normalized to the initial contamination containing 1 kBq m-2 of 137Cs, was 15.6 mGy, assuming a fallout arrival time of 3 h and a medium level of fractionation. Finally, 0.50 Gy of absorbed dose in air was derived as our tentative estimate for 1-year cumulative external dose in Dolon due to local fallout from the first USSR test in 1949.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
2016-12-01
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrus, Jason P.; Pope, Chad; Toston, Mary
Nonreactor nuclear facilities operating under the approval authority of the U.S. Department of Energy use unmitigated hazard evaluations to determine if potential radiological doses associated with design basis events challenge or exceed dose evaluation guidelines. Unmitigated design basis events that sufficiently challenge dose evaluation guidelines or exceed the guidelines for members of the public or workers, merit selection of safety structures, systems, or components or other controls to prevent or mitigate the hazard. Idaho State University, in collaboration with Idaho National Laboratory, has developed a portable and simple to use software application called SODA (Stochastic Objective Decision-Aide) that stochastically calculatesmore » the radiation dose distribution associated with hypothetical radiological material release scenarios. Rather than producing a point estimate of the dose, SODA produces a dose distribution result to allow a deeper understanding of the dose potential. SODA allows users to select the distribution type and parameter values for all of the input variables used to perform the dose calculation. Users can also specify custom distributions through a user defined distribution option. SODA then randomly samples each distribution input variable and calculates the overall resulting dose distribution. In cases where an input variable distribution is unknown, a traditional single point value can be used. SODA, developed using the MATLAB coding framework, has a graphical user interface and can be installed on both Windows and Mac computers. SODA is a standalone software application and does not require MATLAB to function. SODA provides improved risk understanding leading to better informed decision making associated with establishing nuclear facility material-at-risk limits and safety structure, system, or component selection. It is important to note that SODA does not replace or compete with codes such as MACCS or RSAC; rather it is viewed as an easy to use supplemental tool to help improve risk understanding and support better informed decisions. The SODA development project was funded through a grant from the DOE Nuclear Safety Research and Development Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADAMS, WADE C
The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys include gamma surface scans, gamma direct measurements, and soil sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADAMS, WADE C
The objectives of the confirmatory activities were to provide independent contractor field data reviews and to generate independent radiological data for use by the NRC in evaluating the adequacy and accuracy of the contractor's procedures and FSS results. ORAU reviewed ABB CE's decommissioning plan, final status survey plan, and the applicable soil DCGLs, which were developed based on an NRC-approved radiation dose assessment. The surveys included gamma surface scans, gamma direct measurements, and soil sampling.
Evaluation of an artificial intelligence guided inverse planning system: clinical case study.
Yan, Hui; Yin, Fang-Fang; Willett, Christopher
2007-04-01
An artificial intelligence (AI) guided method for parameter adjustment of inverse planning was implemented on a commercial inverse treatment planning system. For evaluation purpose, four typical clinical cases were tested and the results from both plans achieved by automated and manual methods were compared. The procedure of parameter adjustment mainly consists of three major loops. Each loop is in charge of modifying parameters of one category, which is carried out by a specially customized fuzzy inference system. A physician prescribed multiple constraints for a selected volume were adopted to account for the tradeoff between prescription dose to the PTV and dose-volume constraints for critical organs. The searching process for an optimal parameter combination began with the first constraint, and proceeds to the next until a plan with acceptable dose was achieved. The initial setup of the plan parameters was the same for each case and was adjusted independently by both manual and automated methods. After the parameters of one category were updated, the intensity maps of all fields were re-optimized and the plan dose was subsequently re-calculated. When final plan arrived, the dose statistics were calculated from both plans and compared. For planned target volume (PTV), the dose for 95% volume is up to 10% higher in plans using the automated method than those using the manual method. For critical organs, an average decrease of the plan dose was achieved. However, the automated method cannot improve the plan dose for some critical organs due to limitations of the inference rules currently employed. For normal tissue, there was no significant difference between plan doses achieved by either automated or manual method. With the application of AI-guided method, the basic parameter adjustment task can be accomplished automatically and a comparable plan dose was achieved in comparison with that achieved by the manual method. Future improvements to incorporate case-specific inference rules are essential to fully automate the inverse planning process.
Progress in high-dose radiation dosimetry. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.
1981-01-01
The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters are also treated in this review. In addition, an IAEA program of high-dose intercomparison and standardization for industrial radiation processing is described.
Progress in high-dose radiation dosimetry. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettinger, K.V.; Nam, J.W.; McLaughlin, W.L.
1981-01-01
The last decade has witnessed a deluge of new high-dose dosimetry techniques and expended applications of methods developed earlier. Many of the principal systems are calibrated by means of calorimetry, although production of heat is not always the final radiation effect of interest. Requirements for a stable and reliable transfer dose meters have led to further developments of several important high-dose systems: thermoluminescent materials, radiochromic dyes, ceric-cerous solutions analyzed by high-frequency oscillometry. A number of other prospective dosimeters also treated in this review. In addition, an IAEA programme of high-dose intercomparison and standardization for industrial radiation processing is described.
Endo, Hiroki; Kato, Takayuki; Sakai, Eiji; Taniguchi, Leo; Arimoto, Jun; Kawamura, Harunobu; Higurashi, Takuma; Ohkubo, Hidenori; Nonaka, Takashi; Taguri, Masataka; Inamori, Masahiko; Yamanaka, Takeharu; Sakaguchi, Takashi; Hata, Yasuo; Nagase, Hajime; Nakajima, Atsushi
2017-02-01
Aspirin use is reportedly not to be associated with fecal immunochemical occult blood test (FIT) false-positive results for the detection of colorectal cancer. The need for additional small bowel exploration in FIT-positive, low-dose aspirin users with a negative colonoscopy is controversial. The aim of this study was to assess the ability of FIT to judge whether capsule endoscopy (CE) should be performed in low-dose aspirin users with negative colonoscopy and esophagogastroduodenoscopy findings by comparing FIT results with CE findings. A total of 264 consecutive low-dose aspirin users with negative colonoscopy and esophagogastroduodenoscopy who were scheduled to undergo CE at five hospitals in Japan were enrolled. Patients had been offered FIT prior to the CE. The association between the FIT results and the CE findings was then assessed. One hundred and fifty-seven patients were included in the final analysis. Eighty-four patients (53.5 %) had positive FIT results. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of positive FIT results for small bowel ulcers were 0.56, 0.47, 0.30, and 0.73, respectively. Furthermore, the NPV of positive FIT results for severe small bowel injury (Lewis score ≥790) was markedly high (0.90). When the analysis was performed only in low-dose aspirin users with anemia, the sensitivity of the positive FIT results was notably improved (0.72). Small bowel evaluation using CE is not recommended for FIT-negative, low-dose aspirin users. However, small bowel evaluation using CE should be considered in both FIT-positive and anemic low-dose aspirin users.
Medical management of the acute radiation syndrome.
López, Mario; Martín, Margarita
2011-07-13
The acute radiation syndrome (ARS) occurs after whole-body or significant partial-body irradiation (typically at a dose of >1 Gy). ARS can involve the hematopoietic, cutaneous, gastrointestinal and the neurovascular organ systems either individually or in combination. There is a correlation between the severity of clinical signs and symptoms of ARS and radiation dose. Radiation induced multi-organ failure (MOF) describes the progressive dysfunction of two or more organ systems over time. Radiation combined injury (RCI) is defined as radiation injury combined with blunt or penetrating trauma, burns, blast, or infection. The classic syndromes are: hematopoietic (doses >2-3 Gy), gastrointestinal (doses 5-12 Gy) and cerebrovascular syndrome (doses 10-20 Gy). There is no possibility to survive after doses >10-12 Gy. The Phases of ARS are-prodromal: 0-2 days from exposure, latent: 2-20 days, and manifest illness: 21-60 days from exposure. Granulocyte-colony stimulating factor (G-CSF) at a dose of 5 μg/kg body weight per day subcutaneously has been recommended as treatment of neutropenia, and antibiotics, antiviral and antifungal agents for prevention or treatment of infections. If taken within the first hours of contamination, stable iodine in the form of nonradioactive potassium iodide (KI) saturates iodine binding sites within the thyroid and inhibits incorporation of radioiodines into the gland. Finally, if severe aplasia persists under cytokines for more than 14 days, the possibility of a hematopoietic stem cell (HSC) transplantation should be evaluated. This review will focus on the clinical aspects of the ARS, using the European triage system (METREPOL) to evaluate the severity of radiation injury, and scoring groups of patients for the general and specific management of the syndrome.
Zvada, Simbarashe P.; Denti, Paolo; Donald, Peter R.; Schaaf, H. Simon; Thee, Stephanie; Seddon, James A.; Seifart, Heiner I.; Smith, Peter J.; McIlleron, Helen M.; Simonsson, Ulrika S. H.
2014-01-01
Objectives To describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid in children and evaluate the adequacy of steady-state exposures. Patients and methods We used previously published data for 76 South African children with tuberculosis to describe the population pharmacokinetics of rifampicin, pyrazinamide and isoniazid. Monte Carlo simulations were used to predict steady-state exposures in children following doses in fixed-dose combination tablets in accordance with the revised guidelines. Reference exposures were derived from an ethnically similar adult population with tuberculosis taking currently recommended doses. Results The final models included allometric scaling of clearance and volume of distribution using body weight. Maturation was included for clearance of isoniazid and clearance and absorption transit time of rifampicin. For a 2-year-old child weighing 12.5 kg, the estimated typical oral clearances of rifampicin and pyrazinamide were 8.15 and 1.08 L/h, respectively. Isoniazid typical oral clearance (adjusted for bioavailability) was predicted to be 4.44, 11.6 and 14.6 L/h for slow, intermediate and fast acetylators, respectively. Higher oral clearance values in intermediate and fast acetylators also resulted from 23% lower bioavailability compared with slow acetylators. Conclusions Simulations based on our models suggest that with the new WHO dosing guidelines and utilizing available paediatric fixed-dose combinations, children will receive adequate rifampicin exposures when compared with adults, but with a larger degree of variability. However, pyrazinamide and isoniazid exposures in many children will be lower than in adults. Further studies are needed to confirm these findings in children administered the revised dosages and to optimize pragmatic approaches to dosing. PMID:24486870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagar, M; Bhagwat, M; O’Farrell, D
2015-06-15
Purpose: There are unique obstacles to implementing the MatriXX ionchamber array as a QA tool in Brachytherapy given that the device is designed for use in the MV energy range. One of the challenges we investigate is the affect of acquisition rates on dose measurement accuracy for HDR treatment plans. Methods: A treatment plan was optimized in Oncentra Brachy TPS to deliver a planar dose to a 5×5cm region at 10mm depth. The applicator was affixed to the surface of the MatriXX array. The plan was delivered multiple times using a Nucleatron HDR afterloader with a 2.9Ci Ir192 source. Formore » each measurement the sampling rate of the MatriXX movie mode was varied (30ms and 500ms). This experiment was repeated with identical parameters, following a source exchange, with an 11.2Ci Ir192 source. Finally, a single snap measurement was acquired. Analysis was preformed to evaluate the fidelity of the dose delivery for each iteration of the experiment. Evaluation was based on the comparison between the measured and TPS predicted dose. Results: Higher sample rates induce a greater discrepancy between the predicted and measured dose. Delivering the plan using a lower activity source also produced greater discrepancy in the measurement due to the increased delivery time. Analyzing the single snap measurement showed little difference from the 500ms integral dose measurement. Conclusion: The advantage of using movie mode for HDR treatment delivery QA is the ability for real time source tracking in addition to dose measurement. Our analysis indicates that 500ms is an optimal frame rate.« less
Liu, Dongyang; Zhang, Li; Wu, Yiwen; Jiang, Ji; Tan, Fenlai; Wang, Yingxiang; Liu, Yong; Hu, Pei
2015-09-01
To receive pharmacokinetics, safety, and anti-tumor activity of icotinib, a novel epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), in patients with advanced non-small-cell lung cancer (NSCLC). Patients (n=40) with advanced NSCLC were enrolled to receive escalating doses of icotinib, which was administrated on Day 1 followed by 28-day continuous dosing starting from Day 4. Four dosing regimens, 100mg b.i.d., 150 mg b.i.d., 125 mg t.i.d., and 200mg b.i.d. were studied. Pharmacokinetics (PK), safety, and efficacy of icotinib were evaluated. Icotinib was well tolerated in Chinese patients with refractory NSCLC. No toxicity with >3 grades were reported in more than 2 patients under any dose levels. One complete response (3%) and 9 partial responses (23%) were received. Total disease control rate could reach at 73% and median progress-free survival (range) was 154 (17-462) days. PK exposure of icotinib increased with increase of dose in NSCLC patients. Food was suggested to increase PK exposure by ∼30%. Mean t1/2β was within 5.31-8.07 h. No major metabolite (>10% plasma exposure of icotinib) was found in NSCLC patients. Icotinib with up to 400 mg/day exhibited good tolerance and preliminary antitumor activity in Chinese NSCLC patients. Pharmacokinetics of icotinib and 5 major metabolites were fully investigated in NSCLC patients. Optimized biologic dose (OBD) was finally recommended to be 125 mg t.i.d. for the later clinical study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Villafane, G; Thiriez, C; Audureau, E; Straczek, C; Kerschen, P; Cormier-Dequaire, F; Van Der Gucht, A; Gurruchaga, J-M; Quéré-Carne, M; Evangelista, E; Paul, M; Defer, G; Damier, P; Remy, P; Itti, E; Fénelon, G
2018-01-01
Studies of the effects of nicotine on motor symptoms in Parkinson's disease (PD) brought out discordant results. The aim of the present study was to evaluate the efficacy and safety of high doses of transdermal nicotine on motor symptoms in PD. Forty PD patients were randomly assigned to a treated and untreated arm in an open-label study. Treated patients received increasing doses of nicotine to reach 90 mg/day by 11 weeks. This dosage was maintained for 28 weeks (W39) and then reduced over 6 weeks. Final evaluation was performed 6 weeks after washout. The main outcome measure was the OFF-DOPA Unified Parkinson's Disease Rating Scale (UPDRS) motor score measured on video recordings by raters blinded to the medication status of the patients. There was no significant difference in OFF-DOPA UPDRS motor scores between the nicotine-treated and non-treated groups, neither at W39 (19.4 ± 9.3 vs. 21.5 ± 14.2) nor considering W39 differences from baseline (-1.5 ± 12.1 vs. +0.9 ± 12.1). The 39-item Parkinson's disease questionnaire scores decreased in nicotine-treated patients and increased in non-treated patients, but the difference was not significant. Overall tolerability was acceptable, and 12/20 treated patients reached the maximal dosage. High doses of transdermal nicotine were tolerated, but our study failed to demonstrate significant improvement in UPDRS motor scores. Improvement in unblinded secondary outcomes (UPDRS-II, UPDRS-IV, doses of l-DOPA equivalents) suggest a possible benefit for patients treated with nicotine, which should be confirmed in larger double blind, placebo-controlled studies. © 2017 EAN.
LaRue, Susan; Malloy, Jaret
2015-01-01
Background: Exenatide once weekly, an injectable glucagon-like peptide-1 receptor agonist, has been shown to reduce A1C, fasting glucose, and body weight in patients with type 2 diabetes. Exenatide 2.0 mg is dispersed in poly-(D,L-lactide-co-glycolide) polymer microspheres, which require resuspension in aqueous diluent before subcutaneous injection. A single-use, dual-chamber pen was developed to improve the convenience of exenatide once weekly delivery and tested following Food and Drug Administration (FDA) guidance. Methods: Design development goals were established, and validation tests (dose accuracy, torque/force requirements, usability, and ease-of-use) were performed. Dose accuracy was tested under a variety of conditions. After 10 exploratory studies in 329 patients, the final design’s usability and ease-of-use were tested in untrained health care practitioners (HCPs; n = 16) and untrained/trained patients (n = 30/17). Usability testing evaluated completion of multiple setup, dose preparation, and injection steps. Ease-of-use impression was assessed using a scale of 1−7 (1 = very difficult, 7 = very easy). Results: The dual-chamber pen successfully met development goals and delivered target volume (650 µL ± 10%) under tested conditions (mean 644.7–649.3 µL), with torque and force requirements below prespecified maximum values. In the final user study, most participants (≥87%) correctly completed pen setup, dose preparation, and injection steps. Mean ease-of-use scores were 5.8, 6.3, and 6.5 out of 7 in untrained HCPs, untrained patients, and trained patients, respectively. Conclusion: With self-education or minimal training, participants accurately and precisely suspended, mixed, and delivered exenatide-containing microspheres using the dual-chamber pen with high ease-of-use scores. The dual-chamber pen was FDA-approved in February 2014. PMID:25759181
High-dose transdermal nicotine replacement for tobacco cessation.
Brokowski, Laurie; Chen, Jiahui; Tanner, Sara
2014-04-15
The safety and efficacy of high-dose transdermal nicotine-replacement therapy (NRT) for the treatment of tobacco-use cessation were reviewed. Transdermal nicotine doses of 7, 14, and 21 mg daily are approved by the Food and Drug Administration for use in tobacco cessation. However, studies have suggested that these doses are more adequate for people who smoke fewer than 20 cigarettes per day. A literature search was conducted to identify English-language studies that evaluated the use of transdermal nicotine doses of ≥42 mg daily. A total of 11 articles were identified, representing 10 separate trials. In terms of safety, the majority of the trials had no reports of serious adverse events related to transdermal NRT at doses of ≥42 mg daily. A dose-response relationship with adverse events occurred in most trials. In terms of efficacy, a numerically higher abstinence rate was achieved with high-dose transdermal NRT in all trials but 1. However, none of the studies showed significant differences in final abstinence rates at follow-up. Some reasons why statistical significance was not achieved in these trials may be related to the limitations of these trials, such as their small samples and the lack of a power calculation. A more robust trial is needed to support higher nicotine transdermal doses in tobacco cessation and to help elucidate which patient population would be most suitable for their use. The safety and efficacy of high-dose transdermal NRT for tobacco cessation have not been established in the medical literature.
do Amaral, Leonardo L.; Pavoni, Juliana F.; Sampaio, Francisco; Netto, Thomaz Ghilardi
2015-01-01
Despite individual quality assurance (QA) being recommended for complex techniques in radiotherapy (RT) treatment, the possibility of errors in dose delivery during therapeutic application has been verified. Therefore, it is fundamentally important to conduct in vivo QA during treatment. This work presents an in vivo transmission quality control methodology, using radiochromic film (RCF) coupled to the linear accelerator (linac) accessory holder. This QA methodology compares the dose distribution measured by the film in the linac accessory holder with the dose distribution expected by the treatment planning software. The calculated dose distribution is obtained in the coronal and central plane of a phantom with the same dimensions of the acrylic support used for positioning the film but in a source‐to‐detector distance (SDD) of 100 cm, as a result of transferring the IMRT plan in question with all the fields positioned with the gantry vertically, that is, perpendicular to the phantom. To validate this procedure, first of all a Monte Carlo simulation using PENELOPE code was done to evaluate the differences between the dose distributions measured by the film in a SDD of 56.8 cm and 100 cm. After that, several simple dose distribution tests were evaluated using the proposed methodology, and finally a study using IMRT treatments was done. In the Monte Carlo simulation, the mean percentage of points approved in the gamma function comparing the dose distribution acquired in the two SDDs were 99.92%±0.14%. In the simple dose distribution tests, the mean percentage of points approved in the gamma function were 99.85%±0.26% and the mean percentage differences in the normalization point doses were −1.41%. The transmission methodology was approved in 24 of 25 IMRT test irradiations. Based on these results, it can be concluded that the proposed methodology using RCFs can be applied for in vivo QA in RT treatments. PACS number: 87.55.Qr, 87.55.km, 87.55.N‐ PMID:26699306
Revision of orthovoltage chest wall treatment using Monte Carlo simulations.
Zeinali-Rafsanjani, B; Faghihi, R; Mosleh-Shirazi, M A; Mosalaei, A; Hadad, K
2017-01-01
Given the high local control rates observed in breast cancer patients undergoing chest wall irradiation by kilovoltage x-rays, we aimed to revisit this treatment modality by accurate calculation of dose distributions using Monte Carlo simulation. The machine components were simulated using the MCNPX code. This model was used to assess the dose distribution of chest wall kilovoltage treatment in different chest wall thicknesses and larger contour or fat patients in standard and mid sternum treatment plans. Assessments were performed at 50 and 100 cm focus surface distance (FSD) and different irradiation angles. In order to evaluate different plans, indices like homogeneity index, conformity index, the average dose of heart, lung, left anterior descending artery (LAD) and percentage target coverage (PTC) were used. Finally, the results were compared with the indices provided by electron therapy which is a more routine treatment of chest wall. These indices in a medium chest wall thickness in standard treatment plan at 50 cm FSD and 15 degrees tube angle was as follows: homogeneity index 2.57, conformity index 7.31, average target dose 27.43 Gy, average dose of heart, lung and LAD, 1.03, 2.08 and 1.60 Gy respectively and PTC 11.19%. Assessments revealed that dose homogeneity in planning target volume (PTV) and conformity between the high dose region and PTV was poor. To improve the treatment indices, the reference point was transferred from the chest wall skin surface to the center of PTV. The indices changed as follows: conformity index 7.31, average target dose 60.19 Gy, the average dose of heart, lung and LAD, 3.57, 6.38 and 5.05 Gy respectively and PTC 55.24%. Coverage index of electron therapy was 89% while it was 22.74% in the old orthovoltage method and also the average dose of the target was about 50 Gy but in the given method it was almost 30 Gy. The results of the treatment study show that the optimized standard and mid sternum treatment for different chest wall thicknesses is with 50 cm FSD and zero (vertical) tube angle, while in large contour patients, it is with 100 cm FSD and zero tube angle. Finally, chest wall kilovoltage and electron therapies were compared, which revealed that electron therapy produces a better dose distribution than kilovoltage therapy.
HAMLET -Matroshka IIA and IIB experiments aboard the ISS: comparison of organ doses
NASA Astrophysics Data System (ADS)
Kato, Zoltan; Reitz, Guenther; Berger, Thomas; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Palfalvi, Jozsef K.; Hager, Luke; Burmeister, Soenke
The Matroshka experiments and the related FP7 HAMLET project aimed to study the dose burden of the cosmic rays in the organs of the crew working inside and outside the ISS. Two of the experiments will be discussed. They were performed in two different locations inside the ISS: during the Matroshka 2A (in 2006) the phantom was stored in the Russian Docking Module (Pirs), while during the Matroshka 2B (in 2007-08) it was inside the Russian Service Module (Zvezda). Both experiments were performed in the decreasing phase of the solar cycle. Solid state nuclear track detectors (SSNTD) were applied to investigate the dose contribution of the high LET radiation above ˜10 keV/µm. Two configurations of SSNTDs stacks were constructed: one for the exposure in the so called organ dose boxes (in the lung and kidney), another one for the skin dose measurements, embedded in the nomex poncho of the Phantom. In addition a reference package was placed outside the phantom. After exposure the detectors were transferred to the Earth for data evaluation. Short and long etching procedures were applied to distinguish the high and low LET particles, respectively. The particle tracks were evaluated by a semi automated image analyzer. Addi-tionally manual track parameter measurements were performed on very long tracks. As the result of measurements the LET spectra were deduced. Based on these spectra, the absorbed dose, the dose equivalent and the mean quality factor were calculated. The configuration of the stacks, the methods of the calibration and evaluation and finally the results will be presented and compared. The multiple etching and the combined evaluation method allowed to determine the fraction of the dose originated from HZE particles (Z>2 and range > major axis). Further on, data eval-uation was performed to separate the secondary particles (target fragments) from the primary particles. Although the number of high LET particles above a ˜80 keV/µm was found to be higher during the Matroshka 2B experiment than in the previous phase it was not possible to attribute this observation to the lower Sun activity in 2008, since the locations inside the ISS were different. The HAMLET project is funded by the European Commission under the EUs Seventh Frame-work Programme (FP7) under Project Nr: 218817 and coordinated by the German Aerospace Center (DLR) http://www-fp7-hamlet.eu
NASA Astrophysics Data System (ADS)
Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.
2016-02-01
For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation therapy.
Proposed Oral Reference Dose (RfD) for Barium and Compounds (Final Report, 2004)
This document is the final report from the 2004 external peer review of the Proposed Oral Reference Dose (RfD) for Barium and Compounds, prepared by the U.S. Environmental Protection Agency (EPA), National Center for Environmental Assessment (NCEA), for the Integrated Risk...
IRIS Toxicological Review of Ammonia Noncancer Inhalation ...
EPA has finalized the Integrated Risk Information System (IRIS) Assessment of Ammonia (Noncancer Inhalation). This assessment addresses the potential noncancer human health effects from long-term inhalation exposure to ammonia. Now final, this assessment will update the current toxicological information on ammonia posted in 1991. EPA’s program and regional offices may use this assessment to inform decisions to protect human health. EPA completed the Integrated Risk Information System (IRIS) health assessment for ammonia. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effects that may result from chronic (or lifetime) exposure to chemicals in the environment. IRIS contains chemical-specific summaries of qualitative and quantitative health information in support of two steps of the risk assessment paradigm, i.e., hazard identification and dose-response evaluation. IRIS assessments are used in combination with specific situational exposure assessment information to evaluate potential public health risk associated with environmental contaminants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.
1996-05-01
Building 2 on the U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) site, which is operated by Rust Geotech, is part of the GJPO Remedial Action Program. This report describes measurements and modeling efforts to evaluate the radiation dose to members of the public who might someday occupy or tear down Building 2. The assessment of future doses to those occupying or demolishing Building 2 is based on assumptions about future uses of the building, measured data when available, and predictive modeling when necessary. Future use of the building is likely to be as an office facility. Themore » DOE sponsored program, RESRAD-BUILD, Version. 1.5 was chosen for the modeling tool. Releasing the building for unrestricted use instead of demolishing it now could save a substantial amount of money compared with the baseline cost estimate because the site telecommunications system, housed in Building 2, would not be disabled and replaced. The information developed in this analysis may be used as part of an as low as reasonably achievable (ALARA) cost/benefit determination regarding disposition of Building 2.« less
Lu, Yanhui; Bliven-Sizemore, Erin; Weiner, Marc; Nuermberger, Eric; Burman, William; Dorman, Susan E.; Dooley, Kelly E.
2014-01-01
Rifapentine is under active investigation as a potent drug that may help shorten the tuberculosis (TB) treatment duration. A previous rifapentine dose escalation study with daily dosing indicated a possible decrease in bioavailability as the dose increased and an increase in clearance over time for rifapentine and its active metabolite, desacetyl rifapentine. This study aimed to assess the effects of increasing doses on rifapentine absorption and bioavailability and to evaluate the clearance changes over 14 days. A population analysis was performed with nonlinear mixed-effects modeling. Absorption, time-varying clearance, bioavailability, and empirical and semimechanistic autoinduction models were investigated. A one-compartment model linked to a transit compartment absorption model best described the data. The bioavailability of rifapentine decreased linearly by 2.5% for each 100-mg increase in dose. The autoinduction model suggested a dose-independent linear increase in clearance of the parent drug and metabolite over time from 1.2 and 3.1 liters · h−1, respectively, after a single dose to 2.2 and 5.0 liters · h−1, respectively, after 14 once-daily doses, with no plateau being reached by day 14. In clinical trial simulations using the final model, rifapentine demonstrated less-than-dose-proportional pharmacokinetics, but there was no plateau in exposures over the dose range tested (450 to 1,800 mg), and divided dosing increased exposures significantly. Thus, the proposed compartmental model incorporating daily dosing of rifapentine over a wide range of doses and time-related changes in bioavailability and clearance provides a useful tool for estimation of drug exposure that can be used to optimize rifapentine dosing for TB treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT01162486.) PMID:24614383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, T.L.; Wasserman, T.H.; Johnson, R.J.
1981-10-15
The hypoxic cell sensitizer misonidazole began phase I evaluation in the United States in July 1977. One hundred two patients received 104 individual courses of drug. Drug was administered from once to five times per week over time spans from one to six weeks. The individual doses ranged 1 to 5 g/m. The major toxicity noted was neurologic; 49% of evaluable courses showed peripheral neuropathy, and 9% of evaluable courses showed central nervous system effects and/or ototoxicity. In addition, 48 of 102 patients exhibited some degree of nausea and vomiting. The concomitant administration of dexamethasone and phenytoin sodium appeared tomore » lower the incidence of neuropathy. Observations of efficacy were made comparatively in five patients who had multiple lesions treated with and without misonidazole. All five showed increased response in the lesions treated with misonidazole. It is concluded that misonidazole is a reasonably safe and potentially effective hypoxic cell sensitizer whose dose-limiting toxicity is neurologic.« less
Irradiation influence on the detection of genetic-modified soybeans
NASA Astrophysics Data System (ADS)
Villavicencio, A. L. C. H.; Araújo, M. M.; Baldasso, J. G.; Aquino, S.; Konietzny, U.; Greiner, R.
2004-09-01
Three soybean varieties were analyzed to evaluate the irradiation influence on the detection of genetic modification. Samples were treated in a 60Co facility at dose levels of 0, 500, 800, and 1000Gy. The seeds were at first analyzed by Comet Assay as a rapid screening irradiation detection method. Secondly, germination test was performed to detect the viability of irradiated soybeans. Finally, because of its high sensitivity, its specificity and rapidity the polimerase chain reaction was the method applied for genetic modified organism detection. The analysis of DNA by the single technique of microgel electrophoresis of single cells (DNA Comet Assay) showed that DNA damage increased with increasing radiation doses. No negative influence of irradiation on the genetic modification detection was found.
[Microdose clinical trial--impact of PET molecular imaging].
Yano, Tsuneo; Watanabe, Yasuyoshi
2010-10-01
Microdose (MD) clinical trial and exploratory IND study including sub-therapeutic dose and therapeutic dose which are higher than microdoses are expected to bring about innovations in drug development. The outlines of guidances for microdose clinical trial and ICH-M3 (R2) issued by the MHLW in June, 2008, and February, 2010, are first explained, respectively, and some examples of their application to clinical developments of therapeutic drugs in the infection and cancer fields are introduced. Especially, thanks to the progress of molecular imaging research, a new field of drug development is explored by using imaging biomarkers for efficacy or safety evaluation which visualize biomarkers by PET imaging agents. Finally, the roadmap for drug development in infection and cancer fields utilizing PET molecular imaging is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, P; Gang, Y; Qin, S
Purpose: Many patients with hepatocellular carcinoma (HCC) had hepatic anatomy variations as a result of inter-fraction deformation during fractionated radiotherapy, which may result in difference from the planned dose. This study aimed to investigate the relationship between adjusted dose and radiation induced liver disease (RILD) in HCC patients receiving three dimensional conformal radiotherapy (3DCRT). Methods: Twenty-three HCC patients received conventional fractionated 3DCRT were enrolled in this retrospective investigation. Among them, seven patients had been diagnosed of RILD post-radiotherapy, including 4 cases of grade 2, 3 cases of grade 3 according to the CTCAE Version 3.0. Daily cone-beam CT (CBCT) scansmore » were acquired throughout the whole treatment course for each patient. To reconstruct the daily dose to a patient considering the interfraction anatomy variations, the planned beams from each patient’s treatment plan were firstly applied to each daily modified CBCT (mCBCT). The daily doses were then summed together with the help of deformable image registration (DIR) to obtain the adjusted dose (Dadjusted) of the patient. Finally, the dose changes in normal liver between planned dose (Dplan) and Dadjusted were evaluated by V20, V30, V40 and the mean dose to normal liver (MDTNL). Univariate analysis was performed to identify the significant dose changes. Results: Among the twenty-three patients, the adjusted liver V20, V30, V40 and MDTNL showed significant changes from the planned ones (p<0.05) and averagely increased by 4.1%, 4.7%, 4.5% and 3.9Gy, respectively. And the adjusted liver dose in twenty-one patients (91%) were higher than planned value, the adjusted dose of patients with RILD (6/7) exceeds to the hepatic radiation tolerance. Conclusion: The adjusted dose of all the studied patients significantly differs from planned dose, and mCBCT-based dose reconstruction can aid in evaluating the robustness of the planning solutions, and adjusted dose has the potential to reduce the risk of RILD. The author would like to express great thanks to Lei Xing, Daniel S Kapp and Yong Yang in the Stanford University School of Medicine for their valuable suggestions to this work.This work is supported by NSFC(61471226),China Postdoctoral Science Foundation (2015T80739, 2014M551949) and research funding from Shandong Province(JQ201516).« less
Using lean to improve medication administration safety: in search of the "perfect dose".
Ching, Joan M; Long, Christina; Williams, Barbara L; Blackmore, C Craig
2013-05-01
At Virginia Mason Medical Center (Seattle), the Collaborative Alliance for Nursing Outcomes (CALNOC) Medication Administration Accuracy Quality Study was used in combination with Lean quality improvement efforts to address medication administration safety. Lean interventions were targeted at improving the medication room layout, applying visual controls, and implementing nursing standard work. The interventions were designed to prevent medication administration errors through improving six safe practices: (1) comparing medication with medication administration record, (2) labeling medication, (3) checking two forms of patient identification, (4) explaining medication to patient, (5) charting medication immediately, and (6) protecting the process from distractions/interruptions. Trained nurse auditors observed 9,244 doses for 2,139 patients. Following the intervention, the number of safe-practice violations decreased from 83 violations/100 doses at baseline (January 2010-March 2010) to 42 violations/100 doses at final follow-up (July 2011-September 2011), resulting in an absolute risk reduction of 42 violations/100 doses (95% confidence interval [CI]: 35-48), p < .001). The number of medication administration errors decreased from 10.3 errors/100 doses at baseline to 2.8 errors/100 doses at final follow-up (absolute risk reduction: 7 violations/100 doses [95% CI: 5-10, p < .001]). The "perfect dose" score, reflecting compliance with all six safe practices and absence of any of the eight medication administration errors, improved from 37 in compliance/100 doses at baseline to 68 in compliance/100 doses at the final follow-up. Lean process improvements coupled with direct observation can contribute to substantial decreases in errors in nursing medication administration.
Functional evaluation of malaria Pfs25 DNA vaccine by in vivo electroporation in olive baboons.
Kumar, Rajesh; Nyakundi, Ruth; Kariuki, Thomas; Ozwara, Hastings; Nyamongo, Onkoba; Mlambo, Godfree; Ellefsen, Barry; Hannaman, Drew; Kumar, Nirbhay
2013-06-28
Plasmodium falciparum Pfs25 antigen, expressed on the surface of zygotes and ookinetes, is one of the leading targets for the development of a malaria transmission-blocking vaccine (TBV). Our laboratory has been evaluating DNA plasmid based Pfs25 vaccine in mice and non-human primates. Previously, we established that in vivo electroporation (EP) delivery is an effective method to improve the immunogenicity of DNA vaccine encoding Pfs25 in mice. In order to optimize the in vivo EP procedure and test for its efficacy in more clinically relevant larger animal models, we employed in vivo EP to evaluate the immune response and protective efficacy of Pfs25 encoding DNA vaccine in nonhuman primates (olive baboons, Papio anubis). The results showed that at a dose of 2.5mg DNA vaccine, antibody responses were significantly enhanced with EP as compared to without EP resulting in effective transmission blocking efficiency. Similar immunogenicity enhancing effect of EP was also observed with lower doses (0.5mg and 1mg) of DNA plasmids. Further, final boosting with a single dose of recombinant Pfs25 protein resulted in dramatically enhanced antibody titers and significantly increased functional transmission blocking efficiency. Our study suggests priming with DNA vaccine via EP along with protein boost regimen as an effective method to elicit potent immunogenicity of malaria DNA vaccines in nonhuman primates and provides the basis for further evaluation in human volunteers. Copyright © 2013 Elsevier Ltd. All rights reserved.
A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.
2013-04-15
Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less
[Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].
Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M
2017-10-01
Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Malvasi, A; Tinelli, A; Brizzi, A; Guido, M; Martino, V; Casciaro, S; Celleno, D; Frigo, M G; Stark, M; Benhamou, D
2010-09-01
To evaluate the incidence of occiput posterior position in labour with and without combined spinal epidural analgesia (CSE) by low dose of sufentanyl and ropivacaine. This study focused on 132 women subdivided in two groups, patients in spontaneous and in labour analgesia, administered by a low dose CSE by sufentanyl and ropivacaine; all women were evaluated by digital examinations and ultrasound till delivery. All data were collected and analyzed by an independent reviewer. In the second stage, 79 were persistent occiput posterior position (POPP) fetuses and 36 were translated from anterior to posterior position (TAPP) fetuses. Specifically, in spontaneous labour on 25 women in anterior position, there were 17 TAPP and in CSE analgesia on 28 women in anterior, there were 19 in TAPP, without significant differences. The number of asynclitisms was higher in the POPP group (84%) respect to the TAPP group (75%), so as the rate of caesarean section (67% versus 52.7%). The labour with low dose of ropivacaine and sufentanyl does not increase the occiput posterior position during fetal descent, leading to a POPP. Finally, since in the occiput anterior presentation labour analgesia significantly lengthens time to delivery, in the occiput posterior position this is significantly increased, with a prolonged second stage of labour and reduced time of descent of fetal head in obstetric pelvis.
Cela, Eliana M; Friedrich, Adrian; Paz, Mariela L; Vanzulli, Silvia I; Leoni, Juliana; González Maglio, Daniel H
2015-05-01
The modulatory effects of solar UV radiation on the immune system have been widely studied. As the skin is the main target of UV radiation, our purpose was to compare the impact on skin innate immunity of two contrasting ways to be exposed to sunlight. Hairless mice were UV irradiated with a single high UV dose simulating a harmful exposure, or with repetitive low UV doses simulating short occasional daily exposures. Skin samples were taken at different times after UV irradiation to evaluate skin histology, inflammatory cell recruitment, epidermal T-cell population and the mitochondrial function of epidermal cells. The transcriptional profiles of pro-inflammatory cytokines, chemokines, antimicrobial peptides and Toll-like receptors were evaluated by RT-PCR and ELISA in tissue homogenates. Finally, a lymphangiography was performed to assess modification in the lymphatic vessel system. A single high UV dose produces a deep inflammatory state characterized by the production of pro-inflammatory cytokines and chemokines that, in turn, induces the recruitment of neutrophils and macrophages into the irradiated area. On the other hand, repetitive low UV doses drive the skin to a photo-induced alert state in which there is no sign of inflammation, but the epithelium undergoes changes in thickness, the lymphatic circulation increases, and the transcription of antimicrobial peptides is induced. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Traino, Antonio C.; Di Martino, Fabio; Grosso, Mariano; Monzani, Fabio; Dardano, Angela; Caraccio, Nadia; Mariani, Giuliano; Lazzeri, Mauro
2005-05-01
Substantial reductions in thyroid volume (up to 70-80%) after radioiodine therapy of Graves' hyperthyroidism are common and have been reported in the literature. A relationship between thyroid volume reduction and outcome of 131I therapy of Graves' disease has been reported by some authors. This important result could be used to decide individually the optimal radioiodine activity A0 (MBq) to administer to the patient, but a predictive model relating the change in gland volume to A0 is required. Recently, a mathematical model of thyroid mass reduction during the clearance phase (30-35 days) after 131I administration to patients with Graves' disease has been published and used as the basis for prescribing the therapeutic thyroid absorbed dose. It is well known that the thyroid volume reduction goes on until 1 year after therapy. In this paper, a mathematical model to predict the final mass of Graves' diseased thyroids submitted to 131I therapy is presented. This model represents a tentative explanation of what occurs macroscopically after the end of the clearance phase of radioiodine in the gland (the so-called second-order effects). It is shown that the final thyroid mass depends on its basal mass, on the radiation dose absorbed by the gland and on a constant value α typical of thyroid tissue. α has been evaluated based on a set of measurements made in 15 reference patients affected by Graves' disease and submitted to 131I therapy. A predictive equation for the calculation of the final mass of thyroid is presented. It is based on macroscopic parameters measurable after a diagnostic 131I capsule administration (0.37-1.85 MBq), before giving the therapy. The final mass calculated using this equation is compared to the final mass of thyroid measured 1 year after therapy administration in 22 Graves' diseased patients. The final masses calculated and measured 1 year after therapy are in fairly good agreement (R = 0.81). The possibility, for the physician, to decide a therapeutic activity based on the desired decrease of thyroid mass instead of on a fixed thyroid absorbed dose could be a new opportunity to cure Graves' disease.
Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Don; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A
2016-02-01
Previous National Council on Radiation Protection and Measurements (NCRP) publications have addressed the issues of risk and dose limitation in radiation protection and included guidance on specific organs and the lens of the eye. NCRP decided to prepare an updated commentary intended to enhance the previous recommendations provided in earlier reports. The NCRP Scientific Committee 1-23 (SC 1-23) is charged with preparing a commentary that will evaluate recent studies on the radiation dose response for the development of cataracts and also consider the type and severity of the cataracts as well as the dose rate; provide guidance on whether existing dose limits to the lens of the eye should be changed in the United States; and suggest research needs regarding radiation effects on and dose limits to the lens of the eye. A status of the ongoing work of SC 1-23 was presented at the Annual Meeting, "Changing Regulations and Radiation Guidance: What Does the Future Hold?" The following represents a synopsis of a few main points in the current draft commentary. It is likely that several changes will be forthcoming as SC 1-23 responds to subject matter expert review and develops a final document, expected by mid 2016.
"SABER": A new software tool for radiotherapy treatment plan evaluation.
Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay
2010-11-01
Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.
Monte Carlo evaluation of magnetically focused proton beams for radiosurgery
NASA Astrophysics Data System (ADS)
McAuley, Grant A.; Heczko, Sarah L.; Nguyen, Theodore T.; Slater, James M.; Slater, Jerry D.; Wroe, Andrew J.
2018-03-01
The purpose of this project is to investigate the advantages in dose distribution and delivery of proton beams focused by a triplet of quadrupole magnets in the context of potential radiosurgery treatments. Monte Carlo simulations were performed using various configurations of three quadrupole magnets located immediately upstream of a water phantom. Magnet parameters were selected to match what can be commercially manufactured as assemblies of rare-earth permanent magnetic materials. Focused unmodulated proton beams with a range of ~10 cm in water were target matched with passive collimated beams (the current beam delivery method for proton radiosurgery) and properties of transverse dose, depth dose and volumetric dose distributions were compared. Magnetically focused beams delivered beam spots of low eccentricity to Bragg peak depth with full widths at the 90% reference dose contour from ~2.5 to 5 mm. When focused initial beam diameters were larger than matching unfocused beams (10 of 11 cases) the focused beams showed 16%–83% larger peak-to-entrance dose ratios and 1.3 to 3.4-fold increases in dose delivery efficiency. Peak-to-entrance and efficiency benefits tended to increase with larger magnet gradients and larger initial diameter focused beams. Finally, it was observed that focusing tended to shift dose in the water phantom volume from the 80%–20% dose range to below 20% of reference dose, compared to unfocused beams. We conclude that focusing proton beams immediately upstream from tissue entry using permanent magnet assemblies can produce beams with larger peak-to-entrance dose ratios and increased dose delivery efficiencies. Such beams could potentially be used in the clinic to irradiate small-field radiosurgical targets with fewer beams, lower entrance dose and shorter treatment times.
NASA Astrophysics Data System (ADS)
Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.
2018-01-01
The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.
Umigai, Naofumi; Murakami, Katsura; Shimizu, Ryoma; Takeda, Ryuji; Azuma, Takayuki
2018-02-01
Paprika oleoresin is obtained by solvent extraction from Capsicum annuum L. fruits and contains multiple carotenoids, such as capsanthin, β-carotene, zeaxanthin, and β-cryptoxanthin, which are considered protective against various diseases. Herein, we investigated the effect of paprika oleoresin supplementation on plasma carotenoid accumulation and evaluated the safety of the oleoresin. We used a double-blinded, placebo-controlled comparative clinical study design and tested the effects of varying doses in healthy adult subjects. In total, 33 subjects were randomly divided into three groups to take capsules containing 0, 20, or 100 mg of paprika oleoresin daily for 12 consecutive weeks. Plasma carotenoid concentrations were measured at 0, 4, 8, and 12 weeks, and the safety of paprika oleoresin capsules was investigated using analyses of blood biochemistry, hematology, and urine contents. In these experiments, β-cryptoxanthin and zeaxanthin dose-dependently accumulated in plasma within the dose range of the study over 12 consecutive weeks of paprika oleoresin supplementation. Moreover, β-cryptoxanthin accumulated to higher levels than the other paprika oleoresin carotenoids. In contrast, capsanthin was not detected in plasma before or during the 12-week treatment period. Finally, no adverse events were associated with intake of paprika oleoresin (20 and 100 mg/day) in safety evaluations. Paprika oleoresin is a suitable source of carotenoids, especially β-cryptoxanthin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odagiri, Kazumasa, E-mail: t086016a@yokohama-cu.ac.jp; Department of Radiology, Kanagawa Children's Medical Center, Yokohama; Omura, Motoko
2012-11-01
Purpose: We carried out a retrospective review of patients receiving chemoradiation therapy (CRT) for intracranial germ cell tumor (GCT) using a lower dose than those previously reported. To identify an optimal GCT treatment strategy, we evaluated treatment outcomes, growth height, and neuroendocrine functions. Methods and Materials: Twenty-two patients with GCT, including 4 patients with nongerminomatous GCT (NGGCT) were treated with CRT. The median age at initial diagnosis was 11.5 years (range, 6-19 years). Seventeen patients initially received whole brain irradiation (median dose, 19.8 Gy), and 5 patients, including 4 with NGGCT, received craniospinal irradiation (median dose, 30.6 Gy). The medianmore » radiation doses delivered to the primary site were 36 Gy for pure germinoma and 45 Gy for NGGCT. Seventeen patients had tumors adjacent to the hypothalamic-pituitary axis (HPA), and 5 had tumors away from the HPA. Results: The median follow-up time was 72 months (range, 18-203 months). The rates of both disease-free survival and overall survival were 100%. The standard deviation scores (SDSs) of final heights recorded at the last assessment tended to be lower than those at initial diagnosis. Even in all 5 patients with tumors located away from the HPA, final height SDSs decreased (p = 0.018). In 16 patients with tumors adjacent to the HPA, 8 showed metabolic changes suggestive of hypothalamic obesity and/or growth hormone deficiency, and 13 had other pituitary hormone deficiencies. In contrast, 4 of 5 patients with tumors away from the HPA did not show any neuroendocrine dysfunctions except for a tendency to short stature. Conclusions: CRT for GCT using limited radiation doses resulted in excellent treatment outcomes. Even after limited radiation doses, insufficient growth height was often observed that was independent of tumor location. Our study suggests that close follow-up of neuroendocrine functions, including growth hormone, is essential for all patients with GCT.« less
An open treatment trial of duloxetine in elderly patients with dysthymic disorder.
Kerner, Nancy; D'Antonio, Kristina; Pelton, Gregory H; Salcedo, Elianny; Ferrar, Jennifer; Roose, Steven P; Devanand, Dp
2014-05-08
We evaluated the efficacy and side effects of the selective serotonin and norepinephrine reuptake inhibitor antidepressant duloxetine in older adults with dysthymic disorder. Patients ≥ 60 years old with dysthymic disorder received flexible dose duloxetine 20-120 mg daily in an open-label 12-week trial. The main outcomes were change from baseline to 12 weeks in 24-item Hamilton Depression Rating Scale scores and Treatment Emergent Symptoms Scale scores. Response required ≥ 50% decline in Hamilton Depression Rating Scale scores with a Clinical Global Impression of much improved or better, and remission required final Hamilton Depression Rating Scale ≤ 6. Intent-to-treat analyses were conducted with the last observation carried forward. In 30 patients, the mean age was 70.7 (standard deviation (SD) = 7.6) years and 56.7% were female. In intent-to-treat analyses, there were 16 responders (53.3%) and 10 remitters (33.3%). Of these, 19 patients completed the trial. The mean maximum dose was 76.3 mg (SD = 38.5) in the total sample and 101 mg (SD = 17.9) in completers. In the total sample, the mean final dose was 51 mg (SD = 27.2) and correlated significantly with decline in Hamilton Depression Rating Scale ( p < .03); decline in Hamilton Depression Rating Scale correlated significantly with decline in Treatment Emergent Symptoms Scale ( p < .001). Daily doses above 60 mg were associated with greater improvement and well tolerated. This result was partly confounded by early dropouts having received low doses. Demographic and medical comorbidities, including cardiac disease and hypertension, were not related to response. Somatic side effects were common prior to duloxetine treatment and improved rather than worsened with duloxetine. There were no serious adverse events. Duloxetine at relatively high doses showed moderate efficacy in elderly patients with dysthymic disorder and was well tolerated in successful completers. Reduced somatic symptoms were associated with improvement in depressive symptoms. A systematic placebo-controlled trial of duloxetine in older patients with dysthymic disorder may be warranted.
SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Southern Medical University, Guangzhou; Yan, H
Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Threemore » different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)« less
Shou, Wilson Z; Naidong, Weng
2003-01-01
It has become increasingly popular in drug development to conduct discovery pharmacokinetic (PK) studies in order to evaluate important PK parameters of new chemical entities (NCEs) early in the discovery process. In these studies, dosing vehicles are typically employed in high concentrations to dissolve the test compounds in dose formulations. This can pose significant problems for the liquid chromatography/tandem mass spectrometric (LC/MS/MS) analysis of incurred samples due to potential signal suppression of the analytes caused by the vehicles. In this paper, model test compounds in rat plasma were analyzed using a generic fast gradient LC/MS/MS method. Commonly used dosing vehicles, including poly(ethylene glycol) 400 (PEG 400), polysorbate 80 (Tween 80), hydroxypropyl beta-cyclodextrin, and N,N-dimethylacetamide, were fortified into rat plasma at 5 mg/mL before extraction. Their effects on the sample analysis results were evaluated by the method of post-column infusion. Results thus obtained indicated that polymeric vehicles such as PEG 400 and Tween 80 caused significant suppression (> 50%, compared with results obtained from plasma samples free from vehicles) to certain analytes, when minimum sample cleanup was used and the analytes happened to co-elute with the vehicles. Effective means to minimize this 'dosing vehicle effect' included better chromatographic separations, better sample cleanup, and alternative ionization methods. Finally, a real-world example is given to illustrate the suppression problem posed by high levels of PEG 400 in sample analysis, and to discuss steps taken in overcoming the problem. A simple but effective means of identifying a 'dosing vehicle effect' is also proposed. Copyright 2003 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeang, E; Lim, Y; Cho, K
Purpose: We developed an endorectal balloon for in-vivo rectal dosimetry in two-dimensions, and evaluated its dosimetric properties for the radiation treatment of prostate cancer. Methods: The endorectal balloon for in-vivo rectal dosimetry is equipped with a radiochromic film so that two-dimensional dose distribution can be measured in the rectal wall. The film is unrolled as the balloon is inflated, and it is rolled as the balloon is deflated. The outer diameter of the balloon is about 14 mm before inflating it, but its outer diameter can be increased up to about 50 mm after inflating it with 80 ml distilledmore » water. The size of the film is 80(L) x 64(W) mm2, so large as to measure a dose distribution of an anterior half of the rectal wall. After it was inserted into a fabricated rectal phantom, the phantom was scanned by a CT scanner and 5 Gy was delivered to a target inside the phantom with a 15 MV photon beam in AP direction. Finally, the dose distribution measured in the endorectal balloon was compared with that of the treatment plan. Results: The two dose distributions were compared each other in the parallel and the perpendicular directions along an axis of the balloon. The two dose profiles analyzed from the radiochromic film agreed well with the plan within 3% for 15 MV photon beam. Conclusion: An endorectal balloon for two-dimensional in-vivo rectal dosimetry was developed and its dosimetric effectiveness was evaluated for the radiation treatment of prostate cancer. The measured dose distributions showed good agreement with the plans.« less
Rajan, Balan; Sathish, Shanmugam; Balakumar, Subramanian; Devaki, Thiruvengadam
2015-03-01
Superparamagnetic iron oxide nanoparticles are being used in medical imaging, drug delivery, cancer therapy, and so on. However, there is a direct need to identify any nanotoxicity associated with these nanoparticles. However uncommon, drug-induced liver injury (DILI) is a major health concern that challenges pharmaceutical industry and drug regulatory agencies alike. In this study we have synthesized and evaluated the dose interval dependent hepatotoxicity of polyethylene glycol-8000 coated ultra-small superparamagnetic iron oxide nanoparticles (PUSPIOs). To assess the hepatotoxicity of intravenously injected PUSPIOs, alterations in basic clinical parameters, hematological parameters, hemolysis assay, serum levels of liver marker enzymes, serum and liver lipid peroxidation (LPO) levels, enzymatic antioxidant levels, and finally histology of liver, kidney, spleen, lung, brain, and heart tissues were studied in control and experimental Wistar rat groups over a 30-day period. The results of our study showed a significant increase in the aspartate transaminase (AST) enzyme activity at a dose of 10mg/kg b.w. PUSPIOs twice a week. Besides, alanine transaminase (ALT), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) enzyme activity showed a slender increase when compared with control experimental groups. A significant increase in the serum and liver LPO levels at a dose of 10mg/kg b.w. PUSPIOs twice a week was also observed. Histological analyses of liver, kidney, spleen, lung, brain and heart tissue samples showed no obvious uncharacteristic changes. In conclusion, PUSPIOs were found to posses excellent biocompatibility and Wistar rats showed much better drug tolerance to the dose of 10mg/kg b.w. per week than the dose of 10mg/kg b.w. twice a week for the period of 30 days. Copyright © 2015 Elsevier B.V. All rights reserved.
Validation of OSLD and a treatment planning system for surface dose determination in IMRT treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Audrey H., E-mail: hzhuang@usc.edu; Olch, Arthur J.
2014-08-15
Purpose: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. Methods: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors’ Eclipse system (Version 10), which wasmore » precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison was done at the effective measurement points of each detector and corresponding locations in CT images. Results: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors’ surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0.3 mm. Conclusions: The authors’ experiment showed that OSLD is an accurate dosimeter for skin dose measurements in complex 3DCRT or IMRT plans. It also showed that an Eclipse system with accurate commissioning of the data in the buildup region and 1 mm calculation grid can calculate surface doses with high accuracy and has a potential to replacein vivo measurements.« less
Influence of Gestational Age and Body Weight on the Pharmacokinetics of Labetalol in Pregnancy
Fischer, James H.; Sarto, Gloria E.; Hardman, Jennifer; Endres, Loraine; Jenkins, Thomas M.; Kilpatrick, Sarah J.; Jeong, Hyunyoung; Geller, Stacie; Deyo, Kelly; Fischer, Patricia A.; Rodvold, Keith A.
2015-01-01
Background and Objectives Labetalol is frequently prescribed for treatment of hypertension during pregnancy. However, the influence of pregnancy on labetalol pharmacokinetics is uncertain, with inconsistent findings reported by previous studies. This study examined the population pharmacokinetics of oral labetalol during and after pregnancy in women receiving labetalol for hypertension. Methods Data were collected from 57 women receiving the drug for hypertension from the 12th week of pregnancy through 12 weeks postpartum using a prospective, longitudinal design. A sparse sampling strategy guided collection of plasma samples. Samples were assayed for labetalol by high performance liquid chromatography. Estimation of population pharmacokinetic parameters and covariate effects was performed by nonlinear mixed effects modeling using NONMEM. Final population model was validated by bootstrap analysis and visual predictive check. Simulations were performed with the final model to evaluate the appropriate body weight to guide labetalol dosing. Results Lean body weight (LBW) and gestational age, i.e., weeks of pregnancy, were identified as significantly influencing oral clearance (CL/F) of labetalol, with CL/F ranging from 1.4-fold greater than postpartum values at 12 weeks gestational age to 1.6-fold greater at 40 weeks. Doses adjusted for LBW provide more consistent drug exposure than doses adjusted for total body weight. The apparent volumes of distribution for the central compartment and at steady-state were 1.9-fold higher during pregnancy. Conclusions Gestational age and LBW impact the pharmacokinetics of labetalol during pregnancy and have clinical implications for adjusting labetalol doses in these women. PMID:24297680
NASA Astrophysics Data System (ADS)
Heo, Y. J.; Kim, K. T.; Han, M. J.; Moon, C. W.; Kim, J. E.; Park, J. K.; Park, S. K.
2018-03-01
Recently, high-energy radiation has been widely used in various industrial fields, including the medical industry, and increasing research efforts have been devoted to the development of radiation detectors to be used with high-energy radiation. In particular, nondestructive industrial applications use high-energy radiation for ships and multilayered objects for accurate inspection. Therefore, it is crucial to verify the accuracy of radiation dose measurements and evaluate the precision and reproducibility of the radiation output dose. Representative detectors currently used for detecting the dose in high-energy regions include Si diodes, diamond diodes, and ionization chambers. However, the process of preparing these detectors is complex in addition to the processes of conducting dosimetric measurements, analysis, and evaluation. Furthermore, the minimum size that can be prepared for a detector is limited. In the present study, the disadvantages of original detectors are compensated by the development of a detector made of a mixture of polycrystalline PbI2 and PbO powder, which are both excellent semiconducting materials suitable for detecting high-energy gamma rays and X-rays. The proposed detector shows characteristics of excellent reproducibility and stable signal detection in response to the changes in energy, and was analyzed for its applicability. Moreover, the detector was prepared through a simple process of particle-in-binder to gain control over the thickness and meet the specific value designated by the user. A mixture mass ratio with the highest reproducibility was determined through reproducibility testing with respect to changes in the photon energy. The proposed detector was evaluated for its detection response characteristics with respect to high-energy photon beam, in terms of dose-rate dependence, sensitivity, and linearity evaluation. In the reproducibility assessment, the detector made with 15 wt% PbO powder showed the best characteristics of 0.59% and 0.25% at 6 and 15 MV, respectively. Based on its selection in the reproducibility assessment, the 15 wt% PbO detector showed no dependence on the dose-rate changes, with R-SD < 1%. Finally, a coefficient of determination of 1 in the linearity assessment demonstrated very good linearity with regards to changes in dose. These results demonstrate the applicability and usefulness of the proposed detector made from a mixture of PbI2 and PbO semiconductors.
Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu
2011-05-01
Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.
NASA Astrophysics Data System (ADS)
García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.
2014-09-01
A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.
Evaluation of safety profile of black shilajit after 91 days repeated administration in rats
Velmurugan, C; Vivek, B; Wilson, E; Bharathi, T; Sundaram, T
2012-01-01
Objective To evaluate the safety of shilajit by 91 days repeated administration in different dose levels in rats. Methods In this study the albino rats were divided into four groups. Group I received vehicle and group II, III and IV received 500, 2 500 and 5 000 mg/kg of shilajit, respectively. Finally animals were sacrificed and subjected to histopathology and iron was estimated by flame atomic absorption spectroscopy and graphite furnace. Results The result showed that there were no significant changes in iron level of treated groups when compared with control except liver (5 000 mg/kg) and histological slides of all organs revealed normal except negligible changes in liver and intestine with the highest dose of shilajit. The weight of all organs was normal when compared with control. Conclusions The result suggests that black shilajit, an Ayurvedic formulation, is safe for long term use as a dietary supplement for a number of disorders like iron deficiency anaemia. PMID:23569899
Evaluation of safety profile of black shilajit after 91 days repeated administration in rats.
Velmurugan, C; Vivek, B; Wilson, E; Bharathi, T; Sundaram, T
2012-03-01
To evaluate the safety of shilajit by 91 days repeated administration in different dose levels in rats. In this study the albino rats were divided into four groups. Group I received vehicle and group II, III and IV received 500, 2 500 and 5 000 mg/kg of shilajit, respectively. Finally animals were sacrificed and subjected to histopathology and iron was estimated by flame atomic absorption spectroscopy and graphite furnace. The result showed that there were no significant changes in iron level of treated groups when compared with control except liver (5 000 mg/kg) and histological slides of all organs revealed normal except negligible changes in liver and intestine with the highest dose of shilajit. The weight of all organs was normal when compared with control. The result suggests that black shilajit, an Ayurvedic formulation, is safe for long term use as a dietary supplement for a number of disorders like iron deficiency anaemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Carmona, Ruben; Sirak, Igor
Purpose: To demonstrate an efficient method for training and validation of a knowledge-based planning (KBP) system as a radiation therapy clinical trial plan quality-control system. Methods and Materials: We analyzed 86 patients with stage IB through IVA cervical cancer treated with intensity modulated radiation therapy at 2 institutions according to the standards of the INTERTECC (International Evaluation of Radiotherapy Technology Effectiveness in Cervical Cancer, National Clinical Trials Network identifier: 01554397) protocol. The protocol used a planning target volume and 2 primary organs at risk: pelvic bone marrow (PBM) and bowel. Secondary organs at risk were rectum and bladder. Initial unfiltered dose-volumemore » histogram (DVH) estimation models were trained using all 86 plans. Refined training sets were created by removing sub-optimal plans from the unfiltered sample, and DVH estimation models… and DVH estimation models were constructed by identifying 30 of 86 plans emphasizing PBM sparing (comparing protocol-specified dosimetric cutpoints V{sub 10} (percentage volume of PBM receiving at least 10 Gy dose) and V{sub 20} (percentage volume of PBM receiving at least 20 Gy dose) with unfiltered predictions) and another 30 of 86 plans emphasizing bowel sparing (comparing V{sub 40} (absolute volume of bowel receiving at least 40 Gy dose) and V{sub 45} (absolute volume of bowel receiving at least 45 Gy dose), 9 in common with the PBM set). To obtain deliverable KBP plans, refined models must inform patient-specific optimization objectives and/or priorities (an auto-planning “routine”). Four candidate routines emphasizing different tradeoffs were composed, and a script was developed to automatically re-plan multiple patients with each routine. After selection of the routine that best met protocol objectives in the 51-patient training sample (KBP{sub FINAL}), protocol-specific DVH metrics and normal tissue complication probability were compared for original versus KBP{sub FINAL} plans across the 35-patient validation set. Paired t tests were used to test differences between planning sets. Results: KBP{sub FINAL} plans outperformed manual planning across the validation set in all protocol-specific DVH cutpoints. The mean normal tissue complication probability for gastrointestinal toxicity was lower for KBP{sub FINAL} versus validation-set plans (48.7% vs 53.8%, P<.001). Similarly, the estimated mean white blood cell count nadir was higher (2.77 vs 2.49 k/mL, P<.001) with KBP{sub FINAL} plans, indicating lowered probability of hematologic toxicity. Conclusions: This work demonstrates that a KBP system can be efficiently trained and refined for use in radiation therapy clinical trials with minimal effort. This patient-specific plan quality control resulted in improvements on protocol-specific dosimetric endpoints.« less
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, John M., E-mail: jrobertson@beaumont.edu; Margolis, Jeffrey; Jury, Robert P.
2012-02-01
Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0-2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m{sup 2}) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additionalmore » 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.« less
Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong
2013-01-01
For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764
Kaneko, Masato; Tanigawa, Takahiko; Hashizume, Kensei; Kajikawa, Mariko; Tajiri, Masahiro; Mueck, Wolfgang
2013-01-01
This study was designed to confirm the appropriateness of the dose setting for a Japanese phase III study of rivaroxaban in patients with non-valvular atrial fibrillation (NVAF), which had been based on model simulation employing phase II study data. The previously developed mixed-effects pharmacokinetic/pharmacodynamic (PK-PD) model, which consisted of an oral one-compartment model parameterized in terms of clearance, volume and a first-order absorption rate, was rebuilt and optimized using the data for 597 subjects from the Japanese phase III study, J-ROCKET AF. A mixed-effects modeling technique in NONMEM was used to quantify both unexplained inter-individual variability and inter-occasion variability, which are random effect parameters. The final PK and PK-PD models were evaluated to identify influential covariates. The empirical Bayes estimates of AUC and C(max) from the final PK model were consistent with the simulated results from the Japanese phase II study. There was no clear relationship between individual estimated exposures and safety-related events, and the estimated exposure levels were consistent with the global phase III data. Therefore, it was concluded that the dose selected for the phase III study with Japanese NVAF patients by means of model simulation employing phase II study data had been appropriate from the PK-PD perspective.
Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery.
McAuley, Grant A; Teran, Anthony V; Slater, Jerry D; Slater, James M; Wroe, Andrew J
2015-11-08
The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1-2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real-time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20mm were delivered using single-stage scattering and four modulations (0, 15, 30, and 60mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge-on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation-dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diodevs. Markus depth-dose profiles, as well as Markus relative dose ratio vs. simulated dose-weighted average lineal energy plots, suggest that any LET-dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth-dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge-on orientation) that is crucial for small fields and high-dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high-resolution, real-time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications.
Pernot, F; Carpentier, P; Baille, V; Testylier, G; Beaup, C; Foquin, A; Filliat, P; Liscia, P; Coutan, M; Piérard, C; Béracochea, D; Dorandeu, F
2009-09-15
The mechanisms of epileptogenesis remain largely unknown and are probably diverse. The aim of this study was to investigate the role of focal cholinergic imbalance in epileptogenesis. To address this question, we monitored electroencephalogram (EEG) activity up to 12 weeks after the injection of a potent cholinesterase (ChE) inhibitor (soman) at different doses (0.53, 0.75, 1, 2, 2.8, 4 and 11 nmol) into the right dorsal hippocampus of C57BL/6 mice. Different parameters were used to choose the dose for a focal model of epileptogenesis (mainly electrographic patterns and peripheral ChE inhibition). The pattern of neuronal activation was studied by Fos immunohistochemistry (IHC). Brain damage was evaluated by hemalun-phloxin, neuronal nuclei antigen IHC and silver staining. Glial fibrillary acidic protein IHC was used to evaluate astroglial reaction. Finally, long-term behavioral consequences were characterized. At the highest dose (11 nmol), soman quickly evoked severe signs, including initial seizures and promoted epileptogenesis in the absence of tissue damage. With lower doses, late-onset seizures were evidenced, after 1-4 weeks depending on the dose, despite the absence of initial overt seizures and of brain damage. Only a weak astroglial reaction was observed. Following injection of 1 nmol, Fos changes were first evidenced in the ipsilateral hippocampus and then spread to extrahippocampal areas. A selective deficit in contextual fear conditioning was also evidenced two months after injection. Our data show that focal hypercholinergy may be a sufficient initial event to promote epilepsy and that major brain tissue changes (cellular damage, edema, neuroinflammation) are not necessary conditions.
Assessing the response to opioids in cancer patients: a methodological proposal and the results.
Corli, O; Roberto, A; Greco, M T; Montanari, M
2015-07-01
The efficacy of treatment with opioids in cancer pain is variable. To evaluate this variability, we (1) applied two parameters, changes in pain intensity (PI) and opioid daily doses (DDs), to distinguish different responses to opioids. The need to switch to another opioid was recorded. We then (2) evaluated the distribution of the responses depending on these parameters, alone and taken together, in cancer patients with pain. The cutoffs between positive and negative responses related to PI and DD were defined on the basis of the literature. For PI, responders were patients who obtained simultaneously a decrease of 30% or more and a final score ≤4 points (numerical rating scale 0 to 10). For DD changes, we applied the opioid escalation index percentage, a positive response corresponding to a dose increase ≤5%. These criteria were applied to 201 cancer patients treated with WHO step III "strong" opioids for 21 days. The results were mainly analyzed case by case. Of the patients, 63.7% obtained a positive analgesic response and 80.1% a dose-related positive response. Combining the parameters, the response was double positive in 55.2% of cases, double negative in 11.4%, a good analgesic response with a large dose escalation in 8.5%, and no pain relief with a stable dose in 24.9%. Switches were made 21 times, 15 because of the lack of analgesia. Different degrees of response to opioids were observed, PI and DD changes both contributing. Only over half the patients had a full positive response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Naoya; Gopal, Ajay K.; Shields, Andrew T.
Purpose: To investigate radiation doses to the testes delivered by a radiolabeled anti-CD20 antibody and its effects on male sex hormone levels. Materials and methods: Testicular uptake and retention of 131I-tositumomab were measured, and testicular absorbed doses were calculated for 67 male patients (54+/-11 years of age) with non-Hodgkin's lymphoma who had undergone myeloablative radioimmunotherapy (RIT) using 131I-tositumomab. Time-activity curves for the major organs, testes, and whole body were generated from planar imaging studies. In a subset of patients, male sex hormones were measured before and 1 year after the therapy. Results: The absorbed dose to the testes showed considerablemore » variability (range=4.4-70.2 Gy). Pretherapy levels of total testosterone were below the lower limit of the reference range, and post-therapy evaluation demonstrated further reduction [4.6+/-1.8 nmol/l (pre-RIT) vs. 3.8+/-2.9 nmol/l (post-RIT), P<0.05]. Patients receiving higher radiation doses to the testes (>=25 Gy) showed a greater reduction [4.7+/-1.6 nmol/l (pre-RIT) vs. 3.3+/-2.7 nmol/l (post-RIT), P<0.05] compared with patients receiving lower doses (<25 Gy), who showed no significant change in total testosterone levels. Conclusion: The testicular radiation absorbed dose varied highly among individual patients. Finally, patients receiving higher doses to the testes were more likely to show post-RIT suppression of testosterone levels.« less
Evaluation of incidence and risk factors for high-dose methotrexate-induced nephrotoxicity.
Wiczer, Tracy; Dotson, Emily; Tuten, Amy; Phillips, Gary; Maddocks, Kami
2016-06-01
High-dose methotrexate (doses ≥1 g/m(2)) is a key component of several chemotherapy regimens used to treat patients with leukemia or lymphoma. Despite appropriate precautions with hydration, urine alkalinization, and leucovorin, nephrotoxicity remains a risk which can lead to significant morbidity and mortality. Current reports of risk factors for nephrotoxicity focus on patients with nephrotoxicity with a lack of comparison to those without toxicity. This study aimed to describe the incidence of high-dose methotrexate-induced nephrotoxicity at our institution and determined risk factors for high-dose methotrexate-induced nephrotoxicity by examining characteristics of patients with and without nephrotoxicity. This was a retrospective, single-center, chart review. Adult patients with a diagnosis of leukemia or lymphoma who received high-dose methotrexate were included. Serum creatinine values were used to evaluate nephrotoxicity according to Common Terminology Criteria for Adverse Events criteria v4.03. Data related to the following proposed risk factors were collected: age, sex, body mass index, methotrexate dose, number of high-dose methotrexate exposures, leucovorin administration route, baseline renal function, albumin, hydration status, Clostridium difficile infection, urine pH, and concomitant interacting and nephrotoxic medications. The primary endpoint was evaluated with exact binomial methods and risk factors were identified using multivariable random-effects logistic regression. Final analyses included 140 patients with 432 high-dose methotrexate exposures. There were no differences in baseline demographical characteristics. Fifty-four patients (38.6%) experienced nephrotoxicity of any grade: 27.9% with grade 1, 5.7% with grade 2, 3.6% grade 3, 0% with grade 4, and 1.4% with grade 5 toxicity. More patients in the toxicity group received doses of methotrexate ≥3 g/m(2) (58.3% versus 57.2%, p < 0.001), had an albumin level <3 g/dL (31.9% versus 15.9%, p = 0.04), and received an interacting medication during high-dose methotrexate clearance (44.4% versus 24.7%, p = 0.003). Male gender (OR 2.3, 95% CI: 1.27-4.18, p = 0.006), albumin (OR 0.44, 95% CI: 0.26-0.75, p = 0.002), number of drug interactions (OR 1.60, 95% CI: 1.15-2.21, p = 0.005), and use of furosemide (OR 2.56, 95% CI 1.46-4.48, p = 0.001) were all independent risk factors for the development of nephrotoxicity. Nephrotoxicity is a possible complication of therapy with high-dose methotrexate with most instances comprising grade 1-2 toxicity. Male gender, low albumin, and administration of interacting drugs or furosemide during high-dose methotrexate clearance may predispose patients to nephrotoxicity. © The Author(s) 2015.
Asher, Gary N.; Xie, Ying; Moaddel, Ruin; Sanghvi, Mitesh; Dossou, Katina S.S.; Kashuba, Angela D. M.; Sandler, Robert S.; Hawke, Roy L.
2016-01-01
Curcumin is poorly absorbed driving interest in new preparations. However, little is known about pharmacokinetics and tissue bioavailability between formulations. In this randomized, crossover study we evaluated the relationship between steady-state plasma and rectal tissue curcuminoid concentrations using standard and phosphatidylcholine curcumin extracts. There was no difference in the geometric mean plasma AUCs when adjusted for the 10-fold difference in curcumin dose between the two formulations. Phosphatidylcholine curcumin extract yielded only 20–30% plasma demethoxycurcumin and bisdemethoxycurcumin conjugates compared to standard extract, yet yielded 20-fold greater hexahydrocurcumin. When adjusting for curcumin dose, tissue curcumin concentrations were 5-fold greater for the phosphatidylcholine extract. Improvements in curcuminoid absorption due to phosphatidylcholine are not uniform across the curcuminoids. Furthermore, curcuminoid exposures in the intestinal mucosa are most likely due to luminal exposure rather than plasma disposition. Finally, once-daily dosing is sufficient to maintain detectable curcuminoids at steady-state in both plasma and rectal tissues. PMID:27503249
Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction
NASA Astrophysics Data System (ADS)
Dey, S.; Gayathri, N.; Mukherjee, P.
2018-04-01
The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.
Economides, S; Hourdakis, C J; Kalivas, N; Kalathaki, M; Simantirakis, G; Tritakis, P; Manousaridis, G; Vogiatzi, S; Kipouros, P; Boziari, A; Kamenopoulou, V
2008-01-01
This study presents the results from a survey conducted by the Greek Atomic Energy Commission (GAEC), during the period 1998-2003, in 530 public and private owned fluoroscopic X-ray systems in Greece. Certain operational parameters for conventional and remote control systems were assessed, according to a quality control protocol developed by GAEC on the basis of the current literature. Public (91.5%) and private (81.5%) owned fluoroscopic units exhibit high-contrast resolution values over 1 lp mm(-1). Moreover, 88.5 and 87.1% of the fluoroscopic units installed in the public and private sector, respectively, present Maximum Patient Entrance Kerma Rate values lower than 100 mGy min(-1). Additionally, 68.3% of the units assessed were found to perform within the acceptance limits. Finally, the third quartile of the Entrance Surface Dose Rate distribution was estimated according to the Dose Reference Level definition and found equal to 35 mGy min(-1).
Kim-Kang, Heasook; Bova, Alice; Crouch, Louis S; Wislocki, Peter G; Robinson, Robert A; Wu, Jinn
2004-04-07
Atlantic salmon (approximately 1.3 kg) maintained in tanks of seawater at 5 +/- 1 degrees C were dosed with [3H]emamectin B1 benzoate in feed at a nominal rate of 50 microg of emamectin benzoate/kg/day for 7 consecutive days. Tissues, blood, and bile were collected from 10 fish each at 3 and 12 h and at 1, 3, 7, 15, 30, 45, 60, and 90 days post final dose. Feces were collected daily from the tanks beginning just prior to dosing to 90 days post final dose. The total radioactive residues (TRR) of the daily feces samples during dosing were 0.25 ppm maximal, and >97% of the TRR in pooled feces covering the dosing period was emamectin B1a. Feces TRR then rapidly declined to approximately 0.05 ppm by 1 day post final dose. The ranges of mean TRR for tissues over the 90 days post dose period were as follows: kidney, 1.4-3 ppm; liver, 1.0-2.3 ppm; skin, 0.04-0.09 ppm; muscle, 0.02-0.06 ppm; and bone, <0.01 ppm. The residue components of liver, kidney, muscle, and skin samples pooled by post dose interval were emamectin B1a (81-100% TRR) and desmethylemamectin B1a (0-17% TRR) with N-formylemamectin B1a seen in trace amounts (<2%) in some muscle samples. The marker residue selected for regulatory surveillance of emamectin residues was emamectin B1a. The emamectin B1a level was quantified in individual samples of skin and muscle using HPLC-fluorometry and was below 85 ppb in all samples analyzed (3 h to 30 days post dose).
Pencil-beam redefinition algorithm dose calculations for electron therapy treatment planning
NASA Astrophysics Data System (ADS)
Boyd, Robert Arthur
2001-08-01
The electron pencil-beam redefinition algorithm (PBRA) of Shiu and Hogstrom has been developed for use in radiotherapy treatment planning (RTP). Earlier studies of Boyd and Hogstrom showed that the PBRA lacked an adequate incident beam model, that PBRA might require improved electron physics, and that no data existed which allowed adequate assessment of the PBRA-calculated dose accuracy in a heterogeneous medium such as one presented by patient anatomy. The hypothesis of this research was that by addressing the above issues the PBRA-calculated dose would be accurate to within 4% or 2 mm in regions of high dose gradients. A secondary electron source was added to the PBRA to account for collimation-scattered electrons in the incident beam. Parameters of the dual-source model were determined from a minimal data set to allow ease of beam commissioning. Comparisons with measured data showed 3% or better dose accuracy in water within the field for cases where 4% accuracy was not previously achievable. A measured data set was developed that allowed an evaluation of PBRA in regions distal to localized heterogeneities. Geometries in the data set included irregular surfaces and high- and low-density internal heterogeneities. The data was estimated to have 1% precision and 2% agreement with accurate, benchmarked Monte Carlo (MC) code. PBRA electron transport was enhanced by modeling local pencil beam divergence. This required fundamental changes to the mathematics of electron transport (divPBRA). Evaluation of divPBRA with the measured data set showed marginal improvement in dose accuracy when compared to PBRA; however, 4% or 2mm accuracy was not achieved by either PBRA version for all data points. Finally, PBRA was evaluated clinically by comparing PBRA- and MC-calculated dose distributions using site-specific patient RTP data. Results show PBRA did not agree with MC to within 4% or 2mm in a small fraction (<3%) of the irradiated volume. Although the hypothesis of the research was shown to be false, the minor dose inaccuracies should have little or no impact on RTP decisions or patient outcome. Therefore, given ease of beam commissioning, documentation of accuracy, and calculational speed, the PBRA should be considered a practical tool for clinical use.
Motov, Sergey; Rosenbaum, Steven; Vilke, Gary M; Nakajima, Yuko
2016-12-01
Whether acute or chronic, emergency physicians frequently encounter patients reporting pain. It is the responsibility of the emergency physician to assess and evaluate, and if appropriate, safely and effectively reduce pain. Recently, analgesics other than opioids are being considered in an effort to provide safe alternatives for pain management in the emergency department (ED). Opioids have significant adverse effects such as respiratory depression, hypotension, and sedation, to say nothing of their potential for abuse. Although ketamine has long been used in the ED for procedural sedation and rapid sequence intubation, it is used infrequently for analgesia. Recent evidence suggests that ketamine use in subdissociative doses proves to be effective for pain control and serves as a feasible alternative to traditional opioids. This paper evaluates ketamine's analgesic effectiveness and safety in the ED. This is a literature review of randomized controlled trials, systematic reviews, meta-analyses, and observational studies evaluating ketamine for pain control in the ED setting. Based on these search parameters, eight studies were included in the final analysis and graded based on the American Academy of Emergency Medicine Clinical Practice Committee manuscript review process. A total of eight papers were reviewed in detail and graded. Recommendations were given based upon this review process. Subdissociative-dose ketamine (low-dose ketamine) is effective and safe to use alone or in combination with opioid analgesics for the treatment of acute pain in the ED. Its use is associated with higher rates of minor, but well-tolerated adverse side effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Film-based delivery quality assurance for robotic radiosurgery: Commissioning and validation.
Blanck, Oliver; Masi, Laura; Damme, Marie-Christin; Hildebrandt, Guido; Dunst, Jürgen; Siebert, Frank-Andre; Poppinga, Daniela; Poppe, Björn
2015-07-01
Robotic radiosurgery demands comprehensive delivery quality assurance (DQA), but guidelines for commissioning of the DQA method is missing. We investigated the stability and sensitivity of our film-based DQA method with various test scenarios and routine patient plans. We also investigated the applicability of tight distance-to-agreement (DTA) Gamma-Index criteria. We used radiochromic films with multichannel film dosimetry and re-calibration and our analysis was performed in four steps: 1) Film-to-plan registration, 2) Standard Gamma-Index criteria evaluation (local-pixel-dose-difference ≤2%, distance-to-agreement ≤2 mm, pass-rate ≥90%), 3) Dose distribution shift until maximum pass-rate (Maxγ) was found (shift acceptance <1 mm), and 4) Final evaluation with tight DTA criteria (≤1 mm). Test scenarios consisted of purposefully introduced phantom misalignments, dose miscalibrations, and undelivered MU. Initial method evaluation was done on 30 clinical plans. Our method showed similar sensitivity compared to the standard End-2-End-Test and incorporated an estimate of global system offsets in the analysis. The simulated errors (phantom shifts, global robot misalignment, undelivered MU) were detected by our method while standard Gamma-Index criteria often did not reveal these deviations. Dose miscalibration was not detected by film alone, hence simultaneous ion-chamber measurement for film calibration is strongly recommended. 83% of the clinical patient plans were within our tight DTA tolerances. Our presented methods provide additional measurements and quality references for film-based DQA enabling more sensitive error detection. We provided various test scenarios for commissioning of robotic radiosurgery DQA and demonstrated the necessity to use tight DTA criteria. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, H; Zhang, H
Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Ove, Roger; Duan, Jun
2006-10-01
The treatment of maxillary sinus carcinoma with forward planning can be technically difficult when the neck also requires radiotherapy. This difficulty arises because of the need to spare the contralateral face while treating the bilateral neck. There is considerable potential for error in clinical setup and treatment delivery. We evaluated intensity-modulated radiotherapy (IMRT) as an improvement on forward planning, and compared several inverse planning IMRT platforms. A composite dose-volume histogram (DVH) was generated from a complex forward planned case. We compared the results with those generated by sliding window fixed field dynamic multileaf collimator (MLC) IMRT, using sets of coplanarmore » beams. All setups included an anterior posterior (AP) beam, and 3-, 5-, 7-, and 9-field configurations were evaluated. The dose prescription and objective function priorities were invariant. We also evaluated 2 commercial tomotherapy IMRT delivery platforms. DVH results from all of the IMRT approaches compared favorably with the forward plan. Results for the various inverse planning approaches varied considerably across platforms, despite an attempt to prescribe the therapy similarly. The improvement seen with the addition of beams in the fixed beam sliding window case was modest. IMRT is an effective means of delivering radiotherapy reliably in the complex setting of maxillary sinus carcinoma with neck irradiation. Differences in objective function definition and optimization algorithms can lead to unexpected differences in the final dose distribution, and our evaluation suggests that these factors are more significant than the beam arrangement or number of beams.« less
Economic evaluation in collaborative hospital drug evaluation reports.
Ortega, Ana; Fraga, María Dolores; Marín-Gil, Roberto; Lopez-Briz, Eduardo; Puigventós, Francesc; Dranitsaris, George
2015-09-01
economic evaluation is a fundamental criterion when deciding a drug's place in therapy. The MADRE method (Method for Assistance in making Decisions and Writing Drug Evaluation Reports) is widely used for drug evaluation. This method was developed by the GENESIS group of the Spanish Society of Hospital Pharmacy (SEFH), including economic evaluation. We intend to improve the economic aspects of this method. As for the direction to take, we have to first analyze our previous experiences with the current methodology and propose necessary improvements. economic evaluation sections in collaboratively conducted drug evaluation reports (as the scientific society, SEFH) with the MADRE method were reviewed retrospectively. thirty-two reports were reviewed, 87.5% of them included an economic evaluation conducted by authors and 65.6% contained published economic evaluations. In 90.6% of the reports, a Budget impact analysis was conducted. The cost per life year gained or per Quality Adjusted Life Year gained was present in 14 reports. Twenty-three reports received public comments regarding the need to improve the economic aspect. Main difficulties: low quality evidence in the target population, no comparative studies with a relevant comparator, non-final outcomes evaluated, no quality of life data, no fixed drug price available, dosing uncertainty, and different prices for the same drug. proposed improvements: incorporating different forms of aid for non-drug costs, survival estimation and adapting published economic evaluations; establishing criteria for drug price selection, decision-making in conditions of uncertainty and poor quality evidence, dose calculation and cost-effectiveness thresholds depending on different situations. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Andersen, C Yding; Fischer, R; Giorgione, V; Kelsey, Thomas W
2016-10-01
For the last two decades, exogenous progesterone administration has been used as luteal phase support (LPS) in connection with controlled ovarian stimulation combined with use of the human chorionic gonadotropin (hCG) trigger for the final maturation of follicles. The introduction of the GnRHa trigger to induce ovulation showed that exogenous progesterone administration without hCG supplementation was insufficient to obtain satisfactory pregnancy rates. This has prompted development of alternative strategies for LPS. Augmenting the local endogenous production of progesterone by the multiple corpora lutea has been one focus with emphasis on one hand to avoid development of ovarian hyper-stimulation syndrome and, on the other hand, to provide adequate levels of progesterone to sustain implantation. The present study evaluates the use of micro-dose hCG for LPS support and examines the potential advances and disadvantages. Based on the pharmacokinetic characteristics of hCG, the mathematical modelling of the concentration profiles of hCG during the luteal phase has been evaluated in connection with several different approaches for hCG administration as LPS. It is suggested that the currently employed LPS provided in connection with the GnRHa trigger (i.e. 1.500 IU) is too strong, and that daily micro-dose hCG administration is likely to provide an optimised LPS with the current available drugs. Initial clinical results with the micro-dose hCG approach are presented.
Blanck, Oliver; Masi, Laura; Chan, Mark K H; Adamczyk, Sebastian; Albrecht, Christian; Damme, Marie-Christin; Loutfi-Krauss, Britta; Alraun, Manfred; Fehr, Roman; Ramm, Ulla; Siebert, Frank-Andre; Stelljes, Tenzin Sonam; Poppinga, Daniela; Poppe, Björn
2016-06-01
High precision radiosurgery demands comprehensive delivery-quality-assurance techniques. The use of a liquid-filled ion-chamber-array for robotic-radiosurgery delivery-quality-assurance was investigated and validated using several test scenarios and routine patient plans. Preliminary evaluation consisted of beam profile validation and analysis of source-detector-distance and beam-incidence-angle response dependence. The delivery-quality-assurance analysis is performed in four steps: (1) Array-to-plan registration, (2) Evaluation with standard Gamma-Index criteria (local-dose-difference⩽2%, distance-to-agreement⩽2mm, pass-rate⩾90%), (3) Dose profile alignment and dose distribution shift until maximum pass-rate is found, and (4) Final evaluation with 1mm distance-to-agreement criterion. Test scenarios consisted of intended phantom misalignments, dose miscalibrations, and undelivered Monitor Units. Preliminary method validation was performed on 55 clinical plans in five institutions. The 1000SRS profile measurements showed sufficient agreement compared with a microDiamond detector for all collimator sizes. The relative response changes can be up to 2.2% per 10cm source-detector-distance change, but remains within 1% for the clinically relevant source-detector-distance range. Planned and measured dose under different beam-incidence-angles showed deviations below 1% for angles between 0° and 80°. Small-intended errors were detected by 1mm distance-to-agreement criterion while 2mm criteria failed to reveal some of these deviations. All analyzed delivery-quality-assurance clinical patient plans were within our tight tolerance criteria. We demonstrated that a high-resolution liquid-filled ion-chamber-array can be suitable for robotic radiosurgery delivery-quality-assurance and that small errors can be detected with tight distance-to-agreement criterion. Further improvement may come from beam specific correction for incidence angle and source-detector-distance response. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Liu, Wei; Dutta, Sandeep; Kearns, Greg; Awni, Walid; Neville, Kathleen A
2015-02-01
Lortab® Elixir, a proprietary combination product containing hydrocodone and acetaminophen, is approved in the US for the treatment of moderate to moderately severe pain in children. Despite this approval, pediatric pharmacokinetic data using this product have not been previously published. Using a single-dose open-label study approach, we evaluated the pharmacokinetics, tolerability, and safety of this product in 17 healthy children 6-17 years of age. Results showed that the body weight-normalized oral clearance (L/h/kg) of hydrocodone and acetaminophen were 42% and 27% higher, respectively when compared to data from healthy adults. This suggests that a higher mg/kg dose would be required in children to achieve exposures similar to adults. We found adjustment of hydrocodone and acetaminophen dose by body surface area to be more optimal than body weight-based dose adjustments for achieving similar systemic exposure in children and adults. However, body weight-based hydrocodone and acetaminophen dosing regimens provided close approximation of adult exposures in pediatric patients with approximately 22% to 24% lower hydrocodone and acetaminophen dose/BW-normalized AUC in pediatric patients compared to adults. Finally, the adverse event profile in our pediatric cohort was consistent with that expected of opioid-naive subjects receiving opioid-combination therapy. © 2014, The American College of Clinical Pharmacology.
Mutagenic effects of gamma rays on soybean (Glycine max L.) germination and seedlings
NASA Astrophysics Data System (ADS)
Kusmiyati, F.; Sutarno; Sas, M. G. A.; Herwibawa, B.
2018-01-01
Narrow genetic diversity is a main problem restricting the progress of soybean breeding. One way to improve genetic diversity of plant is through mutation. The purpose of this study was to investigate effect of different dose of gamma rays as induced mutagen on physiological, morphological, and anatomical markers during seed germination and seedling growth of soybean. Seeds of soybean cultivars Dering-1 were irradiated with 11 doses of gamma rays (0, 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 2560 Gy [Gray]. The research design was arranged in a completely randomized block design in three replicates. Results showed that soybean seed exposed at high doses (640, 1280, and 2560 Gy) did not survive more than 20 days, the doses were then removed from anatomical evaluation. Higher doses of gamma rays siginificantly reduced germination percentage at the first count and final count, coefficient of germination velocity, germination rate index, germination index, seedling height and seedling root length, and significantly increased mean germination time, first day of germination, last day of germination, and time spread of germination. However, the effects of gamma rays were varies for density, width, and length of stomata. The LD50 obtained based on survival percentage was 314.78 Gy. It can be concluded that very low and low doses of gamma rays (5-320 Gy) might be used to study the improvement of soybean diversity.
NEURAL AND CARDIAC TOXICITIES ASSOCIATED WITH 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA)
Baumann, Michael H.; Rothman, Richard B.
2011-01-01
(±)-3,4-Methylenedioxymethamphetamine (MDMA) is a commonly abused illicit drug which affects multiple organ systems. In animals, high-dose administration of MDMA produces deficits in serotonin (5-HT) neurons (e.g., depletion of forebrain 5-HT) that have been viewed as neurotoxicity. Recent data implicate MDMA in the development of valvular heart disease (VHD). The present paper reviews several issues related to MDMA-associated neural and cardiac toxicities. The hypothesis of MDMA neurotoxicity in rats is evaluated in terms of the effects of MDMA on monoamine neurons, the use of scaling methods to extrapolate MDMA doses across species, and functional consequences of MDMA exposure. A potential treatment regimen (l-5-hydroxytryptophan plus carbidopa) for MDMA-associated neural deficits is discussed. The pathogenesis of MDMA-associated VHD is reviewed with specific reference to the role of valvular 5-HT2B receptors. We conclude that pharmacological effects of MDMA occur at the same doses in rats and humans. High doses of MDMA that produce 5-HT depletions in rats are associated with tolerance and impaired 5-HT release. Doses of MDMA that fail to deplete 5-HT in rats can cause persistent behavioral dysfunction, suggesting even moderate doses may pose risks. Finally, the MDMA metabolite, 3,4-methylenedioxyamphetamine (MDA), is a potent 5-HT2B agonist which could contribute to the increased risk of VHD observed in heavy MDMA users. PMID:19897081
Population pharmacokinetics of imatinib mesylate and its metabolite in children and young adults.
Menon-Andersen, Divya; Mondick, John T; Jayaraman, Bhuvana; Thompson, Patrick A; Blaney, Susan M; Bernstein, Mark; Bond, Mason; Champagne, Martin; Fossler, Michael J; Barrett, Jeffrey S
2009-01-01
Imatinib mesylate (Gleevec) is a small molecule tyrosine kinase inhibitor approved for use in the management of chronic myeloid leukemia in adults and children and in gastrointestinal stromal tumors in adults. Population pharmacokinetic (PPK) studies evaluating the effect of population covariates on the pharmacokinetics of imatinib and its active metabolite have been developed in adults with chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST). However, this still remains to be described in children. The objectives of the analysis were to develop a PPK model of imatinib and its active metabolite, CGP74588, to describe exposure in children and young adults and to identify covariates that are predictors of variability in disposition. Plasma concentrations from 26 subjects with Philadelphia (Ph+) leukemia (Phase I study) and 15 subjects with refractory solid tumors (Phase II study), who received oral imatinib at doses ranging from 260 to 570 mg/m(2), were available for the PPK analysis in NONMEM. Blood samples were drawn prior to dosing and over 24-48 h on days 1 and 8 of the studies. Covariates studied included weight, age, albumin, alanine aminotransferase and the study population. The pharmacokinetics of imatinib and CGP 74588 were well described by one and two compartment models, respectively. Total body weight was the only covariate found to significantly affect Cl/F and V/F. The final imatinib-CGP 74588 model is summarized as follows: CL/F (imatinib) (L/h) = 10.8 x (WT/70)(0.75), V/F (imatinib) (L) = 284 x (WT/70) and D1(duration of zero order absorption,imatinib) (h) = 1.67 and CL/F (CGP 74588) (L/h) = 9.65 x (WT/70)(0.75), V1/F (CGP 74588) (L) = 11.6 x (WT/70), Q (CGP 74588) (L/h) = 2.9 x (WT/70)(0.75) and V2/F (CGP 74588) (L) = 256*(WT/70). Model evaluation indicated that the final model was robust and satisfactory. Current imatinib dosing guidelines in pediatrics is based on the achievement of exposures consistent with doses known to be safe and efficacious in adults. Dose adjustments in children are guided empirically by the observance of drug-related toxicities. While, the pharmacokinetics of imatinib and its active metabolite, CGP 74588 in children are consistent with prior knowledge in adults, the model will form the basis to support the design of future trials, particularly with a view to managing toxicities and exploring dosing in this population.
Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan
2015-01-01
Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569
Rangwala, Reshma; Leone, Robert; Chang, Yunyoung C; Fecher, Leslie A; Schuchter, Lynn M; Kramer, Amy; Tan, Kay-See; Heitjan, Daniel F; Rodgers, Glenda; Gallagher, Maryann; Piao, Shengfu; Troxel, Andrea B; Evans, Tracey L; DeMichele, Angela M; Nathanson, Katherine L; O'Dwyer, Peter J; Kaiser, Jonathon; Pontiggia, Laura; Davis, Lisa E; Amaravadi, Ravi K
2014-08-01
Blocking autophagy with hydroxychloroquine (HCQ) augments cell death associated with alkylating chemotherapy in preclinical models. This phase I study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with dose-intense temozolomide (TMZ) in patients with advanced solid malignancies. Forty patients (73% metastatic melanoma) were treated with oral HCQ 200 to 1200 mg daily with dose-intense oral TMZ 150 mg/m (2) daily for 7/14 d. This combination was well tolerated with no recurrent dose-limiting toxicities observed. An MTD was not reached for HCQ and the recommended phase II dose was HCQ 600 mg twice daily combined with dose-intense TMZ. Common toxicities included grade 2 fatigue (55%), anorexia (28%), nausea (48%), constipation (20%), and diarrhea (20%). Partial responses and stable disease were observed in 3/22 (14%) and 6/22 (27%) patients with metastatic melanoma. In the final dose cohort 2/6 patients with refractory BRAF wild-type melanoma had a near complete response, and prolonged stable disease, respectively. A significant accumulation in autophagic vacuoles (AV) in peripheral blood mononuclear cells was observed in response to combined therapy. Population pharmacokinetics (PK) modeling, individual PK simulations, and PK-pharmacodynamics (PD) analysis identified a threshold HCQ peak concentration that predicts therapy-associated AV accumulation. This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable, and is associated with autophagy modulation in patients. Prolonged stable disease and responses suggest antitumor activity in melanoma patients, warranting further studies of this combination, or combinations of more potent autophagy inhibitors and chemotherapy in melanoma.
Diankova, M
1998-09-01
A health risk evaluation of the lifetime population risk has been made, by using the US EPA's method of risk assessment. Several main steps have been conducted: --a hazard identification, by means of emission analysis and mathematical modeling of air concentration dispersion; a dose-response evaluation and exposure assessment, and finally--a risk characterization. The health risk evaluation was conducted, using lifetime reference concentrations and doses. As risk descriptors were applied: --the individual exposure coefficient (IEC), the hazard quotient (HQ) and the margin of exposure (MOE)--for system toxicants, and the excess lifetime cancer risk (ELCR)--for carcinogens. The method that was used provides an upperbound estimate, including all possible exposures. The results showed, that the emissions of hydrogen chloride, phthalates (DOF), nitrogen oxides and most of the organic solvents, released from this chemical plant, are not a source of lifetime chronic health risk for the population of any of the six evaluated residential areas of Rousse. The rest of the hazardous emissions cause a slightly increased lifetime health risk, which is entirely in the so called 'controlled risk zone' the risk descriptors vary from 1.00 to 5.00. A number of actions have been prescribed to the plant's government, most of which were realized in the short term.
Grabus, Sheri D; Martin, Billy R; Brown, Sharon E; Damaj, M Imad
2006-03-01
Although conditioned place preferences (CPPs) are seen with most abused drugs, nicotine does not always produce a preference in this design. The goals of the present experiment were to (1) examine various factors that could contribute to these inconsistent results and (2) begin to evaluate the specific nicotinic receptors involved in the nicotine CPP. The influences of prior handling, environmental habituation, and injection habituation on a nicotine CPP were first evaluated in ICR mice. Subsequently, various nicotine doses were assessed for their abilities to produce a CPP, and the effectiveness of nicotinic receptor antagonists in attenuating this preference was examined. Finally, nicotine CPPs were assessed in C57BL/6J and DBA/2J mice to examine the influence of strain in this design. Nicotine CPPs were seen in handled/environmentally habituated, but not in unhandled, ICR mice. Habituation to the injection techniques failed to strengthen the preference. In ICR mice, a CPP was seen with one intermediate dose of nicotine. This CPP was attenuated by mecamylamine and dihydro-beta-erythroidine (DHbetaE). A nicotine CPP was also seen in C57BL/6J, but not in DBA/2J, mice. Earlier handling experience and strain are important factors when evaluating a nicotine CPP in the mouse. In addition, certain nicotinic receptors underlie the nicotine CPP, indicating that this model can elucidate underlying mediators of nicotine reward.
Musk, Gabrielle C; Collins, Teresa; Hosgood, Giselle
In veterinary medical education, reduction, replacement, and refinement (the three Rs) must be considered. Three clinical skills in anesthesia were identified as challenging to students: endotracheal intubation, intravenous catheterization, and drug dose calculations. The aims of this project were to evaluate students' perception of their level of confidence in performing these three clinical skills in veterinary anesthesia, to document the extent of students' previous experience in performing these three tasks, and to describe students' emotional states during this training. Veterinary students completed a series of four surveys over the period of their pre-clinical training to evaluate the usefulness of high-fidelity models for skill acquisition in endotracheal intubation and intravenous catheterization. In addition, practice and ongoing assessment in drug dose calculations were performed. The curriculum during this period of training progressed from lectures and non-animal training, to anesthesia of pigs undergoing surgery from which they did not recover, and finally to anesthesia of dogs and cats in a neutering clinic. The level of confidence for each of the three clinical skills increased over the study period. For each skill, the number of students with no confidence decreased to zero and the proportion of students with higher levels of confidence increased. The high-fidelity models for endotracheal intubation and intravenous catheterization used to complement the live-animal teaching were considered a useful adjunct to the teaching of clinical skills in veterinary anesthesia. With practice, students became more confident performing drug dose calculations.
Population Pharmacokinetics of Intranasal Scopolamine
NASA Technical Reports Server (NTRS)
Wu, L.; Chow, D. S. L.; Putcha, L.
2013-01-01
Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.
An, Guohua; Liu, Wei; Duan, W Rachel; Nothaft, Wolfram; Awni, Walid; Dutta, Sandeep
2015-03-01
ABT-639 is a selective T-type calcium channel blocker with efficacy in a wide range of preclinical models of nociceptive and neuropathic pain. In the current first-in-human (FIH) study, the pharmacokinetics, tolerability, and safety of ABT-639 after single- (up to 170 mg) and multiple doses (up to 160 mg BID) were evaluated in healthy volunteers in a randomized, double-blinded, placebo-controlled manner. ABT-639 demonstrated acceptable safety and pharmacokinetic profiles in human. Results from assessment of the routine laboratory variables showed an unexpected statistically significant and clinically relevant decrease in blood uric acid with the increase in ABT-639 dose, which is possibly due to inhibition in URAT1 transporter. Pharmacokinetic/pharmacodynamic models were constructed to characterize the relationship between ABT-639 exposure and uric acid response. The final model was a mechanism-based indirect response pharmacodynamic model with the stimulation of uric acid elimination by ABT-639. The model estimated K in values in males and females were 10.2 and 7.13 μmol/h, respectively. The model estimated K out was 0.033 1/h. ABT-639 concentration that can produce 50% stimulation in uric acid elimination was estimated to be 8,070 ng/mL. Based on the final model, further simulations were conducted to predict the effect of ABT-639 on uric acid in gout patients. The simulation results indicated that, if the urate-lowering response to ABT-639 in gout patients is similar to that in healthy subjects, ABT-639 BID doses of 140 mg or higher would be expected to provide clinically meaningful lowering of blood uric acid levels below the 380 μmol/L solubility limit of monosodium urate.
Lambrecht, Marie; Melidis, Christos; Sonke, Jan-Jakob; Adebahr, Sonja; Boellaard, Ronald; Verheij, Marcel; Guckenberger, Matthias; Nestle, Ursula; Hurkmans, Coen
2016-01-20
The EORTC has launched a phase II trial to assess safety and efficacy of SBRT for centrally located NSCLC: The EORTC 22113-08113-Lungtech trial. Due to neighbouring critical structures, these tumours remain challenging to treat. To guarantee accordance to protocol and treatment safety, an RTQA procedure has been implemented within the frame of the EORTC RTQA levels. These levels are here expanded to include innovative tools beyond protocol compliance verification: the actual dose delivered to each patient will be estimated and linked to trial outcomes to enable better understanding of dose related response and toxicity. For trial participation, institutions must provide a completed facility questionnaire and beam output audit results. To insure ability to comply with protocol specifications a benchmark case is sent to all centres. After approval, institutions are allowed to recruit patients. Nonetheless, each treatment plan will be prospectively reviewed insuring trial compliance consistency over time. As new features, patient's CBCT images and applied positioning corrections will be saved for dose recalculation on patient's daily geometry. To assess RTQA along the treatment chain, institutions will be visited once during the time of the trial. Over the course of this visit, end-to-end tests will be performed using the 008ACIRS-breathing platform with two separate bodies. The first body carries EBT3 films and an ionization chamber. The other body newly developed for PET- CT evaluation is fillable with a solution of high activity. 3D or 4D PET-CT and 4D-CT scanning techniques will be evaluated to assess the impact of motion artefacts on target volume accuracy. Finally, a dosimetric evaluation in static and dynamic conditions will be performed. Previous data on mediastinal toxicity are scarce and source of cautiousness for setting-up SBRT treatments for centrally located NSCLC. Thanks to the combination of documented patient related outcomes and CBCT based dose recalculation we expect to provide improved models for dose response and dose related toxicity. We have developed a comprehensive RTQA model for trials involving modern radiotherapy. These procedures could also serve as examples of extended RTQA for future radiotherapy trials involving quantitative use of PET and tumour motion.
Gabriel, J E; Guerra-Slompo, E P; de Souza, E M; de Carvalho, F A L; Madeira, H M F; de Vasconcelos, A T R
2015-08-21
The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner.
Effects of corticosteroids on hyposmia in persistent allergic rhinitis.
Catana, Iuliu V; Chirila, Magdalena; Negoias, Simona; Bologa, Ramona; Cosgarea, Marcel
2013-01-01
To asses the effects of two topical nasal corticosteroids sprays on hyposmia in patients with persistent allergic rhinitis. The study was a prospective clinical trial and it included twenty four patients with persistent allergic rhinitis (PER) and hyposmia (H). The patients were divided into two groups depending on the type of corticosteroid topical nasal spray treatment: group A, 200 micrograms dose of mometasone furoate (MF) and group B, 110 micrograms dose of fluticasone furoate (FF) both administered in the morning for 4 weeks. The olfactory function of the patients was evaluated with the extended Test battery "Sniffin' Sticks". The visual analogue scale (VAS) was used for the assessment of hyposmia, nasal discharge. The level of the nasal obstruction, before and after the treatment, was evaluated through the anterior rhinomanometry. The comparisons between the two types of topical corticosteroids showed a significant improvement separately between scores of the odor threshold (OT), odor discrimination (OD) and odor identification (OI) and also on the final olfactory score (SDI) before and after 4 weeks of the treatment. The comparisons of the VAS scores pre and post treatment showed a significant improvement in hyposmia and nasal obstruction. The nasal airflow and the nasal discharge scores were improved, but the differences were not statistically significant between the groups. The final statistical analysis found no significant differences between the two patients groups. The study concludes that fluticasone furoate and mometasone furoate have quite the same effects on hyposmia and on the classical symptoms from PER.
Sikes, R. K.; Cleary, W. F.; Koprowski, H.; Wiktor, T. J.; Kaplan, M. M.
1971-01-01
Three series of experiments on rabies vaccines were carried out on rhesus monkeys using suckling-mouse-brain vaccine, rabbit-brain vaccine, duck-embryo vaccine, and purified, concentrated tissue-culture vaccine. The latter was prepared in a human diploid cell strain and inactivated with β-propiolactone, and consisted of tissue-culture fluid concentrated 200-fold with a final infectivity titre of 109.8 plaque-forming units per ml before inactivation. In the first two series of experiments, several vaccines were tested for relative immunogenicity on a pre-exposure basis. In the third series, a successful model was developed in which a single inoculation of the tissue-culture vaccine administered after exposure to rabies virus, with or without accompanying standard doses of antirabies serum, was evaluated as a method of prevention. A single dose of the tissue-culture vaccine protected 7 out of 8 monkeys from death by street virus. Homologous or heterologous antirabies serum alone gave poor results. The results indicate great promise for prophylaxis in man with one dose, or perhaps a few doses, of highly concentrated, purified tissue-culture vaccine. PMID:5004004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucci, T.J.; Parker, R.M.; Gosnell, P.A.
1992-05-01
A dose rangefinding study, a delayed neuropathy study, and a neurotoxic esterase study, were performed in White Leghorn chickens using the organophosphate ester Soman. The hens used for the Rangefinding study were dosed once orally with 500, 250, 100, 50, 25, or 0 microns g/Kg GD, on Day 1. They were pretreated and protected daily through Day 7 with atropine. Surviving hens were euthanized with sodium pentobarbital on Day 21. The maximum tolerated dose (MTD) to be used in the Delayed Neuropathy Study was chosen based upon the rangefinding data. Fifty hens were assigned to a Single Dose Delayed Neuropathymore » study. Groups of ten hens were given 14.2 (MTD), 7.1 (MTD/2), 3.5 (MTD/4), 0 (negative control) microns/Kg GD or 51 0 mg/Kg tri-ortho-cresyl phosphate (TOCP) (positive control). Rangefinding study. They were evaluated for signs of neurologic toxicity/ataxia. Necropsy examination was performed on all animals. Sections of cerebellum, medulla, spinal cord (cervical, thoracic, and lumbar), both sciatic nerves and their tibial branch were examined microscopically.... Delayed neuropathy; Agents; Soman; Chickens.« less
Antifungal effect of some plant extracts against factors wheat root rot
NASA Astrophysics Data System (ADS)
Atmaca, Sevim; Şimşek, Şeyda; Denek, Yunus Emre
2017-04-01
Methanol leaf extracts of Humulus lupulus L. and Achillea millefolium L. were evaluated for antifungal activity against economically important phytopathogenic fungi including Fusarium culmorum (W. G. Smith) Sacc. The final concentrations of the methanol extracts obtained from the plants were added to the Potato Dextrose Agar (PDA) at 1%, 2%, 4% and 8% doses. Mycelial disks of pathogens (6 mm in diameter) removed from the margins of a 7 days old culture were transferred to PDA media containing the plant extracts at tested concentrations. Four replicates were used per treatment. For each plant extract and concentration, inhibition of radial growth compared with the untreated control was calculated after 7 days of incubation at 24±1°C, in the dark. Extracts H. lupulus and A. millefolium inhibited the mycelial growth of F. culmorum of mycelial growth of 8% dose of the pathogens by 92.77% and 69.83%, respectively. It has been observed that the antifungal effect of the extracts increases with dose increase. As a result, at least micelle growth and the highest percent inhibition rate were obtained at 8% dose of the extract H. lupulus. H. lupulus extract can be used as a biological preparation.
Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David
2015-03-01
The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.
Identifying the most successful dose (MSD) in dose-finding studies in cancer.
Zohar, Sarah; O'Quigley, John
2006-01-01
For a dose finding study in cancer, the most successful dose (MSD), among a group of available doses, is that dose at which the overall success rate is the highest. This rate is the product of the rate of seeing non-toxicities together with the rate of tumor response. A successful dose finding trial in this context is one where we manage to identify the MSD in an efficient manner. In practice we may also need to consider algorithms for identifying the MSD which can incorporate certain restrictions, the most common restriction maintaining the estimated toxicity rate alone below some maximum rate. In this case the MSD may correspond to a different level than that for the unconstrained MSD and, in providing a final recommendation, it is important to underline that it is subject to the given constraint. We work with the approach described in O'Quigley et al. [Biometrics 2001; 57(4):1018-1029]. The focus of that work was dose finding in HIV where both information on toxicity and efficacy were almost immediately available. Recent cancer studies are beginning to fall under this same heading where, as before, toxicity can be quickly evaluated and, in addition, we can rely on biological markers or other measures of tumor response. Mindful of the particular context of cancer, our purpose here is to consider the methodology developed by O'Quigley et al. and its practical implementation. We also carry out a study on the doubly under-parameterized model, developed by O'Quigley et al. but not
Safety and Feasibility of Topical Application of Limonene as a Massage Oil to the Breast.
Miller, Jessica A; Thompson, Patricia A; Hakim, Iman A; Lopez, Ana Maria; Thomson, Cynthia A; Chew, Wade; Hsu, Chiu-Hsieh; Chow, H-H Sherry
2012-10-01
Limonene, a major component in citrus oil, has demonstrated anti-cancer effects in preclinical mammary cancer models. However, the effective oral dose translates to a human dose that may not be feasible for chronic dosing. We proposed to evaluate topical application of limonene to the breast as an alternative dosing strategy. We conducted a mouse disposition study to determine whether limonene would be bio available in the mammary tissue after topical application. SKH-1 mice received topical or oral administration of limonene in the form of orange oil every day for 4 weeks. Plasma and mammary pads were collected 4 hrs after the final dosing. We also conducted an exploratory clinical study to evaluate the safety and feasibility of topically applied limonene in the form of orange oil to the breast. Healthy women were recruited to apply orange oil containing massage oil to their breasts daily for four weeks. Safety and feasibility were assessed by reported adverse events, clinical labs, and usage compliance. Pre and post-intervention nipple aspirate fluid (NAF) and plasma were collected for limonene concentration determination. The mouse disposition study showed that topical and oral orange oil administration resulted in similar mammary tissue disposition of limonene with no clinical signs of toxicity. In the clinical study, the topical application of limonene containing massage oil to the breast was found to be safe with high levels of usage compliance for daily application, although NAF and plasma limonene concentrations were not significantly changed after the massage oil application. Our studies showed that limonene is bio available in mammary tissue after topical orange oil application in mice and this novel route of administration to the breast is safe and feasible in healthy women.
Safety and Feasibility of Topical Application of Limonene as a Massage Oil to the Breast
Miller, Jessica A.; Thompson, Patricia A.; Hakim, Iman A.; Lopez, Ana Maria; Thomson, Cynthia A.; Chew, Wade; Hsu, Chiu-Hsieh; Chow, H.-H. Sherry
2013-01-01
Background Limonene, a major component in citrus oil, has demonstrated anti-cancer effects in preclinical mammary cancer models. However, the effective oral dose translates to a human dose that may not be feasible for chronic dosing. We proposed to evaluate topical application of limonene to the breast as an alternative dosing strategy. Materials and Methods We conducted a mouse disposition study to determine whether limonene would be bio available in the mammary tissue after topical application. SKH-1 mice received topical or oral administration of limonene in the form of orange oil every day for 4 weeks. Plasma and mammary pads were collected 4 hrs after the final dosing. We also conducted an exploratory clinical study to evaluate the safety and feasibility of topically applied limonene in the form of orange oil to the breast. Healthy women were recruited to apply orange oil containing massage oil to their breasts daily for four weeks. Safety and feasibility were assessed by reported adverse events, clinical labs, and usage compliance. Pre and post-intervention nipple aspirate fluid (NAF) and plasma were collected for limonene concentration determination. Results The mouse disposition study showed that topical and oral orange oil administration resulted in similar mammary tissue disposition of limonene with no clinical signs of toxicity. In the clinical study, the topical application of limonene containing massage oil to the breast was found to be safe with high levels of usage compliance for daily application, although NAF and plasma limonene concentrations were not significantly changed after the massage oil application. Conclusions Our studies showed that limonene is bio available in mammary tissue after topical orange oil application in mice and this novel route of administration to the breast is safe and feasible in healthy women. PMID:24236248
Mendiratta-Lala, Mishal; Williams, Todd R; Mendiratta, Vivek; Ahmed, Hafeez; Bonnett, John W
2015-04-01
The purpose of this study was to evaluate the effectiveness of a multifaceted simulation-based resident training for CT-guided fluoroscopic procedures by measuring procedural and technical skills, radiation dose, and procedure times before and after simulation training. A prospective analysis included 40 radiology residents and eight staff radiologists. Residents took an online pretest to assess baseline procedural knowledge. Second-through fourth-year residents' baseline technical skills with a procedural phantom were evaluated. First-through third-year residents then underwent formal didactic and simulation-based procedural and technical training with one of two interventional radiologists and followed the training with 1 month of supervised phantom-based practice. Thereafter, residents underwent final written and practical examinations. The practical examination included essential items from a 20-point checklist, including site and side marking, consent, time-out, and sterile technique along with a technical skills portion assessing pedal steps, radiation dose, needle redirects, and procedure time. The results indicated statistically significant improvement in procedural and technical skills after simulation training. For residents, the median number of pedal steps decreased by three (p=0.001), median dose decreased by 15.4 mGy (p<0.001), median procedure time decreased by 4.0 minutes (p<0.001), median number of needle redirects decreased by 1.0 (p=0.005), and median number of 20-point checklist items successfully completed increased by three (p<0.001). The results suggest that procedural skills can be acquired and improved by simulation-based training of residents, regardless of experience. CT simulation training decreases procedural time, decreases radiation dose, and improves resident efficiency and confidence, which may transfer to clinical practice with improved patient care and safety.
Toxicological evaluation of morning glory seed: subchronic 90-day feeding study.
Dugan, G M; Gumbmann, M R
1990-08-01
Diets containing 0.8, 2.53 and 8.0% field variety morning glory seed were fed to male and female rats (20 per group) in a 90-day subchronic feeding study. Gross clinical observations, body weight, and feed and water intake were recorded weekly. At 90 days, all surviving rats were autopsied, organs were weighed, and blood chemistry analyses, haematology, and bone-marrow evaluation for evidence of clastogenic effects were performed. Tissues from control (0% seed) and high-dose (8.0% seed) rats were examined histologically. Effects of morning glory seed were noted mainly in the high-dose group of both sexes. These included increases in mortality, feed consumption (on a body-weight basis), water consumption, serum alkaline phosphatase and potassium, white blood cell count, and brain and liver weights (as a percentage of body weight); body-weight gain and serum glucose were decreased. Significant changes seen in high-dose females alone were: increased haemoglobin, serum constituents (urea nitrogen, glutamic-pyruvic transaminase, glutamic-oxaloacetic transaminase, and ornithine carbamyl transferase), and organ weights (heart, kidney, spleen and pancreas as a percentage of body weight), and decreases in serum albumin, total protein, albumin:globulin ratio, and calcium. Significant changes occurring in high-dose males alone were: increased testicular weight (as a percentage of body weight), increased serum phosphorus, and decreased serum cholesterol. Liver degeneration in the high-dose females was greater than that in the controls. Mortality at 8.0% seed in the diet was 40% in males and 10% in females. At 0.8% seed, the only parameter that differed significantly from that of the controls was a final body-weight reduction in females without a corresponding reduction in feed consumption.
McQueen, Daniel S; Begg, Michael J; Maxwell, Simon R J
2010-10-01
Dose calculation errors can cause serious life-threatening clinical incidents. We designed eDrugCalc as an online self-assessment tool to develop and evaluate calculation skills among medical students. We undertook a prospective uncontrolled study involving 1727 medical students in years 1-5 at the University of Edinburgh. Students had continuous access to eDrugCalc and were encouraged to practise. Voluntary self-assessment was undertaken by answering the 20 questions on six occasions over 30 months. Questions remained fixed but numerical variables changed so each visit required a fresh calculation. Feedback was provided following each answer. Final-year students had a significantly higher mean score in test 6 compared with test 1 [16.6, 95% confidence interval (CI) 16.2, 17.0 vs. 12.6, 95% CI 11.9, 13.4; n= 173, P < 0.0001 Wilcoxon matched pairs test] and made a median of three vs. seven errors. Performance was highly variable in all tests with 2.7% of final-year students scoring < 10/20 in test 6. Graduating students in 2009 (30 months' exposure) achieved significantly better scores than those in 2007 (only 6 months): mean 16.5, 95% CI 16.0, 17.0, n= 184 vs. 15.1, 95% CI 14.5, 15.6, n= 187; P < 0.0001, Mann-Whitney test. Calculations based on percentage concentrations and infusion rates were poorly performed. Feedback showed that eDrugCalc increased confidence in calculating doses and was highly rated as a learning tool. Medical student performance of dose calculations improved significantly after repeated exposure to an online formative dose-calculation package and encouragement to develop their numeracy. Further research is required to establish whether eDrugCalc reduces calculation errors made in clinical practice. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.
Snow, Aisling; Milliren, Carly E; Graham, Dionne A; Callahan, Michael J; MacDougall, Robert D; Robertson, Richard L; Taylor, George A
2017-04-01
Pediatric patients requiring transfer to a dedicated children's hospital from an outside institution may undergo CT imaging as part of their evaluation. Whether this imaging is performed prior to or after transfer has been shown to impact the radiation dose imparted to the patient. Other quality variables could also be affected by the pediatric experience and expertise of the scanning institution. To identify differences in quality between abdominal CT scans and reports performed at a dedicated children's hospital, and those performed at referring institutions. Fifty consecutive pediatric abdominal CT scans performed at outside institutions were matched (for age, gender and indication) with 50 CT scans performed at a dedicated freestanding children's hospital. We analyzed the scans for technical parameters, report findings, correlation with final clinical diagnosis, and clinical utility. Technical evaluation included use of intravenous and oral contrast agents, anatomical coverage, number of scan phases and size-specific dose estimate (SSDE) for each scan. Outside institution scans were re-reported when the child was admitted to the children's hospital; they were also re-interpreted for this study by children's hospital radiologists who were provided with only the referral information given in the outside institution's report. Anonymized original outside institutional reports and children's hospital admission re-reports were analyzed by two emergency medicine physicians for ease of understanding, degree to which the clinical question was answered, and level of confidence in the report. Mean SSDE was lower (8.68) for children's hospital scans, as compared to outside institution scans (13.29, P = 0.03). Concordance with final clinical diagnosis was significantly lower for original outside institution reports (38/48, 79%) than for both the admission and study children's hospital reports (48/50, 96%; P = 0.005). Children's hospital admission reports were rated higher than outside institution reports for completeness, ease of understanding, answering of clinical question, and level of confidence of the report (P < 0.001). Pediatric abdominal CT scans performed and interpreted at a dedicated children's hospital are associated with higher technical quality, lower radiation dose and a more clinically useful report than those performed at referring institutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, K; Lee, C; Samuels, S
Purpose: Tools are now available to perform daily dose assessment in radiotherapy, however, guidance is lacking as to when to replan to limit increase in normal tissue dose. This work performs statistical analysis to provide guidance for when adaptive replanning may be necessary for head/neck (HN) patients. Methods: Planning CT and daily kVCBCT images for 50 HN patients treated with VMAT were retrospectively evaluated. Twelve of 50 patients were replanned due to anatomical changes noted over their RT course. Daily dose assessment was performed to calculate the variation between the planned and delivered dose for the 38 patients not replannedmore » and the patients replanned using their delivered plan. In addition, for the replanned patients, the dose that would have been delivered if the plan was not modified was also quantified. Deviations in dose were analyzed before and after replanning, the daily variations in patients who were not replanned assessed, and the predictive power of the deviation after 1, 5, and 15 fractions determined. Results: Dose deviations were significantly reduced following replanning, compared to if the original plan would have been delivered for the entire course. Early deviations were significantly correlated with total deviations (p<0.01). Using the criteria that a 10% increase in the final delivered dose indicates a replan may be needed earlier in the treatment course, the following guidelines can be made with a 90% specificity after the first 5 fractions: deviations of 7% in the mean dose to the inferior constrictors and 5% in the mean dose to the parotid glands and submandibular glands. No significant dose deviations were observed in any patients for the CTV -70Gy (max deviation 4%). Conclusions: A 5–7% increase in mean dose to normal tissues within the first 5 fractions strongly correlate to an overall deviatios in the delivered dose for HN patients. This work is funded in part by NIH 2P01CA059827-16.« less
Jaberi, Ramin; Siavashpour, Zahra; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-12-01
Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in 'organs-applicators', while maintaining target dose at the original level. There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients' plans to be able to serve as a clinical tool.
Fetal and maternal dose assessment for diagnostic scans during pregnancy
NASA Astrophysics Data System (ADS)
Rafat Motavalli, Laleh; Miri Hakimabad, Hashem; Hoseinian Azghadi, Elie
2016-05-01
Despite the concerns about prenatal exposure to ionizing radiation, the number of nuclear medicine examinations performed for pregnant women increased in the past decade. This study attempts to better quantify radiation doses due to diagnostic nuclear medicine procedures during pregnancy with the help of our recently developed 3, 6, and 9 month pregnant hybrid phantoms. The reference pregnant models represent the adult female international commission on radiological protection (ICRP) reference phantom as a base template with a fetus in her gravid uterus. Six diagnostic scintigraphy scans using different radiopharmaceuticals were selected as typical diagnostic nuclear medicine procedures. Furthermore, the biokinetic data of radioiodine was updated in this study. A compartment representing iodide in fetal thyroid was addressed explicitly in the biokinetic model. Calculations were performed using the Monte Carlo transport method. Tabulated dose coefficients for both maternal and fetal organs are provided. The comparison was made with the previously published fetal doses calculated for stylized pregnant female phantoms. In general, the fetal dose in previous studies suffers from an underestimation of up to 100% compared to fetal dose at organ level in this study. A maximum of difference in dose was observed for the fetal thyroid compared to the previous studies, in which the traditional models did not contain the fetal thyroid. Cumulated activities of major source organs are primarily responsible for the discrepancies in the organ doses. The differences in fetal dose depend on several other factors including chord length distribution between fetal organs and maternal major source organs, and anatomical differences according to gestation periods. Finally, considering the results of this study, which was based on the realistic pregnant female phantoms, a more informed evaluation of the risks and benefits of the different procedures could be made.
An open treatment trial of duloxetine in elderly patients with dysthymic disorder
Kerner, Nancy; D’Antonio, Kristina; Pelton, Gregory H; Salcedo, Elianny; Ferrar, Jennifer; Roose, Steven P
2014-01-01
Objective: We evaluated the efficacy and side effects of the selective serotonin and norepinephrine reuptake inhibitor antidepressant duloxetine in older adults with dysthymic disorder. Methods: Patients ≥ 60 years old with dysthymic disorder received flexible dose duloxetine 20–120 mg daily in an open-label 12-week trial. The main outcomes were change from baseline to 12 weeks in 24-item Hamilton Depression Rating Scale scores and Treatment Emergent Symptoms Scale scores. Response required ≥ 50% decline in Hamilton Depression Rating Scale scores with a Clinical Global Impression of much improved or better, and remission required final Hamilton Depression Rating Scale ≤ 6. Intent-to-treat analyses were conducted with the last observation carried forward. Results: In 30 patients, the mean age was 70.7 (standard deviation (SD) = 7.6) years and 56.7% were female. In intent-to-treat analyses, there were 16 responders (53.3%) and 10 remitters (33.3%). Of these, 19 patients completed the trial. The mean maximum dose was 76.3 mg (SD = 38.5) in the total sample and 101 mg (SD = 17.9) in completers. In the total sample, the mean final dose was 51 mg (SD = 27.2) and correlated significantly with decline in Hamilton Depression Rating Scale (p < .03); decline in Hamilton Depression Rating Scale correlated significantly with decline in Treatment Emergent Symptoms Scale (p < .001). Daily doses above 60 mg were associated with greater improvement and well tolerated. This result was partly confounded by early dropouts having received low doses. Demographic and medical comorbidities, including cardiac disease and hypertension, were not related to response. Somatic side effects were common prior to duloxetine treatment and improved rather than worsened with duloxetine. There were no serious adverse events. Conclusion: Duloxetine at relatively high doses showed moderate efficacy in elderly patients with dysthymic disorder and was well tolerated in successful completers. Reduced somatic symptoms were associated with improvement in depressive symptoms. A systematic placebo-controlled trial of duloxetine in older patients with dysthymic disorder may be warranted. PMID:25177490
Drusano, G. L.; Preston, S. L.; Gotfried, M. H.; Danziger, L. H.; Rodvold, K. A.
2002-01-01
Levofloxacin was administered orally to steady state to volunteers randomly in doses of 500 and 750 mg. Plasma and epithelial lining fluid (ELF) samples were obtained at 4, 12, and 24 h after the final dose. All data were comodeled in a population pharmacokinetic analysis employing BigNPEM. Penetration was evaluated from the population mean parameter vector values and from the results of a 1,000-subject Monte Carlo simulation. Evaluation from the population mean values demonstrated a penetration ratio (ELF/plasma) of 1.16. The Monte Carlo simulation provided a measure of dispersion, demonstrating a mean ratio of 3.18, with a median of 1.43 and a 95% confidence interval of 0.14 to 19.1. Population analysis with Monte Carlo simulation provides the best and least-biased estimate of penetration. It also demonstrates clearly that we can expect differences in penetration between patients. This analysis did not deal with inflammation, as it was performed in volunteers. The influence of lung pathology on penetration needs to be examined. PMID:11796385
Polyamine analogue antidiarrheals: a structure-activity study.
Bergeron, R J; Wiegand, J; McManis, J S; Weimar, W R; Smith, R E; Algee, S E; Fannin, T L; Slusher, M A; Snyder, P S
2001-01-18
The syntheses of a group of spermine polyamine analogues and their evaluation as antidiarrheals are described. Each compound was assessed in a rodent castor oil-induced diarrhea model for its ability to reduce stool output and weight loss in a dose-dependent manner. The spermine pharmacophore is shown to be an excellent platform from which to construct antidiarrheals. The activity of the compounds is very dependent on both the nature of the terminal alkyl groups and the geometry of the methylene spacers separating the nitrogens. The toxicity profile is also quite dependent on these same structural features. On the basis of subcutaneous dose-response data and toxicity profiles, two compounds, N(1),N(12)-diisopropylspermine and N(1),N(12)-diethylspermine, were taken forward into more complete evaluation. These measurements included formal acute and chronic toxicity trials, drug and metabolic tissue distribution studies, and assessment of the impact of these analogues on tissue polyamine pools. Finally, the remarkable activity of N,N'-bis[3-(ethylamino)propyl]-trans-1,4-cyclohexanediamine underscores the need to further explore this framework as a pharmacophore for the construction of other antidiarrheal agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia
2015-07-15
Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to studymore » the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode. Regarding the BSF, the results achieved may lead to a MGD correction of about 6%, contributing to the improvement of the current guidelines used in these applications. Finally, considering the MC results obtained for the organ dose study, the radiation doses found for the tissues of the body other than the breast were in the range of tens of μSv, and are in part comparable to the ones obtained in standard DM. Nevertheless, in a single DBT examination, some organs (such as lung and thyroid) receive higher doses (of about 9% and 21%, respectively) with respect to the CC DM acquisition. Conclusions: Taking into account an average breast with a thickness of 4.5 cm, the MGDs for DM and DBT acquisitions were below the achievable value (2.0 mGy) defined by the European protocol. Additionally, in the case of a fusion imaging study (DM + DBT), the MGD for a 4.5 cm thick breast is of the order of 1.88 ± 0.36 mGy. Finally, organ dose evaluations underline the need to improve awareness concerning dose estimation of DBT exams for some organs, especially when radiation risk is assessed by using the effective dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick
Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature andmore » extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.« less
D-cycloserine adjuvant therapy to molindone in the treatment of schizophrenia.
Rosse, R B; Fay-McCarthy, M; Kendrick, K; Davis, R E; Deutsch, S I
1996-10-01
This preliminary investigation examined the therapeutic efficacy of two doses of oral D-cycloserine (5 and 15 mg p.o. b.i.d.) administered as an adjuvant to molindone (150 mg p.o. q.d.) in the treatment of schizophrenia. D-Cycloserine is an agonist at the N-methyl-D-aspartate (NMDA) subclass of glutamate receptor complex. An NMDA agonist intervention was studied because of the schizophreniform psychosis precipitated by phencyclidine (PCP), which is a noncompetitive antagonist at the NMDA glutamate receptor. The PCP model of schizophrenia is regarded as the most comprehensive pharmacological model of this disorder. In this preliminary, placebo-controlled, double-blind, parallel-group study, the measures of treatment efficacy were the Brief Psychiatric Rating Scale, Schedule for the Assessment of Negative Symptoms, and Clinical Global Impression Scale. The final scores for each item of the outcome measures employed were based on the consensus of at least two trained raters who were present during each rating interview. In the 13 subjects evaluated, although the D-cycloserine was well tolerated, neither dose seemed to possess adjuvant therapeutic efficacy. However, since another recent report of nine patients with schizophrenia treated for 2 weeks with a slightly higher dose of D-cycloserine (50 mg/day) described significant clinical and neuropsychological improvement, further study of the adjuvant potential of slightly higher doses of D-cycloserine seems warranted. Additionally, there might be a therapeutic window for D-cycloserine dosing, as daily doses of 250 mg have been associated with symptom worsening.
Pb low doses induced genotoxicity in Lactuca sativa plants.
Silva, S; Silva, P; Oliveira, H; Gaivão, I; Matos, M; Pinto-Carnide, O; Santos, C
2017-03-01
Soil and water contamination by lead (Pb) remains a topic of great concern, particularly regarding crop production. The admissible Pb values in irrigation water in several countries range from ≈0.1 to ≈5 mg L -1 . In order to evaluate putative effects of Pb within legal doses on crops growth, we exposed Lactuca sativa seeds and seedlings to increasing doses of Pb(NO 3 ) 2 up to 20 mg L -1 . The OECD parameter seed germination and seedling/plant growth were not affected by any of the Pb-concentrations used. However, for doses higher than 5 mg L -1 significant DNA damage was detected: Comet assay detected DNA fragmentation at ≥ 5 mg L -1 and presence of micronuclei (MN) were detected for 20 mg L -1 . Also, cell cycle impairment was observed for doses as low as 0.05 mg L -1 and 0.5 mg L -1 (mostly G 2 arrest). Our data show that for the low doses of Pb used, the OECD endpoints were not able to detect toxicity, while more sensitive endpoints (related with DNA damage and mitotic/interphase disorders) identified genotoxic and cytostatic effects. Furthermore, the nature of the genotoxic effect was dependent on the concentration. Finally, we recommend that MN test and the comet assay should be included as sensitive endpoints in (eco)toxicological assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of Dose of Behavioral Treatment for Obesity on Binge Eating Severity
Ariel, Aviva H.; Perri, Michael G.
2016-01-01
Objectives We evaluated the effects of three doses of a behavioral intervention for obesity (High dose = 24 sessions, Moderate = 16 sessions, Low = 8 sessions) compared with a nutrition education control group (Control) on binge eating. We also examined whether participants with clinically significant improvements in binge eating had better treatment adherence and weight-loss outcomes than those who did not experience clinically significant improvements in binge eating. Finally, we examined the relation of pretreatment binge eating severity to changes at six months. Methods Participants included 572 adults (female = 78.7%; baseline mean ±SD: age = 52.7 ±11.2 years, BMI = 36.4 ±3.9 kg/m2) who provided binge eating data at baseline. We evaluated binge eating severity (assessed via the Binge Eating Scale) and weight status at baseline and six months, as well as treatment adherence over six months. Results At six months, participants in the Moderate and High treatment conditions reported greater reductions in binge eating severity than participants in the Low and Control conditions, ps < .02. Participants who demonstrated improvements in binge eating severity reported greater dietary self-monitoring adherence and attained larger weight losses than those who did not experience clinically significant reductions, ps < .001. Pretreatment binge eating severity predicted less improvement in binge eating severity over six months and fewer days with dietary self-monitoring records completed, ps ≤ .002. Conclusion A moderate or high dose of behavioral weight-loss treatment may be required to produce clinically significant reductions in binge eating severity in adults with obesity. PMID:27086049
Estrada-Reyes, Rosa; López-Rubalcava, C; Ferreyra-Cruz, Octavio Alberto; Dorantes-Barrón, Ana María; Heinze, G; Moreno Aguilar, Julia; Martínez-Vázquez, Mariano
2014-04-11
Agastache mexicana subspecies mexicana (Amm) and xolocotziana (Amx) are used in Mexican traditional medicine to relief cultural affiliation syndromes known as "susto" or "espanto", for "nervous" condition, and as a sleep aid. Despite its intensive use, neuropharmacological studies are scarce, and the chemical composition of the aqueous extracts has not been described. Aims of the study are: (1) To analyze the chemical composition of aqueous extracts from aerial parts of Amm and Amx. (2) To evaluate the anxiolytic-like, sedative, antidepressant-like effects. (3) Analyze the general toxic effects of different doses. Anxiolytic-like and sedative effects were measured in the avoidance exploratory behavior, burying behavior and the hole-board tests. The antidepressant-like actions were studied in the forced swimming and tail suspension tests. Finally, general activity and motor coordination disturbances were evaluated in the open field, inverted screen and rota-rod tests. The acute toxicity of Amm and Amx was determined by calculating their LD50 (mean lethal dose). The chemical analyses were performed employing chromatographic, photometric and HPLC-ESI-MS techniques. Low doses of Amm and Amx (0.1σ1.0mg/kg) induced anxiolytic-like actions; while higher doses (over 10mg/kg) induced sedation and reduced the locomotor activity, exerting a general inhibition in the central nervous system (CNS). Results support the use of Amm and Amx in traditional medicine as tranquilizers and sleep inducers. Additionally, this paper contributes to the knowledge of the chemical composition of the aqueous extracts of these plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Asher, Gary N; Xie, Ying; Moaddel, Ruin; Sanghvi, Mitesh; Dossou, Katina S S; Kashuba, Angela D M; Sandler, Robert S; Hawke, Roy L
2017-02-01
Curcumin is poorly absorbed, which is interest in new preparations. However, little is known about variations in its pharmacokinetics and tissue bioavailability between formulations. In this randomized, crossover study we evaluated the relationship between steady-state plasma and rectal tissue curcuminoid concentrations using standard and phosphatidylcholine curcumin extracts. There was no difference in the geometric mean plasma AUCs when adjusted for the 10-fold difference in curcumin dose between the 2 formulations. Phosphatidylcholine curcumin extract yielded only 20% to 30% plasma demethoxycurcumin and bisdemethoxycurcumin conjugates compared to standard extract, yet yielded 20-fold greater hexahydrocurcumin. When adjusting for curcumin dose, tissue curcumin concentrations were 5-fold greater for the phosphatidylcholine extract. Improvements in curcuminoid absorption due to phosphatidylcholine are not uniform across the curcuminoids. Furthermore, curcuminoid exposures in the intestinal mucosa are most likely due to luminal exposure rather than to plasma disposition. Finally, once-daily dosing is sufficient to maintain detectable curcuminoids at steady state in both plasma and rectal tissues. © 2016, The American College of Clinical Pharmacology.
Gomberg-Maitland, M; Maitland, ML; Barst, RJ; Sugeng, L; Coslet, S; Perrino, TJ; Bond, L; LaCouture, ME; Archer, SL; Ratain, MJ
2012-01-01
Pulmonary arterial hypertension (PAH) and cancer share elements of pathophysiology. This provides an opportunity for the cross-development of anticancer agents that can be used in improving PAH care. The adaptation of new drugs across these disease populations warrants a structured approach. This study was a 16-week, phase Ib, single-center, open-label trial of the multikinase/angiogenesis inhibitor sorafenib. In order to assess the safety of sorafenib in PAH, patients with advanced but stable disease on parenteral prostanoids (with or without oral sildenafil) were initiated on treatment at the lowest active dosage administered to cancer patients: 200 mg daily. Patients underwent weekly clinical evaluations and monthly functional testing and dose escalations to a final dosage of 400 mg twice daily. Among 12 patients (10 of them women), sorafenib was well tolerated at 200 mg twice daily. The most common adverse events were moderate skin reactions on the hands and feet and alopecia. Our conclusion was therefore that this is a tolerable dosing regimen for testing the therapeutic activity of sorafenib in PAH patients. PMID:20010555
Recommendations to harmonize European early warning dosimetry network systems
NASA Astrophysics Data System (ADS)
Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.
2017-12-01
After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.
Moya, Fernando Briceño; Pineda Galindo, Luis Francisco; García de la Peña, Maximiliano
2016-01-01
Systemic lupus erythematosus is highly associated with premature atherosclerosis and cardiovascular events. The origin of this subclinical atherosclerosis has been attributed mainly to the inflammatory nature of the disease. To assess the effect of long-term use of glucocorticoids on cardiovascular risk in patients with systemic lupus erythematosus. We conducted a registry-based retrospective cohort study. We determined 2 periods: (1) Time 0, that is, time of diagnosis and (2) time 1, that is, when the study was finalized. At both times, the cardiovascular risk was evaluated using the Framingham scale and their scores were compared. Afterward, the change magnitude between the 2 times was evaluated and associated with the cumulative glucocorticoids dose. One hundred one patients were included. The mean ± SD age was 26.5 ± 5 years. Length of disease evolution was of 7.8 ± 4.9 years. There was an 8-point increase in the Framingham score, from -8.1 ± 4 to 0.8 ± 7; P < 0.0001. The correlation between the magnitude of the increase in Framingham score and their corresponding cumulative dose showed a coefficient of 0.88; P < 0.001. The glucocorticoids are a primary factor that influences cardiovascular risk. There is a directly proportional relationship between the cumulative glucocorticoid dose and the increase in cardiovascular risk.
Antiaging action of retinol: from molecular to clinical.
Bellemère, G; Stamatas, G N; Bruère, V; Bertin, C; Issachar, N; Oddos, T
2009-01-01
The antiaging efficacy of retinol (ROL) has been explored mainly clinically in photoprotected skin sites and for high doses of ROL (0.4-1.6%). The objective of the study was to demonstrate the antiaging action of a low and tolerable dose of ROL (0.1%) ex vivo by measuring the expression of cellular retinoic-acid-binding protein II (CRABP2) and heparin-binding epidermal growth factor (HBEGF) by a histological evaluation of the epidermis and in vivo by assessing major aging signs and performing three-dimensional profilometry and digital imaging during a 9-month double-blind placebo-controlled study involving 48 volunteers. Finally, epidermal cell proliferation was evaluated using tryptophan fluorescence spectroscopy. Our results demonstrate that 0.1% ROL induced CRABP2 and HBEGF gene expression and increased keratinocyte proliferation and epidermal thickness. In human volunteers, topical application of a ROL-containing product improved all major aging signs assessed in our study (wrinkles under the eyes, fine lines and tone evenness). Moreover, tryptophan fluorescence increased in the active-agent-treated group and not in the placebo-treated group, indicating that cell proliferation was accelerated in vivo. These data demonstrate that a product containing a low dose (0.1%) of ROL promotes keratinocyte proliferation ex vivo and in vivo, induces epidermal thickening ex vivo and alleviates skin aging signs, without any significant adverse reaction. Copyright 2009 S. Karger AG, Basel.
Kroll, Robin; Seidman, Larry; Ricciotti, Nancy; Howard, Brandon; Weiss, Herman
2015-01-01
To evaluate the effect on ovarian follicular activity of the 91-day extended-regimen combined oral contraceptive (COC), consisting of 84 days of levonorgestrel (LNG)/ethinylestradiol (EE) 150 μg/30 μg tablets plus seven days of EE 10 μg tablets in place of placebo. This was a phase 1, open-label study. Ovarian follicular activity was classified via the Hoogland and Skouby method. Safety and tolerability as well as return to ovulation were assessed. Of the 35 subjects included in the efficacy analysis, luteinized, unruptured follicles, or ovulation were detected in 0 of 35 cycles during the first 28-day interval; 1 of 35 cycles (2.9%) in the second 28-day interval; and 2 of 35 cycles (5.7%) in the final 35-day interval. The ovarian activity rate over the entire 91-day treatment period was 2.9%. There was a low incidence of treatment-emergent adverse events. Ovulation returned in most subjects (77.1%, 27/35) within 32 days following the last dose of COC. The 91-day extended-regimen COC with low-dose EE supplementation was found to be effective in suppressing ovarian activity and inhibiting ovulation and was well tolerated. Return to ovulation was rapid, occurring within approximately one month after discontinuation of COC.
Wydra, James W; Cramer, Neil B; Stansbury, Jeffrey W; Bowman, Christopher N
2014-06-01
A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship. Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion-dose relationship. As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64±2% at 3mW/cm(2) to 78±1% at 24mW/cm(2) while the final shrinkage stress varied from 2.4±0.1MPa to 3.0±0.1MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose. Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Song, Kang-Ho; Fan, Alexander C; Hinkle, Joshua J; Newman, Joshua; Borden, Mark A; Harvey, Brandon K
2017-01-01
Focused ultrasound with microbubbles is being developed to transiently, locally and noninvasively open the blood-brain barrier (BBB) for improved pharmaceutical delivery. Prior work has demonstrated that, for a given concentration dose, microbubble size affects both the intravascular circulation persistence and extent of BBB opening. When matched to gas volume dose, however, the circulation half-life was found to be independent of microbubble size. In order to determine whether this holds true for BBB opening as well, we independently measured the effects of microbubble size (2 vs. 6 µm diameter) and concentration, covering a range of overlapping gas volume doses (1-40 µL/kg). We first demonstrated precise targeting and a linear dose-response of Evans Blue dye extravasation to the rat striatum for a set of constant microbubble and ultrasound parameters. We found that dye extravasation increased linearly with gas volume dose, with data points from both microbubble sizes collapsing to a single line. A linear trend was observed for both the initial sonication (R 2 =0.90) and a second sonication on the contralateral side (R 2 =0.68). Based on these results, we conclude that microbubble gas volume dose, not size, determines the extent of BBB opening by focused ultrasound (1 MHz, ~0.5 MPa at the focus). This result may simplify planning for focused ultrasound treatments by constraining the protocol to a single microbubble parameter - gas volume dose - which gives equivalent results for varying size distributions. Finally, using optimal parameters determined for Evan Blue, we demonstrated gene delivery and expression using a viral vector, dsAAV1-CMV-EGFP, one week after BBB disruption, which allowed us to qualitatively evaluate neuronal health.
Sands, Bruce E; Sandborn, William J; Feagan, Brian G; Lichtenstein, Gary R; Zhang, Hongyan; Strauss, Richard; Szapary, Philippe; Johanns, Jewel; Panes, Julian; Vermeire, Severine; O'Brien, Christopher D; Yang, Zijiang; Bertelsen, Kirk; Marano, Colleen
2018-06-15
Janus kinase (JAK) inhibitors have shown efficacy in ulcerative colitis (UC). We studied the dose-response, efficacy, and safety of peficitinib, an oral JAK inhibitor, in patients with moderate-to-severe UC. In this Phase 2b, dose-ranging trial, we evaluated peficitinib at 25mg once daily (qd), 75mg qd, 150mg qd, and 75mg twice daily versus placebo for efficacy and safety in 219 patients with moderate-to-severe UC. The primary outcome was peficitinib dose-response at Week 8 with response assessed using Mayo score change from baseline. Secondary endpoints were clinical response, clinical remission, mucosal healing, change from baseline in Inflammatory Bowel Disease Questionnaire (IBDQ), and normalization of inflammatory biomarkers at Week 8; other secondary endpoints were treatment response through Week 16 and through Week 32 for patients in clinical response at Week 8. Safety was assessed through Week 36 or 4 weeks after the last dose. A statistically significant peficitinib dose-response was not demonstrated at Week 8, although a numerically greater proportion of patients receiving peficitinib ≥75mg qd achieved clinical response, remission, and mucosal healing at Week 8, supported by IBDQ improvement and inflammatory biomarker normalization. Treatment-emergent adverse event (TEAE) rates reported through Week 8 and the final safety visit were higher in the combined peficitinib group than placebo; patients receiving doses of ≥75mg qd peficitinib reported TEAEs more frequently. While no dose-response in patients with moderate-to-severe UC was demonstrated with peficitinib, evidence of efficacy was suggested at doses ≥75mg qd. The safety profile of peficitinib was consistent with current information. ClinicalTrials.gov NCT01959282.
Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B.; ...
2016-04-25
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictionsmore » of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Finally, we discuss comparisons of the resulting model parameters to those used in the NASA radiation quality factor function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cacao, Eliedonna; Hada, Megumi; Saganti, Premkumar B.
The biological effects of high charge and energy (HZE) particle exposures are of interest in space radiation protection of astronauts and cosmonauts, and estimating secondary cancer risks for patients undergoing Hadron therapy for primary cancers. The large number of particles types and energies that makeup primary or secondary radiation in HZE particle exposures precludes tumor induction studies in animal models for all but a few particle types and energies, thus leading to the use of surrogate endpoints to investigate the details of the radiation quality dependence of relative biological effectiveness (RBE) factors. In this report we make detailed RBE predictionsmore » of the charge number and energy dependence of RBE’s using a parametric track structure model to represent experimental results for the low dose response for chromosomal exchanges in normal human lymphocyte and fibroblast cells with comparison to published data for neoplastic transformation and gene mutation. RBE’s are evaluated against acute doses of γ-rays for doses near 1 Gy. Models that assume linear or non-targeted effects at low dose are considered. Modest values of RBE (<10) are found for simple exchanges using a linear dose response model, however in the non-targeted effects model for fibroblast cells large RBE values (>10) are predicted at low doses <0.1 Gy. The radiation quality dependence of RBE’s against the effects of acute doses γ-rays found for neoplastic transformation and gene mutation studies are similar to those found for simple exchanges if a linear response is assumed at low HZE particle doses. Finally, we discuss comparisons of the resulting model parameters to those used in the NASA radiation quality factor function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, C; Pomorski, M; Agelou, M
2016-06-15
Purpose: In proton-therapy, pencil beam scanning (PBS) dosimetry presents a real challenge due to the small size of the beam (about 3 to 8 mm in FWHM), the pulsed high dose rate (up to 100 Gy/s) and the proton energy variation (about 30 MeV to 250 MeV). In the framework of French INSERM DEDIPRO project, a specifically dedicated single crystal diamond dosimeter (SCDDo) was developed with the objective of obtaining accurate measurements of the dose distribution in PBS modality. Methods: Monte Carlo simulations with MCNPX were performed. A small proton beam of 5 mm in FWHM was simulated as wellmore » as diamond devices with various size, thickness and holder composition. The calculated doses-to-diamond were compared with the doses-to-water in order to reduce the perturbation effects. Monte-Carlo simulations lead to an optimized SCDDo design for small proton beams dosimetry. Following the optimized design, SCDDos were mounted in water-equivalent holders with electrical connection adapted to standard electrometer. First, SCDDos performances (stability, repeatability, signal-to-background ratio…) were evaluated with conventional photon beams. Then, characterizations (dose linearity, dose rate dependence…) with wide proton beams were performed at proton-therapy center (IC-CPO) from Curie Institute (France) with the passive proton delivery technique, in order to confirm dosimetric requirements. Finally, depth-dose distributions were measured in a water tank, for native and modulated Bragg Peaks with the collimator of 12 cm, and compared to a commercial PPC05 parallel-plate ionization chamber reference detector. Lateral-dose profiles were also measured with the collimator of 5 mm, and compared to a commercial SFD diode. Results: The results show that SCDDo design does not disturb the dose distributions. Conclusion: The experimental dose distributions with the SCDDo are in good agreement with the commercial detectors and no energy dependence was observed with this device configuration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekel, E; Epstein, D; Levin, D
2016-06-15
Purpose: To determine the tissue equivalence of a brass mesh bolus (RPD) in the setting of a reconstructed chest wall irradiation Methods: We measured breast skin dose delivered by a tangential field plan on an anthropomorphic phantom using Mosfet and nanoDot (Landauer) dosimeters in five different locations on the breast. We also measured skin dose using no bolus, 5mm and 10 mm superflab bolus. In the Eclipse treatment planning system (Varian, Palo Alto, CA) we calculated skin dose for different bolus thicknesses, ranging from 0 to 10 mm, in order to evaluate which calculation best matches the brass mesh measurements,more » as the brass mesh cannot be simulated due to artefacts.Finally, we measured depth dose behavior with the brass mesh bolus to verify that the bolus does not affect the dose to the breast itself beyond the build-up region. Results: Mosfet and nanoDot measurements were consistent with each other.As expected, skin dose measurements with no bolus had the least agreement with Eclipse calculation, while measurements for 5 and 10 mm agreed well with the calculation despite the difficulty in conforming superflab bolus to the breast contour. For the brass mesh the best agreement was for 3 mm bolus Eclipse calculation. For Mosfets, the average measurement was 90.8% of the expected dose, and for nanoDots 88.33% compared to 83.34%, 88.64% and 93.94% (2,3 and 5 mm bolus calculation respectively).The brass mesh bolus increased skin dose by approximately 25% but there was no dose increase beyond the build-up region. Conclusion: Brass mesh bolus is most equivalent to a 3 mm bolus, and does not affect the dose beyond the build-up region. The brass mesh cannot be directly calculated in Eclipse, hence a 3mm bolus calculation is a good reflection of the dose response to the brass mesh bolus.« less
Is Dose Deformation–Invariance Hypothesis Verified in Prostate IGRT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Antoine, E-mail: antoine.simon@univ-rennes1.fr; Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, 35000 Rennes; Le Maitre, Amandine
Purpose: To assess dose uncertainties resulting from the dose deformation–invariance hypothesis in prostate cone beam computed tomography (CT)–based image guided radiation therapy (IGRT), namely to evaluate whether rigidly propagated planned dose distribution enables good estimation of fraction dose distributions. Methods and Materials: Twenty patients underwent a CT scan for planning intensity modulated radiation therapy–IGRT delivering 80 Gy to the prostate, followed by weekly CT scans. Two methods were used to obtain the dose distributions on the weekly CT scans: (1) recalculating the dose using the original treatment plan; and (2) rigidly propagating the planned dose distribution. The cumulative doses were then estimatedmore » in the organs at risk for each dose distribution by deformable image registration. The differences between recalculated and propagated doses were finally calculated for the fraction and the cumulative dose distributions, by use of per-voxel and dose-volume histogram (DVH) metrics. Results: For the fraction dose, the mean per-voxel absolute dose difference was <1 Gy for 98% and 95% of the fractions for the rectum and bladder, respectively. The maximum dose difference within 1 voxel reached, however, 7.4 Gy in the bladder and 8.0 Gy in the rectum. The mean dose differences were correlated with gas volume for the rectum and patient external contour variations for the bladder. The mean absolute differences for the considered volume receiving greater than or equal to dose x (V{sub x}) of the DVH were between 0.37% and 0.70% for the rectum and between 0.53% and 1.22% for the bladder. For the cumulative dose, the mean differences in the DVH were between 0.23% and 1.11% for the rectum and between 0.55% and 1.66% for the bladder. The largest dose difference was 6.86%, for bladder V{sub 80Gy}. The mean dose differences were <1.1 Gy for the rectum and <1 Gy for the bladder. Conclusions: The deformation–invariance hypothesis was corroborated for the organs at risk in prostate IGRT except in cases of a large disappearance or appearance of rectal gas for the rectum and large external contour variations for the bladder.« less
Jaberi, Ramin; Aghamiri, Mahmoud Reza; Kirisits, Christian; Ghaderi, Reza
2017-01-01
Purpose Intra-fractional organs at risk (OARs) deformations can lead to dose variation during image-guided adaptive brachytherapy (IGABT). The aim of this study was to modify the final accepted brachytherapy treatment plan to dosimetrically compensate for these intra-fractional organs-applicators position variations and, at the same time, fulfilling the dosimetric criteria. Material and methods Thirty patients with locally advanced cervical cancer, after external beam radiotherapy (EBRT) of 45-50 Gy over five to six weeks with concomitant weekly chemotherapy, and qualified for intracavitary high-dose-rate (HDR) brachytherapy with tandem-ovoid applicators were selected for this study. Second computed tomography scan was done for each patient after finishing brachytherapy treatment with applicators in situ. Artificial neural networks (ANNs) based models were used to predict intra-fractional OARs dose-volume histogram parameters variations and propose a new final plan. Results A model was developed to estimate the intra-fractional organs dose variations during gynaecological intracavitary brachytherapy. Also, ANNs were used to modify the final brachytherapy treatment plan to compensate dosimetrically for changes in ‘organs-applicators’, while maintaining target dose at the original level. Conclusions There are semi-automatic and fast responding models that can be used in the routine clinical workflow to reduce individually IGABT uncertainties. These models can be more validated by more patients’ plans to be able to serve as a clinical tool. PMID:29441094
Estimating organ doses from tube current modulated CT examinations using a generalized linear model.
Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F
2017-04-01
Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.
Evaluation of the dosimetric properties of a diode detector for small field proton radiosurgery
Teran, Anthony V.; Slater, Jerry D.; Slater, James M.; Wroe, Andrew J.
2015-01-01
The small fields and sharp gradients typically encountered in proton radiosurgery require high spatial resolution dosimetric measurements, especially below 1–2 cm diameters. Radiochromic film provides high resolution, but requires postprocessing and special handling. Promising alternatives are diode detectors with small sensitive volumes (SV) that are capable of high resolution and real‐time dose acquisition. In this study we evaluated the PTW PR60020 proton dosimetry diode using radiation fields and beam energies relevant to radiosurgery applications. Energies of 127 and 157 MeV (9.7 to 15 cm range) and initial diameters of 8, 10, 12, and 20 mm were delivered using single‐stage scattering and four modulations (0, 15, 30, and 60 mm) to a water tank in our treatment room. Depth dose and beam profile data were compared with PTW Markus N23343 ionization chamber, EBT2 Gafchromic film, and Monte Carlo simulations. Transverse dose profiles were measured using the diode in "edge‐on" orientation or EBT2 film. Diode response was linear with respect to dose, uniform with dose rate, and showed an orientation‐dependent (i.e., beam parallel to, or perpendicular to, detector axis) response of less than 1%. Diode vs. Markus depth‐dose profiles, as well as Markus relative dose ratio vs. simulated dose‐weighted average lineal energy plots, suggest that any LET‐dependent diode response is negligible from particle entrance up to the very distal portion of the SOBP for the energies tested. Finally, while not possible with the ionization chamber due to partial volume effects, accurate diode depth‐dose measurements of 8, 10, and 12 mm diameter beams were obtained compared to Monte Carlo simulations. Because of the small SV that allows measurements without partial volume effects and the capability of submillimeter resolution (in edge‐on orientation) that is crucial for small fields and high‐dose gradients (e.g., penumbra, distal edge), as well as negligible LET dependence over nearly the full the SOBP, the PTW proton diode proved to be a useful high‐resolution, real‐time metrology device for small proton field radiation measurements such as would be encountered in radiosurgery applications. PACS numbers: 87.56.‐v, 87.56.jf, 87.56.Fc PMID:26699554
Gallagher, Katherine E; Howard, Natasha; Kabakama, Severin; Mounier-Jack, Sandra; Burchett, Helen E D; LaMontagne, D Scott; Watson-Jones, Deborah
2017-12-01
Since 2007, HPV vaccine has been available to low and middle income countries (LAMIC) for small-scale 'demonstration projects', or national programmes. We analysed coverage achieved in HPV vaccine demonstration projects and national programmes that had completed at least 6 months of implementation between January 2007-2016. A mapping exercise identified 45 LAMICs with HPV vaccine delivery experience. Estimates of coverage and factors influencing coverage were obtained from 56 key informant interviews, a systematic published literature search of 5 databases that identified 61 relevant full texts and 188 solicited unpublished documents, including coverage surveys. Coverage achievements were analysed descriptively against country or project/programme characteristics. Heterogeneity in data, funder requirements, and project/programme design precluded multivariate analysis. Estimates of uptake, schedule completion rates and/or final dose coverage were available from 41 of 45 LAMICs included in the study. Only 17 estimates from 13 countries were from coverage surveys, most were administrative data. Final dose coverage estimates were all over 50% with most between 70% and 90%, and showed no trend over time. The majority of delivery strategies included schools as a vaccination venue. In countries with school enrolment rates below 90%, inclusion of strategies to reach out-of-school girls contributed to obtaining high coverage compared to school-only strategies. There was no correlation between final dose coverage and estimated recurrent financial costs of delivery from cost analyses. Coverage achieved during joint delivery of HPV vaccine combined with another intervention was variable with little/no evaluation of the correlates of success. This is the most comprehensive descriptive analysis of HPV vaccine coverage in LAMICs to date. It is possible to deliver HPV vaccine with excellent coverage in LAMICs. Further good quality data are needed from health facility based delivery strategies and national programmes to aid policymakers to effectively and sustainably scale-up HPV vaccination. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans
The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
Microbial decontamination of cosmetic raw materials and personal care products by irradiation
NASA Astrophysics Data System (ADS)
Katušin-Ražem, Branka; Mihaljević, Branka; Ražem, Dušan
2003-03-01
Typical levels of sporadically occurring (dynamic) microbial contamination of cosmetic raw materials: pigments, abrasives and liposomes, as well as of final products for personal care: toothpaste, crayons, shampoos, cleansers and creams, were evaluated. In most cases the contamination was dominated by a single population of microorganisms, either Gram-negative bacteria or molds. The feasibility of microbial decontamination by irradiation was studied by determining the resistance to gamma radiation of contaminating microflora in situ. It was expressed as a dose required for the first 90% reduction, D first 90% red . The values in the range 1-2 kGy for molds and 0.1-0.6 kGy for Gram-negative bacteria were obtained. This relatively high susceptibility to irradiation allowed inactivation factors close to 6 to be achieved with doses generally not exceeding 3 kGy, and yielding endpoint contamination less than 10/g.
Recent Developments in Computed Tomography for Urolithiasis: Diagnosis and Characterization
Mc Laughlin, P. D.; Crush, L.; Maher, M. M.; O'Connor, O. J.
2012-01-01
Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT) and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago) while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi. PMID:22952473
Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daila S. Gridley, PhD
2012-03-30
FINAL TECHNICAL REPORT Supported by the Low Dose Radiation Research Program, Office of Science U.S. Department of Energy Grant No. DE-FG02-07ER64345 Project ID: 0012965 Award Register#: ER64345 Project Manager: Noelle F. Metting, Sc.D. Phone: 301-903-8309 Division SC-23.2 noelle.metting@science.doe.gov Submitted March 2012 To: https://www.osti.gov/elink/241.3.jsp Title: Th Cell Gene Expression and Function in Response to Low Dose and Acute Radiation PI: Daila S. Gridley, Ph.D. Human low dose radiation data have been derived primarily from studies of space and airline flight personnel, nuclear plant workers and others exposed occupationally, as well as victims in the vicinity of atomic bomb explosions. The findingsmore » remain inconclusive due to population inconsistencies and complex interactions among total dose, dose rate, radiation quality and age at exposure. Thus, safe limits for low dose occupational irradiation are currently based on data obtained with doses far exceeding the levels expected for the general population and health risks have been largely extrapolated using the linear-nonthreshold dose-response model. The overall working hypothesis of the present study is that priming with low dose, low-linear energy transfer (LET) radiation can ameliorate the response to acute high-dose radiation exposure. We also propose that the efficacy of low-dose induced protection will be dependent upon the form and regimen of the high-dose exposure: photons versus protons versus simulated solar particle event protons (sSPE). The emphasis has been on gene expression and function of CD4+ T helper (Th) lymphocytes harvested from spleens of whole-body irradiated C57BL/6 mice, a strain that provides the genetic background for many genetically engineered strains. Evaluations of the responses of other selected cells, tissues such as skin, and organs such as lung, liver and brain were also initiated (partially funded by other sources). The long-term goal is to provide information that will be useful in estimating human health risks due to radiation that may occur during exposures in the work environment, nuclear/radiological catastrophes, as well as radiotherapy. Several papers have been published, accepted for publication or are in preparation. A number of poster and oral presentations have been made at scientific conferences and workshops. Archived tissues of various types will continue to be evaluated via funding from other sources (the DoE Low Dose Radiation Research Program, Office of Science and this specific grant will be appropriately included in the Acknowledgements of all subsequent publications/presentations). A post-doc and several students have participated in this study. More detailed description of the accomplishments is described in attached file.« less
Refractive Errors and Concomitant Strabismus: A Systematic Review and Meta-analysis.
Tang, Shu Min; Chan, Rachel Y T; Bin Lin, Shi; Rong, Shi Song; Lau, Henry H W; Lau, Winnie W Y; Yip, Wilson W K; Chen, Li Jia; Ko, Simon T C; Yam, Jason C S
2016-10-12
This systematic review and meta-analysis is to evaluate the risk of development of concomitant strabismus due to refractive errors. Eligible studies published from 1946 to April 1, 2016 were identified from MEDLINE and EMBASE that evaluated any kinds of refractive errors (myopia, hyperopia, astigmatism and anisometropia) as an independent factor for concomitant exotropia and concomitant esotropia. Totally 5065 published records were retrieved for screening, 157 of them eligible for detailed evaluation. Finally 7 population-based studies involving 23,541 study subjects met our criteria for meta-analysis. The combined OR showed that myopia was a risk factor for exotropia (OR: 5.23, P = 0.0001). We found hyperopia had a dose-related effect for esotropia (OR for a spherical equivalent [SE] of 2-3 diopters [D]: 10.16, P = 0.01; OR for an SE of 3-4D: 17.83, P < 0.0001; OR for an SE of 4-5D: 41.01, P < 0.0001; OR for an SE of ≥5D: 162.68, P < 0.0001). Sensitivity analysis indicated our results were robust. Results of this study confirmed myopia as a risk for concomitant exotropia and identified a dose-related effect for hyperopia as a risk of concomitant esotropia.
Refractive Errors and Concomitant Strabismus: A Systematic Review and Meta-analysis
Tang, Shu Min; Chan, Rachel Y. T.; Bin Lin, Shi; Rong, Shi Song; Lau, Henry H. W.; Lau, Winnie W. Y.; Yip, Wilson W. K.; Chen, Li Jia; Ko, Simon T. C.; Yam, Jason C. S.
2016-01-01
This systematic review and meta-analysis is to evaluate the risk of development of concomitant strabismus due to refractive errors. Eligible studies published from 1946 to April 1, 2016 were identified from MEDLINE and EMBASE that evaluated any kinds of refractive errors (myopia, hyperopia, astigmatism and anisometropia) as an independent factor for concomitant exotropia and concomitant esotropia. Totally 5065 published records were retrieved for screening, 157 of them eligible for detailed evaluation. Finally 7 population-based studies involving 23,541 study subjects met our criteria for meta-analysis. The combined OR showed that myopia was a risk factor for exotropia (OR: 5.23, P = 0.0001). We found hyperopia had a dose-related effect for esotropia (OR for a spherical equivalent [SE] of 2–3 diopters [D]: 10.16, P = 0.01; OR for an SE of 3-4D: 17.83, P < 0.0001; OR for an SE of 4-5D: 41.01, P < 0.0001; OR for an SE of ≥5D: 162.68, P < 0.0001). Sensitivity analysis indicated our results were robust. Results of this study confirmed myopia as a risk for concomitant exotropia and identified a dose-related effect for hyperopia as a risk of concomitant esotropia. PMID:27731389
Gervaise, A; Esperabe-Vignau, F; Pernin, M; Naulet, P; Portron, Y; Lapierre-Combes, M
2011-01-01
To evaluate the knowledge of physicians prescribing CT examinations on the radiation protection of patients. A questionnaire was distributed to all clinicians on medical staff who prescribe CT examinations. Several questions related to their prescription pattern and their knowledge of radiation protection. Forty-four questionnaires were analyzed. While 70% of physicians claimed that they considered the risks from exposure to ionizing radiation when prescribing a CT examination, only 25% informed their patients about those risks. Knowledge of the radiation dose delivered during CT evaluation of the abdomen and pelvis was poorly understood and the risks related to small doses of radiation were grossly underestimated. Finally, only a third of clinicians had received training with regards to radiation protection. While most clinicians claim that they consider the risks from exposure to ionizing radiation when prescribing a CT examination, the risks are either not well known or not known at all. Increased formation of clinicians with regards to the radiation protection of patients, maybe through a dedicated clinical rotation while in medical school, could be a solution to improve the knowledge of hospital clinicians with regards to radiation protection. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.
Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress?
Mosna, Federico; Capelli, Debora; Gottardi, Michele
2017-01-01
Minimal residual disease evaluation refers to a series of molecular and immunophenotypical techniques aimed at detecting submicroscopic disease after therapy. As such, its application in acute myeloid leukemia has greatly increased our ability to quantify treatment response, and to determine the chemosensitivity of the disease, as the final product of the drug schedule, dose intensity, biodistribution, and the pharmakogenetic profile of the patient. There is now consistent evidence for the prognostic power of minimal residual disease evaluation in acute myeloid leukemia, which is complementary to the baseline prognostic assessment of the disease. The focus for its use is therefore shifting to individualize treatment based on a deeper evaluation of chemosensitivity and residual tumor burden. In this review, we will summarize the results of the major clinical studies evaluating minimal residual disease in acute myeloid leukemia in adults in recent years and address the technical and practical issues still hampering the spread of these techniques outside controlled clinical trials. We will also briefly speculate on future developments and offer our point of view, and a word of caution, on the present use of minimal residual disease measurements in “real-life” practice. Still, as final standardization and diffusion of the methods are sorted out, we believe that minimal residual disease will soon become the new standard for evaluating response in the treatment of acute myeloid leukemia. PMID:28587190
Effects of corticosteroids on hyposmia in persistent allergic rhinitis
CATANA, IULIU V.; CHIRILA, MAGDALENA; NEGOIAS, SIMONA; BOLOGA, RAMONA; COSGAREA, MARCEL
2013-01-01
Objective To asses the effects of two topical nasal corticosteroids sprays on hyposmia in patients with persistent allergic rhinitis. Material and Methods The study was a prospective clinical trial and it included twenty four patients with persistent allergic rhinitis (PER) and hyposmia (H). The patients were divided into two groups depending on the type of corticosteroid topical nasal spray treatment: group A, 200 micrograms dose of mometasone furoate (MF) and group B, 110 micrograms dose of fluticasone furoate (FF) both administered in the morning for 4 weeks. The olfactory function of the patients was evaluated with the extended Test battery „Sniffin’ Sticks”. The visual analogue scale (VAS) was used for the assessment of hyposmia, nasal discharge. The level of the nasal obstruction, before and after the treatment, was evaluated through the anterior rhinomanometry. Results The comparisons between the two types of topical corticosteroids showed a significant improvement separately between scores of the odor threshold (OT), odor discrimination (OD) and odor identification (OI) and also on the final olfactory score (SDI) before and after 4 weeks of the treatment. The comparisons of the VAS scores pre and post treatment showed a significant improvement in hyposmia and nasal obstruction. The nasal airflow and the nasal discharge scores were improved, but the differences were not statistically significant between the groups. The final statistical analysis found no significant differences between the two patients groups. Conclusion The study concludes that fluticasone furoate and mometasone furoate have quite the same effects on hyposmia and on the classical symptoms from PER. PMID:26527931
Sulfonamides as Inhibitors of Leishmania – Potential New Treatments for Leishmaniasis
Katinas, Jade; Epplin, Rachel; Hamaker, Christopher; Jones, Marjorie A.
2017-01-01
Introduction: Leishmaniasis is an endemic disease caused by the protozoan parasite Leishmania. Current treatments for the parasite are limited by cost, availability and drug resistance as the occurrence of leishmaniasis continues to be more prevalent. Sulfonamides are a class of compounds with medicinal properties which have been used to treat bacterial and parasitic disease via various pathways especially as antimetabolites for folic acid. Methods: New derivatives of sulfonamide compounds were assessed for their impact on Leishmania cell viability and potential pathways for inhibition were evaluated. Leishmania tarentolae (ATCC Strain 30143) axenic promastigote cells were grown in brain heart infusion (BHI) medium and treated with varying concentrations of the new sulfonamide compounds. Light microscopy and viability tests were used to assess the cells with and without treatment. Discussion: A non-water soluble sulfonamide was determined to have 90-96% viability inhibition 24 hours after treatment with 100 µM final concentration. Because Leishmania are also autotrophs for folate precursors, the folic acid pathway was identified as a target for sulfonamide inhibition. When folic acid was added to untreated Leishmania, cell proliferation increased. A water soluble derivative of the inhibitory sulfonamide was synthesized and evaluated, resulting in less viability inhibition with a single dose (approximately 70% viability inhibition after 24 hours with 100 µM final concentration), but additive inhibition with multiple doses of the compound. Results: However, the potential mechanism of inhibition was different between the water-soluble and non-water soluble sulfonamides. The inhibitory effects and potential pathways of inhibition indicate that these compounds may be new treatments for this disease. PMID:29399442
Adaptive intensity modulated radiotherapy for advanced prostate cancer
NASA Astrophysics Data System (ADS)
Ludlum, Erica Marie
The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of adjusting patient position, adjusting the multileaf collimator (MLC) leaves associated with the prostate in each segment significantly improves lymph node dose coverage (maintains 45 Gy compared to 42.7, 38.3, and 34.0 Gy for iso-shifts of 0.5, 1 and 1.5 cm). Altering the MLC portal shape is demonstrated as a new and effective solution to independent prostate movement during concurrent treatment.
Drinking-water-criteria document for phthalic acid esters (PAES). Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-08-01
The document provides the health effects basis to be considered in establishing the MCLG. To achieve the objective, data on pharmacokinetics human exposure, acute and chronic toxicity to animals and humans, epidemiology and mechanisms of toxicity are evaluated for phthalic acid esters. Specific emphasis is placed on literature data providing dose-response information. Thus, while the literature search and evaluation performed in support of the document has been comprehensive, only the reports considered most pertinent in the derivation of the MCLG are cited in the document. The comprehensive literature data base in support of the document includes information published up tomore » 1986; however, more recent data may have been added during the review process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayana, V; McLaughlin, P; University of Michigan, Ann Arbor, MI
2015-06-15
Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients weremore » set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.« less
Al-Khalidi, Banaz; Chiu, Winnie; Rousseau, Dérick; Vieth, Reinhold
2015-09-01
To assess the bioavailability and safety of vitamin D3 from fortified mozzarella cheese baked on pizza. In a randomized, double-blind trial, 96 apparently healthy, ethnically diverse adults were randomized to consume 200 IU or 28 000 IU vitamin D3 fortified mozzarella cheese with pizza once weekly for a total of 8 weeks. Blood and urine samples were collected at baseline (week 1) and final (week 10) visits for serum 25-hydroxyvitamin D and other biochemical measures. The primary outcome compared serum 25-hydroxyvitamin D between groups at 10 weeks. The secondary outcome evaluated the safety of vitamin D dosing protocol as measured by serum and urine calcium, phosphate, creatinine, and serum parathyroid hormone (PTH). Serum 25-hydroxyvitamin D increased by 5.1 ± 11 nmol/L in the low-dose group (n = 47; P = 0.003), and by 73 ± 22 nmol/L in the high-dose group (n = 49; P < 0.0001). None of the subjects in either group developed any adverse events during the supplementation protocol. Serum PTH significantly decreased in the high-dose group only (P < 0.05). Vitamin D3 is safe and bioavailable from fortified mozzarella cheese baked on pizza.
Mazindol: anorectic and behavioral effects in female rats.
Mattei, R; Carlini, E A
1995-01-01
The anorectic and behavioral effects of mazindol (2.5, 5 and 10 mg/kg) were determined. The experiments comprized acute and chronic administration to female rats, and the effects were compared with those produced by 2.5 mg/kg of methamphetamine. The following evaluation parameters were considered: food intake, body weight, motor activity, and stereotyped behavior. Acute administration of the three doses of mazindol, as well as of the methamphetamine dose, decreased food intake. Administered chronically to female rats, mazindol (5 and 10 mg/kg) and methamphetamine induced loss of body weight during the first fifteen days. However, weight was subsequently regained by the animals, indicating development of tolerance. Mazindol (10 mg/kg) and methamphetamine produced an increase in motor activity. This increase was, however, not observed after chronic treatment, suggesting development of tolerance. Additionally, mazindol induced noticeable dose-dependent effects, involving stereotyped behavior (sniffing, continuous licking, false bites), similar to those produced by methamphetamine. Verticalization, however, was only observed after administration of 2.5 and 5 mg/kg of mazindol, and was absent after administration of the higher dose of mazindol as well as of methamphetamine. Finally, it should be stressed that features of stereotyped behavior induced by both drugs, such as licking, false bites, sniffing and verticalization, were very similar.
Tun, Thein; Tint, Hla Soe; Lin, Khin; Kyaw, Thar Tun; Myint, Moe Kyaw; Khaing, Win; Tun, Zaw Win
2009-09-01
All artemisinin-based combination therapies (ACTs), recommended by the World Health Organization, are 3-day regimens. A considerable level of non-compliance on ACTs has been reported from some countries. The study aimed to assess the therapeutic efficacy of single dose treatment with new generation ACT containing artemisinin plus naphthoquine. An oral single dose of eight tablets (400 mg of naphthoquine+1000 mg artemisinin) of the combination drug was administered to adult uncomplicated falciparum malaria patients. Observations of fever, parasite clearance and reappearance, and other clinical manifestations were made on Days 0, 1, 2, 3, 7, 14, 21 and 28. Fifty-three adult falciparum positive cases, with fever or history of fever within the previous 24 h, were included in the final evaluation of the study. Mean fever clearance time, parasite clearance time were 18.2+/-8.6 h and 34.6+/-14.3 h, respectively. Adequate clinical and parasitological response was achieved in 52 cases, the rate being 98.1% (95% CI, 91.1-99.9). One patient was classified as late parasitological failure because of the reappearance of falciparum parasite on Day 14. The drug was well tolerated and no adverse reactions were detected in the patients. Since it is a single dose therapy, health workers can administer the drug as directly observed treatment.
[Clinical evaluation of heavy-particle radiotherapy using dose volume histogram (DVH)].
Terahara, A; Nakano, T; Tsujii, H
1998-01-01
Radiotherapy with heavy particles such as proton and heavy-charged particles is a promising modality for treatment of localized malignant tumors because of the good dose distribution. A dose calculation and radiotherapy planning system which is essential for this kind of treatment has been developed in recent years. It has the capability to compute the dose volume histogram (DVH) which contains dose-volume information for the target volume and other interesting volumes. Recently, DVH is commonly used to evaluate and compare dose distributions in radiotherapy with both photon and heavy particles, and it shows that a superior dose distribution is obtained in heavy particle radiotherapy. DVH is also utilized for the evaluation of dose distribution related to clinical outcomes. Besides models such as normal tissue complication probability (NTCP) and tumor control probability (TCP), which can be calculated from DVH are proposed by several authors, they are applied to evaluate dose distributions themselves and to evaluate them in relation to clinical results. DVH is now a useful and important tool, but further studies are needed to use DVH and these models practically for clinical evaluation of heavy-particle radiotherapy.
Chanard, Jacques; Lavaud, Sylvie; Maheut, Hervé; Kazes, Isabelle; Vitry, Fabien; Rieu, Philippe
2008-06-01
The AN69 ST haemodialysis membrane, a new membrane resulting from coating polyethyleneimine upon the polyacrylonitrile surface, binds heparin. In patients at risk of bleeding, a pilot study has demonstrated the efficient anticoagulant effect of this heparin-coated membrane. Study design. In chronic haemodialyzed patients, we evaluated whether this anticoagulant effect can be validated in a controlled, prospective, open study. Pragmatically, we tested the hypothesis of no difference of the massive clotting rate in two groups of patients haemodialyzed either with 50% reduced standard doses of nonfractionated heparin using the heparin-coated AN69 ST or with a full dose of heparin (100%) using another type of dialysis membrane that does not bind heparin. Secondary objectives included evaluation of partial clotting, changes in haemoglobin levels, erythropoietin consumption and dialyzer performances. One hundred and eighty-four patients were elected and 170 finally included in an 18-month follow-up study. They were allocated to one of the two arms of the study. In the heparin-reduced group (n = 85, mean age: 73 +/- 11 years), 12 472 sessions were performed after priming the AN69 ST dialyzer with 2 L of heparinized saline (5000 IU/L heparin) and using 50% reduced doses of previously administered heparin. In the control group with standard heparin (n = 85, mean age: 74 +/- 13 years), 14 154 sessions were analysed (NS), and mean heparin doses were 2718 +/- 1388 and 4800 +/- 1564 IU per session, respectively (P < 0.001). In the heparin-reduced group, massive clotting occurred in 1.4 per 1000 sessions, whereas it occurred in 1.6 per 1000 sessions in the standard heparin group (P < 0.05). Mild to moderate partial clotting in the venous drip chamber and in the dialyzer was evaluated in a subset of patients, on a visual scale. It was more frequent in the experimental group than in the control group (P < 0.001). Platelets, haemoglobin levels, erythropoietin needs and dialyzer performances remained unchanged in both groups. The global mean death rate was 16.8% per year and did not differ significantly between groups. The use of the heparin-coated AN69 ST membrane allows a 50% reduction of standard doses of nonfractionated heparin administration for routine haemo- dialysis without increasing the risk of massive clotting of the extracorporeal circuit. This result needs confirmation since massive clotting questions clinical practice and is team dependent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Mark S.; Posner, Marshall; Jones, Christopher Uwe
Purpose: To study the efficacy and safety of cevimeline in two double-blind trials (Studies 003 and 004) enrolling patients with head and neck cancer in whom xerostomia developed after radiotherapy. Methods and Materials: Subjects were randomly assigned to receive cevimeline, 30 mg three times daily, or placebo for 12 weeks, with the possibility of dose escalation to 45 mg three times daily at 6 weeks. The primary efficacy endpoint was the patient's final global evaluation of oral dryness; change in unstimulated salivary flow was a secondary endpoint. Results: Five hundred seventy subjects (284 in Study 003 and 286 in Studymore » 004) were randomized. Significantly more cevimeline-treated subjects than placebo recipients (47.4% vs. 33.3%, p = 0.0162) in Study 003 reported improvement in dry mouth in the final global evaluation of oral dryness. No significant difference between groups in the final global evaluation was seen in Study 004, in which a high placebo response rate of 47.6% was observed. In both studies, cevimeline-treated subjects had significantly greater increases in the objective measure of unstimulated salivary flow than placebo recipients (p 0.0093 [Study 003] and p = 0.0215 [Study 004]), whereas no significant differences in stimulated salivary flow were observed. The most frequent adverse event was increased sweating. Conclusion: Cevimeline was well tolerated by patients with xerostomia after radiotherapy for head and neck cancer, and oral administration of 30-45 mg of cevimeline three times daily increased unstimulated salivary flow.« less
Cevimeline for the treatment of postirradiation xerostomia in patients with head and neck cancer.
Chambers, Mark S; Posner, Marshall; Jones, Christopher Uwe; Biel, Merrill A; Hodge, Kenneth M; Vitti, Robert; Armstrong, Ingrid; Yen, Cindy; Weber, Randal S
2007-07-15
To study the efficacy and safety of cevimeline in two double-blind trials (Studies 003 and 004) enrolling patients with head and neck cancer in whom xerostomia developed after radiotherapy. Subjects were randomly assigned to receive cevimeline, 30 mg three times daily, or placebo for 12 weeks, with the possibility of dose escalation to 45 mg three times daily at 6 weeks. The primary efficacy endpoint was the patient's final global evaluation of oral dryness; change in unstimulated salivary flow was a secondary endpoint. Five hundred seventy subjects (284 in Study 003 and 286 in Study 004) were randomized. Significantly more cevimeline-treated subjects than placebo recipients (47.4% vs. 33.3%, p = 0.0162) in Study 003 reported improvement in dry mouth in the final global evaluation of oral dryness. No significant difference between groups in the final global evaluation was seen in Study 004, in which a high placebo response rate of 47.6% was observed. In both studies, cevimeline-treated subjects had significantly greater increases in the objective measure of unstimulated salivary flow than placebo recipients (p = 0.0093 [Study 003] and p = 0.0215 [Study 004]), whereas no significant differences in stimulated salivary flow were observed. The most frequent adverse event was increased sweating. Cevimeline was well tolerated by patients with xerostomia after radiotherapy for head and neck cancer, and oral administration of 30-45 mg of cevimeline three times daily increased unstimulated salivary flow.
Gabús, R; Magariños, A; Zamora, M; De Lisa, E; Landoni, A I; Martínez, G; Canessa, C; Giordano, H; Bodega, E
1999-08-01
Our main goal was to evaluate the CD34+ dose in patients undergoing haemotopoietic stem celltransplantation and its results in terms of recovery of neutrophile and platelet counts, transfusion requirements, days of fever, antibiotic requirements and length of hospital stay. We studied 38 consecutive patients with haematological malignancies transplanted at our Department, from Feb. 96 through Sept. 98. The CD34+ cell quantification technique was standardized, using a modification of the ISAGHE 96 protocol. Patients were sorted into three groups according to the CD34+ count administered: a) between 3 and 5 x 10(6) cells/kg; b) between 5 and 10 x 10(6) cells/kg; c) > 10 x 10(6) CD34+ cells/kg. As a secondary end point, results were assessed according to the number of aphereses required to arrive at the target count of CD34+, separating those patients that required only 1 or 2 aphereses versus those requiring 3 or more. Finally, an analysis was made of the results of transplantation comparing the different sources of stem cells (PBSC versus PBSC + B.M.). The best results were obtained in the group with cells between 3 and 5 x 10(6) CD34+. No statistically significant advantages were found in the group with cells over 5. The supra-optimal dose of more 10 x 10(6) would yield no additional beneficial results, while they can imply a greater infusion of residual tumor cells. The number of aphereses had no impact on engraftment. Results obtained with PBSC transplants were better than those with BM+PBSC in terms of neutrophile and platelet recovery. The number of CD34+ cells remains the main element in stem cell transplantation to evaluate the haematopoietic recovery after engraftment. Minimum and optimum yields remain unclear. Centers should establish their own optimal dose based on local methodologies and outcomes, maximizing costs and benefits.
Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox.
Crump, Ryan; Korom, Maria; Buller, R Mark; Parker, Scott
2017-03-01
Orthopoxviruses continue to pose a significant threat to the population as potential agents of bioterrorism. An intentional release of natural or engineered variola virus (VARV) or monkeypox viruses would cause mortality and morbidity in the target population. To address this, antivirals have been developed and evaluated in animal models of smallpox and monkeypox. One such antiviral, brincidofovir (BCV, previously CMX001), has demonstrated high levels of efficacy against orthopoxviruses in animal models and is currently under clinical evaluation for prevention and treatment of diseases caused by cytomegaloviruses and adenoviruses. In this study we use the mousepox model of smallpox to evaluate the relationship between the magnitude of the infectious virus dose and an efficacious BCV therapy outcome when treatment is initiated concomitant with detection of ectromelia virus viral DNA (vDNA) in mouse buccal swabs. We found that vDNA could be detected in buccal swabs of some, but not all infected mice over a range of challenge doses by day 3 or 4 postexposure, when initiation of BCV treatment was efficacious, suggesting that detection of vDNA in buccal swabs could be used as a trigger to initiate BCV treatment of an entire potentially exposed population. However, buccal swabs of some mice did not become positive until 5 days postexposure, when initiation of BCV therapy failed to protect mice that received high doses of virus. And finally, the data suggest that the therapeutic window for efficacious BCV treatment decreases as the virus infectious dose increases. Extrapolating these findings to VARV, the data suggest that treatment should be initiated as soon as possible after exposure and not rely on a diagnostic tool such as the measurement of vDNA in buccal cavity swabs; however, consideration should be given to the fact that the behavior/disease-course of VARV in humans is different from that of ectromelia virus in the mouse. Copyright © 2016 Elsevier B.V. All rights reserved.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
NASA Astrophysics Data System (ADS)
De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara
2017-07-01
Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.
Interfractional trend analysis of dose differences based on 2D transit portal dosimetry
NASA Astrophysics Data System (ADS)
Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.
2012-10-01
Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of dose delivery differences and that treatment adaptation can be triggered as a result. It provides an important element toward informed decision-making for adaptive radiotherapy.
Faulkner, Paul; Ghahremani, Dara G; Tyndale, Rachel F; Cox, Chelsea M; Kazanjian, Ari S; Paterson, Neil; Lotfipour, Shahrdad; Hellemann, Gerhard S; Petersen, Nicole; Vigil, Celia; London, Edythe D
2017-07-01
The use of cigarettes delivering different nicotine doses allows evaluation of the contribution of nicotine to the smoking experience. We compared responses of 46 young adult smokers to research cigarettes, delivering 0.027, 0.110, 0.231, or 0.763 mg nicotine, and conventional cigarettes. On five separate days, craving, withdrawal, affect, and sustained attention were measured after overnight abstinence and again after smoking. Participants also rated each cigarette, and the nicotine metabolite ratio (NMR) was used to identify participants as normal or slow metabolizers. All cigarettes equally alleviated craving, withdrawal, and negative affect in the whole sample, but normal metabolizers reported greater reductions of craving and withdrawal than slow metabolizers, with dose-dependent effects. Only conventional cigarettes and, to a lesser degree, 0.763-mg nicotine research cigarettes increased sustained attention. Finally, there were no differences between ratings of lower-dose cigarettes, but the 0.763-mg cigarettes and (even more so) conventional cigarettes were rated more favorably than lower-dose cigarettes. The findings indicate that smoking-induced relief of craving and withdrawal reflects primarily non-nicotine effects in slow metabolizers, but depends on nicotine dose in normal metabolizers. By contrast, relief of withdrawal-related attentional deficits and cigarette ratings depend on nicotine dose regardless of metabolizer status. These findings have bearing on the use of reduced-nicotine cigarettes to facilitate smoking cessation and on policy regarding regulation of nicotine content in cigarettes. They suggest that normal and slow nicotine metabolizers would respond differently to nicotine reduction in cigarettes, but that irrespective of metabolizer status, reductions to <0.763 mg/cigarette may contribute to temporary attentional deficits.
Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice
NASA Astrophysics Data System (ADS)
Detombe, Sarah A.; Dunmore-Buyze, Joy; Petrov, Ivailo E.; Drangova, Maria
2012-03-01
Background: Micro-computed tomography offers numerous advantages for small animal imaging, including the ability to monitor the same animals throughout a longitudinal study. However, concerns are often raised regarding the effects of x-ray dose accumulated over the course of the experiment. In this study, we scan C57BL/6 mice multiple times per week for six weeks, to determine the effect of the cumulative dose on pulmonary tissue at the end of the study. Methods/Results: C57BL/6 male mice were split into two groups (irradiated group=10, control group=10). The irradiated group was scanned (80kVp/50mA) each week for 6 weeks; the weekly scan session had three scans. This resulted in a weekly dose of 0.84 Gy, and a total study dose of 5.04 Gy. The control group was scanned on the final week. Scans from weeks 1 and 6 were reconstructed and analyzed: overall, there was no significant difference in lung volume or lung density between the control group and the irradiated group. Similarly, there were no significant differences between the week 1 and week 6 scans in the irradiated group. Histological samples taken from excised lung tissue also showed no evidence of inflammation or fibrosis in the irradiated group. Conclusion: This study demonstrates that a 5 Gy x-ray dose accumulated over six weeks during a longitudinal micro-CT study has no significant effects on the pulmonary tissue of C57BL/6 mice. As a result, the many advantages of micro- CT imaging, including rapid acquisition of high-resolution, isotropic images in free-breathing mice, can be taken advantage of in longitudinal studies without concern for negative dose-related effects.
Tseliou, Eleni; Cheng, Ke; Luthringer, Daniel J.; Ho, Chak-Sum; Takayama, Kentaro; Minamino, Naoto; Dawkins, James F.; Chowdhury, Supurna; Duong, Doan Trang; Seinfeld, Jeffrey; Middleton, Ryan C.; Dharmakumar, Rohan; Li, Debiao; Marbán, Linda; Makkar, Raj R.; Marbán, Eduardo
2014-01-01
Background Epicardial injection of heart-derived cell products is safe and effective post-myocardial infarction (MI), but clinically-translatable transendocardial injection has never been evaluated. We sought to assess the feasibility, safety and efficacy of percutaneous transendocardial injection of heart-derived cells in porcine chronic ischemic cardiomyopathy. Methods and Results We studied a total of 89 minipigs; 63 completed the specified protocols. After NOGA-guided transendocardial injection, we quantified engraftment of escalating doses of allogeneic cardiospheres or cardiosphere-derived cells in minipigs (n = 22) post-MI. Next, a dose-ranging, blinded, randomized, placebo-controlled (“dose optimization”) study of transendocardial injection of the better-engrafting product was performed in infarcted minipigs (n = 16). Finally, the superior product and dose (150 million cardiospheres) were tested in a blinded, randomized, placebo-controlled (“pivotal”) study (n = 22). Contrast-enhanced cardiac MRI revealed that all cardiosphere doses preserved systolic function and attenuated remodeling. The maximum feasible dose (150 million cells) was most effective in reducing scar size, increasing viable myocardium and improving ejection fraction. In the pivotal study, eight weeks post-injection, histopathology demonstrated no excess inflammation, and no myocyte hypertrophy, in treated minipigs versus controls. No alloreactive donor-specific antibodies developed over time. MRI showed reduced scar size, increased viable mass, and attenuation of cardiac dilatation with no effect on ejection fraction in the treated group compared to placebo. Conclusions Dose-optimized injection of allogeneic cardiospheres is safe, decreases scar size, increases viable myocardium, and attenuates cardiac dilatation in porcine chronic ischemic cardiomyopathy. The decreases in scar size, mirrored by increases in viable myocardium, are consistent with therapeutic regeneration. PMID:25460005
Rotllant, David; Ons, Sheila; Carrasco, Javier; Armario, Antonio
2002-08-01
Metyrapone, a 11-beta steroid hydroxylase inhibitor that blocks stress-induced glucocorticoid release, is extensively used to study the physiological and behavioural roles of glucocorticoids. However, there is circumstantial evidence suggesting that metyrapone could act as a pharmacological stressor. Thus, the effects of various doses of metyrapone on two well-characterized stress markers (ACTH and glucose) were studied in male rats. Metyrapone administration, while exerting a modest effect on plasma corticosterone levels, dose-dependently increased plasma ACTH and glucose levels. Using the highest doses previously tested (200 mg/kg) we further observed, as evaluated by fos-like immunoreactivity (FLI), a strong activation of a wide range of brain areas, including the parvocellular region of the hypothalamic paraventricular nucleus (PVNp), the origin of the main ACTH secretagogues. Metyrapone-induced FLI was observed in neocortical and allocortical areas, in several limbic, thalamic and hypothalamic nuclei and, to a lesser extent, in the brainstem. In a final experiment, a dose-response study of metyrapone-induced FLI was carried out focusing on selected brain areas. The study revealed that the paraventricular thalamic nucleus and central amygdala were the areas most sensitive to metyrapone as they responded even to the lowest dose of the drug. Most areas, among them the PVNp, only showed enhanced FLI with the two highest doses, i.e. when it was associated with ACTH and glucose responses. These data suggest that some of the effects of metyrapone could be due to its stressful properties rather than its ability to inhibit glucocorticoid synthesis. The exact mechanisms involved remain to be established.
Cisplatin, Gemcitabine, and Lapatinib as Neoadjuvant Therapy for Muscle-Invasive Bladder Cancer.
Narayan, Vivek; Mamtani, Ronac; Keefe, Stephen; Guzzo, Thomas; Malkowicz, S Bruce; Vaughn, David J
2016-07-01
We sought to investigate the safety and efficacy of gemcitabine, cisplatin, and lapatinib (GCL) as neoadjuvant therapy in patients with muscle-invasive bladder cancer (MIBC) planned for radical cystectomy. Four cycles of GCL were administered as neoadjuvant therapy for patients with MIBC. Although initially designed as a phase II efficacy study with a primary endpoint of pathologic complete response at the time of radical cystectomy, the dose selected for investigation proved excessively toxic. A total of six patients were enrolled. The initial four patients received gemcitabine 1,000 mg/m(2) intravenously on days 1 and 8 and cisplatin 70 mg/m(2) intravenously on day 1 of each 21-day treatment cycle. Lapatinib was administered as 1,000 mg orally daily starting one week prior to the initiation of cycle 1 of gemcitabine and cisplatin (GC) and continuing until the completion of cycle 4 of GC. These initial doses were poorly tolerated, and the final two enrolled patients received a reduced lapatinib dose of 750 mg orally daily. However, reduction of the lapatinib dose did not result in improved tolerance or drug-delivery, and the trial was terminated early due to excessive toxicity. Grade 3/4 toxicities included diarrhea (33%), nausea/vomiting (33%), and thrombocytopenia (33%). The addition of lapatinib to GC as neoadjuvant therapy for MIBC was limited by excessive treatment-related toxicity. These findings highlight the importance of thorough dose-escalation investigation of combination therapies prior to evaluation in the neoadjuvant setting, as well as the limitations of determination of maximum tolerated dose for novel targeted combination regimens.
Long-Term Dose-Dependent Agalsidase Effects on Kidney Histology in Fabry Disease.
Skrunes, Rannveig; Tøndel, Camilla; Leh, Sabine; Larsen, Kristin Kampevold; Houge, Gunnar; Davidsen, Einar Skulstad; Hollak, Carla; van Kuilenburg, André B P; Vaz, Frédéric M; Svarstad, Einar
2017-09-07
Dose-dependent clearing of podocyte globotriaosylceramide has previously been shown in patients with classic Fabry disease treated with enzyme replacement. Our study evaluates the dose-dependent effects of agalsidase therapy in serial kidney biopsies of patients treated for up to 14 years. Twenty patients with classic Fabry disease (12 men) started enzyme replacement therapy at a median age of 21 (range =7-62) years old. Agalsidase- α or - β was prescribed for a median of 9.4 (range =5-14) years. The lower fixed dose group received agalsidase 0.2 mg/kg every other week throughout the follow-up period. The higher dose group received a range of agalsidase doses (0.2-1.0 mg/kg every other week). Dose changes were made due to disease progression, suboptimal effect, or agalsidase- β shortage. Serial kidney biopsies were performed along with clinical assessment and biomarkers and scored according to recommendations from the International Study Group of Fabry Nephropathy. No statistical differences were found in baseline or final GFR or albuminuria. Kidney biopsies showed significant reduction of podocyte globotriaosylceramide in both the lower fixed dose group (-1.39 [SD=1.04]; P =0.004) and the higher dose group (-3.16 [SD=2.39]; P =0.002). Podocyte globotriaosylceramide (Gb3) reduction correlated with cumulative agalsidase dose ( r =0.69; P =0.001). Arterial/arteriolar intima Gb3 cleared significantly in the higher dose group, all seven patients with baseline intimal Gb3 cleared the intima, one patient gained intimal Gb3 inclusions ( P =0.03), and medial Gb3 did not change statistically in either group. Residual plasma globotriaosylsphingosine levels remained higher in the lower fixed dose group (20.1 nmol/L [SD=11.9]) compared with the higher dose group (10.4 nmol/L [SD=8.4]) and correlated with cumulative agalsidase dose in men ( r =0.71; P =0.01). Reduction of podocyte globotriaosylceramide was found in patients with classic Fabry disease treated with long-term agalsidase on different dosing regimens, correlating with cumulative dose. Limited clearing of arterial/arteriolar globotriaosylceramide raises concerns regarding long-term vascular effects of current therapy. Residual plasma globotriaosylsphingosine correlated with cumulative dose in men. Copyright © 2017 by the American Society of Nephrology.
GGEMS-Brachy: GPU GEant4-based Monte Carlo simulation for brachytherapy applications
NASA Astrophysics Data System (ADS)
Lemaréchal, Yannick; Bert, Julien; Falconnet, Claire; Després, Philippe; Valeri, Antoine; Schick, Ulrike; Pradier, Olivier; Garcia, Marie-Paule; Boussion, Nicolas; Visvikis, Dimitris
2015-07-01
In brachytherapy, plans are routinely calculated using the AAPM TG43 formalism which considers the patient as a simple water object. An accurate modeling of the physical processes considering patient heterogeneity using Monte Carlo simulation (MCS) methods is currently too time-consuming and computationally demanding to be routinely used. In this work we implemented and evaluated an accurate and fast MCS on Graphics Processing Units (GPU) for brachytherapy low dose rate (LDR) applications. A previously proposed Geant4 based MCS framework implemented on GPU (GGEMS) was extended to include a hybrid GPU navigator, allowing navigation within voxelized patient specific images and analytically modeled 125I seeds used in LDR brachytherapy. In addition, dose scoring based on track length estimator including uncertainty calculations was incorporated. The implemented GGEMS-brachy platform was validated using a comparison with Geant4 simulations and reference datasets. Finally, a comparative dosimetry study based on the current clinical standard (TG43) and the proposed platform was performed on twelve prostate cancer patients undergoing LDR brachytherapy. Considering patient 3D CT volumes of 400 × 250 × 65 voxels and an average of 58 implanted seeds, the mean patient dosimetry study run time for a 2% dose uncertainty was 9.35 s (≈500 ms 10-6 simulated particles) and 2.5 s when using one and four GPUs, respectively. The performance of the proposed GGEMS-brachy platform allows envisaging the use of Monte Carlo simulation based dosimetry studies in brachytherapy compatible with clinical practice. Although the proposed platform was evaluated for prostate cancer, it is equally applicable to other LDR brachytherapy clinical applications. Future extensions will allow its application in high dose rate brachytherapy applications.
Population pharmacokinetics of abacavir in infants, toddlers and children
Zhao, Wei; Piana, Chiara; Danhof, Meindert; Burger, David; Della Pasqua, Oscar; Jacqz-Aigrain, Evelyne
2013-01-01
Aims To characterize the pharmacokinetics of abacavir in infants, toddlers and children and to assess the influence of covariates on drug disposition across these populations. Methods Abacavir concentration data from three clinical studies in human immunodeficiency virus-infected children (n = 69) were used for model building. The children received either a weight-normalized dose of 16 mg kg−1 day−1 or the World Health Organization recommended dose based on weight bands. A population pharmacokinetic analysis was performed using nonlinear mixed effects modelling VI. The influence of age, gender, bodyweight and formulation was evaluated. The final model was selected according to graphical and statistical criteria. Results A two-compartmental model with first-order absorption and first-order elimination best described the pharmacokinetics of abacavir. Bodyweight was identified as significant covariate influencing the apparent oral clearance and volume of distribution. Predicted steady-state maximal plasma concentration and area under the concentration–time curve from 0 to 12 h of the standard twice daily regimen were 2.5 mg l−1 and 6.1 mg h l−1 for toddlers and infants, and 3.6 mg l−1 and 8.7 mg h l−1 for children, respectively. Model-based predictions showed that equivalent systemic exposure was achieved after once and twice daily dosing regimens. There were no pharmacokinetic differences between the two formulations (tablet and solution). The model demonstrated good predictive performance for dosing prediction in individual patients and, as such, can be used to support therapeutic drug monitoring in conjunction with sparse sampling. Conclusions The disposition of abacavir in children appears to be affected only by differences in size, irrespective of the patient's age. Maturation processes of abacavir metabolism in younger infants should be evaluated in further studies to demonstrate the potential impact of ontogeny. PMID:23126277
NASA Astrophysics Data System (ADS)
Ren, Jiyun; Menon, Geetha; Sloboda, Ron
2013-04-01
Although the Manchester system is still extensively used to prescribe dose in brachytherapy (BT) for locally advanced cervix cancer, many radiation oncology centers are transitioning to 3D image-guided BT, owing to the excellent anatomy definition offered by modern imaging modalities. As automatic dose optimization is highly desirable for 3D image-based BT, this study comparatively evaluates the performance of two optimization methods used in BT treatment planning—Nelder-Mead simplex (NMS) and simulated annealing (SA)—for a cervix BT computer simulation model incorporating a Manchester-style applicator. Eight model cases were constructed based on anatomical structure data (for high risk-clinical target volume (HR-CTV), bladder, rectum and sigmoid) obtained from measurements on fused MR-CT images for BT patients. D90 and V100 for HR-CTV, D2cc for organs at risk (OARs), dose to point A, conformation index and the sum of dwell times within the tandem and ovoids were calculated for optimized treatment plans designed to treat the HR-CTV in a highly conformal manner. Compared to the NMS algorithm, SA was found to be superior as it could perform optimization starting from a range of initial dwell times, while the performance of NMS was strongly dependent on their initial choice. SA-optimized plans also exhibited lower D2cc to OARs, especially the bladder and sigmoid, and reduced tandem dwell times. For cases with smaller HR-CTV having good separation from adjoining OARs, multiple SA-optimized solutions were found which differed markedly from each other and were associated with different choices for initial dwell times. Finally and importantly, the SA method yielded plans with lower dwell time variability compared with the NMS method.
Nachman, Sharon; Zheng, Nan; Acosta, Edward P.; Teppler, Hedy; Homony, Brenda; Graham, Bobbie; Fenton, Terence; Xu, Xia; Wenning, Larissa; Spector, Stephen A.; Frenkel, Lisa M.; Alvero, Carmelita; Worrell, Carol; Handelsman, Edward; Wiznia, Andrew; Moultrie, Harry; Kindra, Gurpreet; Sanders, Margaret Ann; Williams, Ruth; Jensen, Jennifer; Acevedo, Midnela; Fabregas, Lizbeth; Jurgrau, Andrea; Foca, Marc; Higgins, Alice; Deville, Jaime G.; Nielsen-Saines, Karin; Carter, Michele F.; Swetnam, John; Wilson, Joan; Donnelly, Margaret; Akleh, Siham; Rigaud, Mona; Kaul, Aditya; Patel, Nehali; Gaur, Aditya; Utech, L. Jill; Cardoso, Edmundo; Moreira, Ana Maria; Santos, Breno; Bobat, Raziya; Mngqibisa, Rosie; Burey, Marlene; Abadi, Jacob; Rosenberg, Michael; Luzuriaga, Katherine; Picard, Donna; Pagano-Therrien, Jessica; Dittmer, Sylvia; Ndiweni, Hilda Ntatule; Patel, Amisha; DelRey, Michelle; McMullen-Jackson, Chivon; Paul, Mary E.; Melvin, Ann; Venema-Weiss, Corry; Lane, Jenna; Beneri, Christy; Ferraro, Denise; Infanzon, Erin; McAuley, James B; Aziz, Mariam; McNichols, Maureen; Pelton, Stephen; McLaud, Deb; Clarke, Diana; Zeichner, Steven; Akar, Arezou; Thompson, Deidre; Douglas, Steven D.; Rutstein, Richard M.; Vincent, Carol A.; Vachon, Mary Elizabeth; Cavallo, Martha; Purswani, Murli Udharam; Masheto, Gaerolwe; Ogwu, Anthony; Kakhu, Tebogo; Viani, Rolando M.; Darcey, Anita,; Norris, Kimberly; Burchett, Sandra K.; Kneut, Catherine; Karthas, Nancy; Casey, Denise; Emmanuel, Patricia; Lujan-Zilbermann, Jorge; Rana, Sohail; Houston, Patricia; Mengistab, Mulu; Rathore, Mobeen; Mirza, Ayesha; Gayton, Tabetha; Barr, Emily; Dunn, Jennifer; Hahn, Kerry; Eysallenne, Zulma; Howard, F. Sholar; Graham, Kathleen; Negra, Marinella Della; Queiroz, Wladimir; Lian, Yu Ching; Wara, Diane; Ruel, Ted; VanDyke, Russell; Reilly, Patricia; Bradford, Sheila; van Rensburg, Anita Janse; Dobbels, Els; Bester, Marietjie; Bamji, Mahrukh; Paul, Santa; Sarza, Mirala; Kovacs, Andrea; Homans, James; Spencer, LaShonda; Hofer, Cristna; Abreu, Thalita; Oliveira, Ricardo; Joao, Esau C.; Pinto, Jorge; Ferreira, Flavia; Kakehasi, Fabiana; Cervi, Maria Celia; Isaac, Marcia De Lima; Losso, Marcelo H.; Stankievich, Erica; Foradori, Irene; Tucker, Diane; Church, Joseph; Belzer, Marvin; Hopkins, Johns; Ellen, Jonathan; Agwu, Allison; Laurel, Borkovic
2014-01-01
Background. IMPAACT P1066 is a phase I/II open-label multicenter trial to evaluate pharmacokinetics, safety, tolerability, and efficacy of multiple raltegravir formulations in human immunodeficiency virus (HIV)–infected youth. Methods. Dose selection for each cohort (I: 12 to <19 years; II: 6 to <12 years; and III: 2 to <6 years) was based on review of short-term safety (4 weeks) and intensive pharmacokinetic evaluation. Safety data through weeks 24 and 48, and grade ≥3 or serious adverse events (AEs) were assessed. The primary virologic endpoint was achieving HIV RNA <400 copies/mL or ≥1 log10 reduction between baseline and week 24. Results. The targeted pharmacokinetic parameters (AUC0-12h and C12h) were achieved for each cohort, allowing dose selection for 2 formulations. Of 96 final dose subjects, there were 15 subjects with grade 3 or higher clinical AEs (1 subject with drug-related [DR] psychomotor hyperactivity and insomnia); 16 subjects with grade 3 or higher laboratory AEs (1 with DR transaminase elevation); 14 subjects with serious clinical AEs (1 with DR rash); and 1 subjects with serious laboratory AEs (1 with DR transaminase increased). There were no discontinuations due to AEs and no DR deaths. Favorable virologic responses at week 48 were observed in 79.1% of patients, with a mean CD4 increase of 156 cells/µL (4.6%). Conclusions. Raltegravir as a film-coated tablet 400 mg twice daily (6 to <19 years, and ≥25 kg) and chewable tablet 6 mg/kg (maximum dose 300 mg) twice daily (2 to <12 years) was well tolerated and showed favorable virologic and immunologic responses. Clinical Trials Registration NCT00485264. PMID:24145879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mok Tsze Chung, E; Aleman, D; Safigholi, H
Purpose: The effectiveness of using a combination of three sources, {sup 60}Co, {sup 192}Ir and {sup 169}Yb, is analyzed. Different combinations are compared against a single {sup 192}Ir source on prostate cancer cases. A novel inverse planning interior point algorithm is developed in-house to generate the treatment plans. Methods: Thirteen prostate cancer patients are separated into two groups: Group A includes eight patients with the prostate as target volume, while group B consists of four patients with a boost nodule inside the prostate that is assigned 150% of the prescription dose. The mean target volume is 35.7±9.3cc and 30.6±8.5cc formore » groups A and B, respectively. All patients are treated with each source individually, then with paired sources, and finally with all three sources. To compare the results, boost volume V150 and D90, urethra Dmax and D10, and rectum Dmax and V80 are evaluated. For fair comparison, all plans are normalized to a uniform V100=100. Results: Overall, double- and triple-source plans were better than single-source plans. The triple-source plans resulted in an average decrease of 21.7% and 1.5% in urethra Dmax and D10, respectively, and 8.0% and 0.8% in rectum Dmax and V80, respectively, for group A. For group B, boost volume V150 and D90 increased by 4.7% and 3.0%, respectively, while keeping similar dose delivered to the urethra and rectum. {sup 60}Co and {sup 192}Ir produced better plans than their counterparts in the double-source category, whereas {sup 60}Co produced more favorable results than the remaining individual sources. Conclusion: This study demonstrates the potential advantage of using a combination of two or three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. three sources, reflected in dose reduction to organs-at-risk and more conformal dose to the target. Our results show that {sup 60}Co, {sup 192}Ir and {sup 169}Yb produce the best plans when used simultaneously and can thus be an alternative to {sup 192}Ir-only in high-dose-rate prostate brachytherapy.« less
Efficacy and Safety of Doxepin 1 mg, 3 mg, and 6 mg in Adults with Primary Insomnia
Roth, Thomas; Rogowski, Roberta; Hull, Steven; Schwartz, Howard; Koshorek, Gail; Corser, Bruce; Seiden, David; Lankford, Alan
2007-01-01
Study Objectives: To evaluate the efficacy and safety of doxepin 1, 3, and 6 mg in insomnia patients. Design: Adults (18-64 y) with chronic primary insomnia (DSM-IV) were randomly assigned to one of four sequences of 1 mg, 3 mg, and 6 mg of doxepin, and placebo in a crossover study. Treatment periods consisted of 2 polysomnographic assessment nights with a 5-day or 12-day drug-free interval between periods. Efficacy was assessed using polysomnography (PSG) and patient-reported measures. Safety analyses included measures of residual sedation and adverse events. Measurements and Results: Sixty-seven patients were randomized. Wake time during sleep, the a priori defined primary endpoint, was statistically significantly improved at the doxepin 3 mg and 6 mg doses versus placebo. All three doses had statistically significant improvements versus placebo for PSG-defined wake after sleep onset, total sleep time, and overall sleep efficiency (SE). SE in the final third-of-the-night also demonstrated statistically significant improvement at all doses. The doxepin 6 mg dose significantly reduced subjective latency to sleep onset. All three doxepin doses had a safety profile comparable to placebo. There were no statistically significant differences in next-day residual sedation, and sleep architecture was generally clinically preserved. Conclusions: In adults with primary insomnia, doxepin 1 mg, 3 mg, and 6 mg was well-tolerated and produced improvement in objective and subjective sleep maintenance and duration endpoints that persisted into the final hour of the night. The side-effect profile was comparable to placebo, with no reported anticholinergic effects, no memory impairment, and no significant hangover/next-day residual effects. These data demonstrate that doxepin 1 mg, 3 mg, and 6 mg is efficacious in improving the sleep of patients with chronic primary insomnia. Citation: Roth T; Rogowski R; Hull S; Schwartz H; Koshorek G; Corser B; Seiden D. Efficacy and safety of doxepin 1 mg, 3 mg, and 6 mg in adults with primary insomnia. SLEEP 2007;30(11):1555-1561. PMID:18041488
Knijnenburg, S L; Raemaekers, S; van den Berg, H; van Dijk, I W E M; Lieverst, J A; van der Pal, H J; Jaspers, M W M; Caron, H N; Kremer, L C; van Santen, H M
2013-04-01
Our study aimed to evaluate final height in a cohort of Dutch childhood cancer survivors (CCS) and assess possible determinants of final height, including height at diagnosis. We calculated standard deviation scores (SDS) for height at initial cancer diagnosis and height in adulthood in a cohort of 573 CCS. Multivariable regression analyses were carried out to estimate the influence of different determinants on height SDS at follow-up. Overall, survivors had a normal height SDS at cancer diagnosis. However, at follow-up in adulthood, 8.9% had a height ≤-2 SDS. Height SDS at diagnosis was an important determinant for adult height SDS. Children treated with (higher doses of) radiotherapy showed significantly reduced final height SDS. Survivors treated with total body irradiation (TBI) and craniospinal radiation had the greatest loss in height (-1.56 and -1.37 SDS, respectively). Younger age at diagnosis contributed negatively to final height. Height at diagnosis was an important determinant for height SDS at follow-up. Survivors treated with TBI, cranial and craniospinal irradiation should be monitored periodically for adequate linear growth, to enable treatment on time if necessary. For correct interpretation of treatment-related late effects studies in CCS, pre-treatment data should always be included.
Latha, K.; Rammohan, B.; Sunanda, B. P. V.; Maheswari, M. S. Uma; Mohan, Surapaneni Krishna
2015-01-01
Objectives: To evaluate the anxiolytic effect of Coriandrum sativum (CS) aqueous extract in mice. To compare the antianxiety activity of CS against standard drug diazepam (3 mg/kg). Materials and Methods: After obtaining Institutional Animal Ethics Committee approval, Swiss albino mice (18–25 g) of either sex were randomly divided into five groups of six animals each. Dried powder of CS leaves was boiled with distilled water, cooled, filtered, placed on a hotplate for complete evaporation, finally weighed and stored. The control group, test group, and standard drugs group received saline, CS extract (50, 100, and 200 mg/kg), diazepam (3 mg/kg), respectively, by oral feeding. The antianxiety effect was assessed by elevated plus maze (EPM) in mice. Results: In EPM, it implied that CS 50 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) significantly (P < 0.001) increases the number of entries in open arms compared to control. The time spent in open arms also increased in all the doses of CS extract significantly. Conclusion: The current study demonstrates statistically significant dose-dependent antianxiety activity of CS leaves. PMID:26109787
Dose gradient curve: A new tool for evaluating dose gradient
Choi, Young Eun
2018-01-01
Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471
A new topical formulation enhances relative diclofenac bioavailability in healthy male subjects
Brunner, Martin; Davies, David; Martin, Wolfgang; Leuratti, Chiara; Lackner, Edith; Müller, Markus
2011-01-01
AIMS To evaluate the relative plasma and tissue availability of diclofenac after repeated topical administration of a novel diclofenac acid-based delivery system under development (DCF100C). METHODS This was a single-centre, open-label, three-period, crossover clinical trial of five discrete diclofenac formulations. Test preparations comprised two concentrations (1.0% and 2.5%) of DCF100C, with and without menthol and eucalyptus oil (total daily doses of 5 mg and 12.5 mg). Voltaren® Emulgel® gel (1.0%) was the commercially available comparator (total daily dose of 40 mg). Topical application was performed onto the thigh of 20 male healthy subjects for 3 days. Applying a Youden square design, each drug was evaluated in 12 subjects, with each subject receiving three test preparations. Blood sampling and in vivo microdialysis in subcutaneous adipose and skeletal muscle tissues were performed for 10 h after additional final doses on the morning of day 4. RESULTS All four DCF100C formulations demonstrated a three- to fivefold, dose-dependent increase in systemic diclofenac availability compared with Voltaren® Emulgel® and were approximately 30–40 times more effective at facilitating diclofenac penetration through the skin, taking different dose levels into account. Tissue concentrations were low and highly variable. The 2.5% DCF100C formulation without sensory excipients reached the highest tissue concentrations. AUC(0,10 h) was 2.71 times greater than for Voltaren® Emulgel® (90% CI 99.27, 737.46%). Mild erythema at the application site was the most frequent adverse event associated with DCF100C. There were no local symptoms after treatment with the reference formulation. CONCLUSION DCF100C formulations were safe and facilitated greater diclofenac penetration through the skin compared with the commercial comparator. DCF100C represents a promising alternative to oral and topical diclofenac treatments that warrants further development. PMID:21241352
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K W; Hartman-Siantar, C; Easterly, C
2005-10-03
A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.« less
Ataga, Kenneth I; Smith, Wally R; De Castro, Laura M; Swerdlow, Paul; Saunthararajah, Yogen; Castro, Oswaldo; Vichinsky, Elliot; Kutlar, Abdullah; Orringer, Eugene P; Rigdon, Greg C; Stocker, Jonathan W
2008-04-15
Senicapoc, a novel Gardos channel inhibitor, limits solute and water loss, thereby preserving sickle red blood cell (RBC) hydration. Because hemoglobin S polymerization is profoundly influenced by intracellular hemoglobin concentration, senicapoc could improve sickle RBC survival. In a 12-week, multicenter, phase 2, randomized, double-blind, dose-finding study, we evaluated senicapoc's safety and its effect on hemoglobin level and markers of RBC hemolysis in sickle cell anemia patients. The patients were randomized into 3 treatment arms: placebo; low-dose (6 mg/day) senicapoc; and high-dose (10 mg/day) senicapoc. For the primary efficacy end point (change in hemoglobin level from baseline), the mean response to high-dose senicapoc treatment exceeded placebo (6.8 g/L [0.68 g/dL] vs 0.1 g/L [0.01 g/dL], P < .001). Treatment with high-dose senicapoc also produced significant decreases in such secondary end points as percentage of dense RBCs (-2.41 vs -0.08, P < .001); reticulocytes (-4.12 vs -0.46, P < .001); lactate dehydrogenase (-121 U/L vs -15 U/L, P = .002); and indirect bilirubin (-1.18 mg/dL vs 0.12 mg/dL, P < .001). Finally, senicapoc was safe and well tolerated. The increased hemoglobin concentration and concomitant decrease in the total number of reticulocytes and various markers of RBC destruction following senicapoc administration suggests a possible increase in the survival of sickle RBCs. This study is registered at http://clinicaltrials.gov as NCT00040677.
Drapkin, Jefferson; Likourezos, Antonios; Beals, Tyler; Monfort, Ralph; Fromm, Christian; Marshall, John
2018-01-01
Introduction Our objective was to describe dosing, duration, and pre- and post-infusion analgesic administration of continuous intravenous sub-dissociative dose ketamine (SDK) infusion for managing a variety of painful conditions in the emergency department (ED). Methods We conducted a retrospective chart review of patients aged 18 and older presenting to the ED with acute and chronic painful conditions who received continuous SDK infusion in the ED for a period over six years (2010–2016). Primary data analyses included dosing and duration of infusion, rates of pre- and post-infusion analgesic administration, and final diagnoses. Secondary data included pre- and post-infusion pain scores and rates of side effects. Results A total of 104 patients were enrolled in the study. Average dosing of SDK infusion was 11.26 mg/hr, and the mean duration of infusion was 135.87 minutes. There was a 38% increase in patients not requiring post-infusion analgesia. The average decrease in pain score was 5.04. There were 12 reported adverse effects, with nausea being the most prevalent. Conclusion Continuous intravenous SDK infusion has a role in controlling pain of various etiologies in the ED with a potential to reduce the need for co-analgesics or rescue analgesic administration. There is a need for more robust, prospective, randomized trials that will further evaluate the analgesic efficacy and safety of this modality across a wide range of pain syndromes and different age groups in the ED. PMID:29760856
Dougherty, T B; Porche, V H; Thall, P F
2000-04-01
This study investigated the ability of the modified continual reassessment method (MCRM) to determine the maximum tolerated dose of the opioid antagonist nalmefene, which does not reverse analgesia in an acceptable number of postoperative patients receiving epidural fentanyl in 0.075% bupivacaine. In the postanesthetic care unit, patients received a single intravenous dose of 0.25, 0.50, 0.75, or 1.00 microg/kg nalmefene. Reversal of analgesia was defined as an increase in pain score of two or more integers above baseline on a visual analog scale from 0 through 10 after nalmefene administration. Patients were treated in cohorts of one, starting with the lowest dose. The maximum tolerated dose of nalmefene was defined as that dose, among the four studied, with a final mean probability of reversal of anesthesia (PROA) closest to 0.20 (ie., a 20% chance of causing reversal). The modified continual reassessment method is an iterative Bayesian statistical procedure that, in this study, selected the dose for each successive cohort as that having a mean PROA closest to the preselected target PROA of 0.20. The modified continual reassessment method repeatedly updated the PROA of each dose level as successive patients were observed for presence or absence of ROA. After 25 patients, the maximum tolerated dose of nalmefene was selected as 0.50 microg/kg (final mean PROA = 0.18). The 1.00-microg/kg dose was never tried because its projected PROA was far above 0.20. The modified continual reassessment method facilitated determination of the maximum tolerated dose ofnalmefene . Operating characteristics of the modified continual reassessment method suggest it may be an effective statistical tool for dose-finding in trials of selected analgesic or anesthetic agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna
2014-09-15
Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90) agreeing within ±3%, on average. Conclusions: Several aspects of OLINDA/EXM dose calculation were compared with patient-specific dose estimates obtained using Monte Carlo. Differences in patient anatomy led to large differences in cross-organ doses. However, total organ doses were still in good agreement since most of the deposited dose is due to self-irradiation. Comparison of voxelized doses calculated by Monte Carlo and the voxel S value technique showed that the 3D dose distributions produced by the respective methods are nearly identical.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B-T; Lu, J-Y
Purpose: We introduce a new method combined with the deformable image registration (DIR) and regions-of-interest mapping (ROIM) technique to accurately calculate dose on daily CBCT for esophageal cancer. Methods: Patients suffered from esophageal cancer were enrolled in the study. Prescription was set to 66 Gy/30 F and 54 Gy/30 F to the primary tumor (PTV66) and subclinical disease (PTV54) . Planning CT (pCT) were segmented into 8 substructures in terms of their differences in physical density, such as gross target volume (GTV), venae cava superior (SVC), aorta, heart, spinal cord, lung, muscle and bones. The pCT and its substructures weremore » transferred to the MIM software to readout their mean HU values. Afterwards, a deformable planning CT to daily KV-CBCT image registration method was then utilized to acquire a new structure set on CBCT. The newly generated structures on CBCT were then transferred back to the treatment planning system (TPS) and its HU information were overridden manually with mean HU values obtained from pCT. Finally, the treatment plan was projected onto the CBCT images with the same beam arrangements and monitor units (MUs) to accomplish dose calculation. Planning target volume (PTV) and organs at risk (OARs) from both of the pCT and CBCT were compared to evaluate the dose calculation accuracy. Results: It was found that the dose distribution in the CBCT showed little differences compared to the pCT, regardless of whether PTV or OARs were concerned. Specifically, dose variation in GTV, PTV54, PTV66, SVC, lung and heart were within 0.1%. The maximum dose variation was presented in the spinal cord, which was up to 2.7% dose difference. Conclusion: The proposed method combined with DIR and ROIM technique to accurately calculate dose distribution on CBCT for esophageal cancer is feasible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Lu, B; Yan, G
Purpose: To identify the weakness of dose calculation algorithm in a treatment planning system for volumetric modulated arc therapy (VMAT) and sliding window (SW) techniques using a two-dimensional diode array. Methods: The VMAT quality assurance(QA) was implemented with a diode array using multiple partial arcs that divided from a VMAT plan; each partial arc has the same segments and the original monitor units. Arc angles were less than ± 30°. Multiple arcs delivered through consecutive and repetitive gantry operating clockwise and counterclockwise. The source-toaxis distance setup with the effective depths of 10 and 20 cm were used for a diodemore » array. To figure out dose errors caused in delivery of VMAT fields, the numerous fields having the same segments with the VMAT field irradiated using different delivery techniques of static and step-and-shoot. The dose distributions of the SW technique were evaluated by creating split fields having fine moving steps of multi-leaf collimator leaves. Calculated doses using the adaptive convolution algorithm were analyzed with measured ones with distance-to-agreement and dose difference of 3 mm and 3%.. Results: While the beam delivery through static and step-and-shoot techniques showed the passing rate of 97 ± 2%, partial arc delivery of the VMAT fields brought out passing rate of 85%. However, when leaf motion was restricted less than 4.6 mm/°, passing rate was improved up to 95 ± 2%. Similar passing rate were obtained for both 10 and 20 cm effective depth setup. The calculated doses using the SW technique showed the dose difference over 7% at the final arrival point of moving leaves. Conclusion: Error components in dynamic delivery of modulated beams were distinguished by using the suggested QA method. This partial arc method can be used for routine VMAT QA. Improved SW calculation algorithm is required to provide accurate estimated doses.« less
Pediatric defibrillation after cardiac arrest: initial response and outcome
Rodríguez-Núñez, Antonio; López-Herce, Jesús; García, Cristina; Domínguez, Pedro; Carrillo, Angel; Bellón, Jose María
2006-01-01
Introduction Shockable rhythms are rare in pediatric cardiac arrest and the results of defibrillation are uncertain. The objective of this study was to analyze the results of cardiopulmonary resuscitation that included defibrillation in children. Methods Forty-four out of 241 children (18.2%) who were resuscitated from inhospital or out-of-hospital cardiac arrest had been treated with manual defibrillation. Data were recorded according to the Utstein style. Outcome variables were a sustained return of spontaneous circulation (ROSC) and one-year survival. Characteristics of patients and of resuscitation were evaluated. Results Cardiac disease was the major cause of arrest in this group. Ventricular fibrillation (VF) or pulseless ventricular tachycardia (PVT) was the first documented electrocardiogram rhythm in 19 patients (43.2%). A shockable rhythm developed during resuscitation in 25 patients (56.8%). The first shock (dose, 2 J/kg) terminated VF or PVT in eight patients (18.1%). Seventeen children (38.6%) needed more than three shocks to solve VF or PVT. ROSC was achieved in 28 cases (63.6%) and it was sustained in 19 patients (43.2%). Only three patients (6.8%), however, survived at 1-year follow-up. Children with VF or PVT as the first documented rhythm had better ROSC, better initial survival and better final survival than children with subsequent VF or PVT. Children who survived were older than the finally dead patients. No significant differences in response rate were observed when first and second shocks were compared. The survival rate was higher in patients treated with a second shock dose of 2 J/kg than in those who received higher doses. Outcome was not related to the cause or the location of arrest. The survival rate was inversely related to the duration of cardiopulmonary resuscitation. Conclusion Defibrillation is necessary in 18% of children who suffer cardiac arrest. Termination of VF or PVT after the first defibrillation dose is achieved in a low percentage of cases. Despite a sustained ROSC being obtained in more than one-third of cases, the final survival remains low. The outcome is very poor when a shockable rhythm develops during resuscitation efforts. New studies are needed to ascertain whether the new international guidelines will contribute to improve the outcome of pediatric cardiac arrest. PMID:16882339
NASA Astrophysics Data System (ADS)
McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.
2017-08-01
Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.
McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A; Purdie, Thomas G
2017-07-06
Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.
Harada, Eiji; Shirakawa, Osamu; Satoi, Yoichi; Marangell, Lauren B; Escobar, Rodrigo
2016-01-01
We sought to better understand how dose and titration with duloxetine treatment may impact tolerability and treatment discontinuation in patients with major depressive disorder. We investigated Phase III duloxetine trials. Group 1 was a single placebo-controlled study with a 20 mg initial dose and a slow titration to 40 and 60 mg. Group 2 was a single study with a 40 mg initial dose and final "active" doses of 40 and 60 mg (5 mg control group), with 1-week titration. Group 3 consisted of eight placebo-controlled studies with starting doses of 40, 60, and 80 mg/day with minimal titration (final dose 40-120 mg/day). Tolerability was measured by rate of discontinuation due to adverse events (DCAE). The DCAE in Group 1 were 3.6% in the 60 mg group, 3.3% in the 40 mg group, and 3.2% in the placebo group. In Group 2, the DCAE were 15.0% in the 60 mg group, 8.1% in the 40 mg group, and 4.9% in the 5 mg group. In Group 3, the DCAE were 9.7% and 4.2% in the duloxetine and placebo groups, respectively. This study suggests that starting dose and titration may have impacted tolerability and treatment discontinuation. A lower starting dose of duloxetine and slower titration may contribute to improving treatment tolerability for patients with major depressive disorder.
Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria
2015-09-01
Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. Copyright © 2015. Published by Elsevier B.V.
[Wireless digital radiography detectors in the emergency area: an efficacious solution].
Garrido Blázquez, M; Agulla Otero, M; Rodríguez Recio, F J; Torres Cabrera, R; Hernando González, I
2013-01-01
To evaluate the implementation of a flat panel digital radiolography (DR) system with WiFi technology in an emergency radiology area in which a computed radiography (CR) system was previously used. We analyzed aspects related to image quality, radiation dose, workflow, and ergonomics. We analyzed the results obtained with the CR and WiFi DR systems related with the quality of images analyzed in images obtained using a phantom and after radiologists' evaluation of radiological images obtained in real patients. We also analyzed the time required for image acquisition and the workflow with the two technological systems. Finally, we analyzed the data related to the dose of radiation in patients before and after the implementation of the new equipment. Image quality improved in both the tests carried out with a phantom and in radiological images obtained in patients, which increased from 3 to 4.5 on a 5-point scale. The average time required for image acquisition decreased by 25 seconds per image. The flat panel required less radiation to be delivered in practically all the techniques carried out using automatic dosimetry, although statistically significant differences were found in only some of the techniques (chest, thoracic spine, and lumbar spine). Implementing the WiFi DR system has brought benefits. Image quality has improved and the dose of radiation to patients has decreased. The new system also has advantages in terms of functionality, ergonomics, and performance. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Priestley, Catherine C; Walker, Joanne S; O'Donovan, Michael R; Doherty, Ann T
2015-07-01
As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay, 4,4'-diaminodiphenyl ether (DPE), a known rodent genotoxic carcinogen, was tested in this laboratory. Sprague Dawley rats (7-9 weeks of age) were given three oral doses of DPE, 24 and 21 h apart and liver or stomach sampled 3h after the final dose. Under the conditions of the test, no increases in DNA damage in liver and stomach were observed with DPE (up to 200 mg/kg/day). A dose-dependent decrease in DNA migration, compared to vehicle controls, was noted for DPE in rat stomach. Further analysis is required to elucidate fully whether this decrease is a consequence of the mode of action or due to the toxicity of DPE. What is perhaps surprising is the inability of the comet assay to detect a known rat genotoxic carcinogen in liver. Further investigation is needed to clarify whether this apparent lack of response results from limited tissue exposure or metabolic differences between species. This finding highlights a need for careful consideration of study design when evaluating assay performance as a measure of in vivo genotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.
IRIS Toxicological Review of Methanol (Noncancer) (Final Report)
EPA conducted a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Methanol (noncancer) , this is finalized and posted on the IRIS Web site.
Analysis and evaluation for consumer goods containing NORM in Korea.
Jang, Mee; Chung, Kun Ho; Lim, Jong Myoung; Ji, Young Yong; Kim, Chang Jong; Kang, Mun Ja
2017-08-01
We analyzed the consumer goods containing NORM by ICP-MS and evaluated the external dose. To evaluate the external dose, we assumed the small room model as irradiation scenario and calculated the specific effective dose rate using MCNPX code. The external doses for twenty goods are less than 1 mSv considering the specific effective dose rates and usage quantities. However, some of them have relatively high dose and the activity concentration limits are necessary as a screening tool. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paediatric x-ray radiation dose reduction and image quality analysis.
Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H
2013-09-01
Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.
A revision of the gamma-evaluation concept for the comparison of dose distributions.
Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof
2003-11-07
A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.
Tritium glovebox stripper system seismic design evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinnell, J. J.; Klein, J. E.
2015-09-01
The use of glovebox confinement at US Department of Energy (DOE) tritium facilities has been discussed in numerous publications. Glovebox confinement protects the workers from radioactive material (especially tritium oxide), provides an inert atmosphere for prevention of flammable gas mixtures and deflagrations, and allows recovery of tritium released from the process into the glovebox when a glovebox stripper system (GBSS) is part of the design. Tritium recovery from the glovebox atmosphere reduces emissions from the facility and the radiological dose to the public. Location of US DOE defense programs facilities away from public boundaries also aids in reducing radiological dosesmore » to the public. This is a study based upon design concepts to identify issues and considerations for design of a Seismic GBSS. Safety requirements and analysis should be considered preliminary. Safety requirements for design of GBSS should be developed and finalized as a part of the final design process.« less
Markovic, Ingrid
2007-09-01
Leachables are chemical entities that migrate spontaneously from the final container closure system, packaging components and/or processing equipment under recommended conditions of product use and storage. Unlike leachables, extractables are generated under exaggerated temperature and time conditions in the presence of an appropriate solvent. Increasing evidence suggests that leachables may pose a safety risk by causing toxicity, carcinogenicity, immunogenicity and/or endocrine dysregulation. These substances may also alter product physico-chemical properties via interaction with the active pharmaceutical ingredient or the excipients in product vehicle, thereby adversely affecting the final product quality. The evaluation of leachable compounds begins with a thorough identification of extractable compounds released from the production and packaging components under exaggerated conditions. The set of observed extractables helps to identify possible targets to be monitored in a subsequent leachables study over extended time periods. Although extractables and leachables also present a challenge for the safe use of device components (e.g., metered dose inhalers, dry powder inhalers, nasal spray devices or various implants), this review focusses on a safety risk assessment for specified therapeutic biological protein products. Regulatory, safety and scientific considerations in evaluating extractables and leachables are discussed, along with strategies for the analytical identification, quantification and monitoring.
IRIS Toxicological Review of Dichloromethane (Methylene ...
EPA has finalized the Toxicological Review of Dichloromethane (Methylene Chloride): In support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. This document presents background information and justification for the Intergrated Risk Information System (IRIS) Summary of the hazard and dose-response assessment of dichloromethane. IRIS Summaries may include oral reference dose (RfD) and inhalation reference concentration (RfC) values for chronic and other exposure durations, and a carcinogencity assessment. Internet/NCEA web site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
NASA Astrophysics Data System (ADS)
Kowalska, A.; Czerski, K.; Kaczmarski, M.; Lewocki, M.; Masojć, B.; Łukowiak, A.
2015-03-01
DNA damage of peripheral blood lymphocytes exposed to gamma and proton irradiation is studied by means of chromosome aberrations to validate the efficiency of the repair mechanisms of individual cells. A new method based on an observed deviation from the Poisson statistics of the chromosome aberration number is applied for estimation of a repair factor ( RF) defined as a ratio between originally damaged cells to the amount of finally observed aberrations. The repair factors are evaluated by studying the variance of individual damage factors in a collective of healthy persons at a given dose as well as by using the chi-square analysis for the dose-effect curves. The blood samples from fifteen donors have been irradiated by Co60 gamma rays and from nine persons by 150 MeV protons with different doses up to 2 Gy. A standard extraction of lymphocyte has been used whereby dicentrics, acentrics and rings have been scored under a microscope. The RF values determined for the proton radiation are slightly larger than for gamma rays, indicating that up to 70% DNA double strand breaks can be repaired.
De Boeck, Marlies; van der Leede, Bas-jan; De Vlieger, Kathleen; Geys, Helena; Vynckier, An; Van Gompel, Jacky
2015-07-01
As part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiated international validation study of in vivo rat alkaline comet assay (comet assay), p-phenylenediamine dihydrochloride (PPD), o-phenylphenol sodium salt (OPP), and 2,4-diaminotoluene (2,4-DAT), were analyzed in this laboratory as coded test chemicals. Male Sprague-Dawley rats (7-9 weeks of age) were given three oral doses of the test compounds, 24 and 21 h apart and liver and stomach were sampled 3h after the final dose administration. Under the conditions of the test, no increases in DNA damage were observed in liver and stomach with PPD and OPP up to 100 and 1000 mg/kg/day, respectively. 2,4-DAT, a known genotoxic carcinogen, induced a weak but reproducible, dose-related and statistically significant increase in DNA damage in liver cells while no increases were observed in stomach cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Annual dose of Taiwanese from the ingestion of 210Po in oysters.
Lee, Hsiu-wei; Wang, Jeng-Jong
2013-03-01
Oysters around the coast of Taiwan were collected, dried, spiked with a (209)Po tracer for yield, digested with concentrated HNO(3) and H(2)O(2), and finally dissolved in 0.5 N HCl. The polonium was then spontaneously deposited onto a silver disc, and the activity of (210)Po was measured using an alpha spectrum analyzer equipped with a silicon barrier detector. Meanwhile, the internal effective dose of (210)Po coming from the intake of oysters by Taiwanese was evaluated. The results of the present study indicate that (210)Po average activity concentrations ranged from 23.4 ± 0.4 to 126 ± 94 Bq kg(-1) of fresh oysters. The oysters coming from Penghu island and Kinmen island regions contain higher concentrations of (210)Po in comparison with oysters from other regions of Taiwan. The value of (210)Po weighted average activity concentrations for all oyster samples studied is 25.9 Bq kg(-1). The annual effective dose of Taiwanese due to the ingestion of (210)Po in oysters was estimated to be 4.1 × 10(-2) mSv y(-1). Copyright © 2013. Published by Elsevier Ltd.
Anticonvulsant Effect of Diazoxide against Dichlorvos-Induced Seizures in Mice
Jazayeri, Amin; Zolfaghari, Samira; Ostadhadi, Sattar
2013-01-01
Dichlorvos, a synthetic organophosphate toxin, is used as pesticides. These toxins can be used as pesticides in farming and medicine for the devastation and/or elimination of ectoparasites of animals. Reports have shown that Dichlorvos generate seizure effects in various animals. Potassium channel opener is extensively used for medication of cardiovascular and other diseases. Studies have shown that potassium channel opener has anticonvulsant effects in different animal models. The goal of this study was to evaluate the effect of dizoxide on Dichlorvos-induced seizures in mice. In this research, the animals received different doses of Diazoxide (1, 2.5, 5, 10, and 20 mg/kg b.wt.) intraperitoneally 30 min before intraperitoneal injection of Dichlorvos (50 mg/kg b.w.t). After Dichlorvos injection, latency of clones, severity of seizure, and finally death as the fate were investigated. Results showed that Diazoxide dose-dependently decreased the severity of Dichlorvos-induced seizures, so that Diazoxide at a dose of 5 mg (the lowest, P < 0.05) and 20 mg/kg b.wt. (the highest, P < 0.001) has anticonvulsant effects. Thus, our data suggest that diazoxide as ATP-sensitive potassium channels opener has anticonvulsant activity against dichlorvas-induced seizure. PMID:24453891
Paloma, M J; Páramo, J A; Rocha, E
1995-12-01
We have evaluated the effect of plasminogen activators (t-PA and urokinase) on an experimental model of disseminated intravascular coagulation (DIC) in rabbits by injection of 20 micrograms/kg/h of E. coli lipopolysaccharide during 6 h t-PA (0.2 mg/kg and 0.7 mg/kg), urokinase (3000 U/kg/h) and saline (control) were given simultaneously with endotoxin. Results indicated that urokinase and low dose of t-PA significantly reduced the increase of plasminogen activator inhibitor (PAI) activity observed 2 h after endotoxin (p < 0.001). High t-PA dose also diminished the PAI levels at 6 h (p < 0.001). A significant reduction of fibrin deposits in kidneys was observed din both t-PA treated groups as compared with findings in the group of rabbits infused with saline solution (p < 0.005), whereas urokinase had no significant effect on the extent of fibrin deposition. Finally, the mortality rate in the control group (70%) was reduced to 50% in rabbits receiving high doses of t-PA. In conclusion, treatment with t-PA resulted in reduced PAI generation, fibrin deposits and mortality in endotoxin-treated rabbits.
Mbwambo, H A; Magwisha, H B; Mfinanga, J M
2006-06-30
Evaluation trials of the efficacy of buparvaquone (BUTA-kel KELA Laboratoria, N.V. Belgium), as a treatment of field cases of Theileria parva infection (East Coast fever - ECF) were carried out on 63 cattle in the peri-urban of Dar Es Salaam city, Tanzania, during the period November 2004 to August 2005. Thirty-two cattle (56%) received single-dose treatment (2.5 mg buparvaquone per kg body weight), while two and three-dose treatment with interval(s) of 48 h was given to 33% and 11% of total treated cattle, respectively; 38 cattle (60.3%) were treated at an early stage of the disease, while 25 cattle (39.7%) were treated at an advanced stage of the disease. The rectal body temperature of 90.5% of buparvaquone-treated cattle dropped to normal values (37.5-39.5 degrees C) by day 7 of treatment, and by day 15 of treatment 96.8% of treated cattle showed normal values. Pulmonary signs were observed in 8/68 (11.8%) of total ECF diagnosed cattle and were successfully treated, albeit with parvaquone plus frusemide (Fruvexon); were not included in final evaluation of the efficacy of BUTA-kel. The present evaluation trials record a recovery rate of 95.2%. Buparvaquone (BUTA-kel KELA Laboratoria, N.V. Belgium), therefore, records another efficacious and valuable alternative treatment against East Coast fever in Tanzania.
de Souza, Juliane C; Piccinelli, Ana Cláudia; Aquino, Diana F S; de Souza, Vanessa V; Schmitz, Wanderlei O; Traesel, Giseli K; Cardoso, Claudia A L; Kassuya, Candida A L; Arena, Arielle C
2017-01-01
This study evaluates the anti-inflammatory, antihyperalgesic, and antidepressive potential of the hydroalcoholic extract of Campomanesia adamantium fruit barks (CAE) on rodents and determines the safety of this plant. The acute toxicity of CAE was evaluated by oral administration to female rats as single doses of 0, 500, 1000, or 2000 mg/kg body weight. General behavior and toxic symptoms were observed for 14 days. In the subacute toxicity test, male and female rats received 125 or 250 mg/kg body weight of CAE for 28 days. The oral anti-inflammatory activity of CAE was evaluated in carrageenan-induced pleurisy in male mice. The effect of treatment with CAE (100 mg/kg) for 15 days was evaluated in mechanical hyperalgesia (electronic von Frey), depressive behavior (forced swimming test), and cold hypersensitivity in spared nerve injury (SNI) model in rats. No clinical signs of toxicity were observed in animals from the experimental groups during acute and subacute exposure to CAE. At pleurisy test, the oral administration of CAE significantly inhibited leukocyte migration and protein leakage at all doses tested when compared to control. Oral administration of CAE for 3-15 days significantly inhibited SNI-induced mechanical hyperalgesia and increased immobility in the forced swim test. Finally, on the 15th day, oral treatment with CAE prevented the increase in sensitivity to a cold stimulus induced by SNI. The present study shows that C. adamantium extract has anti-inflammatory, antihyperalgesic, and antidepressive properties in rodents without causing toxicity.
Functional PET Evaluation of the Photosensitive Baboon
Szabó, C. Ákos; Salinas, Felipe S; Narayana, Shalini
2011-01-01
The baboon provides a unique, natural model of epilepsy in nonhuman primates. Additionally, photosensitivity of the epileptic baboon provides an important window into the mechanism of human idiopathic generalized epilepsies. In order to better understand the networks underlying this model, our group utilized functional positron emission tomography (PET) to compare cerebral blood flow (CBF) changes occurring during intermittent light stimulation (ILS) and rest between baboons photosensitive, epileptic (PS) and asymptomatic, control (CTL) animals. Our studies utilized subtraction and covariance analyses to evaluate CBF changes occurring during ILS across activation and resting states, but also evaluated CBF correlations with ketamine doses and interictal epileptic discharge (IED) rate during the resting state. Furthermore, our group also assessed the CBF responses related to variation of ILS in PS and CTL animals. CBF changes in the subtraction and covariance analyses reveal the physiological response and visual connectivity in CTL animals and pathophysiological networks underlying responses associated with the activation of ictal and interictal epileptic discharges in PS animals. The correlation with ketamine dose is essential to understanding differences in CBF responses between both groups, and correlations with IED rate provides an insight into an epileptic network independent of visual activation. Finally, the ILS frequency dependent changes can help develop a framework to study not only spatial connectivity but also the temporal sequence of regional activations and deactivations related to ILS. The maps generated by the CBF analyses will be used to target specific nodes in the epileptic network for electrophysiological evaluation using intracranial electrodes. PMID:22276085
Warshaw, Meredith G; Siberry, George K; Williams, Paige; Decker, Michael D; Jean-Philippe, Patrick; Lujan-Zilbermann, Jorge
2017-09-01
The US Advisory Committee on Immunization Practices recommends a booster dose of quadrivalent meningococcal conjugate vaccine (MCV4) after initial immunization for patients at high risk for meningococcal infection. The International Maternal Pediatric Adolescents AIDS Clinical Trials (IMPAACT) P1065 trial evaluated the use of MCV4 in human immunodeficiency virus (HIV)-infected children and youth. The final step of this trial was an open-label study of an MCV4 booster dose 3.5 years after primary MCV4 immunization. Antibody titers were evaluated at the time of the booster vaccine and 1, 4, and 24 weeks after the booster. Immunogenicity was measured by rabbit serum bactericidal antibody (rSBA) against each meningococcal serogroup. Immunologic memory was defined as either seroprotection (rSBA titer ≥1:128) or a ≥4-fold increase 1 week after the booster dose. Primary response was defined as either a ≥4-fold response or seropositivity 4 weeks after the booster in the absence of immunologic memory. Adverse events were assessed for 4 weeks after the booster dose. Of 174 participants with serology results at entry and 1 and 4 weeks later, the percentage with protective antibody levels at entry varied according to serogroup, ranging from a low of 26% for serogroup C to a high of 68% for serogroup A. A memory response to at least 1 serogroup occurred in 98% of the participants: 93% each for serogroups A and Y, 88% for serogroup C, and 94% for serogroup W-135; 83% had a memory response to all 4 serogroups. Overall, rates of any memory or primary response were ≥90% for all serogroups. No serious adverse events were encountered. A booster dose of MCV4 elicited a memory response in 88% to 94% of previously immunized HIV-infected participants depending on serogroup, including those who lacked a protective titer level for that serogroup before booster vaccination. © The Author 2017. Published by the Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, A; Ahmad, M; Chen, Z
2014-06-01
Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.« less
Carchia, E; Porreca, I; Almeida, P J; D'Angelo, F; Cuomo, D; Ceccarelli, M; De Felice, M; Mallardo, M; Ambrosino, C
2015-10-29
Epidemiologic and experimental studies have associated changes of blood glucose homeostasis to Bisphenol A (BPA) exposure. We took a toxicogenomic approach to investigate the mechanisms of low-dose (1 × 10(-9 )M) BPA toxicity in ex vivo cultures of primary murine pancreatic islets and hepatocytes. Twenty-nine inhibited genes were identified in islets and none in exposed hepatocytes. Although their expression was slightly altered, their impaired cellular level, as a whole, resulted in specific phenotypic changes. Damage of mitochondrial function and metabolism, as predicted by bioinformatics analyses, was observed: BPA exposure led to a time-dependent decrease in mitochondrial membrane potential, to an increase of ROS cellular levels and, finally, to an induction of apoptosis, attributable to the bigger Bax/Bcl-2 ratio owing to activation of NF-κB pathway. Our data suggest a multifactorial mechanism for BPA toxicity in pancreatic islets with emphasis to mitochondria dysfunction and NF-κB activation. Finally, we assessed in vitro the viability of BPA-treated islets in stressing condition, as exposure to high glucose, evidencing a reduced ability of the exposed islets to respond to further damages. The result was confirmed in vivo evaluating the reduction of glycemia in hyperglycemic mice transplanted with control and BPA-treated pancreatic islets. The reported findings identify the pancreatic islet as the main target of BPA toxicity in impairing the glycemia. They suggest that the BPA exposure can weaken the response of the pancreatic islets to damages. The last observation could represent a broader concept whose consideration should lead to the development of experimental plans better reproducing the multiple exposure conditions.
Physiological relevance of LL-37 induced bladder inflammation and mast cells.
Oottamasathien, Siam; Jia, Wanjian; Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D
2013-10-01
We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm(2). Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Physiological Relevance of LL-37 Induced Bladder Inflammation and Mast Cells
Roundy, Lindsi McCoard; Zhang, Jianxing; Wang, Li; Ye, Xiangyang; Hill, A. Cameron; Savage, Justin; Lee, Wong Yong; Hannon, Ann Marie; Milner, Sylvia; Prestwich, Glenn D.
2014-01-01
Purpose We established the physiological relevance of LL-37 induced bladder inflammation. We hypothesized that 1) human urinary LL-37 is increased in pediatric patients with spina bifida, 2) LL-37 induced inflammation occurs in our mouse model via urothelial binding and is dose dependent and 3) LL-37 induced inflammation involves mast cells. Materials and Methods To test our first hypothesis, we obtained urine samples from 56 pediatric patients with spina bifida and 22 normal patients. LL-37 was measured by enzyme-linked immunosorbent assay. Our second hypothesis was tested in C57Bl/6 mice challenged with 7 LL-37 concentrations intravesically for 1 hour. At 24 hours tissues were examined histologically and myeloperoxidase assay was done to quantitate inflammation. In separate experiments fluorescent LL-37 was instilled and tissues were obtained immediately (time = 0) and at 24 hours (time = 24). To test our final hypothesis, we performed immunohistochemistry for mast cell tryptase and evaluated 5 high power fields per bladder to determine the mean number of mast cells per mm2. Results Urinary LL-37 was 89-fold higher in patients with spina bifida. Mouse LL-37 dose escalation experiments revealed increased inflammation at higher LL-37 concentrations. Fluorescent LL-37 demonstrated global urothelial binding at time = 0 but was not visible at time = 24. Immunohistochemistry for tryptase revealed mast cell infiltration in all tissue layers. At higher concentrations the LL-37 challenge led to significantly greater mast cell infiltration. Conclusions Urinary LL-37 was significantly increased in pediatric patients with spina bifida. To our knowledge we report for the first time that LL-37 can elicit profound, dose dependent bladder inflammation involving the urothelium. Finally, inflammation propagation involves mast cells. PMID:23313203
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2016-05-01
This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakabe, D; Ohno, T; Araki, F
Purpose: The purpose of this study was to evaluate the combined organ dose of digital subtraction angiography (DSA) and computed tomography (CT) using a Monte Carlo (MC) simulation on the abdominal intervention. Methods: The organ doses for DSA and CT were obtained with MC simulation and actual measurements using fluorescent-glass dosimeters at 7 abdominal portions in an Alderson-Rando phantom. DSA was performed from three directions: posterior anterior (PA), right anterior oblique (RAO), and left anterior oblique (LAO). The organ dose with MC simulation was compared with actual radiation dose measurements. Calculations for the MC simulation were carried out with themore » GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. Finally, the combined organ dose for DSA and CT was calculated from the MC simulation using the X-ray conditions of a patient with a diagnosis of hepatocellular carcinoma. Results: For DSA from the PA direction, the organ doses for the actual measurements and MC simulation were 2.2 and 2.4 mGy/100 mAs at the liver, respectively, and 3.0 and 3.1 mGy/100 mAs at the spinal cord, while for CT, the organ doses were 15.2 and 15.1 mGy/100 mAs at the liver, and 14.6 and 13.5 mGy/100 mAs at the spinal cord. The maximum difference in organ dose between the actual measurements and the MC simulation was 11.0% of the spleen at PA, 8.2% of the spinal cord at RAO, and 6.1% of left kidney at LAO with DSA and 9.3% of the stomach with CT. The combined organ dose (4 DSAs and 6 CT scans) with the use of actual patient conditions was found to be 197.4 mGy for the liver and 205.1 mGy for the spinal cord. Conclusion: Our method makes it possible to accurately assess the organ dose to patients for abdominal intervention with combined DSA and CT.« less
2011-01-01
Background Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks. Methods We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes. Results Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from $0.47US to $0.71US and $1.26US, respectively. Conclusions The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child. PMID:21635774
Schwartz, Jill L.; Rountree, Wes; Kashuba, Angela D. M.; Brache, Vivian; Creinin, Mitchell D.; Poindexter, Alfred; Kearney, Brian P.
2011-01-01
Background Tenofovir (TFV) gel is being evaluated as a microbicide with pericoital and daily regimens. To inhibit viral replication locally, an adequate concentration in the genital tract is critical. Methods and Findings Forty-nine participants entered a two-phase study: single-dose (SD) and multi-dose (MD), were randomized to collection of genital tract samples (endocervical cells [ECC], cervicovaginal aspirate and vaginal biopsies) at one of seven time points [0.5, 1, 2, 4, 6, 8, or 24 hr(s)] post-dose following SD exposure of 4 mL 1% TFV gel and received a single dose. Forty-seven were randomized to once (QD) or twice daily (BID) dosing for 2 weeks and to collection of genital tract samples at 4, 8 or 24 hrs after the final dose, but two discontinued prior to gel application. Blood was collected during both phases at the seven times post-dose. TFV exposure was low in blood plasma for SD and MD; median Cmax was 4.0 and 3.4 ng/mL, respectively (C≤29 ng/mL). TFV concentrations were high in aspirates and tissue after SD and MD, ranging from 1.2×104 to 9.9×106 ng/mL and 2.1×102 to 1.4×106 ng/mL, respectively, and did not noticeably differ between proximal and distal tissue. TFV diphosphate (TFV-DP), the intracellular active metabolite, was high in ECC, ranging from 7.1×103 to 8.8×106 ng/mL. TFV-DP was detectable in approximately 40% of the tissue samples, ranging from 1.8×102 to 3.5×104 ng/mL. AUC for tissue TFV-DP was two logs higher after MD compared to SD, with no noticeable differences when comparing QD and BID. Conclusions Single-dose and multiple-dose TFV gel exposure resulted in high genital tract concentrations for at least 24 hours post-dose with minimal systemic absorption. These results support further study of TFV gel for HIV prevention. Trial registration ClinicalTrials.gov NCT00561496 PMID:22039430
TH-A-9A-01: Active Optical Flow Model: Predicting Voxel-Level Dose Prediction in Spine SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J; Wu, Q.J.; Yin, F
2014-06-15
Purpose: To predict voxel-level dose distribution and enable effective evaluation of cord dose sparing in spine SBRT. Methods: We present an active optical flow model (AOFM) to statistically describe cord dose variations and train a predictive model to represent correlations between AOFM and PTV contours. Thirty clinically accepted spine SBRT plans are evenly divided into training and testing datasets. The development of predictive model consists of 1) collecting a sequence of dose maps including PTV and OAR (spinal cord) as well as a set of associated PTV contours adjacent to OAR from the training dataset, 2) classifying data into fivemore » groups based on PTV's locations relative to OAR, two “Top”s, “Left”, “Right”, and “Bottom”, 3) randomly selecting a dose map as the reference in each group and applying rigid registration and optical flow deformation to match all other maps to the reference, 4) building AOFM by importing optical flow vectors and dose values into the principal component analysis (PCA), 5) applying another PCA to features of PTV and OAR contours to generate an active shape model (ASM), and 6) computing a linear regression model of correlations between AOFM and ASM.When predicting dose distribution of a new case in the testing dataset, the PTV is first assigned to a group based on its contour characteristics. Contour features are then transformed into ASM's principal coordinates of the selected group. Finally, voxel-level dose distribution is determined by mapping from the ASM space to the AOFM space using the predictive model. Results: The DVHs predicted by the AOFM-based model and those in clinical plans are comparable in training and testing datasets. At 2% volume the dose difference between predicted and clinical plans is 4.2±4.4% and 3.3±3.5% in the training and testing datasets, respectively. Conclusion: The AOFM is effective in predicting voxel-level dose distribution for spine SBRT. Partially supported by NIH/NCI under grant #R21CA161389 and a master research grant by Varian Medical System.« less
Continuing evaluation of bipolar linear devices for total dose bias dependency and ELDRS effects
NASA Technical Reports Server (NTRS)
McClure, Steven S.; Gorelick, Jerry L.; Yui, Candice; Rax, Bernard G.; Wiedeman, Michael D.
2003-01-01
We present results of continuing efforts to evaluate total dose bias dependency and ELDRS effects in bipolar linear microcircuits. Several devices were evaluated, each exhibiting moderate to significant bias and/or dose rate dependency.
Branscum, Paul; Sharma, Manoj; Wang, Lihshing Leigh; Wilson, Bradley; Rojas-Guyler, Liliana
2013-03-01
Process evaluations are an often overlooked yet essential component of health promotion interventions. This study reports the results of a comprehensive process evaluation for the "Comics for Health" program, a childhood obesity prevention intervention implemented at 12 after-school programs. Qualitative and quantitative process data were collected using surveys, field notes, and open-item questionnaires, which assessed program fidelity, dose delivered, dose received, reach, recruitment, and context. Triangulation of methods was also employed to better understand how the program was implemented and received by the facilitator, staff members, and children in the program. Results indicated that program implementation had an almost perfect rate of fidelity with most lessons recording 100% tasks completed. Lessons were implemented in their intended order and lasted approximately 30 minutes as planned. After-school staff members reported that the program was well received by children, and this program should be replicated in the future. Attendance records showed that a majority of the children attended each lesson on the initial day of delivery (70.4%) and informal make-up lessons were implemented to compensate for the other children. Finally, several known sources of contamination were found such as past and concurrent exposure to similar health promotion interventions, which could potentially influence study outcomes. These findings will be used to help explain the results of this intervention and make recommendations for future intervention efforts.
A Mouse Model to Evaluate the Impact of Species, Sex, and Lipid Load on Lymphatic Drug Transport
Caliph, Suzanne M.; Nguyen, Gary; Tso, Patrick; Charman, William N.
2014-01-01
Purpose To establish a lymph-cannulated mouse model, and use the model to investigate the impact of lipid dose on exogenous and endogenous lipid recruitment, and drug transport, into the lymph of males versus females. Finally, lymphatic transport and drug absorption in the mouse were compared to other pre-clinical models (rats/dogs). Methods Animals were orally or intraduodenally administered 1.6 mg/kg halofantrine in low or high 14C-lipid doses. For bioavailability calculation, animals were intravenuosly administered halofantrine. Lymph or blood samples were taken and halofantrine, triglyceride, phospholipid and 14C-lipid concentrations measured. Results Lymphatic lipid transport increased linearly with lipid dose, was similar across species and in male/female animals. In contrast, lymphatic transport of halofantrine differed markedly across species (dogs>rats>mice) and plateaued at higher lipid doses. Lower bioavailability appeared responsible for some species differences in halofantrine lymphatic transport; however other systematic differences were involved. Conclusions A contemporary lymph-cannulated mouse model was established which will enable investigation of lymphatic transport in transgenic and disease models. The current study found halofantrine absorption and lymphatic transport are reduced in small animals. Future analyses will investigate mechanisms involved, and if similar trends occur for other drugs, to establish the most relevant model(s) to predict lymphatic transport in humans. PMID:23430484
Meredith, Ian T; Verheye, Stefan; Dubois, Christophe; Dens, Joseph; Farah, Bruno; Carrié, Didier; Walsh, Simon; Oldroyd, Keith; Varenne, Olivier; El-Jack, Seif; Moreno, Raul; Christen, Thomas; Allocco, Dominic J
2018-04-20
Long-term data on bioabsorbable polymer-coated everolimus-eluting stents (BP-EES) are limited. The EVOLVE trial compared the safety and efficacy of two dose formulations of the SYNERGY BP-EES with the permanent polymer-coated PROMUS Element EES (PE). The EVOLVE study was a prospective, multicentre, non-inferiority trial that randomised 291 patients with de novo coronary lesions (length: ≤28 mm; diameter: ≥2.25 to ≤3.5 mm) to receive PE (n=98), SYNERGY (n=94), or SYNERGY half-dose (n=99). At five years, there were no significant differences in the rates of TLF or individual components between groups. TLR rates trended lower in both SYNERGY arms than in the PE arm (TLR: 1.1% SYNERGY and 1.0% SYNERGY half-dose vs. 6.1% PE; p=0.07 and p=0.06, respectively). TVR was numerically lower in the SYNERGY arms compared to the PE arm (TVR: 3.3% SYNERGY and 4.2% SYNERGY half-dose vs. 10.2% PE; p=0.06 and p=0.11, respectively). No incidence of stent thrombosis was reported in any arm up to five years. The EVOLVE trial represents the longest-term follow-up of the SYNERGY stent available to date, demonstrating its continued safety and efficacy for the treatment of selected de novo atherosclerotic lesions up to five years.
[Inhaled corticosteroids and growth: should we be worried?].
Pouessel, G; Gueorguieva, I; Bernaczyk, Y; Flammarion, S; Thumerelle, C; Deschildre, A
2015-08-01
Inhaled corticosteroids (ICSs) are the cornerstone and the first stage of asthma treatment. The objective of this study was to synthesize data on the potential effects of ICSs on growth in children. Studies on the short-term impact of ICSs on growth evaluated by knemometry cannot be extrapolated to the medium or long term and therefore have no utility in real life for a given person. In the medium term, the various ICSs given at the usual doses cause a small reduction in growth after 6 months of treatment. This slowdown occurs at the beginning of treatment, especially in younger children, and the growth velocity corrects itself later but without catching up. In the long term, the prolonged use of ICSs seems to induce a small reduction in the final size in adulthood (close to 1cm) occurring in the first 2 years of treatment without worsening over time. The impact of gender, age at onset of treatment, different ICSs, modes of inhalation, and severity of asthma should also be studied further. The benefit of ICSs in asthma treatment is greater than the risk of side effects, including on growth. The majority of the therapeutic effect is obtained for small to moderate doses of ICSs. Regular adjustment of ICS dose for optimal asthma control should also reduce ICS dose and the impact on growth. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Nayeri, Fatemeh; Soheili, Habib; Kaveh, Mahbod; Oloomi Yazdi, Zohre; Shariat, Mamak; Dalili, Hosein
2011-01-01
Considering the 50% mortality rate of neonatal septicemia associated with neutropenia and increasing resistance to antibiotics, simultaneous antibiotic therapy strategies are becoming more important. However, few studies have been performed to evaluate effectiveness of RhG-CSF in the treatment of neutropenia in neonates. This randomized clinical trial was performed on 40 neutropenic neonates with septicemia who were hospitalized in Vali-e-Asr and Mirza Koochak Khan Hospitals (Tehran, Iran). The neonates were randomly divided into two equal groups RhG-CSF was administered as a subcutaneous single dose of 10 μg/kg/s.c. to neonates in group A and as 10 μg/kg/s.c./day once daily for 3 days to neonates in group B. CBC and differential count was checked 6, 24 and 48 hours after the last dose. There was no significant difference in mean birth weight, gender, age, and risk factors between two groups. Neutropenia was improved 48 hours after the last dose, whilst there was no significant statistical difference between two groups (P>0.05). The final outcome including death, duration of hospitalization and duration of antibiotics therapy after RhG-CSF administration did not differ between two groups (P>0.05). The results of this study showed that administration of a single dose of RhG-CSF (10 μg/kg) was effective in treating neonatal septicemic neutropenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guthier, C; University Medical Center Mannheim, Mannheim; Harvard Medical School, Boston, MA
Purpose: Inverse treatment planning (ITP) for interstitial HDR brachytherapy of gynecologic cancers seeks to maximize coverage of the clinical target volumes (tumor and vagina) while respecting dose-volume-histogram related dosimetric measures (DMs) for organs at risk (OARs). Commercially available ITP tools do not support DM-based planning because it is computationally too expensive to solve. In this study we present a novel approach that allows fast ITP for gynecologic cancers based on DMs for the first time. Methods: This novel strategy is an optimization model based on a smooth DM-based objective function. The smooth approximation is achieved by utilizing a logistic functionmore » for the evaluation of DMs. The resulting nonconvex and constrained optimization problem is then optimized with a BFGS algorithm. The model was evaluated using the implant geometry extracted from 20 patient treatment plans under an IRB-approved retrospective study. For each plan, the final DMs were evaluated and compared to the original clinical plans. The CTVs were the contoured tumor volume and the contoured surface of the vagina. Statistical significance was evaluated with a one-sided paired Wilcoxon signed-rank test. Results: As did the clinical plans, all generated plans fulfilled the defined DMs for OARs. The proposed strategy showed a statistically significant improvement (p<0.001) in coverage of the tumor and vagina, with absolute improvements of related DMs of (6.9 +/− 7.9)% and (28.2 +/− 12.0)%, respectively. This was achieved with a statistically significant (p<0.01) decrease of the high-dose-related DM for the tumor. The runtime of the optimization was (2.3 +/− 2.0) seconds. Conclusion: We demonstrated using clinical data that our novel approach allows rapid DM-based optimization with improved coverage of CTVs with fewer hot spots. Being up to three orders of magnitude faster than the current clinical practice, the method dramatically shortens planning time.« less
Luo, Z; Li, X; Zhu, M; Tang, J; Li, Z; Zhou, X; Song, G; Liu, Z; Zhou, H; Zhang, W
2017-01-01
Essentials Required warfarin doses for mechanical heart valves vary greatly. A two-stage extreme phenotype design was used to identify novel warfarin dose associated mutation. We identified a group of variants significantly associated with extreme warfarin dose. Four novel identified mutations account for 2.2% of warfarin dose discrepancies. Background The variation among patients in warfarin response complicates the management of warfarin therapy, and an improper therapeutic dose usually results in serious adverse events. Objective To use a two-stage extreme phenotype strategy in order to discover novel warfarin dose-associated mutations in heart valve replacement patients. Patients/method A total of 1617 stable-dose patients were enrolled and divided randomly into two cohorts. Stage I patients were genotyped into three groups on the basis of VKORC1-1639G>A and CYP2C9*3 polymorphisms; only patients with the therapeutic dose at the upper or lower 5% of each genotype group were selected as extreme-dose patients for resequencing of the targeted regions. Evaluation of the accuracy of the sequence data and the potential value of the stage I-identified significant mutations were conducted in a validation cohort of 420 subjects. Results A group of mutations were found to be significantly associated with the extreme warfarin dose. The validation work finally identified four novel mutations, i.e. DNMT3A rs2304429 (24.74%), CYP1A1 rs3826041 (47.35%), STX1B rs72800847 (7.01%), and NQO1 rs10517 (36.11%), which independently and significantly contributed to the overall variability in the warfarin dose. After addition of these four mutations, the estimated regression equation was able to account for 56.2% (R 2 Adj = 0.562) of the overall variability in the warfarin maintenance dose, with a predictive accuracy of 62.4%. Conclusion Our study provides evidence linking genetic variations in STX1B, DNMT3A and CYP1A1 to warfarin maintenance dose. The newly identified mutations together account for 2.2% of warfarin dose discrepancy. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
Tharavichtikul, Ekkasit; Meungwong, Pooriwat; Chitapanarux, Taned; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Wanwilairat, Somsak; Traisathit, Patrinee; Galalae, Razvan; Chitapanarux, Imjai
2014-06-01
To evaluate association between equivalent dose in 2 Gy (EQD2) to rectal point dose and gastrointestinal toxicity from whole pelvic radiotherapy (WPRT) and intracavitary brachytherapy (ICBT) in cervical cancer patients who were evaluated by rectosigmoidoscopy in Faculty of Medicine, Chiang Mai University. Retrospective study was designed for the patients with locally advanced cervical cancer, treated by radical radiotherapy from 2004 to 2009 and were evaluated by rectosigmoidoscopy. The cumulative doses of WPRT and ICBT to the maximally rectal point were calculated to the EQD2 and evaluated the association of toxicities. Thirty-nine patients were evaluated for late rectal toxicity. The mean cumulative dose in term of EQD2 to rectum was 64.2 Gy. Grade 1 toxicities were the most common findings. According to endoscopic exam, the most common toxicities were congested mucosa (36 patients) and telangiectasia (32 patients). In evaluation between rectal dose in EQD2 and toxicities, no association of cumulative rectal dose to rectal toxicity, except the association of cumulative rectal dose in EQD2 >65 Gy to late effects of normal tissue (LENT-SOMA) scale ≥ grade 2 (p = 0.022; odds ratio, 5.312; 95% confidence interval, 1.269-22.244). The cumulative rectal dose in EQD2 >65 Gy have association with ≥ grade 2 LENT-SOMA scale.
Meungwong, Pooriwat; Chitapanarux, Taned; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Wanwilairat, Somsak; Traisathit, Patrinee; Galalae, Razvan; Chitapanarux, Imjai
2014-01-01
Purpose To evaluate association between equivalent dose in 2 Gy (EQD2) to rectal point dose and gastrointestinal toxicity from whole pelvic radiotherapy (WPRT) and intracavitary brachytherapy (ICBT) in cervical cancer patients who were evaluated by rectosigmoidoscopy in Faculty of Medicine, Chiang Mai University. Materials and Methods Retrospective study was designed for the patients with locally advanced cervical cancer, treated by radical radiotherapy from 2004 to 2009 and were evaluated by rectosigmoidoscopy. The cumulative doses of WPRT and ICBT to the maximally rectal point were calculated to the EQD2 and evaluated the association of toxicities. Results Thirty-nine patients were evaluated for late rectal toxicity. The mean cumulative dose in term of EQD2 to rectum was 64.2 Gy. Grade 1 toxicities were the most common findings. According to endoscopic exam, the most common toxicities were congested mucosa (36 patients) and telangiectasia (32 patients). In evaluation between rectal dose in EQD2 and toxicities, no association of cumulative rectal dose to rectal toxicity, except the association of cumulative rectal dose in EQD2 >65 Gy to late effects of normal tissue (LENT-SOMA) scale ≥ grade 2 (p = 0.022; odds ratio, 5.312; 95% confidence interval, 1.269-22.244). Conclusion The cumulative rectal dose in EQD2 >65 Gy have association with ≥ grade 2 LENT-SOMA scale. PMID:25061573
Fonseca, Yris Maria; Catini, Carolina Dias; Vicentini, Fabiana T M C; Nomizo, Auro; Gerlach, Raquel Fernanda; Fonseca, Maria José Vieira
2010-02-17
Calendula officinalis flowers have long been employed time in folk therapy, and more than 35 properties have been attributed to decoctions and tinctures from the flowers. The main uses are as remedies for burns (including sunburns), bruises and cutaneous and internal inflammatory diseases of several origins. The recommended doses are a function both of the type and severity of the condition to be treated and the individual condition of each patient. Therefore, the present study investigated the potential use of Calendula officinalis extract to prevent UV irradiation-induced oxidative stress in skin. Firstly, the physico-chemical composition of marigold extract (ME) (hydroalcoholic extract) was assessed and the in vitro antioxidant efficacy was determined using different methodologies. Secondly, the cytotoxicity was evaluated in L929 and HepG2 cells with the MTT assay. Finally, the in vivo protective effect of ME against UVB-induced oxidative stress in the skin of hairless mice was evaluated by determining reduced glutathione (GSH) levels and monitoring the secretion/activity of metalloproteinases. The polyphenol, flavonoid, rutin and narcissin contents found in ME were 28.6 mg/g, 18.8 mg/g, 1.6 mg/g and 12.2mg/g, respectively and evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ME against different radicals. Cytoxicity experiments demonstrated that ME was not cytotoxic for L929 and HepG2 cells at concentrations less than or equal to of 15 mg/mL. However, concentrations greater than or equal to 30 mg/mL, toxic effects were observed. Finally, oral treatment of hairless mice with 150 and 300 mg/kg of ME maintained GSH levels close to non-irradiated control mice. In addition, this extract affects the activity/secretion of matrix metalloproteinases 2 and 9 (MMP-2 and -9) stimulated by exposure to UVB irradiation. However, additional studies are required to have a complete understanding of the protective effects of ME for skin. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm, J; Mein, S; McNiven, A
2015-06-15
Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less
Alexander, Joe; Edwards, Roger A; Manca, Luigi; Grugni, Roberto; Bonfanti, Gianluca; Emir, Birol; Whalen, Edward; Watt, Stephen; Parsons, Bruce
2018-03-01
Achieving a therapeutic response to pregabalin in patients with painful diabetic peripheral neuropathy (pDPN) requires adequate upward dose titration. Our goal was to identify relationships between titration and response to pregabalin in patients with pDPN. Data were integrated from nine randomized, placebo-controlled clinical trials as well as one 6-week open-label observational study conducted by 5808 physicians (2642 patients with pDPN) in standard outpatient settings in Germany. These studies evaluated pregabalin for treatment of pDPN. Using these data, we examined "what if" scenarios using a microsimulation platform that integrates data from randomized and observational sources as well as autoregressive-moving-average with exogenous inputs models that predict pain outcomes, taking into account weekly changes in pain, sleep interference, dose, and other patient characteristics that were unchanging. Final pain levels were significantly different depending on dose changes (P < 0.0001), with greater proportions improving with upward titration regardless of baseline pain severity. Altogether, 78.5% of patients with pDPN had 0-1 dose change, and 15.2% had ≥ 2 dose changes. Simulation demonstrated that the 4.8% of inadequately titrated patients who did not improve/very much improve their pain levels would have benefited from ≥ 2 dose changes. Patient satisfaction with tolerability (range 90.3-96.2%) was similar, regardless of baseline pain severity, number of titrations, or extent of improvement, suggesting that tolerability did not influence treatment response patterns. Upward dose titration reduced pain in patients with pDPN who actually received it. Simulation also predicted pain reduction in an inadequately titrated nonresponder subgroup of patients had they actually received adequate titration. The decision not to uptitrate must have been driven by factors other than tolerability. Pfizer, Inc.
Wu, Zikang; Yao, Jun; Bao, Hongdan; Chen, Yongdi; Lu, Shunshun; Li, Jing; Yang, Linna; Jiang, Zhenggang; Ren, Jingjing; Xu, Kai-Jin; Ruan, Bing; Yang, Shi-Gui; Xie, Tian-Sheng; Li, Qian
2018-05-04
The aim of this study was to evaluate changes in hepatitis B surface antibody titers (anti-HBs) after booster vaccinations in children aged 5-15 y and to provide suitable immunization strategies. A total of 2208 children were initially enrolled in screening, and 559 children were finally included. The participants were divided into 2 groups according to their pre-booster anti-HBs levels: Group I, <10 mIU/ml and Group II, ≥10 mIU/ml. Group I was administered 3 doses of booster hepatitis B vaccine (0-1-6 months, 10 μg), and Group II was administered 1 dose of booster hepatitis B vaccine (10 μg). The antibody titer changes were examined at 4 time points: 1 month after dose 1 and dose 3, and 1 year and 5 years after dose 3. The protective seroconversion rates at those points were 95.65%, 99.67%, 97.59% and 91.05% (p < 0.001), respectively, in Group I, and 100.00%, 99.87%, 99.66% and 98.21% (χ 2 = 6.04, p = 0.11), respectively, in Group II. The GMT in subjects aged 5-9 y were higher than that in subjects aged 10-15 y in both Group I and Group II at 1 month after dose 1, but no difference was observed at the other three time points. This study demonstrates that booster vaccination has a good medium-term effect. A booster dose for subjects with protective antibodies is not necessary but effective, and 3 doses of hepatitis B vaccination are recommended for those who have lost immunological memory. Receiving booster immunization at the age of 10-15 years may be more appropriate for individuals living in HBV high epidemic areas.
Guttmann, David M; Mitra, Nandita; Bekelman, Justin; Metz, James M; Plastaras, John; Feng, Weiwei; Swisher-McClure, Samuel
2017-07-01
The aim of this study was to characterize utilization and survival outcomes associated with primary tumor-directed radiotherapy (PTDRT) in patients with newly diagnosed metastatic esophageal cancer. We conducted an observational cohort study using the National Cancer Data Base to evaluate patients with newly diagnosed metastatic esophageal cancer between 2004 and 2012. Overall survival outcomes after treatment with chemotherapy plus conventional palliative dose radiotherapy (<5040 cGy), chemotherapy plus definitive dose radiotherapy (≥5040 cGy), or chemotherapy alone were compared by using Cox proportional hazards models with inverse probability of treatment weighting using the propensity score. Potential unmeasured confounding was assessed through sensitivity analyses. The final cohort consisted of 12,683 patients: 57% were treated with chemotherapy alone, 24% were treated with chemotherapy plus palliative dose radiotherapy, and 19% were treated with chemotherapy plus definitive dose radiotherapy. Compared with chemotherapy alone, chemotherapy plus definitive dose radiotherapy was associated with improved survival (median overall survival of 8.3 versus 11.3 months [hazard ratio = 0.72, 95% confidence interval: 0.70-0.74, p ≤ 0.001]), whereas chemotherapy plus palliative dose radiotherapy was associated with slightly inferior outcomes (median overall survival of 8.3 months versus 7.5 months (hazard ratio = 1.10, 95% confidence interval 1.07-1.13, p ≤ 0.001). These findings were robust to potential unmeasured confounding in sensitivity analyses. Additionally, landmark analyses confirmed these findings in patients surviving 12 months or longer. Definitive dose, but not conventional palliative dose, PTDRT is associated with improved overall survival in metastatic esophageal cancer, suggesting that local control may be important to prognosis. These findings support integrating PTDRT into future clinical trials aimed at refining personalized treatment for patients with metastatic esophageal cancer. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M
2013-02-01
To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.
Iwata, Hiromitsu; Inoue, Mitsuhiro; Shiomi, Hiroya; Murai, Taro; Tatewaki, Koshi; Ohta, Seiji; Okawa, Kohei; Yokota, Naoki; Shibamoto, Yuta
2016-02-01
We investigated the dose uncertainty caused by errors in real-time tracking intensity-modulated radiation therapy (IMRT) using the CyberKnife Synchrony Respiratory Tracking System (SRTS). Twenty lung tumors that had been treated with non-IMRT real-time tracking using CyberKnife SRTS were used for this study. After validating the tracking error in each case, we did 40 IMRT planning using 8 different collimator sizes for the 20 patients. The collimator size was determined for each planning target volume (PTV); smaller ones were one-half, and larger ones three-quarters, of the PTV diameter. The planned dose was 45 Gy in 4 fractions prescribed at 95% volume border of the PTV. Thereafter, the tracking error in each case was substituted into calculation software developed in house and randomly added in the setting of each beam. The IMRT planning incorporating tracking errors was simulated 1000 times, and various dose data on the clinical target volume (CTV) were compared with the original data. The same simulation was carried out by changing the fraction number from 1 to 6 in each IMRT plan. Finally, a total of 240 000 plans were analyzed. With 4 fractions, the change in the CTV maximum and minimum doses was within 3.0% (median) for each collimator. The change in D99 and D95 was within 2.0%. With decreases in the fraction number, the CTV coverage rate and the minimum dose decreased and varied greatly. The accuracy of real-time tracking IMRT delivered in 4 fractions using CyberKnife SRTS was considered to be clinically acceptable. © The Author(s) 2014.
Ferretti, A; Martignano, A; Simonato, F; Paiusco, M
2014-02-01
The aim of the present work was the validation of the VMC(++) Monte Carlo (MC) engine implemented in the Oncentra Masterplan (OMTPS) and used to calculate the dose distribution produced by the electron beams (energy 5-12 MeV) generated by the linear accelerator (linac) Primus (Siemens), shaped by a digital variable applicator (DEVA). The BEAMnrc/DOSXYZnrc (EGSnrc package) MC model of the linac head was used as a benchmark. Commissioning results for both MC codes were evaluated by means of 1D Gamma Analysis (2%, 2 mm), calculated with a home-made Matlab (The MathWorks) program, comparing the calculations with the measured profiles. The results of the commissioning of OMTPS were good [average gamma index (γ) > 97%]; some mismatches were found with large beams (size ≥ 15 cm). The optimization of the BEAMnrc model required to increase the beam exit window to match the calculated and measured profiles (final average γ > 98%). Then OMTPS dose distribution maps were compared with DOSXYZnrc with a 2D Gamma Analysis (3%, 3 mm), in 3 virtual water phantoms: (a) with an air step, (b) with an air insert, and (c) with a bone insert. The OMTPD and EGSnrc dose distributions with the air-water step phantom were in very high agreement (γ ∼ 99%), while for heterogeneous phantoms there were differences of about 9% in the air insert and of about 10-15% in the bone region. This is due to the Masterplan implementation of VMC(++) which reports the dose as "dose to water", instead of "dose to medium". Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma.
Paulino, Arnold C; Mazloom, Ali; Terashima, Keita; Su, Jack; Adesina, Adekunle M; Okcu, M Faith; Teh, Bin S; Chintagumpala, Murali
2013-07-15
The objective of this study was to evaluate local control and patterns of failure in pediatric patients with low-grade glioma (LGG) who received treatment with intensity-modulated radiation therapy (IMRT). In total, 39 children received IMRT after incomplete resection or disease progression. Three methods of target delineation were used. The first was to delineate the gross tumor volume (GTV) and add a 1-cm margin to create the clinical target volume (CTV) (Method 1; n = 19). The second was to add a 0.5-cm margin around the GTV to create the CTV (Method 2; n = 6). The prescribed dose to the GTV was the same as dose to the CTV for both Methods 1 and 2 (median, 50.4 grays [Gy]). The final method was dose painting, in which a GTV was delineated with a second target volume (2TV) created by adding 1 cm to the GTV (Method 3; n = 14). Different doses were prescribed to the GTV (median, 50.4 Gy) and the 2TV (median, 41.4 Gy). The 8-year progression-free and overall survival rates were 78.2% and 93.7%, respectively. Seven failures occurred, all of which were local in the high-dose (≥95%) region of the IMRT field. On multivariate analysis, age ≤5 years at time of IMRT had a detrimental impact on progression-free survival. IMRT provided local control rates comparable to those provided by 2-dimensional and 3-dimensional radiotherapy. Margins ≥1 cm added to the GTV may not be necessary, because excellent local control was achieved by adding a 0.5-cm margin (Method 2) and by dose painting (Method 3). © 2013 American Cancer Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J; Li, X; Ding, X
Purpose: We investigate the spot characteristic and dose profiles properties from a compact gantry proton therapy system. This compact design features a dedicated pencil beam scanning nozzle with the scanning magnet located upstream of the final 60 degree bending magnet. Due to the unique beam line design, uncertainty has been raised in the virtual source-to-axis distance (SAD). We investigate its potential clinical impact through measurements and simulation. Methods: A scintillator camera based detector was used to measure spot characteristics and position accuracy. An ion chamber array device was used to measure planar dose profile. Dose profile in-air simulation was performedmore » using in-house built MATLAB program based on additional spot parameters directly from measurements. Spot characteristics such as position and in-air sigma values were used to general simulated 2D elliptical Gaussian spots. The virtual SAD distance changes in the longitudinal direction were also simulated. Planar dose profiles were generated by summation of simulated spots at the isocenter, 15 cm above the isocenter, and 15 cm below the isocenter for evaluation of potential clinical dosimetric impact. Results: We found that the virtual SAD varies depending on the spot location on the longitudinal axis. Measurements have shown that the variable SAD changes from 7 to 12 meters from one end to the other end of the treatment field in the longitudinal direction. The simulation shows that the planer dose profiles differences between the fixed SAD and variable SAD are within 3% from the isocenter profile and the lateral penumbras are within 1 mm difference. Conclusion: Our measurements and simulations show that there are minimum effects on the spot characteristics and dose profiles for this up-stream scanning compact system proton system. Further treatment planning study is needed with the variable virtual SAD accounted for in the planning system to show minimum dosimetric impact.« less
γTools: A modular multifunction phantom for quality assurance in GammaKnife treatments.
Calusi, Silvia; Noferini, Linhsia; Marrazzo, Livia; Casati, Marta; Arilli, Chiara; Compagnucci, Antonella; Talamonti, Cinzia; Scoccianti, Silvia; Greto, Daniela; Bordi, Lorenzo; Livi, Lorenzo; Pallotta, Stefania
2017-11-01
We present the γTools, a new phantom designed to assess geometric and dosimetric accuracy in Gamma Knife treatments, together with first tests and results of applications. The phantom is composed of two modules: the imaging module, a regular grid of 1660 control points to evaluate image distortions and image registration result and the dosimetry module for delivered dose distribution measurements. The phantom is accompanied by a MatLab routine for image distortions quantification. Dose measurement are performed with Gafchromic films fixed between two inserts and placed in various positions and orientations inside the dosimetry module thus covering a volume comparable to the full volume of a head. Tests performed to assess the accuracy and precision of the imaging module demonstrated sub-millimetric values. As an example of possible applications, the phantom was employed to measure image distortions of two MRI scanners and to perform dosimetric studies of single shots delivered to homogeneous and heterogeneous materials. Due to the phantom material, the measured absolute dose do not correspond to the planned dose; doses comparisons are thus carried out between normalized dose distributions. Finally, an end-to-end test was carried out in the treatment of a neuroma-like target which resulted in a 100% gamma passing rate (2% local, 2 mm) and a distance between the real target perimeter and the prescription isodose centroids of about 1 mm. The tests demonstrate that the proposed phantom is suitable to assess both the geometrical and relative dosimetric accuracy of Gamma Knife radiosurgery treatments. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Picard, S.; Burns, D. T.; Roger, P.; de Prez, L. A.; Jansen, B. J.; Pooter, J. A.
2017-01-01
A comparison of the dosimetry for accelerator photon beams was carried out between the Dutch Metrology Institute (VSL) and the Bureau International des Poids et Mesures (BIPM) from 23 September to 20 October 2014. The comparison was based on the determination of absorbed dose to water for three radiation qualities of the medical accelerator facilities of the National Physical Laboratory (United Kingdom). After establishing Draft B, the VSL discovered an error in the calculation of the correction factor for excess-heat linked to the VSL glass vessel used in the measurements at the NPL. The comparison results for the revised standard, reported as ratios of the VSL and the BIPM evaluations (and with the combined standard uncertainties given in parentheses), are 0.9959 (54) at 6 MV, 0.9958 (64) at 10 MV and 0.9991 (75) at 25 MV. This result is part of the on-going BIPM.RI(I)-K6 series of comparisons. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Song, Ling; Zhang, Yi; Jiang, Ji; Ren, Shuang; Chen, Li; Liu, Dongyang; Chen, Xijing; Hu, Pei
2018-04-06
The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for sinogliatin (HMS-5552, dorzagliatin) by integrating allometric scaling (AS), in vitro to in vivo exploration (IVIVE), and steady-state concentration-mean residence time (C ss -MRT) methods and to provide mechanistic insight into its pharmacokinetic properties in humans. Human major pharmacokinetic parameters were analyzed using AS, IVIVE, and C ss -MRT methods with available preclinical in vitro and in vivo data to understand sinogliatin drug metabolism and pharmacokinetic (DMPK) characteristics and underlying mechanisms. On this basis, an initial mechanistic PBPK model of sinogliatin was developed. The initial PBPK model was verified using observed data from a single ascending dose (SAD) study and further optimized with various strategies. The final model was validated by simulating sinogliatin pharmacokinetics under a fed condition. The validated model was applied to support a clinical drug-drug interaction (DDI) study design and to evaluate the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. The two-species scaling method using rat and dog data (TS- rat,dog ) was the best AS method in predicting human systemic clearance in the central compartment (CL). The IVIVE method confirmed that sinogliatin was predominantly metabolized by cytochrome P450 (CYP) 3A4. The C ss -MRT method suggested dog pharmacokinetic profiles were more similar to human pharmacokinetic profiles. The estimated CL using the AS and IVIVE approaches was within 1.5-fold of that observed. The C ss -MRT method in dogs also provided acceptable prediction of human pharmacokinetic characteristics. For the PBPK approach, the 90% confidence intervals (CIs) of the simulated maximum concentration (C max ), CL, and area under the plasma concentration-time curve (AUC) of sinogliatin were within those observed and the 90% CI of simulated time to C max (t max ) was closed to that observed for a dose range of 5-50 mg in the SAD study. The final PBPK model was validated by simulating sinogliatin pharmacokinetics with food. The 90% CIs of the simulated C max , CL, and AUC values for sinogliatin were within those observed and the 90% CI of the simulated t max was partially within that observed for the dose range of 25-200 mg in the multiple ascending dose (MAD) study. This PBPK model selected a final clinical DDI study design with itraconazole from four potential designs and also evaluated the effects of intrinsic (hepatic cirrhosis, genetic) factors on drug exposure. Sinogliatin pharmacokinetic properties were mechanistically understood by integrating all four methods and a mechanistic PBPK model was successfully developed and validated using clinical data. This PBPK model was applied to support the development of sinogliatin.
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L; Ding, G
Purpose: Dose calculation accuracy for the out-of-field dose is important for predicting the dose to the organs-at-risk when they are located outside primary beams. The investigations on evaluating the calculation accuracy of treatment planning systems (TPS) on out-of-field dose in existing publications have focused on low energy (6MV) photon. This study evaluates out-of-field dose calculation accuracy of AAA algorithm for 15MV high energy photon beams. Methods: We used the EGSnrc Monte Carlo (MC) codes to evaluate the AAA algorithm in Varian Eclipse TPS (v.11). The incident beams start with validated Varian phase-space sources for a TrueBeam linac equipped with Millenniummore » 120 MLC. Dose comparisons between using AAA and MC for CT based realistic patient treatment plans using VMAT techniques for prostate and lung were performed and uncertainties of organ dose predicted by AAA at out-of-field location were evaluated. Results: The results show that AAA calculations under-estimate doses at the dose level of 1% (or less) of prescribed dose for CT based patient treatment plans using VMAT techniques. In regions where dose is only 1% of prescribed dose, although AAA under-estimates the out-of-field dose by 30% relative to the local dose, it is only about 0.3% of prescribed dose. For example, the uncertainties of calculated organ dose to liver or kidney that is located out-of-field is <0.3% of prescribed dose. Conclusion: For 15MV high energy photon beams, very good agreements (<1%) in calculating dose distributions were obtained between AAA and MC. The uncertainty of out-of-field dose calculations predicted by the AAA algorithm for realistic patient VMAT plans is <0.3% of prescribed dose in regions where the dose relative to the prescribed dose is <1%, although the uncertainties can be much larger relative to local doses. For organs-at-risk located at out-of-field, the error of dose predicted by Eclipse using AAA is negligible. This work was conducted in part using the resources of Varian research grant VUMC40590-R.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anspaugh, L. R.; Napier, Bruce A.
2009-10-23
This brief report documents the selection of parameters needed to support individual-dose calculations from 131I released into the environment with gaseous effluents from the Mayak Production Association.
Lim, Joo Hee; Kim, Soo Jung; Jung, Mo Kyung; Kim, Ki Eun; Kwon, Ah Reum; Chae, Hyun Wook; Kim, Duk Hee; Kim, Ho-Seong
2016-03-01
A 14-year-old girl was referred for evaluation of the etiology of Cushing syndrome. During the previous 2 years, she had experienced weight gain, secondary amenorrhea, growth retardation, and back pain. Random serum cortisol level, 24-hour urinary free cortisol excretion, and overnight and low-dose dexamethasone suppression tests suggested Cushing syndrome. Midnight adrenocorticotropic hormone (ACTH) level and high-dose dexamethasone suppression test confirmed Cushing disease. Pituitary magnetic resonance imaging was suspicious for microadenoma. To eliminate ectopic ACTH syndrome, and lateralize the pituitary tumor, inferior petrosal sinus sampling (IPSS) was performed by desmopressin use to stimulate ACTH. Finally, the patient was diagnosed with Cushing disease due to ACTH-secreting pituitary microadenoma, lateralized to the left side; subsequently underwent transsphenoidal surgery. Here we report a case of a 14-year-old girl diagnosed with Cushing disease with a pituitary tumor lateralized by IPSS using desmopressin, which is very rare in pediatric Cushing disease.
Establishing bioequivalence of veterinary premixes (Type A medicated articles).
Hunter, R P; Lees, P; Concordet, D; Toutain, P-L
2012-04-01
a) Key issues concerning Premix (Type A medicated articles) Bioequivalence evaluations: 1) This is a complex issue concerning both route of administration and formulation. 2) If the animal is not at the bunk/trough, the animal is not self-administering (eating medicated feed), thus there can be no drug absorption. b) Differing opinions among scientists and regulatory authorities/expert bodies regarding: 1) No harmonization on how to design, conduct, and interpret in vivo studies. 2) Applicability of biowaivers to Type A (premix) products. 3) Why are topdress and complete feed considered differently? Are they different formulations or different routes of administration? 4) Single dose vs. multi-dose studies. 5) What is the final formulation? c) What are the next steps: 1) Harmonize current bioequivalence guidelines through the VICH process. 2) Determine the applicability/non-applicability of the Biopharmaceutical Classification System (BCS). 3) Establish the Total Mixed Ration (i.e. formulation) effects. 4) Define the test subject (individual, pen, etc.). © 2012 Blackwell Publishing Ltd.
An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents.
Matzno, Sumio; Yamaguchi, Yuka; Akiyoshi, Takeshi; Nakabayashi, Toshikatsu; Matsuyama, Kenji
2008-06-01
The possibility of vitamin K3 (VK3) as an anticancer agent was assessed. VK3 dose-dependently diminished the cell viability (measured as esterase activity) with IC50 of 13.7 microM and Hill coefficient of 3.1 in Hep G2 cells. It also decreased the population of S phase and arrested cell cycle in the G2/M phase in a dose-dependent manner. G2/M arrest was regulated by the increment of cyclin A/cdk1 and cyclin A/cdk2 complex, and contrasting cyclin B/cdk1 complex decrease. Finally, combined application demonstrated that VK3 significantly enhanced the cytotoxicity of etoposide, a G2 phase-dependent anticancer agent, whereas it reduced the cytotoxic activity of irinotecan, a S phase-dependent agent. These findings suggest that VK3 induces G2/M arrest by inhibition of cyclin B/cdk1 complex formation, and is thus useful as an enhancer of G2 phase-dependent drugs in hepatic cancer chemotherapy.
Gavatha, M; Ioannou, I; Papavasiliou, A S
2011-04-01
The results of adjunctive lacosamide treatment in 18 pediatric patients with pharmacoresistant focal epilepsy are reported. All had severe forms of focal epilepsy with or without secondary generalization and were concurrently receiving one to three other antiepileptic drugs. Lacosamide was administered orally, and final dose, after slow titration, ranged between 1.7 and 10 mg/kg. Mean treatment duration was 8 months (range=3 weeks-17 months). Treatment efficacy was assessed at two time points with a 1-year interval. The reported greater than 50% reduction in seizure frequency was 36% in the initial short-term and 20% in the following long-term assessment. Side effects, mostly somnolence and irritability, were reported by 39% of patients in both evaluations. Our data suggest that lacosamide treatment in pediatric patients is safe at doses up to 10 mg/kg/day without any major side effects, but studies in larger series are needed to validate and extend these findings. Copyright © 2011 Elsevier Inc. All rights reserved.
Bixler, Sandra L; Bocan, Thomas M; Wells, Jay; Wetzel, Kelly S; Van Tongeren, Sean A; Garza, Nicole L; Donnelly, Ginger; Cazares, Lisa H; Soloveva, Veronica; Welch, Lisa; Epstein, Carol; Liang, Li-Fang; Giesing, Dennis; Lenk, Robert; Bavari, Sina; Warren, Travis K
2018-03-01
During the 2013-2016 Ebola virus (EBOV) outbreak in West Africa, our team at USAMRIID evaluated the antiviral activity of a number of compounds, including favipiravir (T-705), in vitro and in mouse and nonhuman primate (NHP) models of Ebola virus disease. In this short communication, we present our findings for favipiravir in cell culture and in mice, while an accompanying paper presents the results of NHP studies. We confirmed previous reports that favipiravir has anti-EBOV activity in mice. Additionally, we found that the active form of favipiravir is generated in mice in tissues relevant for the pathogenesis of EBOV infection. Finally, we observed that protection can be achieved in mice down to 8 mg/kg/day, which is lower than the dosing regimens previously reported. An accompanying paper reports the results of treating nonhuman primates infected with EBOV or with Marburg virus with oral or intravenous favipiravir. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rampado, Osvaldo, E-mail: orampado@cittadellasalute.to.it; Giglioli, Francesca Romana; Rossetti, Veronica
Purpose: The aim of this study was to evaluate various approaches for assessing patient organ doses resulting from radiotherapy cone-beam CT (CBCT), by the use of thermoluminescent dosimeter (TLD) measurements in anthropomorphic phantoms, a Monte Carlo based dose calculation software, and different dose indicators as presently defined. Methods: Dose evaluations were performed on a CBCT Elekta XVI (Elekta, Crawley, UK) for different protocols and anatomical regions. The first part of the study focuses on using PCXMC software (PCXMC 2.0, STUK, Helsinki, Finland) for calculating organ doses, adapting the input parameters to simulate the exposure geometry, and beam dose distribution inmore » an appropriate way. The calculated doses were compared to readouts of TLDs placed in an anthropomorphic Rando phantom. After this validation, the software was used for analyzing organ dose variability associated with patients’ differences in size and gender. At the same time, various dose indicators were evaluated: kerma area product (KAP), cumulative air-kerma at the isocenter (K{sub air}), cone-beam dose index, and central cumulative dose. The latter was evaluated in a single phantom and in a stack of three adjacent computed tomography dose index phantoms. Based on the different dose indicators, a set of coefficients was calculated to estimate organ doses for a range of patient morphologies, using their equivalent diameters. Results: Maximum organ doses were about 1 mGy for head and neck and 25 mGy for chest and pelvis protocols. The differences between PCXMC and TLDs doses were generally below 10% for organs within the field of view and approximately 15% for organs at the boundaries of the radiation beam. When considering patient size and gender variability, differences in organ doses up to 40% were observed especially in the pelvic region; for the organs in the thorax, the maximum differences ranged between 20% and 30%. Phantom dose indexes provided better correlation with organ doses than K{sub air} and KAP, with average ratios ranging between 0.9 and 1.1 and variations for different organs and protocols below 20%. The triple phantom setup allowed us to take into account scatter dose contributions, but nonetheless, the correlation with the evaluated organ doses was not improved with this method. Conclusions: The simulation of rotational geometry and of asymmetric beam distribution by means of PCXMC 2.0 enabled us to determine patient organ doses depending on weight, height and gender. Alternatively, the measurement of an in phantom dose indicator combined with proper correction coefficients can be a useful tool for a first dose estimation of in-field organs. The data and coefficients provided in this study can be applied to any patient undergoing a scan by an Elekta XVI equipment.« less
SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, G; Liu, J
Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vectormore » Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer hospital of Hunan province.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Yuan, F; Templeton, A
Purpose: The ultimate goal of radiotherapy treatment planning is to find a treatment that will yield a high tumor-control-probability(TCP) with an acceptable normal-tissue-complication probability(NTCP). Yet most treatment planning today is not based upon optimization of TCPs and NTCPs, but rather upon meeting physical dose and volume constraints defined by the planner. We design treatment plans that optimize TCP directly and contrast them with the clinical dose-based plans. PET image is incorporated to evaluate gain in TCP for dose escalation. Methods: We build a nonlinear mixed integer programming optimization model that maximizes TCP directly while satisfying the dose requirements on themore » targeted organ and healthy tissues. The solution strategy first fits the TCP function with a piecewise-linear approximation, then solves the problem that maximizes the piecewise linear approximation of TCP, and finally performs a local neighborhood search to improve the TCP value. To gauge the feasibility, characteristics, and potential benefit of PET-image guided dose escalation, initial validation consists of fifteen cervical cancer HDR patient cases. These patients have all received prior 45Gy of external radiation dose. For both escalated strategies, we consider 35Gy PTV-dose, and two variations (37Gy-boost to BTV vs 40Gy-boost) to PET-image-pockets. Results: TCP for standard clinical plans range from 59.4% - 63.6%. TCP for dose-based PET-guided escalated-dose-plan ranges from 63.8%–98.6% for all patients; whereas TCP-optimized plans achieves over 91% for all patients. There is marginal difference in TCP among those with 37Gy-boosted vs 40Gy-boosted. There is no increase in rectum and bladder dose among all plans. Conclusion: Optimizing TCP directly results in highly conformed treatment plans. The TCP-optimized plan is individualized based on the biological PET-image of the patients. The TCP-optimization framework is generalizable and has been applied successfully to other external-beam delivery modalities. A clinical trial is on-going to gauge the clinical significance. Partially supported by the National Science Foundation.« less
A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.
Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J
2017-01-26
The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).
Utilizing of inner porous structure in injection moulds for application of special cooling method
NASA Astrophysics Data System (ADS)
Seidl, M.; Bobek, J.; Šafka, J.; Habr, J.; Nováková, I.; Běhálek, L.
2016-04-01
The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses.
NASA Astrophysics Data System (ADS)
Hadsell, Michael John, Jr.
Microbeam radiation therapy (MRT) is a new type of cancer treatment currently being studied at scattered synchrotron sites throughout the world. It has been shown to be capable of ablating aggressive brain tumors in rats while almost completely sparing the surrounding normal tissue. This promising technique has yet to find its way to the clinic, however, because the radiobiological mechanisms behind its efficacy are still largely unknown. This is partly due to the lack of a compact device that could facilitate more large scale research. The challenges inherent to creating a compact device lie within the structure of MRT, which uses parallel arrays of ultra high-dose, orthovoltage, microplanar beams on the order of 100mum thick and separated by four to ten times their width. Because of focal spot limitations, current commercial orthovoltage devices are simply not capable of creating such arrays at dose rates high enough for effective treatment while maintaining the microbeam pattern necessary to retain the high therapeutic ratio of the technique. Therefore, the development of a compact MRT device using carbon nanotube (CNT) cathode based X-ray technology is presented here. CNT cathodes have been shown to be capable of creating novel focal spot arrays on a single anode while being robust enough for long-term use in X-ray tubes. Using these cathodes, an X-ray tube with a single focal line has been created for the delivery of MRT dose distributions in radiobiological studies on small animals. In this work, the development process and final design of this specialized device will be detailed, along with the optimization and stabilization of its use for small animal studies. In addition, a detailed characterization of its final capabilities will be given; including a comprehensive measurement of its X-ray focal line dimensions, a description and evaluation of its collimator alignment and microbeam dimensions, and a full-scale phantom-based quantification of its dosimetric output. Finally, future project directions will be described briefly along with plans for a second generation device. Based on the results of this work, it is the author's belief that compact CNT MRT devices have definite commercialization potential for radiobiological research.
NASA Astrophysics Data System (ADS)
Matsui, Shinjiro; Hattori, Takeaki; Nonaka, Takashi; Watanabe, Yuki; Morita, Ippei; Kondo, Junichi; Ishikawa, Masayoshi; Mori, Yoshitaka
2018-05-01
The relative dose in a layer, which is thinner than the thickness of the dosimeter is evaluated using simulated depth-dose distributions, and the measured responses of dosimeters with acceleration voltages from 43 to 70 kV, via ultra-low-energy electron beam (ULEB) irradiation. By stacking thin film dosimeters, we confirmed that the simulated depth-dose distributions coincided with the measured depth-dose curve within the measurement uncertainty (k = 2). Using the measurement dose of the 47 μm dosimeter and the simulated depth-dose distribution, the dose of 11 μm dosimeters in the surface was evaluated within the measurement uncertainty (k = 2). We also verified the effectiveness of this method for a thinner layer by changing the acceleration voltage of the irradiation source. We evaluated the relative dose for an adjusted depth of energy deposition from 4.4 μm to 22.8 μm. As a result, this method was found to be effective for a thickness, which is less than the thickness of the dosimeter. When irradiation conditions are well known with accuracy, using the confirmed relative depth-dose distributions across any dosimeter thickness range, a dose evaluation, in several μm steps will possibly improve the design of industrial ULEB processes.
A Population Pharmacokinetic Model for a Solid Oral Tablet Formulation of Posaconazole.
van Iersel, Marlou L P S; Rossenu, Stefaan; de Greef, Rik; Waskin, Hetty
2018-04-30
A delayed-release solid tablet formulation that releases posaconazole in the small intestine was developed to maximize systemic absorption. This study aimed to characterize the pharmacokinetics of the posaconazole solid tablet formulation in adult subjects and to investigate the potential impact of demographic and clinical factors on posaconazole exposure through a population pharmacokinetic approach. Nonlinear mixed-effects modeling was performed using data from several studies conducted in healthy volunteers and patients. The influence of demographic and clinical factors on pharmacokinetic parameters was evaluated using a stepwise forward inclusion/backward exclusion procedure. The final pharmacokinetic model was used to simulate posaconazole exposure in patients at high risk for invasive fungal diseases treated with the proposed posaconazole dose of 300 mg twice daily on day 1, followed by 300 mg daily for 27 days. A one-compartment pharmacokinetic model with sequential zero-order and first-order absorption and a first-order disposition from the central compartment adequately described the pharmacokinetic profile of the posaconazole solid tablet formulation. Significant covariates included disease state (acute myeloid leukemia/myelodysplasia vs allogeneic hematopoietic stem cell transplantation), body weight, and formulation on bioavailability; food status on first-order absorption rate; and dosing regimen (single dose vs multiple doses) on clearance. Except for body weight, the impact of these covariates on posaconazole exposure was considered clinically irrelevant. This population pharmacokinetic analysis confirmed that the proposed dose of the posaconazole solid tablet formulation provides adequate target therapeutic exposure (>0.5 mg/l) to a broad range of patients at high risk for invasive fungal disease. Copyright © 2018 American Society for Microbiology.
Giannitto, Caterina; Campoleoni, Mauro; Maccagnoni, Sara; Angileri, Alessio Salvatore; Grimaldi, Maria Carmela; Giannitto, Nino; De Piano, Francesca; Ancona, Eleonora; Biondetti, Pietro Raimondo; Esposito, Andrea Alessandro
2018-03-01
To determine the frequency of unindicated CT phases and the resultant excess of absorbed radiation doses to the uterus and ovaries in women of reproductive age who have undergone CT for non-traumatic abdomino-pelvic emergencies. We reviewed all abdomino-pelvic CT examinations in women of reproductive age (40 years or less), between 1 June 2012 and 31 January 2015. We evaluated the appropriateness of each CT phase on the basis of clinical indications, according to ACR appropriateness criteria and evidence-based data from the literature. The doses to uterus and ovaries for each phase were calculated with the CTEXPO software, taking into consideration the size-specific dose estimate (SSDE) after measuring the size of every single patient. The final cohort was composed of 76 female patients with an average age of 30 (from 19 to 40 years). In total, 197 CT phases were performed with an average of 2.6 phases per patient. Out of these, 93 (47%) were unindicated with an average of 1.2 inappropriate phases per patient. Unindicated scans were most frequent for appendicitis and unlocalized abdominal pain. The excesses of mean radiation doses to the uterus and ovaries due to unindicated phases were, respectively, of 38 and 33 mSv per patient. In our experience, unindicated additional CT phases were numerous with a significant excess radiation dose without an associated clinical benefit. This excess of radiation could have been avoided by widespread adoption of the ACR appropriateness criteria and evidence-based data from the literature.
Adaptive radiation therapy of prostate cancer
NASA Astrophysics Data System (ADS)
Wen, Ning
ART is a close-loop feedback algorithm which evaluates the organ deformation and motion right before the treatment and takes into account dose delivery variation daily to compensate for the difference between planned and delivered dose. It also has potential to allow further dose escalation and margin reduction to improve the clinical outcome. This retrospective study evaluated ART for prostate cancer treatment and radiobiological consequences. An IRB approved protocol has been used to evaluate actual dose delivery of patients with prostate cancer undergoing treatment with daily CBCT. The dose from CBCT was measured in phantom using TLD and ion chamber techniques in the pelvic scan setting. There were two major findings from the measurements of CBCT dose: (1) the lateral dose distribution was not symmetrical, with Lt Lat being ˜40% higher than Rt Lat and (2) AP skin dose varies with patient size, ranging 3.2--6.1 cGy for patient's AP separation of 20--33 cm (the larger the separation, the less the skin dose) but lateral skin doses depend little on separations. Dose was recalculated on each CBCT set under the same treatment plan. DIR was performed between SIM-CT and evaluated for each CT sets. Dose was reconstructed and accumulated to reflect the actual dose delivered to the patient. Then the adaptive plans were compared to the original plan to evaluate tumor control and normal tissue complication using radiobiological model. Different PTV margins were also studied to access margin reduction techniques. If the actual dose delivered to the PTV deviated significantly from the prescription dose for the given fractions or the OAR received higher dose than expected, the treatment plan would be re-optimized based on the previously delivered dose. The optimal schedule was compared based on the balance of PTV dose coverage and inhomogeneity, OAR dose constraints and labor involved. DIR was validated using fiducial marker position, visual comparison and UE. The mean and standard deviation of markers after rigid registration in L-R direction was 0 and 1 mm. But the mean was 2--4 mm in the A-P and S-I direction and standard deviation was about 2 mm. After DIR, the mean in all three directions became 0 and standard deviation was within sub millimeter. UE images were generated for each CT set and carefully reviewed in the prostate region. DIR provided accurate transformation matrix to be used for dose reconstruction. The delivered dose was evaluated with radiobiological models. TCP for the CTV was calculated to evaluate tumor control in different margin settings. TCP calculated from the reconstructed dose agreed within 5% of the value in the plan for all patients with three different margins. EUD and NTCP were calculated to evaluate reaction of rectum to radiation. Similar biological evaluation was performed for bladder. EUD of actual dose was 3%--9% higher than that of planned dose of patient 1--3, 11%--20% higher of patient 4--5. Smaller margins could not reduce late GU toxicity effectively since bladder complication was directly related to Dmax which was at the same magnitude in the bladder no matter which margin was applied. Re-optimization was performed at the 10th, 20th , 30th, and 40th fraction to evaluate the effectiveness to limit OAR dose while maintaining the target coverage. Reconstructed dose was added to dose from remaining fractions after optimization to show the total dose patient would receive. It showed that if the plan was re-optimized at 10th or 20th fraction, total dose to rectum and bladder were very similar to planned dose with minor deviations. If the plan was re-optimized at the 30th fraction, since there was a large deviation between reconstructed dose and planned dose to OAR, optimization could not limit the OAR dose to the original plan with only 12 fractions left. If the re-optimization was done at the 40th fraction, it was impossible to compensate in the last 2 fractions. Large deviations of total dose to bladder and rectum still existed while dose inhomogeneity to PTV was significantly increased due to hard constraints set in the optimization to reduce OAR dose. In summary, ART did not show improvements in TCP if the patient was setup with CBCT. However, EUD of rectum and bladder was increased significantly due to tissue deformation which varied daily. With the power of ART, margins added to the CTV could be further reduced to preserve critical organs surrounding the target. (Abstract shortened by UMI.)
Dose addition is the most frequently-used component-based approach for predicting dose response for a mixture of toxicologically-similar chemicals and for statistical evaluation of whether the mixture response is consistent with dose additivity and therefore predictable from the ...
NASA Astrophysics Data System (ADS)
Kowalski, John B.; Herring, Craig; Baryschpolec, Lisa; Reger, John; Patel, Jay; Feeney, Mary; Tallentire, Alan
2002-08-01
The International and European standards for radiation sterilization require evidence of the effectiveness of a minimum sterilization dose of 25 kGy but do not provide detailed guidance on how this evidence can be generated. An approach, designated VD max, has recently been described and computer evaluated to provide safe and unambiguous substantiation of a 25 kGy sterilization dose. The approach has been further developed into a practical method, which has been subjected to field evaluations at three manufacturing facilities which produce different types of medical devices. The three facilities each used a different overall evaluation strategy: Facility A used VD max for quarterly dose audits; Facility B compared VD max and Method 1 in side-by-side parallel experiments; and Facility C, a new facility at start-up, used VD max for initial substantiation of 25 kGy and subsequent quarterly dose audits. A common element at all three facilities was the use of 10 product units for irradiation in the verification dose experiment. The field evaluations of the VD max method were successful at all three facilities; they included many different types of medical devices/product families with a wide range of average bioburden and sample item portion values used in the verification dose experiments. Overall, around 500 verification dose experiments were performed and no failures were observed. In the side-by-side parallel experiments, the outcomes of the VD max experiments were consistent with the outcomes observed with Method 1. The VD max approach has been extended to sterilization doses >25 and <25 kGy; verification doses have been derived for sterilization doses of 15, 20, 30, and 35 kGy. Widespread application of the VD max method for doses other than 25 kGy must await controlled field evaluations and the development of appropriate specifications/standards.
Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Rovira, I., E-mail: immamartinez@gmail.com; Prezado, Y.
Purpose: The outcome of radiotherapy can be further improved by combining irradiation with dose enhancers such as high-Z nanoparticles. Since 2004, spectacular results have been obtained when low-energy x-ray irradiations have been combined with nanoparticles. Recently, the same combination has been explored in hadron therapy. In vitro studies have shown a significant amplification of the biological damage in tumor cells charged with nanoparticles and irradiated with fast ions. This has been attributed to the increase in the ionizations and electron emissions induced by the incident ions or the electrons in the secondary tracks on the high-Z atoms, resulting in amore » local energy deposition enhancement. However, this subject is still a matter of controversy. Within this context, the main goal of the authors’ work was to provide new insights into the dose enhancement effects of nanoparticles in proton therapy. Methods: For this purpose, Monte Carlo calculations (GATE/GEANT4 code) were performed. In particular, the GEANT4-DNA toolkit, which allows the modeling of early biological damages induced by ionizing radiation at the DNA scale, was used. The nanometric radial energy distributions around the nanoparticle were studied, and the processes (such as Auger deexcitation or dissociative electron attachment) participating in the dose deposition of proton therapy treatments in the presence of nanoparticles were evaluated. It has been reported that the architecture of Monte Carlo calculations plays a crucial role in the assessment of nanoparticle dose enhancement and that it may introduce a bias in the results or amplify the possible final dose enhancement. Thus, a dosimetric study of different cases was performed, considering Au and Gd nanoparticles, several nanoparticle sizes (from 4 to 50 nm), and several beam configurations (source-nanoparticle distances and source sizes). Results: This Monte Carlo study shows the influence of the simulations’ parameters on the local dose enhancement and how more realistic configurations lead to a negligible increase of local energy deposition. The obtained dose enhancement factor was up to 1.7 when the source was located at the nanoparticle surface. This dose enhancement was reduced when the source was located at further distances (i.e., in more realistic situations). Additionally, no significant increase in the dissociative electron attachment processes was observed. Conclusions: The authors’ results indicate that physical effects play a minor role in the amplification of damage, as a very low dose enhancement or increase of dissociative electron attachment processes is observed when the authors get closer to more realistic simulations. Thus, other effects, such as biological or chemical processes, may be mainly responsible for the enhanced radiosensibilization observed in biological studies. However, more biological studies are needed to verify this hypothesis.« less
Ichihashi, Masamitsu; Ando, Hideya
2014-10-01
The young facial skin of children with a smooth healthy appearance changes over time to photoaged skin having mottled pigmentation, solar lentigines, wrinkles, dry and rough skin, leathery texture, and benign and malignant tumors after exposure to chronic, repeated solar radiation. The first sign of photoaging in Japanese subjects is usually solar lentigines appearing around 20 years of age on the face. Fine wrinkles can then appear after 30 years of age, and benign skin tumors, seborrhoeic keratoses, can occur after 35 years of age in sun-exposed skin. We theoretically calculated the maximal daily exposure time to solar radiation, which could prevent the development of photoaged skin until 60 and 80 years of age, based on published data of personal solar UVB doses in sun-exposed skin. One MED (minimal erythema dose) was determined to be 20 mJ/cm(2) , and 200 MED was used as the average yearly dose of Japanese children. Further, we hypothesized that the annual dose of Japanese adults is the same as that of the children. The cumulative UVB dose at 20 years of age was thus calculated to be 4000 MED, and 22 MED was used as the maximal daily UVB dose based on data measured in Kobe, located in the central area of Japan. We used the solar UVB dose from 10:00 a.m. to 14:00 p.m. which occupies 60% of the total daily UV dose, to obtain the maximal UVB per hour in a day, and calculated the maximal daily UV exposure time that would delay the onset of solar lentigines until 60 or 80 years of age. The mean daily sun exposure time to maintain healthy skin until 80 years of age in the summer was calculated to be 2.54 min (0.14 MED) for unprotected skin and 127 min with the use of a sunscreen of SPF (sun protection factor) of 50. In this study, we did not evaluate the photoaging effect of UVA radiation, but findings of the adverse effects of UVA radiation on the skin have accumulated in the last decade. Therefore, it will be important to estimate the maximal dose of solar UV radiation to retard the onset of photoaging based on an evaluation of both solar UVB and UVA in the future. Finally, we expect that this study may contribute to keeping Japanese and other types of skin young and healthy by limiting the exposure of the skin to solar radiation outdoors during the day. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep
2013-01-01
Aim The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Methods Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. Results ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Conclusions Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. PMID:23016924
Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep
2013-05-01
The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina
2018-06-01
Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.
The Radiation Environment for the LISA/Laser Interferometry Space Antenna
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael; Poivey, Christian
2005-01-01
The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.
Negrão, Luis; Nunes, Paula
2016-01-01
Carpal tunnel syndrome is the most common type of peripheral entrapment neuropathy. We performed an exploratory, open-label, multicenter, observational study of 48 patients with peripheral entrapment neuropathy. Patients received a daily capsule of uridine monophosphate, folic acid + vitamin B12 for 2 months and were evaluated using the Pain DETECT questionnaire. The global score for pain decreased from 17.3 ± 5.9 at baseline to 10.3 ± 6.1 at the final evaluation (p < 0.001). Concomitant analgesic and anti-inflammatory treatment was stopped or the dose reduced in 77.4% of patients. Uridine monophosphate + folic acid + vitamin B12 reduced total pain score, intensity and characterization of pain and associated symptoms. These results should be tested in a well-designed, adequately powered randomized controlled trial.
IRIS Toxicological Review of Chloroprene (Final Report)
The final Toxicological Review of Chloroprene provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to chloroprene. Chloroprene (C4H5Cl) is a volatile, flammable liquid used primarily in the manufacture of poly...
IRIS Toxicological Review of Urea (Final Report) | Science ...
EPA has finalized the Toxicological Review of Urea: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. The draft Toxicological Review of Urea provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to Urea.
Booster and higher antigen doses of inactivated influenza vaccine in HIV-infected patients.
Johnston, Jessica A; Tincher, Lindsey B; Lowe, Denise K
2013-12-01
To review the literature regarding booster or higher doses of influenza antigen for increasing immunogenicity of inactivated influenza vaccine (IIV) in HIV-infected patients. MEDLINE (1966 to September 2013) was searched using the terms immunize, influenza, vaccine, and HIV or AIDS in combination with two-dose, booster-dose, increased antigen, or high-dose. One trial of booster dosing with standard doses (SDs) of IIV, trivalent (IIV3); 2 trials of booster dosing with intermediate doses (ID) of H1N1 IIV or IIV3; and 1 trial of high-dose (HD) IIV3 were identified. Trials administering 2-dose, booster-dose, or increased antigen of influenza vaccine to patients with HIV were reviewed. Because adjuvanted IIV is not available and IIV, quadrivalent was recently approved in the United States, studies evaluating these vaccines were excluded. HIV-infected individuals are at high risk for influenza-related complications; however, vaccination with SD IIV may not confer optimal protection. It has been postulated that booster or higher doses of influenza antigen may lead to increased immunogenicity. When ID and SD or ID with boosters were evaluated in HIV-infected patients, significant increases in surrogate markers for influenza protection were not achieved. However, HD IIV3 did result in significant increases in seroprotective antibody levels, though 'clinical' influenza was not evaluated. Currently, evidence is insufficient to reach conclusions about the efficacy of booster dosing, ID, or HD influenza vaccine in HIV-infected patients. Trials evaluating booster or higher-antigen doses of IIV for 'clinical' influenza are necessary before routinely recommending for HIV-infected patients.
NASA Astrophysics Data System (ADS)
González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.
2017-10-01
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E
2017-10-03
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
Evaluation of the efficacy and safety of rivaroxaban using a computer model for blood coagulation.
Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Kuepfer, Lars; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Lippert, Joerg
2011-04-22
Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union and several other countries for the prevention of venous thromboembolism in adult patients undergoing elective hip or knee replacement surgery and is in advanced clinical development for the treatment of thromboembolic disorders. Its mechanism of action is antithrombin independent and differs from that of other anticoagulants, such as warfarin (a vitamin K antagonist), enoxaparin (an indirect thrombin/Factor Xa inhibitor) and dabigatran (a direct thrombin inhibitor). A blood coagulation computer model has been developed, based on several published models and preclinical and clinical data. Unlike previous models, the current model takes into account both the intrinsic and extrinsic pathways of the coagulation cascade, and possesses some unique features, including a blood flow component and a portfolio of drug action mechanisms. This study aimed to use the model to compare the mechanism of action of rivaroxaban with that of warfarin, and to evaluate the efficacy and safety of different rivaroxaban doses with other anticoagulants included in the model. Rather than reproducing known standard clinical measurements, such as the prothrombin time and activated partial thromboplastin time clotting tests, the anticoagulant benchmarking was based on a simulation of physiologically plausible clotting scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity for tissue factor concentration inducing clotting, and a steep concentration-effect relationship, rapidly flattening towards higher inhibitor concentrations, both suggesting a broad therapeutic window. The predicted dosing window is highly accordant with the final dose recommendation based upon extensive clinical studies.
Evaluation of the Efficacy and Safety of Rivaroxaban Using a Computer Model for Blood Coagulation
Burghaus, Rolf; Coboeken, Katrin; Gaub, Thomas; Kuepfer, Lars; Sensse, Anke; Siegmund, Hans-Ulrich; Weiss, Wolfgang; Mueck, Wolfgang; Lippert, Joerg
2011-01-01
Rivaroxaban is an oral, direct Factor Xa inhibitor approved in the European Union and several other countries for the prevention of venous thromboembolism in adult patients undergoing elective hip or knee replacement surgery and is in advanced clinical development for the treatment of thromboembolic disorders. Its mechanism of action is antithrombin independent and differs from that of other anticoagulants, such as warfarin (a vitamin K antagonist), enoxaparin (an indirect thrombin/Factor Xa inhibitor) and dabigatran (a direct thrombin inhibitor). A blood coagulation computer model has been developed, based on several published models and preclinical and clinical data. Unlike previous models, the current model takes into account both the intrinsic and extrinsic pathways of the coagulation cascade, and possesses some unique features, including a blood flow component and a portfolio of drug action mechanisms. This study aimed to use the model to compare the mechanism of action of rivaroxaban with that of warfarin, and to evaluate the efficacy and safety of different rivaroxaban doses with other anticoagulants included in the model. Rather than reproducing known standard clinical measurements, such as the prothrombin time and activated partial thromboplastin time clotting tests, the anticoagulant benchmarking was based on a simulation of physiologically plausible clotting scenarios. Compared with warfarin, rivaroxaban showed a favourable sensitivity for tissue factor concentration inducing clotting, and a steep concentration–effect relationship, rapidly flattening towards higher inhibitor concentrations, both suggesting a broad therapeutic window. The predicted dosing window is highly accordant with the final dose recommendation based upon extensive clinical studies. PMID:21526168
TU-H-CAMPUS-JeP1-05: Dose Deformation Error Associated with Deformable Image Registration Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surucu, M; Woerner, A; Roeske, J
Purpose: To evaluate errors associated with using different deformable image registration (DIR) pathways to deform dose from planning CT (pCT) to cone-beam CT (CBCT). Methods: Deforming dose is controversial because of the lack of quality assurance tools. We previously proposed a novel metric to evaluate dose deformation error (DDE) by warping dose information using two methods, via dose and contour deformation. First, isodose lines of the pCT were converted into structures and then deformed to the CBCT using an image based deformation map (dose/structure/deform). Alternatively, the dose matrix from the pCT was deformed to CBCT using the same deformation map,more » and then the same isodose lines of the deformed dose were converted into structures (dose/deform/structure). The doses corresponding to each structure were queried from the deformed dose and full-width-half-maximums were used to evaluate the dose dispersion. The difference between the FWHM of each isodose level structure is defined as the DDE. Three head-and-neck cancer patients were identified. For each patient, two DIRs were performed between the pCT and CBCT, either deforming pCT-to-CBCT or CBCT-to-pCT. We evaluated the errors associated by using either of these pathways to deform dose. A commercially available, Demons based DIR was used for this study, and 10 isodose levels (20% to 105%) were used to evaluate the errors in various dose levels. Results: The prescription dose for all patients was 70 Gy. The mean DDE for CT-to-CBCT deformation was 1.0 Gy (range: 0.3–2.0 Gy) and this was increased to 4.3 Gy (range: 1.5–6.4 Gy) for CBCT-to-CT deformation. The mean increase in DDE between the two deformations was 3.3 Gy (range: 1.0–5.4 Gy). Conclusion: The proposed DDF was used to quantitatively estimate dose deformation errors caused by different pathways to perform DIR. Deforming dose using CBCT-to-CT deformation produced greater error than CT-to-CBCT deformation.« less
Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.
Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo
2018-01-01
The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Evergetis, E; Michaelakis, A; Papachristos, D P; Badieritakis, E; Kapsaski-Kanelli, V N; Haroutounian, S A
2016-06-01
The seasonal variation in respect to the yield and chemical composition of 24 essential oils (EOs) isolated from various parts (leaves and fruits) of two indigenous Greece Juniperus species (family Cupressaceae), namely Juniperus drupacea and Juniperus phoenica, were determined by GC and GC/MS analysis. The larvicidal properties of these EOs were evaluated against 3rd and early 4th instar larvae of Aedes (Stegomyia) albopictus (Skuse, 1894) at one screening dose (29 mg L(-1)). Moreover, the repellent activity against adult mosquitoes was also evaluated at one screening dose. The analytical data indicated that the EOs mainly consisted of monoterpenes, mostly cyclic and only occasionally aliphatic and to a lesser percent diterpenes. The EOs yield was sharply increased when the plant material was subjected to pre-treatment before steam distillation. Finally, the influence of plant material collection period on their yield and chemical content was also determined. Bioactivity assessments indicated that three EOs possess very potent larvicidal properties and 12 EOs display significant repellent activities since they were proved to be "DEET-like." Therefore, they represent an inexpensive source of natural mixtures of larvicidal and repellent mixture of natural compounds, with potentials for application for utilization in mosquito control schemes in order to prevent the expansion of viral infections.
D Reconstruction from Multi-View Medical X-Ray Images - Review and Evaluation of Existing Methods
NASA Astrophysics Data System (ADS)
Hosseinian, S.; Arefi, H.
2015-12-01
The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT) scan and magnetic resonance imaging (MRI) have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT). Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.
Ozone inactivation of infectious prions in rendering plant and municipal wastewaters.
Ding, Ning; Neumann, Norman F; Price, Luke M; Braithwaite, Shannon L; Balachandran, Aru; Belosevic, Miodrag; Gamal El-Din, Mohamed
2014-02-01
Disposal of tissues and organs associated with prion accumulation and infectivity in infected animals (designated as Specified Risk Materials [SRM]) is strictly regulated by the Canadian Food Inspection Agency (CFIA); however, the contamination of wastewater from slaughterhouses that handle SRM still poses public concern. In this study, we examined for the first time the partitioning of infectious prions in rendering plant wastewater and found that a large proportion of infectious prions were partitioned into the scum layer formed at the top after gravity separation, while quite a few infectious prions still remained in the wastewater. Subsequently, we assessed the ozone inactivation of infectious prions in the raw, natural gravity-separated and dissolved air flotation (DAF)-treated (i.e., primary-treated) rendering plant wastewater, and in a municipal final effluent (i.e., secondary-treated municipal wastewater). At applied ozone doses of 43.4-44.6 mg/L, ozone was instantaneously depleted in the raw rendering plant wastewater, while a greater than 4-log10 inactivation was achieved at a 5 min exposure in the DAF-treated rendering plant wastewater. Prion inactivation in the municipal final effluent was conducted with two levels of applied ozone doses of 13.4 and 22.5mg/L, and a greater than 4-log10 inactivation was achieved at a 5 min exposure with the higher ozone dose. Efficiency factor Hom (EFH) models were used to model (i.e., fit) the experimental data. The CT (disinfectant concentration multiplied by contact time) values were determined for 2- and 3-log10 inactivation in the municipal final effluent treated with an ozone dose of 13.4 mg/L. Our results indicate that ozone could serve as a final barrier for prion inactivation in primary- and/or secondary-treated wastewaters. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfrate, A; Farah, J; Sayah, R
2015-06-15
Purpose: Development of a parametric equation suitable for a daily use in routine clinic to provide estimates of stray neutron doses in proton therapy. Methods: Monte Carlo (MC) calculations using the UF-NCI 1-year-old phantom were exercised to determine the variation of stray neutron doses as a function of irradiation parameters while performing intracranial treatments. This was done by individually changing the proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and the air gap size while their impact on neutron doses were put into a single equation. The variation of neutron doses with distance from the target volumemore » was also included in it. Then, a first step consisted in establishing the fitting coefficients by using 221 learning data which were neutron absorbed doses obtained with MC simulations while a second step consisted in validating the final equation. Results: The variation of stray neutron doses with irradiation parameters were fitted with linear, polynomial, etc. model while a power-law model was used to fit the variation of stray neutron doses with the distance from the target volume. The parametric equation fitted well MC simulations while establishing fitting coefficients as the discrepancies on the estimate of neutron absorbed doses were within 10%. The discrepancy can reach ∼25% for the bladder, the farthest organ from the target volume. Finally, the validation showed results in compliance with MC calculations since the discrepancies were also within 10% for head-and-neck and thoracic organs while they can reach ∼25%, again for pelvic organs. Conclusion: The parametric equation presents promising results and will be validated for other target sites as well as other facilities to go towards a universal method.« less
Final adult height in long-term growth hormone-treated achondroplasia patients.
Harada, Daisuke; Namba, Noriyuki; Hanioka, Yuki; Ueyama, Kaoru; Sakamoto, Natsuko; Nakano, Yukako; Izui, Masafumi; Nagamatsu, Yuiko; Kashiwagi, Hiroko; Yamamuro, Miho; Ishiura, Yoshihito; Ogitani, Ayako; Seino, Yoshiki
2017-07-01
The objective of this study was to evaluate the gain in final height of achondroplasia (ACH) patients with long-term growth hormone (GH) treatment. We analyzed medical data of 22 adult patients (8 males and 14 females) treated with GH at a dose of 0.05 mg/kg/day. Optionally, tibial lengthening (TL) was performed with the Ilizalov method in 15 patients and TL as well as femoral lengthening (FL) in 6 patients. Concomitant gonadal suppression therapy with buserelin acetate was applied in 13 patients. The mean treatment periods with GH were 10.7 ± 4.0 and 9.3 ± 2.5 years for males and females, respectively. GH treatment augmented the final height +0.60 ± 0.52 SD (+3.5 cm) and +0.51 ± 1.29 SD (+2.8 cm) in males and females compared to non-treated ACH patients, respectively. Final height of ACH patients that underwent GH and TL increased +1.72 ± 0.72 SD (+10.0 cm) and +1.95 ± 1.34 SD (+9.8 cm) in males and females, respectively. GH, TL, and FL increased their final height +2.97 SD (+17.2 cm) and +3.41 ± 1.63 SD (+17.3 cm) in males and females, respectively. Gonadal suppression therapy had no impact on final height. Long-term GH treatment contributes to 2.6 and 2.1% of final adult height in male and female ACH patients, respectively.
Projection imaging of photon beams by the Cerenkov effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Adam K.; Davis, Scott C.; McClatchy, David M.
2013-01-15
Purpose: A novel technique for beam profiling of megavoltage photon beams was investigated for the first time by capturing images of the induced Cerenkov emission in water, as a potential surrogate for the imparted dose in irradiated media. Methods: A high-sensitivity, intensified CCD camera (ICCD) was configured to acquire 2D projection images of Cerenkov emission from a 4 Multiplication-Sign 4 cm{sup 2} 6 MV linear accelerator (LINAC) x-ray photon beam operating at a dose rate of 400 MU/min incident on a water tank with transparent walls. The ICCD acquisition was gated to the LINAC sync pulse to reduce background lightmore » artifacts, and the measurement quality was investigated by evaluating the signal to noise ratio and measurement repeatability as a function of delivered dose. Monte Carlo simulations were used to derive a calibration factor for differences between the optical images and deposited dose arising from the anisotropic angular dependence of Cerenkov emission. Finally, Cerenkov-based beam profiles were compared to a percent depth dose (PDD) and lateral dose profile at a depth of d{sub max} from a reference dose distribution generated from the clinical Varian ECLIPSE treatment planning system (TPS). Results: The signal to noise ratio was found to be 20 at a delivered dose of 66.6 cGy, and proportional to the square root of the delivered dose as expected from Poisson photon counting statistics. A 2.1% mean standard deviation and 5.6% maximum variation in successive measurements were observed, and the Monte Carlo derived calibration factor resulted in Cerenkov emission images which were directly correlated to deposited dose, with some spatial issues. The dose difference between the TPS and PDD predicted by Cerenkov measurements was within 20% in the buildup region with a distance to agreement (DTA) of 1.5-2 mm and {+-}3% at depths beyond d{sub max}. In the lateral profile, the dose difference at the beam penumbra was within {+-}13% with a DTA of 0-2 mm, {+-}5% in the central beam region, and 2%-3% in the beam umbra. Conclusions: The results from this initial study demonstrate the first documented use of Cerenkov emission imaging to profile x-ray photon LINAC beams in water. The proposed modality has several potential advantages over alternative methods, and upon future refinement may prove to be a robust and novel dosimetry method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harriss-Phillips, Wendy M., E-mail: wharrphil@gmail.com; School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia; Bezak, Eva
Purpose: To simulate stereotactic ablative radiation therapy on hypoxic and well-oxygenated in silico tumors, incorporating probabilistic parameter distributions and linear-quadratic versus linear-quadratic-cubic methodology and the evaluation of optimal fractionation schemes using biological effective dose (BED{sub α/β=10} {sub or} {sub 3}) comparisons. Methods and Materials: A temporal tumor growth and radiation therapy algorithm simulated high-dose external beam radiation therapy using stochastic methods. Realistic biological proliferative cellular hierarchy and pO{sub 2} histograms were incorporated into the 10{sup 8}-cell tumor model, with randomized radiation therapy applied during continual cell proliferation and volume-based gradual tumor reoxygenation. Dose fractions ranged from 6-35 Gy, with predictive outcomes presentedmore » in terms of the total doses (converted to BED) required to eliminate all cells that could potentially regenerate the tumor. Results: Well-oxygenated tumor control BED{sub 10} outcomes were not significantly different for high-dose versus conventional radiation therapy (BED{sub 10}: 79-84 Gy; Equivalent Dose in 2 Gy fractions with α/β of 10: 66-70 Gy); however, total treatment times decreased from 7 down to 1-3 weeks. For hypoxic tumors, an additional 28 Gy (51 Gy BED{sub 10}) was required, with BED{sub 10} increasing with dose per fraction due to wasted dose in the final fraction. Fractions of 9 Gy compromised well for total treatment time and BED, with BED{sub 10}:BED{sub 3} of 84:176 Gy for oxic and 132:278 Gy for non-reoxygenating hypoxic tumors. Initial doses of 12 Gy followed by 6 Gy further increased the therapeutic ratio. When delivering ≥9 Gy per fraction, applying reoxygenation and/or linear-quadratic-cubic cell survival both affected tumor control doses by a significant 1-2 fractions. Conclusions: The complex temporal dynamics of tumor oxygenation combined with probabilistic cell kinetics in the modeling of radiation therapy requires sophisticated stochastic modeling to predict tumor cell kill. For stereotactic ablative radiation therapy, high doses in the first week followed by doses that are more moderate may be beneficial because a high percentage of hypoxic cells could be eradicated early while keeping the required BED{sub 10} relatively low and BED{sub 3} toxicity to tolerable levels.« less
Brost, Eric Edward; Watanabe, Yoichi
2018-06-01
Cerenkov photons are created by high-energy radiation beams used for radiation therapy. In this study, we developed a Cerenkov light dosimetry technique to obtain a two-dimensional dose distribution in a superficial region of medium from the images of Cerenkov photons by using a deconvolution method. An integral equation was derived to represent the Cerenkov photon image acquired by a camera for a given incident high-energy photon beam by using convolution kernels. Subsequently, an equation relating the planar dose at a depth to a Cerenkov photon image using the well-known relationship between the incident beam fluence and the dose distribution in a medium was obtained. The final equation contained a convolution kernel called the Cerenkov dose scatter function (CDSF). The CDSF function was obtained by deconvolving the Cerenkov scatter function (CSF) with the dose scatter function (DSF). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) Monte Carlo particle simulation software was used to obtain the CSF and DSF. The dose distribution was calculated from the Cerenkov photon intensity data using an iterative deconvolution method with the CDSF. The theoretical formulation was experimentally evaluated by using an optical phantom irradiated by high-energy photon beams. The intensity of the deconvolved Cerenkov photon image showed linear dependence on the dose rate and the photon beam energy. The relative intensity showed a field size dependence similar to the beam output factor. Deconvolved Cerenkov images showed improvement in dose profiles compared with the raw image data. In particular, the deconvolution significantly improved the agreement in the high dose gradient region, such as in the penumbra. Deconvolution with a single iteration was found to provide the most accurate solution of the dose. Two-dimensional dose distributions of the deconvolved Cerenkov images agreed well with the reference distributions for both square fields and a multileaf collimator (MLC) defined, irregularly shaped field. The proposed technique improved the accuracy of the Cerenkov photon dosimetry in the penumbra region. The results of this study showed initial validation of the deconvolution method for beam profile measurements in a homogeneous media. The new formulation accounted for the physical processes of Cerenkov photon transport in the medium more accurately than previously published methods. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Andrew, E-mail: aojones@geisinger.edu; Treas, Jared; Yavoich, Brian
2014-01-01
The aim of the study was to investigate the differences between intraoperative and postoperative dosimetry for transrectal ultrasound–guided transperineal prostate implants using cesium-131 ({sup 131}Cs). Between 2006 and 2010, 166 patients implanted with {sup 131}Cs had both intraoperative and postoperative dosimetry studies. All cases were monotherapy and doses of 115 were prescribed to the prostate. The dosimetric properties (D{sub 90}, V{sub 150}, and V{sub 100} for the prostate) of the studies were compared. Two conformity indices were also calculated and compared. Finally, the prostate was automatically sectioned into 6 sectors (anterior and posterior sectors at the base, midgland, and apex)more » and the intraoperative and postoperative dosimetry was compared in each individual sector. Postoperative dosimetry showed statistically significant changes (p < 0.01) in every dosimetric value except V{sub 150}. In each significant case, the postoperative plans showed lower dose coverage. The conformity indexes also showed a bimodal frequency distribution with the index indicating poorer dose conformity in the postoperative plans. Sector analysis revealed less dose coverage postoperatively in the base and apex sectors with an increase in dose to the posterior midgland sector. Postoperative dosimetry overall and in specific sectors of the prostate differs significantly from intraoperative planning. Care must be taken during the intraoperative planning stage to ensure complete dose coverage of the prostate with the understanding that the final postoperative dosimetry will show less dose coverage.« less
Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio
Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, the method and the relative differences between organ dose simulation and measurement is unclear. The purpose of this study was to compare organ doses evaluated by Monte Carlo simulation with doses evaluated by in-phantom dosimetry. The simulation software Radimetrics (Bayer) was used for the calculation of organ dose. Measurement was performed with radio-photoluminescence glass dosimeter (RPLD) set at various organ positions within RANDO phantom. To evaluate difference of CT scanner, two different CT scanners were used in this study. Angular dependence of RPLD and measurement of effective energy were performed for each scanner. The comparison of simulation and measurement was evaluated by relative differences. In the results, angular dependence of RPLD at two scanners was 31.6±0.45 mGy for SOMATOM Definition Flash and 29.2±0.18 mGy for LightSpeed VCT. The organ dose was 42.2 mGy (range, 29.9-52.7 mGy) by measurements and 37.7 mGy (range, 27.9-48.1 mGy) by simulations. The relative differences of organ dose between measurement and simulation were 13%, excluding of breast's 42%. We found that organ dose by simulation was lower than by measurement. In conclusion, the results of relative differences will be useful for evaluating organ doses for individual patients by simulation software Radimetrics.
Image quality, threshold contrast and mean glandular dose in CR mammography
NASA Astrophysics Data System (ADS)
Jakubiak, R. R.; Gamba, H. R.; Neves, E. B.; Peixoto, J. E.
2013-09-01
In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both patient groups. Finally, this study also concluded that the use of the AEC of the x-ray unit based on the constant dose to the detector may bring some difficulties to CR systems to operate under optimal conditions. More studies must be performed, so that the compatibility between systems and optimization methodologies can be evaluated, as well as this optimization method. Most methods are developed for phantoms, so comparative studies including clinical images must be developed.
Carinou, Eleftheria; Ferrari, Paolo; Bjelac, Olivera Ciraj; Gingaume, Merce; Merce, Marta Sans; O'Connor, Una
2015-09-01
A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended.
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Cuttino, Laurie W; Mukhopadhyay, Nitai D
2013-06-01
Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥ 95% of the prescribed dose (PD) covering ≥ 95% of the target volume (TV); maximum skin dose ≤ 125% of the PD; maximum rib dose ≤ 145% of the PD; and V150 ≤50 cc and V200 ≤ 10 cc. Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P ≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.edu; Vicini, Frank A.; Todor, Dorin A.
2013-06-01
Purpose: Final dosimetric findings of a completed, multi-institutional phase 4 registry trial using the Contura Multi-Lumen Balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) in patients with early-stage breast cancer are presented. Methods and Materials: Three dosimetric plans with identical target coverage were generated for each patient for comparison: multilumen multidwell (MLMD); central-lumen multidwell (CLMD); and central-lumen single-dwell (CLSD) loading of the Contura catheter. For this study, a successful treatment plan achieved ideal dosimetric goals and included the following: ≥95% of the prescribed dose (PD) covering ≥95% of the target volume (TV); maximum skin dose ≤125%more » of the PD; maximum rib dose ≤145% of the PD; and V150 ≤50 cc and V200 ≤10 cc. Results: Between January 2008 and February 2011, 23 institutions participated. A total of 318 patients were available for dosimetric review. Using the Contura MLB, all dosimetric criteria were met in 78.93% of cases planned with MLMD versus 55.38% with the CLMD versus 37.66% with the CLSD (P≤.0001). Evaluating all patients with the full range of skin to balloon distance represented, median maximum skin dose was reduced by 12% and median maximum rib dose by 13.9% when using MLMD-based dosimetric plans compared to CLSD. The dosimetric benefit of MLMD was further demonstrated in the subgroup of patients where skin thickness was <5 mm, where MLMD use allowed a 38% reduction in median maximum skin dose over CLSD. For patients with rib distance <5 mm, the median maximum rib dose reduction was 27%. Conclusions: Use of the Contura MLB catheter produced statistically significant improvements in dosimetric capabilities between CLSD and CLMD treatments. This device approach demonstrates the ability not only to overcome the barriers of limited skin thickness and close rib proximity, but to consistently achieve a higher standard of dosimetric planning goals.« less
SU-E-T-436: Accelerated Gated IMRT: A Feasibility Study for Lung Cancer Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilles, M; Boussion, N; Visvikis, D
Purpose: To evaluate the feasibility of delivering a gated Intensity Modulated Radiotherapy (IMRT) treatment using multiple respiratory phases in order to account for all anatomic changes during free breathing and accelerate the gated treatment without increasing the dose per fraction. Methods: For 7 patients with lung cancer, IMRT treatment plans were generated on a full inspiration (FI) Computed Tomography (CT) and a Mid Intensity Position (MIP) CT. Moreover, in order to achieve an accelerated gated IMRT, multiple respiratory phase plans were calculated: 2-phase plans including the FI and the full expiration phases, and 3-phase plans by adding the mid-inspiration phase.more » In order to assess the tolerance limits, plans' doses were registered and summed to the FI-based plan. Mean dose received by Organs at Risk (OARs) and target volumes were used to compare obtained plans. Results: The mean dose differences between the FI plans and the multi-phase plans never exceeded 0.4 Gy (Fig. 1). Concerning the clinical target volume these differences were even smaller: less than 0.1 Gy for both the 2-phase and 3-phase plans. Regarding the MIP treatment plan, higher doses in different healthy structures were observed, with a relative mean increase of 0.4 to 1.5 Gy. Finally, compared to the prescribed dose, the FI as well as the multi-phase plans were associated with a mean difference of 0.4 Gy, whereas in the case of MIP a higher mean difference of 0.6 Gy was observed. Conclusion: The doses obtained while planning a multi-phase gated IMRT treatment were within the tolerance limits. Compared to MIP, a better healthy tissue sparing was observed in the case of treatment planning based on one or multiple phases. Future work will consist in testing the multi-phase treatment delivery while accounting for the multileaf collimator speed constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiyagarajan, Rajesh; Vikraman, S; Karrthick, KP
Purpose: To evaluate the impact of dose calculation algorithm on the dose distribution of biologically optimized Volumatric Modulated Arc Therapy (VMAT) plans for Esophgeal cancer. Methods: Eighteen retrospectively treated patients with carcinoma esophagus were studied. VMAT plans were optimized using biological objectives in Monaco (5.0) TPS for 6MV photon beam (Elekta Infinity). These plans were calculated for final dose using Monte Carlo (MC), Collapsed Cone Convolution (CCC) & Pencil Beam Convolution (PBC) algorithms from Monaco and Oncentra Masterplan TPS. A dose grid of 2mm was used for all algorithms and 1% per plan uncertainty maintained for MC calculation. MC basedmore » calculations were considered as the reference for CCC & PBC. Dose volume histogram (DVH) indices (D95, D98, D50 etc) of Target (PTV) and critical structures were compared to study the impact of all three algorithms. Results: Beam models were consistent with measured data. The mean difference observed in reference with MC calculation for D98, D95, D50 & D2 of PTV were 0.37%, −0.21%, 1.51% & 1.18% respectively for CCC and 3.28%, 2.75%, 3.61% & 3.08% for PBC. Heart D25 mean difference was 4.94% & 11.21% for CCC and PBC respectively. Lung Dmean mean difference was 1.5% (CCC) and 4.1% (PBC). Spinal cord D2 mean difference was 2.35% (CCC) and 3.98% (PBC). Similar differences were observed for liver and kidneys. The overall mean difference found for target and critical structures was 0.71±1.52%, 2.71±3.10% for CCC and 3.18±1.55%, 6.61±5.1% for PBC respectively. Conclusion: We observed a significant overestimate of dose distribution by CCC and PBC as compared to MC. The dose prediction of CCC is closer (<3%) to MC than that of PBC. This can be attributed to poor performance of CCC and PBC in inhomogeneous regions around esophagus. CCC can be considered as an alternate in the absence of MC algorithm.« less
Higgins, G A; Silenieks, L B; Lau, W; de Lannoy, I A M; Lee, D K H; Izhakova, J; Coen, K; Le, A D; Fletcher, P J
2013-04-01
Selective 5-HT2C receptor agonists, such as lorcaserin, are being developed for the treatment of obesity. Studies suggest that they may also have therapeutic potential for addictive behaviours including nicotine dependence, although few drugs of this class have been evaluated. The primary aim was to evaluate the highly selective 5-HT2C agonist, CP-809101, against food-motivated (operant FR5 and progressive ratio schedules, palatability-induced feeding) and nicotine-motivated (intravenous self-administration, drug discrimination) behaviours in rats and to compare with equivalent findings for the structurally distinct 5-HT2C receptor agonists lorcaserin and Ro 60-0175. The secondary aims were to evaluate the side effect profiles of lorcaserin and CP-809101 and to determine the plasma levels of lorcaserin at a dose (1 mg/kg) that reduces both food and nicotine reinforcement for comparison to plasma concentrations reported in human trials. CP-809101 (0.3-3 mg/kg SC) reduced responding for both nicotine and food and blocked the discriminative stimulus properties of nicotine in a similar manner to lorcaserin and Ro 60-0175. Behaviours such as hypolocomotion, chewing and ptosis became evident following both CP-809101 and lorcaserin administration at higher doses. Plasma levels of lorcaserin were of similar range to those reported in obesity trials. These studies support the utility of 5-HT2C agonists as a therapeutic approach to treat nicotine dependence. Plasma exposure levels after acute lorcaserin treatment suggest that equivalent dosages could be used to evaluate these drugs in obesity and smoking cessation trials. Finally, there may be differences in the side effect profiles between lorcaserin and CP-809101, raising the possibility for tolerability differences amongst 5-HT2C agonists.
Weisenthal, Karrin; Karthik, Priyadarshini; Shaw, Melissa; Sengupta, Debapriya; Bhargavan-Chatfield, Mythreyi; Burleson, Judy; Mustafa, Adel; Kalra, Mannudeep; Moore, Christopher
2018-02-01
Purpose To determine if the use of reduced-dose computed tomography (CT) for evaluation of kidney stones increased in 2015-2016 compared with that in 2011-2012, to determine variability in radiation exposure according to facility for this indication, and to establish a current average radiation dose for CT evaluation for kidney stones by querying a national dose registry. Materials and Methods This cross-sectional study was exempt from institutional review board approval. Data were obtained from the American College of Radiology dose registry for CT examinations submitted from July 2015 to June 2016. Study descriptors consistent with single-phase unenhanced CT for evaluation of kidney stones and associated RadLex® Playbook identifiers (RPIDs) were retrospectively identified. Facilities actively submitting data on kidney stone-specific CT examinations were included. Dose metrics including volumetric CT dose index, dose-length product, and size-specific dose estimate, when available, were reported, and a random effects model was run to account for clustering of CT examinations at facilities. A z-ratio was calculated to test for a significant difference between the proportion of reduced-radiation dose CT examinations (defined as those with a dose-length product of 200 mGy · cm or less) performed in 2015-2016 and the proportion performed in 2011-2012. Results Three hundred four study descriptors for kidney stone CT corresponding to data from 328 facilities that submitted 105 334 kidney stone CT examinations were identified. Reduced-dose CT examinations accounted for 8040 of 105 334 (7.6%) CT examinations, a 5.6% increase from the 1010 of 49 903 (2%) examinations in 2011-2012 (P < .001). Mean overall dose-length product was 689 mGy · cm (95% confidence interval: 667, 712), decreased from the mean of 746 mGy · cm observed in 2011-2012. Median facility dose-length product varied up to sevenfold, from less than 200 mGy · cm to greater than 1600 mGy · cm. Conclusion Use of reduced-radiation dose CT for evaluation of kidney stones has increased since 2011-2012, but remains low; variability of radiation dose according to facility continues to be wide. National mean CT radiation exposure for evaluation of renal colic during 2015-2016 decreased relative to 2011-2012 values, but remained well above what is reasonably achievable. © RSNA, 2017.
NASA Astrophysics Data System (ADS)
Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia
2016-09-01
In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining PCC of lymphocytes and CHO cells with FISH using PNA probes after 10 h and 24 h after irradiation, and, finally, calibration data of excess PCC fragments (Giemsa) to be used if human blood is available immediately after irradiation or within 24 h.
ELDRS Characterization for a Very High Dose Mission
NASA Technical Reports Server (NTRS)
Harris, Richard D.; McClure, Steven S.; Rax, Bernard G.; Kenna, Aaron J.; Thorbourn, Dennis O.; Clark, Karla B.; Yan, Tsun-Yee
2010-01-01
Evaluation of bipolar linear parts which may have Enhanced Low Dose Rate Sensitivity (ELDRS) is problematic for missions that have very high dose radiation requirements. The accepted standards for evaluating parts that display ELDRS require testing at a very low dose rate which could be prohibitively long for very high dose missions. In this work, a methodology for ELDRS characterization of bipolar parts for mission doses up to 1 Mrad(Si) is evaluated. The procedure employs an initial dose rate of 0.01 rad(Si)/s to a total dose of 50 krad(Si) and then changes to 0.04 rad(Si)/s to a total dose of 1 Mrad(Si). This procedure appears to work well. No change in rate of degradation with dose has been observed when the dose rate is changed from 0.01 to 0.04 rad(Si)/s. This is taken as an indication that the degradation due to the higher dose rate is equivalent to that at the lower dose rate at the higher dose levels, at least for the parts studied to date. In several cases, significant parameter degradation or functional failure not observed at HDR was observed at fairly high total doses (50 to 250 krad(Si)) at LDR. This behavior calls into question the use of dose rate trend data and enhancement factors to predict LDR performance.
Anti-inflammatory activity of different agave plants and the compound cantalasaponin-1.
Monterrosas-Brisson, Nayeli; Ocampo, Martha L Arenas; Jiménez-Ferrer, Enrique; Jiménez-Aparicio, Antonio R; Zamilpa, Alejandro; Gonzalez-Cortazar, Manases; Tortoriello, Jaime; Herrera-Ruiz, Maribel
2013-07-10
Species of the agave genus, such as Agave tequilana, Agave angustifolia and Agave americana are used in Mexican traditional medicine to treat inflammation-associated conditions. These plants' leaves contain saponin compounds which show anti-inflammatory properties in different models. The goal of this investigation was to evaluate the anti-inflammatory capacity of these plants, identify which is the most active, and isolate the active compound by a bio-directed fractionation using the ear edema induced in mice with 12-O-tetradecanoylphorbol-13-acetate (TPA) technique. A dose of 6 mg/ear of acetone extract from the three agave species induced anti-inflammatory effects, however, the one from A. americana proved to be the most active. Different fractions of this species showed biological activity. Finally the F5 fraction at 2.0 mg/ear induced an inhibition of 85.6%. We identified one compound in this fraction as (25R)-5α-spirostan-3β,6α,23α-triol-3,6-di-O-β-D-glucopyranoside (cantalasaponin-1) through 1H- and 13C-NMR spectral analysis and two dimensional experiments like DEPT NMR, COSY, HSQC and HMBC. This steroidal glycoside showed a dose dependent effect of up to 90% of ear edema inhibition at the highest dose of 1.5 mg/ear.
Optimization of beam shaping assembly based on D-T neutron generator and dose evaluation for BNCT
NASA Astrophysics Data System (ADS)
Naeem, Hamza; Chen, Chaobin; Zheng, Huaqing; Song, Jing
2017-04-01
The feasibility of developing an epithermal neutron beam for a boron neutron capture therapy (BNCT) facility based on a high intensity D-T fusion neutron generator (HINEG) and using the Monte Carlo code SuperMC (Super Monte Carlo simulation program for nuclear and radiation process) is proposed in this study. The Monte Carlo code SuperMC is used to determine and optimize the final configuration of the beam shaping assembly (BSA). The optimal BSA design in a cylindrical geometry which consists of a natural uranium sphere (14 cm) as a neutron multiplier, AlF3 and TiF3 as moderators (20 cm each), Cd (1 mm) as a thermal neutron filter, Bi (5 cm) as a gamma shield, and Pb as a reflector and collimator to guide neutrons towards the exit window. The epithermal neutron beam flux of the proposed model is 5.73 × 109 n/cm2s, and other dosimetric parameters for the BNCT reported by IAEA-TECDOC-1223 have been verified. The phantom dose analysis shows that the designed BSA is accurate, efficient and suitable for BNCT applications. Thus, the Monte Carlo code SuperMC is concluded to be capable of simulating the BSA and the dose calculation for BNCT, and high epithermal flux can be achieved using proposed BSA.
Barish, Syndi; Ochs, Michael F.; Sontag, Eduardo D.; Gevertz, Jana L.
2017-01-01
Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists. PMID:28716945
Brion, A; Mahé, B; Kolb, B; Audhuy, B; Colombat, P; Maisonneuve, H; Foussard, C; Bureau, A; Ferrand, C; Lesesve, J F; Béné, M C; Feugier, P
2012-04-01
The relevance of high-dose chemotherapy followed by auto-SCT in CLL remains to be defined. The aim of the prospective, randomized, GOELAMS LLC 98 trial was to compare two strategies in previously untreated CLL patients aged <60 years. Conventional chemotherapy (Arm A) consisted of six monthly courses of CHOP followed by six CHOP courses in every 3 months in those achieving a complete or PR. Arm A was compared with high-dose therapy with auto-SCT (Arm B), used as consolidation after three CHOP courses in case of CR or very good PR. A total of 86 patients were enrolled, of which 39 and 43 patients were evaluable in arm A and arm B, respectively. The primary endpoint was PFS. On an intent-to-treat basis and with a median follow-up time of 77.1 (range 1-135.5) months, the median PFS was 22 months in Arm A and 53 months in Arm B (P<0.0001). Median survival time was 104.7 months in arm A and 107.4 months in arm B. This trial demonstrates that frontline high-dose therapy with auto-SCT prolongs PFS but does not translate into a survival advantage in advanced CLL patients in the pre-rituximab era.
Supplemental fructose attenuates postprandial glycemia in Zucker fatty fa/fa rats.
Wolf, Bryan W; Humphrey, Phillip M; Hadley, Craig W; Maharry, Kati S; Garleb, Keith A; Firkins, Jeffrey L
2002-06-01
Experiments were conducted to evaluate the effects of supplemental fructose on postprandial glycemia. After overnight food deprivation, Zucker fatty fa/fa rats were given a meal glucose tolerance test. Plasma glucose response was determined for 180 min postprandially. At a dose of 0.16 g/kg body, fructose reduced (P < 0.05) the incremental area under the curve (AUC) by 34% when supplemented to a glucose challenge and by 32% when supplemented to a maltodextrin (a rapidly digested starch) challenge. Similarly, sucrose reduced (P = 0.0575) the incremental AUC for plasma glucose when rats were challenged with maltodextrin. Second-meal glycemic response was not affected by fructose supplementation to the first meal, and fructose supplementation to the second meal reduced (P < 0.05) postprandial glycemia when fructose had been supplemented to the first meal. In a dose-response study (0.1, 0.2, and 0.5 g/kg body), supplemental fructose reduced (P < 0.01) the peak rise in plasma glucose (linear and quadratic effects). In the final experiment, a low dose of fructose (0.075 g/kg body) reduced (P < 0.05) the incremental AUC by 18%. These data support the hypothesis that small amounts of oral fructose or sucrose may be useful in lowering the postprandial blood glucose response.
Ozonation strategies to reduce sludge production of a seafood industry WWTP.
Campos, J L; Otero, L; Franco, A; Mosquera-Corral, A; Roca, E
2009-02-01
In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.
Evaluation of the sterility of single-dose medications used in a multiple-dose fashion
Martin, Elizabeth P.; Mukherjee, Jean; Sharp, Claire R.; Sinnott-Stutzman, Virginia B.
2017-01-01
Bacterial proliferation was evaluated in single-dose medications used in a multi-dose fashion and when medications were intentionally inoculated with bacteria. Of 5 experimentally punctured medications, 1 of 75 vials (50% dextrose) became contaminated. When intentionally inoculated, hydroxyethyl starch and heparinized saline supported microbial growth. Based on these findings, it is recommended that hydroxyethyl starch and heparinized saline not be used in a multi-dose fashion. PMID:29089656
Immuno-oncology Clinical Trial Design: Limitations, Challenges, and Opportunities
Baik, Christina S.; Rubin, Eric H.; Forde, Patrick M.; Mehnert, Janice M.; Collyar, Deborah; Butler, Marcus O.; Dixon, Erica L.; Chow, Laura Q.M.
2017-01-01
Recent advances in immuno-oncology and regulatory approvals have been rapid and paradigm shifting in many difficult-to-treat malignancies. Despite immune checkpoint inhibitor therapy becoming the standard of care across multiple tumor types, there are many unanswered questions that need to be addressed before this therapeutic modality can be fully harnessed. Areas of limitations include treatment of patients not sufficiently represented in clinical trials, uncertainty of the optimal treatment dosing and duration, and lack of understanding regarding long-term immune related toxicities and atypical tumor responses. Patients such as those with autoimmune disease, chronic viral infections, limited performance status, and brain metastases were often excluded from initial trials due to concerns of safety. However, limited data suggest that some of these patients can benefit from therapy with manageable toxicities; thus, future studies should incorporate these patients to clearly define safety and efficacy. There are still controversies regarding the optimal dosing strategy that can vary from weight-based to flat dosing, with undefined treatment duration. Further elucidation of the optimal dosing approach and evaluation of predictive biomarkers should be incorporated in the design of future trials. Finally, there are long-term immune-mediated toxicities, atypical tumor responses such as pseudoprogression and endpoints unique to immuno-oncology that are not adequately captured by traditional trial designs; thus, novel study designs are needed. In this article, we discuss in detail the above challenges and propose needed areas of research for exploration and incorporation in the next generation of immuno-oncology clinical trials. PMID:28864727
Automated aortic calcification detection in low-dose chest CT images
NASA Astrophysics Data System (ADS)
Xie, Yiting; Htwe, Yu Maw; Padgett, Jennifer; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.
2014-03-01
The extent of aortic calcification has been shown to be a risk indicator for vascular events including cardiac events. We have developed a fully automated computer algorithm to segment and measure aortic calcification in low-dose noncontrast, non-ECG gated, chest CT scans. The algorithm first segments the aorta using a pre-computed Anatomy Label Map (ALM). Then based on the segmented aorta, aortic calcification is detected and measured in terms of the Agatston score, mass score, and volume score. The automated scores are compared with reference scores obtained from manual markings. For aorta segmentation, the aorta is modeled as a series of discrete overlapping cylinders and the aortic centerline is determined using a cylinder-tracking algorithm. Then the aortic surface location is detected using the centerline and a triangular mesh model. The segmented aorta is used as a mask for the detection of aortic calcification. For calcification detection, the image is first filtered, then an elevated threshold of 160 Hounsfield units (HU) is used within the aorta mask region to reduce the effect of noise in low-dose scans, and finally non-aortic calcification voxels (bony structures, calcification in other organs) are eliminated. The remaining candidates are considered as true aortic calcification. The computer algorithm was evaluated on 45 low-dose non-contrast CT scans. Using linear regression, the automated Agatston score is 98.42% correlated with the reference Agatston score. The automated mass and volume score is respectively 98.46% and 98.28% correlated with the reference mass and volume score.
The National Center for Environmental Assessment (NCEA) has released a final report that presents and applies a method to estimate distributions of internal concentrations of trihalomethanes (THMs) in humans resulting from a residential drinking water exposure. The report presen...
Distribution of ingested americium in chickens and transport to eggs. Final report, 1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, A.A.; Lloyd, S.R.; Mosley, R.E.
1976-05-01
The soluble citrate complex of americium-241 was orally administered to 20 white Leghorn laying hens daily for two weeks. The yolks, whites, and shells from the eggs were analyzed for their americium content. Yolk was the only egg fraction in which radioactivity was observed. The americium-241 activity in yolks reached a maximum on the 14th day of dosing. Biological half-times of 2.00 plus or minus 0.18 days and greater than 33 days were indicated by the average concentration values of americium-241 in yolks laid after the maximum activity was reached. The hens were serially sacrificed at 1, 10, and 20more » days after the final administration of americium-241. Tissue samples were collected and the americium content determined in the edible portions and feathers of the hens. Americium was detected in most tissues shortly after dosing; the main concentrations were found in the liver and the skeleton. The highest concentration per organ (3.03 X 0.001 percent of the dose) occurred in the liver of the hens sacrificed 10 days after final administration of americium-241. (GRA)« less
Low-dose effects of hormones and endocrine disruptors.
Vandenberg, Laura N
2014-01-01
Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.
Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko
2011-09-01
This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.
Chen, Jun; Hu, Wei; Qu, Ye-Qing; Dong, Jie; Gu, Wei; Gao, Ying; Fang, Yun; Fang, Fang; Chen, Zhi-Peng; Cai, Bao-Chang
2013-04-01
Before the design of brucine-containing transdermal formulations, the pharmacodynamics and pharmacokinetics of brucine following transdermal administration should be evaluated. In this study, the effect of addition of ethanol on solubility of bruicne was investigated and 20% ethanol was added into PBS to obtain 10mg/mL brucine solution. Then three transdermal doses (10, 20 and 40 mg/kg) were administered to mice to evaluate pharmacological activity. It had been demonstrated that brucine possessed analgesic and anti-inflammatory activity in a dose-dependent manner. Cytotoxicities of brucine against various tumor cells including skin tumor cell were also compared in vitro. Brucine was found to possess antitumor activity in a concentration and time-dependent manner and gastrointestinal tumor cells seemed to be more sensitive to brucine. Then in vitro skin permeation behavior and in vivo pharmacokinetics following transdermal administration were further investigated. The cumulative amounts of brucine across mouse skin in vitro were found to be higher than 90%. The absolute bioavailability of brucine was determined to be 40.83%. And compared with intravenous administration, MRT and T1/2 values were increased about 8~12-fold by transdermal route. Moreover, fluctuations of drug levels were found to be significantly decreased in tissues, especially in brain. Finally, no dermal toxicity of brucine was observed. The results of this study indicated that transdermal administration might be beneficial for the sustained efficacy and reduced toxicity of brucine. Copyright © 2013 Elsevier B.V. All rights reserved.
Napier, Bruce
2012-03-01
A brief description is provided of the basic concepts related to 'internal dose' and how it differs from doses that result from radioactive materials and direct radiation outside of the body. The principles of radiation dose reconstruction, as applied to both internal and external doses, are discussed on the basis of a recent publication prepared by the US National Council on Radiation Protection and Measurements. Finally, ideas are introduced related to residual radioactive contamination in the environment that has resulted from the releases from damaged reactors and also to the management of wastes that may be generated in both regional cleanup and decommissioning of the Fukushima nuclear power plant.
Chambers, Mark A; Aldwell, Frank; Williams, Gareth A; Palmer, Si; Gowtage, Sonya; Ashford, Roland; Dalley, Deanna J; Davé, Dipesh; Weyer, Ute; Salguero, Francisco J; Nunez, Alejandro; Nadian, Allan K; Crawshaw, Timothy; Corner, Leigh A L; Lesellier, Sandrine
2017-01-01
The European badger ( Meles meles ) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 10 8 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease.
Chambers, Mark A.; Aldwell, Frank; Williams, Gareth A.; Palmer, Si; Gowtage, Sonya; Ashford, Roland; Dalley, Deanna J.; Davé, Dipesh; Weyer, Ute; Salguero, Francisco J.; Nunez, Alejandro; Nadian, Allan K.; Crawshaw, Timothy; Corner, Leigh A. L.; Lesellier, Sandrine
2017-01-01
The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a 10-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a 10-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease. PMID:28174695
Santesteban Moriones, Virginia; Ibáñez Santos, Javier
2017-02-01
Introduction: Very few nutritional supplements have scientifically demonstrated their effectiveness as an ergogenic aid. This review will examine creatine monohydrate (MC), the β-hydroxy-β-methylbutyrate (HMB), sodium bicarbonate (BS), the β-alanine and caffeine. Objectives: To analyze the effi cacy, mechanisms of action, dose, side effects and some sports that can benefit from their consumption. Methods: Searching in PubMed bibliographic database reviews from the last 15 years and original articles from the last 5 years of the studied substances. Results: Doses of 20 mg/day for 4-7 days are effective in improving strength and muscular power and performance in short and repeated sprints. HMB at doses of 3 g/day for at least 2 weeks contributes to increased lean mass and fat-free mass. The intake of 0.3 g/kg of BS improves performance on tests of 400-1,500 meters in athletics and intermittent sprints. Meanwhile, doses of 80 mg/kg/day of β-alanine for 4-10 weeks may improve performance in high-intensity intermittent exercise. Finally, caffeine at doses of 2 mg/kg improves responsiveness and 3-6 mg/kg improves performance in endurance tests. Conclusions: The revised supplements have shown their efficacy in physical performance, but it is needed to keep in mind that most studies have been conducted with recreational-level athletes. Generally, the better the individual´s fitness level is the less improvement in physical performance the supplement shows. However, an increase of only 1% may sometimes allow the athlete to advance several positions in a final. Finally, we should draw attention to the importance of optimizing nutrition before considering the introduction of sports supplements, especially in children and youth. All analyzed substances have scientific basis supporting its ergogenic effect. All of them can be found in the market with Certificate of Quality and Purit
Fosgerau, Keld; Weber, Uno J; Gotfredsen, Jacob W; Jayatissa, Magdalena; Buus, Carsten; Kristensen, Niels B; Vestergaard, Mogens; Teschendorf, Peter; Schneider, Andreas; Hansen, Philip; Raunsø, Jakob; Køber, Lars; Torp-Pedersen, Christian; Videbaek, Charlotte
2010-10-09
The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion. Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours. Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-López, Antonio, E-mail: antonio.gonzalez7@carm.es; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dosemore » ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, A; Casares-Magaz, O; Elstroem, U
Purpose: Cone-beam CT (CBCT) imaging may enable image- and dose-guided proton therapy, but is challenged by image artefacts. The aim of this study was to demonstrate the general applicability of a previously developed a priori scatter correction algorithm to allow CBCT-based proton dose calculations. Methods: The a priori scatter correction algorithm used a plan CT (pCT) and raw cone-beam projections acquired with the Varian On-Board Imager. The projections were initially corrected for bow-tie filtering and beam hardening and subsequently reconstructed using the Feldkamp-Davis-Kress algorithm (rawCBCT). The rawCBCTs were intensity normalised before a rigid and deformable registration were applied on themore » pCTs to the rawCBCTs. The resulting images were forward projected onto the same angles as the raw CB projections. The two projections were subtracted from each other, Gaussian and median filtered, and then subtracted from the raw projections and finally reconstructed to the scatter-corrected CBCTs. For evaluation, water equivalent path length (WEPL) maps (from anterior to posterior) were calculated on different reconstructions of three data sets (CB projections and pCT) of three parts of an Alderson phantom. Finally, single beam spot scanning proton plans (0–360 deg gantry angle in steps of 5 deg; using PyTRiP) treating a 5 cm central spherical target in the pCT were re-calculated on scatter-corrected CBCTs with identical targets. Results: The scatter-corrected CBCTs resulted in sub-mm mean WEPL differences relative to the rigid registration of the pCT for all three data sets. These differences were considerably smaller than what was achieved with the regular Varian CBCT reconstruction algorithm (1–9 mm mean WEPL differences). Target coverage in the re-calculated plans was generally improved using the scatter-corrected CBCTs compared to the Varian CBCT reconstruction. Conclusion: We have demonstrated the general applicability of a priori CBCT scatter correction, potentially opening for CBCT-based image/dose-guided proton therapy, including adaptive strategies. Research agreement with Varian Medical Systems, not connected to the present project.« less
Nishikawa, Masataka; Owaki, Hajime; Takahi, Koichiro; Fuji, Takeshi
2014-04-01
To evaluate disease activity, knee function, and walking ability of patients with rheumatoid arthritis (RA) over 10 years after total knee arthroplasty (TKA). Four men and 26 women (mean age, 59.9 years) underwent 42 TKAs for RA with a mean duration of 151.3 months and were followed up for a mean of 142.3 months. Preoperatively, disease activity was assessed by C-reactive protein (CRP) level only, and the range of knee motion was recorded. At the final follow-up, tender joint count, swollen joint count, visual analogue scale of RA symptoms, and the Modified Health Assessment Questionnaire (MHAQ) score were assessed. Disease activity was evaluated using CRP, matrix metalloproteinase-3, and Disease Activity Score. Range of motion and Knee Society knee and function scores were also assessed. The use of methotrexate increased from 4 patients preoperatively to 20 patients at the final follow-up (p<0.001), and the mean dose increased from 3.9 to 6.3 mg/week (p<0.001). Among the 30 patients, the mean CRP level decreased from 2.63 mg/dl preoperatively to 0.61 mg/dl at the final follow-up (p<0.001). Disease activity was controlled. At the final follow-up, disease activity was in remission in 10 patients, low in 11, and moderate in 9. The mean Knee Society knee score was excellent (91.0), but the mean function score was poor (57.0) and diverse. Severe walking disability (function score, <40) was noted in 8 patients (11 TKAs). Knee and function scores did not correlate. Walking ability in patients with RA after TKA was generally poor. Poor function was associated with a history of spinal or lower extremity fracture surgery and the MHAQ score.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xi; Warner, Samuel B.; Wagner, Kyle T.
Purpose: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. Methods and Materials: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-fieldmore » skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. Results: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil–based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. Conclusions: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.« less
NASA Astrophysics Data System (ADS)
Engwall, E.; Glimelius, L.; Hynning, E.
2018-05-01
Non-small cell lung cancer (NSCLC) is a tumour type thought to be well-suited for proton radiotherapy. However, the lung region poses many problems related to organ motion and can for actively scanned beams induce severe interplay effects. In this study we investigate four mitigating rescanning techniques: (1) volumetric rescanning, (2) layered rescanning, (3) breath-sampled (BS) layered rescanning, and (4) continuous breath-sampled (CBS) layered rescanning. The breath-sampled methods will spread the layer rescans over a full breathing cycle, resulting in an improved averaging effect at the expense of longer treatment times. In CBS, we aim at further improving the averaging by delivering as many rescans as possible within one breathing cycle. The interplay effect was evaluated for 4D robustly optimized treatment plans (with and without rescanning) for seven NSCLC patients in the treatment planning system RayStation. The optimization and final dose calculation used a Monte Carlo dose engine to account for the density heterogeneities in the lung region. A realistic treatment delivery time structure given from the IBA ScanAlgo simulation tool served as basis for the interplay evaluation. Both slow (2.0 s) and fast (0.1 s) energy switching times were simulated. For all seven studied patients, rescanning improves the dose conformity to the target. The general trend is that the breath-sampled techniques are superior to layered and volumetric rescanning with respect to both target coverage and variability in dose to OARs. The spacing between rescans in our breath-sampled techniques is set at planning, based on the average breathing cycle length obtained in conjunction with CT acquisition. For moderately varied breathing cycle lengths between planning and delivery (up to 15%), the breath-sampled techniques still mitigate the interplay effect well. This shows the potential for smooth implementation at the clinic without additional motion monitoring equipment.
Population pharmacokinetics of abacavir in infants, toddlers and children.
Zhao, Wei; Piana, Chiara; Danhof, Meindert; Burger, David; Della Pasqua, Oscar; Jacqz-Aigrain, Evelyne
2013-06-01
To characterize the pharmacokinetics of abacavir in infants, toddlers and children and to assess the influence of covariates on drug disposition across these populations. Abacavir concentration data from three clinical studies in human immunodeficiency virus-infected children (n = 69) were used for model building. The children received either a weight-normalized dose of 16 mg kg(-1) day(-1) or the World Health Organization recommended dose based on weight bands. A population pharmacokinetic analysis was performed using nonlinear mixed effects modelling VI. The influence of age, gender, bodyweight and formulation was evaluated. The final model was selected according to graphical and statistical criteria. A two-compartmental model with first-order absorption and first-order elimination best described the pharmacokinetics of abacavir. Bodyweight was identified as significant covariate influencing the apparent oral clearance and volume of distribution. Predicted steady-state maximal plasma concentration and area under the concentration-time curve from 0 to 12 h of the standard twice daily regimen were 2.5 mg l(-1) and 6.1 mg h l(-1) for toddlers and infants, and 3.6 mg l(-1) and 8.7 mg h l(-1) for children, respectively. Model-based predictions showed that equivalent systemic exposure was achieved after once and twice daily dosing regimens. There were no pharmacokinetic differences between the two formulations (tablet and solution). The model demonstrated good predictive performance for dosing prediction in individual patients and, as such, can be used to support therapeutic drug monitoring in conjunction with sparse sampling. The disposition of abacavir in children appears to be affected only by differences in size, irrespective of the patient's age. Maturation processes of abacavir metabolism in younger infants should be evaluated in further studies to demonstrate the potential impact of ontogeny. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Weil, Elizabeth; Zook, Felicia; Oxencis, Carolyn; Canadeo, Angela; Urmanski, Angela; Waggoner, Mindy; Eastwood, Daniel; Pasquini, Marcelo; Hamadani, Mehdi; Hari, Parameswaran
2017-06-01
Owing to interpatient variability in busulfan exposure, therapeutic monitoring of busulfan is often used in myeloablative allogeneic transplantation to ensure that patients are near the optimal steady-state goal of 900 ng/mL. One challenge in therapeutic monitoring of busulfan is the brief course of busulfan treatment, requiring prompt analysis and dose adjustments as needed. Pharmacokinetic evaluation of a busulfan test dose before the start of the conditioning regimen would allow for all conditioning regimen doses to be given at the calculated optimized dose. An observational study was completed to evaluate the effects of a busulfan test dose of 0.9 mg/kg administered before the start of a myeloablative intravenous busulfan-based conditioning regimen. Sixty adult patients who received a busulfan conditioning regimen were reviewed, including 30 patients prior to the implementation of the busulfan test dose (pretest dose group) and 30 patients who received the busulfan test dose (posttest dose group). The primary objective was a pharmacokinetic evaluation of the percentage of patients who achieved the desired steady-state goal using the test dose strategy. The safety and efficacy of the busulfan test dose were evaluated as well. The average busulfan steady-state level after the first dose of the conditioning regimen was significantly lower in the pre-test dose group compared with the post-test dose group (660 ng/mL versus 879.9 ng/mL; P < 0.001). Compared with the post-test dose group, significantly fewer patients in the pre-test dose group were within 10% of the busulfan steady-state goal (10% versus 73.3%; P < 0.001) or within 5% of the goal (0% versus 53%; P < 0.001). Requirements for parenteral nutrition and/or patient-controlled analgesia owing to mucositis and rates of veno-occlusive disease were not significantly different between the pre-test dose group and the post-test dose group. The rates of disease relapse, mortality, and acute graft-versus-host disease were similar in the two groups. A pretransplantation busulfan test dose of 0.9 mg/kg improved the patients' ability to reach therapeutic busulfan target levels after the first conditioning dose and resulted in fewer adjustments during conditioning. The use of a busulfan test dose did not significantly increase patients' risk of mucositis or other safety outcomes. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Čížková, Klára; Láska, Kamil; Metelka, Ladislav; Staněk, Martin
2018-02-01
This paper evaluates the variability of erythemal ultraviolet (EUV) radiation from Hradec Králové (Czech Republic) in the period 1964-2013. The EUV radiation time series was reconstructed using a radiative transfer model and additional empirical relationships, with the final root mean square error of 9.9 %. The reconstructed time series documented the increase in EUV radiation doses in the 1980s and the 1990s (up to 15 % per decade), which was linked to the steep decline in total ozone (10 % per decade). The changes in cloud cover were the major factor affecting the EUV radiation doses especially in the 1960s, 1970s, and at the beginning of the new millennium. The mean annual EUV radiation doses in the decade 2004-2013 declined by 5 %. The factors affecting the EUV radiation doses differed also according to the chosen integration period (daily, monthly, and annually): solar zenith angle was the most important for daily doses, cloud cover, and surface UV albedo for their monthly means, and the annual means of EUV radiation doses were most influenced by total ozone column. The number of days with very high EUV radiation doses increased by 22 % per decade, the increase was statistically significant in all seasons except autumn. The occurrence of the days with very high EUV doses was influenced mostly by low total ozone column (82 % of days), clear-sky or partly cloudy conditions (74 % of days) and by increased surface albedo (19 % of days). The principal component analysis documented that the occurrence of days with very high EUV radiation doses was much affected by the positive phase of North Atlantic Oscillation with an Azores High promontory reaching over central Europe. In the stratosphere, a strong Arctic circumpolar vortex and the meridional inflow of ozone-poor air from the southwest were favorable for the occurrence of days with very high EUV radiation doses. This is the first analysis of the relationship between the high EUV radiation doses and macroscale circulation patterns, and therefore more attention should be given also to other dynamical variables that may affect the solar UV radiation on the Earth surface.
Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung
2015-03-01
Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.
IRIS Toxicological Review of 1,2,3-Trichloropropane (External ...
EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of 1,2,3-trichloropropane (TCP) that once finalized will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used credibly and appropriately in derivation of the dose-response assessments and toxicological characterization. This Tox Review provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to 1,2,3-trichloropropane.
IRIS Toxicological Review of 1,4-Dioxane (with Inhalation Update) (Final Report)
The final IRIS Toxicological Review of 1,4-dioxane (with inhalation update) provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to 1,4-dioxane. Human health risk concerns for 1,4-dioxane are primarily relat...
Deshpande, Shrikant; Xing, Aitang; Metcalfe, Peter; Holloway, Lois; Vial, Philip; Geurts, Mark
2017-10-01
The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results. © 2017 American Association of Physicists in Medicine.
Evaluation of organ doses in CT examinations with an infant anthropomorphic phantom.
Fujii, K; Akahane, K; Miyazaki, O; Horiuchi, T; Shimada, A; Nagmatsu, H; Yamauchi, M; Yamauchi-Kawaura, C; Kawasaki, T
2011-09-01
The aim of this study is to evaluate organ doses in infant CT examinations with multi-detector row CT scanners. Radiation doses were measured with radiophotoluminescence glass dosemeters set in various organ positions within a 1-y-old child anthropomorphic phantom and organ doses were evaluated from the measurement values. Doses for tissues or organs within the scan range were 28-36 mGy in an infant head CT, 3-11 mGy in a chest CT, 5-11 mGy in an abdominal-pelvic CT and 2-14 mGy in a cardiac CT. The doses varied by the differences in the types of CT scanners and scan parameters used at each medical facility. Compared with those for children of various ages, the doses in an infant CT protocol were found to be similar to or slightly smaller than those in a paediatric CT for 5- or 6-y-old children.
Exercise Dose in Clinical Practice
Wasfy, Meagan; Baggish, Aaron L.
2016-01-01
There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. PMID:27267537
Exercise Dose in Clinical Practice.
Wasfy, Meagan M; Baggish, Aaron L
2016-06-07
There is wide variability in the physical activity patterns of the patients in contemporary clinical cardiovascular practice. This review is designed to address the impact of exercise dose on key cardiovascular risk factors and on mortality. We begin by examining the body of literature that supports a dose-response relationship between exercise and cardiovascular disease risk factors, including plasma lipids, hypertension, diabetes mellitus, and obesity. We next explore the relationship between exercise dose and mortality by reviewing the relevant epidemiological literature underlying current physical activity guideline recommendations. We then expand this discussion to critically examine recent data pertaining to the impact of exercise dose at the lowest and highest ends of the spectrum. Finally, we provide a framework for how the key concepts of exercise dose can be integrated into clinical practice. © 2016 American Heart Association, Inc.
Farah, J; Bonfrate, A; De Marzi, L; De Oliveira, A; Delacroix, S; Martinetti, F; Trompier, F; Clairand, I
2015-05-01
This study focuses on the configuration and validation of an analytical model predicting leakage neutron doses in proton therapy. Using Monte Carlo (MC) calculations, a facility-specific analytical model was built to reproduce out-of-field neutron doses while separately accounting for the contribution of intra-nuclear cascade, evaporation, epithermal and thermal neutrons. This model was first trained to reproduce in-water neutron absorbed doses and in-air neutron ambient dose equivalents, H*(10), calculated using MCNPX. Its capacity in predicting out-of-field doses at any position not involved in the training phase was also checked. The model was next expanded to enable a full 3D mapping of H*(10) inside the treatment room, tested in a clinically relevant configuration and finally consolidated with experimental measurements. Following the literature approach, the work first proved that it is possible to build a facility-specific analytical model that efficiently reproduces in-water neutron doses and in-air H*(10) values with a maximum difference less than 25%. In addition, the analytical model succeeded in predicting out-of-field neutron doses in the lateral and vertical direction. Testing the analytical model in clinical configurations proved the need to separate the contribution of internal and external neutrons. The impact of modulation width on stray neutrons was found to be easily adjustable while beam collimation remains a challenging issue. Finally, the model performance agreed with experimental measurements with satisfactory results considering measurement and simulation uncertainties. Analytical models represent a promising solution that substitutes for time-consuming MC calculations when assessing doses to healthy organs. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Bonfrate, A; Farah, J; De Marzi, L; Delacroix, S; Hérault, J; Sayah, R; Lee, C; Bolch, W E; Clairand, I
2016-04-01
In scattering proton therapy, the beam incidence, i.e. the patient's orientation with respect to the beam axis, can significantly influence stray neutron doses although it is almost not documented in the literature. MCNPX calculations were carried out to estimate stray neutron doses to 25 healthy organs of a 10-year-old female phantom treated for an intracranial tumor. Two beam incidences were considered in this article, namely a superior (SUP) field and a right lateral (RLAT) field. For both fields, a parametric study was performed varying proton beam energy, modulation width, collimator aperture and thickness, compensator thickness and air gap size. Using a standard beam line configuration for a craniopharyngioma treatment, neutron absorbed doses per therapeutic dose of 63μGyGy(-1) and 149μGyGy(-1) were found at the heart for the SUP and the RLAT fields, respectively. This dose discrepancy was explained by the different patient's orientations leading to changes in the distance between organs and the final collimator where external neutrons are mainly produced. Moreover, investigations on neutron spectral fluence at the heart showed that the number of neutrons was 2.5times higher for the RLAT field compared against the SUP field. Finally, the influence of some irradiation parameters on neutron doses was found to be different according to the beam incidence. Beam incidence was thus found to induce large variations in stray neutron doses, proving that this parameter could be optimized to enhance the radiation protection of the patient. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Manigandan, Durai; Karrthick, Karukkupalayam Palaniappan; Sambasivaselli, Raju; Senniandavar, Vellaingiri; Ramu, Mahendran; Rajesh, Thiyagarajan; Lutz, Muller; Muthukumaran, Manavalan; Karthikeyan, Nithyanantham; Tejinder, Kataria
2014-01-01
The purpose of this study was to evaluate quantitatively the patient‐specific 3D dosimetry tool COMPASS with 2D array MatriXX detector for stereotactic volumetric‐modulated arc delivery. Twenty‐five patients CT images and RT structures from different sites (brain, head & neck, thorax, abdomen, and spine) were taken from CyberKnife Multiplan planning system for this study. All these patients underwent radical stereotactic treatment in CyberKnife. For each patient, linac based volumetric‐modulated arc therapy (VMAT) stereotactic plans were generated in Monaco TPS v3.1 using Elekta Beam Modulator MLC. Dose prescription was in the range of 5–20 Gy per fraction. Target prescription and critical organ constraints were tried to match the delivered treatment plans. Each plan quality was analyzed using conformity index (CI), conformity number (CN), gradient Index (GI), target coverage (TC), and dose to 95% of volume (D95). Monaco Monte Carlo (MC)‐calculated treatment plan delivery accuracy was quantitatively evaluated with COMPASS‐calculated (CCA) dose and COMPASS indirectly measured (CME) dose based on dose‐volume histogram metrics. In order to ascertain the potential of COMPASS 3D dosimetry for stereotactic plan delivery, 2D fluence verification was performed with MatriXX using MultiCube phantom. Routine quality assurance of absolute point dose verification was performed to check the overall delivery accuracy. Quantitative analyses of dose delivery verification were compared with pass and fail criteria of 3 mm and 3% distance to agreement and dose differences. Gamma passing rate was compared with 2D fluence verification from MatriXX with MultiCube. Comparison of COMPASS reconstructed dose from measured fluence and COMPASS computed dose has shown a very good agreement with TPS calculated dose. Each plan was evaluated based on dose volume parameters for target volumes such as dose at 95% of volume (D95) and average dose. For critical organs dose at 20% of volume (D20), dose at 50% of volume (D50), and maximum point doses were evaluated. Comparison was carried out using gamma analysis with passing criteria of 3 mm and 3%. Mean deviation of 1.9%±1% was observed for dose at 95% of volume (D95) of target volumes, whereas much less difference was noticed for critical organs. However, significant dose difference was noticed in two cases due to the smaller tumor size. Evaluation of this study revealed that the COMPASS 3D dosimetry is efficient and easy to use for patient‐specific QA of VMAT stereotactic delivery. 3D dosimetric QA with COMPASS provides additional degrees of freedom to check the high‐dose modulated stereotactic delivery with very high precision on patient CT images. PACS numbers: 87.55.Qr, 87.56.Fc PMID:25679152
TU-AB-303-12: Towards Inter and Intra Fraction Plan Adaptation for the MR-Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontaxis, C; Bol, G; Lagendijk, J
Purpose: To develop a new sequencer for IMRT that during treatment can account for anatomy changes provided by online and real-time MRI. This sequencer employs a novel inter and intra fraction scheme that converges to the prescribed dose without a final segment weight optimization (SWO) and enables immediate optimization and delivery of radiation adapted to the deformed anatomy. Methods: The sequencer is initially supplied with a voxel-based dose prescription and during the optimization iteratively generates segments that provide this prescribed dose. Every iteration selects the best segment for the current anatomy state, calculates the dose it will deliver, warps itmore » back to the reference prescription grid and subtracts it from the remaining prescribed dose. This process continues until a certain percentage of dose or a number of segments has been delivered. The anatomy changes that occur during treatment require that convergence is achieved without a final SWO. This is resolved by adding the difference between the prescribed and delivered dose up to this fraction to the prescription of the subsequent fraction. This process is repeated for all fractions of the treatment. Results: Two breast cases were selected to stress test the pipeline by producing artificial inter and intra fraction anatomy deformations using a combination of incrementally applied rigid transformations. The dose convergence of the adaptive scheme over the entire treatment, relative to the prescribed dose, was on average 8.6% higher than the static plans delivered to the respective deformed anatomies and only 1.6% less than the static segment weighted plans on the static anatomy. Conclusion: This new adaptive sequencing strategy enables dose convergence without the need of SWO while adapting the plan to intermediate anatomies, which is a prerequisite for online plan adaptation. We are now testing our pipeline on prostate cases using clinical anatomy deformation data from our department. This work is financially supported by Elekta AB, Stockholm, Sweden.« less
Tilmicosin as a single injection treatment for respiratory disease of feedlot cattle
Gorham, Paul E.; Carroll, Lamar H.; McAskill, Jack W.; Watkins, Lee E.; Ose, Earl E.; Tonkinson, Lealon V.; Merrill, John K.
1990-01-01
Tilmicosin, a new semi-synthetic macrolide antibiotic, was evaluated in eight field trials as a single subcutaneous injection at dosages of 0 (placebo), 5, 10 and 20 mg/kg for the treatment of naturally occurring respiratory disease in feedlot cattle. Animals for these trials were selected from large groups of recently-shipped feeder cattle at the time clinical signs of respiratory disease and body temperature of 40.6°C or higher were observed. Treated animals were evaluated daily for 10 days and finally at day 28. Each animal was weighed on the first day and again on day 28. Animals that died were necropsied. All treatment dosages were effective in significantly lowering mortality, improving weight gains, lowering body temperature, and reducing the severity of clinical signs when compared to the placebo-treated controls. Body temperature was the only variable with statistically significant differences among the dose levels. PMID:17423706
A step function model to evaluate the real monetary value of man-sievert with real GDP.
Na, Seong H; Kim, Sun G
2009-01-01
For use in a cost-benefit analysis to establish optimum levels of radiation protection in Korea under the ALARA principle, we introduce a discrete step function model to evaluate man-sievert monetary value in the real economic value. The model formula, which is unique and country-specific, is composed of real GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and average life expectancy. Unlike previous researches on alpha-value assessment, we show different alpha values in the real term, differentiated with respect to the range of individual doses, which would be more realistic and informative for application to the radiation protection practices. GDP deflators of economy can reflect the society's situations. Finally, we suggest that the Korean model can be generalized simply to other countries without normalizing any country-specific factors.
Six steps to a successful dose-reduction strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, M.
1995-03-01
The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3)more » prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.« less
Radiation exposure in interventional radiology
NASA Astrophysics Data System (ADS)
Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.
2007-09-01
The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
Stevens, R B; Wrenshall, L E; Miles, C D; Farney, A C; Jie, T; Sandoz, J P; Rigley, T H; Osama Gaber, A
2016-06-01
A previous nonblinded, randomized, single-center renal transplantation trial of single-dose rabbit anti-thymocyte globulin induction (SD-rATG) showed improved efficacy compared with conventional divided-dose (DD-rATG) administration. The present multicenter, double-blind/double-dummy STAT trial (Single dose vs. Traditional Administration of Thymoglobulin) evaluated SD-rATG versus DD-rATG induction for noninferiority in early (7-day) safety and tolerability. Ninety-five patients (randomized 1:1) received 6 mg/kg SD-rATG or 1.5 mg/kg/dose DD-rATG, with tacrolimus-mycophenolate maintenance immunosuppression. The primary end point was a composite of fever, hypoxia, hypotension, cardiac complications, and delayed graft function. Secondary end points included 12-month patient survival, graft survival, and rejection. Target enrollment was 165 patients with an interim analysis scheduled after 80 patients. Interim analysis showed primary end point noninferiority of SD-rATG induction (p = 0.6), and a conditional probability of <1.73% of continued enrollment producing a significant difference (futility analysis), leading to early trial termination. Final analysis (95 patients) showed no differences in occurrence of primary end point events (p = 0.58) or patients with no, one, or more than one event (p = 0.81), or rejection, graft, or patient survival (p = 0.78, 0.47, and 0.35, respectively). In this rigorously blinded trial in adult renal transplantation, we have shown SD-rATG induction to be noninferior to DD-rATG induction in early tolerability and equivalent in 12-month safety. (Clinical Trials.gov #NCT00906204.). © Copyright 2016 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of the American Society of Transplantation and the American Society of Transplant Surgeons.
Sabino, Valentina; Cottone, Pietro; Steardo, Luca; Schmidhammer, Helmut; Zorrilla, Eric P
2007-07-01
Increased opioidergic activity is thought to increase the propensity to consume ethanol. However, the dose monotonicity and receptor subtype for this effect remain uncertain. 14-methoxymetopon is a centrally acting, selective micro opioid receptor agonist with greater systemic antinociceptive potency than morphine and a putatively improved therapeutic index. To determine whether 14-methoxymetopon influenced voluntary ethanol intake in Sardinian alcohol-preferring (sP) rats. Male sP rats with continuous 2-bottle choice access to ethanol (10% v/v) or water were subjects. The effects of systemic 14-methoxymetopon administration (2, 5, 12.25, 30 micro/kg, s.c.) on 4-h ethanol intake were determined. The ability of naltrexone (50 micro/kg, s.c.), an opioid antagonist, to block actions of 14-methoxymetopon (12.25, 30 micro/kg, s.c.) was examined as were the effects of 14-methoxymetopon (12.25 micro/kg, s.c.) on self-administered blood alcohol levels (BALs) and clearance of a passive ethanol bolus (1 g/kg). Finally, the effects of central 14-methoxymetopon administration (0.0003-100 ng, i.c.v.) on 4-h ethanol intake were evaluated. Systemic 14-methoxymetopon very potently and dose-dependently suppressed ethanol and food intake for 30 min, followed by a greater, longer-lasting, and behaviorally specific increase in ethanol intake. The increased ethanol intake led to threefold higher BALs, was naltrexone-reversible, and not due to altered ethanol clearance. Intracerebroventricular 14-methoxymetopon administration rapidly altered ethanol intake per an inverted U-shaped dose-response function, increasing it at a 10 pg dose, while suppressing it at a 10,000-fold higher dose. The novel mu analgesic increases ethanol intake, a potential therapeutic liability, and results suggest a non-monotonic influence of brain mu opioid receptor stimulation on ethanol intake.
Yu, Mingming; Gao, Zhiwei; Dai, Xiaojian; Gong, Hui; Zhang, Lianshan; Chen, Xiaoyan; Zhong, Da-Fang; Sy, Sherwin K B
2017-01-01
Apatinib is an oral tyrosine kinase inhibitor approved in China for the treatment of patients with advanced metastatic gastric cancer. The approved dosing schedule is 850 mg once daily. The objective of this study was to develop a population pharmacokinetic (popPK) model of apatinib and determine factors that affect its pharmacokinetics. A popPK model for apatinib was developed using data from 106 individuals, including healthy volunteers and patients with malignant solid tumors. The potential influence of demographic, patient, and laboratory characteristics on oral apatinib pharmacokinetics were investigated in a covariate analysis. The extent of the impact of significant covariates on the exposure of apatinib was evaluated using simulations. The final popPK model was a two-compartment model with mixed first- and zero-order absorption and first-order elimination. The population estimates of apparent clearance (CL/F) and apparent volume at steady-state were 57.8 L/h and 112.5 L, respectively. The non-linear dose proportionality in apatinib relative bioavailability was characterized by a sigmoidal maximum effect (E max ) equation wherein the midpoint dose for the decrease in bioavailability was 766 mg. Patients with advanced gastric cancer exhibited lower bioavailability. Cancer patients in general had lower CL/F than healthy volunteers. Simulation results indicated that apatinib exposure in various population groups were impacted by disease and laboratory characteristics. The increase in apatinib exposure was less than proportional to dose. The pharmacokinetics of apatinib in gastric cancer patients were significantly different from those in patients with other cancer types. Dosing of apatinib in various cancer subpopulations may require adjustments to optimize efficacy and benefits to patients.
Benchmark dose and the three Rs. Part I. Getting more information from the same number of animals.
Slob, Wout
2014-08-01
Evaluating dose-response data using the Benchmark dose (BMD) approach rather than by the no observed adverse effect (NOAEL) approach implies a considerable step forward from the perspective of the Reduction, Replacement, and Refinement, three Rs, in particular the R of reduction: more information is obtained from the same number of animals, or, vice versa, similar information may be obtained from fewer animals. The first part of this twin paper focusses on the former, the second on the latter aspect. Regarding the former, the BMD approach provides more information from any given dose-response dataset in various ways. First, the BMDL (= BMD lower confidence bound) provides more information by its more explicit definition. Further, as compared to the NOAEL approach the BMD approach results in more statistical precision in the value of the point of departure (PoD), for deriving exposure limits. While part of the animals in the study do not directly contribute to the numerical value of a NOAEL, all animals are effectively used and do contribute to a BMDL. In addition, the BMD approach allows for combining similar datasets for the same chemical (e.g., both sexes) in a single analysis, which further increases precision. By combining a dose-response dataset with similar historical data for other chemicals, the precision can even be substantially increased. Further, the BMD approach results in more precise estimates for relative potency factors (RPFs, or TEFs). And finally, the BMD approach is not only more precise, it also allows for quantification of the precision in the BMD estimate, which is not possible in the NOAEL approach.
Gelotte, Cathy K; Prior, Mary Jane; Pendley, Charles; Zimmerman, Brenda; Lavins, Bernard J
2010-07-01
Two studies were conducted to characterize multiple-dose pharmacokinetics and potential drug interactions of ibuprofen and pseudoephedrine combined in a suspension and to evaluate safety of this combination in children with common cold, flu, or sinusitis. In the pharmacokinetic study, 24 healthy children aged 4-11 years were administered ibuprofen -pseudoephedrine suspension at 7.5 and 1.125 mg/kg, respectively, every 6 hours for 5 doses. Serial blood samples were drawn over 6 hours after final dose for assessment of steady-state pharmacokinetics. In the open-label, multicenter safety study, more than 100 children aged 2-11 years experiencing symptomatic rhinitis were enrolled. Ibuprofen -pseudoephedrine suspension was administered as needed at similar mg/kg doses every 6-8 hours for up to 3 days. Subjects enrolled in the pharmacokinetic study showed no accumulation of either drug; their weight-adjusted clearances were independent of age, and results were comparable with those from previous single-ingredient studies. For ibuprofen, oral clearance (Cl/F) was 77.5 + or - 16.4 mL/kg/h and volume of distribution (Vd/F) was 0.147 + or - 0.037 L/kg. For pseudoephedrine, Cl/F was 12.3 + or - 2.2 mL/kg/min and Vd/F was 2.52 + or - 0.47 L/kg. In the safety study, adverse events were reported for 18.4% of subjects; most were mild to moderate intensity. There was little difference in incidence of adverse events among different age and weight groups. In conclusion, administration of combined ibuprofen and pseudoephedrine in children demonstrated similar pharmacokinetics when compared with reports of the pharmacokinetics for the single-ingredient products, consistent with no apparent drug interactions. The combination suspension was generally well tolerated.
Chlorinated Persistent Organic Pollutants, Obesity, and Type 2 Diabetes
Porta, Miquel; Jacobs, David R.; Vandenberg, Laura N.
2014-01-01
Persistent organic pollutants (POPs) are lipophilic compounds that travel with lipids and accumulate mainly in adipose tissue. Recent human evidence links low-dose POPs to an increased risk of type 2 diabetes (T2D). Because humans are contaminated by POP mixtures and POPs possibly have nonmonotonic dose-response relations with T2D, critical methodological issues arise in evaluating human findings. This review summarizes epidemiological results on chlorinated POPs and T2D, and relevant experimental evidence. It also discusses how features of POPs can affect inferences in humans. The evidence as a whole suggests that, rather than a few individual POPs, background exposure to POP mixtures—including organochlorine pesticides and polychlorinated biphenyls—can increase T2D risk in humans. Inconsistent statistical significance for individual POPs may arise due to distributional differences in POP mixtures among populations. Differences in the observed shape of the dose-response curves among human studies may reflect an inverted U-shaped association secondary to mitochondrial dysfunction or endocrine disruption. Finally, we examine the relationship between POPs and obesity. There is evidence in animal studies that low-dose POP mixtures are obesogenic. However, relationships between POPs and obesity in humans have been inconsistent. Adipose tissue plays a dual role of promoting T2D and providing a relatively safe place to store POPs. Large prospective studies with serial measurements of a broad range of POPs, adiposity, and clinically relevant biomarkers are needed to disentangle the interrelationships among POPs, obesity, and the development of T2D. Also needed are laboratory experiments that more closely mimic real-world POP doses, mixtures, and exposure duration in humans. PMID:24483949
Brunet, Salut; Esteve, Jordi; Berlanga, Joan; Ribera, Josep M; Bueno, Javier; Martí, Josep M; Bargay, Joan; Guardia, Ramon; Juliá, Antoni; Granena, Albert; Montserrat, Emili; Sierra, Jorge
2004-08-01
To evaluate a regimen of induction and consolidation chemotherapy, followed by a post-remission therapy which depended on age and cytogenetics, in patients with primary acute myeloid leukemia. Two hundred patients up to 60 years old received idarubicin, standard dose cytarabine and etoposide as induction chemotherapy and one consolidation course including intermediate dose cytarabine and mitoxantrone. Subsequently, patients with favorable cytogenetics, [i.e., t(8;21), inv(16)] were scheduled to receive 2 courses of high-dose cytarabine. The remainder were scheduled for allogeneic stem cell transplantation (SCT), if
Impact of Penicillin Allergy on Time to First Dose of Antimicrobial Therapy and Clinical Outcomes.
Conway, Erin L; Lin, Ken; Sellick, John A; Kurtzhalts, Kari; Carbo, James; Ott, Michael C; Mergenhagen, Kari A
2017-11-01
The objective of this study was to evaluate the impact of a listed penicillin allergy on the time to first dose of antibiotic in a Veterans Affairs hospital. Additional clinical outcomes of patients with penicillin allergies were compared with those of patients without a penicillin allergy. A retrospective chart review of veterans admitted through the emergency department with a diagnosis of pneumonia, urinary tract infection, bacteremia, and sepsis from January 2006 to December 2015 was conducted. The primary outcome was time to first dose of antibiotic treatment, defined as the time from when the patient presented to the emergency department to the medication administration time. Secondary outcomes included total antibiotic therapy duration and treatment outcomes, including mortality, length of stay, and 30-day readmission rate. A total of 403 patients were included in the final analysis; 57 patients (14.1%) had a listed penicillin allergy. The average age of the population was 75 years and 99% of the population was male. The mean time to first dose of antibiotic treatment for patients with a penicillin allergy was prolonged compared with those without a penicillin allergy (236.1 vs 186.6 minutes; P = 0.03), resulting in an approximately 50-minute delay. Penicillin-allergic patients were more likely to receive a carbapenem or fluoroquinolone antibiotic (P < 0.0001). Patients with a penicillin allergy had a prolonged time to first dose of antibiotic therapy. No significant differences were found in total antibiotic duration, length of stay, or 30-day readmission rate. The small sample size, older population, and single-center nature of this study may limit the generalizability of the present findings to other populations. Published by Elsevier Inc.
Knowlden, Adam P; Sharma, Manoj
2014-09-01
Family-and-home-based interventions are an important vehicle for preventing childhood obesity. Systematic process evaluations have not been routinely conducted in assessment of these interventions. The purpose of this study was to plan and conduct a process evaluation of the Enabling Mothers to Prevent Pediatric Obesity Through Web-Based Learning and Reciprocal Determinism (EMPOWER) randomized control trial. The trial was composed of two web-based, mother-centered interventions for prevention of obesity in children between 4 and 6 years of age. Process evaluation used the components of program fidelity, dose delivered, dose received, context, reach, and recruitment. Categorical process evaluation data (program fidelity, dose delivered, dose exposure, and context) were assessed using Program Implementation Index (PII) values. Continuous process evaluation variables (dose satisfaction and recruitment) were assessed using ANOVA tests to evaluate mean differences between groups (experimental and control) and sessions (sessions 1 through 5). Process evaluation results found that both groups (experimental and control) were equivalent, and interventions were administered as planned. Analysis of web-based intervention process objectives requires tailoring of process evaluation models for online delivery. Dissemination of process evaluation results can advance best practices for implementing effective online health promotion programs. © 2014 Society for Public Health Education.
IRIS Toxicological Review of Dichloromethane (Methylene ...
EPA is conducting a peer review and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Dichloromethane that when finalized will appear on the Integrated Risk Information System (IRIS) database. The draft Toxicological Review of Dichloromethane provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to dichloromethane.
Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho
2017-08-01
The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Hu, Yu; Chen, Yaping; Wang, Ying; Liang, Hui
2018-04-03
This study aimed to evaluate the potential achievable coverage of the second dose of measles containing vaccine (MCV2) when the protocol of simultaneous administration of childhood vaccines was fully implemented. Risk factors for missed opportunity (MO) for simultaneous administration of MCV2 were also investigated. Children born from 1 January 2005 to 31 December 2014 and registered in Zhejiang provincial immunization information system were enrolled in this study. The MO of simultaneous administration of MCV2, the actual age-appropriate coverage (AAC) of MCV2 and the potentially achievable coverage (PAC) of MCV2 were evaluated and compared across different birth cohorts, by different socio-demographic variables. For the 2014 birth cohort, logistic regression model was used to detect the risk factors of MOs, from both socio-demographic and vaccination service providing aspects. Compared to the AAC, the PAC of MCV2 increased significantly from 2005 birth cohort to 2014 birth cohort (p<0.001), with a median of 12.7 percentage points. Higher birth order of children, resident children, higher maternal education background, higher socio-economic development level of resident areas, less frequent vaccination service, and shorter vaccination service time were significant risk factors of MO for simultaneous administration of MCV2, with all p-value < 0.05. The findings in this study suggest that fully utilization of all opportunities for simultaneous administration of all age-eligible vaccine doses at the same vaccination visit is critical for achieving the coverage target of 95% for MCV2. Future interventions focusing on the group with risk factors observed could substantially eliminate MOs for simultaneous administration of MCV2, further to improve the coverage of fully immunization of MCV, and finally achieve the goal of eliminating measles.
Conformity of commercial oral single solid unit dose packages in hospital pharmacy practice.
Thibault, Maxime; Prot-Labarthe, Sonia; Bussières, Jean-François; Lebel, Denis
2008-06-01
There are limited published data on the labelling of single unit dose packages in hospitals. The study was conducted in three large hospitals (two adult and one paediatric) in the metropolitan Montreal area, Quebec, Canada. The objective is to evaluate the labelling of commercial oral single solid unit dose packages available in Canadian urban hospital pharmacy practice. The study endpoint was the labelling conformity of each unit dose package for each criterion and overall for each manufacturer. Complete labelling of unit dose packages should include the following information: (1) brand name, (2) international non-proprietary name or generic name, (3) dosage, (4) pharmaceutical form, (5) manufacturer's name, (6) expiry date, (7) batch number and (8) drug identification number. We also evaluated the ease with which a single unit dose package is detached from a multiple unit dose package for quick, easy and safe use by pharmacy staff. Conformity levels were compared between brand-name and generic packages. A total of 124 different unit dose packages were evaluated. The level of conformity of each criterion varied between 19 and 50%. Only 43% of unit dose packages provided an easy-to-detach system for single doses. Among the 14 manufacturers with three or more unit dose packages evaluated, eight (57%) had a conformity level less than 50%. This study describes the conformity of commercial oral single solid unit dose packages in hospital pharmacy practice in Quebec. A large proportion of unit dose packages do not conform to a set of nine criteria set out in the guidelines of the American Society of Health-System Pharmacists and the Canadian Society of Hospital Pharmacists.
Yoon, Hee Mang; Suh, Chong Hyun; Cho, Young Ah; Kim, Jeong Rye; Lee, Jin Seong; Jung, Ah Young; Kim, Jung Heon; Lee, Jeong-Yong; Kim, So Yeon
2018-06-01
To evaluate the diagnostic performance of reduced-dose CT for suspected appendicitis. A systematic search of the MEDLINE and EMBASE databases was carried out through to 10 January 2017. Studies evaluating the diagnostic performance of reduced-dose CT for suspected appendicitis in paediatric and adult patients were selected. Pooled summary estimates of sensitivity and specificity were calculated using hierarchical logistic regression modelling. Meta-regression was performed. Fourteen original articles with a total of 3,262 patients were included. For all studies using reduced-dose CT, the summary sensitivity was 96 % (95 % CI 93-98) with a summary specificity of 94 % (95 % CI 92-95). For the 11 studies providing a head-to-head comparison between reduced-dose CT and standard-dose CT, reduced-dose CT demonstrated a comparable summary sensitivity of 96 % (95 % CI 91-98) and specificity of 94 % (95 % CI 93-96) without any significant differences (p=.41). In meta-regression, there were no significant factors affecting the heterogeneity. The median effective radiation dose of the reduced-dose CT was 1.8 mSv (1.46-4.16 mSv), which was a 78 % reduction in effective radiation dose compared to the standard-dose CT. Reduced-dose CT shows excellent diagnostic performance for suspected appendicitis. • Reduced-dose CT shows excellent diagnostic performance for evaluating suspected appendicitis. • Reduced-dose CT has a comparable diagnostic performance to standard-dose CT. • Median effective radiation dose of reduced-dose CT was 1.8 mSv (1.46-4.16). • Reduced-dose CT achieved a 78 % dose reduction compared to standard-dose CT.
EVALUATING QUANTITATIVE FORMULAS FOR DOSE-RESPONSE ASSESSMENT OF CHEMICAL MIXTURES
Risk assessment formulas are often distinguished from dose-response models by being rough but necessary. The evaluation of these rough formulas is described here, using the example of mixture risk assessment. Two conditions make the dose-response part of mixture risk assessment d...
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
Dose specification for radiation therapy: dose to water or dose to medium?
NASA Astrophysics Data System (ADS)
Ma, C.-M.; Li, Jinsheng
2011-05-01
The Monte Carlo method enables accurate dose calculation for radiation therapy treatment planning and has been implemented in some commercial treatment planning systems. Unlike conventional dose calculation algorithms that provide patient dose information in terms of dose to water with variable electron density, the Monte Carlo method calculates the energy deposition in different media and expresses dose to a medium. This paper discusses the differences in dose calculated using water with different electron densities and that calculated for different biological media and the clinical issues on dose specification including dose prescription and plan evaluation using dose to water and dose to medium. We will demonstrate that conventional photon dose calculation algorithms compute doses similar to those simulated by Monte Carlo using water with different electron densities, which are close (<4% differences) to doses to media but significantly different (up to 11%) from doses to water converted from doses to media following American Association of Physicists in Medicine (AAPM) Task Group 105 recommendations. Our results suggest that for consistency with previous radiation therapy experience Monte Carlo photon algorithms report dose to medium for radiotherapy dose prescription, treatment plan evaluation and treatment outcome analysis.
Ma, Xiaosu; Chien, Jenny Y; Johnson, Jennal; Malone, James; Sinha, Vikram
2017-08-01
The purpose of this prospective, model-based simulation approach was to evaluate the impact of various rapid-acting mealtime insulin dose-titration algorithms on glycemic control (hemoglobin A1c [HbA1c]). Seven stepwise, glucose-driven insulin dose-titration algorithms were evaluated with a model-based simulation approach by using insulin lispro. Pre-meal blood glucose readings were used to adjust insulin lispro doses. Two control dosing algorithms were included for comparison: no insulin lispro (basal insulin+metformin only) or insulin lispro with fixed doses without titration. Of the seven dosing algorithms assessed, daily adjustment of insulin lispro dose, when glucose targets were met at pre-breakfast, pre-lunch, and pre-dinner, sequentially, demonstrated greater HbA1c reduction at 24 weeks, compared with the other dosing algorithms. Hypoglycemic rates were comparable among the dosing algorithms except for higher rates with the insulin lispro fixed-dose scenario (no titration), as expected. The inferior HbA1c response for the "basal plus metformin only" arm supports the additional glycemic benefit with prandial insulin lispro. Our model-based simulations support a simplified dosing algorithm that does not include carbohydrate counting, but that includes glucose targets for daily dose adjustment to maintain glycemic control with a low risk of hypoglycemia.
Cavity theory applications for kilovoltage cellular dosimetry.
Oliver, P A K; Thomson, Rowan M
2017-06-07
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of [Formula: see text] (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which [Formula: see text], where L is the mean chord length of the cavity and β is given by [Formula: see text] (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc , computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In [Formula: see text] of cases, ICT and MC predictions agree within [Formula: see text]; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to [Formula: see text], demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
TU-AB-303-08: GPU-Based Software Platform for Efficient Image-Guided Adaptive Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Robinson, A; McNutt, T
2015-06-15
Purpose: In this study, we develop an integrated software platform for adaptive radiation therapy (ART) that combines fast and accurate image registration, segmentation, and dose computation/accumulation methods. Methods: The proposed system consists of three key components; 1) deformable image registration (DIR), 2) automatic segmentation, and 3) dose computation/accumulation. The computationally intensive modules including DIR and dose computation have been implemented on a graphics processing unit (GPU). All required patient-specific data including the planning CT (pCT) with contours, daily cone-beam CTs, and treatment plan are automatically queried and retrieved from their own databases. To improve the accuracy of DIR between pCTmore » and CBCTs, we use the double force demons DIR algorithm in combination with iterative CBCT intensity correction by local intensity histogram matching. Segmentation of daily CBCT is then obtained by propagating contours from the pCT. Daily dose delivered to the patient is computed on the registered pCT by a GPU-accelerated superposition/convolution algorithm. Finally, computed daily doses are accumulated to show the total delivered dose to date. Results: Since the accuracy of DIR critically affects the quality of the other processes, we first evaluated our DIR method on eight head-and-neck cancer cases and compared its performance. Normalized mutual-information (NMI) and normalized cross-correlation (NCC) computed as similarity measures, and our method produced overall NMI of 0.663 and NCC of 0.987, outperforming conventional methods by 3.8% and 1.9%, respectively. Experimental results show that our registration method is more consistent and roust than existing algorithms, and also computationally efficient. Computation time at each fraction took around one minute (30–50 seconds for registration and 15–25 seconds for dose computation). Conclusion: We developed an integrated GPU-accelerated software platform that enables accurate and efficient DIR, auto-segmentation, and dose computation, thus supporting an efficient ART workflow. This work was supported by NIH/NCI under grant R42CA137886.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell Feder and Mahmoud Z. Yousef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of the ECH heating system were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture (ECH). The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken frommore » the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and ECH cases. The ECH or Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture or ECH style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later. __________________________________________________« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell E. Feder and Mahmoud Z. Youssef
Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from themore » ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 μSv/hr but was still at 120 μSv/hr 4-weeks later.« less
Performance assessment of the BEBIG MultiSource® high dose rate brachytherapy treatment unit
NASA Astrophysics Data System (ADS)
Palmer, Antony; Mzenda, Bongile
2009-12-01
A comprehensive system characterisation was performed of the Eckert & Ziegler BEBIG GmbH MultiSource® High Dose Rate (HDR) brachytherapy treatment unit with an 192Ir source. The unit is relatively new to the UK market, with the first installation in the country having been made in the summer of 2009. A detailed commissioning programme was devised and is reported including checks of the fundamental parameters of source positioning, dwell timing, transit doses and absolute dosimetry of the source. Well chamber measurements, autoradiography and video camera analysis techniques were all employed. The absolute dosimetry was verified by the National Physical Laboratory, UK, and compared to a measurement based on a calibration from PTB, Germany, and the supplied source certificate, as well as an independent assessment by a visiting UK centre. The use of the 'Krieger' dosimetry phantom has also been evaluated. Users of the BEBIG HDR system should take care to avoid any significant bend in the transfer tube, as this will lead to positioning errors of the source, of up to 1.0 mm for slight bends, 2.0 mm for moderate bends and 5.0 mm for extreme curvature (depending on applicators and transfer tube used) for the situations reported in this study. The reason for these errors and the potential clinical impact are discussed. Users should also note the methodology employed by the system for correction of transit doses, and that no correction is made for the initial and final transit doses. The results of this investigation found that the uncorrected transit doses lead to small errors in the delivered dose at the first dwell position, of up to 2.5 cGy at 2 cm (5.6 cGy at 1 cm) from a 10 Ci source, but the transit dose correction for other dwells was accurate within 0.2 cGy. The unit has been mechanically reliable, and source positioning accuracy and dwell timing have been reproducible, with overall performance similar to other existing HDR equipment. The unit is capable of high quality brachytherapy treatment delivery, taking the above factors into account.
Real-time tracking of respiratory-induced tumor motion by dose-rate regulation
NASA Astrophysics Data System (ADS)
Han-Oh, Yeonju Sarah
We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control system that is provided for current linear accelerators. Therefore, DRRT can be achieved with minimal modification of existing technology, and this can shorten substantially the time necessary to establish DRRT in clinical practice.
Cavity theory applications for kilovoltage cellular dosimetry
NASA Astrophysics Data System (ADS)
Oliver, P. A. K.; Thomson, Rowan M.
2017-06-01
Relationships between macroscopic (bulk tissue) and microscopic (cellular) dose descriptors are investigated using cavity theory and Monte Carlo (MC) simulations. Small, large, and multiple intermediate cavity theory (SCT, LCT, and ICT, respectively) approaches are considered for 20 to 370 keV incident photons; ICT is a sum of SCT and LCT contributions weighted by parameter d. Considering μm-sized cavities of water in bulk tissue phantoms, different cavity theory approaches are evaluated via comparison of Dw, m/Dm, m (where D w,m is dose-to-water-in-medium and D m,m is dose-to-medium-in-medium) with MC results. The best overall agreement is achieved with an ICT approach in which d=(1-e-β L)/(β L) , where L is the mean chord length of the cavity and β is given by e-β R_CSDA=0.04 (R CSDA is the continuous slowing down approximation range of an electron of energy equal to that of incident photons). Cell nucleus doses, D nuc, computed with this ICT approach are compared with those from MC simulations involving multicellular soft tissue models considering a representative range of cell/nucleus sizes and elemental compositions. In 91% of cases, ICT and MC predictions agree within 3% ; disagreement is at most 8.8%. These results suggest that cavity theory may be useful for linking doses from model-based dose calculation algorithms (MBDCAs) with energy deposition in cellular targets. Finally, based on the suggestion that clusters of water molecules associated with DNA are important radiobiological targets, two approaches for estimating dose-to-water by application of SCT to MC results for D m,m or D nuc are compared. Results for these two estimates differ by up to 35% , demonstrating the sensitivity of energy deposition within a small volume of water in nucleus to the geometry and composition of its surroundings. In terms of the debate over the dose specification medium for MBDCAs, these results do not support conversion of D m,m to D w,m using SCT.
Hauri, Pascal; Schneider, Uwe
2018-04-01
Long-term survivors of cancer who were treated with radiotherapy are at risk of a radiation-induced tumor. Hence, it is important to model the out-of-field dose resulting from a cancer treatment. These models have to be verified with measurements, due to the small size, the high sensitivity to ionizing radiation and the tissue-equivalent composition, LiF thermoluminescence dosimeters (TLD) are well-suited for out-of-field dose measurements. However, the photon energy variation of the stray dose leads to systematic dose errors caused by the variation in response with radiation energy of the TLDs. We present a dosimeter which automatically corrects for the energy variation of the measured photons by combining LiF:Mg,Ti (TLD100) and LiF:Mg,Cu,P (TLD100H) chips. The response with radiation energy of TLD100 and TLD100H compared to 60 Co was taken from the literature. For the measurement, a TLD100H was placed on top of a TLD100 chip. The dose ratio between the TLD100 and TLD100H, combined with the ratio of the response curves was used to determine the mean energy. With the energy, the individual correction factors for TLD100 and TLD100H could be found. The accuracy in determining the in- and out-of-field dose for a nominal beam energy of 6MV using the double-TLD unit was evaluated by an end-to-end measurement. Furthermore, published Monte Carlo (M.C.) simulations of the mean photon energy for brachytherapy sources, stray radiation of a treatment machine and cone beam CT (CBCT) were compared to the measured mean energies. Finally, the photon energy distribution in an Alderson phantom was measured for different treatment techniques applied with a linear accelerator. Additionally, a treatment plan was measured with a cobalt machine combined with an MRI. For external radiotherapy, the presented double-TLD unit showed a relative type A uncertainty in doses of -1%±2% at the two standard deviation level compared to an ionization chamber. The type A uncertainty in dose was in agreement with the theoretically calculated type B uncertainty. The measured energies for brachytherapy sources, stray radiation of a treatment machine and CBCT imaging were in agreement with M.C. simulations. A shift in energy with increasing distance to the isocenter was noticed for the various treatment plans measured with the Alderson phantom. The calculated type B uncertainties in energy were in line with the experimentally evaluated type A uncertainties. The double-TLD unit is able to predict the photon energy of scatter radiation in external radiotherapy, X-ray imagine and brachytherapy sources. For external radiotherapy, the individual energy correction factors enabled a more accurate dose determination compared to conventional TLD measurements. Copyright © 2017. Published by Elsevier GmbH.
Fein, Henry G; Vaughan, T Brooks; Kushner, Harvey; Cram, David; Nguyen, Dat
2015-10-27
Overweight and obesity are common among patients with Cushing's syndrome (CS) and may persist in some patients even after ostensibly curative surgery, contributing to cardiometabolic dysfunction and increased cardiovascular risk. Mifepristone, a selective glucocorticoid receptor antagonist, was effective in controlling hyperglycemia in a 24-week trial of adults (N = 50) with endogenous CS and associated type 2 diabetes mellitus/impaired glucose tolerance or hypertension who had failed or were not candidates for surgery (SEISMIC, Study of the Efficacy and Safety of Mifepristone in the Treatment of Endogenous Cushing's Syndrome). This analysis examines long-term weight change among patients who received mifepristone in SEISMIC and enrolled in a long-term safety extension (LTE) study. Patients completing the 24-week SEISMIC study and subsequent 6-week off-drug safety evaluation were invited to enroll in the LTE study. Mifepristone doses at the end of SEISMIC were the LTE starting doses. Body weight measures were reviewed at baseline and week 24 of SEISMIC and at LTE month 6, 12, 18, 24, and final visit (last observation collected during the LTE study). Of the 30 patients enrolled in the LTE, evaluable weight data were available for 29 (20/29 female; mean age of 44.7 ± 11.2 years). These patients received mifepristone for a median of 29.2 months (range 8.4-41.9). Mean ± SD weight from SEISMIC baseline to LTE final visit decreased by 10.3 ± 16.3 kg (mean 105.4 ± 34.3 kg to 95.1 ± 32.9 kg), a 9.3 % decrease from baseline weight (P = 0.0008). Of the 29 LTE patients, 18 (62.1 %) lost ≥ 5 % of body weight by the end of the initial 24-week treatment period; this ≥5 % weight loss persisted in 83.3 % (15/18) at LTE final visit. Ten patients (34.5 %) lost ≥ 10 % of initial body weight by week 24 of SEISMIC, which persisted in 80 % at LTE final visit. No new safety signals were detected with long-term mifepristone use. Clinically meaningful weight loss achieved during a 24-week study of mifepristone for CS persisted for two additional years in patients who remained on therapy. Long-term treatment with mifepristone appears to have a beneficial effect on weight in patients with endogenous CS. NCT00569582 (SEISMIC); NCT00936741 (Long-Term Extension).
Martin, Emma C; Aarons, Leon; Yates, James W T
2016-07-01
Xenograft studies are commonly used to assess the efficacy of new compounds and characterise their dose-response relationship. Analysis often involves comparing the final tumour sizes across dose groups. This can cause bias, as often in xenograft studies a tumour burden limit (TBL) is imposed for ethical reasons, leading to the animals with the largest tumours being excluded from the final analysis. This means the average tumour size, particularly in the control group, is underestimated, leading to an underestimate of the treatment effect. Four methods to account for dropout due to the TBL are proposed, which use all the available data instead of only final observations: modelling, pattern mixture models, treating dropouts as censored using the M3 method and joint modelling of tumour growth and dropout. The methods were applied to both a simulated data set and a real example. All four proposed methods led to an improvement in the estimate of treatment effect in the simulated data. The joint modelling method performed most strongly, with the censoring method also providing a good estimate of the treatment effect, but with higher uncertainty. In the real data example, the dose-response estimated using the censoring and joint modelling methods was higher than the very flat curve estimated from average final measurements. Accounting for dropout using the proposed censoring or joint modelling methods allows the treatment effect to be recovered in studies where it may have been obscured due to dropout caused by the TBL.
Altmann, Vivian; Schumacher-Schuh, Artur F; Rieck, Mariana; Callegari-Jacques, Sidia M; Rieder, Carlos R M; Hutz, Mara H
2016-04-01
Levodopa is first-line treatment of Parkinson's disease motor symptoms but, dose response is highly variable. Therefore, the aim of this study was to determine how much levodopa dose could be explained by biological, pharmacological and genetic factors. A total of 224 Parkinson's disease patients were genotyped for SV2C and SLC6A3 polymorphisms by allelic discrimination assays. Comedication, demographic and clinical data were also assessed. All variables with p < 0.20 were included in a multiple regression analysis for dose prediction. The final model explained 23% of dose variation (F = 11.54; p < 0.000001). Although a good prediction model was obtained, it still needs to be tested in an independent sample to be validated.
Uncertainty of fast biological radiation dose assessment for emergency response scenarios.
Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens
2017-01-01
Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
Radiation dose distributions due to sudden ejection of cobalt device.
Abdelhady, Amr
2016-09-01
The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trimboli, Pierpaolo; Virili, Camilla; Centanni, Marco; Giovanella, Luca
2018-01-01
Levothyroxine sodium (LT4) is the therapy of choice for hypothyroidism. In the last decade, new LT4 formulations, such as liquid and softgel capsules, became available. Even if some evidence has been reached in the efficacy of liquid LT4 in patients with suboptimal TSH on tablet LT4, the usefulness of softgel LT4 has been rarely studied. This study aimed at evaluating the effect of switching from tablet to softgel LT4 patients without increased need for LT4. TSH was used as proxy of LT4 bioavailability and effectiveness. During the period from April to August 2017, 19 patients on tablet LT4 treatment for hypothyroidism, mostly due to autoimmune thyroiditis, were enrolled. Subjects with causes of malabsorption or increased requirement of LT4 were previously excluded. Patients finally included were asked to switch from tablet to softgel LT4 formulation at unchanged dose and ingestion fashion (30 min before breakfast). TSH was measured with chemiluminescence immunoassays. According to exclusion and inclusion criteria, 19 patients were finally selected. One of these had headache 4 days later and come back to tablet LT4, and 18 of them (16W/2M; mean age = 55 years; BMI 22.7 kg/m 2 ) completed the study. They were treated with a median LT4 dose of 88 μg/day and showed a median TSH value of 3.33 mIU/L. The rate of cases with TSH ≤ 4.0 mIU/L was 61.1% (11/18 cases). When patients were re-evaluated after 3 months of softgel LT4, we observed that TSH reached levels under 4.0 mIU/L in 16/18 (88.9%) patients, TSH was lower in 11 cases, and in 6 out of 7 patients with pre-switch TSH values over the normal range. Overall, TSH values on softgel LT4 (median 1.90 mIU/L) was significantly lower from that observed during tablet LT4 ( p = 0.0039). These data show that hypothyroid patients with no proven malabsorption may have an improved TSH following 3 months from the switch from tablet to softgel LT4 preparation at unchanged dose.
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett
2000-01-01
A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs (Ferroelectric random access memories) is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.
NASA Technical Reports Server (NTRS)
Sharma, Asbok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett
2002-01-01
A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.
Zheng, Haiyin; Zhao, Jinyan; Zheng, Yuqing; Wu, Juan; Liu, Yan; Peng, Jun; Hong, Zhenfeng
2014-10-01
The plant Rubus alceaefolius Poir is used as a hepatic protectant in Traditional Chinese Medicine. The aim of the present study was to confirm the protective effect of the total alkaloids of Rubus alceaefolius Poir (TARAP) on the liver and to evaluate the potential molecular mechanisms associated with adipocytokines underlying non-alcoholic fatty liver disease (NAFLD) in rats. To generate the NAFLD model, Sprague-Dawley rats were administered a high‑fat diet and following 12 weeks of model construction, rats were orally treated with a positive control drug and different doses of TARAP daily for 28 days. The rats were then sacrificed and the livers were collected to evaluate the liver index (LI) and observe histological changes by hematoxylin and eosin (H&E) staining. The secretion levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined by ELISA. Finally, the expression levels of leptin (LEP), resistin and adiponectin (APN) in liver tissues were determined by immunohistochemistry (IHC). The results demonstrated that, in the group treated with methionine and choline bitartrate tablets and in the groups treated with different doses of TARAP, there was a significant reduction in the LI (P<0.05 or P<0.01), a downregulation of the secretion levels of ALT and AST, reduced levels of LEP and resistin and an increased expression of APN in the liver of NAFLD rats compared with the model group. Furthermore, the effect of TARAP treatment of NAFLD rats was dose dependent. In conclusion, TARAP is a potential agent for downregulating LEP and resistin and upregulating APN expression in rats with NAFLD. Furthermore, TARAP may be a potential candidate for improving treatment responses in patients with NAFLD.
Low dose native type II collagen prevents pain in a rat osteoarthritis model
2013-01-01
Background Osteoarthritis is the most widespread joint-affecting disease. Patients with osteoarthritis experience pain and impaired mobility resulting in marked reduction of quality of life. A progressive cartilage loss is responsible of an evolving disease difficult to treat. The characteristic of chronicity determines the need of new active disease modifying drugs. Aim of the present research is to evaluate the role of low doses of native type II collagen in the rat model of osteoarthritis induced by sodium monoiodoacetate (MIA). Methods 1, 3 and 10 mg kg-1 porcine native type II collagen were daily per os administered for 13 days starting from the day of MIA intra-articular injection. Results On day 14, collagen-treated rats showed a significant prevention of pain threshold alterations induced by MIA. Evaluation were performed on paws using mechanical noxious (Paw pressure test) or non-noxious (Electronic Von Frey test) stimuli, and a decrease of articular pain was directly measured on the damaged joint (PAM test). The efficacy of collagen in reducing pain was as higher as the dose was lowered. Moreover, a reduced postural unbalance, measured as hind limb weight bearing alterations (Incapacitance test), and a general improvement of motor activity (Animex test) were observed. Finally, the decrease of plasma and urine levels of CTX-II (Cross Linked C-Telopeptide of Type II Collagen), a biomarker of cartilage degradation, suggests a collagen-dependent decrease of structural joint damage. Conclusions These results describe the preclinical efficacy of low dosages of native type II collagen as pain reliever by a mechanism that involves a protective effect on cartilage. PMID:23915264
Ehrke, M J; Verstovsek, S; Maccubbin, D L; Ujházy, P; Zaleskis, G; Berleth, E; Mihich, E
2000-07-01
The therapeutic efficacy of a single (day 8), moderate dose (4 mg/kg, i.v.) of doxorubicin (DOX, Adriamycin) combined with recombinant human TNF-alpha (3 different doses and 5 different schedules, i.v.) was evaluated in C57BL/6 mice bearing an implant (s.c.) of the DOX-sensitive, TNF-alpha-resistant EL4 lymphoma. In parallel to monitoring survival, the levels of several host anti-tumor cytolytic effector functions of splenocytes and thymocytes were evaluated throughout the treatment period and in long-term survivors (LTS). DOX treatment alone resulted in a moderate (approx. 20%) increase in life span but no cures. TNF-alpha alone, at any tested dose or schedule, had little or no positive effect on survival. The combinations of DOX and TNF-alpha were only slightly better than DOX alone with respect to the time to death of mice that died (approx. 29% increase); however, each of the combinations involving 1,000 U TNF-alpha/injection produced a fraction (20% to 80%) of LTS. The host defense activities examined included those of splenic and thymic cytolytic T lymphocytes (CTL) and lymphokine-activated killer cells as well as splenic tumoricidal macrophages. Although most activities were modulated by tumor growth and/or treatment, only CTL responsiveness appeared to correlate with survival. CTL activity in the treated groups with LTS was significantly higher than in control groups late in the treatment period. Finally, ex vivo analyses of splenocytes and thymocytes together with the rejection of implanted tumor at 17 months established that LTS displayed specific long-term immune memory. Copyright 2000 Wiley-Liss, Inc.
Enhancement of radiation therapy by the novel vascular targeting agent ZD6126.
Siemann, Dietmar W; Rojiani, Amyn M
2002-05-01
The aim of this study was to evaluate the antitumor efficacy of the novel vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) in the rodent KHT sarcoma model, either alone or in combination with single- or fractionated-dose radiation therapy. C3H/HeJ mice bearing i.m. KHT tumors were injected i.p. with ZD6126 doses ranging from 10 to 150 mg/kg. Tumors were irradiated locally in unanesthetized mice using a linear accelerator. Tumor response to ZD6126 administered alone or in combination with radiation was assessed by clonogenic cell survival assay or tumor growth delay. Treatment with ZD6126 led to a rapid tumor vascular shutdown as determined by Hoechst 33342 diffusion. Histologic evaluation showed morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. When combined with radiation, a 150 mg/kg dose of ZD6126 reduced tumor cell survival 10-500-fold compared with radiation alone. These enhancements in tumor cell killing could be achieved for ZD6126 given both before and after radiation exposure. Further, the shape of the cell survival curve observed after the combination therapy suggested that including ZD6126 in the treatment had a major effect on the radiation-resistant hypoxic cell subpopulation associated with this tumor. Finally, when given on a once-weekly basis in conjunction with fractionated radiotherapy, ZD6126 treatment was found to significantly increase the tumor response to daily 2.5 Gy fractions. The present results demonstrated that in the KHT sarcoma, ZD6126 caused rapid tumor vascular shutdown, induction of central tumor necrosis, tumor cell death secondary to ischemia, and enhancement of the antitumor effects of radiation therapy.
Case Report: Linezolid Optic Neuropathy and Proposed Evidenced-based Screening Recommendation.
Dempsey, Sean P; Sickman, Amy; Slagle, William Scott
2018-05-01
This case illustrates a novel screening protocol for linezolid-induced toxic optic neuropathy. To present a case report and analysis of linezolid-induced optic neuropathies in adult patients to develop screening recommendations. A case report of optic neuropathy from extended use of linezolid illustrates its potential effects on vision. We conduct a retrospective analysis of 39 reported cases to derive a recommended screening protocol for linezolid-induced toxic optic neuropathy in adult patients. Of 39 reported adult cases, 32 presented with optic neuropathy within 90 to 365 days of treatment. Within this subset, the duration of linezolid dosage to first symptoms is 235 ± 71 days. Seven outliers either experienced optic neuropathy within the first 28 days or between 600 and 1125 days. Of the 33 cases that quantified visual recovery, 30 reported final binocular visual acuity equivalent to 20/40 or better when the medication was discontinued from 0 to 268 days after symptom onset. Recovery potential was reported over a period of 2 weeks to approximately 6 months after cessation. To evaluate the effect of cumulative dose, the data were separated into patients taking 600 mg twice daily and those at 600 mg once daily. At the higher dosage, a mean of 180 ± 96 days with a mean cumulative dosage of 216 ± 115 g was noted at first symptom, whereas at lower dosage, a mean of 201 ± 102 days was noted with a mean cumulative dose of 138 ± 69 g. We recommend screening adult patients within 1 month after initiating linezolid, followed by a subsequent evaluation every 30 to 60 days beginning 3 months from initiation. Substantial visual recovery is reported when linezolid is discontinued. Toxicity appears to be correlated to duration of treatment, rather than cumulative dose.
Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S
2010-06-01
Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.
Nishikawa, Masakatsu; Isshiki, Takaaki; Kimura, Takeshi; Ogawa, Hisao; Yokoi, Hiroyoshi; Miyazaki, Shunichi; Ikeda, Yasuo; Nakamura, Masato; Tanaka, Yuko; Saito, Shigeru
2017-04-01
Prasugrel is a third-generation thienopyridine that achieves potent platelet inhibition with less pharmacological variability than other thienopyridines. However, clinical experience suggests that prasugrel may be associated with a higher risk of de novo and recurrent bleeding events compared with clopidogrel in Japanese patients undergoing percutaneous coronary intervention (PCI). In this review, we evaluate the risk of bleeding in Japanese patients treated with prasugrel at the doses (loading/maintenance doses: 20/3.75 mg) adjusted for Japanese patients, evaluate the risk factors for bleeding in Japanese patients, and examine whether patients with a bleeding event are at increased risk of recurrent bleeding. This review covers published data and new analyses of the PRASFIT (PRASugrel compared with clopidogrel For Japanese patIenTs) trials of patients undergoing PCI for acute coronary syndrome or elective reasons. The bleeding risk with prasugrel was similar to that observed with the standard dose of clopidogrel (300/75 mg), including when bleeding events were re-classified using the Bleeding Academic Research Consortium criteria. The pharmacodynamics of prasugrel was not associated with the risk of bleeding events. The main risk factors for bleeding events were female sex, low body weight, advanced age, and presence of diabetes mellitus. Use of a radial puncture site was associated with a lower risk of bleeding during PCI than a femoral puncture site. Finally, the frequency and severity of recurrent bleeding events during continued treatment were similar between prasugrel and clopidogrel. In summary, this review provides important insights into the risk and types of bleeding events in prasugrel-treated patients.Trial registration numbers: JapicCTI-101339 and JapicCTI-111550.
NASA Astrophysics Data System (ADS)
Wang, Ximing; Verma, Sneha; Qin, Yi; Sterling, Josh; Zhou, Alyssa; Zhang, Jeffrey; Martinez, Clarisa; Casebeer, Narissa; Koh, Hyunwook; Winstein, Carolee; Liu, Brent
2013-03-01
With the rapid development of science and technology, large-scale rehabilitation centers and clinical rehabilitation trials usually involve significant volumes of multimedia data. Due to the global aging crisis, millions of new patients with age-related chronic diseases will produce huge amounts of data and contribute to soaring costs of medical care. Hence, a solution for effective data management and decision support will significantly reduce the expenditure and finally improve the patient life quality. Inspired from the concept of the electronic patient record (ePR), we developed a prototype system for the field of rehabilitation engineering. The system is subject or patient-oriented and customized for specific projects. The system components include data entry modules, multimedia data presentation and data retrieval. To process the multimedia data, the system includes a DICOM viewer with annotation tools and video/audio player. The system also serves as a platform for integrating decision-support tools and data mining tools. Based on the prototype system design, we developed two specific applications: 1) DOSE (a phase 1 randomized clinical trial to determine the optimal dose of therapy for rehabilitation of the arm and hand after stroke.); and 2) NEXUS project from the Rehabilitation Engineering Research Center(RERC, a NIDRR funded Rehabilitation Engineering Research Center). Currently, the system is being evaluated in the context of the DOSE trial with a projected enrollment of 60 participants over 5 years, and will be evaluated by the NEXUS project with 30 subjects. By applying the ePR concept, we developed a system in order to improve the current research workflow, reduce the cost of managing data, and provide a platform for the rapid development of future decision-support tools.
Evaluation of polymer gels and MRI as a 3-D dosimeter for intensity-modulated radiation therapy.
Low, D A; Dempsey, J F; Venkatesan, R; Mutic, S; Markman, J; Mark Haacke, E; Purdy, J A
1999-08-01
BANG gel (MGS Research, Inc., Guilford, CT) has been evaluated for measuring intensity-modulated radiation therapy (IMRT) dose distributions. Treatment plans with target doses of 1500 cGy were generated by the Peacock IMRT system (NOMOS Corp., Sewickley, PA) using test target volumes. The gels were enclosed in 13 cm outer diameter cylindrical glass vessels. Dose calibration was conducted using seven smaller (4 cm diameter) cylindrical glass vessels irradiated to 0-1800 cGy in 300 cGy increments. Three-dimensional maps of the proton relaxation rate R2 were obtained using a 1.5 T magnetic resonance imaging (MRI) system (Siemens Medical Systems, Erlangen, Germany) and correlated with dose. A Hahn spin echo sequence was used with TR = 3 s, TE = 20 and 100 ms, NEX = 1, using 1 x 1 x 3 mm3 voxels. The MRI measurements were repeated weekly to identify the gel-aging characteristics. Ionization chamber, thermoluminescent dosimetry (TLD), and film dosimetry measurements of the IMRT dose distributions were obtained to compare against the gel results. The other dosimeters were used in a phantom with the same external cross-section as the gel phantom. The irradiated R2 values of the large vessels did not precisely track the smaller vessels, so the ionization chamber measurements were used to normalize the gel dose distributions. The point-to-point standard deviation of the gel dose measurements was 7.0 cGy. When compared with the ionization chamber measurements averaged over the chamber volume, 1% agreement was obtained. Comparisons against radiographic film dose distribution measurements and the treatment planning dose distribution calculation were used to determine the spatial localization accuracy of the gel and MRI. Spatial localization was better than 2 mm, and the dose was accurately determined by the gel both within and outside the target. The TLD chips were placed throughout the phantom to determine gel measurement precision in high- and low-dose regions. A multidimensional dose comparison tool that simultaneously examines the dose-difference and distance-to-agreement was used to evaluate the gel in both low-and high-dose gradient regions. When 3% and 3 mm criteria were used for the comparisons, more than 90% of the TLD measurements agreed with the gel, with the worst of 309 TLD chip measurements disagreeing by 40% of the criteria. All four MRI measurement session gel-measured dose distributions were compared to evaluate the time behavior of the gel. The low-dose regions were evaluated by comparison with TLD measurements at selected points, while high-dose regions were evaluated by directly comparing measured dose distributions. Tests using the multidimensional comparison tool showed detectable degradation beyond one week postirradiation, but all low-dose measurements passed relative to the test criteria and the dose distributions showed few regions that failed.
Santos Souza, Higo Fernando; Real, Daniel; Leonardi, Darío; Rocha, Sandra Carla; Alonso, Victoria; Serra, Esteban; Silber, Ariel Mariano; Salomon, Claudio Javier
2017-12-01
To develop an alcohol-free solution suitable for children of benznidazole, the drug of choice for treatment of Chagas disease. In a quality-by-design approach, a systematic optimisation procedure was carried out to estimate the values of the factors leading to the maximum drug concentration. The formulations were analysed in terms of chemical and physical stability and drug content. The final preparation was subjected to an in vivo palatability assay. Mice were infected and treated orally in a murine model. The results showed that benznidazole solubility increased up to 18.38 mg/ml in the optimised co-solvent system. The final formulation remained stable at all three temperatures tested, with suitable drug content and no significant variability. Palatability of the preparation was improved by taste masking of BZL. In vivo studies showed that both parasitaemia and mortality diminished, particularly at a dose of 40 mg/kg/day. Quality by design was a suitable approach to formulate a co-solvent system of benznidazole. The in vivo studies confirmed the suitability of the optimised such solutions to diminish both parasitaemia and mortality. Thus, this novel alternative should be taken into account for further clinical evaluation in all age ranges. © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Matthews
Corrective Action Unit (CAU) 371 is located in Areas 11 and 18 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 371 is comprised of the two corrective action sites (CASs) listed below: • 11-23-05, Pin Stripe Contamination Area • 18-45-01, U-18j-2 Crater (Johnnie Boy) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate correctivemore » action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on November 19, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 371. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 371 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Measure in situ external dose rates using thermoluminescent dosimeters or other dose measurement devices. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates. • Combine internal and external dose rates to determine whether total dose rates exceed final action levels (FALs). • Collect and submit environmental samples for laboratory analysis to determine whether chemical contaminants are present at concentrations exceeding FALs. • If contamination exceeds FALs, define the extent of the contamination exceeding FALs. • Investigate waste to determine whether potential source material is present. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy; and U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.« less
Using Population Dose to Evaluate Community-level Health Initiatives.
Harner, Lisa T; Kuo, Elena S; Cheadle, Allen; Rauzon, Suzanne; Schwartz, Pamela M; Parnell, Barbara; Kelly, Cheryl; Solomon, Loel
2018-05-01
Successful community-level health initiatives require implementing an effective portfolio of strategies and understanding their impact on population health. These factors are complicated by the heterogeneity of overlapping multicomponent strategies and availability of population-level data that align with the initiatives. To address these complexities, the population dose methodology was developed for planning and evaluating multicomponent community initiatives. Building on the population dose methodology previously developed, this paper operationalizes dose estimates of one initiative targeting youth physical activity as part of the Kaiser Permanente Community Health Initiative, a multicomponent community-level obesity prevention initiative. The technical details needed to operationalize the population dose method are explained, and the use of population dose as an interim proxy for population-level survey data is introduced. The alignment of the estimated impact from strategy-level data analysis using the dose methodology and the data from the population-level survey suggest that dose is useful for conducting real-time evaluation of multiple heterogeneous strategies, and as a viable proxy for existing population-level surveys when robust strategy-level evaluation data are collected. This article is part of a supplement entitled Building Thriving Communities Through Comprehensive Community Health Initiatives, which is sponsored by Kaiser Permanente, Community Health. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.
Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H
2013-12-04
New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.
How to select among available options for the treatment of multiple myeloma.
Harousseau, J L
2012-09-01
The introduction of novel agents (thalidomide, bortezomib and lenalidomide) in the frontline therapy of multiple myeloma has markedly improved the outcome both in younger patients who are candidates for high-dose therapy plus autologous stem-cell transplantation (HDT/ASCT) and in elderly patients. In the HDT/ASCT paradigm, novel agents may be used as induction therapy or after HDT/ASCT as consolidation and/or maintenance therapy. It is now possible to achieve up to 70% complete plus very good partial remission after HDT/ASCT and 70% 3-year progression-free survival (PFS). However long-term non-intensive therapy may also yield high response rates and prolonged PFS. Randomized trials comparing these two strategies are underway. In elderly patients, six randomized studies show the benefit of adding thalidomide to melphalan-prednisone (MP). a large randomized trial has also shown that the combination of bortezomib-MP is superior to MP for all parameters measuring the response and outcome. Finally, the role of maintenance is currently evaluated and a randomized trial shows that low-dose lenalidomide maintenance prolongs PFS.
The effect of a jail methadone maintenance therapy (MMT) program on inmate recidivism.
McMillan, Garnett P; Lapham, Sandra; Lackey, Michael
2008-12-01
To evaluate the effects of a jail-based continuation of methadone maintenance therapy (MMT) on subsequent inmate recidivism risks. Prospective, longitudinal, observational study. A large, Southwestern United States jail that continues MMT for heroin-addicted inmates on MMT at the time of booking. A total of 589 inmates booked between 22 November 2005 (the start date for the MMT program) and 31 October 2006. The outcome measure was time from release to subsequent re-booking in the jail. Predictors included binary dosing with methadone in the jail, final dose received (mg), age, gender, race/ethnicity, previous bookings and days in jail. Random effects Weibull proportional hazards models were fit to the recidivism times to estimate the impact of treatment with MMT in the jail on re-booking risks. There was no statistically significant effect of receiving methadone in the jail or dosage on subsequent recidivism risks (hazard ratio = 1.16; 95% confidence interval = 0.8-1.68). Offering jail-based MMT does not increase recidivism risks by eliminating the deterrent effect of imposed withdrawal, nor does it reduce recidivism in this high-risk population.
Experience in production of (68)Ga-DOTA-NOC for clinical use under an Expanded Access IND.
Green, Mark A; Mathias, Carla J; Fletcher, James W
2016-10-01
[(68)Ga]Ga-DOTA-NOC was produced under an Expanded Access IND for 174 clinical PET/CT studies to evaluate patients with neuroendocrine tumors. Production employed either the TiO2-based Eckert & Ziegler (EZAG) (68)Ge/(68)Ga-generator (with fractionated elution), or the SiO2-based ITG (68)Ge/(68)Ga-generator. In both cases, [(68)Ga]Ga-DOTA-NOC was reliably produced, without pre-synthesis purification of the(68)Ga generator eluate, using readily-implemented manual synthesis procedures. [(68)Ga]Ga-DOTA-NOC radiochemical purity averaged 99.2±0.4%. Administered (68)Ga dose averaged 181±22 MBq, and administered peptide mass averaged 43.2±5.2µg (n=47) and 23.9±5.7µg (n=127), respectively, using the EZAG and ITG generators. At dose expiration, (68)Ge breakthrough in the final product averaged 2.7×10(-7)% and 5.4×10(-5%) using the EZAG and ITG generators, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Validation of GPU based TomoTherapy dose calculation engine.
Chen, Quan; Lu, Weiguo; Chen, Yu; Chen, Mingli; Henderson, Douglas; Sterpin, Edmond
2012-04-01
The graphic processing unit (GPU) based TomoTherapy convolution/superposition(C/S) dose engine (GPU dose engine) achieves a dramatic performance improvement over the traditional CPU-cluster based TomoTherapy dose engine (CPU dose engine). Besides the architecture difference between the GPU and CPU, there are several algorithm changes from the CPU dose engine to the GPU dose engine. These changes made the GPU dose slightly different from the CPU-cluster dose. In order for the commercial release of the GPU dose engine, its accuracy has to be validated. Thirty eight TomoTherapy phantom plans and 19 patient plans were calculated with both dose engines to evaluate the equivalency between the two dose engines. Gamma indices (Γ) were used for the equivalency evaluation. The GPU dose was further verified with the absolute point dose measurement with ion chamber and film measurements for phantom plans. Monte Carlo calculation was used as a reference for both dose engines in the accuracy evaluation in heterogeneous phantom and actual patients. The GPU dose engine showed excellent agreement with the current CPU dose engine. The majority of cases had over 99.99% of voxels with Γ(1%, 1 mm) < 1. The worst case observed in the phantom had 0.22% voxels violating the criterion. In patient cases, the worst percentage of voxels violating the criterion was 0.57%. For absolute point dose verification, all cases agreed with measurement to within ±3% with average error magnitude within 1%. All cases passed the acceptance criterion that more than 95% of the pixels have Γ(3%, 3 mm) < 1 in film measurement, and the average passing pixel percentage is 98.5%-99%. The GPU dose engine also showed similar degree of accuracy in heterogeneous media as the current TomoTherapy dose engine. It is verified and validated that the ultrafast TomoTherapy GPU dose engine can safely replace the existing TomoTherapy cluster based dose engine without degradation in dose accuracy.
SU-E-T-433: Field-In-Field Irradiation for Breast Cancer with VERO-4DRT System: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, N; Mizuno, T; Takada, Y
2015-06-15
Purpose: The Vero-4DRT system is a dedicated system for high precision radiation therapy. However, the field size is limited at 15 cm x 15 cm and shapes by using multi-leaf collimator (MLC) without X-Jaw and Y-Jaw. Therefore VERO-4DRT system is not available to simple wedged irradiation for breast cancer. In this study, we suppose FIF with ring and/or tilt/pan angles whole breast irradiation (FIFWBI). The purpose of this study is to verify the feasibility of FIFWBI with VERO-4DRT system. Methods: As fundamental evaluation, we performed commissioning test with phantom. The absorbed dose evaluation at several reference points and dose distributionmore » including split area were performed. We planned 10 demonstrative shapes in phantom for measuring these contents with i-plan workstation (BrainLAB). As clinical evaluation, the dose distribution and dose indexes were evaluated with actual patient data. Five patients with breast cancer were designed FIFWBI radiotherapy plan with split fields. Then, the dose distribution and dose indexes (including Dmax, Dmin, D95, D5 and Homogeneity index) were evaluated in these plans. Results: As the results of fundamental evaluation, all absorbed dose errors between calculated and measured doses were within 2%. The gamma passing rates with 2 mm/3% criteria in all cases were 96±2%. As the results of clinical evaluation, the values of Dmax, D95, D50, D5, and Homogeneity Index were 41.7±0.90 Gy, 49.4±0.34 Gy, 52.26±0.24 Gy, and 1.39±0.03, respectively. For Japanese breast cancer patients, this technique was feasible. However, the large split region was happened in FIFWBI in case of patient with large breast. Conclusion: We evaluated the FIFWBI technique with VERO-4DRT system. This technique is feasible for Japanese patients, but the patient with large breast should be disagreed with this technique.« less
The Role of Radiotherapy in Extramammary Paget Disease: A Systematic Review.
Tagliaferri, L; Casà, C; Macchia, G; Pesce, A; Garganese, G; Gui, B; Perotti, G; Gentileschi, S; Inzani, F; Autorino, R; Cammelli, S; Morganti, A G; Valentini, V; Gambacorta, M A
2018-05-01
Extramammary Paget disease (EMPD) is a rare neoplasm of the skin generally affecting the anogenital area. Because of the low-frequency of the disease, no specific guidelines about the treatment strategy are available. Surgery is the recommended therapy for resectable and localized disease, but several other local treatments have been reported such as radiotherapy (RT). Most articles report small retrospective studies, referring to patients treated decades ago with large heterogeneity in terms of RT dose and technique. The aim of this study was to systematically review the main experiences in RT for the treatment of EMPD in the past 30 years. A systematic search of the bibliographic databases PubMed and Scopus from January 1986 to January 2017 was performed including studies published in English, Italian, Spanish, French, and German language. According to the search strategy, 19 full-text articles, published from 1991 to 2015, fulfilled inclusion criteria and were included in the final review. All articles were retrospective analyses with no randomized controlled trials. These studies evaluated 195 EMPD patients treated with RT, delivered in several settings. A large variability in terms of RT doses, fractionation, clinical setting, and techniques was found.Radiotherapy was administered as definitive treatment for primary or recurrent disease after surgery in 18 studies with doses ranging from 30 to 80.2 Gy delivered in 3 to 43 fractions. Radiotherapy was administered as postoperative adjuvant treatment in 9 articles with doses ranging between 32 and 64.8 Gy in 20 to 30 fractions. Two studies reported the RT use in preoperative neoadjuvant setting with doses ranging between 40 and 43.30 Gy, and 2 experiences reported the RT treatment for in situ EMPD, using 39.6 to 40 Gy. Adverse events were reported in almost all but 2 articles and were grade 2 or lower.The 18 studies evaluating RT as definitive treatment for primary or recurrent disease after surgery reported a complete response rate ranging from 50% to 100%, with a variable rate of local relapse or persistent disease ranging from 0% to 80% of cases. The 9 studies evaluating RT as postoperative adjuvant treatment reported a local relapse or persistent disease rate of 0% to 62.5%. A dose-response relationship was reported suggesting doses greater than or equal to 60 Gy for gross tumor volume treatment. Local control, disease-free survival, and overall survival at 12, 20, and 60 months have been retrieved for available data, respectively.In patients with EMPD and concurrent underlying internal malignancy, the prognosis was often worsened by the latter. In this setting, literature analysis showed a potential RT palliative role for symptoms control or local control maintenance.Derma tumor invasion greater than 1 mm and lymph node metastases were reported to be important prognostic factors for distant metastases or death. To date, literature highlights the role of RT in the management of EMPD, but with low level of evidences.
NASA Astrophysics Data System (ADS)
De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.
2017-11-01
Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.
Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc
2015-06-19
On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.
Social behavioral changes in MPTP-treated monkey model of Parkinson's disease
Durand, Elodie; Petit, Odile; Tremblay, Léon; Zimmer, Cédric; Sgambato-Faure, Véronique; Chassain, Carine; Laurent, Marlène; Pereira, Bruno; Silberberg, Céline; Durif, Franck
2015-01-01
Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD) and then Chronic High-Dose (CHD) systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET) scans with 18F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) radiotracer. Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative) decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures. PMID:25767440
An Update of Recent Phits Code
NASA Astrophysics Data System (ADS)
Sihver, Lembit; Sato, Tatsuhiko; Niita, Koji; Iwase, Hiroshi; Iwamoto, Yosuke; Matsuda, Norihiro; Nakashima, Hiroshi; Sakamoto, Yukio; Gustafsson, Katarina; Mancusi, Davide
We will first present the current status of the General-Purpose Particle and Heavy-Ion Transport code System (PHITS). In particular, we will describe benchmarking of calculated cross sections against measurements; we will introduce a relativistically covariant version of JQMD, called R- JQMD, that features an improved ground-state initialization algorithm, and we will show heavyion charge-changing cross sections simulated with R-JQMD and compare them to experimental data and to results predicted by the JQMD model. We will also show calculations of dose received by aircrews and personnel in space from cosmic radiation. In recent years, many countries have issued regulations or recommendations to set annual dose limitations for aircrews. Since estimation of cosmic-ray spectra in the atmosphere is an essential issue for the evaluation of aviation doses we have calculated these spectra using PHITS. The accuracy of the simulation, which has well been verified by experimental data taken under various conditions, will be presented together with a software called EXPACS-V, that can visualize the cosmic-ray dose rates at ground level or at a certain altitude on the map of Google Earth, using the PHITS based Analytical Radiation Model in the Atmosphere (PARMA). PARMA can instantaneously calculate the cosmic-ray spectra anywhere in the world by specifying the atmospheric depth, the vertical cut-off rigidity and the force-field potential. For the purpose of examining the applicability of PHITS to the shielding design in space, the absorbed doses in a tissue equivalent water phantom inside an imaginary space vessel has been estimated for different shielding materials of different thicknesses. The results confirm previous results which indicate that PHITS is a suitable tool when performing shielding design studies of spacecrafts. Finally we have used PHITS for the calculations of depth-dose distributions in MATROSHKA, which is an ESA project dedicated to determining the radiation load on astronauts within and outside the International Space Station (ISS).
Torremadé, Noelia; Bozic, Milica; Goltzman, David; Fernandez, Elvira; Valdivielso, José M
2017-01-01
The final step in vitamin D activation is catalyzed by 1-alpha-hydroxylase (CYP27B1). Chronic kidney disease (CKD) is characterized by low levels of both 25(OH)D3 and 1,25(OH)2D3 provoking secondary hyperparathyroidism (2HPT). Therefore, treatments with active or native vitamin D compounds are common in CKD to restore 25(OH)D3 levels and also to decrease PTH. This study evaluates the dose of 25(OH)D3 that restores parathyroid hormone (PTH) and calcium levels in a model of CKD in CYP27B1-/- mice. Furthermore, we compare the safety and efficacy of the same dose in CYP27B1+/+ animals. The dose needed to decrease PTH levels in CYP27B1-/- mice with CKD was 50 ng/g. That dose restored blood calcium levels without modifying phosphate levels, and increased the expression of genes responsible for calcium absorption (TRPV5 and calbindinD- 28K in the kidney, TRPV6 and calbindinD-9k in the intestine). The same dose of 25(OH)D3 did not modify PTH in CYP27B1+/+ animals with CKD. Blood calcium remained normal, while phosphate increased significantly. Blood levels of 25(OH)D3 in CYP27B1-/- mice were extremely high compared to those in CYP27B1+/+ animals. CYP27B1+/+ animals with CKD showed increases in TRPV5, TRPV6, calbindinD-28K and calbindinD-9K, which were not further elevated with the treatment. Furthermore, CYP27B1+/+ animals displayed an increase in vascular calcification. We conclude that the dose of 25(OH)D3 effective in decreasing PTH levels in CYP27B1-/- mice with CKD, has a potentially toxic effect in CYP27B1+/+ animals with CKD.
SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, P; Pinnix, C; Dabaja, B
2014-06-01
Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patientmore » midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique TBI situation.« less
Mizuno, Kana; Dong, Min; Fukuda, Tsuyoshi; Chandra, Sharat; Mehta, Parinda A; McConnell, Scott; Anaissie, Elias J; Vinks, Alexander A
2018-05-01
High-dose melphalan is an important component of conditioning regimens for patients undergoing hematopoietic stem cell transplantation. The current dosing strategy based on body surface area results in a high incidence of oral mucositis and gastrointestinal and liver toxicity. Pharmacokinetically guided dosing will individualize exposure and help minimize overexposure-related toxicity. The purpose of this study was to develop a population pharmacokinetic model and optimal sampling strategy. A population pharmacokinetic model was developed with NONMEM using 98 observations collected from 15 adult patients given the standard dose of 140 or 200 mg/m 2 by intravenous infusion. The determinant-optimal sampling strategy was explored with PopED software. Individual area under the curve estimates were generated by Bayesian estimation using full and the proposed sparse sampling data. The predictive performance of the optimal sampling strategy was evaluated based on bias and precision estimates. The feasibility of the optimal sampling strategy was tested using pharmacokinetic data from five pediatric patients. A two-compartment model best described the data. The final model included body weight and creatinine clearance as predictors of clearance. The determinant-optimal sampling strategies (and windows) were identified at 0.08 (0.08-0.19), 0.61 (0.33-0.90), 2.0 (1.3-2.7), and 4.0 (3.6-4.0) h post-infusion. An excellent correlation was observed between area under the curve estimates obtained with the full and the proposed four-sample strategy (R 2 = 0.98; p < 0.01) with a mean bias of -2.2% and precision of 9.4%. A similar relationship was observed in children (R 2 = 0.99; p < 0.01). The developed pharmacokinetic model-based sparse sampling strategy promises to achieve the target area under the curve as part of precision dosing.
Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Ackermann, Rose; Sy, Gavin; Bluteau, Alice; Cholez, Guy; Keyserling, Constance; Lalwani, Narendra; Paolini, John F; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi
2014-01-01
CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and phospholipids that was designed to mimic the beneficial properties of nascent pre-β HDL. In this study, we have evaluated the capacity of CER-001 to perform reverse lipid transport in single dose studies as well as to regress atherosclerosis in LDLr(-/-) mice after short-term multiple-dose infusions. CER-001 induced cholesterol efflux from macrophages and exhibited anti-inflammatory response similar to natural HDL. Studies with HUVEC demonstrated CER-001 at a concentration of 500 μg/mL completely suppressed the secretion of cytokines IL-6, IL-8, GM-CSF and MCP-1. Following infusion of CER-001 (10mg/kg) in C57Bl/6J mice, we observed a transient increase in the mobilization of unesterified cholesterol in HDL particles containing recombinant human apoA-I. Finally we show that cholesterol elimination was stimulated in CER-001 treated animals as demonstrated by the increased cholesterol concentration in liver and feces. In a familial hypercholesterolemia mouse model (LDL-receptor deficient mice), the infusion of CER-001 caused 17% and 32% reductions in plaque size, 17% and 23% reductions in lipid content after 5 and 10 doses given every 2 days, respectively. Also, there was an 80% reduction in macrophage content in the plaque following 5 doses, and decreased VCAM-1 expression by 16% and 22% in the plaque following 5 and 10 intravenous doses of CER-001, respectively. These data demonstrate that CER-001 rapidly enhances reverse lipid transport in the mouse, reducing vascular inflammation and promoting regression of diet-induced atherosclerosis in LDLr(-/-) mice upon a short-term multiple dose treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Perspectives of UV nowcasting to monitor personal pro-health outdoor activities.
Krzyścin, Janusz W; Lesiak, Aleksandra; Narbutt, Joanna; Sobolewski, Piotr; Guzikowski, Jakub
2018-07-01
Nowcasting model for online monitoring of personal outdoor behaviour is proposed. It is envisaged that it will provide an effective e-tool used by smartphone users. The model could estimate maximum duration of safe (without erythema risk) outdoor activity. Moreover, there are options to estimate duration of sunbathing to get adequate amount of vitamin D 3 and doses necessary for the antipsoriatic heliotherapy. The application requires information of starting time of sunbathing and the user's phototype. At the beginning the user will be informed of the approximate duration of sunbathing required to get the minimum erythemal dose, adequate amount of vitamin D 3 , and the dose necessary for the antipsoriatic heliotherapy. After every 20-min the application will recalculate the remaining duration of sunbathing based on the UVI measured in the preceding 20 min. If the estimate of remaining duration is <20 min the user will be informed that the deadline of sunbathing is approaching. Finally, a warning signal will be sent to stop sunbathing if the measured dose reaches the required dose. The proposed model is verified using the data collected at two measuring sites for the warm period of 2017 (1st April-30th September) in large Polish cities (Warsaw and Lodz). First instrument represents the UVI monitoring station. The information concerning sunbathing duration, which is sent to a remote user, is evaluated on the basis of the UVI measurements collected by the second measuring unit in a distance of ~7 km and 10 km for Warsaw and Lodz, respectively. The statistical analysis of the differences between sunbathing duration by nowcasting model and observation shows that the model provides reliable doses received by the users during outdoor activities in proximity (~10 km) to the UVI source site. Standard 24 h UVI forecast based on prognostic values of total ozone and cloudiness appears to only be valid for sunny days. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian
2016-03-01
Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.
Rico, J E; de Souza, J; Allen, M S; Lock, A L
2017-01-01
Our study evaluated the dose-dependent effects of a palmitic acid-enriched supplement in basal diets with or without the inclusion of whole cottonseed on nutrient digestibility and production responses of dairy cows. Sixteen Holstein cows (149 ± 56 days in milk) were used in a split plot Latin square design experiment. Cows were blocked by 3.5% fat-corrected milk (FCM) and allocated to a main plot receiving either a basal diet with soyhulls (SH, = 8) or a basal diet with whole cottonseed (CS, = 8) that was fed throughout the experiment. A palmitic acid-enriched supplement (PA 88.5% C16:0) was fed at 0, 0.75, 1.50, or 2.25% of ration DM in a replicated 4 × 4 Latin Square design within each basal diet group. Periods were 14 d with the final 4 d used for data collection. PA dose increased milk fat content linearly, and cubically affected yields of milk fat and 3.5% FCM. The PA dose did not affect milk protein and lactose contents, BW, and BCS, but tended to increase yields of milk, milk protein, and milk lactose. Also, PA dose reduced DMI and 16-carbon fatty acid digestibility quadratically, and increased 18-carbon fatty acid digestibility quadratically. There were no effects of basal diet on the yield of milk or milk components, but DMI tended to decrease in CS compared with SH, increasing feed efficiency (3.5% FCM/DMI). Compared with SH, CS diets increased yield of preformed milk fatty acids and 16-carbon fatty acid digestibility, and tended to decrease 18-carbon fatty acid digestibility. We observed basal diet × PA dose interactions for yields of milk and milk protein and for 16-carbon and total fatty acid digestibility, as well as tendency for yields of milk fat and 3.5% FCM. Also, there was a tendency for an interaction between basal diet and PA dose for NDF digestibility, which increased more for CS with increasing PA than for SH. PA dose linearly decreased digestibility of total fatty acids in SH diets but did not affect it in CS diets Results demonstrate that responses to PA dose are affected by the dietary basal diet. Additionally, the decrease in fatty acid digestibility only in the SH diets suggests that digestibility is impacted mainly by the profile of 16- and 18-carbon fatty acids reaching the duodenum. Under the dietary conditions evaluated, the yield of 3.5% FCM and milk fat were optimal when PA was fed at 1.5% of ration DM.
Sachdeo, Rajesh; Partiot, Arnaud; Biton, Victor; Rosenfeld, William E; Nohria, Virinder; Tompson, Debra; DeRossett, Sarah; Porter, Roger J
2014-06-01
To obtain information on the acceptable doses of the antiepileptic drug (AED) retigabine (RTG), the maximum tolerated dose (MTD), drug interactions, safety and tolerability, and preliminary evidence of efficacy when administered as adjunctive therapy and as monotherapy. Study 202 was an open-label, add-on study in patients with partial or generalized epilepsy treated with valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHT), or topiramate (TPM) as monotherapy. Following baseline assessments, patients entered a dose titration phase of 28 â 56 days. The initial daily RTG dose was 100 or 200 mg (2 or 3 Ã daily). The RTG dose was increased every 1 - 2 weeks by 50 - 200 mg to a maximum of 1,600 mg/day. Once the RTG MTD had been attained, patients entered a 14-day maintenance period. Following this, the patient's background AED dose could be reduced, with the possibility of achieving RTG monotherapy. The final dosing regimen attained was maintained for an additional 14 days. Patients who completed study 202 could choose to continue treatment with RTG (with or without other AEDs) in study 208, the long-term extension of study 202. Safety assessments included adverse event (AE) monitoring, clinical laboratory evaluations, electrocardiograms, and physical and neurologic examinations. Patients' seizure diaries to assess the frequency and type of seizures, the percentage change in seizure rate, and the responder rate (>= 50% reduction in seizure rate from baseline) were evaluated. 60 patients (mean age 37.2, range 16 - 64 years) were enrolled in study 202, and 47 (78%) continued treatment with RTG in the extension study (208). In study 202, the most commonly reported AEs were: dizziness (53%), asthenia (42%), somnolence (33%), nausea (27%), speech disorder (27%), and tremor (27%). In the extension study, AEs were similar and included dizziness, somnolence, diplopia, feeling "drunk", confusion, fatigue, and dysarthria. The median percent reductions in 28-day seizure rate, relative to baseline in Studies 202 and 208, were ~ 20% and 47%, respectively. RTG did not alter the pharmacokinetics of the four monotherapy AEDs investigated. CBZ and PHT increased RTG clearance by 27% and 36%, respectively, whereas TPM and VPA had no effect on RTG clearance. Studies 202 and 208 provided critical information on RTG safety and tolerability, and reductions in seizure rates towards the design and conduct of subsequent pivotal clinical trials. Likewise, information regarding the appropriate dosage of RTG with VPA, CBZ, PHT, or TPM was obtained, which permitted the subsequent pivotal trials to be performed appropriately. *Currently at Shire Pharmaceuticals, Behavioral Health Business Unit, Wayne, PA, USA **Currently at University of Pennsylvania, Department of Neurology, Philadelphia, PA, USA.
Carver, Robert L; Sprunger, Conrad P; Hogstrom, Kenneth R; Popple, Richard A; Antolak, John A
2016-05-08
The purpose of this study was to evaluate the accuracy and calculation speed of electron dose distributions calculated by the Eclipse electron Monte Carlo (eMC) algorithm for use with bolus electron conformal therapy (ECT). The recent com-mercial availability of bolus ECT technology requires further validation of the eMC dose calculation algorithm. eMC-calculated electron dose distributions for bolus ECT have been compared to previously measured TLD-dose points throughout patient-based cylindrical phantoms (retromolar trigone and nose), whose axial cross sections were based on the mid-PTV (planning treatment volume) CT anatomy. The phantoms consisted of SR4 muscle substitute, SR4 bone substitute, and air. The treatment plans were imported into the Eclipse treatment planning system, and electron dose distributions calculated using 1% and < 0.2% statistical uncertainties. The accuracy of the dose calculations using moderate smoothing and no smooth-ing were evaluated. Dose differences (eMC-calculated less measured dose) were evaluated in terms of absolute dose difference, where 100% equals the given dose, as well as distance to agreement (DTA). Dose calculations were also evaluated for calculation speed. Results from the eMC for the retromolar trigone phantom using 1% statistical uncertainty without smoothing showed calculated dose at 89% (41/46) of the measured TLD-dose points was within 3% dose difference or 3 mm DTA of the measured value. The average dose difference was -0.21%, and the net standard deviation was 2.32%. Differences as large as 3.7% occurred immediately distal to the mandible bone. Results for the nose phantom, using 1% statistical uncertainty without smoothing, showed calculated dose at 93% (53/57) of the measured TLD-dose points within 3% dose difference or 3 mm DTA. The average dose difference was 1.08%, and the net standard deviation was 3.17%. Differences as large as 10% occurred lateral to the nasal air cavities. Including smoothing had insignificant effects on the accuracy of the retromolar trigone phantom calculations, but reduced the accuracy of the nose phantom calculations in the high-gradient dose areas. Dose calculation times with 1% statistical uncertainty for the retromolar trigone and nose treatment plans were 30 s and 24 s, respectively, using 16 processors (Intel Xeon E5-2690, 2.9 GHz) on a framework agent server (FAS). In comparison, the eMC was significantly more accurate than the pencil beam algorithm (PBA). The eMC has comparable accuracy to the pencil beam redefinition algorithm (PBRA) used for bolus ECT planning and has acceptably low dose calculation times. The eMC accuracy decreased when smoothing was used in high-gradient dose regions. The eMC accuracy was consistent with that previously reported for accuracy of the eMC electron dose algorithm and shows that the algorithm is suitable for clinical implementation of bolus ECT.
Radiation levels and image quality in patients undergoing chest X-ray examinations
NASA Astrophysics Data System (ADS)
de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto
2017-11-01
Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.
Fujibuchi, Toshioh; Murazaki, Hiroo; Kuramoto, Taku; Umedzu, Yoshiyuki; Ishigaki, Yung
2015-08-01
Because of the more advanced and more complex procedures in interventional radiology, longer treatment times have become necessary. Therefore, it is important to determine the exposure doses received by operators and patients. The aim of our study was to evaluate an experimental production wireless dose monitoring system for pulse radiation in diagnostic X-ray. The energy, dose rate, and pulse fluoroscopy dependence were evaluated as the basic characteristics of this system for diagnostic X-ray using a fully digital fluoroscopy system. The error of 1 cm dose equivalent rate was less than 15% from 35.1 keV to 43.2 keV with energy correction using metal filter. It was possible to accurately measure the dose rate dependence of this system, which was highly linear until 100 μSv/h. This system showed a constant response to the pulse fluoroscopy. This system will become useful wireless dosimeter for the individual exposure management by improving the high dose rate and the energy characteristics.
Evaluation and Mitigation of Secondary Dose Delivered to Electronic Systems in Proton Therapy.
Wroe, Andrew J
2016-02-01
To evaluate the scattered and secondary radiation fields present in and around a passive proton treatment nozzle. In addition, based on these initial tests and system reliability analysis, to develop, install, and evaluate a radiation shielding structure to protect sensitive electronics against single-event effects (SEE) and improve system reliability. Landauer Luxel+ dosimeters were used to evaluate the radiation field around one of the gantry-mounted passive proton delivery nozzles at Loma Linda University Medical Center's James M Slater, MD Proton Treatment and Research Center. These detectors use optically stimulated luminescence technology in conjunction with CR-39 to measure doses from X-ray, gamma, proton, beta, fast neutron, and thermal neutron radiation. The dosimeters were stationed at various positions around the gantry pit and attached to racks on the gantry itself to evaluate the dose to electronics. Wax shielding was also employed on some detectors to evaluate the usefulness of this material as a dose moderator. To create the scattered and secondary radiation field in the gantry enclosure, a polystyrene phantom was placed at isocenter and irradiated with 250 MeV protons to a dose of 1.3 kGy over 16 hours. Using the collected data as a baseline, a composite shielding structure was created and installed to shield electronics associated with the precision patient positioner. The effectiveness of this shielding structure was evaluated with Landauer Luxel+ dosimeters and the results correlated against system uptime. The measured dose equivalent ranged from 1 to 60 mSv, with proton/photon, thermal neutron, fast neutron, and overall dose equivalent evaluated. The position of the detector/electronics relative to both isocenter and also neutron-producing devices, such as the collimators and first and second scatterers, definitely had a bearing on the dose received. The addition of 1-inch-thick wax shielding decreased the fast neutron component by almost 50%, yet this yielded a corresponding average increase in thermal neutron dose of 150% as there was no Boron-10 component to capture thermal neutrons. Using these data as a reference, a shielding structure was designed and installed to minimize radiation to electronics associated with the patient positioner. The installed shielding reduced the total dose experienced by these electronics by a factor of 5 while additionally reducing the fast and thermal neutron doses by a factor of 7 and 14, respectively. The reduction in radiation dose corresponded with a reduction of SEE-related downtime of this equipment from 16.5 hours to 2.5 hours over a 6-month reporting period. The data obtained in this study provided a baseline for radiation exposures experienced by gantry- and pit-mounted electronic systems. It also demonstrated and evaluated a shielding structure design that can be retrofitted to existing electronic system installations. It is expected that this study will benefit future upgrades and facility designs by identifying mechanisms that may minimize radiation dose to installed electronics, thus improving facility uptime. © The Author(s) 2015.
Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O
2018-01-01
This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.
SU-G-TeP4-02: A Method for Evaluating the Direct Impact of Failed IMRT QAs On Patient Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geneser, S; Butkus, M
Purpose: We developed a method to calculate patient doses corresponding to IMRT QA measurements in order to determine and assess the actual dose delivered for plans with failed (or borderline) IMRT QA. This work demonstrates the feasibility of automatically computing delivered patient dose from portal dosimetry measurements in the Varian TPS system, which would provide a valuable and clinically viable IMRT QA tool for physicists and physicians. Methods: IMRT QA fluences were measured using portal dosimetry, processed using in-house matlab software, and imported back into Eclipse to calculate dose on the planning CT. To validate the proposed workflow, the Eclipsemore » calculated portal dose for a 5-field sliding window prostate boost plan was processed as described above. The resulting dose was compared to the planned dose and found to be within 0.5 Gy. Two IMRT QA results for the prostate boost plan (one that failed and one that passed) were processed and the resulting patient doses were evaluated. Results: The max dose difference between IMRT QA #1 and the original planned and approved dose is 4.5 Gy, while the difference between the planned and IMRT QA #2 dose is 4.0 Gy. The inferior portion of the PTV is slightly underdosed in both plans, and the superior portion is slightly overdosed. The patient dose resulting from IMRT QA #1 and #2 differs by only 0.5 Gy. With this new information, it may be argued that the evaluated plan alteration to obtain passing gamma analysis produced clinically irrelevant differences. Conclusion: Evaluation of the delivered QA dose on the planning CT provides valuable information about the clinical relevance of failed or borderline IMRT QAs. This particular workflow demonstrates the feasibility of pushing the measured IMRT QA portal dosimetry results directly back onto the patient planning CT within the Varian system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, K; Aldoohan, S; Collier, J
Purpose: Study image optimization and radiation dose reduction in pediatric shunt CT scanning protocol through the use of different beam-hardening filters Methods: A 64-slice CT scanner at OU Childrens Hospital has been used to evaluate CT image contrast-to-noise ratio (CNR) and measure effective-doses based on the concept of CT dose index (CTDIvol) using the pediatric head shunt scanning protocol. The routine axial pediatric head shunt scanning protocol that has been optimized for the intrinsic x-ray tube filter has been used to evaluate CNR by acquiring images using the ACR approved CT-phantom and radiation dose CTphantom, which was used to measuremore » CTDIvol. These results were set as reference points to study and evaluate the effects of adding different filtering materials (i.e. Tungsten, Tantalum, Titanium, Nickel and Copper filters) to the existing filter on image quality and radiation dose. To ensure optimal image quality, the scanner routine air calibration was run for each added filter. The image CNR was evaluated for different kVps and wide range of mAs values using above mentioned beam-hardening filters. These scanning protocols were run under axial as well as under helical techniques. The CTDIvol and the effective-dose were measured and calculated for all scanning protocols and added filtration, including the intrinsic x-ray tube filter. Results: Beam-hardening filter shapes energy spectrum, which reduces the dose by 27%. No noticeable changes in image low contrast detectability Conclusion: Effective-dose is very much dependent on the CTDIVol, which is further very much dependent on beam-hardening filters. Substantial reduction in effective-dose is realized using beam-hardening filters as compare to the intrinsic filter. This phantom study showed that significant radiation dose reduction could be achieved in CT pediatric shunt scanning protocols without compromising in diagnostic value of image quality.« less
Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi
2015-01-01
This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan
NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.
Eshraghi, Azadeh; Talasaz, Azita Hajhossein; Salamzadeh, Jamshid; Salarifar, Mojtaba; Pourhosseini, Hamidreza; Nozari, Yones; Bahremand, Mostafa; Jalali, Arash; Boroumand, Mohammad Ali
2016-01-01
During percutaneous coronary intervention (PCI), trauma occurs in the arterial endothelium, resulting in platelet activation and aggregation. As platelet aggregation may lead to coronary thrombosis, antiplatelet agents are essential adjunctive therapies in patients undergoing PCI. The aim of this study was to determine the effect of the intracoronary administration of high-dose N-acetylcysteine (NAC) for the evaluation of its antiplatelet effects in human subjects. In this triple-blind trial, 147 patients undergoing primary PCI were enrolled. Finally, 100 patients were randomized to receive high-dose intracoronary NAC (100 mg/kg bolus, followed by 10 mg·kg⁻¹·h⁻¹ intracoronary continued intravenously for 12 hours) (n = 50) or dextrose solution (n = 50). Platelet activation biomarkers were measured before and 24 hours after the procedure. Secondary end points, comprising all-cause death, reinfarction, and target-vessel revascularization, were assessed at 30 days and 2 years. In comparison with the placebo, NAC could not reduce the level of platelet activation biomarkers within a 24-hour period after its prescription. Major adverse clinical events at 30 days and 2 years were infrequent and not statistically different between the 2 groups. Our results revealed that NAC, compared with the placebo, did not provide an additional clinical benefit as an effective antiplatelet agent after PCI.
Xu, Tong; Shikhaliev, Polad M; Berenji, Gholam R; Tehranzadeh, Jamshid; Saremi, Farhood; Molloi, Sabee
2004-04-01
To evaluate the feasibility and performance of an x-ray beam equalization system for chest radiography using anthropomorphic phantoms. Area beam equalization involves the process of the initial unequalized image acquisition, attenuator thickness calculation, mask generation using a 16 x 16 piston array, and final equalized image acquisition. Chest radiographs of three different anthropomorphic phantoms were acquired with no beam equalization and equalization levels of 4.8, 11.3, and 21. Six radiologists evaluated the images by scoring them from 1-5 using 13 different criteria. The dose was calculated using the known attenuator material thickness and the mAs of the x-ray tube. The visibility of anatomic structures in the under-penetrated regions of the chest radiographs was shown to be significantly (P < .01) improved after beam equalization. An equalization level of 4.8 provided most of the improvements with moderate increases in patient dose and tube loading. Higher levels of beam equalization did not show much improvement in the visibility of anatomic structures in the under-penetrated regions. A moderate level of x-ray beam equalization in chest radiography is superior to both conventional radiographs and radiographs with high levels of beam equalization. X-ray beam equalization can significantly improve the visibility of anatomic structures in the under-penetrated regions while maintaining good image quality in the lung region.
Chen, Ruey; Chan, Pi-Tuan; Chu, Hsin; Lin, Yu-Cih; Chang, Pi-Chen; Chen, Chien-Yu; Chou, Kuei-Ru
2017-01-01
This is the first meta-analysis to compare the treatment effects and safety of administering donepezil alone versus a combination of memantine and donepezil to treat patients with moderate to severe Alzheimer Disease, particularly regarding cognitive functions, behavioral and psychological symptoms in dementia (BPSD), and global functions. PubMed, Medline, Embase, PsycINFO, and Cochrane databases were used to search for English and non-English articles for inclusion in the meta-analysis to evaluate the effect size and incidence of adverse drug reactions of different treatments. Compared with patients who received donepezil alone, those who received donepezil in combination with memantine exhibited limited improvements in cognitive functions (g = 0.378, p < .001), BPSD (g = -0.878, p < .001) and global functions (g = -0.585, p = .004). Gradual titration of memantine plus a fixed dose and gradual titration of donepezil as well as a fixed dose and gradual titration of memantine resulted in limited improvements in cognitive functions(g = 0.371, p = .005), BPSD(g = -0.913, p = .001), and global functions(g = -0.371, p = .001). Both in the 24th week and at the final evaluation point, the combination of donepezil and memantine led to greater improvement in cognitive functions, BPSD, and global functions than did donepezil alone in patients with moderate to severe Alzheimer Disease.
NASA Astrophysics Data System (ADS)
Bush, K.; Zavgorodni, S.; Gagne, I.; Townson, R.; Ansbacher, W.; Beckham, W.
2010-08-01
The aim of the study was to perform the Monte Carlo (MC) evaluation of RapidArc™ (Varian Medical Systems, Palo Alto, CA) dose calculations for four oropharynx midline sparing planning strategies. Six patients with squamous cell cancer of the oropharynx were each planned with four RapidArc head and neck treatment strategies consisting of single and double photon arcs. In each case, RTOG0522 protocol objectives were used during planning optimization. Dose calculations performed with the analytical anisotropic algorithm (AAA) are compared against BEAMnrc/DOSXYZnrc dose calculations for the 24-plan dataset. Mean dose and dose-to-98%-of-structure-volume (D98%) were used as metrics in the evaluation of dose to planning target volumes (PTVs). Mean dose and dose-to-2%-of-structure-volume (D2%) were used to evaluate dose differences within organs at risk (OAR). Differences in the conformity index (CI) and the homogeneity index (HI) as well as 3D dose distributions were also observed. AAA calculated PTV mean dose, D98%, and HIs showed very good agreement with MC dose calculations within the 0.8% MC (statistical) calculation uncertainty. Regional node volume (PTV-80%) mean dose and D98% were found to be overestimated (1.3%, σ = 0.8% and 2.3%, σ = 0.8%, respectively) by the AAA with respect to MC calculations. Mean dose and D2% to OAR were also observed to be consistently overestimated by the AAA. Increasing dose calculation differences were found in planning strategies exhibiting a higher overall fluence modulation. From the plan dataset, the largest local dose differences were observed in heavily shielded regions and within the esophageal and sinus cavities. AAA dose calculations as implemented in RapidArc™ demonstrate excellent agreement with MC calculations in unshielded regions containing moderate inhomogeneities. Acceptable agreement is achieved in regions of increased MLC shielding. Differences in dose are attributed to inaccuracies in the AAA-modulated fluence modeling, modeling of material inhomogeneities and dose deposition within low-density materials. The use of MC dose calculations leads to the same general conclusion as using AAA that a two arc delivery with limited collimator opening can provide the greatest amount of midline sparing compared to the other techniques investigated.
NASA Astrophysics Data System (ADS)
Slegers, Catherine; Tilquin, Bernard
2006-09-01
The radiostability of metoprolol tartrate aqueous solutions and the influence of the absorbed dose (0-50 kGy), dose rate (e-beam (EB) vs. gamma ( γ)) and radioprotectors (pharmaceutical excipients) are investigated by HPLC-UV analyses and through computer simulations. The use of radioprotecting excipients is more promising than an increase in the dose rate to lower the degradation of metoprolol tartrate aqueous solutions for applications such as radiosterilization. The decontamination of metoprolol tartrate from waste waters by EB processing appears highly feasible.
Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, S.S.J.
1993-04-05
The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.