10 CFR 20.1207 - Occupational dose limits for minors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors are...
10 CFR 20.1207 - Occupational dose limits for minors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors are...
10 CFR 20.1207 - Occupational dose limits for minors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors are...
10 CFR 20.1207 - Occupational dose limits for minors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors are...
10 CFR 20.1207 - Occupational dose limits for minors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Occupational dose limits for minors. 20.1207 Section 20.1207 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1207 Occupational dose limits for minors. The annual occupational dose limits for minors are...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External Exposure § 835.207 Occupational dose limits for minors. The dose limits for minors occupationally exposed...
Space radiation risk limits and Earth-Moon-Mars environmental models
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Hu, Shaowen; Schwadron, Nathan A.; Kozarev, K.; Townsend, Lawrence W.; Kim, Myung-Hee Y.
2010-12-01
We review NASA's short-term and career radiation limits for astronauts and methods for their application to future exploration missions outside of low Earth orbit. Career limits are intended to restrict late occurring health effects and include a 3% risk of exposure-induced death from cancer and new limits for central nervous system and heart disease risks. Short-term dose limits are used to prevent in-flight radiation sickness or death through restriction of the doses to the blood forming organs and to prevent clinically significant cataracts or skin damage through lens and skin dose limits, respectively. Large uncertainties exist in estimating the health risks of space radiation, chiefly the understanding of the radiobiology of heavy ions and dose rate and dose protraction effects, and the limitations in human epidemiology data. To protect against these uncertainties NASA estimates the 95% confidence in the cancer risk projection intervals as part of astronaut flight readiness assessments and mission design. Accurate organ dose and particle spectra models are needed to ensure astronauts stay below radiation limits and to support the goal of narrowing the uncertainties in risk projections. Methodologies for evaluation of space environments, radiation quality, and organ doses to evaluate limits are discussed, and current projections for lunar and Mars missions are described.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... Radiological Protection; Recommendations on the Annual Dose Limit to the Lens of the Eye AGENCY: Nuclear... Protection (ICRP) recommendations for the limitation of annual dose to the lens of the eye. This significant... might be lower than previously considered. For the lens of the eye, the threshold in absorbed dose for...
Ushakov, I B; Grigoriev, Yu G; Shafirkin, A V; Shurshakov, V A
2016-01-01
Review of the data of experimental radiobiology and epidemiological follow-up of large groups of people subjected to radiation exposures on Earth has been undertaken to substantiate dose limits for critical organs of cosmonauts in order to ensure good performance and vitality while on long-duration orbital missions. The career dose limits for cosmonauts and astronauts established earlier in the USSR and USA amounted to nothing more but banning the risk of cancer death increase to 3%. To apply more rigorous criteria of delayed radiation risks, the Russian limits for cosmonauts were revised to substantiate a 4-fold reduction of the average tissue equivalent dose maximum to 1 Sv. The total of cancer and non-cancer radiation risks over lifetime and probable reduction of mean life expectancy (MLE) were calculated using the model of radiation-induced mortality for mammals and taken as the main damage to health. The established dose limit is equal to the career dose for nuclear industry personnel set forth by Russian standard document NRB 99/2009. For better agreement of admissible threshold doses to critical human organs (bone marrow, lens and skin) in the revised radiation limits for long-duration space missions and radiation safety limits on Earth, reduction of dose limits for the critical organs were substantiated additionally; these limits comply with those for planned over-exposure on Earth in document NRB 99/2009.
O'Connor, U; Gallagher, A; Malone, L; O'Reilly, G
2013-02-01
Endoscopic retrograde cholangiopancreatography (ERCP) is a common procedure that combines the use of X-ray fluoroscopy and endoscopy for examination of the bile duct. Published data on ERCP doses are limited, including staff eye dose from ERCP. Occupational eye doses are of particular interest now as the International Commission on Radiological Protection (ICRP) has recommended a reduction in the dose limit to the lens of the eye. The aim of this study was to measure occupational eye doses obtained from ERCP procedures. A new eye lens dosemeter (EYE-D(™), Radcard, Krakow, Poland) was used to measure the ERCP eye dose, H(p)(3), at two endoscopy departments in Ireland. A review of radiation protection practice at the two facilities was also carried out. The mean equivalent dose to the lens of the eye of a gastroenterologist is 0.01 mSv per ERCP procedure with an undercouch X-ray tube and 0.09 mSv per ERCP procedure with an overcouch X-ray tube. Staff eye dose normalised to patient kerma area product is also presented. Staff eye doses in ERCP have the potential to exceed the revised ICRP limit of 20 mSv per annum when an overcouch X-ray tube is used. The EYE-D dosemeter was found to be a convenient method for measuring lens dose. Eye doses in areas outside of radiology departments should be kept under review, particularly in light of the new ICRP eye dose limit. Occupational eye lens doses from ERCP procedures have been established using a new commercially available dedicated H(p)(3) dosemeter.
10 CFR 20.1302 - Compliance with dose limits for individual members of the public.
Code of Federal Regulations, 2013 CFR
2013-01-01
... public. 20.1302 Section 20.1302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Dose Limits for Individual Members of the Public § 20.1302 Compliance with dose limits..., surveys of radiation levels in unrestricted and controlled areas and radioactive materials in effluents...
10 CFR 20.1302 - Compliance with dose limits for individual members of the public.
Code of Federal Regulations, 2014 CFR
2014-01-01
... public. 20.1302 Section 20.1302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Dose Limits for Individual Members of the Public § 20.1302 Compliance with dose limits..., surveys of radiation levels in unrestricted and controlled areas and radioactive materials in effluents...
10 CFR 20.1302 - Compliance with dose limits for individual members of the public.
Code of Federal Regulations, 2012 CFR
2012-01-01
... public. 20.1302 Section 20.1302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Dose Limits for Individual Members of the Public § 20.1302 Compliance with dose limits..., surveys of radiation levels in unrestricted and controlled areas and radioactive materials in effluents...
10 CFR 20.1302 - Compliance with dose limits for individual members of the public.
Code of Federal Regulations, 2011 CFR
2011-01-01
... public. 20.1302 Section 20.1302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Dose Limits for Individual Members of the Public § 20.1302 Compliance with dose limits..., surveys of radiation levels in unrestricted and controlled areas and radioactive materials in effluents...
10 CFR 20.1302 - Compliance with dose limits for individual members of the public.
Code of Federal Regulations, 2010 CFR
2010-01-01
... public. 20.1302 Section 20.1302 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Dose Limits for Individual Members of the Public § 20.1302 Compliance with dose limits..., surveys of radiation levels in unrestricted and controlled areas and radioactive materials in effluents...
Analysis of Exposure-Dose Variation of Inhaled Particles in Adult Subjects.
Although internal dose is a key factor for determining the health risk of inhaled pollutant particles, available dose information is largely limited to young healthy adults under a few typical exposure conditions. Extrapolation of the limited dose information to different populat...
Dose limits to the lens of the eye: International Basic Safety Standards and related guidance.
Boal, T J; Pinak, M
2015-06-01
The International Atomic Energy Agency (IAEA) safety requirements: 'General Safety Requirements Part 3--Radiation protection and safety of radiation sources: International Basic Safety Standards' (BSS) was approved by the IAEA Board of Governors at its meeting in September 2011, and was issued as General Safety Requirements Part 3 in July 2014. The equivalent dose limit for the lens of the eye for occupational exposure in planned exposure situations was reduced from 150 mSv year(-1) to 20 mSv year(-1), averaged over defined periods of 5 years, with no annual dose in a single year exceeding 50 mSv. This reduction in the dose limit for the lens of the eye followed the recommendation of the International Commission on Radiological Protection in its statement on tissue reactions of 21 April 2011. IAEA has developed guidance on the implications of the new dose limit for the lens of the eye. This paper summarises the process that led to the inclusion of the new dose limit for the lens of the eye in the BSS, and the implications of the new dose limit. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Hamada, Nobuyuki; Fujimichi, Yuki
2014-01-01
Radiation exposure causes cancer and non-cancer health effects, each of which differs greatly in the shape of the dose–response curve, latency, persistency, recurrence, curability, fatality and impact on quality of life. In recent decades, for dose limitation purposes, the International Commission on Radiological Protection has divided such diverse effects into tissue reactions (formerly termed non-stochastic and deterministic effects) and stochastic effects. On the one hand, effective dose limits aim to reduce the risks of stochastic effects (cancer/heritable effects) and are based on the detriment-adjusted nominal risk coefficients, assuming a linear-non-threshold dose response and a dose and dose rate effectiveness factor of 2. On the other hand, equivalent dose limits aim to avoid tissue reactions (vision-impairing cataracts and cosmetically unacceptable non-cancer skin changes) and are based on a threshold dose. However, the boundary between these two categories is becoming vague. Thus, we review the changes in radiation effect classification, dose limitation concepts, and the definition of detriment and threshold. Then, the current situation is overviewed focusing on (i) stochastic effects with a threshold, (ii) tissue reactions without a threshold, (iii) target organs/tissues for circulatory disease, (iv) dose levels for limitation of cancer risks vs prevention of non-life-threatening tissue reactions vs prevention of life-threatening tissue reactions, (v) mortality or incidence of thyroid cancer, and (vi) the detriment for tissue reactions. For future discussion, one approach is suggested that classifies radiation effects according to whether effects are life threatening, and radiobiological research needs are also briefly discussed. PMID:24794798
Modeling adverse event counts in phase I clinical trials of a cytotoxic agent.
Muenz, Daniel G; Braun, Thomas M; Taylor, Jeremy Mg
2018-05-01
Background/Aims The goal of phase I clinical trials for cytotoxic agents is to find the maximum dose with an acceptable risk of severe toxicity. The most common designs for these dose-finding trials use a binary outcome indicating whether a patient had a dose-limiting toxicity. However, a patient may experience multiple toxicities, with each toxicity assigned an ordinal severity score. The binary response is then obtained by dichotomizing a patient's richer set of data. We contribute to the growing literature on new models to exploit this richer toxicity data, with the goal of improving the efficiency in estimating the maximum tolerated dose. Methods We develop three new, related models that make use of the total number of dose-limiting and low-level toxicities a patient experiences. We use these models to estimate the probability of having at least one dose-limiting toxicity as a function of dose. In a simulation study, we evaluate how often our models select the true maximum tolerated dose, and we compare our models with the continual reassessment method, which uses binary data. Results Across a variety of simulation settings, we find that our models compare well against the continual reassessment method in terms of selecting the true optimal dose. In particular, one of our models which uses dose-limiting and low-level toxicity counts beats or ties the other models, including the continual reassessment method, in all scenarios except the one in which the true optimal dose is the highest dose available. We also find that our models, when not selecting the true optimal dose, tend to err by picking lower, safer doses, while the continual reassessment method errs more toward toxic doses. Conclusion Using dose-limiting and low-level toxicity counts, which are easily obtained from data already routinely collected, is a promising way to improve the efficiency in finding the true maximum tolerated dose in phase I trials.
Walsh, C; Gallagher, A; Dowling, A; Guiney, M; Ryan, J M; McEniff, N; O'Reilly, G
2015-01-01
Objective: In 2011, the International Commission on Radiological Protection (ICRP) recommended a substantial reduction in the equivalent dose limit for the lens of the eye, in line with a reduced threshold of absorbed dose for radiation-induced cataracts. This is of particular relevance in interventional radiology (IR) where it is well established that staff doses can be significant, however, there is a lack of data on IR eye doses in terms of Hp(3). Hp(3) is the personal dose equivalent at a depth of 3 mm in soft tissue and is used for measuring lens dose. We aimed to obtain a reliable estimate of eye dose to IR operators. Methods: Lens doses were measured for four interventional radiologists over a 3-month period using dosemeters specifically designed to measure Hp(3). Results: Based on their typical workloads, two of the four interventional radiologists would exceed the new ICRP dose limit with annual estimated doses of 31 and 45 mSv to their left eye. These results are for an “unprotected” eye, and for IR staff who routinely wear lead glasses, the dose beneath the glasses is likely to be significantly lower. Staff eye dose normalized to patient kerma–area product and eye dose per procedure have been included in the analysis. Conclusion: Eye doses to IR operators have been established using a dedicated Hp(3) dosemeter. Estimated annual doses have the potential to exceed the new ICRP limit. Advances in knowledge: We have estimated lens dose to interventional radiologists in terms of Hp(3) for the first time in an Irish hospital setting. PMID:25761211
Liquid Medication Dosing Errors by Hispanic Parents: Role of Health Literacy and English Proficiency
Harris, Leslie M.; Dreyer, Benard; Mendelsohn, Alan; Bailey, Stacy C.; Sanders, Lee M.; Wolf, Michael S.; Parker, Ruth M.; Patel, Deesha A.; Kim, Kwang Youn A.; Jimenez, Jessica J.; Jacobson, Kara; Smith, Michelle; Yin, H. Shonna
2016-01-01
Objective Hispanic parents in the US are disproportionately affected by low health literacy and limited English proficiency (LEP). We examined associations between health literacy, LEP, and liquid medication dosing errors in Hispanic parents. Methods Cross-sectional analysis of data from a multisite randomized controlled experiment to identify best practices for the labeling/dosing of pediatric liquid medications (SAFE Rx for Kids study); 3 urban pediatric clinics. Analyses were limited to Hispanic parents of children <8 years, with health literacy and LEP data (n=1126). Parents were randomized to 5 groups that varied by pairing of units of measurement on the label/dosing tool. Each parent measured 9 doses [3 amounts (2.5,5,7.5 mL) using 3 tools (2 syringes (0.2,0.5 mL increment), 1 cup)] in random order. Dependent variable: Dosing error=>20% dose deviation. Predictor variables: health literacy (Newest Vital Sign) [limited=0–3; adequate=4–6], LEP (speaks English less than “very well”). Results 83.1% made dosing errors (mean(SD) errors/parent=2.2(1.9)). Parents with limited health literacy and LEP had the greatest odds of making a dosing error compared to parents with adequate health literacy who were English proficient (% trials with errors/parent=28.8 vs. 12.9%; AOR=2.2[1.7–2.8]). Parents with limited health literacy who were English proficient were also more likely to make errors (% trials with errors/parent=18.8%; AOR=1.4[1.1–1.9]). Conclusion Dosing errors are common among Hispanic parents; those with both LEP and limited health literacy are at particular risk. Further study is needed to examine how the redesign of medication labels and dosing tools could reduce literacy and language-associated disparities in dosing errors. PMID:28477800
New Stochastic Annual Limits on Intake for Selected Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.
Annual limits on intake (ALI) have historically been tabulated by the International Commission on Radiological Protection (e.g., ICRP 1979, 1961) and also by the Environmental Protection Agency (EPA 1988). These compilations have been rendered obsolete by more recent ICRP dosimetry methods, and, rather than provide new ALIs, the ICRP has opted instead to provide committed dose coefficients from which an ALI can be determined by a user for a specific set of conditions. The U.S. Department of Energy historically has referenced compilations of ALIs and has defined their method of calculation in its radiation protection regulation (10 CFDR 835), butmore » has never provided a specific compilation. Under June 2007 amendments to 10 CFR 835, ALIs can be calculated by dividing an appropriate dose limit, either 5-rem (0.05 Sv) effective dose or 50 rem (0.5 Sv) equivalent dose to an individual organ or tissue, by an appropriate committed dose coefficient. When based on effective dose, the ALI is often referred to as a stochastic annual limit on intake (SALI), and when based on the individual organ or tissue equivalent limit, it has often been called a deterministic annual limit on intake (DALI).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, R.L.; Schmitt, J.F.
1995-03-01
The International Commission on Radiological Protection and the National Council on Radiation Protection and Measurements have issued recommendations that would limit occupational exposure of individuals to doses lower than regulatory limits contained in the Nuclear Regulatory Commission`s 10 CFR Part 20, {open_quotes}Standards for Protection Against Radiation{close_quotes}. Because of this situation, there is interest in the potential benefits and impacts that would be associated with movement of the NRC regulatory limits toward the advisory bodies recommendations. The records of occupational worker doses in the U.S. commercial nuclear power industry show that the vast majority of these workers have doses that aremore » significantly below the regulatory limit of 50 mSv (5 rem) per year. Some workers doses do approach the limits, however. This is most common in the case of specially skilled workers, especially those with skills utilized in support of plant outage work. Any consideration of the potential benefits and impacts of hypothesized lower dose limits must address these workers as an important input to the overall assessment. There are also, of course, many other areas in which the benefits and impacts must be evaluated. To prepare to provide valid, constructive input on this matter, the U.S. nuclear power industry is undertaking an assessment, facilitated by the Nuclear Energy Institute (NEI), of the potential benefits and impacts at its facilities associated with hypothesized lower occupational dose limits. Some preliminary results available to date from this assessment are provided.« less
Bender, Julia Glade; Blaney, Susan M.; Borinstein, Scott; Reid, Joel M.; Baruchel, Sylvain; Ahern, Charlotte; Ingle, Ashish M.; Yamashiro, Darrell J.; Chen, Alice; Weigel, Brenda; Adamson, Peter C.; Park, Julie R.
2012-01-01
Background Aflibercept is a novel decoy receptor that efficiently neutralizes circulating vascular endothelial growth factor (VEGF). A pediatric phase 1 trial was performed to define the dose limiting toxicities (DLT), maximum tolerated dose (MTD) and pharmacokinetics (PK) of aflibercept. Methods Cohorts of 3–6 children with refractory solid tumors received aflibercept intravenously over 60 minutes every 14 days, at 2.0, 2.5 or 3.0 mg/kg/dose. PK sampling and analysis of peripheral blood biomarkers were performed with the initial dose. Results 21 eligible patients were enrolled; 18 were fully evaluable for toxicity. One of 6 patients receiving 2.0 mg/kg/dose developed dose-limiting intra-tumoral hemorrhage and 2 of 6 receiving 3.0 mg/kg/dose developed either dose-limiting tumor pain or tissue necrosis. None of the 6 patients receiving 2.5 mg/kg/dose developed DLT, defining this as the MTD. The most common non-dose limiting toxicities were hypertension and fatigue. Three patients with hepatocellular carcinoma, hepatoblastoma and clear cell sarcoma had stable disease for >13 weeks. At the MTD, the ratio of free to bound aflibercept serum concentration was 2.10 on day 8, but only 0.44 by day 15. A rapid decrease in VEGF (p<0.05) and increase in PlGF (p<0.05) from baseline was observed in response to aflibercept by day 2. Conclusion The aflibercept MTD in children of 2.5 mg/kg/dose every 14 days is lower that the adult recommended dose of 4.0 mg/kg. This dose achieves, but does not sustain, free aflibercept concentrations in excess of bound. Tumor pain and hemorrhage may be evidence of anti-tumor activity, but were dose-limiting. PMID:22791883
Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh
2016-01-01
Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed themore » dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and late RILD are also due to different pathologies. As such, new radiation techniques reducing irradiated volume might change the dose-limiting toxicity of the radiation therapy treatment.« less
Rampling, Roy; Sanson, Marc; Gorlia, Thiery; Lacombe, Denis; Lai, Christina; Gharib, Myriam; Taal, Walter; Stoffregen, Clemens; Decker, Rodney; van den Bent, Martin J.
2012-01-01
We report a phase 1 study to examine the safety and recommended dose of the oral protein kinase C-beta inhibitor (anti-angiogenic) enzastaurin in combination with single-agent temozolomide. The study was conducted in patients with recurrent glioblastoma or newly diagnosed disease that was not treatable with standard (chemo)radiotherapy. Patients were treated with standard dose temozolomide (200 mg/m2 for 5 days every 4 weeks) together with daily oral enzastaurin. Three dose levels of enzastaurin were investigated: 250 mg daily (OD), 500 mg OD, and 250 mg twice daily (BID). Dose-limiting toxicity was determined in the first 2 cycles, but treatment continued until limiting toxicity or disease progression was identified. Twenty-eight patients were enrolled. No dose-limiting toxicity was noted at 250 mg OD or 500 mg OD. However, at 250 mg BID, 2 dose-limiting episodes of thrombocytopenia were noted. The recommended dose for enzastaurin in combination with standard 4-weekly temozolomide is therefore 500 mg OD. The pharmacokinetics of enzastaurin in combination with temozolomide was evaluated. Temozolomide did not appear to effect enzastaurin exposures at the 250 mg or 500 mg OD dose levels. PMID:22291006
Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika
2015-07-08
The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low.
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2010-01-01 2010-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2014 CFR
2014-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2012 CFR
2012-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2013 CFR
2013-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 835.202 - Occupational dose limits for general employees.
Code of Federal Regulations, 2011 CFR
2011-01-01
... tissue other than the skin or the lens of the eye of 50 rems (0.5 Sv); (3) An equivalent dose to the lens of the eye of 15 rems (0.15 Sv); and (4) The sum of the equivalent dose to the skin or to any... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for general employees. 835.202...
10 CFR 20.1201 - Occupational dose limits for adults.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose... surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational...
10 CFR 20.1201 - Occupational dose limits for adults.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose... surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational...
10 CFR 20.1201 - Occupational dose limits for adults.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose... surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational...
10 CFR 20.1201 - Occupational dose limits for adults.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose... surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational...
10 CFR 20.1201 - Occupational dose limits for adults.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Occupational dose limits for adults. 20.1201 Section 20.1201 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose... surveys or other radiation measurements for the purpose of demonstrating compliance with the occupational...
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.
1989-01-01
The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.
Bouffler, Simon; Ainsbury, Elizabeth; Gilvin, Phil; Harrison, John
2012-12-01
This paper presents the response of the Health Protection Agency (HPA) to the 2011 statement from the International Commission on Radiological Protection (ICRP) on tissue reactions and recommendation of a reduced dose limit for the lens of the eye. The response takes the form of a brief review of the most recent epidemiological and mechanistic evidence. This is presented together with a discussion of dose limits in the context of the related risk and the current status of eye dosimetry, which is relevant for implementation of the limits. It is concluded that although further work is desirable to quantify better the risk at low doses and following protracted exposures, along with research into the mechanistic basis for radiation cataractogenesis to inform selection of risk projection models, the HPA endorses the conclusion reached by the ICRP in their 2011 statement that the equivalent dose limit for the lens of the eye should be reduced from 150 to 20 mSv per year, averaged over a five year period, with no year's dose exceeding 50 mSv.
Omar, Artur; Kadesjö, Nils; Palmgren, Charlotta; Marteinsdottir, Maria; Segerdahl, Tony; Fransson, Annette
2017-03-20
In accordance with recommendations by the International Commission on Radiological Protection, the current European Basic Safety Standards has adopted a reduced occupational eye lens dose limit of 20 mSv yr -1 . The radiation safety implications of this dose limit is of concern for clinical staff that work with relatively high dose x-ray angiography and interventional radiology. Presented in this work is a thorough assessment of the occupational eye lens dose based on clinical measurements with active personal dosimeters worn by staff during various types of procedures in interventional radiology, cardiology and neuroradiology. Results are presented in terms of the estimated equivalent eye lens dose for various medical professions. In order to compare the risk of exceeding the regulatory annual eye lens dose limit for the widely different clinical situations investigated in this work, the different medical professions were separated into categories based on their distinct work pattern: staff that work (a) regularly beside the patient, (b) in proximity to the patient and (c) typically at a distance from the patient. The results demonstrate that the risk of exceeding the annual eye lens dose limit is of concern for staff category (a), i.e. mainly the primary radiologist/cardiologist. However, the results also demonstrate that the risk can be greatly mitigated if radiation protection shields are used in the clinical routine. The results presented in this work cover a wide range of clinical situations, and can be used as a first indication of the risk of exceeding the annual eye lens dose limit for staff at other medical centres.
Regulating exposure of the lens of the eye to ionising radiations.
Thorne, M C
2012-06-01
The International Commission on Radiological Protection (ICRP) has reviewed recent epidemiological evidence suggesting that, for the lens of the eye, the threshold in absorbed dose for the induction of deleterious health effects is about 0.5 Gy. On this basis, the Commission recommends that for occupational exposure in planned exposure situations, the equivalent dose limit for the lens of the eye should be 20 mSv in a year, averaged over defined periods of 5 yr, with exposure not exceeding 50 mSv in any single year. This paper summarises the data that have been taken into account by the ICRP and critically examines whether the proposed downward revision of the dose limit is justified. Overall, it is concluded that the accumulating radiobiological and epidemiological evidence makes it more appropriate to treat cataract induction as a stochastic rather than a deterministic effect. Within this framework, it is illogical to have the same dose limit for the lens of the eye as for the whole body irradiated uniformly. This could be addressed either by removing the special dose limit for the lens of the eye, assigning it an appropriate tissue weighting factor and including it in the computation of the effective dose, or through a composite approach involving the use of a tissue weighting factor for effective dose computations together with a special limit on the equivalent dose to the lens of the eye to ensure that no individual was subject to an unacceptably high risk of induction of clinically significant cataracts.
User Guide for GoldSim Model to Calculate PA/CA Doses and Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, F.
2016-10-31
A model to calculate doses for solid waste disposal at the Savannah River Site (SRS) and corresponding disposal limits has been developed using the GoldSim commercial software. The model implements the dose calculations documented in SRNL-STI-2015-00056, Rev. 0 “Dose Calculation Methodology and Data for Solid Waste Performance Assessment (PA) and Composite Analysis (CA) at the Savannah River Site”.
Jin, Michael; Sanchez, Thomas R; Lamba, Ramit; Fananapazir, Ghaneh; Corwin, Michael T
2017-09-01
The purpose of this article is to determine the accuracy and radiation dose reduction of limited-range CT prescribed from the top of L2 to the top of the pubic symphysis in children with suspected acute appendicitis. We performed a retrospective study of 210 consecutive pediatric patients from December 11, 2012, through December 11, 2014, who underwent abdominopelvic CT for suspected acute appendicitis. Two radiologists independently reviewed the theoretic limited scans from the superior L2 vertebral body to the top of the pubic symphysis, to assess for visualization of the appendix, acute appendicitis, alternative diagnoses, and incidental findings. Separately, the same parameters were assessed on the full scan by the same two reviewers. Whole-body effective doses were determined for the full- and limited-range scans and were compared using the paired t test. The appendix or entire cecum was visualized on the limited scan in all cases, and no cases of acute appendicitis were missed on the simulated limited scan compared with the full scan. Two alternative diagnoses were missed with the limited scan: one case of hydronephrosis and one of acute acalculous cholecystitis. The mean effective dose for the original scan was 5.6 mSv and that for the simulated limited scan was 3.0 mSv, resulting in a dose reduction of 46.4% (p < 0.001). A limited-range CT examination performed from the top of L2 to the top of the pubic symphysis is as accurate as a full-range abdominopelvic CT in evaluating pediatric patients with suspected appendicitis and reduces the dose by approximately 46%.
Browns Ferry Nuclear Plant radiological impact assessment report, January-June 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.E.
1988-01-01
Potential doses to maximum individuals and the population around Browns Ferry are calcuated for each quarter. Measured plant releases for the reporting period are used to estimate these doses. Dispersion of radioactive effluents in the environment is estimated in accordance with the guidance provided and measuring during the period. Using dose calculation methodologies which are described in detail in the Browns Ferry Offsite Dose Calculation Manual, the doses are calculated and used to determine compliance with the dose limits contained in Browns Ferry's Operating License. In this report, the doses resulting from releases are described and compared to quarterly andmore » annual limits established for Browns Ferry.« less
Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika
2015-01-01
The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in vivo measurements (<1.7 mGy) the sensitivity is too low. PACS number: 87.50.wj PMID:26219008
Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh
2016-10-05
The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in Nigerian institutions to prevent excessive doses to personnel.
Jibiri, Nnamdi Norbert; Akintunde, Tawakalitu Oluwatoyin; Dambele, Musa Yusuf; Olowookere, Christopher Jimoh
2016-01-01
Objective: The practice of regular dose measurement helps to ascertain the level of occupational dose delivered to the staff involved in diagnostic procedures. This study was carried out to evaluate the dose exposed to the hands of radiologists and a radiologic technologist carrying out HSG and radionuclide bone scan examinations in several hospitals in Nigeria. Methods: Radiation doses exposed to the hands of radiologists and a technician carrying out hysterosalpingography (HSG) and bone scan procedures were measured using calibrated thermo-luminescent dosimeters. Five radiologists and a radiologic technologist were included in the study for dose measurement. Results: The study indicates that each radiologist carried out approximately 2 examinations per week with the mean dose ranging between 0.49-0.62 mSv per week, resulting in an annual dose of 191 mSv. Similarly, the occupational dose delivered to both the left and right hands of a radiologic technologist administering 99mTc-methylene diphosphonate (MDP) without cannula and with cannula were 10.68 (720.2) and 13.82 (556.4) mSv per week (and per annum), respectively. It was determined that the left hand of the personnel received higher doses than their right hand. Conclusion: The estimated annual dose during HSG is far below the annual dose limit for deterministic effects, however, it is greater than 10% of the applicable annual dose limit. Hence, routine monitoring is required to ensure adequate protection of the personnel. The total annual dose received during the bone scan exceeds the annual dose limit for both hands, and the dose to either left or right hand is greater than the dose limit of 500 mSv/yr. The radiologists monitored are not expected to incur any deterministic effects during HSG examinations, however, accumulated doses arising from the scattered radiation to the eyes, legs, and neck could be substantial and might lead to certain effects. More staff are required to administer 99mTc-MDP in Nigerian institutions to prevent excessive doses to personnel. PMID:27751973
A comparison of quantum limited dose and noise equivalent dose
NASA Astrophysics Data System (ADS)
Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang
2016-03-01
Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
10 CFR 835.206 - Limits for the embryo/fetus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Limits for the embryo/fetus. 835.206 Section 835.206... Exposure § 835.206 Limits for the embryo/fetus. (a) The equivalent dose limit for the embryo/fetus from the... provided in § 835.206(a) shall be avoided. (c) If the equivalent dose to the embryo/fetus is determined to...
A phase I dose escalation study of TTI-237 in patients with advanced malignant solid tumors.
Wang-Gillam, Andrea; Arnold, Susanne M; Bukowski, Ronald M; Rothenberg, Mace L; Cooper, Wendy; Wang, Kenneth K; Gauthier, Eric; Lockhart, A Craig
2012-02-01
This study was to determine the maximum tolerated dose, dose-limiting toxicities, and pharmacokinetic profile of TTI-237, a novel anti-tubulin drug, administered weekly in patients with refractory solid tumors. Using an accelerated dose escalation design, patients with refractory solid tumors were enrolled in this study and treated with TTI-237 intravenously on days 1, 8 and 15 of a 28-day cycle. The starting dose was 4.5 mg/m(2). Pharmacokinetic studies were performed in patients at all dose levels. Twenty-eight patients were enrolled and treated with TTI-237 at dose of 4.5, 9, 15, 22.5 and 31.5 mg/m(2). One dose-limiting toxicity neutropenia fever was observed at 31.5 mg/m(2), and all seven patients developed grade 3 or 4 neutropenia at that dose level. TTI-237 dosage was de-escalated to 22.5 and 18 mg/m(2). Six patients were treated at the 18 mg/m(2) dose level without dose-limiting toxicity prior to trial termination. The mean terminal-phase elimination half-life (t(1/2)) for TTI-237 was 25-29 h, and the mean area under the concentration time curve at 31.5 mg/m(2) was 2,768 ng•h/mL. A protocol defined maximum tolerated dose was not determined because of early termination of the TTI-237 trial by the sponsor. 18 mg/m(2) may be a tolerable dose of TTI-237.
Yokoyama, Sumi; Hamada, Nobuyuki; Hayashida, Toshiyuki; Tsujimura, Norio; Tatsuzaki, Hideo; Kurosawa, Tadahiro; Nabatame, Kuniaki; Ohguchi, Hiroyuki; Ohno, Kazuko; Yamauchi-Kawaura, Chiyo; Iimoto, Takeshi; Ichiji, Takeshi; Hotta, Yutaka; Iwai, Satoshi; Akahane, Keiichi
2017-09-25
Since the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens of the eye in 2011, there have been extensive discussions in various countries. This paper reviews the current situation in radiation protection of the ocular lens and the discussions on the potential impact of the new lens dose limit in Japan. Topics include historical changes to the lens dose limit, the current situation with occupational lens exposures (e.g., in medical workers, nuclear workers, and Fukushima nuclear power plant workers) and measurements, and the current status of biological studies and epidemiological studies on radiation cataracts. Our focus is on the situation in Japan, but we believe such information sharing will be useful in many other countries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Charles, E-mail: charles.mayo@umassmemorial.or; Yorke, Ellen; Merchant, Thomas E.
Publications relating brainstem radiation toxicity to quantitative dose and dose-volume measures derived from three-dimensional treatment planning were reviewed. Despite the clinical importance of brainstem toxicity, most studies reporting brainstem effects after irradiation have fewer than 100 patients. There is limited evidence relating toxicity to small volumes receiving doses above 60-64 Gy using conventional fractionation and no definitive criteria regarding more subtle dose-volume effects or effects after hypofractionated treatment. On the basis of the available data, the entire brainstem may be treated to 54 Gy using conventional fractionation using photons with limited risk of severe or permanent neurological effects. Smaller volumesmore » of the brainstem (1-10 mL) may be irradiated to maximum doses of 59 Gy for dose fractions <=2 Gy; however, the risk appears to increase markedly at doses >64 Gy.« less
Figueroa, Isabel; Leipold, Doug; Leong, Steve; Zheng, Bing; Triguero-Carrasco, Montserrat; Fourie-O'Donohue, Aimee; Kozak, Katherine R; Xu, Keyang; Schutten, Melissa; Wang, Hong; Polson, Andrew G; Kamath, Amrita V
2018-05-14
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.
EMP Attachment 3 DOE-SC PNNL Site Dose Assessment Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Sandra F.
2011-12-21
This Dose Assessment Guidance (DAG) describes methods to use to determine the Maximally-Exposed Individual (MEI) location and to estimate dose impact to that individual under the U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest National Laboratory (PNNL) Site Environmental Monitoring Plan (EMP). This guidance applies to public dose from radioactive material releases to the air from PNNL Site operations. This document is an attachment to the Pacific Northwest National Laboratory (PNNL) Environmental Monitoring Plan (EMP) and describes dose assessment guidance for radiological air emissions. The impact of radiological air emissions from the U.S. Department of Energy Office ofmore » Science (DOE-SC) PNNL Site is indicated by dose estimates to a maximally exposed member of the public, referred to as the maximally exposed individual (MEI). Reporting requirements associated with dose to members of the public from radiological air emissions are in 40 CFR Part 61.94, WAC 246-247-080, and DOE Order 458.1. The DOE Order and state standards for dose from radioactive air emissions are consistent with U.S. Environmental Protection Agency (EPA) dose standards in 40 CFR 61.92 (i.e., 10 mrem/yr to a MEI). Despite the fact that the current Contract Requirements Document (CRD) for the DOE-SC PNNL Site operations does not include the requirement to meet DOE CRD 458.1, paragraph 2.b, public dose limits, the DOE dose limits would be met when EPA limits are met.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saw, Cheng B., E-mail: cheng.saw@aol.com; Battin, Frank; McKeague, Janice
2016-01-01
Dose or treatment planning management is necessary for the re-irradiation of intracranial relapses after focal irradiation, radiosurgery, or stereotactic radiotherapy. The current clinical guidelines for metastatic brain tumors are the use of focal irradiation if the patient presents with 4 lesions or less. Salvage treatments with the use of whole brain radiation therapy (WBRT) can then be used to limit disease progression if there is an intracranial relapse. However, salvage WBRT poses a number of challenges in dose planning to limit disease progression and preserve neurocognitive function. This work presents the dose planning management that addresses a method of delineatingmore » previously treated volumes, dose level matching, and the dose delivery techniques for WBRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Reid F.; Zhai, Huifang; Both, Stefan
Purpose: Uncontrolled local growth is the cause of death in ∼30% of patients with unresectable pancreatic cancers. The addition of standard-dose radiotherapy to gemcitabine has been shown to confer a modest survival benefit in this population. Radiation dose escalation with three-dimensional planning is not feasible, but high-dose intensity-modulated radiation therapy (IMRT) has been shown to improve local control. Still, dose-escalation remains limited by gastrointestinal toxicity. In this study, the authors investigate the potential use of double scattering (DS) and pencil beam scanning (PBS) proton therapy in limiting dose to critical organs at risk. Methods: The authors compared DS, PBS, andmore » IMRT plans in 13 patients with unresectable cancer of the pancreatic head, paying particular attention to duodenum, small intestine, stomach, liver, kidney, and cord constraints in addition to target volume coverage. All plans were calculated to 5500 cGy in 25 fractions with equivalent constraints and normalized to prescription dose. All statistics were by two-tailed paired t-test. Results: Both DS and PBS decreased stomach, duodenum, and small bowel dose in low-dose regions compared to IMRT (p < 0.01). However, protons yielded increased doses in the mid to high dose regions (e.g., 23.6–53.8 and 34.9–52.4 Gy for duodenum using DS and PBS, respectively; p < 0.05). Protons also increased generalized equivalent uniform dose to duodenum and stomach, however these differences were small (<5% and 10%, respectively; p < 0.01). Doses to other organs-at-risk were within institutional constraints and placed no obvious limitations on treatment planning. Conclusions: Proton therapy does not appear to reduce OAR volumes receiving high dose. Protons are able to reduce the treated volume receiving low-intermediate doses, however the clinical significance of this remains to be determined in future investigations.« less
TU-D-201-05: Validation of Treatment Planning Dose Calculations: Experience Working with MPPG 5.a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, J; Park, J; Kim, L
2016-06-15
Purpose: Newly published medical physics practice guideline (MPPG 5.a.) has set the minimum requirements for commissioning and QA of treatment planning dose calculations. We present our experience in the validation of a commercial treatment planning system based on MPPG 5.a. Methods: In addition to tests traditionally performed to commission a model-based dose calculation algorithm, extensive tests were carried out at short and extended SSDs, various depths, oblique gantry angles and off-axis conditions to verify the robustness and limitations of a dose calculation algorithm. A comparison between measured and calculated dose was performed based on validation tests and evaluation criteria recommendedmore » by MPPG 5.a. An ion chamber was used for the measurement of dose at points of interest, and diodes were used for photon IMRT/VMAT validations. Dose profiles were measured with a three-dimensional scanning system and calculated in the TPS using a virtual water phantom. Results: Calculated and measured absolute dose profiles were compared at each specified SSD and depth for open fields. The disagreement is easily identifiable with the difference curve. Subtle discrepancy has revealed the limitation of the measurement, e.g., a spike at the high dose region and an asymmetrical penumbra observed on the tests with an oblique MLC beam. The excellent results we had (> 98% pass rate on 3%/3mm gamma index) on the end-to-end tests for both IMRT and VMAT are attributed to the quality beam data and the good understanding of the modeling. The limitation of the model and the uncertainty of measurement were considered when comparing the results. Conclusion: The extensive tests recommended by the MPPG encourage us to understand the accuracy and limitations of a dose algorithm as well as the uncertainty of measurement. Our experience has shown how the suggested tests can be performed effectively to validate dose calculation models.« less
Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Don; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A
2016-02-01
Previous National Council on Radiation Protection and Measurements (NCRP) publications have addressed the issues of risk and dose limitation in radiation protection and included guidance on specific organs and the lens of the eye. NCRP decided to prepare an updated commentary intended to enhance the previous recommendations provided in earlier reports. The NCRP Scientific Committee 1-23 (SC 1-23) is charged with preparing a commentary that will evaluate recent studies on the radiation dose response for the development of cataracts and also consider the type and severity of the cataracts as well as the dose rate; provide guidance on whether existing dose limits to the lens of the eye should be changed in the United States; and suggest research needs regarding radiation effects on and dose limits to the lens of the eye. A status of the ongoing work of SC 1-23 was presented at the Annual Meeting, "Changing Regulations and Radiation Guidance: What Does the Future Hold?" The following represents a synopsis of a few main points in the current draft commentary. It is likely that several changes will be forthcoming as SC 1-23 responds to subject matter expert review and develops a final document, expected by mid 2016.
NASA Astrophysics Data System (ADS)
Raffi, Julie A.
Intracavitary accelerated partial breast irradiation (APBI) is a method of treating early stage breast cancer using a high dose rate (HDR) brachytherapy source positioned within the lumpectomy cavity. An expandable applicator stretches the surrounding tissue into a roughly spherical or elliptical shape and the dose is prescribed to 1 cm beyond the edge of the cavity. Currently, dosimetry for these treatments is most often performed using the American Association of Physicists in Medicine Task Group No. 43 (TG-43) formalism. The TG-43 dose-rate equation determines the dose delivered to a homogeneous water medium by scaling the measured source strength with standardized parameters that describe the radial and angular features of the dose distribution. Since TG-43 parameters for each source model are measured or calculated in a homogeneous water medium, the dosimetric effects of the patient's dimensions and composition are not accounted for. Therefore, the accuracy of TG-43 calculations for intracavitary APBI is limited by the presence of inhomogeneities in and around the target volume. Specifically, the breast is smaller than the phantoms used to determine TG-43 parameters and is surrounded by air, ribs, and lung tissue. Also, the composition of the breast tissue itself can affect the dose distribution. This dissertation is focused on investigating the limitations of TG-43 dosimetry for intracavitary APBI for two HDR brachytherapy sources: the VariSource TM VS2000 192Ir source and the AxxentRTM miniature x-ray source. The dose for various conditions was determined using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) calculations. Accurate measurements and calculations were achieved through the implementation of new measurement and simulation techniques and a novel breast phantom was developed to enable anthropomorphic phantom measurements. Measured and calculated doses for phantom and patient geometries were compared with TG-43 calculated doses to illustrate the limitations of TG-43 dosimetry for intracavitary APBI. TG-43 dose calculations overestimate the dose for regions approaching the lung and breast surface and underestimate the dose for regions in and beyond less-attenuating media such as lung tissue, and for lower energies, breast tissue as well.
Vocal Dose Measures: Quantifying Accumulated Vibration Exposure in Vocal Fold Tissues
Titze, Ingo R.; Švec, Jan G.; Popolo, Peter S.
2011-01-01
To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses. PMID:12959470
Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
Titze, Ingo R; Svec, Jan G; Popolo, Peter S
2003-08-01
To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses.
Kepka, Lucyna; Bujko, Krzysztof; Zolciak-Siwinska, Agnieszka; Garmol, Dariusz
2008-01-01
To estimate the doses of incidental irradiation in particular lymph node stations (LNS) in different extents of elective nodal irradiation (ENI) in 3D-conformal radiotherapy (3D-CRT) for non-small cell lung cancer (NSCLC). METHODS; Doses of radiotherapy were estimated for particular LNS delineated according to the recommendations of the University of Michigan in 220 patients treated using 3D-CRT with different (extended, limited and omitted) extents of ENI. Minimum doses and volumes of LNS receiving 40 Gy or more (V40) were compared for omitted vs. limited+ extended ENI and limited vs. extended ENI. For omission of the ENI the minimum doses and V40 for particular LNS were significantly lower than for patients treated with ENI. For the limited ENI group, the minimum doses for LNS 5, 6 lower parts of 3A and 3P (not included in the elective area) did not differ significantly from doses given to respective LNS for extended ENI group. When the V40 values for extended and limited ENI were compared, no significant differences were seen for any LNS, except for group 1/2R, 1/2L. Incidental irradiation of untreated LNS seems play a part in case of limited ENI, but not in cases without ENI. For subclinical disease the delineation of uninvolved LNS 5, 6, and lower parts of 3A, 3P may be not necessary, because these stations receive the substantial part of irradiation incidentally, if LNS 4R, 4L, 7, and ipsilateral hilum are included in the elective area while this is not case for stations 1 and 2.
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
10 CFR 20.1208 - Dose equivalent to an embryo/fetus.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Dose equivalent to an embryo/fetus. 20.1208 Section 20.1208 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1208 Dose equivalent to an embryo/fetus. (a) The licensee shall ensure that the dose...
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Velikyan, Irina; Antoni, Gunnar; Sörensen, Jens; Estrada, Sergio
2013-01-01
Positron Emission Tomography (PET) and in particular gallium-68 (68Ga) applications are growing exponentially worldwide contributing to the expansion of nuclear medicine and personalized management of patients. The significance of 68Ga utility is reflected in the implementation of European Pharmacopoeia monographs. However, there is one crucial point in the monographs that might limit the use of the generators and consequently expansion of 68Ga applications and that is the limit of 0.001% of Germanium-68 (68Ge(IV)) radioactivity content in a radiopharmaceutical. We have investigated the organ distribution of 68Ge(IV) in rat and estimated human dosimetry parameters in order to provide experimental evidence for the determination and justification of the 68Ge(IV) limit. Male and female rats were injected in the tail vein with formulated [68Ge]GeCl4 in the absence or presence of [68Ga]Ga-DOTA-TOC. The tissue radioactivity distribution data was extrapolated for the estimation of human organ equivalent doses and total effective dose using Organ Level Internal Dose Assessment Code software (OLINDA/EXM). 68Ge(IV) was evenly distributed among the rat organs and fast renal excretion prevailed. Human organ equivalent dose and total effective dose estimates indicated that the kidneys were the dose-limiting organs (185±54 μSv/MBq for female and 171±38 μSv/MBq for male) and the total effective dose was 15.5±0.1 and 10.7±1.2 μSv/MBq, respectively for female and male. The results of this dosimetry study conclude that the 68Ge(IV) limit currently recommended by monographs could be increased considerably (>100 times) without exposing the patient to harm given the small absorbed doses to normal organs and fast excretion. PMID:23526484
Eye doses to staff in a nuclear medicine department.
Summers, Elizabeth C; Brown, Janis L E; Bownes, Peter J; Anderson, Shona E
2012-05-01
Occupational radiation doses to the Nuclear Medicine Department staff at Mount Vernon Hospital are routinely measured using optically stimulated luminescence dosemeters for whole-body effective dose and ring thermoluminescence dosemeters (TLDs) for finger dose. In 2002, a project was carried out using LiF:Mg,Cu,P Chinese TLDs to measure the dose to the lens of the eye received by staff during normal working procedures. Separate pairs of TLDs were worn by staff on their forehead between their eyes while dispensing and releasing in the radiopharmacy, injecting, and when administering I-131 capsules to patients. The dose received was calculated using calibration data from identical TLDs irradiated with Tc-99m, I-131, and the Ir-192 source of a Gammamed High Dose Rate (HDR) treatment unit. Data were collected over a 5-month period and the mean dose to the eye was calculated for each procedure. Using a typical yearly workload, the annual dose to the eye for a single member of staff was calculated and found to be 4.5 mSv. The occupational eye dose limit was, at the time, 150 mSv; therefore, staff were well below the level (3/10th of this limit) that would have required them to be classified. However, there have been large increases in radiopharmacy production and I-131 therapies administered at Mount Vernon in subsequent years. It is therefore expected that the eye dose received by staff will have increased to be significantly higher than 4.5 mSv and will in fact be greater than 6 mSv, which is 3/10th of the proposed new dose limit and would require these staff to become classified workers.
Hydrogen peroxide kinetics in water radiolysis
NASA Astrophysics Data System (ADS)
Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.
2018-04-01
The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.
Radiation Hormesis: Historical Perspective and Implications for Low-Dose Cancer Risk Assessment
Vaiserman, Alexander M.
2010-01-01
Current guidelines for limiting exposure of humans to ionizing radiation are based on the linear-no-threshold (LNT) hypothesis for radiation carcinogenesis under which cancer risk increases linearly as the radiation dose increases. With the LNT model even a very small dose could cause cancer and the model is used in establishing guidelines for limiting radiation exposure of humans. A slope change at low doses and dose rates is implemented using an empirical dose and dose rate effectiveness factor (DDREF). This imposes usually unacknowledged nonlinearity but not a threshold in the dose-response curve for cancer induction. In contrast, with the hormetic model, low doses of radiation reduce the cancer incidence while it is elevated after high doses. Based on a review of epidemiological and other data for exposure to low radiation doses and dose rates, it was found that the LNT model fails badly. Cancer risk after ordinarily encountered radiation exposure (medical X-rays, natural background radiation, etc.) is much lower than projections based on the LNT model and is often less than the risk for spontaneous cancer (a hormetic response). Understanding the mechanistic basis for hormetic responses will provide new insights about both risks and benefits from low-dose radiation exposure. PMID:20585444
Introduction to benchmark dose methods and U.S. EPA's benchmark dose software (BMDS) version 2.1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Allen, E-mail: davis.allen@epa.gov; Gift, Jeffrey S.; Zhao, Q. Jay
2011-07-15
Traditionally, the No-Observed-Adverse-Effect-Level (NOAEL) approach has been used to determine the point of departure (POD) from animal toxicology data for use in human health risk assessments. However, this approach is subject to substantial limitations that have been well defined, such as strict dependence on the dose selection, dose spacing, and sample size of the study from which the critical effect has been identified. Also, the NOAEL approach fails to take into consideration the shape of the dose-response curve and other related information. The benchmark dose (BMD) method, originally proposed as an alternative to the NOAEL methodology in the 1980s, addressesmore » many of the limitations of the NOAEL method. It is less dependent on dose selection and spacing, and it takes into account the shape of the dose-response curve. In addition, the estimation of a BMD 95% lower bound confidence limit (BMDL) results in a POD that appropriately accounts for study quality (i.e., sample size). With the recent advent of user-friendly BMD software programs, including the U.S. Environmental Protection Agency's (U.S. EPA) Benchmark Dose Software (BMDS), BMD has become the method of choice for many health organizations world-wide. This paper discusses the BMD methods and corresponding software (i.e., BMDS version 2.1.1) that have been developed by the U.S. EPA, and includes a comparison with recently released European Food Safety Authority (EFSA) BMD guidance.« less
Thompson, Reid F; Mayekar, Sonal U; Zhai, Huifang; Both, Stefan; Apisarnthanarax, Smith; Metz, James M; Plastaras, John P; Ben-Josef, Edgar
2014-08-01
Uncontrolled local growth is the cause of death in ∼ 30% of patients with unresectable pancreatic cancers. The addition of standard-dose radiotherapy to gemcitabine has been shown to confer a modest survival benefit in this population. Radiation dose escalation with three-dimensional planning is not feasible, but high-dose intensity-modulated radiation therapy (IMRT) has been shown to improve local control. Still, dose-escalation remains limited by gastrointestinal toxicity. In this study, the authors investigate the potential use of double scattering (DS) and pencil beam scanning (PBS) proton therapy in limiting dose to critical organs at risk. The authors compared DS, PBS, and IMRT plans in 13 patients with unresectable cancer of the pancreatic head, paying particular attention to duodenum, small intestine, stomach, liver, kidney, and cord constraints in addition to target volume coverage. All plans were calculated to 5500 cGy in 25 fractions with equivalent constraints and normalized to prescription dose. All statistics were by two-tailed paired t-test. Both DS and PBS decreased stomach, duodenum, and small bowel dose in low-dose regions compared to IMRT (p < 0.01). However, protons yielded increased doses in the mid to high dose regions (e.g., 23.6-53.8 and 34.9-52.4 Gy for duodenum using DS and PBS, respectively; p < 0.05). Protons also increased generalized equivalent uniform dose to duodenum and stomach, however these differences were small (<5% and 10%, respectively; p < 0.01). Doses to other organs-at-risk were within institutional constraints and placed no obvious limitations on treatment planning. Proton therapy does not appear to reduce OAR volumes receiving high dose. Protons are able to reduce the treated volume receiving low-intermediate doses, however the clinical significance of this remains to be determined in future investigations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0279] Impact of Reduced Dose Limits on NRC Licensed Activities; Solicitation of Public Comment AGENCY: Nuclear Regulatory Commission. ACTION: Solicitation of public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC or Commission) is seeking public...
10 CFR 20.2205 - Reports to individuals of exceeding dose limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Reports to individuals of exceeding dose limits. 20.2205 Section 20.2205 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports..., or an identified member of the public, to radiation or radioactive material, the licensee shall also...
10 CFR 20.2205 - Reports to individuals of exceeding dose limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Reports to individuals of exceeding dose limits. 20.2205 Section 20.2205 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports..., or an identified member of the public, to radiation or radioactive material, the licensee shall also...
10 CFR 20.2205 - Reports to individuals of exceeding dose limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Reports to individuals of exceeding dose limits. 20.2205 Section 20.2205 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports..., or an identified member of the public, to radiation or radioactive material, the licensee shall also...
10 CFR 20.2205 - Reports to individuals of exceeding dose limits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Reports to individuals of exceeding dose limits. 20.2205 Section 20.2205 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports..., or an identified member of the public, to radiation or radioactive material, the licensee shall also...
Formalin-fixed paraffin-embedded (FFPE) samples provide a vast untapped resource for chemical safety and translational science. To date, genomic profiling of FFPE samples has been limited by poor RNA quality and inconsistent results with limited utility in dose-response assessmen...
MPC and ALI: their basis and their comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, W.E. Jr.; Watson, E.C.
Radiation protection regulations in the United States have evolved from the recommendations of the International Commission on Radiological Protection (ICRP) and the National Council on Radiation Protection and Measurements (NCRP). In 1959, the ICRP issued Publication 2 which contained specific recommendations on dose rate limits, permissible body burdens, metabolic data for radionuclides, and maximum permissible concentrations (MPC) in air or water. Over the next 20 years, new information became available concerning the effects of radiation, the uptake and retention of radionuclides, and the radioactive decay schemes of parent radionuclides. To include this newer information, the ICRP issued Publication 30 inmore » 1978 to supersede Publication 2. One of the secondary limits defined in Publication 30 is the annual limit of intake (ALI). Radionuclide specific ALI values are intended to replace MPC values in determining whether or not ambient air and water concentrations are sufficiently low to maintain the dose to workers within accepted dose rate limits. In this paper, we discuss the derivation of MPC and ALI values, compare inhalation committed dose equivalent factors derived from ICRP Publications 2 and 30, and discuss the practical implications of using either MPC or ALI in determining compliance with occupational exposure limits. 6 references.« less
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1301 - Dose limits for individual members of the public.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
10 CFR 20.1203 - Determination of external dose from airborne radioactive material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Determination of external dose from airborne radioactive material. 20.1203 Section 20.1203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1203 Determination of external dose from airborne radioactive...
Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F
2001-05-01
The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2010 CFR
2010-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
10 CFR 60.136 - Preclosure controlled area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The eye dose equivalent shall not exceed 0.15 Sv (15 rem), and the shallow dose...
Timmer-Bonte, J N H; Punt, C J A; vd Heijden, H F M; van Die, C E; Bussink, J; Beijnen, J H; Huitema, A D R; Tjan-Heijnen, V C G
2008-05-01
In advanced non-small cell lung cancer (NSCLC) the clinical benefit of a platinum-based doublet is only modest, therefore, attenuated dosed three-drug combinations are investigated. We hypothesized that with adequate support a full dosed chemotherapy triplet is feasible. The study was designed as a dose finding study of paclitaxel in chemotherapy-naive patients. Paclitaxel was given as a 3-h infusion on day 1, followed by fixed doses of teniposide (or etoposide) 100mg/m(2) days 1, 3, 5 and cisplatin 80 mg/m(2) day 1 every 3 weeks. As myelotoxicity was expected to be the dose-limiting toxicity, prophylactic G-CSF and antibiotic support was evaluated. Indeed, paclitaxel 120 mg/m(2) resulted in dose-limiting neutropenia, despite G-CSF support. Teniposide/etoposide day 1, 3, 5 was less myelotoxic compared to day 1, 2, 3. G-CSF support allowed paclitaxel dose-escalation to 250 mg/m(2). The addition of prophylactic antibiotics enabled dose-escalation to 275 mg/m(2) without reaching MTD. In conclusion, G-CSF and antibiotics prophylaxis enables the delivery of a full dosed chemotherapy triplet in previously untreated NSCLC patients.
Wu, Yue; Gu, Jun-Ming; Huang, Yun; Duan, Yan-Ying; Huang, Rui-Xue; Hu, Jian-An
2016-01-01
Long-term airborne lead exposure, even below official occupational limits, has been found to cause lead poisoning at higher frequencies than expected, which suggests that China’s existing occupational exposure limits should be reexamined. A retrospective cohort study was conducted on 1832 smelting workers from 1988 to 2008 in China. These were individuals who entered the plant and came into continuous contact with lead at work for longer than 3 months. The dose-response relationship between occupational cumulative lead exposure and lead poisoning, abnormal blood lead, urinary lead and erythrocyte zinc protoporphyrin (ZPP) were analyzed and the benchmark dose lower bound confidence limits (BMDLs) were calculated. Statistically significant positive correlations were found between cumulative lead dust and lead fumes exposures and workplace seniority, blood lead, urinary lead and ZPP values. A dose-response relationship was observed between cumulative lead dust or lead fumes exposure and lead poisoning (p < 0.01). The BMDLs of the cumulative occupational lead dust and fumes doses were 0.68 mg-year/m3 and 0.30 mg-year/m3 for lead poisoning, respectively. The BMDLs of workplace airborne lead concentrations associated with lead poisoning were 0.02 mg/m3 and 0.01 mg/m3 for occupational exposure lead dust and lead fume, respectively. In conclusion, BMDLs for airborne lead were lower than occupational exposure limits, suggesting that the occupational lead exposure limits need re-examination and adjustment. Occupational cumulative exposure limits (OCELs) should be established to better prevent occupational lead poisoning. PMID:26999177
Soil contamination standards for protection of personnel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittmann, P.D.
1998-04-16
The objective of this report is to recommend soil contamination levels that will ensure that radionuclide intakes by unprotected workers are likely to give internal doses below selected dose limits during the working year. The three internal dose limits are 1, 100, and 500 mrem per year. In addition, photon, beta, and alpha instrument readings are estimated for these soil concentration limits. Two exposure pathways are considered: the first is inhalation of resuspended dust and the second is ingestion of trace amounts of soil. In addition, radioactive decay and ingrowth of progeny during the year of exposure is included. Externalmore » dose from the soil contamination is not included because monitoring and control of external exposures is carried out independently from internal exposures, which are the focus of this report. The methods used are similar to those used by Carbaugh and Bihl (1993) to set bioassay criteria for such workers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogh, Shannon; Machtay, Mitchell; Werner-Wasik, Maria
Purpose: Based on preclinical data indicating the radiosensitizing potential of epothilone B, the present study was designed to evaluate the toxicity and response rate of patupilone, an epothilone B, with concurrent radiotherapy (RT) for the treatment of central nervous system malignancies. Methods and Materials: The present Phase I study evaluated the toxicities associated with patupilone combined with RT to establish the maximal tolerated dose. Eligible patients had recurrent gliomas (n = 10) primary (n = 5) or metastatic (n = 17) brain tumors. Dose escalation occurred if no dose-limiting toxicities, defined as any Grade 4-5 toxicity or Grade 3 toxicitymore » requiring hospitalization, occurred during treatment. Results: Of 14 patients, 5 were treated with weekly patupilone at 1.5 mg/m{sup 2}, 4 at 2.0 mg/m{sup 2}, 4 at 2.5 mg/m{sup 2}, and 1 at 4 mg/m{sup 2}. Of 18 patients, 7 were treated in the 6-mg/m{sup 2} group, 6 in the 8-mg/m{sup 2} group, and 5 in the 10-mg/m{sup 2} group. Primary central nervous system malignancies received RT to a median dose of 60 Gy. Central nervous system metastases received whole brain RT to a median dose of 37.4 Gy, and patients with recurrent gliomas underwent stereotactic RT to a median dose of 37.5 Gy. One dose-limiting toxicity (pneumonia) was observed in group receiving 8-mg/m{sup 2} every 3 weeks. At the subsequent dose level (10 mg/m{sup 2}), two Grade 4 dose-limiting toxicities occurred (renal failure and pulmonary hemorrhage); thus, 8 mg/m{sup 2} every 3 weeks was the maximal tolerated dose and the recommended Phase II dose. Conclusion: Combined with a variety of radiation doses and fractionation schedules, concurrent patupilone was well tolerated and safe, with a maximal tolerated dose of 8 mg/m{sup 2} every 3 weeks.« less
Occupational radiation doses during interventional procedures
NASA Astrophysics Data System (ADS)
Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.
2016-03-01
Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.
Sadasivam, Rajani S; Gathibandhe, Vaibhav; Tanik, Murat M; Willig, James H
2012-06-01
Medication dosing errors can greatly reduce HIV treatment effectiveness as incorrect dosing leads to drug resistance and non-adherence. In order to dose correctly, HIV therapy providers must balance several patient characteristics such as renal functions and weight. In developing countries and other resource-limited settings, dosing errors are more likely because treatment is provided by mid-level providers with only basic training in HIV therapy. These providers also typically lack electronic tools informing medical decisions. Widespread adoption of mobile phones in developing nations offers an opportunity to implement a point-of-care system to help providers reduce dosing errors. We discuss the development of the mHIV-Dr system prototype using the new Android mobile platform. mHIV-Dr is being designed to provide dosing recommendations for front-line providers in developing countries. We also discuss the additional challenges in the implementation of the mHIV-Dr system in a resource limited setting.
Dupuis, L Lee; Sibbald, Cathryn; Schechter, Tal; Ansari, Marc; Gassas, Adam; Théorêt, Yves; Kassir, Nastya; Champagne, Martin A; Doyle, John
2008-05-01
We currently calculate area under the busulfan concentration time curve (AUC) using 7 plasma busulfan concentrations (AUC7) drawn after the first of 16 i.v. busulfan doses given as a 2-hour infusion every 6 hours. The aim of this study was to develop and validate limited sampling strategies (LSSs) using 3 or fewer busulfan concentration values with which to reliably calculate AUC in children undergoing hematopoietic stem cell transplant (HSCT). Children in the development group (44) received i.v. busulfan at Sick Kids; the validation group consisted of 35 children who received care at CHU Ste-Justine. Busulfan doses given and subsequent plasma busulfan concentrations were recorded. LSSs using 1 to 3 concentration-time points were developed using multiple linear regression. LSS were considered to be acceptable when adjusted r(2) > 0.9, mean bias <15% and precision <15%. Extent of agreement between the AUC7 values and the LSS AUC was assessed by the intraclass correlation coefficient (ICC) and Bland-Altman (BA) analysis. Agreement was considered to be excellent when the lower limit of the 95% confidence limit of the ICC exceeded 0.9 and when the limits of agreement in the BA analysis were +/-15% for both AUC and dose. Administration of the theoretic adjusted busulfan doses based on each LSS was simulated and cases where the resulting AUC was >1500 or <900 microM x min were noted. LSSs using 1, 2, or 3 plasma busulfan concentrations were developed that showed excellent agreement with AUC7 and adjusted busulfan doses. In the validation sample, only the 2- and 3-point LSSs demonstrated acceptable precision and lack of bias. LSSs using 2 or 3 plasma busulfan concentrations can be used to reliably estimate busulfan AUC after IV administration in children undergoing HSCT.
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
10 CFR 835.207 - Occupational dose limits for minors.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Occupational dose limits for minors. 835.207 Section 835.207 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards for Internal and External... to radiation and/or radioactive materials at a DOE activity are 0.1 rem (0.001 Sv) total effective...
Celecoxib interferes to a limited extent with aspirin‐mediated inhibition of platelets aggregation
Ruzov, Mark; Rimon, Gilad; Pikovsky, Oleg
2015-01-01
Aims The aim of the study was to analyze the interaction between celecoxib and low dose aspirin for COX‐1 binding and its consequences on the aspirin‐mediated antiplatelet effects. Methods We investigated ex vivo the interaction between celecoxib and aspirin for COX‐1 binding and measured the resulting antiplatelet effects. We applied mechanism‐based pharmacokinetic−pharmacodynamic (PKPD) modelling to analyze these data and to predict in vivo platelet aggregation for different doses and administration schedules of aspirin and celecoxib. Results The predictions of the PK‐PD model were consistent with results from previous studies that investigated interaction between aspirin and celecoxib. The modelling results indicate that celecoxib can attenuate to a limited extent the in vivo antiplatelet effects of low dose aspirin. The extent of this interaction can be substantial (up to 15% increase in platelet aggregation by 200 mg day−1 celecoxib when combined with low dose aspirin) during the first days of aspirin administration in patients who are already treated with celecoxib, and it cannot be prevented by separate administration of the interacting drugs. Conclusions At the recommended therapeutic doses, celecoxib can attenuate to a limited extent the in vivo antiplatelet effects of low dose aspirin. Patients receiving a combination of low dose aspirin and the recommended doses of celecoxib were not identified to have increased risk of cardiovascular and cerebrovascular events due to competition between these drugs for COX‐1 binding. Interaction between low dose aspirin and other COX‐2 inhibitors and its clinical consequences requires further investigation. PMID:26456703
Wink, Krista C J; Roelofs, Erik; Simone, Charles B; Dechambre, David; Santiago, Alina; van der Stoep, Judith; Dries, Wim; Smits, Julia; Avery, Stephen; Ammazzalorso, Filippo; Jansen, Nicolas; Jelen, Urszula; Solberg, Timothy; de Ruysscher, Dirk; Troost, Esther G C
2018-03-12
To compare dose to organs at risk (OARs) and dose-escalation possibility for 24 stage I non-small cell lung cancer (NSCLC) patients in a ROCOCO (Radiation Oncology Collaborative Comparison) trial. For each patient, 3 photon plans [Intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and CyberKnife], a double scattered proton (DSP) and an intensity-modulated carbon-ion (IMIT) therapy plan were created. Dose prescription was 60 Gy (equivalent) in 8 fractions. The mean dose and dose to 2% of the clinical target volume (CTV) were lower for protons and ions compared with IMRT (p < 0.01). Doses to the lungs, heart, and mediastinal structures were lowest with IMIT (p < 0.01), doses to the spinal cord were lowest with DSP (p < 0.01). VMAT and CyberKnife allowed for reduced doses to most OARs compared with IMRT. Dose escalation was possible for 8 patients. Generally, the mediastinum was the primary dose-limiting organ. On average, the doses to the OARs were lowest using particles, with more homogenous CTV doses. Given the ability of VMAT and CyberKnife to limit doses to OARs compared with IMRT, the additional benefit of particles may only be clinically relevant in selected patients and thus should be carefully weighed for every individual patient. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhang, W F; Tang, S H; Tan, Q; Liu, Y M
2016-08-20
Objective: To investigate radioactive source term dose monitoring and estimation results in a manufacturing enterprise of ion-absorbing type rare earth ore and the possible ionizing radiation dose received by its workers. Methods: Ionizing radiation monitoring data of the posts in the control area and supervised area of workplace were collected, and the annual average effective dose directly estimated or estimated using formulas was evaluated and analyzed. Results: In the control area and supervised area of the workplace for this rare earth ore, α surface contamination activity had a maximum value of 0.35 Bq/cm 2 and a minimum value of 0.01 Bq/cm 2 ; β radioactive surface contamination activity had a maximum value of 18.8 Bq/cm 2 and a minimum value of 0.22 Bq/cm 2 . In 14 monitoring points in the workplace, the maximum value of the annual average effective dose of occupational exposure was 1.641 mSv/a, which did not exceed the authorized limit for workers (5 mSv/a) , but exceeded the authorized limit for general personnel (0.25 mSv/a) . The radionuclide specific activity of ionic mixed rare earth oxides was determined to be 0.9. Conclusion: The annual average effective dose of occupational exposure in this enterprise does not exceed the authorized limit for workers, but it exceeds the authorized limit for general personnel. We should pay attention to the focus of the radiation process, especially for public works radiation.
Miften, Moyed; Olch, Arthur; Mihailidis, Dimitris; Moran, Jean; Pawlicki, Todd; Molineu, Andrea; Li, Harold; Wijesooriya, Krishni; Shi, Jie; Xia, Ping; Papanikolaou, Nikos; Low, Daniel A
2018-04-01
Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions. © 2018 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicek, Gregory J.; Werner-Wasik, Maria; Machtay, Mitchell
Purpose: To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. Patients and Methods: This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m{sup 2}/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m{sup 2} starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributablemore » to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. Results: A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m{sup 2}/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. Conclusion: Bortezomib administered at its typical 'systemic' dose (1.3 mg/m{sup 2}) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.« less
Radiation dose to workers due to the inhalation of dust during granite fabrication.
Zwack, L M; McCarthy, W B; Stewart, J H; McCarthy, J F; Allen, J G
2014-03-01
There has been very little research conducted to determine internal radiation doses resulting from worker exposure to ionising radiation in granite fabrication shops. To address this issue, we estimated the effective radiation dose of granite workers in US fabrication shops who were exposed to the maximum respirable dust and silica concentrations allowed under current US regulations, and also to concentrations reported in the literature. Radiation doses were calculated using standard methods developed by the International Commission on Radiological Protection. The calculated internal doses were very low, and below both US occupational standards (50 mSv yr(-1)) and limits applicable to the general public (1 mSv yr(-1)). Workers exposed to respirable granite dust concentrations at the US Occupational Safety and Health Administration (OSHA) respirable dust permissible exposure limit (PEL) of 5 mg m(-3) over a full year had an estimated radiation dose of 0.062 mSv yr(-1). Workers exposed to respirable granite dust concentrations at the OSHA silica PEL and at the American Conference of Governmental Industrial Hygienists Threshold Limit Value for a full year had expected radiation doses of 0.007 mSv yr(-1) and 0.002 mSv yr(-1), respectively. Using data from studies of respirable granite dust and silica concentrations measured in granite fabrication shops, we calculated median expected radiation doses that ranged from <0.001 to 0.101 mSv yr(-1).
Study of natural radioactivity in Mansehra granite, Pakistan: environmental concerns.
Qureshi, Aziz Ahmed; Jadoon, Ishtiaq Ahmed Khan; Wajid, Ali Abbas; Attique, Ahsan; Masood, Adil; Anees, Muhammad; Manzoor, Shahid; Waheed, Abdul; Tubassam, Aneela
2014-03-01
A part of Mansehra Granite was selected for the assessment of radiological hazards. The average activity concentrations of (226)Ra, (232)Th and (40)K were found to be 27.32, 50.07 and 953.10 Bq kg(-1), respectively. These values are in the median range when compared with the granites around the world. Radiological hazard indices and annual effective doses were estimated. All of these indices were found to be within the criterion limits except outdoor external dose (82.38 nGy h(-1)) and indoor external dose (156.04 nGy h(-1)), which are higher than the world's average background levels of 51 and 55 nGy h(-1), respectively. These values correspond to an average annual effective dose of 0.867 mSv y(-1), which is less than the criterion limit of 1 mSv y(-1) (ICRP-103). Some localities in the Mansehra city have annual effective dose higher than the limit of 1 mSv y(-1). Overall, the Mansehra Granite does not pose any significant radiological health hazard in the outdoor or indoor.
Performance Characteristics of an Independent Dose Verification Program for Helical Tomotherapy
Chang, Isaac C. F.; Chen, Jeff; Yartsev, Slav
2017-01-01
Helical tomotherapy with its advanced method of intensity-modulated radiation therapy delivery has been used clinically for over 20 years. The standard delivery quality assurance procedure to measure the accuracy of delivered radiation dose from each treatment plan to a phantom is time-consuming. RadCalc®, a radiotherapy dose verification software, has released specifically for beta testing a module for tomotherapy plan dose calculations. RadCalc®'s accuracy for tomotherapy dose calculations was evaluated through examination of point doses in ten lung and ten prostate clinical plans. Doses calculated by the TomoHDA™ tomotherapy treatment planning system were used as the baseline. For lung cases, RadCalc® overestimated point doses in the lung by an average of 13%. Doses within the spinal cord and esophagus were overestimated by 10%. Prostate plans showed better agreement, with overestimations of 6% in the prostate, bladder, and rectum. The systematic overestimation likely resulted from limitations of the pencil beam dose calculation algorithm implemented by RadCalc®. Limitations were more severe in areas of greater inhomogeneity and less prominent in regions of homogeneity with densities closer to 1 g/cm3. Recommendations for RadCalc® dose calculation algorithms and anatomical representation were provided based on the results of the study. PMID:28974862
High-Dose Atomoxetine Treatment of ADHD in Youths with Limited Response to Standard Doses
ERIC Educational Resources Information Center
Kratochvil, Christopher J.; Michelson, David; Newcorn, Jeffrey H.; Weiss, Margaret D.; Busner, Joan; Moore, Rodney J.; Ruff, Dustin D.; Ramsey, Janet; Dickson, Ruth; Turgay, Atilla; Saylor, Keith E.; Luber, Stephen; Vaughan, Brigette; Allen, Albert J.
2007-01-01
Objective: To assess the utility and tolerability of higher than standard atomoxetine doses to treat attention-deficit/hyperactivity disorder (ADHD). Method: Two randomized, double-blind trials of atomoxetine nonresponders ages 6 to 16 years were conducted comparing continued treatment with same-dose atomoxetine to treatment using greater than…
Zorko, Benjamin; Korun, Matjaž; Mora Canadas, Juan Carlos; Nicoulaud-Gouin, Valerie; Chyly, Pavol; Blixt Buhr, Anna Maria; Lager, Charlotte; Aquilonius, Karin; Krajewski, Pawel
2016-07-01
Several methods for reporting outcomes of gamma-ray spectrometric measurements of environmental samples for dose calculations are presented and discussed. The measurement outcomes can be reported as primary measurement results, primary measurement results modified according to the quantification limit, best estimates obtained by the Bayesian posterior (ISO 11929), best estimates obtained by the probability density distribution resembling shifting, and the procedure recommended by the European Commission (EC). The annual dose is calculated from the arithmetic average using any of these five procedures. It was shown that the primary measurement results modified according to the quantification limit could lead to an underestimation of the annual dose. On the other hand the best estimates lead to an overestimation of the annual dose. The annual doses calculated from the measurement outcomes obtained according to the EC's recommended procedure, which does not cope with the uncertainties, fluctuate between an under- and overestimation, depending on the frequency of the measurement results that are larger than the limit of detection. In the extreme case, when no measurement results above the detection limit occur, the average over primary measurement results modified according to the quantification limit underestimates the average over primary measurement results for about 80%. The average over best estimates calculated according the procedure resembling shifting overestimates the average over primary measurement results for 35%, the average obtained by the Bayesian posterior for 85% and the treatment according to the EC recommendation for 89%. Copyright © 2016 Elsevier Ltd. All rights reserved.
EPA's Benchmark Dose Modeling Software
The EPA developed the Benchmark Dose Software (BMDS) as a tool to help Agency risk assessors facilitate applying benchmark dose (BMD) method’s to EPA’s human health risk assessment (HHRA) documents. The application of BMD methods overcomes many well know limitations ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kairn, Tanya, E-mail: t.kairn@gmail.com; School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane; Papworth, Daniel
2016-10-01
Cancer often metastasizes to the vertebra, and such metastases can be treated successfully using simple, static posterior or opposed-pair radiation fields. However, in some cases, including when re-irradiation is required, spinal cord avoidance becomes necessary and more complex treatment plans must be used. This study evaluated 16 sample intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans designed to treat 6 typical vertebral and paraspinal volumes using a standard prescription, with the aim of investigating the advantages and limitations of these treatment techniques and providing recommendations for their optimal use in vertebral treatments. Treatment plan quality and beammore » complexity metrics were evaluated using the Treatment And Dose Assessor (TADA) code. A portal-imaging–based quality assurance (QA) system was used to evaluate treatment delivery accuracy, and radiochromic film measurements were used to provide high-resolution verification of treatment plan dose accuracy, especially in the steep dose gradient regions between each vertebral target and spinal cord. All treatment modalities delivered approximately the same doses and the same levels of dose heterogeneity to each planning target volume (PTV), although the minimum PTV doses in the vertebral plans were substantially lower than the prescription, because of the requirement that the plans meet a strict constraint on the dose to the spinal cord and cord planning risk volume (PRV). All plans met required dose constraints on all organs at risk, and all measured PTV-cord dose gradients were steeper than planned. Beam complexity analysis suggested that the IMRT treatment plans were more deliverable (less complex, leading to greater QA success) than the VMAT treatment plans, although the IMRT plans also took more time to deliver. The accuracy and deliverability of VMAT treatment plans were found to be substantially increased by limiting the number of monitor units (MU) per beam at the optimization stage, and thereby limiting beam modulation complexity. The VMAT arcs that were optimized with MU limitation had higher QA pass rates as well as higher modulation complexity scores (less complexity), lower modulation indices (less modulation), lower MU per beam, larger beam segments, and fewer small apertures than the VMAT arcs that were optimized without MU limitation. It is recommended that VMAT treatments for vertebral volumes, where the PTV abuts or surrounds the spinal cord, should be optimized with MU limitation. IMRT treatments may be preferable to the VMAT treatments, for dosimetry and deliverability reasons, but may be inappropriate for some patients because of their increased treatment delivery time.« less
Postel-Vinay, Sophie; Collette, Laurence; Paoletti, Xavier; Rizzo, Elisa; Massard, Christophe; Olmos, David; Fowst, Camilla; Levy, Bernard; Mancini, Pierre; Lacombe, Denis; Ivy, Percy; Seymour, Lesley; Le Tourneau, Christophe; Siu, Lillian L; Kaye, Stan B; Verweij, Jaap; Soria, Jean-Charles
2014-08-01
Traditional dose-limiting toxicity (DLT) definition, which uses grade (G) 3-4 toxicity data from cycle 1 (C1) only, may not be appropriate for molecularly targeted agents (MTAs) of prolonged administration, for which late or lower grade toxicities also deserve attention. In collaboration with pharmaceutical companies and academia, an European Organisation for Research and Treatment of Cancer (EORTC)-led initiative, Dose-Limiting Toxicity and Toxicity Assessment Recommendation Group for Early Trials of Targeted therapies (DLT-TARGETT), collected data from completed phase 1 trials evaluating MTAs as monotherapy. All toxicities at least possibly related to the study drugs that occurred during C1-6, their type, grade (CTCAEv3.0), and duration as well as patients' relative dose-intensity (RDI), were recorded. The 54 eligible trials enrolled 2084 evaluable adult patients with solid tumours between 1999 and 2013, and evaluated small molecules (40), antibodies (seven), recombinant peptides (five) and antisense oligodeoxynucleotides (two). A maximum tolerated dose was set in 43 trials. Fifteen percent of the patients received <75% of the intended RDI in C1, but only 9.1% of them presented protocol-defined DLTs. After C1, 16-19% of patients received <75% of the intended RDI. A similar proportion of G ⩾ 3 toxicities was recorded in C1 and after C1 (936 and 1087 toxicities, respectively), with the first G⩾3 toxicity occurring after C1 in 18.6% of patients. Although protocol-defined DLT period is traditionally limited to C1, almost 20% of patients present significant reductions in RDI at any time in phase 1 trials of MTAs. Recommended phase 2 dose assessment should incorporate all available information from any cycle (notably lower grade toxicities leading to such RDI decrease), and be based on achieving >75% RDI. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cost of goods sold and total cost of delivery for oral and parenteral vaccine packaging formats.
Sedita, Jeff; Perrella, Stefanie; Morio, Matt; Berbari, Michael; Hsu, Jui-Shan; Saxon, Eugene; Jarrahian, Courtney; Rein-Weston, Annie; Zehrung, Darin
2018-03-14
Despite limitations of glass packaging for vaccines, the industry has been slow to implement alternative formats. Polymer containers may address many of these limitations, such as breakage and delamination. However, the ability of polymer containers to achieve cost of goods sold (COGS) and total cost of delivery (TCOD) competitive with that of glass containers is unclear, especially for cost-sensitive low- and lower-middle-income countries. COGS and TCOD models for oral and parenteral vaccine packaging formats were developed based on information from subject matter experts, published literature, and Kenya's comprehensive multiyear plan for immunization. Rotavirus and inactivated poliovirus vaccines (IPV) were used as representative examples of oral and parenteral vaccines, respectively. Packaging technologies evaluated included glass vials, blow-fill-seal (BFS) containers, preformed polymer containers, and compact prefilled auto-disable (CPAD) devices in both BFS and preformed formats. For oral vaccine packaging, BFS multi-monodose (MMD) ampoules were the least expensive format, with a COGS of $0.12 per dose. In comparison, oral single-dose glass vials had a COGS of $0.40. BFS MMD ampoules had the lowest TCOD of oral vaccine containers at $1.19 per dose delivered, and ten-dose glass vials had a TCOD of $1.61 per dose delivered. For parenteral vaccines, the lowest COGS was achieved with ten-dose glass vials at $0.22 per dose. In contrast, preformed CPAD devices had the highest COGS at $0.60 per dose. Ten-dose glass vials achieved the lowest TCOD of the parenteral vaccine formats at $1.56 per dose delivered. Of the polymer containers for parenteral vaccines, BFS MMD ampoules achieved the lowest TCOD at $1.89 per dose delivered, whereas preformed CPAD devices remained the most expensive format, at $2.25 per dose delivered. Given their potential to address the limitations of glass and reduce COGS and TCOD, polymer containers deserve further consideration as alternative approaches for vaccine packaging. Copyright © 2018 PATH. Published by Elsevier Ltd.. All rights reserved.
Guan, Fada; Peeler, Christopher; Bronk, Lawrence; Geng, Changran; Taleei, Reza; Randeniya, Sharmalee; Ge, Shuaiping; Mirkovic, Dragan; Grosshans, David; Mohan, Radhe; Titt, Uwe
2015-01-01
Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the geant 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from geant 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LETt and dose-averaged LET, LETd) using geant 4 for different tracking step size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LETt and LETd of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LETt but significant for LETd. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in geant 4 can result in incorrect LETd calculation results in the dose plateau region for small step limits. The erroneous LETd results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in geant 4. The incorrect LETd values lead to substantial differences in the calculated RBE. Conclusions: When the geant 4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 μm, the authors recommend the use of LETt in the dose plateau region and LETd around the Bragg peak. For a large step limit, i.e., 500 μm, LETd is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LETd and LETt becomes positive. PMID:26520716
Masuda, Norikazu; Iwata, Hiroji; Aogi, Kenjiro; Xu, Yihuan; Ibrahim, Ayman; Gao, Ling; Dalal, Rita; Yoshikawa, Reigetsu; Sasaki, Yasutsuna
2016-12-01
The primary objective of this study was to investigate the safety and tolerability and to confirm the recommended dose of the anti-vascular endothelial growth factor receptor 2 monoclonal antibody ramucirumab in combination with docetaxel in Japanese patients with metastatic/locally advanced breast cancer. In this multicenter, single-arm, Phase Ib trial, eligibility criteria included: 20 years or older, Eastern Cooperative Oncology Group performance status of 0/1 and confirmed diagnosis of human epidermal growth factor receptor 2-negative metastatic/locally recurrent inoperable breast adenocarcinoma. Patients received docetaxel (75 mg/m 2 ) followed by ramucirumab (10 mg/kg) on Day 1 of 21-day cycles. Recommended dose was defined as <33% dose-limiting toxicities in dose-limiting toxicity-evaluable patients in Cycle 1. The safety, pharmacokinetics, immunogenicity and antitumor activity were examined. Seven patients were treated. Most adverse events were mild to moderate. Two patients during Cycle 1 experienced a dose-limiting toxicity; one patient each experienced Grade 3 febrile neutropenia and Grade 3 gingivitis. Both dose-limiting toxicities subsequently resolved. No patients discontinued study therapies during Cycle 1. Four serious adverse events were possibly related to ramucirumab in combination with docetaxel. Anti-ramucirumab antibodies were not detected. Pharmacokinetic analysis revealed low total body clearance and long apparent terminal elimination half-life (~7-12 days). Partial response was reported in four patients. The combination of ramucirumab and docetaxel was tolerable in female Japanese patients with breast cancer. Ramucirumab 10 mg/kg in combination with docetaxel (75 mg/m 2 ) was confirmed as the recommended dose among Japanese patients, supporting its use in future studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A Phase I study of bizelesin (NSC 615291) in patients with advanced solid tumors.
Pitot, Henry C; Reid, Joel M; Sloan, Jeff A; Ames, Matthew M; Adjei, Alex A; Rubin, Joseph; Bagniewski, Pamela G; Atherton, Pamela; Rayson, Daniel; Goldberg, Richard M; Erlichman, Charles
2002-03-01
To evaluate the toxicities, characterize the pharmacokinetics, and determine the maximum-tolerated dose of bizelesin administered once every 4 weeks. Patients with advanced solid tumors received escalating doses of bizelesin as an i.v. push every 4 weeks. Pharmacokinetic studies were performed with the first treatment cycle. Nineteen eligible patients received a total of 54 courses of bizelesin at doses ranging from 0.1 to 1 microg/m(2). Dose-limiting toxicity of neutropenia was seen in 2 of 4 patients treated at the 1 microg/m(2) dose level. Nonhematological toxicity was generally mild with maximum toxicity being
Dupuis, Jehan; Morschhauser, Franck; Ghesquières, Hervé; Tilly, Hervé; Casasnovas, Olivier; Thieblemont, Catherine; Ribrag, Vincent; Bossard, Céline; Le Bras, Fabien; Bachy, Emmanuel; Hivert, Bénédicte; Nicolas-Virelizier, Emmanuelle; Jardin, Fabrice; Bastie, Jean-Noel; Amorim, Sandy; Lazarovici, Julien; Martin, Antoine; Coiffier, Bertrand
2015-04-01
Romidepsin is a histone deacetylase inhibitor approved in the USA for patients with recurrent or refractory peripheral T-cell lymphoma and has shown activity in this setting with mainly haematological and gastrointestinal toxicity. Although it has limited efficacy, cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) therapy is widely used for treatment of de-novo peripheral T-cell lymphoma. We aimed to assess the safety, tolerability, and activity of romidepsin combined with CHOP in patients with previously untreated disease. We enrolled patients aged 18-80 years with histologically proven, previously untreated, peripheral T-cell lymphoma (Eastern Cooperative Oncology Group performance status ≤2) into a dose-escalation (phase 1b) and expansion (phase 2) study at nine Lymphoma Study Association centres in France. In the dose-escalation phase, we allocated consecutive blocks of three participants to receive eight 3 week cycles of CHOP (intravenous cyclophosphamide 750 mg/m(2), doxorubicin 50 mg/m(2), and vincristine 1.4 mg/m(2) [maximum 2 mg] on day 1 and oral prednisone 40 mg/m(2) on days 1-5) in association with varying doses of romidepsin. The starting dose was 10 mg/m(2) intravenously on days 1 and 8 of each cycle, and we used a 3 + 3 design. We assessed dose-limiting toxicities only during the first two cycles. The primary endpoint was to determine the recommended dose for the combination. For the phase 2 study, we aimed to increase the cohort of patients receiving the recommended dose to a total of 25 patients. Patients were assessed for safety outcomes at least twice per cycle according to the Common Terminology Criteria for Adverse Events, version 4.0. Safety analyses included all patients who received at least one dose of romidepsin and CHOP. This trial is registered at the European Clinical Trials Database (EudraCT), number 2010-020962-91 and ClinicalTrials.gov, number NCT01280526. Between Jan 13, 2011, and May 21, 2013, we enrolled 37 patients (18 treated in phase 1b and 19 patients in phase 2). Three of six patients initially treated at 10 mg/m(2) had a dose-limiting toxicity. The dose-escalation committee decided to modify the study protocol to redefine dose-limiting toxicities with regard to haematological toxicity. Three patients were treated with 8 mg/m(2) of romidepsin, an additional three at 10 mg/m(2) (one dose-limiting toxicity), and six patients at 12 mg/m(2) (three dose-limiting toxicities). We chose romidepsin 12 mg/m(2) as the recommended dose for phase 2. Of the 37 patients treated, three had early cardiac events (two myocardial infarctions and one acute cardiac failure). No deaths were attributable to toxicity. 25 (68%) of 37 patients had at least one serious adverse event. Overall, the most frequent serious adverse events were febrile neutropenia (five [14%] of 37 patients), physical health deterioration (five [14%]), lung infection (four [11%]), and vomiting (three [8%]). 33 (89%) of patients had grade 3-4 neutropenia, and 29 (78%) had grade 3-4 thrombocytopenia. Romidepsin can be combined with CHOP but this combination should now be tested in comparison to CHOP alone in a randomised trial. Celgene. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dose Equivalents for Second-Generation Antipsychotic Drugs: The Classical Mean Dose Method
Leucht, Stefan; Samara, Myrto; Heres, Stephan; Patel, Maxine X.; Furukawa, Toshi; Cipriani, Andrea; Geddes, John; Davis, John M.
2015-01-01
Background: The concept of dose equivalence is important for many purposes. The classical approach published by Davis in 1974 subsequently dominated textbooks for several decades. It was based on the assumption that the mean doses found in flexible-dose trials reflect the average optimum dose which can be used for the calculation of dose equivalence. We are the first to apply the method to second-generation antipsychotics. Methods: We searched for randomized, double-blind, flexible-dose trials in acutely ill patients with schizophrenia that examined 13 oral second-generation antipsychotics, haloperidol, and chlorpromazine (last search June 2014). We calculated the mean doses of each drug weighted by sample size and divided them by the weighted mean olanzapine dose to obtain olanzapine equivalents. Results: We included 75 studies with 16 555 participants. The doses equivalent to 1 mg/d olanzapine were: amisulpride 38.3 mg/d, aripiprazole 1.4 mg/d, asenapine 0.9 mg/d, chlorpromazine 38.9 mg/d, clozapine 30.6 mg/d, haloperidol 0.7 mg/d, quetiapine 32.3mg/d, risperidone 0.4mg/d, sertindole 1.1 mg/d, ziprasidone 7.9 mg/d, zotepine 13.2 mg/d. For iloperidone, lurasidone, and paliperidone no data were available. Conclusions: The classical mean dose method is not reliant on the limited availability of fixed-dose data at the lower end of the effective dose range, which is the major limitation of “minimum effective dose methods” and “dose-response curve methods.” In contrast, the mean doses found by the current approach may have in part depended on the dose ranges chosen for the original trials. Ultimate conclusions on dose equivalence of antipsychotics will need to be based on a review of various methods. PMID:25841041
Statistical analysis of radioimmunoassay. In comparison with bioassay (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, R.
1973-01-01
Using the data of RIA (radioimmunoassay), statistical procedures for dealing with two problems of the linearization of dose response curve and calculation of relative potency were described. There were three methods for linearization of dose response curve of RIA. In each method, the following parameters were shown on the horizontal and vertical axis: dose x, (B/T)/sup -1/; c/x + c, B/T (C: dose which makes B/T 50%); log x, logit B/T. Among them, the last method seems to be most practical. The statistical procedures for bioassay were employed for calculating the relative potency of unknown samples compared to the standardmore » samples from dose response curves of standand and unknown samples using regression coefficient. It is desirable that relative potency is calculated by plotting more than 5 points in the standard curve and plotting more than 2 points in unknow samples. For examining the statistical limit of precision of measuremert, LH activity of gonadotropin in urine was measured and relative potency, precision coefficient and the upper and lower limits of relative potency at 95% confidence limit were calculated. On the other hand, bioassay (by the ovarian ascorbic acid reduction method and anteriol lobe of prostate weighing method) was done in the same samples, and the precision was compared with that of RIA. In these examinations, the upper and lower limits of the relative potency at 95% confidence limit were near each other, while in bioassay, a considerable difference was observed between the upper and lower limits. The necessity of standardization and systematization of the statistical procedures for increasing the precision of RIA was pointed out. (JA)« less
Severe neuropathy after high dose carboplatin in three patients receiving multidrug chemotherapy
Heinzlef, O.; Lotz, J.; Roullet, E.
1998-01-01
Three patients are described who developed a severe neuropathy after chemotherapy with high dose cis-diamine-(1,1-cyclobutane dicarboxylato) platinum (carboplatin). This toxic side effect, which is unusual at conventional doses, might become more frequent as increasing doses are administered to overcome drug resistance in cancer treatment, and might limit its use at very high doses before haematopoietic stem cell transplantation. PMID:9598687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinhold, C.B.
This report summarizes information required to estimate, at least qualitatively, the potential impacts of reducing occupational dose limits below those given in 10 CFR 20 (Revised). For this study, a questionnaire was developed and widely distributed to the radiation protection community. The resulting data together with data from existing surveys and sources were used to estimate the impact of three dose-limit options; 10 mSv yr{sup {minus}1} (1 rem yr{sup {minus}1}), 20 mSv yr{sup {minus}1} (2 rem yr{sup {minus}1}), and a combination of an annual limit of 50 mSv yr{sup {minus}1} (5 rem yr{sup {minus}1}) coupled with a cumulative limit, inmore » rem, equal to age in years. Due to the somewhat small number of responses and the lack of data in some specific areas, a working committee of radiation protection experts from a variety of licensees was employed to ensure the exposure data were representative. The following overall conclusions were reached: (1) although 10 mSv yr{sup {minus}1} is a reasonable limit for many licensees, such a limit could be extraordinarily difficult to achieve and potentially destructive to the continued operation of some licensees, such as nuclear power, fuel fabrication, and medicine; (2) twenty mSv yr{sup {minus}1} as a limit is possible for some of these groups, but for others it would prove difficult. (3) fifty mSv yr{sup {minus}1} and age in 10s of mSv appear reasonable for all licensees, both in terms of the lifetime risk of cancer and severe genetic effects to the most highly exposed workers, and the practicality of operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talleur, Aimee C.; Navid, Fariba; Spunt, Sheri L.
Purpose: To determine the rate of local failure using focal conformal, limited margin radiation therapy (RT) and dose escalation for tumors ≥8 cm (greatest dimension at diagnosis) in children and young adults with Ewing sarcoma (EWS). Methods and Materials: Eligible patients with EWS were treated on a phase 2 institutional trial of focal conformal, limited margin RT using conformal or intensity modulated techniques. The treatment volume incorporated a 1-cm constrained margin around the gross tumor. Unresected tumors, <8 cm at diagnosis, received a standard dose of 55.8 Gy and tumors ≥8 cm, an escalated dose to 64.8 Gy. Patients with microscopic residual disease after resectionmore » received adjuvant RT to 50.4 Gy. Adjuvant brachytherapy was permitted in selected patients. Results: Forty-five patients were enrolled: 26 with localized and 19 with metastatic disease. Median (range) age, tumor size, and follow-up were 13.0 years (2.9-24.7 years), 9.0 cm (2.4-17.0 cm), and 54.5 months (1.9-122.2 months), respectively. All patients received systemic chemotherapy. The median (range) RT dose for all patients was 56.1 Gy (45-65.5 Gy). Seventeen patients received adjuvant, 16 standard-dose, and 12 escalated-dose RT. Failures included 1 local, 10 distant, and 1 local/distant. The estimated 10-year cumulative incidence of local failure was 4.4% ± 3.1%, with no statistical difference seen between RT treatment groups and no local failures in the escalated-dose RT treatment group. Conclusions: Treatment with focal conformal, limited margin RT, including dose escalation for larger tumors, provides favorable local tumor control in EWS.« less
NASA Technical Reports Server (NTRS)
James, John T.; Lam, Chiu-wing; Scully, Robert R.
2013-01-01
Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission.
Tonnonchiang, Siriporn; Sritongkul, Nopamon; Chaudakshetrin, Pachee; Tuntawiroon, Malulee
2016-02-01
Thyroid cancer patients treated with 1-131 are potential source of radiation exposure to relatives who are knowingly and willingly exposed to ionizing radiation as a result of providing comfort to patients undergoing I-131 therapy. This study aims to determine radiation dose received by relatives who care for non self-supporting 1-131 patients at Siriraj Hospital. Twenty caregivers of 20 patients underwent I-131 therapy for thyroid cancer with a standard protocol were given specific instructions with regard to radiation safety and provided with electronic digital dosimeter to continuously measure radiation dose received on daily basis, three days in the hospital. On the day patient is released, thyroid uptake estimates were performed to assess internal radiation dose received by caregivers. The 3-day accumulative doses to caregivers to patients receiving 150 mCi (n = 11) and 200 mCi (n = 9) of I-131 ranged from 37 to 333 uSv and 176 to 1,920 pSv respectively depending on the level of supports required. Thyroid uptake estimates in all caregivers were undetectable. Dosimeter indicated a maximum whole-body dose of1.92 mSv was more than the public dose limit of] mSv but within the dose constraint of 5 mSv for caregivers. Radiation dose to caregivers of a non self-supporting hospitalized patient undergoing 1-131 therapy were well below the limits recommended by the ICRP. The patients can be comforted with confidence that dose to caregivers will be less than the limit. This study provides guidance for medical practitioners to obtain practical radiation safety concerns associated with hospitalized patients receiving I-131 therapy especially when patient needs assistance.
Bautista, Francisco; Moreno, Lucas; Marshall, Lynley; Pearson, Andrew D J; Geoerger, Birgit; Paoletti, Xavier
2017-11-01
Dose-escalation trials aim to identify the maximum tolerated dose and, importantly, the recommended phase II dose (RP2D) and rely on the occurrence of dose-limiting toxicities (DLTs) during the first treatment cycle. Molecularly targeted agents (MTAs) often follow continuous and prolonged administrations, displaying a distinct toxicity profile compared to conventional chemotherapeutics, and classical DLT criteria might not be appropriate to evaluate MTAs' toxicity. We investigated this issue in children. The Innovative Therapies for Children with Cancer Consortium (ITCC) phase I trials of novel anticancer agents between 2004 and 2015 were analysed. Data from investigational product, trial design, items defining DLT/RP2D were extracted. A survey on dose-escalation process, DLTs and RP2D definition was conducted among the ITCC clinical trials committee members. Thirteen phase I trials with 15 dose-escalation cohorts were analysed. They explored 11 MTAs and 2 novel cytotoxics; 12 evaluated DLT during cycle 1. Definition of DLT was heterogeneous: Grade III-IV haematologic toxicities that were transient or asymptomatic and grade III-IV non-haematological toxicities manageable with adequate supportive care were often excluded, whereas some included dose intensity or grade II toxicities into DLT. None of the studies considered delayed toxicity into the RP2D definition. DLTs should be homogeneously defined across trials, limiting the number of exceptions due to specific toxicities. Dose escalation should still be based on safety data from cycle 1, but delayed and overall toxicities, pharmacokinetic parameters and pharmacodynamic data should be considered to refine the final RP2D. The evaluation of long-term toxicity in the developing child cannot be adequately addressed in early trials. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Esor, J.; Sudchai, W.; Monthonwattana, S.; Pungkun, V.; Intang, A.
2017-06-01
Based on a new occupational dose limit recommended by ICRP (2011), the annual dose limit for the lens of the eye for workers should be reduced from 150 mSv/y to 20 mSv/y averaged over 5 consecutive years in which no single year exceeding 50 mSv. This new dose limit directly affects radiologists and cardiologists whose work involves high radiation exposure over 20 mSv/y. Eye lens dosimetry (Hp(3)) has become increasingly important and should be evaluated directly based on dosimeters that are worn closely to the eye. Normally, Hp(3) dose algorithm was carried out by the combination of Hp(0.07) and Hp(10) values while dosimeters were calibrated on slab PMMA phantom. Recently, there were three reports from European Union that have shown the conversion coefficients from air kerma to Hp(3). These conversion coefficients carried out by ORAMED, PTB and CEA Saclay projects were performed by using a new cylindrical head phantom. In this study, various delivered doses were calculated using those three conversion coefficients while nanoDot, small OSL dosimeters, were used for Hp(3) measurement. These calibrations were performed with a standard X-ray generator at Secondary Standard Dosimetry Laboratory (SSDL). Delivered doses (Hp(3)) using those three conversion coefficients were compared with Hp(3) from nanoDot measurements. The results showed that percentage differences between delivered doses evaluated from the conversion coefficient of each project and Hp(3) doses evaluated from the nanoDots were found to be not exceeding -11.48 %, -8.85 % and -8.85 % for ORAMED, PTB and CEA Saclay project, respectively.
Energy spectrum control for modulated proton beams.
Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N
2009-06-01
In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.
Phase I Study of Vandetanib With Radiotherapy and Temozolomide for Newly Diagnosed Glioblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drappatz, Jan; Norden, Andrew D.; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA
Purpose: Increasing evidence has suggested that angiogenesis inhibition might potentiate the effects of radiotherapy and chemotherapy in patients with glioblastoma (GBM). In addition, epidermal growth factor receptor inhibition might be of therapeutic benefit, because the epidermal growth factor receptor is upregulated in GBM and contributes to radiation resistance. We conducted a Phase I study of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 and epidermal growth factor receptor, in patients with newly diagnosed GBM combined with RT and temozolomide (TMZ). Methods and Materials: A total of 13 GBM patients were treated with vandetanib, radiotherapy, and concurrent and adjuvantmore » TMZ, using a standard '3 + 3' dose escalation. The maximal tolerated dose was defined as the dose with <1 of 6 dose-limiting toxicities during the first 12 weeks of therapy. The eligible patients were adults with newly diagnosed GBM, Karnofsky performance status of {>=}60, normal organ function, who were not taking enzyme-inducing antiepileptic drugs. Results: Of the 13 patients, 6 were treated with vandetanib at a dose of 200mg daily. Of the 6 patients, 3 developed dose-limiting toxicities within the first 12 weeks, including gastrointestinal hemorrhage and thrombocytopenia in 1 patient, neutropenia in 1 patient, and diverticulitis with gastrointestinal perforation in 1 patient. The other 7 patients were treated with 100 mg daily, with no dose-limiting toxicities observed, establishing this dose as the maximal tolerated dose combined with TMZ and RT. Conclusion: Vandetanib can be safely combined with RT and TMZ in GBM patients. A Phase II study in which patients are randomized to vandetanib 100 mg daily with RT and TMZ or RT and TMZ alone is underway.« less
Opioid needs of patients with advanced cancer and the morphine dose-limiting law in Egypt.
Alsirafy, Samy A; El-Mesidi, Salah M; El-Sherief, Wesam A; Galal, Khaled M; Abou-Elela, Enas N; Aklan, Nahla A
2011-01-01
Morphine is the drug of choice for moderate to severe cancer pain management. The Egyptian Narcotics Control Law limits the amount of morphine prescribed in a single prescription to a maximum of 420 mg for tablets and 60 mg for ampoules. The usual practice in Egypt is to provide that limited amount of morphine on a weekly basis. The aim of this study is to estimate the extent to which Egyptian patients may be undertreated because of this law. We reviewed the medical records of advanced cancer patients referred to the first palliative care unit in Egypt over a seven-month period. Cancer pain was managed following the WHO guidelines. After modifying the internal institutional policy, patients received adequate amounts of the available opioids without any violations of the law. From 117 eligible advanced cancer patients, 58 (50%) patients required strong opioids, 32 (27%) required weak opioids, and 27 (23%) required no regular opioids. The mean last prescribed opioid dose for those who required strong opioids was 194 mg of oral morphine equivalent/24 h (± 180). For this group of patients, a single weekly prescription would supply enough oral morphine for only 26% of them. In the case of parenteral morphine, none of these patients would receive an adequate supply. In view of the current morphine dose-limiting law and practices in Egypt, the majority of patients suffering severe cancer pain would not have access to adequate morphine doses. That dose-limiting law and other restrictive regulations represent an obstacle to cancer pain control in Egypt and should be revised urgently.
Guiu-Souto, Jacobo; Sánchez-García, Manuel; Vázquez-Vázquez, Rubén; Otero, Carlos; Luna, Victor; Mosquera, Javier; Busto, Ramón Lobato; Aguiar, Pablo; Ruibal, Álvaro; Pardo-Montero, Juan; Pombar-Cameán, Miguel
2016-06-01
The last recommendations of the International Commission on Radiological Protection for eye lens dose suggest an important reduction on the radiation limits associated with early and late tissue reactions. The aim of this work is to quantify and optimize the eye lens dose associated to nurse staff during positron emission tomography (PET) procedures. PET is one of the most important diagnostic methods of oncological and neurological cancer disease involving an important number of workers exposed to the high energy isotope F-18. We characterize the relevant stages as preparation and administration of monodose syringes in terms of occupational dose. A direct reading silicon dosimeter was used to measure the lens dose to staff. The highest dose of radiation was observed during preparation of the fluorodesoxyglucose (FDG) syringes. By optimizing a suitable vials' distribution of FDG we find an important reduction in occupational doses. Extrapolation of our data to other clinical scenarios indicates that, depending on the work load and/or syringes activity, safety limits of the dose might be exceeded.
Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.
In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measuredmore » as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.« less
Radionuclides in bats using a contaminated pond on the Nevada National Security Site, USA
Warren, Ronald W.; Hall, Derek B.; Greger, Paul D.
2014-01-03
In this study, perched groundwater percolating through radionuclide contamination in the E Tunnel Complex on the Nevada National Security Site, formerly the Nevada Test Site, emerges and is stored in a series of ponds making it available to wildlife, including bats. Since many bat species using the ponds are considered sensitive or protected/regulated and little information is available on dose to bats from radioactive water sources, bats were sampled to determine if the dose they were receiving exceeded the United States Department of Energy dose limit of 1.0E-3 Gy/day. Radionuclide concentrations in water, sediment, and flying insects were also measuredmore » as input parameters to the dose rate model and to examine trophic level relationships. The RESRAD-Biota model was used to calculate dose rates to bats using different screening levels. Efficacy of RESRAD-Biota and suggested improvements are discussed. Finally, dose to bats foraging and drinking at these ponds is well below the dose limit set to protect terrestrial biota populations.« less
DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: CASE STUDIES
Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed ...
Psychopharmacology of theobromine in healthy volunteers.
Baggott, Matthew J; Childs, Emma; Hart, Amy B; de Bruin, Eveline; Palmer, Abraham A; Wilkinson, Joy E; de Wit, Harriet
2013-07-01
Theobromine, a methylxanthine related to caffeine and present in high levels in cocoa, may contribute to the appeal of chocolate. However, current evidence for this is limited. We conducted a within-subjects placebo-controlled study of a wide range of oral theobromine doses (250, 500, and 1,000 mg) using an active control dose of caffeine (200 mg) in 80 healthy participants. Caffeine had the expected effects on mood including feelings of alertness and cardiovascular parameters. Theobromine responses differed according to dose; it showed limited subjective effects at 250 mg and negative mood effects at higher doses. It also dose-dependently increased heart rate. In secondary analyses, we also examined individual differences in the drug's effects in relation to genes related to their target receptors, but few associations were detected. This study represents the highest dose of theobromine studied in humans. We conclude that theobromine at normal intake ranges may contribute to the positive effects of chocolate, but at higher intakes, effects become negative.
Psychopharmacology of theobromine in healthy volunteers
Baggott, Matthew J.; Childs, Emma; Hart, Amy B.; de Bruin, Eveline; Palmer, Abraham A.; Wilkinson, Joy E.; de Wit, Harriet
2013-01-01
Background Theobromine, a methylxanthine related to caffeine and present in high levels in cocoa, may contribute to the appeal of chocolate. However, currently evidence for this is limited. Objectives We conducted a within-subjects placebo-controlled study of a wide range of oral theobromine doses (250, 500, and 1000 mg) using an active control dose of caffeine (200 mg) in 80 healthy participants. Results Caffeine had the expected effects on mood including feelings of alertness, and cardiovascular parameters. Theobromine responses differed according to dose: it showed limited subjective effects at 250 mg and negative mood effects at higher doses. It also dose-dependently increased heart rate. In secondary analyses we also examined individual differences in the drugs' effects in relation to genes related to their target receptors, but few associations were detected. Conclusions This study represents the highest dose of theobromine studied in humans. We conclude that theobromine at normal intake ranges may contribute to the positive effects of chocolate, but at higher intakes effects become negative. PMID:23420115
21 CFR 520.2380c - Thiabendazole bolus.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Limitations. As a single oral dose; may repeat once in 2 to 3 weeks; do not treat animals within 3 days of...) Chemical name. 2-(4-Thiazolyl) benzimidazole. (b) Specifications. Conforms to N.F. XII. (c) Sponsor. See No...) Limitations. As a single oral dose; as a drench or bolus; may repeat once in 2 to 3 weeks; do not treat...
21 CFR 520.2380c - Thiabendazole bolus.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Limitations. As a single oral dose; may repeat once in 2 to 3 weeks; do not treat animals within 3 days of...) Chemical name. 2-(4-Thiazolyl) benzimidazole. (b) Specifications. Conforms to N.F. XII. (c) Sponsor. See No...) Limitations. As a single oral dose; as a drench or bolus; may repeat once in 2 to 3 weeks; do not treat...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2012 CFR
2012-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2014 CFR
2014-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2013 CFR
2013-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
10 CFR 72.106 - Controlled area of an ISFSI or MRS.
Code of Federal Regulations, 2010 CFR
2010-01-01
... controlled area may not receive from any design basis accident the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep-dose equivalent and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose...
Dauer, Lawrence T; Ainsbury, Elizabeth A; Dynlacht, Joseph; Hoel, David; Klein, Barbara E K; Mayer, Donald; Prescott, Christina R; Thornton, Raymond H; Vano, Eliseo; Woloschak, Gayle E; Flannery, Cynthia M; Goldstein, Lee E; Hamada, Nobuyuki; Tran, Phung K; Grissom, Michael P; Blakely, Eleanor A
2017-10-01
This review summarizes the conclusions and recommendations of the new National Council on Radiation Protection and Measurements (NCRP) Commentary No. 26 guidance on radiation dose limits for the lens of the eye. The NCRP addressed radiation protection principles in respect to the lens of the eye, discussed the current understanding of eye biology and lens effects, reviewed and evaluated epidemiology, and assessed exposed populations with the potential for significant radiation exposures to the lens while suggesting monitoring and protection practices. Radiation-induced damage to the lens of the eye can include the loss of clarity resulting in opacification or clouding several years after exposure. The impact is highly dependent on the type of radiation, how the exposure of the lens was delivered, the genetic susceptibilities of the individual exposed, and the location of the opacity relative to the visual axis of the individual. The preponderance of epidemiological evidence suggests that lens damage could occur at lower doses than previously considered and the NCRP has determined that it is prudent to reduce the recommended annual lens of the eye occupational dose limit from an equivalent dose of 150 mSv to an absorbed dose of 50 mGy. Significant additional research is still needed in the following areas: comprehensive evaluation of the overall effects of ionizing radiation on the eye, dosimetry methodology and dose-sparing optimization techniques, additional high quality epidemiology studies, and a basic understanding of the mechanisms of cataract development.
Role of particle radiotherapy in the management of head and neck cancer.
Laramore, George E
2009-05-01
Modern imaging techniques and powerful computers allow a radiation oncologist to design treatments delivering higher doses of radiation than previously possible. Dose distributions imposed by the physics of 'standard' photon and electron beams limit further dose escalation. Hadron radiotherapy offers advantages in either dose distribution and/or improved radiobiology that may significantly improve the treatment of certain head and neck malignancies. Clinical studies support the effectiveness of fast-neutron radiotherapy in the treatment of major and minor salivary gland tumors. Data show highly favorable outcomes with proton radiotherapy for skull-base malignancies and tumors near highly critical normal tissues compared with that expected with standard radiotherapy. Heavy-ion radiotherapy clinical studies are mainly being conducted with fully stripped carbon ions, and limited data seem to indicate a possible improvement over proton radiotherapy for the same subset of radioresistant tumors where neutrons show a benefit over photons. Fast-neutron radiotherapy has different radiobiological properties compared with standard radiotherapy but similar depth dose distributions. Its role in the treatment of head and neck cancer is currently limited to salivary gland malignancies and certain radioresistant tumors such as sarcomas. Protons have the same radiobiological properties as standard radiotherapy beams but more optimal depth dose distributions, making it particularly advantageous when treating tumors adjacent to highly critical structures. Heavy ions combine the radiobiological properties of fast neutrons with the physical dose distributions of protons, and preliminary data indicate their utility for radioresistant tumors adjacent to highly critical structures.
Assessment of national dosimetry quality audits results for teletherapy machines from 1989 to 2015.
Muhammad, Wazir; Ullah, Asad; Mahmood, Khalid; Matiullah
2016-01-01
The purpose of this study was to ensure accuracy in radiation dose delivery, external dosimetry quality audit has an equal importance with routine dosimetry performed at clinics. To do so, dosimetry quality audit was organized by the Secondary Standard Dosimetry Laboratory (SSDL) of Pakistan Institute of Nuclear Science and Technology (PINSTECH) at the national level to investigate and minimize uncertainties involved in the measurement of absorbed dose, and to improve the accuracy of dose measurement at different radiotherapy hospitals. A total of 181 dosimetry quality audits (i.e., 102 of Co-60 and 79 of linear accelerators) for teletherapy units installed at 22 different sites were performed from 1989 to 2015. The percent deviation between users’ calculated/stated dose and evaluated dose (in the result of on-site dosimetry visits) were calculated and the results were analyzed with respect to the limits of ± 2.5% (ICRU "optimal model") ± 3.0% (IAEA on-site dosimetry visits limit) and ± 5.0% (ICRU minimal or "lowest acceptable" model). The results showed that out of 181 total on-site dosimetry visits, 20.44%, 16.02%, and 4.42% were out of acceptable limits of ± 2.5% ± 3.0%, and ± 5.0%, respectively. The importance of a proper ongoing quality assurance program, recommendations of the followed protocols, and properly calibrated thermometers, pressure gauges, and humidity meters at radiotherapy hospitals are essential in maintaining consistency and uniformity of absorbed dose measurements for precision in dose delivery.
Robust EM Continual Reassessment Method in Oncology Dose Finding
Yuan, Ying; Yin, Guosheng
2012-01-01
The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092
Status of eye lens radiation dose monitoring in European hospitals.
Carinou, Eleftheria; Ginjaume, Merce; O'Connor, Una; Kopec, Renata; Sans Merce, Marta
2014-12-01
A questionnaire was developed by the members of WG12 of EURADOS in order to establish an overview of the current status of eye lens radiation dose monitoring in hospitals. The questionnaire was sent to medical physicists and radiation protection officers in hospitals across Europe. Specific topics were addressed in the questionnaire such as: knowledge of the proposed eye lens dose limit; monitoring and dosimetry issues; training and radiation protection measures. The results of the survey highlighted that the new eye lens dose limit can be exceeded in interventional radiology procedures and that eye lens protection is crucial. Personnel should be properly trained in how to use protective equipment in order to keep eye lens doses as low as reasonably achievable. Finally, the results also highlighted the need to improve the design of eye dosemeters in order to ensure satisfactory use by workers.
Rehani, Madan M; Vano, Eliseo; Ciraj-Bjelac, Olivera; Kleiman, Norman J
2011-09-01
When this paper was about to go to press, the International Commission on Radiological Protection released a statement recommending a change in the threshold dose for the eye lens and dose limits for eye for occupationally exposed persons. It is clear that the earlier published threshold for radiation cataract is no longer valid. Epidemiological studies among Chernobyl clean-up workers, A bomb survivors, astronauts, residents of contaminated buildings, radiological technicians and recent surveys of staff in interventional rooms indicate that there is an increased incidence of lens opacities at doses below 1 Gy. Nevertheless, eye lens dosimetry is at a primitive stage and needs to be developed further. Despite uncertainties concerning dose threshold and dosimetry, it is possible to significantly reduce the risk of radiation cataract through the use of appropriate eye protection. By increasing awareness among those at risk and better adoption and increased usage of protective measures, radiation cataract can become preventable despite lowering of dose limits.
Marshall, John; Shapiro, Geoffrey I; Uttenreuther-Fischer, Martina; Ould-Kaci, Mahmoud; Stopfer, Peter; Gordon, Michael S
2013-02-01
To determine the maximum tolerated dose (MTD), safety and anti-tumor activity of afatinib combined with docetaxel in advanced cancer. The MTD was determined from dose-limiting toxicities in the first cycle. Thirty-one patients received 10, 20 and 30 mg oral afatinib, plus 60 and 75 mg/m(2) intravenous docetaxel (six cohorts; 3-week cycles). The MTD of afatinib was 20 mg/day (days 2-21) with 75 mg/m(2) docetaxel (day 1). Dose-limiting toxicities were grade 3/4 diarrhea (n = 3) and febrile neutropenia (n = 6). Most frequently occurring adverse events were diarrhea, neutropenia and rash. Disease stabilization occurred in 14 patients. Afatinib 20 mg/day plus docetaxel was suboptimal and the study could not yield Phase II dose recommendations. The combination resulted in a manageable safety profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Whicker, Jeffrey Jay
In 2017, soil sampling for radiological materials was conducted within Tract A-18-2 specifically for land conveyance decisions. Measurements of radionuclides in soil samples were evaluated against a recreational use scenario, and all measurements were below screening action levels for each radionuclide. The total estimated dose was less than 1 mrem/y (< 10 μSv/y) for a hypothetical recreational user (compared to a dose limit of 25 mrem/y (250 μSv/y)). Dose estimates were based on the 95% upper confidence limits for radionuclide concentrations within the Tract. Additionally, dose estimates less than 3 mrem/y are considered to be As Low As Reasonably Achievable,more » so no follow-up analysis was conducted. Release of this property is consistent with the requirements of DOE Order 458.1 and Policy 412.« less
Spiridonova, S I; Mukusheva, M K; Shubina, O A; Solomatin, V M; Epifanova, I E
2008-01-01
The results are presented from estimation of spatial distribution of 137Cs and 90Sr contamination densities in the areas of horses and sheep grazing within the Semipalatinsk Test Site. Dose burdens to various cohorts of the population living within the STS and consuming contaminated animal products are predicted. Doses of shepherds in the most contaminated pasture areas have been found to exceed the accepted limit (1 mSv/y). The conclusion is made about the need for further studies on the risk assessment of the STS population exposure above the accepted limits.
Azman, Andrew S.; Luquero, Francisco J.; Ciglenecki, Iza; Grais, Rebecca F.; Sack, David A.; Lessler, Justin
2015-01-01
Background In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both. Methods and Findings Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect surveillance data and uncertainty about the transmission dynamics of cholera in each setting. Conclusions Reactive vaccination campaigns using a single dose of OCV may avert more cases and deaths than a standard two-dose campaign when vaccine supplies are limited, while at the same time reducing logistical complexity. These findings should motivate consideration of the trade-offs between one- and two-dose campaigns in resource-constrained settings, though further field efficacy data are needed and should be a priority in any one-dose campaign. PMID:26305226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, Ricky; Teo, Peter; Kam, Michael
The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilizedmore » in semi-extended-head position. A 2D plan based on Ho's technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D{sub 95} of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54 Gy for brainstem and of 45 Gy for spinal cord. The mean maximum doses deposited on the PRV of the brainstem and spinal cord were 60.7 Gy and 51.6 Gy respectively, which were above the conventional dose limits. For the chiasm, the mean dose maximum and the dose to 5% of its volume were reduced from 64.3 Gy (2DRT) to 53.7 Gy (IMRT) and from 62.8 Gy (2DRT) to 48.7 Gy (IMRT), respectively, and the corresponding NTCP was reduced from 18.4% to 2.1%. For the temporal lobes, the mean dose to 10% of its volume (about 4.6 cc) was reduced from 63.8 Gy (2DRT) to 55.4 Gy (IMRT) and the NTCP was decreased from 11.7% to 3.4%. The therapeutic ratio for T3-4 NPC tumors can be significantly improved with IMRT treatment technique due to improvement both in target coverage and the sparing of the critical normal organ. Although the maximum doses delivered to the brainstem and spinal cord in IMRT can be kept at or below their conventional dose limits, the maximum doses deposited on the PRV often exceed these limits due to the close proximity between the target and OARs. In other words, ideal dosimetric considerations cannot be fulfilled in IMRT planning for T3-4 NPC tumors. A compromise of the maximal dose limit to the PRV of the brainstem and spinal cord would need be accepted if dose coverage to the targets is not to be unacceptably compromised. Dosimetric comparison with 2DRT plans show that these dose limits to PRV were also frequently exceeded in 2DRT plans for locally advanced NPC. A dedicated retrospective study on the incidence of clinical injury to neurological organs in a large series of patients with T3-4 NPC treated by 2DRT may provide useful reference data in exploring how far the PRV dose constraints may be relaxed, to maximize the target coverage without compromising the normal organ function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Fada; Peeler, Christopher; Taleei, Reza
Purpose: The motivation of this study was to find and eliminate the cause of errors in dose-averaged linear energy transfer (LET) calculations from therapeutic protons in small targets, such as biological cell layers, calculated using the GEANT 4 Monte Carlo code. Furthermore, the purpose was also to provide a recommendation to select an appropriate LET quantity from GEANT 4 simulations to correlate with biological effectiveness of therapeutic protons. Methods: The authors developed a particle tracking step based strategy to calculate the average LET quantities (track-averaged LET, LET{sub t} and dose-averaged LET, LET{sub d}) using GEANT 4 for different tracking stepmore » size limits. A step size limit refers to the maximally allowable tracking step length. The authors investigated how the tracking step size limit influenced the calculated LET{sub t} and LET{sub d} of protons with six different step limits ranging from 1 to 500 μm in a water phantom irradiated by a 79.7-MeV clinical proton beam. In addition, the authors analyzed the detailed stochastic energy deposition information including fluence spectra and dose spectra of the energy-deposition-per-step of protons. As a reference, the authors also calculated the averaged LET and analyzed the LET spectra combining the Monte Carlo method and the deterministic method. Relative biological effectiveness (RBE) calculations were performed to illustrate the impact of different LET calculation methods on the RBE-weighted dose. Results: Simulation results showed that the step limit effect was small for LET{sub t} but significant for LET{sub d}. This resulted from differences in the energy-deposition-per-step between the fluence spectra and dose spectra at different depths in the phantom. Using the Monte Carlo particle tracking method in GEANT 4 can result in incorrect LET{sub d} calculation results in the dose plateau region for small step limits. The erroneous LET{sub d} results can be attributed to the algorithm to determine fluctuations in energy deposition along the tracking step in GEANT 4. The incorrect LET{sub d} values lead to substantial differences in the calculated RBE. Conclusions: When the GEANT 4 particle tracking method is used to calculate the average LET values within targets with a small step limit, such as smaller than 500 μm, the authors recommend the use of LET{sub t} in the dose plateau region and LET{sub d} around the Bragg peak. For a large step limit, i.e., 500 μm, LET{sub d} is recommended along the whole Bragg curve. The transition point depends on beam parameters and can be found by determining the location where the gradient of the ratio of LET{sub d} and LET{sub t} becomes positive.« less
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak
NASA Astrophysics Data System (ADS)
Rasouli, C.; Pourshahab, B.; Hosseini Pooya, S. M.; Orouji, T.; Rasouli, H.
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points - three TLDs per point - to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak.
Rasouli, C; Pourshahab, B; Hosseini Pooya, S M; Orouji, T; Rasouli, H
2014-05-01
In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points--three TLDs per point--to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.
Evaluation of effective dose with chest digital tomosynthesis system using Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Kim, Dohyeon; Jo, Byungdu; Lee, Youngjin; Park, Su-Jin; Lee, Dong-Hoon; Kim, Hee-Joung
2015-03-01
Chest digital tomosynthesis (CDT) system has recently been introduced and studied. This system offers the potential to be a substantial improvement over conventional chest radiography for the lung nodule detection and reduces the radiation dose with limited angles. PC-based Monte Carlo program (PCXMC) simulation toolkit (STUK, Helsinki, Finland) is widely used to evaluate radiation dose in CDT system. However, this toolkit has two significant limits. Although PCXMC is not possible to describe a model for every individual patient and does not describe the accurate X-ray beam spectrum, Geant4 Application for Tomographic Emission (GATE) simulation describes the various size of phantom for individual patient and proper X-ray spectrum. However, few studies have been conducted to evaluate effective dose in CDT system with the Monte Carlo simulation toolkit using GATE. The purpose of this study was to evaluate effective dose in virtual infant chest phantom of posterior-anterior (PA) view in CDT system using GATE simulation. We obtained the effective dose at different tube angles by applying dose actor function in GATE simulation which was commonly used to obtain the medical radiation dosimetry. The results indicated that GATE simulation was useful to estimate distribution of absorbed dose. Consequently, we obtained the acceptable distribution of effective dose at each projection. These results indicated that GATE simulation can be alternative method of calculating effective dose in CDT applications.
Brooks, Antone L
2015-04-01
This commentary provides a very brief overview of the book "A History of the United States Department of Energy (DOE) Low Dose Radiation Research Program: 1998-2008" ( http://lowdose.energy.gov ). The book summarizes and evaluates the research progress, publications and impact of the U.S. Department of Energy Low Dose Radiation Research Program over its first 10 years. The purpose of this book was to summarize the impact of the program's research on the current thinking and low-dose paradigms associated with the radiation biology field and to help stimulate research on the potential adverse and/or protective health effects of low doses of ionizing radiation. In addition, this book provides a summary of the data generated in the low dose program and a scientific background for anyone interested in conducting future research on the effects of low-dose or low-dose-rate radiation exposure. This book's exhaustive list of publications coupled with discussions of major observations should provide a significant resource for future research in the low-dose and dose-rate region. However, because of space limitations, only a limited number of critical references are mentioned. Finally, this history book provides a list of major advancements that were accomplished by the program in the field of radiation biology, and these bulleted highlights can be found in last part of chapters 4-10.
Effects of dose scaling on delivery quality assurance in tomotherapy
Nalichowski, Adrian; Burmeister, Jay
2012-01-01
Delivery quality assurance (DQA) of tomotherapy plans is routinely performed with silver halide film which has a limited range due to the effects of saturation. DQA plans with dose values exceeding this limit require the dose of the entire plan to be scaled downward if film is used, to evaluate the dose distribution in two dimensions. The potential loss of fidelity between scaled and unscaled DQA plans as a function of dose scaling is investigated. Three treatment plans for 12 Gy fractions designed for SBRT of the lung were used to create DQA procedures that were scaled between 100% and 10%. The dose was measured with an ionization chamber array and compared to values from the tomotherapy treatment planning system. Film and cylindrical ion chamber measurements were also made for one patient for scaling factors of 50% to 10% to compare with the ionization chamber array measurements. The array results show the average gamma pass rate is ≥99% from 100% to 30% scaling. The average gamma pass rate falls to 93.6% and 51.1% at 20% and 10% scaling, respectively. Film analysis yields similar pass rates. Cylindrical ion chambers did not exhibit significant variation with dose scaling, but only represent points in the low gradient region of the dose distribution. Scaling the dose changes the mechanics of the radiation delivery, as well as the signal‐to‐noise ratio. Treatment plans which exhibit parameters that differ significantly from those common to DQA plans studied in this paper may exhibit different behavior. Dose scaling should be limited to the smallest degree possible. Planar information, such as that from film or a detector array, is required. The results show that it is not necessary to perform both a scaled and unscaled DQA plan for the treatment plans considered here. PACS numbers: 87.55.km, 87.55.Qr PMID:22231213
Hull, Brynley P; Menzies, Robert; Macartney, Kristine; McIntyre, Peter B
2013-04-08
Strict age limits for receipt of rotavirus vaccines and simultaneous use of vaccines requiring two (Rotarix(®)) and three (RotaTeq(®)) doses in Australia may impact on coverage and timeliness of other vaccines in the infant schedule. Using data from the Australian Childhood Immunisation Register (ACIR), coverage and timeliness of rotavirus vaccines and changes in timeliness of other infant vaccines following rotavirus vaccine introduction was examined, with particular emphasis on Indigenous infants in whom coverage is less optimal. Final dose rotavirus coverage reached 83% within 21 months of program commencement but remained 7% lower than other vaccines due in infancy. Coverage was 11-17% lower in Indigenous infants. Adherence to the first dose upper age limits for rotavirus vaccine was high with >97% of children vaccinated by the recommended age, but for subsequent rotavirus doses, receipt beyond the upper age limits was more common, especially in Indigenous children. Following rotavirus vaccine introduction, there were improvements in timeliness of receipt of all doses of DTPa-containing and 7-valent pneumococcal conjugate vaccines. High population coverage can be attained with rotavirus vaccines, even with adherence to strict upper age restrictions for vaccine dose administration. Rotavirus vaccine introduction appears to have impacted upon the timeliness of other concomitantly scheduled vaccines. These factors should be considered when rotavirus programs are introduced. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dosing Accuracy of Insulin Aspart FlexPens After Transport Through the Pneumatic Tube System.
Ward, Leah G; Heckman, Michael G; Warren, Amy I; Tran, Kimberly
2013-01-01
The purpose of this study was to evaluate whether transporting insulin aspart FlexPens via a pneumatic tube system affects the dosing accuracy of the pens. A total of 115 Novo Nordisk FlexPens containing insulin aspart were randomly assigned to be transported via a pneumatic tube system (n = 92) or to serve as the control (n = 23). Each pen was then randomized to 10 international unit (IU) doses (n = 25) or 30 IU doses (n = 67), providing 600 and 603 doses, respectively, for the pneumatic tube group. The control group also received random assignment to 10 IU doses (n = 6) or 30 IU doses (n = 17), providing 144 and 153 doses, respectively. Each dose was expelled using manufacturer instructions. Weights were recorded, corrected for specific gravity, and evaluated based on acceptable International Organization for Standardization (ISO) dosing limits. In the group of pens transported through the pneumatic tube system, none of the 600 doses of 10 IU (0.0%; 95% CI, 0.0 to 0.6) and none of the 603 doses of 30 IU (0.0%; 95% CI, 0.0 to 0.6) fell outside of the range of acceptable weights. Correspondingly, in the control group, none of the 144 doses at 10 IU (0.0%; 95% CI, 0.0 to 2.5) and none of the 153 doses at 30 IU (0.0%; 95% CI, 0.0 to 2.4) were outside of acceptable ISO limits. Transportation via pneumatic tube system does not appear to compromise dosing accuracy. Hospital pharmacies may rely on the pneumatic tube system for timely and accurate transport of insulin aspart FlexPens.
High-Dose Vitamin C (PDQ®)—Health Professional Version
High-dose vitamin C, with and without conventional cancer therapies, appeared promising in early studies and was well tolerated. However, these studies have several limitations due to lack of rigor in trial design. Get detailed information about high-dose vitamin C in cancer in this clinician summary.
BENCHMARK DOSES FOR CHEMICAL MIXTURES: EVALUATION OF A MIXTURE OF 18 PHAHS.
Benchmark doses (BMDs), defined as doses of a substance that are expected to result in a pre-specified level of "benchmark" response (BMR), have been used for quantifying the risk associated with exposure to environmental hazards. The lower confidence limit of the BMD is used as...
Analysis and evaluation for consumer goods containing NORM in Korea.
Jang, Mee; Chung, Kun Ho; Lim, Jong Myoung; Ji, Young Yong; Kim, Chang Jong; Kang, Mun Ja
2017-08-01
We analyzed the consumer goods containing NORM by ICP-MS and evaluated the external dose. To evaluate the external dose, we assumed the small room model as irradiation scenario and calculated the specific effective dose rate using MCNPX code. The external doses for twenty goods are less than 1 mSv considering the specific effective dose rates and usage quantities. However, some of them have relatively high dose and the activity concentration limits are necessary as a screening tool. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu; Ayala, Deandra; Jensen, Courtney
2012-02-01
Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patientsmore » experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.« less
Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R
2016-04-01
The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Analyses of risks associated with radiation exposure from past major solar particle events
NASA Technical Reports Server (NTRS)
Weyland, Mark D.; Atwell, William; Cucinotta, Francis A.; Wilson, John W.; Hardy, Alva C.
1991-01-01
Radiation exposures and cancer induction/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was used to propagate particles through aluminum and tissue shield materials. A free space environment was utilized for all calculations. Results show the 30-day blood forming organs (BFO) limit of 25 rem was surpassed by all five events using 10 g/sq cm of shielding. The BFO limit is based on a depth dose of 5 cm of tissue, while a more detailed shield distribution of the BFO's was utilized. A comparison between the 5 cm depth dose and the dose found using the BFO shield distribution shows that the 5 cm depth value slightly higher than the BFO dose. The annual limit of 50 rem was exceeded by the August 1972, October 1989, and the three combined 1989 events with 5 g/sq cm of shielding. Cancer mortality risks ranged from 1.5 to 17 percent at 1 g/sq cm and 0.5 to 1.1 percent behind 10 g/sq cm of shielding for five events. These ranges correspond to those for a 45 year old male. It is shown that secondary particles comprise about 1/3 of the total risk at 10 g/sq cm of shielding. Utilizing a computerized Space Shuttle shielding model to represent a typical spacecraft configuration in free space at the August 1972 SPE, average crew doses exceeded the BFO dose limit.
Low-voltage chest CT: another way to reduce the radiation dose in asbestos-exposed patients.
Macía-Suárez, D; Sánchez-Rodríguez, E; Lopez-Calviño, B; Diego, C; Pombar, M
2017-09-01
To assess whether low voltage chest computed tomography (CT) can be used to successfully diagnose disease in patients with asbestos exposure. Fifty-six former employees of the shipbuilding industry, who were candidates to receive a standard-dose chest CT due to their occupational exposure to asbestos, underwent a routine CT. Immediately after this initial CT, they underwent a second acquisition using low-dose chest CT parameters, based on a low potential (80 kV) and limited tube current. The findings of the two CT protocols were compared based on typical diseases associated with asbestos exposure. The kappa coefficient for each parameter and for an overall rating (grouping them based on mediastinal, pleural, and pulmonary findings) were calculated in order to test for correlations between the two protocols. A good correlation between routine and low-dose CT was demonstrated for most parameters with a mean radiation dose reduction of up to 83% of the effective dose based on the dose-length product between protocols. Low-dose chest CT, based on a limited tube potential, is useful for patients with an asbestos exposure background. Low-dose chest CT can be successfully used to minimise the radiation dose received by patients, as this protocol produced an estimated mean effective dose similar to that of an abdominal or pelvis plain film. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
Ma, Jiasen; Beltran, Chris; Seum Wan Chan Tseung, Hok; Herman, Michael G
2014-12-01
Conventional spot scanning intensity modulated proton therapy (IMPT) treatment planning systems (TPSs) optimize proton spot weights based on analytical dose calculations. These analytical dose calculations have been shown to have severe limitations in heterogeneous materials. Monte Carlo (MC) methods do not have these limitations; however, MC-based systems have been of limited clinical use due to the large number of beam spots in IMPT and the extremely long calculation time of traditional MC techniques. In this work, the authors present a clinically applicable IMPT TPS that utilizes a very fast MC calculation. An in-house graphics processing unit (GPU)-based MC dose calculation engine was employed to generate the dose influence map for each proton spot. With the MC generated influence map, a modified least-squares optimization method was used to achieve the desired dose volume histograms (DVHs). The intrinsic CT image resolution was adopted for voxelization in simulation and optimization to preserve spatial resolution. The optimizations were computed on a multi-GPU framework to mitigate the memory limitation issues for the large dose influence maps that resulted from maintaining the intrinsic CT resolution. The effects of tail cutoff and starting condition were studied and minimized in this work. For relatively large and complex three-field head and neck cases, i.e., >100,000 spots with a target volume of ∼ 1000 cm(3) and multiple surrounding critical structures, the optimization together with the initial MC dose influence map calculation was done in a clinically viable time frame (less than 30 min) on a GPU cluster consisting of 24 Nvidia GeForce GTX Titan cards. The in-house MC TPS plans were comparable to a commercial TPS plans based on DVH comparisons. A MC-based treatment planning system was developed. The treatment planning can be performed in a clinically viable time frame on a hardware system costing around 45,000 dollars. The fast calculation and optimization make the system easily expandable to robust and multicriteria optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Yong Sang; Lee, Jae-Lyun; Park, Jin Hong
Purpose: To perform a Phase I study of preoperative chemoradiation (CRT) with S-1, a novel oral fluoropyrimidine, plus oxaliplatin in patients with locally advanced rectal cancer, to determine the maximum tolerated dose and the recommended dose. Methods and Materials: Radiotherapy was delivered to a total of 45 Gy in 25 fractions and followed by a coned-down boost of 5.4 Gy in 3 fractions. Concurrent chemotherapy consisted of a fixed dose of oxaliplatin (50 mg/m{sup 2}/week) on Days 1, 8, 22, and 29 and escalated doses of S-1 on Days 1-14 and 22-35. The initial dose of S-1 was 50 mg/m{supmore » 2}/day, gradually increasing to 60, 70, and 80 mg/m{sup 2}/day. Surgery was performed within 6 {+-} 2 weeks. Results: Twelve patients were enrolled and tolerated up to Dose Level 4 (3 patients at each dose level) without dose-limiting toxicity. An additional 3 patients were enrolled at Dose Level 4, with 1 experiencing a dose-limiting toxicity of Grade 3 diarrhea. Although maximum tolerated dose was not attained, Dose Level 4 (S-1 80 mg/m{sup 2}/day) was chosen as the recommended dose for further Phase II studies. No Grade 4 toxicity was observed, and Grade 3 toxicities of leukopenia and diarrhea occurred in the same patient (1 of 15, 6.7%). Pathologic complete responses were observed in 2 of 15 patients (13.3%). Conclusions: The recommended dose of S-1 was determined to be 80 mg/m{sup 2}/day when combined with oxaliplatin in preoperative CRT, and a Phase II trial is now ongoing.« less
BENCHMARK DOSE TECHNICAL GUIDANCE DOCUMENT ...
The purpose of this document is to provide guidance for the Agency on the application of the benchmark dose approach in determining the point of departure (POD) for health effects data, whether a linear or nonlinear low dose extrapolation is used. The guidance includes discussion on computation of benchmark doses and benchmark concentrations (BMDs and BMCs) and their lower confidence limits, data requirements, dose-response analysis, and reporting requirements. This guidance is based on today's knowledge and understanding, and on experience gained in using this approach.
The estimation of galactic cosmic ray penetration and dose rates
NASA Technical Reports Server (NTRS)
Burrell, M. O.; Wright, J. J.
1972-01-01
This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.
Cumulative total effective whole-body radiation dose in critically ill patients.
Rohner, Deborah J; Bennett, Suzanne; Samaratunga, Chandrasiri; Jewell, Elizabeth S; Smith, Jeffrey P; Gaskill-Shipley, Mary; Lisco, Steven J
2013-11-01
Uncertainty exists about a safe dose limit to minimize radiation-induced cancer. Maximum occupational exposure is 20 mSv/y averaged over 5 years with no more than 50 mSv in any single year. Radiation exposure to the general population is less, but the average dose in the United States has doubled in the past 30 years, largely from medical radiation exposure. We hypothesized that patients in a mixed-use surgical ICU (SICU) approach or exceed this limit and that trauma patients were more likely to exceed 50 mSv because of frequent diagnostic imaging. Patients admitted into 15 predesignated SICU beds in a level I trauma center during a 30-day consecutive period were prospectively observed. Effective dose was determined using Huda's method for all radiography, CT imaging, and fluoroscopic examinations. Univariate and multivariable linear regressions were used to analyze the relationships between observed values and outcomes. Five of 74 patients (6.8%) exceeded exposures of 50 mSv. Univariate analysis showed trauma designation, length of stay, number of CT scans, fluoroscopy minutes, and number of general radiographs were all associated with increased doses, leading to exceeding occupational exposure limits. In a multivariable analysis, only the number of CT scans and fluoroscopy minutes remained significantly associated with increased whole-body radiation dose. Radiation levels frequently exceeded occupational exposure standards. CT imaging contributed the most exposure. Health-care providers must practice efficient stewardship of radiologic imaging in all critically ill and injured patients. Diagnostic benefit must always be weighed against the risk of cumulative radiation dose.
Furman, Wayne L; Crews, Kristine R; Billups, Catherine; Wu, Jianrong; Gajjar, Amar J; Daw, Najat C; Patrick, Christian C; Rodriguez-Galindo, Carlos; Stewart, Clinton F; Dome, Jeffrey S; Panetta, John C; Houghton, Peter J; Santana, Victor M
2006-02-01
Irinotecan is active against a variety of malignancies; however, severe diarrhea limits its usefulness. In our phase I study, the intravenous formulation of irinotecan was administered orally daily for 5 days for 2 consecutive weeks (repeated every 21 days) to children with refractory solid tumors. Our objectives were to determine the maximum-tolerated dose (MTD), dose-limiting toxicity, and pharmacokinetics of oral irinotecan and to evaluate whether coadministration of cefixime (8 mg/kg/d beginning 5 days before irinotecan and continuing throughout the course) ameliorates irinotecan-induced diarrhea. In separate cohorts, irinotecan doses were escalated from 15 to 45 mg/m2/d without cefixime and then from 45 to 60 and 75 mg/m2/d with cefixime. Without cefixime, diarrhea was dose limiting at irinotecan 45 mg/m2/d. Myelotoxicity was not significant at any dose. The MTD was 40 mg/m2/d without cefixime but 60 mg/m2/d with cefixime. Systemic exposure to SN-38 at the MTD was significantly higher with cefixime than without cefixime (mean SN-38 area under the curve: 19.5 ng x h/mL; standard deviation [SD], 6.8 ng x h/mL v 10.4 ng x h/mL; SD, 4.3 ng x h/mL, respectively; P = .030). Cefixime administered with oral irinotecan is well tolerated in children and allows greater dose escalation of irinotecan. Because diarrhea is a major adverse effect of both intravenous and oral irinotecan, further evaluation of the use of cefixime to ameliorate this adverse effect is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J; Perko, Z; Wolfgang, J
Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulativemore » BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less
Dose rate constants for the quantity Hp(3) for frequently used radionuclides in nuclear medicine.
Szermerski, Bastian; Bruchmann, Iris; Behrens, Rolf; Geworski, Lilli
2016-12-01
According to recent studies, the human eye lens is more sensitive to ionising radiation than previously assumed. Therefore, the dose limit for personnel occupationally exposed to ionising radiation will be lowered from currently 150 mSv to 20 mSv per year. Currently, no data base for a reliable estimation of the dose to the lens of the eye is available for nuclear medicine. Furthermore, the dose is usually not monitored. The aim of this work was to determine dose rate constants for the quantity H p (3), which is supposed to estimate the dose to the lens of the eye. For this, H p (3)-dosemeters were fixed to an Alderson Phantom at different positions. The dosemeters were exposed to radiation from nuclides typically used in nuclear medicine in their geometries analog to their application in nuclear medicine, e.g. syringe or vial. The results show that the handling of high-energy beta (i.e. electron or positron) emitters may lead to a relevant dose to the lens of the eye. For low-energy beta emitters and gamma emitters, an exceeding of the lowered dose limit seems to be unlikely. Copyright © 2015. Published by Elsevier GmbH.
A procedure to determine the planar integral spot dose values of proton pencil beam spots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald
2012-02-15
Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeVmore » energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.« less
21 CFR 361.1 - Radioactive drugs for certain research uses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... following: Whole body, active blood-forming organs, lens of the eye, and gonads: Rems Single dose 3 Annual... body, active blood-forming organs, lens of the eye, gonads, and other organ doses from the administered... set forth in paragraph (d) of this section, that: (i) The pharmacological dose is within the limits...
21 CFR 361.1 - Radioactive drugs for certain research uses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... following: Whole body, active blood-forming organs, lens of the eye, and gonads: Rems Single dose 3 Annual... body, active blood-forming organs, lens of the eye, gonads, and other organ doses from the administered... set forth in paragraph (d) of this section, that: (i) The pharmacological dose is within the limits...
21 CFR 361.1 - Radioactive drugs for certain research uses.
Code of Federal Regulations, 2012 CFR
2012-04-01
... following: Whole body, active blood-forming organs, lens of the eye, and gonads: Rems Single dose 3 Annual... body, active blood-forming organs, lens of the eye, gonads, and other organ doses from the administered... set forth in paragraph (d) of this section, that: (i) The pharmacological dose is within the limits...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
10 CFR 20.1202 - Compliance with requirements for summation of external and internal doses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Compliance with requirements for summation of external and internal doses. 20.1202 Section 20.1202 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1202 Compliance with requirements for summation of...
Subacute toxicity of the mycotoxin cyclopiazonic acid.
van Rensburg, S J
1984-12-01
Cyclopiazonic acid (CA) is known to contaminate processed foods, maize and peanuts. Since previously available toxicity data were limited to the effects of single doses, Wistar-derived rats were given weekly doses of 0, 12 or 21 mg CA/kg body weight in 1 N-sodium bicarbonate, using a dosage volume of 2.5 ml/kg body weight, and subgroups of eight were killed 1 wk after doses 2, 5, 9 and 14. Males on the highest dose level showed mild growth retardation initially and 25% died suddenly during wk 4. No abnormal signs were observed in the surviving males or in any of the females throughout the 15 wk of the experiment. CA induced mild cellular degenerative changes in the myocardium and in several other organs where ballooning of nuclei, especially in ductal epithelia, was also characteristic. The changes were only weakly related to dose level, sex and the number of doses given. The findings suggest that CA is probably a metabolic inhibitor requiring considerable concentrations to exert toxicity. The limited data currently available do not elicit concern in terms of human risk or warrant any particular control procedures.
Li, Zijian; Jennings, Aaron A.
2017-01-01
Worldwide jurisdictions are making efforts to regulate pesticide standard values in residential soil, drinking water, air, and agricultural commodity to lower the risk of pesticide impacts on human health. Because human may exposure to pesticides from many ways, such as ingestion, inhalation, and dermal contact, it is important to examine pesticide standards by considering all major exposure pathways. Analysis of implied maximum dose limits for commonly historical and current used pesticides was adopted in this study to examine whether worldwide pesticide standard values are enough to prevent human health impact or not. Studies show that only U.S. has regulated pesticides standard in the air. Only 4% of the total number of implied maximum dose limits is based on three major exposures. For Chlorpyrifos, at least 77.5% of the total implied maximum dose limits are above the acceptable daily intake. It also shows that most jurisdictions haven't provided pesticide standards in all major exposures yet, and some of the standards are not good enough to protect human health. PMID:29546224
Abourbih, Daniel Asher; Gosselin, Sophie; Villeneuve, Eric; Kazim, Sara
2016-01-01
Acetaminophen (APAP) elixir is a widely used pediatric antipyretic medication. It has been shown that up to 30% of febrile children presenting to a large urban pediatric emergency department received inadequate APAP dosages at home with errors primarily due to age-based dosing. Parental education material in the form of weight-based dosing guides has been proposed; however, validation of current recommended APAP dosages using pharmacokinetic models is needed. This study used a mathematical model of APAP absorption to predict plasma concentrations and to compare them with the range required to reach and achieve antipyresis (10-20 μg/mL). A common APAP preparation (Children's Tylenol Elixir) was tested (children aged 2-3 years, 10.9-15.9 kg). The manufacturer's suggested dose of 160 mg was compared with the standard 10 to 15 mg/kg dose range. The model predicts a peak plasma concentration between 6.38 and 8.55 μg/mL for 10 mg/kg dose and 9.57 and 12.8 μg/mL for 15 mg/kg dose. The manufacturer's suggested dose of 160 mg was tested across the limits of the weight range (10.9-15.9 kg). A peak plasma concentration between 9.36 and 12.6 μg/mL was found for the lower weight limit (10.9 kg child) and 6.42 to 8.61 μg/mL for the upper weight limit (15.9 kg child). With the use of this model, the 10 mg/kg dose does not reach the plasma concentration value for antipyresis (10-20 μg/mL), whereas 15 mg/kg is adequate only if assuming a greater absorption constant. The 160 mg dose is effective only for children weighing 10.9 kg. Individual differences in drug bioavailability, volume of distribution, and absorption/elimination constants undoubtedly exist, and future studies directly measuring plasma APAP concentration and pharmacokinetics are needed. However, these results indicate that dosages for APAP in children should be weight based and manufacturers should review their dosing recommendations.
Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc.
Hou, X; Tanguay, J; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A
2016-12-07
Cyclotron-produced 99m Tc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99m Tc. However, the small amount of 92-98 Mo in the irradiation of enriched 100 Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.
Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc
NASA Astrophysics Data System (ADS)
Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.
2016-12-01
Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.
Dose and risk in diagnostic radiology: How big How little Lecture Number 16
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, E.W.
1992-01-01
This lecture is divided into two parts: dose and risk. The dose segment is technical and noncontroversial since it deals with straightforward measurements or calculations which do not depend on unproven hypotheses. Some conflicting contributions of low dose epidemiological studies to the appraisal of risk are briefly presented. Attention is focused on the following: dose reduction in radiography; dose reduction in fluoroscopy; limitations of dose reduction; estimated radiation risks for diagnostic radiology examinations; excess breast cancer following X-ray examinations for scoliosis; dose-response relation for human mammary cancer; lung cancer from protracted X-irradiation; leukemia and diagnostic X-ray exposure; and thyroid cancermore » after diagnostic dose of I-131.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garces, Yolanda I.; Okuno, Scott H.; Schild, Steven E.
Purpose: The primary goal was to identify the maximum tolerable dose (MTD) of thoracic radiation therapy (TRT) that can be given with chemotherapy and amifostine for patients with limited-stage small-cell lung cancer (LSCLC). Methods and Materials: Treatment began with two cycles of topotecan (1 mg/m{sup 2}) Days 1 to 5 and paclitaxel (175 mg/m{sup 2}) Day 5 (every 3 weeks) given before and after TRT. The TRT began at 6 weeks. The TRT was given in 120 cGy fractions b.i.d. and the dose escalation (from 4,800 cGy, dose level 1, to 6,600 cGy, dose level 4) followed the standard 'cohortsmore » of 3' design. The etoposide (E) (50 mg/day) and cisplatin (C) (3 mg/m{sup 2}) were given i.v. before the morning TRT and amifostine (500 mg/day) was given before the afternoon RT. This was followed by prophylactic cranial irradiation (PCI). The dose-limiting toxicities (DLTs) were defined as Grade {>=}4 hematologic, febrile neutropenia, esophagitis, or other nonhematologic toxicity, Grade {>=}3 dyspnea, or Grade {>=}2 pneumonitis. Results: Fifteen patients were evaluable for the Phase I portion of the trial. No DLTs were seen at dose levels 1 and 2. Two patients on dose level 4 experienced DLTs: 1 patient had a Grade 4 pneumonitis, dyspnea, fatigue, hypokalemia, and anorexia, and 1 patient had a Grade 5 hypoxia attributable to TRT. One of 6 patients on dose level 3 had a DLT, Grade 3 esophagitis. The Grade {>=}3 toxicities seen in at least 10% of patients during TRT were esophagitis (53%), leukopenia (33%), dehydration (20%), neutropenia (13%), and fatigue (13%). The median survival was 14.5 months. Conclusion: The MTD of b.i.d. TRT was 6000 cGy (120 cGy b.i.d.) with EP and amifostine.« less
Hall, David B; Meier, Ulrich; Diener, Hans-Cristoph
2005-06-01
The trial objective was to test whether a new mechanism of action would effectively treat migraine headaches and to select a dose range for further investigation. The motivation for a group sequential, adaptive, placebo-controlled trial design was (1) limited information about where across the range of seven doses to focus attention, (2) a need to limit sample size for a complicated inpatient treatment and (3) a desire to reduce exposure of patients to ineffective treatment. A design based on group sequential and up and down designs was developed and operational characteristics were explored by trial simulation. The primary outcome was headache response at 2 h after treatment. Groups of four treated and two placebo patients were assigned to one dose. Adaptive dose selection was based on response rates of 60% seen with other migraine treatments. If more than 60% of treated patients responded, then the next dose was the next lower dose; otherwise, the dose was increased. A stopping rule of at least five groups at the target dose and at least four groups at that dose with more than 60% response was developed to ensure that a selected dose would be statistically significantly (p=0.05) superior to placebo. Simulations indicated good characteristics in terms of control of type 1 error, sufficient power, modest expected sample size and modest bias in estimation. The trial design is attractive for phase 2 clinical trials when response is acute and simple, ideally binary, placebo comparator is required, and patient accrual is relatively slow allowing for the collection and processing of results as a basis for the adaptive assignment of patients to dose groups. The acute migraine trial based on this design was successful in both proof of concept and dose range selection.
Fakih, Marwan G; Pendyala, Lakshmi; Fetterly, Gerald; Toth, Karoli; Zwiebel, James A; Espinoza-Delgado, Igor; Litwin, Alan; Rustum, Youcef M; Ross, Mary Ellen; Holleran, Julianne L; Egorin, Merrill J
2009-05-01
We conducted a phase I study to determine the maximum tolerated dose of vorinostat in combination with fixed doses of 5-fluorouracil (FU), leucovorin, and oxaliplatin (FOLFOX). Vorinostat was given orally twice daily for 1 week every 2 weeks. FOLFOX was given on days 4 and 5 of vorinostat. The vorinostat starting dose was 100 mg twice daily. Escalation occurred in cohorts of three to six patients. Pharmacokinetics of vorinostat, FU, and oxaliplatin were studied. Twenty-one patients were enrolled. Thrombocytopenia, neutropenia, gastrointestinal toxicities, and fatigue increased in frequency and severity at higher dose levels of vorinostat. Two of 4 evaluable patients at dose level 4 (vorinostat 400 mg orally twice daily) developed dose-limiting fatigue. One of 10 evaluable patients at dose level 3 (vorinostat 300 mg orally twice daily) had dose-limiting fatigue, anorexia, and dehydration. There were significant relationships between vorinostat dose and the area under the curve on days 1 and 5 (Pearson, < 0.001). The vorinostat area under the curve increased (P = 0.005) and clearance decreased (P = 0.003) on day 5 compared with day 1. The median C(max) of FU at each dose level increased significantly with increasing doses of vorinostat, suggesting a pharmacokinetic interaction between FU and vorinostat. Vorinostat-induced thymidylate synthase (TS) modulation was not consistent; only two of six patients had a decrease in intratumoral TS expression by reverse transcription-PCR. The maximum tolerated dose of vorinostat in combination with FOLFOX is 300 mg orally twice daily x 1 week every 2 weeks. Alternative vorinostat dosing schedules may be needed for optimal down-regulation of TS expression.
A novel method for the evaluation of uncertainty in dose-volume histogram computation.
Henríquez, Francisco Cutanda; Castrillón, Silvia Vargas
2008-03-15
Dose-volume histograms (DVHs) are a useful tool in state-of-the-art radiotherapy treatment planning, and it is essential to recognize their limitations. Even after a specific dose-calculation model is optimized, dose distributions computed by using treatment-planning systems are affected by several sources of uncertainty, such as algorithm limitations, measurement uncertainty in the data used to model the beam, and residual differences between measured and computed dose. This report presents a novel method to take them into account. To take into account the effect of associated uncertainties, a probabilistic approach using a new kind of histogram, a dose-expected volume histogram, is introduced. The expected value of the volume in the region of interest receiving an absorbed dose equal to or greater than a certain value is found by using the probability distribution of the dose at each point. A rectangular probability distribution is assumed for this point dose, and a formulation that accounts for uncertainties associated with point dose is presented for practical computations. This method is applied to a set of DVHs for different regions of interest, including 6 brain patients, 8 lung patients, 8 pelvis patients, and 6 prostate patients planned for intensity-modulated radiation therapy. Results show a greater effect on planning target volume coverage than in organs at risk. In cases of steep DVH gradients, such as planning target volumes, this new method shows the largest differences with the corresponding DVH; thus, the effect of the uncertainty is larger.
Du, Zhenhua; Qu, Hui
2017-03-01
In this study, the relationship between ovarian function and ovarian limited dose in radiotherapy was evaluated in young patients with cervical cancer who underwent ovarian transposition (Fig1B). Moreover, the novel ovarian dose limit for a better preservation of ovarian function in intensity-modulated radiation therapy (IMRT) was determined. We retrospectively analyzed data from 86 patients with cervical cancer who received radical hysterectomy and ovarian transposition from January 2013 to June 2015. In agreement with the National Comprehensive Cancer Network Guidelines (NCCN) for Cervical Cancer Version 2.2015, 65 patients with pathological high-risk factors were administered adjuvant radiotherapy-20 of them received three-dimensional conformal radiotherapy (Observation Group A), 24 patients received IMRT with no limitation on radiation dose to ovaries (Observation Group B), and 21 patients underwent IMRT with limited radiation dose(V 10 <20%) to ovaries (Observation Group C). Twenty-one patients without any predetermined high-risk factors did not received radiation therapy (Control Group D). Patients from all four groups were followed up, and sex hormone levels (E 2 , P, follicle-stimulating hormone [FSH], LH) before radiation, postradiation, 3 month, and 6 month after the radiation therapy were measured by electrochemiluminescence immunoassay. Subsequently, changes in sex hormone levels in all four groups of patients at various time points were analyzed. The levels of sexual hormones (E 2 , P, FSH, LH) before radiation, postradiation, 3 month, and 6 month after the radiation therapy in patients from all three observation groups were significantly lower than those in patients of the control group (P < 0.05). There was no statistically significant difference in the levels of sex hormones in patients of the control group at different time points (P > 0.05). Within each observation group, there was a statistically significant difference in the sex hormone levels in patients before the radiation and after the radiation (P < 0.05); however, when data from all three observation groups were compared, only the difference in the levels of FSH and LH between the patients from Group A and Group C was statistically significant (P < 0.05). The results of receiver-operating characteristic (ROC) curve analysis suggested that limiting ovarian radiation dose to V 7.5 < 26% in IMRT prevents the disruption of ovarian function (area under ROC curve was 0.740, confidence interval [CI] = 0.606-0.874). In young patients with cervical cancer who underwent radical hysterectomy and ovarian transposition without receiving adjuvant radiotherapy, ovarian endocrine function was well preserved. In patients who received any type of postoperative radiotherapy, ovarian function was affected, suggesting that the standard ovarian limited dose used in IMRT disrupted ovarian function. The results of the ROC curve analysis suggested that the new optimal dose limit of V 7.5 < 26% should be used in IMRT to preserve ovarian function (P = 0.003). © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Ubeda, Carlos; Morales, Claudio; Gutiérrez, Diego; Oliveira, Marcus; Manterola, Carlos
2018-05-11
The objective of this article is to present initial occupational dose values using digital active personal dosimeters for medical staff during adult interventional cardiology procedures in a public hospital in Chile. Personal dose equivalent Hp(10) over the lead apron of physician, nurse and radiographer were measured during 59 procedures. Mean values of occupational dose Hp(10) per procedure were 47.6, 6.2 and 4.3 μSv for physician, nurse and radiographer, respectively. If no protective tools are used, physician dose can exceed the new eye lens dose limit.
Godman, Brian; Bishop, Iain; Campbell, Stephen M; Malmström, Rickard E; Truter, Ilse
2015-04-01
Statins are recommended first-line treatment for hyperlipidemia, with published studies suggesting limited differences between them. However, there are reports of under-dosing. South Africa has introduced measures to enhance generic utilization. Part one documents prescribed doses of statins in 2011. Part two determines the extent of generics versus originator and single-sourced statins in 2011 and their costs. Underdosing of simvastatin in 2011 with average prescribed dose of 23.7 mg; however, not for atorvastatin (20.91 mg) or rosuvastatin (15.02 mg). High utilization of generics versus originators at 93-99% for atorvastatin and simvastatin, with limited utilization of single-sourced statins (22% of total statins - defined daily dose basis), mirroring Netherlands, Sweden and UK. Generics priced 33-51% below originator prices. Opportunity to increase simvastatin dosing through education, prescribing targets and incentives. Opportunity to lower generic prices with generic simvastatin 96-98% below single-sourced prices in some European countries.
A compact in vivo neutron activation analysis system to quantify manganese in human hand bone
NASA Astrophysics Data System (ADS)
Liu, Yingzi
As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.
Generalised photon skyshine calculations.
Hayes, Robert
2004-01-01
The energy-dependent dose contributions from monoenergetic photon source points located 1.5 m above the ground have been tabulated. These values are intended to be used for regulatory compliance with site boundary dose limitations and as such are all presented in effective dose units. Standard air and soil are modelled where the air has vertical density gradient approximation. Energies from 0.05 up to 10 MeV are evaluated for dose transport up to 40 mean free paths.
Ueda, Yoshihiro; Fukunaga, Jun-Ichi; Kamima, Tatsuya; Adachi, Yumiko; Nakamatsu, Kiyoshi; Monzen, Hajime
2018-03-20
The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (V overlap /V whole ) were investigated. There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and V overlap /V whole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when V overlap /V whole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when V overlap /V whole for the bladder was 10%. Organs' upper and lower limits of ED in the models correlated closely with the V overlap /V whole . It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.
Beta-carotene conversion to vitamin A decreases as the dietary dose increases in humans
USDA-ARS?s Scientific Manuscript database
It has been suggested that high doses of B-carotene limit its conversion to vitamin A, yet this effect has not been well established in humans. A feeding study was conducted in which volunteers consumed two doses of deuterium labeled B-carotene on two occasions, with B-carotene and vitamin A respon...
Risk equivalent of exposure versus dose of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, V.P.
This report describes a risk analysis study of low-dose irradiation and the resulting biological effects on a cell. The author describes fundamental differences between the effects of high-level exposure (HLE) and low-level exposure (LLE). He stresses that the concept of absorbed dose to an organ is not a dose but a level of effect produced by a particular number of particles. He discusses the confusion between a linear-proportional representation of dose limits and a threshold-curvilinear representation, suggesting that a LLE is a composite of both systems. (TEM)
Ibach, Bethany W.; Johnson, Peter N.; Ernst, Kimberly D.; Harrison, Donald; Miller, Jamie L.
2016-01-01
Background: Methadone and morphine are commonly used to treat neonatal abstinence syndrome (NAS). Limited data exist to describe the most appropriate initial doses and taper regimens of these agents. Objectives: Describe the median initial dose and frequency of methadone and morphine for NAS. Compare dose adjustments, time to symptom relief, and taper complexity between groups. Methods: Retrospective study of neonates receiving enteral methadone or morphine for NAS over a 4-year period. Data collection included medication regimen, abstinence scores based on the Modified Finnegan Neonatal Abstinence Scoring Tool, and adverse events. Planned home taper complexity was assessed using the Medication Taper Complexity Score–Revised (MTCS-R). The primary outcome was initial opioid dose. Secondary outcomes included number of dose adjustments, time to symptom relief, and MTCS-R score. Results: Fifty neonates were initially treated for NAS with methadone (n = 36) or morphine (n = 14). The median initial dose was 0.09 mg/kg (range = 0.03-0.2) for methadone and 0.04 mg/kg (range = 0.03-0.4) for morphine. The most common initial dosing interval was q8h for methadone versus q3h for morphine. Number of dose adjustments and time to symptom relief were similar between groups. Median MTCS-R scores were similar between groups. There was no difference in adverse events between groups. Limitations included small sample size, preference toward methadone use, and variability of initial opioid dosing and titration. Conclusions: There was significant variability in initial doses of both agents. Neonates receiving methadone required less frequent dosing than morphine, which may result in easier administration and may allow for safer outpatient administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, John M., E-mail: jrobertson@beaumont.edu; Margolis, Jeffrey; Jury, Robert P.
2012-02-01
Purpose: To determine the recommended dose of radiotherapy when combined with full-dose gemcitabine and erlotinib for unresected pancreas cancer. Methods and Materials: Patients with unresected pancreatic cancer (Zubrod performance status 0-2) were eligible for the present study. Gemcitabine was given weekly for 7 weeks (1,000 mg/m{sup 2}) with erlotinib daily for 8 weeks (100 mg). A final toxicity assessment was performed in Week 9. Radiotherapy (starting at 30 Gy in 2-Gy fractions, 5 d/wk) was given to the gross tumor plus a 1-cm margin starting with the first dose of gemcitabine. A standard 3 plus 3 dose escalation (an additionalmore » 4 Gy within 2 days for each dose level) was used, except for the starting dose level, which was scheduled to contain 6 patients. In general, Grade 3 or greater gastrointestinal toxicity was considered a dose-limiting toxicity, except for Grade 3 anorexia or Grade 3 fatigue alone. Results: A total of 20 patients were treated (10 men and 10 women). Nausea, vomiting, and infection were significantly associated with the radiation dose (p = .01, p = .03, and p = .03, respectively). Of the 20 patients, 5 did not complete treatment and were not evaluable for dose-escalation purposes (3 who developed progressive disease during treatment and 2 who electively discontinued it). Dose-limiting toxicity occurred in none of 6 patients at 30 Gy, 2 of 6 at 34 Gy, and 1 of 3 patients at 38 Gy. Conclusion: The results of the present study have indicated that the recommended Phase II dose is 30 Gy in 15 fractions.« less
Takahashi, Shunji; Nakano, Kenji; Yokota, Tomoya; Shitara, Kohei; Muro, Kei; Sunaga, Yoshinori; Ecstein-Fraisse, Evelyne; Ura, Takashi
2016-08-27
In clinical studies in Western countries, the recommended dose of combination ombrabulin a vascular disrupting agent, with cisplatin is 25 mg/m 2 ombrabulin with 75 mg/m 2 cisplatin every 3 weeks. Here, we report the first Phase 1 study of this treatment regimen in Japanese patients with advanced solid tumors. This was an open-label, multicenter, sequential cohort, dose-escalation Phase 1 study of ombrabulin with cisplatin administered once every 3 weeks. The study used a 3 + 3 design without intrapatient dose escalation. The investigated dose levels of ombrabulin were 15.5 and 25 mg/m 2 combined with cisplatin 75 mg/m 2 . The latter dose level was regarded as the maximum administered dose if more than one patient experienced dose-limiting toxicities. Ten patients were treated, but no dose-limiting toxicity was observed at both dose levels. Ombrabulin 25 mg/m 2 with cisplatin 75 mg/m 2 was the maximum administered dose and regarded as the recommended dose in the combination regimen for Japanese patients with cancer. The most frequently reported drug-related adverse events were neutropenia, decreased appetite, constipation, nausea and fatigue. One partial response and five cases of stable disease were reported as the best overall responses. Pharmacokinetic parameters of ombrabulin and cisplatin were comparable with those in non-Japanese patients. Ombrabulin 25 mg/m 2 with cisplatin 75 mg/m 2 once every 3 weeks was well tolerated and established as the recommended dose in Japanese patients with advanced solid tumors. The safety and pharmacokinetic profiles were comparable between Japanese and Caucasian patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bercu, J P; Galloway, S M; Parris, P; Teasdale, A; Masuda-Herrera, M; Dobo, K; Heard, P; Kenyon, M; Nicolette, J; Vock, E; Ku, W; Harvey, J; White, A; Glowienke, S; Martin, E A; Custer, L; Jolly, R A; Thybaud, V
2018-04-01
This paper provides compound-specific toxicology limits for 20 widely used synthetic reagents and common by-products that are potential impurities in drug substances. In addition, a 15 μg/day class-specific limit was developed for monofunctional alkyl bromides, aligning this with the class-specific limit previously defined for monofunctional alkyl chlorides. Both the compound- and class-specific toxicology limits assume a lifetime chronic exposure for the general population (including sensitive subpopulations) by all routes of exposure for pharmaceuticals. Inhalation-specific toxicology limits were also derived for acrolein, formaldehyde, and methyl bromide because of their localized toxicity via that route. Mode of action was an important consideration for a compound-specific toxicology limit. Acceptable intake (AI) calculations for certain mutagenic carcinogens assumed a linear dose-response for tumor induction, and permissible daily exposure (PDE) determination assumed a non-linear dose-response. Several compounds evaluated have been previously incorrectly assumed to be mutagenic, or to be mutagenic carcinogens, but the evidence reported here for such compounds indicates a lack of mutagenicity, and a non-mutagenic mode of action for tumor induction. For non-mutagens with insufficient data to develop a toxicology limit, the ICH Q3A qualification thresholds are recommended. The compound- and class-specific toxicology limits described here may be adjusted for an individual drug substance based on treatment duration, dosing schedule, severity of the disease and therapeutic indication. Copyright © 2018. Published by Elsevier Inc.
Takeoka, Hiroaki; Yamada, Kazuhiko; Azuma, Koichi; Zaizen, Yoshiaki; Yamashita, Fumie; Yoshida, Tsukasa; Naito, Yoshiko; Okayama, Yusuke; Miyamoto, Maki; Hoshino, Tomoaki
2014-05-01
The primary objective of this study was to evaluate the safety and tolerability of carboplatin plus pemetrexed for elderly patients (≥75 years) with chemotherapy-naïve advanced non-squamous non-small cell lung cancer. Patients received escalated doses of carboplatin at an area under the concentration-time curve of 4 (Level 1) or 5 (Level 2) plus pemetrexed (500 mg/m(2)) every 3 weeks for a maximum of six cycles. Dose escalation was decided according to whether dose-limiting toxicity occurred in the first cycle of chemotherapy. A total of 20 patients (6 at Level 1, 14 at Level 2) were enrolled. No dose-limiting toxicities were observed in patients at Level 1 or the first six patients at Level 2, and therefore the combination of carboplatin at an area under the concentration-time curve of 5 plus pemetrexed at 500 mg/m(2) was considered to be the recommended dose. Among a total of 14 patients in Level 2, only 1 patient experienced dose-limiting toxicity: Grade 3 febrile neutropenia and urticaria. The major toxicities were neutropenia, thrombocytopenia and anemia. Liver dysfunction, fatigue and anorexia were also common, but generally manageable. Six patients showed partial responses, giving the overall response rate of 30%. The median progression-free survival period was 4.8 months (95% confidence interval 2.9-6.7 months). The combination of carboplatin at an area under the concentration-time curve of 5 plus pemetrexed at 500 mg/m(2) was determined as the recommended dose in chemotherapy-naïve elderly patients (≥75 years) with advanced non-squamous non-small cell lung cancer, in view of overall safety and tolerability.
Space radiation dosimetry in low-Earth orbit and beyond.
Benton, E R; Benton, E V
2001-09-01
Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.
Tavares, J B; Sacadura-Leite, E; Matoso, T; Neto, L L; Biscoito, L; Campos, J; Sousa-Uva, A
2016-06-01
In interventional neuroradiology, few operators routinely use radiation protection glasses. Moreover, in most centers, radiation dose data only accounts for whole body dose without specific information on lens dose. In 2012, the International Commission on Radiological Protection advised that the threshold limit value for the lens should be 20 mSv/year instead of the previous 150 mSv/year limit. The purpose of this study was to compare the radiation dose in the operator's lens during real diagnostic and interventional neuroangiographies, either using or without lead protection glasses. Using the Educational Direct Dosimeter (EDD30 dosimeter), accumulated radiation dose in the lens was measured in 13 neuroangiographies: seven diagnostic and six interventional. Operators with and without radiation protection glasses were included and the sensor was placed near their left eye, closest to the radiation beam. Without glasses, the corrected mean dose of radiation in the lens was 8.02 µSv for diagnostic procedures and 168.57 µSv for interventional procedures. Using glasses, these values were reduced to 1.74 µSv and 33.24 µSv, respectively. Considering 20 mSv as the suggested annual limit of equivalent dose in the lens, neuroradiologists may perform up to 2,494 diagnostic procedures per year without protecting glasses, a number that increases to 11,494 when glasses are used consistently. Regarding intervention, a maximum of 119 procedures per year is advised if glasses are not used, whereas up to 602 procedures/year may be performed using this protection. Therefore, neuroradiologists should always wear radiation protection glasses. © The Author(s) 2016.
Burns, Sean; Thornton, Raymond; Dauer, Lawrence T; Quinn, Brian; Miodownik, Daniel; Hak, David J
2013-07-17
Despite recommendations to do so, few orthopaedists wear leaded glasses when performing operative fluoroscopy. Radiation exposure to the ocular lens causes cataracts, and regulatory limits for maximum annual occupational exposure to the eye continue to be revised downward. Using anthropomorphic patient and surgeon phantoms, radiation dose at the surgeon phantom's lens was measured with and without leaded glasses during fluoroscopic acquisition of sixteen common pelvic and hip views. The magnitude of lens dose reduction from leaded glasses was calculated by dividing the unprotected dose by the dose measured behind leaded glasses. On average, the use of leaded glasses reduced radiation to the surgeon phantom's eye by tenfold, a 90% reduction in dose. However, there was widespread variation in the amount of radiation that reached the phantom surgeon's eye among the various radiographic projections we studied. Without leaded glasses, the dose measured at the surgeon's lens varied more than 250-fold among these sixteen different views. In addition to protecting the surgeon's eye from the deleterious effects of radiation, the use of leaded glasses could permit an orthopaedist to perform fluoroscopic views on up to ten times more patients before reaching the annual dose limit of 20 mSv of radiation to the eye recommended by the International Commission on Radiological Protection. Personal safety and adherence to limits of occupational radiation exposure should compel orthopaedists to wear leaded glasses for fluoroscopic procedures if other protective barriers are not in use. Leaded glasses are a powerful tool for reducing the orthopaedic surgeon's lens exposure to radiation during acquisition of common intraoperative fluoroscopic views.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, G; Yin, F; Ren, L
Purpose: In order to track the tumor movement for patient positioning verification during arc treatment delivery or in between 3D/IMRT beams for stereotactic body radiation therapy (SBRT), the limited-angle kV projections acquisition simultaneously during arc treatment delivery or in-between static treatment beams as the gantry moves to the next beam angle was proposed. The purpose of this study is to estimate additional imaging dose resulting from multiple tomosynthesis acquisitions in-between static treatment beams and to compare with that of a conventional kV-CBCT acquisition. Methods: kV imaging system integrated into Varian TrueBeam accelerators was modeled using EGSnrc Monte Carlo user code,more » BEAMnrc and DOSXYZnrc code was used in dose calculations. The simulated realistic kV beams from the Varian TrueBeam OBI 1.5 system were used to calculate dose to patient based on CT images. Organ doses were analyzed using DVHs. The imaging dose to patient resulting from realistic multiple tomosynthesis acquisitions with each 25–30 degree kV source rotation between 6 treatment beam gantry angles was studied. Results: For a typical lung SBRT treatment delivery much lower (20–50%) kV imaging doses from the sum of realistic six tomosynthesis acquisitions with each 25–30 degree x-ray source rotation between six treatment beam gantry angles were observed compared to that from a single CBCT image acquisition. Conclusion: This work indicates that the kV imaging in this proposed Limited-angle Intra-fractional Verification (LIVE) System for SBRT Treatments has a negligible imaging dose increase. It is worth to note that the MV imaging dose caused by MV projection acquisition in-between static beams in LIVE can be minimized by restricting the imaging to the target region and reducing the number of projections acquired. For arc treatments, MV imaging acquisition in LIVE does not add additional imaging dose as the MV images are acquired from treatment beams directly during the treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Josef, Edgar, E-mail: edgar.ben-josef@uphs.upenn.edu; Schipper, Mathew; Francis, Isaac R.
2012-12-01
Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of {>=}1500/mm{sup 3}, platelets {>=}100,000/mm{sup 3}, creatinine <2 mg/dL, bilirubin <3 mg/dL, and alanine aminotransferase/aspartate aminotransferase {<=}2.5 Multiplication-Sign upper limit of normal. FDR-G (1000 mg/m{sup 2}/100 min intravenously) wasmore » given on days -22 and -15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) {>=}3, neutropenic fever, or deterioration in performance status to {>=}3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madani, Indira; Duthoy, Wim; Derie, Cristina R.N.
2007-05-01
Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was appliedmore » for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boerner, A. J.; Maldonado, D. G.; Hansen, Tom
2012-09-01
Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensedmore » by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.« less
Corwin, Michael T; Seibert, J Anthony; Fananapazir, Ghaneh; Lamba, Ramit; Boone, John M
2016-04-01
The purposes of this study were to correlate fetal z-axis location within the maternal abdomen on CT with gestational age and estimate fetal dose reduction of a study limited to the abdomen only, with its lower aspect at the top of the iliac crests, compared with full abdominopelvic CT in pregnant trauma patients. We performed a study of pregnant patients who underwent CT of the abdomen and pelvis for trauma at a single institution over a 10-year period. The inferior aspect of maternal liver, spleen, gallbladder, pancreas, adrenals, and kidneys was recorded as above or below the iliac crests. The distance from the iliac crest to the top of the fetus or gestational sac was determined. The CT images of the limited and full scanning studies were independently reviewed by two blinded radiologists to identify traumatic injuries. Fetal dose profiles, including both scatter and primary radiation, were computed analytically along the central axis of the patient to estimate fetal dose reduction. Linear regression analysis was performed between gestational age and distance of the fetus to the iliac crests. Thirty-five patients were included (mean age, 26.2 years). Gestational age ranged from 5 to 38 weeks, with 5, 19, and 11 gestations in the first, second, and third trimesters, respectively. All solid organs were above the iliac crests in all patients. In three of six patients, traumatic findings in the pelvis would have been missed with the limited study. There was high correlation between gestational age and distance of the fetus to the iliac crests (R(2) = 0.84). The mean gestational age at which the top of the fetus was at the iliac crest was 17.3 weeks. Using the limited scanning study, fetuses at 5, 20, and 40 weeks of gestation would receive an estimated 4.3%, 26.2%, and 59.9% of the dose, respectively, compared with the dose for the full scanning study. In pregnant patients in our series with a history of trauma, CT of the abdomen only was an effective technique to reduce fetal radiation exposure compared with full abdomen and pelvis CT.
WE-AB-207B-01: Dose Tolerance for SBRT/SABR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, J
Purpose: Stereotactic body radiation therapy (SBRT) / stereotactic ablative body radiotherapy (SABR) is gaining popularity, but quantitative dose tolerance has still been lacking. To improve this, the April 2016 issue of Seminars in Radiation Oncology will have normal tissue complication probability (NTCP) models for 10 critical structures: optic pathway, cochlea, oral mucosa, esophagus, chestwall, aorta, bronchi, duodenum, small bowel, and spinal cord. Methods: The project included more than 1500 treatments in 1–5 fractions using CyberKnife, Gamma Knife, or LINAC, with 60 authors from 15 institutions. NTCP models were constructed from the 97 grade 2–3 complications, predominantly scored using the commonmore » terminology criteria for adverse events (CTCAEv4). Dose volume histogram (DVH) data from each institutional dataset was loaded into the DVH Evaluator software (DiversiLabs, LLC, Huntingdon Valley, Pa) for modeling. The current state of the literature for the critical structures was depicted using DVH Risk Maps: comparative graphs of dose tolerance limits that can include estimated risk levels, reported complications, DVH data for study patients, as well as high- and low-risk dose tolerance limits. Results: For relatively acceptable toxicity like grade 1–3 rib fractures and chestwall pain, the high-risk limits have 50% risk and the low-risk limits have 5% risk. Emami et al (IJROBP 1991 May 15;21(1):109–22) used 50% and 5% risk levels for all structures, whereas this effort used clinically acceptable ranges for each: in structures like aorta or spinal cord where complications must be avoided, the high- and low-risk limits have about 3% and 1% risk, respectively, in this issue of Seminars. These statistically based guidelines can help ensure plan quality for each patient. Conclusion: NTCP for SBRT is now becoming available. Hypofractionated dose tolerance can be dramatically different than extrapolations of conventional fractionation so NTCP analysis of the SBRT/SBRT data is important to ensure safe clinical practice. Dr. Grimm, designed and holds intellectual property rights to the DVH Evaluator software tool which is an FDA-cleared product in commercial use, and was used to analyze the data.« less
Role of the standard deviation in the estimation of benchmark doses with continuous data.
Gaylor, David W; Slikker, William
2004-12-01
For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.
Axelrod, David E; Vedula, Sudeepti; Obaniyi, James
2017-05-01
The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function. A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function. Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug. An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.
Annual limits on intake (ALI) values in ICRP 61 and 10 CFR Part 20 (1991)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Kearfott, K.J.
The newest major revision of Nuclear Regulatory Commission`s 10 CFR Part 20 (1991) incorporates the new dose methodology system, revised limits, and improved internal dose computations presented in International Commission on Radiation Protection (ICRP) Publication 30 (1979). A year before the issue of this revised 10 CFR Part 20, the ICRP dispatched Publication 61 (1990). This new ICRP report employed different dose limits, in addition to incorporating more recent biological information and variations in physiological and different tissue weighing factors for various organs. An investigation of the numerical differences in the Annual Limit on Intake (ALI) reported in this moremore » recent international regulations and those of the new regulations was thus undertaken. Overall means, medians, modes, maximum, minimum, and ranges of the percent changes are almost identical for ingestion and inhalation, although the percent difference between 10 CFR and ICRP Publication 61 showed minor differences for individual radionuclides. Approximately 334 of 1,351 radionuclides for inhalation and 173 of 771 radionuclides for ingestion have much less restrictive ALIs in the new ICRP recommendations than in the old, with some of those limits increased by at least a factor of two. Approximately 51% of the radionuclides for ingestion intake and 48% of radionuclides for inhalation intake showed changes of greater than 25%. The radionuclides observed to have much less restrictive ALIs are primarily the radionuclides of thorium, mercury, plutonium, uranium, and americium which have short effective clearance rates. While many countries have already applied the ICRP 61 recommendations to their radiation protection standards, using the ICRP 30 recommendation in the United States does not match the international standards even when the values of the ALIs are adjusted for differences in dose limits.« less
Biological dosimetry in a group of radiologists by the analysis of dicentrics and translocations.
Montoro, A; Rodríguez, P; Almonacid, M; Villaescusa, J I; Verdú, G; Caballín, M R; Barrios, L; Barquinero, J F
2005-11-01
The results of a cytogenetic study carried out in a group of nine radiologists are presented. Chromosome aberrations were detected by fluorescence plus Giemsa staining and fluorescence in situ hybridization. Dose estimates were obtained by extrapolating the yield of dicentrics and translocations to their respective dose-effect curves. In seven individuals, the 95% confidence limits of the doses estimated by dicentrics did not include 0 Gy. The 99 dicentrics observed in 17,626 cells gave a collective estimated dose of 115 mGy (95% confidence limits 73-171). For translocations, five individuals had estimated doses that were clearly higher than the total accumulated recorded dose. The 82 total apparently simple translocations observed in 9722 cells gave a collective estimated dose of 275 mGy (132-496). The mean genomic frequencies (x100 +/- SE) of complete and total apparently simple translocations observed in the group of radiologists (1.91 +/- 0.30 and 2.67 +/- 0.34, respectively) were significantly higher than those observed in a matched control group (0.53 +/- 0.10 and 0.87 +/- 0.13, P < 0.01 in both cases) and in another occupationally exposed matched group (0.79 +/- 0.12 and 1.14 +/-0.14, P < 0.03 and P < 0.01, respectively). The discrepancies observed between the physically recorded doses and the biologically estimated doses indicate that the radiologists did not always wear their dosimeters or that the dosimeters were not always in the radiation field.
NASA Astrophysics Data System (ADS)
Donmoon, T.; Chamroonrat, W.; Tuntawiroon, M.
2016-03-01
The aim of this study is to estimate the whole body and finger radiation doses per study received by nuclear medicine staff involved in dispensing, administration of 18F-FDG and interacting with radioactive patients during PET/CT imaging procedures in a PET/CT facility. The whole-body doses received by radiopharmacists, technologists and nurses were measured by electronic dosimeter and the finger doses by ring dosimeter during a period of 4 months. In 70 PET/CT studies, the mean whole-body dose per study to radiopharmacist, technologist, and nurse were 1.07±0.09, 1.77±0.46, μSv, and not detectable respectively. The mean finger doses per study received by radiopharmacist, technologist, and nurse were 265.65±107.55, 4.84±1.08 and 19.22±2.59 μSv, respectively. The average time in contact with 18F-FDG was 5.88±0.03, 39.06±1.89 and 1.21±0.02 minutes per study for radiopharmacist, technologist and nurse respectively. Technologists received highest mean effective whole- body dose per study and radiopharmacist received the highest finger dose per study. When compared with the ICRP dose limit, each individual worker can work with many more 18F- FDG PET/CT studies for a whole year without exceeding the occupational dose limits. This study confirmed that low levels of radiation does are received by our medical personnel involved in 18F-FDG PET/CT procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.
The Hanford Reach National Monument (HRNM) was created by presidential proclamation in 2000. It is located along the Columbia River in south central Washington and consists of five distinct units. The McGee Ranch-Riverlands and the North Slope units are addressed in this report. North Slope refers to two of the HRNM units: the Saddle Mountain Unit and the Wahluke Slope Unit. The Saddle Mountain and Wahluke Slope Units are located north of the Columbia River, while the McGee Ranch-Riverlands Unit is located south of the Columbia River and north and west of Washington State Highway 24. To fulfill internal U.S.more » Department of Energy (DOE) requirements prior to any radiological clearance of land, the DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Authorized limits for residual radioactive contamination were developed based on the DOE annual exposure limit to the public (100 mrem) using future potential land-use scenarios. The DOE Office of Environmental Management approved these authorized limits on March 1, 2004. Historical soil monitoring conducted on and around the HRNM indicated soil concentrations of radionuclides were well below the authorized limits (Fritz et al. 2003). However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the McGee Ranch-Riverlands and North Slope units were below the authorized limits. Sixty-seven soil samples were collected from the McGee Ranch-Riverlands and North Slope units. A software package (Visual Sample Plan) was used to plan the collection to assure an adequate number of samples were collected. The number of samples necessary to decide with a high level of confidence (99%) that the soil concentrations of radionuclides on the North Slope and McGee Ranch-Riverlands units did not exceed the authorized limits was determined to be 27. Additional soil samples were collected from areas suspected to have a potential for accumulation of radionuclides. This included samples collected from the riparian zone along the Columbia River, Savage Island, and other locations across the North Slope and McGee Ranch-Riverlands units. The 67 soil samples collected from the McGee Ranch-Riverlands and North Slope units all had concentrations of radionuclides far below the authorized limits established by the DOE. Statistical analysis of the results concluded that the Authorized Limits were not exceeded when total uncertainty was considered. The calculated upper confidence limit for each radionuclide measured in this study (which represents the value at which 99% of the measurements reside below with a 99% confidence level) was lower than the Authorized Limit for each radionuclide. The maximum observed soil concentrations for the radionuclides included in the authorized limits would result in a potential annual dose of 0.23 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem/year dose limit for members of the public. Furthermore, the results of the biota dose assessment screen, which used the RESRAD biota code, indicated that the sum of fractions is less than one. This assumed soil concentrations equal to the maximum concentrations of radionuclides measured on the McGee Ranch-Riverlands and North Slope units’ in this study. Since the sum of fractions was less than 1, dose to terrestrial biota will not exceed the recommended biota dose limit for the soil concentrations measured in this study.« less
'Muscle-sparing' statins: preclinical profiles and future clinical use.
Pfefferkorn, Jeffrey A
2009-03-01
Coronary heart disease (CHD) is a leading cause of death in the US, and hypercholesterolemia is a key risk factor for this disease. The current standard of care for treating hypercholesterolemia is the use of HMG-CoA reductase inhibitors, also known as statins, which block the rate-limiting step of cholesterol biosynthesis. In widespread clinical use, statins have proven safe and effective for both primary prevention of CHD and secondary prevention of coronary events. Results from several recent clinical trials have demonstrated that increasingly aggressive cholesterol-lowering therapy might offer additional protection against CHD compared with less aggressive treatment standards. While higher doses of current statin therapies are capable of achieving these more aggressive treatment goals, in certain cases statin-induced myalgia, the muscle pain or weakness that sometimes accompanies high-dose statin therapy, limits patient compliance with a treatment regimen. To address this limitation, efforts have been undertaken to develop highly hepatoselective statins that are capable of delivering best-in-class efficacy with minimized risk of dose-limiting myalgia. In this review, the preclinical and early clinical data for these next generation statins are discussed.
X-ray emission as a potential hazard during ultrashort pulse laser material processing
NASA Astrophysics Data System (ADS)
Legall, Herbert; Schwanke, Christoph; Pentzien, Simone; Dittmar, Günter; Bonse, Jörn; Krüger, Jörg
2018-06-01
In laser machining with ultrashort laser pulses unwanted X-ray radiation in the keV range can be generated when a critical laser intensity is exceeded. Even if the emitted X-ray dose per pulse is low, high laser repetition rates can lead to an accumulation of X-ray doses beyond exposure safety limits. For 925 fs pulse duration at a center wavelength of 1030 nm, the X-ray emission was investigated up to an intensity of 2.6 × 1014 W/cm2. The experiments were performed in air with a thin disk laser at a repetition rate of 400 kHz. X-ray spectra and doses were measured for various planar target materials covering a wide range of the periodic table from aluminum to tungsten. Without radiation shielding, the measured radiation doses at this high repetition rate clearly exceed the regulatory limits. Estimations for an adequate radiation shielding are provided.
Qi, Cong; Gu, Yiyang; Sun, Qing; Gu, Hongliang; Xu, Bo; Gu, Qing; Xiao, Jing; Lian, Yulong
2017-05-01
We assessed the risk of liver injuries following low doses of N,N-dimethylformamide (DMF) below threshold limit values (20 mg/m) among leather industry workers and comparison groups. A cohort of 429 workers from a leather factory and 466 non-exposed subjects in China were followed for 4 years. Poisson regression and piece-wise linear regression were used to examine the relationship between DMF and liver injury. Workers exposed to a cumulative dose of DMF were significantly more likely than non-exposed workers to develop liver injury. A nonlinear relationship between DMF and liver injury was observed, and a threshold of the cumulative DMF dose for liver injury was 7.30 (mg/m) year. The findings indicate the importance of taking action to reduce DMF occupational exposure limits for promoting worker health.
Collins, Natalie D; Barrett, Alan D T
2017-03-01
Live attenuated 17D vaccine is considered one of the safest and efficacious vaccines developed to date. This review highlights what is known and the gaps in knowledge of vaccine-induced protective immunity. Recently, the World Health Organization modifying its guidance from 10-year booster doses to one dose gives lifelong protection in most populations. Nonetheless, there are some data suggesting immunity, though protective, may wane over time in certain populations and more research is needed to address this question. Despite having an effective vaccine to control yellow fever, vaccine shortages were identified during outbreaks in 2016, eventuating the use of a fractional-dosing campaign in the Democratic Republic of the Congo. Limited studies hinder identification of the underlying mechanism(s) of vaccine longevity; however, concurrent outbreaks during 2016 provide an opportunity to evaluate vaccine immunity following fractional dosing and insights into vaccine longevity in populations where there is limited information.
Dose Schedule Optimization and the Pharmacokinetic Driver of Neutropenia
Patel, Mayankbhai; Palani, Santhosh; Chakravarty, Arijit; Yang, Johnny; Shyu, Wen Chyi; Mettetal, Jerome T.
2014-01-01
Toxicity often limits the utility of oncology drugs, and optimization of dose schedule represents one option for mitigation of this toxicity. Here we explore the schedule-dependency of neutropenia, a common dose-limiting toxicity. To this end, we analyze previously published mathematical models of neutropenia to identify a pharmacokinetic (PK) predictor of the neutrophil nadir, and confirm this PK predictor in an in vivo experimental system. Specifically, we find total AUC and Cmax are poor predictors of the neutrophil nadir, while a PK measure based on the moving average of the drug concentration correlates highly with neutropenia. Further, we confirm this PK parameter for its ability to predict neutropenia in vivo following treatment with different doses and schedules. This work represents an attempt at mechanistically deriving a fundamental understanding of the underlying pharmacokinetic drivers of neutropenia, and provides insights that can be leveraged in a translational setting during schedule selection. PMID:25360756
Radiological protection and medical dosimetry for the Skylab crewmen
NASA Technical Reports Server (NTRS)
Bailey, J. V.; Hoffman, R. A.; English, R. A.
1977-01-01
Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.
Radiation exposure of the radiologist's eye lens during CT-guided interventions.
Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther
2014-02-01
In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.
Esophageal Dose Tolerance in Patients Treated With Stereotactic Body Radiation Therapy.
Nuyttens, Joost J; Moiseenko, Vitali; McLaughlin, Mark; Jain, Sheena; Herbert, Scott; Grimm, Jimm
2016-04-01
Mediastinal critical structures such as trachea, bronchus, esophagus, and heart are among the dose-limiting factors for stereotactic body radiation therapy (SBRT) to central lung lesions. The purpose of this study was to characterize the risk of esophagitis for patients treated with SBRT and to develop a statistical dose-response model to assess the equivalent uniform dose, D10%, D5cc, D1cc, and Dmax, to the esophagus and the risk of toxicity. Toxicity outcomes of a dose-escalation study of 56 patients who had taken CyberKnife treatment from 45-60Gy in 3-7 fractions at the Erasmus MC-Daniel den Hoed Cancer Center were utilized to create the dose-response model for esophagus. A total of 5 grade 2 esophageal complications were reported (Common Terminology Criteria for Adverse Events version 3.0); 4 complications were early effects and 1 complication was a late effect. All analyses were performed in terms of 5-fraction equivalent dosing. According to our study, D1cc at a dose of 32.9Gy and Dmax dose of 43.4Gy corresponded to a complication probability of 50% for grade 2 toxicity. In this series of 58 CyberKnife mediastinal lung cases, no grade 3 or higher esophageal toxicity occurred. Our estimates of esophageal toxicity are compared with the data in the literature. Further research needs to be performed to establish more reliable dose limits as longer follow-up and toxicity outcomes are reported in patients treated with SBRT for central lung lesions. Copyright © 2016 Elsevier Inc. All rights reserved.
Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-04-01
During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revisedmore » since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.« less
Santibáñez, M; Saavedra, R; Vásquez, M; Malano, F; Pérez, P; Valente, M; Figueroa, R G
2017-11-01
The present work is devoted to optimizing the sensitivity-doses relationship of a bench-top EDXRF system, with the aim of achieving a detection limit of 0.010mg/ml of gold nanoparticles in tumor tissue (clinical values expected), for doses below 10mGy (value fixed for in vivo application). Tumor phantoms of 0.3cm 3 made of a suspension of gold nanoparticles (15nm AurovistTM, Nanoprobes Inc.) were studied at depths of 0-4mm in a tissue equivalent cylindrical phantom. The optimization process was implemented configuring several tube voltages and aluminum filters, to obtain non-symmetrical narrow spectra with fixed FWHM of 5keV and centered among the 11.2-20.3keV. The used statistical figure of merit was the obtained sensitivity (with each spectrum at each depth) weighted by the delivered surface doses. The detection limit of the system was determined measuring several gold nanoparticles concentrations ranging from 0.0010 to 5.0mg/ml and a blank sample into tumor phantoms, considering a statistical fluctuation within 95% of confidence. The results show the possibility of obtaining a detection limit for gold nanoparticles concentrations around 0.010mg/ml for surface tumor phantoms requiring doses around 2mGy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solano, Gabriela; Gómez, Aarón; León, Guillermo
2015-10-01
Snake antivenoms are parenterally administered; therefore, endotoxin content must be strictly controlled. Following international indications to calculate endotoxin limits, it was determined that antivenom doses between 20 mL and 120 mL should not exceed 17.5 Endotoxin Units per milliliter (EU/mL) and 2.9 EU/mL, respectively. The rabbit pyrogen test (RPT) has been used to evaluate endotoxin contamination in antivenoms, but some laboratories have recently implemented the LAL assay. We compared the capability of both tests to evaluate endotoxin contamination in antivenoms, and we found that both methods can detect all endotoxin concentrations in the range of the antivenom specifications. The acceptance criteria of RPT and LAL must be harmonized by calculating the endotoxin limit as the quotient of the threshold pyrogenic dose and the therapeutic dose and the dose administered to rabbits as the quotient of the threshold pyrogenic dose and the endotoxin limit. Since endotoxins from Gram-negative bacteria exert different pyrogenicity, if contamination occurred, antivenom batches that induce pyrogenic reactions may be found in spite of passing LAL specifications. Although LAL assay can be used to assess endotoxin content throughout the antivenom manufacturing process, we recommend that the release of final products be based on the results of both methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.
2015-01-01
The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218
Limited PCB antagonism of TCDD-induced malformations in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrissey, R.E.; Harris, M.W.; Diliberto, J.J.
1992-01-01
Mice used to model induction of cleft palate and kidney malformations in offspring following maternal treatment with TCDD, were dosed on gestation day with hexachlorobiphenyl (HCB) and/or with tetrachlorodibenzo-p-dioxin (TCDD) to investigate the potential protective effects of HCB against TCDD-induced teratogenicity. At the doses used in the study, there was no effect of either compound on number of live or dead offspring. Fetal body weight was slightly decreased in all groups dosed with = or > 250 mg HCB/kg. HCB did not induce cleft palate at a dose of 1000 mg/kg, but did induce increases in hydronephrosis and hydroureter atmore » 500 and 1000 mg/kg. Combinations of HCB and TCDD decreased the incidence of cleft palate induced by TCDD alone, but only at doses of 15 microgram TCDD/kg combined with 125-500 mg HCB/kg. The window for antagonism of hydronephrosis (incidence and severity) appeared narrower (15 microgram TCDD/kg + 500 mg HCB/kg). HCB induced increases (3 fold) in EROD activity at doses of 500 and 1000 mg/kg, suggesting that the limited antagonism of TCDD teratogenicity by HCB would be consistent with control by Ah receptor. (Copyright (c) 1992 Elsevier Science Publishers B.V.)« less
Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru
2013-01-01
For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides (241Am, 134Cs, 137Cs, and 60Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides (241Am, 57Co, 137Cs, 95Zr, 95Nb, 58Co, and 60Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public. PMID:23469013
Taira, Yasuyuki; Hayashida, Naomi; Tsuchiya, Rimi; Yamaguchi, Hitoshi; Takahashi, Jumpei; Kazlovsky, Alexander; Urazalin, Marat; Rakhypbekov, Tolebay; Yamashita, Shunichi; Takamura, Noboru
2013-01-01
For the current on-site evaluation of the environmental contamination and contributory external exposure after the accident at the Chernobyl Nuclear Power Plant (CNPP) and the nuclear tests at the Semipalatinsk Nuclear Testing Site (SNTS), the concentrations of artificial radionuclides in soil samples from each area were analyzed by gamma spectrometry. Four artificial radionuclides ((241)Am, (134)Cs, (137)Cs, and (60)Co) were detected in surface soil around CNPP, whereas seven artificial radionuclides ((241)Am, (57)Co, (137)Cs, (95)Zr, (95)Nb, (58)Co, and (60)Co) were detected in surface soil around SNTS. Effective doses around CNPP were over the public dose limit of 1 mSv/y (International Commission on Radiological Protection, 1991). These levels in a contaminated area 12 km from Unit 4 were high, whereas levels in a decontaminated area 12 km from Unit 4 and another contaminated area 15 km from Unit 4 were comparatively low. On the other hand, the effective doses around SNTS were below the public dose limit. These findings suggest that the environmental contamination and effective doses on the ground definitely decrease with decontamination such as removing surface soil, although the effective doses of the sampling points around CNPP in the present study were all over the public dose limit. Thus, the remediation of soil as a countermeasure could be an extremely effective method not only for areas around CNPP and SNTS but also for areas around the Fukushima Dai-ichi Nuclear Power Plant (FNPP), and external exposure levels will be certainly reduced. Long-term follow-up of environmental monitoring around CNPP, SNTS, and FNPP, as well as evaluation of the health effects in the population residing around these areas, could contribute to radiation safety and reduce unnecessary exposure to the public.
Monitoring the eye lens: which dose quantity is adequate?
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.
2010-07-01
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity Hp(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity Hp(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of Hp(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of Hp(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of Hp(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
Monitoring the eye lens: which dose quantity is adequate?
Behrens, R; Dietze, G
2010-07-21
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. The question of which personal dose equivalent quantity is appropriate for monitoring the dose to the eye lens arises from this situation. While in many countries dosemeters calibrated in terms of the dose equivalent quantity H(p)(0.07) have been seen as being adequate for monitoring the dose to the eye lens, this might be questionable in the case of reduced dose limits and, thus, it may become necessary to use the dose equivalent quantity H(p)(3) for this purpose. To discuss this question, the dose conversion coefficients for the equivalent dose of the eye lens (in the following eye lens dose) were determined for realistic photon and beta radiation fields and compared with the values of the corresponding conversion coefficients for the different operational quantities. The values obtained lead to the following conclusions: in radiation fields where most of the dose comes from photons, especially x-rays, it is appropriate to use dosemeters calibrated in terms of H(p)(0.07) on a slab phantom, while in other radiation fields (dominated by beta radiation or unknown contributions of photon and beta radiation) dosemeters calibrated in terms of H(p)(3) on a slab phantom should be used. As an alternative, dosemeters calibrated in terms of H(p)(0.07) on a slab phantom could also be used; however, in radiation fields containing beta radiation with the end point energy near 1 MeV, an overestimation of the eye lens dose by up to a factor of 550 is possible.
SU-F-P-21: Study of Dosimetry Accuracy of Small Passively Scattered Proton Beam Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Gautam, A; Kerr, M
2016-06-15
Purpose: To study the accuracy of the dose distribution of very small irregular fields of passively scattered proton beams calculated by the analytical pencil beam model of the Eclipse treatment planning system (TPS). Methods: An irregular field with a narrow region (width < 1 cm) that was used for the treatment of a small volume adjacent to a previously treated area were chosen for this investigation. Point doses at different locations inside the field were measured with a small volume ion chamber (A26, Standard Imaging). 2-D dose distributions were measured using a 2-D ion chamber array (MatriXX, IBA). All themore » measurements were done in plastic water phantom. The measured dose distributions were compared with the verification plan dose calculated in a water like phantom for the patient treatment field without the use of the compensator. Results: Point doses measured with the ion chamber in the narrowest section of the field were found to differ as much as 10% from the Eclipse calculated dose at some of the points. The 2-D dose distribution measured with the MatriXX which was validated by comparison with limited film measurement, at the proximal 95%, center of the spread out Bragg Peak and distal 90% depths agreed reasonably well with the TPS calculated dose distribution with more than 92% of the pixels passing the 2% / 2 mm dose distance agreement. Conclusion: The dose calculated by the pencil beam model of the Eclipse TPS for narrow irregular fields may not be accurate within 5% at some locations of the field, especially at the points close to the field edge due to the limitation of the dose calculation model. Overall accuracy of the calculated 2-D dose distribution was found to be acceptable for the 2%/2 mm dose/distance agreement with the measurement.« less
Bruera, Gemma; Massacese, Silvia; Galvano, Antonio; Mas, Antonella Dal; Guadagni, Stefano; Calvisi, Giuseppe; Ciacco, Eugenio; Russo, Antonio; Ricevuto, Enrico
2018-04-17
Proper administration timing, dose-intensity, efficacy/toxicity ratio of triplet docetaxel (DTX), 5-fluorouracil (5-FU), and oxaliplatin (OXP) should be improved to safely perform three-drugs intensive first line in advanced gastric cancer (GC). This dose-finding study investigated recommended 5-FU and OXP doses, safety of triplet regimen and preliminary activity. Schedule: 12h-timed-flat-infusion 5-FU 700-1000 mg/m 2 /d 1-2, 8-9, 15-16, 22-23, with 100 mg/m 2 /d increase for dose level; DTX 50 mg/m 2 d 1, 15 fixed dose, OXP at three increasing dose-levels 60-70-80 mg/m 2 d 8, 22, every 4 weeks. Intra- and inter-patients dose-escalation was planned. Ten fit <75 years patients were enrolled: median age 59; young-elderly 4 (40%). From first to fifth dose level, 5 patients (1 per cohort) were enrolled according to intra-patient dose escalation, no dose-limiting toxicity (DLT) were reported. At sixth level, 1 DLT, G2 diarrhea, was reported, thus other 2 patients were enrolled, DLT 1/3 patients (33%). Maximum tolerated dose (MTD) was not reached. 5-FU and OXP recommended doses (RD) were 1000 mg/m 2 /d and 80 mg/m 2 , respectively. To confirm RD, other 3 patients were enrolled, without DLT. Cumulative G3-4 toxicities were: neutropenia 50%, leucopenia 20%, hypoalbuminemia 10%, mucositis 10%, asthenia 20%. Limiting toxicity syndromes were 30%, 25% in young-elderly, all multiple site. Objective response rate intent-to-treat 60%, disease control rate 90%. After 15 months follow-up, progression-free and overall survival, 6 and 17 months, respectively. First line intensive FD/FOx regimen adding DXT/5-FU/OXP can be safely administered at recommended doses in advanced GC, with promising high activity and efficacy.
Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.
Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke
2017-06-01
Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.
Pardo, Beatriz; Paz-Ares, Luis; Tabernero, Josep; Ciruelos, Eva; García, Margarita; Salazar, Ramón; López, Ana; Blanco, María; Nieto, Antonio; Jimeno, José; Izquierdo, Miguel Angel; Trigo, José Manuel
2008-02-15
A dose-escalation, phase I study evaluated the safety, pharmacokinetics, and efficacy of a weekly 1-h regimen of kahalalide F, a cyclic depsipeptide isolated from the marine mollusk Elysia rufescens, in adult patients with advanced solid tumors and no standard treatment available. Patients received an i.v. 1-h infusion of kahalalide F once weekly until disease progression or unacceptable toxicity. The starting kahalalide F dose was 266 microg/m(2), and dose escalation proceeded based on the worst toxicity found in the previous cohort. Thirty-eight patients were enrolled at three Spanish institutions and received once-weekly kahalalide F 1-h infusions at doses between 266 and 1,200 microg/m(2). Dose-limiting toxicities consisted of transient grade 3/4 increases in transaminase blood levels. The maximum tolerated dose for this kahalalide F schedule was 800 microg/m(2), and the recommended dose for phase II studies was 650 microg/m(2). No accumulated toxicity was found. One patient with malignant melanoma had unconfirmed partial response, one patient with metastatic lung adenocarcinoma had minor response, and six patients with different types of metastatic solid tumors had stable disease for 2.8 to 12.7 months. The noncompartmental pharmacokinetics of this kahalalide F schedule was linear and showed a narrow distribution and short body residence. The transaminitis associated with kahalalide F was dose dependent. The maximum tolerated dose was 800 microg/m(2). Dose-limiting toxicities with weekly kahalalide F 1-h i.v. infusions were transient grade 3/4 increases in blood transaminase levels, and 650 microg/m(2) was declared the recommended dose for phase II studies. This schedule showed a favorable safety profile and hints of antitumor activity.
Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: Phase I study
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGarry, Ronald C.; Papiez, Lech; Williams, Mark
Purpose: A Phase I dose escalation study of stereotactic body radiation therapy to assess toxicity and local control rates for patients with medically inoperable Stage I lung cancer. Methods and Materials: All patients had non-small-cell lung carcinoma, Stage T1a or T1b N0, M0. Patients were immobilized in a stereotactic body frame and treated in escalating doses of radiotherapy beginning at 24 Gy total (3 x 8 Gy fractions) using 7-10 beams. Cohorts were dose escalated by 6.0 Gy total with appropriate observation periods. Results: The maximum tolerated dose was not achieved in the T1 stratum (maximum dose = 60 Gy),more » but within the T2 stratum, the maximum tolerated dose was realized at 72 Gy for tumors larger than 5 cm. Dose-limiting toxicity included predominantly bronchitis, pericardial effusion, hypoxia, and pneumonitis. Local failure occurred in 4/19 T1 and 6/28 T2 patients. Nine local failures occurred at doses {<=}16 Gy and only 1 at higher doses. Local failures occurred between 3 and 31 months from treatment. Within the T1 group, 5 patients had distant or regional recurrence as an isolated event, whereas 3 patients had both distant and regional recurrence. Within the T2 group, 2 patients had solitary regional recurrences, and the 4 patients who failed distantly also failed regionally. Conclusions: Stereotactic body radiation therapy seems to be a safe, effective means of treating early-stage lung cancer in medically inoperable patients. Excellent local control was achieved at higher dose cohorts with apparent dose-limiting toxicities in patients with larger tumors.« less
NASA Astrophysics Data System (ADS)
Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo
2014-06-01
Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathan, S.; Loftin, B.; Abramczyk, G.
The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels withinmore » the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.« less
Kenney, Jessica; Derby, Nina; Aravantinou, Meropi; Kleinbeck, Kyle; Frank, Ines; Gettie, Agegnehu; Grasperge, Brooke; Blanchard, James; Piatak, Michael; Lifson, Jeffrey D; Zydowsky, Thomas M; Robbiani, Melissa
2014-11-01
Epidemiological studies suggest that prevalent herpes simplex virus type 2 (HSV-2) infection increases the risk of HIV acquisition, underscoring the need to develop coinfection models to evaluate promising prevention strategies. We previously established a single high-dose vaginal coinfection model of simian human immunodeficiency virus (SHIV)/HSV-2 in Depo-Provera (DP)-treated macaques. However, this model does not appropriately mimic women's exposure. Repeated limiting dose SHIV challenge models are now used routinely to test prevention strategies, yet, at present, there are no reports of a repeated limiting dose cochallenge model in which to evaluate products targeting HIV and HSV-2. Herein, we show that 20 weekly cochallenges with 2-50 TCID50 simian human immunodeficiency virus reverse transcriptase (SHIV-RT) and 10(7) pfu HSV-2 results in infection with both viruses (4/6 SHIV-RT, 6/6 HSV-2). The frequency and level of vaginal HSV-2 shedding were significantly greater in the repeated exposure model compared to the single high-dose model (p<0.0001). We used this new model to test the Council's on-demand microbicide gel, MZC, which is active against SHIV-RT in DP-treated macaques and HSV-2 and human papillomavirus (HPV) in mice. While MZC reduced SHIV and HSV-2 infections in our repeated limiting dose model when cochallenging 8 h after each gel application, a barrier effect of carrageenan (CG) that was not seen in DP-treated animals precluded evaluation of the significance of the antiviral activity of MZC. Both MZC and CG significantly (p<0.0001) reduced the frequency and level of vaginal HSV-2 shedding compared to no gel treatment. This validates the use of this repeated limiting dose cochallenge model for testing products targeting HIV and HSV-2.
Makinson, Alain; Moing, Vincent Le; Kouanfack, Charles; Laurent, Christian; Delaporte, Eric
2008-05-01
Western randomized trials and prospective cohorts in resource-limited settings have proven virological success with stavudine-based highly active antiretroviral therapy. However, stavudine is no longer recommended in first-line treatments in these two settings due to its intrinsic toxicities and side effects. Yet it remains a cornerstone of treatment in resource-limited settings, due to lack of alternatives and its availability in generic fixed-dose combinations. To review the toxic effects of stavudine and their prevention and management strategies, especially in resource-limited settings. Data from clinical and pharmacological trials in Western countries, as well as prospective cohorts in resource-limited settings, were reviewed. Initiating or switching to less toxic nucleoside analogues whenever possible, or lowering stavudine doses to 30 mg b.i.d., is strongly recommended.
Time-resolved dosimetry using a pinpoint ionization chamber as quality assurance for IMRT and VMAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louwe, Robert J. W., E-mail: rob.louwe@ccdbh.org.nz; Satherley, Thomas; Day, Rebecca A.
Purpose: To develop a method to verify the dose delivery in relation to the individual control points of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) using an ionization chamber. In addition to more effective problem solving during patient-specific quality assurance (QA), the aim is to eventually map out the limitations in the treatment chain and enable a targeted improvement of the treatment technique in an efficient way. Methods: Pretreatment verification was carried out for 255 treatment plans that included a broad range of treatment indications in two departments using the equipment of different vendors. In-house developed softwaremore » was used to enable calculation of the dose delivery for the individual beamlets in the treatment planning system (TPS), for data acquisition, and for analysis of the data. The observed deviations were related to various delivery and measurement parameters such as gantry angle, field size, and the position of the detector with respect to the field edge to distinguish between error sources. Results: The average deviation of the integral fraction dose during pretreatment verification of the planning target volume dose was −2.1% ± 2.2% (1 SD), −1.7% ± 1.7% (1 SD), and 0.0% ± 1.3% (1 SD) for IMRT at the Radboud University Medical Center (RUMC), VMAT (RUMC), and VMAT at the Wellington Blood and Cancer Centre, respectively. Verification of the dose to organs at risk gave very similar results but was generally subject to a larger measurement uncertainty due to the position of the detector at a high dose gradient. The observed deviations could be related to limitations of the TPS beam models, attenuation of the treatment couch, as well as measurement errors. The apparent systematic error of about −2% in the average deviation of the integral fraction dose in the RUMC results could be explained by the limitations of the TPS beam model in the calculation of the beam penumbra. Conclusions: This study showed that time-resolved dosimetry using an ionization chamber is feasible and can be largely automated which limits the required additional time compared to integrated dose measurements. It provides a unique QA method which enables identification and quantification of the contribution of various error sources during IMRT and VMAT delivery.« less
Heery, Christopher R; O'Sullivan-Coyne, Geraldine; Madan, Ravi A; Cordes, Lisa; Rajan, Arun; Rauckhorst, Myrna; Lamping, Elizabeth; Oyelakin, Israel; Marté, Jennifer L; Lepone, Lauren M; Donahue, Renee N; Grenga, Italia; Cuillerot, Jean-Marie; Neuteboom, Berend; Heydebreck, Anja von; Chin, Kevin; Schlom, Jeffrey; Gulley, James L
2017-05-01
Avelumab (MSB0010718C) is a human IgG1 monoclonal antibody that binds to PD-L1, inhibiting its binding to PD-1, which inactivates T cells. We aimed to establish the safety and pharmacokinetics of avelumab in patients with solid tumours while assessing biological correlatives for future development. This open-label, single-centre, phase 1a, dose-escalation trial (part of the JAVELIN Solid Tumor trial) assessed four doses of avelumab (1 mg/kg, 3 mg/kg, 10 mg/kg, and 20 mg/kg), with dose-level cohort expansions to provide additional safety, pharmacokinetics, and target occupancy data. This study used a standard 3 + 3 cohort design and assigned patients sequentially at trial entry according to the 3 + 3 dose-escalation algorithm and depending on the number of dose-limiting toxicities during the first 3-week assessment period (the primary endpoint). Patient eligibility criteria included age 18 years or older, Eastern Cooperative Oncology Group performance status 0-1, metastatic or locally advanced previously treated solid tumours, and adequate end-organ function. Avelumab was given as a 1-h intravenous infusion every 2 weeks. Patients in the dose-limiting toxicity analysis set were assessed for the primary endpoint of dose-limiting toxicity, and all patients enrolled in the dose-escalation part were assessed for the secondary endpoints of safety (treatment-emergent and treatment-related adverse events according to National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0), pharmacokinetic and pharmacodynamic profiles (immunological effects), best overall response by Response Evaluation Criteria, and antidrug antibody formation. The population for the pharmacokinetic analysis included a subset of patients with rich pharmacokinetic samples from two selected disease-specific expansion cohorts at the same study site who had serum samples obtained at multiple early timepoints. This trial is registered with ClinicalTrials.gov, number NCT01772004. Patient recruitment to the dose-escalation part reported here is closed. Between Jan 31, 2013, and Oct 8, 2014, 53 patients were enrolled (four patients at 1 mg/kg, 13 at 3 mg/kg, 15 at 10 mg/kg, and 21 at 20 mg/kg). 18 patients were analysed in the dose-limiting toxicity analysis set: three at dose level 1 (1 mg/kg), three at dose level 2 (3 mg/kg), six at dose level 3 (10 mg/kg), and six at dose level 4 (20 mg/kg). Only one dose-limiting toxicity occurred, at the 20 mg/kg dose, and thus the maximum tolerated dose was not reached. In all 53 enrolled patients (the safety analysis set), common treatment-related adverse events (occurring in >10% of patients) included fatigue (21 patients [40%]), influenza-like symptoms (11 [21%]), fever (8 [15%]), and chills (6 [11%]). Grade 3-4 treatment-related adverse events occurred in nine (17%) of 53 patients, with autoimmune disorder (n=3), increased blood creatine phosphokinase (n=2), and increased aspartate aminotransferase (n=2) each occurring in more than one patient (autoimmune disorder in two patients at 10 mg/kg and one patient at 20 mg/kg, increased blood creatine phosphokinase in two patients at 20 mg/kg, and increased aspartate aminotransferase in one patient at 1 mg/kg, and one patient at 10 mg/kg). Six (11%) of 53 patients had a serious treatment-related adverse event: autoimmune disorder (two [13%]), lower abdominal pain (one [7%]), fatigue (one [7%]), and influenza-like illness (one [7%]) in three patients treated at 10 mg/kg dose level, and autoimmune disorder (one [5%]), increased amylase (one [5%]), myositis (one [5%]), and dysphonia (one [5%]) in three patients who received the 20 mg/kg dose. We recorded some evidence of clinical activity in various solid tumours, with partial confirmed or unconfirmed responses in four (8%) of 53 patients; 30 (57%) additional patients had stable disease. Pharmacokinetic analysis (n=86) showed a dose-proportional exposure between doses of 3 mg/kg and 20 mg/kg and a half-life of 95-99 h (3·9-4·1 days) at the 10 mg/kg and 20 mg/kg doses. Target occupancy was greater than 90% at doses of 3 mg/kg and 10 mg/kg. Antidrug antibodies were detected in two (4%) of 53 patients. No substantial differences were found in absolute lymphocyte count or multiple immune cell subsets, including those expressing PD-L1, after treatment with avelumab. 31 (58%) of 53 patients in the overall safety population died; no deaths were related to treatment on study. Avelumab has an acceptable toxicity profile up to 20 mg/kg and the maximum tolerated dose was not reached. Based on pharmacokinetics, target occupancy, and immunological analysis, we chose 10 mg/kg every 2 weeks as the dose for further development and phase 3 trials are ongoing. National Cancer Institute and Merck KGaA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation exposure of aviation crewmembers and cancer.
Bramlitt, Edward T; Shonka, Joseph J
2015-01-01
Crewmembers are exposed to galactic cosmic radiation on every flight and occasionally to solar protons on polar flights. Data are presented showing that the proton occasions are seven times more frequent than generally believed. Crewmembers are also exposed to neutrons and gamma rays from the sun and to gamma rays from terrestrial thunderstorms. Solar neutrons and gamma rays (1) expose the daylight side of Earth, (2) are most intense at lower latitudes, (3) may be as or more frequent than solar protons, and (4) have relativistic energies. The U.S. agency responsible for crewmember safety only considers the galactic component with respect to its recommended 20 mSv y(-1) limit, but it has an estimate for a thunderstorm dose of 30 mSv. In view of overlooked sources, possible over-limit doses, and lack of dosimetry, dose reconstructions are needed. However, using the agency dose estimates and the compensation procedure for U.S. nuclear weapon workers, the probability of crewmember cancers can be at least as likely as not. Ways to improve the quality of dose estimates are suggested, and a worker's compensation program specific to aviation crewmembers is recommended.
Point-of-use chlorination of turbid water: results from a field study in Tanzania.
Mohamed, Hussein; Brown, Joe; Njee, Robert M; Clasen, Thomas; Malebo, Hamisi M; Mbuligwe, Steven
2015-06-01
Household-based chlorine disinfection is widely effective against waterborne bacteria and viruses, and may be among the most inexpensive and accessible options for household water treatment. The microbiological effectiveness of chlorine is limited, however, by turbidity. In Tanzania, there are no guidelines on water chlorination at household level, and limited data on whether dosing guidelines for higher turbidity waters are sufficient to produce potable water. This study was designed to assess the effectiveness of chlorination across a range of turbidities found in rural water sources, following local dosing guidelines that recommend a 'double dose' for water that is visibly turbid. We chlorinated water from 43 sources representing a range of turbidities using two locally available chlorine-based disinfectants: WaterGuard and Aquatabs. We determined free available chlorine at 30 min and 24 h contact time. Our data suggest that water chlorination with WaterGuard or Aquatabs can be effective using both single and double doses up to 20 nephelometric turbidity units (NTU), or using a double dose of Aquatabs up to 100 NTU, but neither was effective at turbidities greater than 100 NTU.
The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes.
Bell, Kirstine J; King, Bruce R; Shafat, Amir; Smart, Carmel E
2015-01-01
A primary focus of the nutritional management of type 1 diabetes has been on matching prandial insulin therapy with carbohydrate amount consumed. Different methods exist to quantify carbohydrate including counting in one gram increments, 10g portions or 15g exchanges. Clinicians have assumed that counting in one gram increments is necessary to precisely dose insulin and optimize postprandial control. Carbohydrate estimations in portions or exchanges have been thought of as inadequate because they may result in less precise matching of insulin dose to carbohydrate amount. However, studies examining the impact of errors in carbohydrate quantification on postprandial glycemia challenge this commonly held view. In addition it has been found that a single mealtime bolus of insulin can cover a range of carbohydrate intake without deterioration in postprandial control. Furthermore, limitations exist in the accuracy of the nutrition information panel on a food label. This article reviews the relationship between carbohydrate quantity and insulin dose, highlighting limitations in the evidence for a linear association. These insights have significant implications for patient education and mealtime insulin dose calculations. Copyright © 2015 Elsevier Inc. All rights reserved.
Committed effective dose determination in southern Brazilian cereal flours.
Scheibel, V; Appoloni, C R
2013-01-01
The health impact of radionuclide ingestion from foodstuffs was evaluated by the committed effective doses determined in eight commercial samples of South-Brazilian cereal flours (soy, wheat, cornmeal, cassava, rye, oat, barley and rice flours). The radioactivity traces of (228)Th, (228)Ra, (226)Ra, (40)K, (7)Be and (137)Cs were measured by gamma-ray spectrometry employing an HPGe detector of 66 % relative efficiency. The efficiency curve has taken into account the differences in densities and chemical composition between the matrix and the certified sample. The highest concentration levels of (228)Th and (40)K were 3.5±0.4 and 1469±17 Bq kg(-1) for soy flour, respectively, within the 95 % confidence level. The lower limit of detection for (137)Cs ranged from 0.04 to 0.4 Bq kg(-1). The highest committed effective dose was 0.36 μSv.y(-1) for (228)Ra in cassava flour (adults). All committed effective doses determined at the present work were lower than the International Atomic Energy Agency dose limit of 1 mSv.y(-1), to the public exposure.
Broughton, J; Cantone, M C; Ginjaume, M; Shah, B
2013-12-01
This report was commissioned by the IRPA President to provide an assessment of the impact on members of IRPA Associate Societies of the introduction of ICRP recommendations for a reduced dose limit for the lens of the eye. The report summarises current practice and considers possible changes that may be required. Recommendations for further collaboration, clarification and changes to working practices are suggested.
Finger doses for staff handling radiopharmaceuticals in nuclear medicine.
Pant, Gauri S; Sharma, Sanjay K; Rath, Gaura K
2006-09-01
Radiation doses to the fingers of occupational workers handling 99mTc-labeled compounds and 131I for diagnostic and therapeutic procedures in nuclear medicine were measured by thermoluminescence dosimetry. The doses were measured at the base of the ring finger and the index finger of both hands in 2 groups of workers. Group 1 (7 workers) handled 99mTc-labeled radiopharmaceuticals, and group 2 (6 workers) handled 131I for diagnosis and therapy. Radiation doses to the fingertips of 3 workers also were measured. Two were from group 1, and 1 was from group 2. The doses to the base of the fingers for the radiopharmacy staff and physicians from group 1 were observed to be 17+/-7.5 (mean+/-SD) and 13.4+/-6.5 microSv/GBq, respectively. Similarly, the dose to the base of the fingers for the 3 physicians in group 2 was estimated to be 82.0+/-13.8 microSv/GBq. Finger doses for the technologists in both groups could not be calculated per unit of activity because they did not handle the radiopharmaceuticals directly. Their doses were reported in millisieverts that accumulated in 1 wk. The doses to the fingertips of the radiopharmacy worker and the physician in group 1 were 74.3+/-19.8 and 53.5+/-21.9 microSv/GBq, respectively. The dose to the fingertips of the physician in group 2 was 469.9+/-267 microSv/GBq. The radiation doses to the fingers of nuclear medicine staff at our center were measured. The maximum expected annual dose to the extremities appeared to be less than the annual limit (500 mSv/y), except for a physician who handled large quantities of 131I for treatment. Because all of these workers are on rotation and do not constantly handle radioactivity throughout the year, the doses to the base of the fingers or the fingertips should not exceed the prescribed annual limit of 500 mSv.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2010 CFR
2010-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) a committed effective dose equivalent of 5 rems (stochastic ALI) or (2) a committed dose equivalent of 50 rems to an organ or tissue (non-stochastic ALI). The stochastic ALIs were derived to result in... equivalent to the whole body of 5 rems. The derivation includes multiplying the committed dose equivalent to...
40 CFR 799.9539 - TSCA mammalian erythrocyte micronucleus test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... peripheral blood). (iv) Limit test. If a test at one dose level of at least 2,000 mg/kg body weight using a... dose is 2,000 mg/kg/body weight/day for treatment up to 14 days, and 1,000 mg/kg/body weight/day for... water test substance concentration parts per million (ppm) to the actual dose (mg/kg body weight/day...
A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior
Thanos, Panayotis K.; Robison, Lisa S.; Steier, Jessica; Hwang, Yu Fen; Cooper, Thomas; Swanson, James M.; Komatsu, David E.; Hadjiargyrou, Michael; Volkow, Nora D.
2015-01-01
Most animal studies using methylphenidate (MP) do not administer it the same way it is administered clinically (orally), but rather by injection, resulting in an altered pharmacokinetic profile (i.e. quicker and higher peak concentrations). Here, we evaluated several oral-dosing regimens in rats, including dual-dose drinking, to mimic the clinical drug delivery profile. Using an 8-hour-limited-access-drinking-paradigm, MP solutions were delivered at different doses (20, 30, or 60 mg/kg/day; as well as dual-dosages of 4 and 10 mg/kg/day, 20 and 30 mg/kg/day, or 30 and 60 mg/kg/day, in which the low dose was administered in the first hour of drinking followed by 7 h of drinking the high dose). Blood was sampled and plasma was assayed for MP levels at many time points. Results showed that an 8-hour limited drinking of a dual-dosage 30/60 mg/kg MP solution achieved a pharmacokinetic profile similar to clinically administered doses of MP at the high end of the spectrum (peaking at ~30 ng/mL), while the 4/10 mg/kg MP dual-dosage produced plasma levels in the range produced by typically prescribed clinical doses of MP (peaking at ~8 ng/mL). Treatment with the higher dual-dosage (HD: 30/60 mg/kg) resulted in hyperactivity, while the lower (LD: 4/10 mg/kg) had no effect. Next, chronic effects of these dual-dosages were assessed on behavior throughout three months of treatment and one month of abstinence, beginning in adolescence. MP dose-dependently decreased body weight, which remained attenuated throughout abstinence. MP decreased food intake during early treatment, suggesting that MP may be an appetite suppressant and may also speed metabolism and/or suppress growth. Chronic HD MP resulted in hyperactivity limited during the dark cycle; decreased exploratory behavior; and increased anxiolytic behavior. These findings suggest that this dual-dosage-drinking-paradigm can be used to examine the effects of clinically relevant pharmacokinetic doses of MP, and that chronic treatment with such dosages can result in long-lasting developmental and behavioral changes. PMID:25641666
A pharmacokinetic model of oral methylphenidate in the rat and effects on behavior.
Thanos, Panayotis K; Robison, Lisa S; Steier, Jessica; Hwang, Yu Fen; Cooper, Thomas; Swanson, James M; Komatsu, David E; Hadjiargyrou, Michael; Volkow, Nora D
2015-04-01
Most animal studies using methylphenidate (MP) do not administer it the same way it is administered clinically (orally), but rather by injection, resulting in an altered pharmacokinetic profile (quicker and higher peak concentrations). We evaluated several oral-dosing regimens in rats, including dual-dose drinking, to mimic clinical drug delivery. Using an 8-hour-limited-access-drinking-paradigm, MP solutions were delivered at different doses (20, 30, or 60mg/kg/day; as well as dual-dosages of 4 and 10mg/kg/day, 20 and 30mg/kg/day, or 30 and 60mg/kg/day, in which the low dose was administered in the first hour of drinking followed by 7 h of drinking the high dose). Plasma was assayed for MP levels at many time points. Results showed that an 8-hour limited drinking of a dual-dosage 30/60mg/kg MP solution achieved a pharmacokinetic profile similar to clinically administered doses of MP at the high end of the spectrum (peaking at ~30ng/mL), while the 4/10mg/kg MP dual-dosage produced plasma levels in the range produced by typically prescribed clinical doses of MP (peaking at ~8ng/mL). Treatment with the higher dual-dosage (HD: 30/60mg/kg) resulted in hyperactivity, while the lower (LD: 4/10mg/kg) had no effect. Chronic effects of these dual-dosages were assessed throughout three months of treatment and one month of abstinence, beginning in adolescence. MP dose-dependently decreased body weight, which remained attenuated throughout abstinence. MP decreased food intake during early treatment, suggesting that MP may be an appetite suppressant and may also speed metabolism and/or suppress growth. Chronic HD MP resulted in hyperactivity limited during the dark cycle, decreased exploratory behavior, and increased anxiolytic behavior. Findings suggest that these dual-dosage-drinking-paradigms can be used to examine the effects of clinically relevant pharmacokinetic doses of MP and that chronic treatment with such dosages can result in long-lasting developmental and behavioral changes. Copyright © 2015 Elsevier Inc. All rights reserved.
Five-year ALARA review of dosimetry results :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R.
2013-08-01
A review of personnel dosimetry (external and internal) and environmental monitoring results from 1 January 2008 through 31 December 2012 performed at Sandia National Laboratories, New Mexico was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform with the ALARA philosophy. ALARA is the philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limitmore » but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Prevalence of shigellosis in the U.S.: consistency with dose-response information.
Crockett, C S; Haas, C N; Fazil, A; Rose, J B; Gerba, C P
1996-06-01
Every year there are estimated 300000 cases of Shigella in the United States (Bennett et al., 1987, Am. J. Prev. Med. 3, 102-114). A beta-poisson model was fit to human dose-response information on pathogenic Shigella using the Maximum Likelihood Estimation technique (Haas, 1983, Am. J. Epidemiol. 118, 573-582). Pooled and separate data sets for the Shigella species were fit to the beta-Poisson model and 95% confidence limits and regions were calculated. Shigella dysentariae and Shigella flexneri confidence regions and limits overlapped with each other and with the pooled data set, suggesting that this model can describe Shigella in general. The pooled Shigella model as well as the upper and lower confidence limits of the three data sets showed average exposures based on the estimated U.S. caseload of pathogenic Shigella of 0.01 to 0.014 organisms (confidence limits 0.001-0.05) for a 7-day per annum period of exposure and ranges from 0.07 to 0.1 organisms (confidence limits 0.006-0.4). for a 1-day per annum period of exposure. The plausibility of the pooled dose-response model was then evaluated by comparison with two known cruise ship outbreaks. The pooled model estimated that the two outbreaks studied could have been due to ingestion of 344 (confidence limits 72-915) Shigella cells per meal and 10.5-12 (confidence limits 1-44) Shigella cells per glass of water by passengers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... doses received as a patient for the purposes of medical diagnosis or therapy, or radiation doses... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from...
Gentry, J R; DeWerd, L A
1996-06-01
An analysis is presented of the exposures received by TLDs placed on the breasts of 4400 women obtaining mammograms at 170 institutions across the United States. Mean glandular dose and exposure were examined as a function of compressed breast thickness. The exposure and mean glandular dose were found to increase linearly with breast thickness. The mean glandular dose typically delivered by the institutions was well below the limit of 3.0 mGy for the 4.5-cm breast. However, some institutions tend to uniformly give higher doses. In such institutions approximately 25% of 4.5-cm-thick breasts received a mean glandular dose exceeding 3.0 mGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: christopher.kelsey@duke.edu; Das, Shiva; Gu, Lin
2015-12-01
Purpose: To determine the maximum tolerated dose of radiation therapy (RT) given in an accelerated fashion with concurrent chemotherapy using intensity modulated RT. Methods and Materials: Patients with locally advanced lung cancer (non-small cell and small cell) with good performance status and minimal weight loss received concurrent cisplatin and etoposide with RT. Intensity modulated RT with daily image guidance was used to facilitate esophageal avoidance and delivered using 6 fractions per week (twice daily on Fridays with a 6-hour interval). The dose was escalated from 58 Gy to a planned maximum dose of 74 Gy in 4 Gy increments in a standardmore » 3 + 3 trial design. Dose-limiting toxicity (DLT) was defined as acute grade 3-5 nonhematologic toxicity attributed to RT. Results: A total of 24 patients were enrolled, filling all dose cohorts, all completing RT and chemotherapy as prescribed. Dose-limiting toxicity occurred in 1 patient at 58 Gy (grade 3 esophagitis) and 1 patient at 70 Gy (grade 3 esophageal fistula). Both patients with DLTs had large tumors (12 cm and 10 cm, respectively) adjacent to the esophagus. Three additional patients were enrolled at both dose cohorts without further DLT. In the final 74-Gy cohort, no DLTs were observed (0 of 6). Conclusions: Dose escalation and acceleration to 74 Gy with intensity modulated RT and concurrent chemotherapy was tolerable, with a low rate of grade ≥3 acute esophageal reactions.« less
Acute effects of THC on time perception in frequent and infrequent cannabis users.
Sewell, R Andrew; Schnakenberg, Ashley; Elander, Jacqueline; Radhakrishnan, Rajiv; Williams, Ashley; Skosnik, Patrick D; Pittman, Brian; Ranganathan, Mohini; D'Souza, D Cyril
2013-03-01
Cannabinoids have been shown to alter time perception, but existing literature has several limitations. Few studies have included both time estimation and production tasks, few control for subvocal counting, most had small sample sizes, some did not record subjects' cannabis use, many tested only one dose, and used either oral or inhaled administration of Δ⁹-tetrahydrocannabinol (THC), leading to variable pharmacokinetics, and some used whole-plant cannabis containing cannabinoids other than THC. Our study attempted to address these limitations. This study aims to characterize the acute effects of THC and frequent cannabis use on seconds-range time perception. THC was hypothesized to produce transient, dose-related time overestimation and underproduction. Frequent cannabis smokers were hypothesized to show blunted responses to these alterations. IV THC was administered at doses from 0.015 to 0.05 mg/kg to 44 subjects who participated in several double-blind, randomized, counterbalanced, crossover, placebo-controlled studies. Visual time estimation and production tasks in the seconds range were presented to subjects three times on each test day. All doses induced time overestimation and underproduction. Chronic cannabis use had no effect on baseline time perception. While infrequent/nonsmokers showed temporal overestimation at medium and high doses and temporal underproduction at all doses, frequent cannabis users showed no differences. THC effects on time perception were not dose related. A psychoactive dose of THC increases internal clock speed as indicated by time overestimation and underproduction. This effect is not dose related and is blunted in chronic cannabis smokers who did not otherwise have altered baseline time perception.
Miura, Miwa; Ono, Koji; Yamauchi, Motohiro; Matsuda, Naoki
2016-06-01
From October to December 2010, just before the radiological accident at the Fukushima Daiichi nuclear power plant, 71 radiation professionals from radiation facilities in Japan were asked what they considered as a "safe dose" of radiation for themselves, their partners, parents, children, siblings, and friends. Although the 'safe dose' they noted varied widely, from less than 1 mSv y to more than 100 mSv y, the average dose was 35.6 mSv y, which is around the middle point between the legal exposure dose limits for the annual average and for any single year. Similar results were obtained from other surveys of members of the Japan Radioisotope Association (36.9 mSv y) and of the Oita Prefectural Hospital (36.8 mSv y). Among family members and friends, the minimum average "safe" dose was 8.5 mSv y for children, for whom 50% of the responders claimed a "safe dose" of less than 1 mSv. Gender, age and specialty of the radiation professional also affected their notion of a "safe dose." These findings suggest that the perception of radiation risk varies widely even for radiation professionals and that the legal exposure dose limits derived from regulatory science may act as an anchor of safety. The different levels of risk perception for different target groups among radiation professionals appear similar to those in the general population. The gap between these characteristics of radiation professionals and the generally accepted picture of radiation professionals might have played a role in the state of confusion after the radiological accident.
Bacchim Neto, Fernando Antonio; Alves, Allan Felipe Fattori; Mascarenhas, Yvone Maria; Nicolucci, Patrícia; Pina, Diana Rodrigues de
2016-08-01
To perform a complete evaluation on radiation doses, received by primary and assistant medical staff, while performing different vascular interventional radiology procedures. We evaluated dose received in different body regions during three categories of vascular procedures: lower limb angiography (Angiography), lower limb percutaneous transluminal angioplasty (Angioplasty) and stent graft placement for abdominal aortic aneurysm treatment (A. A. A. Treatment). We positioned the dosimeters near the eye lens, thyroid, chest, abdomen, hands, and feet of the interventional physicians. Equivalent dose was compared with annual dose limits for workers in order to determine the maximum number of procedures per year that each physician could perform. We assessed 90 procedures. We found the highest equivalent doses in the A. A. A. Treatment, in which 90% of the evaluations indicated at least one region receiving more than 1mSv per procedure. Angioplasty was the only procedural modality that provided statistically different doses for different professionals, which is an important aspect on regards to radiological protection strategies. In comparison with the dose limits, the most critical region in all procedures was the eye lens. Since each body region of the interventionist is exposed to different radiation levels, dose distribution measurements are essential for radiological protection strategies. These results indicate that dosimeters placed in abdomen instead of chest may represent more accurately the whole body doses received by the medical staff. Additional dosimeters and a stationary shield for the eye lens are strongly recommended. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Horton, Terzah M; Blaney, Susan M; Langevin, Anne-Marie; Kuhn, John; Kamen, Barton; Berg, Stacey L; Bernstein, Mark; Weitman, Steven
2005-03-01
To evaluate the toxicity, antileukemic activity, and pharmacology of raltitrexed administered weekly for 3 weeks to patients with refractory or recurrent leukemia. Raltitrexed was administered as a 15-minute infusion for 3 consecutive weeks every 5 weeks, at doses ranging from 1.3 to 2.8 mg/m(2). The first course was used to determine the dose-limiting toxicities and maximum tolerated dose. Correlative studies included an assessment of raltitrexed pharmacokinetics and measurement of plasma 2'-deoxyuridine concentrations, a surrogate measure of thymidylate synthase inhibition. Twenty-one children (18 evaluable) with refractory leukemia received 25 courses of raltitrexed. The dose-limiting toxicity was reversible elevation in liver transaminases at the 2.8-mg/m(2) dose level and the maximum tolerated dose was 2.1 mg/m(2) per dose. Pharmacokinetics were best characterized by a two-compartment model with a clearance of 139 mL/min/m(2) (8.3 L/h/m(2)), a 2.4-L volume of distribution, an initial half-life (t(1/2alpha)) of 6 minutes, and a terminal half-life (t(1/2beta)) of 45 minutes. There were three objective responses. Raltitrexed was well tolerated when administered as a single agent to children with recurrent or refractory leukemia. We observed preliminary evidence of antileukemia activity using this weekly dosing schedule and these observations support further evaluation of raltitrexed in this population.
Tahara, M; Araki, K; Okano, S; Kiyota, N; Fuse, N; Minashi, K; Yoshino, T; Doi, T; Zenda, S; Kawashima, M; Ogino, T; Hayashi, R; Minami, H; Ohtsu, A
2011-01-01
we investigated the maximum tolerated dose (MTD) of combination therapy with docetaxel, cisplatin, and S-1 (TPS) in patients with locally advanced or recurrent/metastatic head and neck cancer (HNC). treatment consisted of docetaxel (Taxotere) at doses of 50, 60, and 70 mg/m(2); cisplatin at 70 mg·m(2)/day on day 1; and S-1 twice daily on days 1-14 at doses of 40, 60, and 80 mg·m(2)/day, repeated every 3 or 4 weeks. forty patients were enrolled. MTD was not reached until level 4. Subjects at expanded dose were limited to patients with locally advanced disease. Two dose-limiting toxic effects (DLTs) were observed at dose level 5 (TPS: 70/70/80 mg·m(2)/day, every 3 weeks), namely one grade 3 infection and one grade 3 hyperbilirubinemia, establishing this as the MTD. Of 12 patients treated at dose level 6 (TPS: 70/70/60 mg·m(2)/day, every 3 weeks), 2 DLTs were seen. Six achieved a complete response and 22 a partial response, giving a response rate of 70%. TPS was well tolerated. The recommended phase II dose as induction chemotherapy for locally advanced HNC was determined as 70/70/60 mg·m(2)/day every 3 weeks. Antitumor activity was highly promising and warrants further investigation.
[Clinical pharmacist influence at hospital to prevent overdosed prescription of acetaminophen].
Viguier, F; Roessle, C; Zerhouni, L; Rouleau, A; Benmelouka, C; Chevallier, A; Chast, F; Conort, O
2016-11-01
The recommended daily dose of acetaminophen is limited to 60mg/kg/day with a maximum of 3g daily dose in adults weighing less than 50kg or in patients undergoing certain risk factors. This study aimed at assessing the fulfillment of those recommendations and the possible impact on the liver dysfunction at supra-therapeutic doses of acetaminophen. This study was performed one day in 9 services. Patients characteristics, acetaminophen dose, daily dose administered, physiopathological aspects, markers of liver damage were collected. Among 542 prescriptions analyzed, 343 of them contained acetaminophen. The median age of patients studied was 81 years and one third weighed less than 50kg. The main risk factor of supra-therapeutic prescriptions was the lack of dose acetaminophen based on weight with 14% patients concerned and this risk raised at 17% when the pathophysiological conditions were included. The presence of pharmacists in medicals departments was more effective than the use of informatics programs limiting the dose systematically to 3g/day, or a distant pharmaceutical validation from care services to reduce the risk of acetaminophen overdose. According to the statement of administrations, only 4 of 49 patients received doses above 60mg/kg/day with a low impact on liver function tests. The continuous presence in pharmaceutical care services was the most effective measure to ensure effective implementation of acetaminophen recommendations. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Wong, Kwok-K; Fracasso, Paula M; Bukowski, Ronald M; Lynch, Thomas J; Munster, Pamela N; Shapiro, Geoffrey I; Jänne, Pasi A; Eder, Joseph P; Naughton, Michael J; Ellis, Matthew J; Jones, Suzanne F; Mekhail, Tarek; Zacharchuk, Charles; Vermette, Jennifer; Abbas, Richat; Quinn, Susan; Powell, Christine; Burris, Howard A
2009-04-01
The dose-limiting toxicities, maximum tolerated dose, pharmacokinetic profile, and preliminary antitumor activity of neratinib (HKI-272), an irreversible pan ErbB inhibitor, were determined in patients with advanced solid tumors. Neratinib was administered orally as a single dose, followed by a 1-week observation period, and then once daily continuously. Planned dose escalation was 40, 80, 120, 180, 240, 320, 400, and 500 mg. For pharmacokinetic analysis, timed blood samples were collected after administration of the single dose and after the first 14 days of continuous daily administration. Dose-limiting toxicity was grade 3 diarrhea, which occurred in one patient treated with 180 mg and in four patients treated with 400 mg neratinib; hence, the maximum tolerated dose was determined to be 320 mg. Other common neratinib-related toxicities included nausea, vomiting, fatigue, and anorexia. Exposure to neratinib was dose dependent, and the pharmacokinetic profile of neratinib supports a once-a-day dosing regimen. Partial response was observed for 8 (32%) of the 25 evaluable patients with breast cancer. Stable disease >or=24 weeks was observed in one evaluable breast cancer patient and 6 (43%) of the 14 evaluable non-small cell lung cancer patients. The maximum tolerated dose of once-daily oral neratinib is 320 mg. The most common neratinib-related toxicity was diarrhea. Antitumor activity was observed in patients with breast cancer who had previous treatment with trastuzumab, anthracyclines, and taxanes, and tumors with a baseline ErbB-2 immunohistochemical staining intensity of 2+ or 3+. The antitumor activity, tolerable toxicity profile, and pharmacokinetic properties of neratinib warrant its further evaluation.
A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors.
Papadopoulos, Kyriakos P; Burris, Howard A; Gordon, Michael; Lee, Peter; Sausville, Edward A; Rosen, Peter J; Patnaik, Amita; Cutler, Richard E; Wang, Zhengping; Lee, Susan; Jones, Suzanne F; Infante, Jeffery R
2013-10-01
Tolerability, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of carfilzomib, a selective proteasome inhibitor, administered twice weekly by 2-10-min intravenous (IV) infusion on days 1, 2, 8, 9, 15, and 16 in 28-day cycles, were assessed in patients with advanced solid tumors in this phase I/II study. Adult patients with solid tumors progressing after ≥1 prior therapies were enrolled. The dose was 20 mg/m(2) in week 1 of cycle 1 and 20, 27, or 36 mg/m(2) thereafter. The maximum tolerated dose or protocol-defined maximum planned dose (MPD) identified during dose escalation was administered to an expansion cohort and to patients with small cell lung, non-small cell lung, ovarian, and renal cancer in phase II tumor-specific cohorts. Fourteen patients received carfilzomib during dose escalation. The single dose-limiting toxicity at 20/36 mg/m(2) was grade 3 fatigue, establishing the MPD as the expansion and phase II dose. Sixty-five additional patients received carfilzomib at the MPD. Adverse events included fatigue, nausea, anorexia, and dyspnea. Carfilzomib PK was dose proportional with a half-life <1 h. All doses resulted in at least 80 % proteasome inhibition in blood. Partial responses occurred in two patients in phase I, with 21.5 % stable disease after four cycles in evaluable patients in the expansion and phase II cohorts. Carfilzomib 20/36 mg/m(2) was well tolerated when administered twice weekly by 2-10-min IV infusion. At this dose and infusion rate, carfilzomib inhibited the proteasome in blood but demonstrated limited antitumor activity in patients with advanced solid tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Douglas W., E-mail: darthur@mcvh-vcu.ed; Vicini, Frank A.; Todor, Dorin A.
2011-01-01
Purpose: Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Methods and Materials: Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) {>=}95% of the prescribed dose (PD) covering {>=}90% of the target volume, (2) a maximum skin dose {<=}125% of the PD, (3) maximum rib dose {<=}145% of the PD, and (4) the V150 {<=}50 cc and V200 {<=}10 cc. The ability to concurrently achieve these dosimetric goals usingmore » the Contura MLB was analyzed. Results: 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was {>=}5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. Conclusion: The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered.« less
Hurwitz, Herbert I; Smith, David C; Pitot, Henry C; Brill, Jeffrey M; Chugh, Rashmi; Rouits, Elisabeth; Rubin, Joseph; Strickler, John; Vuagniaux, Gregoire; Sorensen, J Mel; Zanna, Claudio
2015-04-01
To assess safety/tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and antitumor activity of DEBIO1143, an antagonist of inhibitor apoptosis proteins. This first-in-man study in patients with advanced cancer used an accelerated dose titration design. DEBIO1143 was given orally once daily on days 1-5 every 2 or 3 weeks until disease progressed or patients dropped out. The starting dose of 5 mg was escalated by 100% in single patients until related grade 2 toxicity occurred. This triggered expansion to cohorts of three and subsequently six patients and reduction in dose increments to 50%. Maximum tolerated dose (MTD) was exceeded when any two patients within the same cohort experienced dose-limiting toxicity (DLT). On days 1 and 5, PK and PD samples were taken. Thirty-one patients received doses from 5 to 900 mg. Only one DLT was reported at 180 mg. No MTD was found. Most common adverse drug reactions were fatigue (26%), nausea (23%), and vomiting (13%). Average t max and T 1/2 was about 1 and 6 h, respectively. Exposure increased proportionally with doses from 80 to 900 mg, without accumulation over 5 days. Plasma CCL2 increased at 3-6 h postdose and epithelial apoptosis marker M30 on day 5; cIAP-1 levels in PBMCs decreased at all doses >80 mg. Five patients (17%) had stable disease as the best treatment response. DEBIO1143 was well tolerated at doses up to 900 mg and elicited PD effects at doses greater 80 mg. Limited antitumor activity may suggest development rather as adjunct treatment.
The evaluation the magnitude radiation exposure dose rate in digital radiography room design
NASA Astrophysics Data System (ADS)
Dwiyanto, Agung; Setia Budi, Wahyu; Hardiman, Gagoek
2017-12-01
This study discusses the dose rate in digital radiography room, buit according to meet the provisions of KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation of BAPETEN No. 8 / 2011. The provisions primary concern of radiation safety, not comfort, by considering the space design. There are five aspects to consider in designing the space: functionality, comfort, security, movement activities and aesthetics. However provisions only met three aspects of the design, which are a function, security and movement activity. Therefore, it is necessary to evaluate digital radiography room in terms of its ability to control external radiation exposure to be safe and comfortable The dose rate is measured by the range of primary and secondary radiation in the observation points by using Surveymeter. All data are obtained by the preliminary survey prior to the study. Furthermore, the review of digital radiography room is done based on architectural design theory. The dose rate for recommended improvement room is recalculated using the same method as the actual room with the help of computer modeling. The result of dose rate calculation at the inner and outer part of digital radiography observation room shows that in-room dose for a week at each measuring point exceeds the allowable dose limit both for staff and public. During a week of observation, the outdoor dose at some measuring points exceeds the dose limit set by the KEMENKES No.1014 / Menkes / SK / XI / 2008 and Regulation BEPETEN No 8/2011. Meanwhile, the result of dose rate calculation in the inner and outer part of the improved digital radiography room can meet the applicable regulations better.
Gore, Lia; Rothenberg, Mace L.; O'Bryant, Cindy L.; Schultz, Mary Kay; Sandler, Alan B.; Coffin, Denise; McCoy, Candice; Schott, Astrid; Scholz, Catherine; Eckhardt, S. Gail
2010-01-01
Purpose To evaluate the toxicity profile, pharmacologic, and biological properties of 3-pyridylmethyl N-{4-[(2-aminophenyl)carbamoyl]benzyl}carbamate (MS-275), a histone deacetylase inhibitor, when administered orally on three different dosing schedules. Experimental Design Patients with advanced solid malignancies and lymphomas were treated on three dose schedules: once every other week, twice weekly for 3 weeks every 28 days, and once weekly for 3 weeks every 28 days. First-cycle plasma pharmacokinetics and peripheral blood mononuclear cell histone acetylation were determined. Results Twenty-seven patients received ≥149 courses of treatment. Hypophosphatemia and asthenia were dose limiting on the weekly and twice-weekly dosing schedules; there was no dose-limiting toxicity on the every other week schedule. Pharmacokinetic variables revealed dose-dependent and dose-proportional increases. Two of 27 patients showed partial remissions, including one patient with metastatic melanoma who had a partial response and has remained on study for >5 years. Six patients showed prolonged disease stabilization. Levels of histone H3 and H4 acetylation in peripheral blood mononuclear cells increased qualitatively but with a high degree of interpatient variation. Conclusions MS-275 is well tolerated at doses up to 6 mg/m2 every other week or 4 mg/m2 weekly for 3 weeks followed by 1 week of rest and results in biologically relevant plasma concentrations and antitumor activity. Twice-weekly dosing was not tolerable due to asthenia, and further evaluation of this schedule was halted. The recommended dose for further disease-focused studies is 4 mg/m2 given weekly for 3 weeks every 28 days or 2 to 6 mg/m2 given once every other week. PMID:18579665
Five-Year ALARA Review of Dosimetry Results 1 January 2009 through 31 December 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R
2014-08-01
A review of dosimetry results from 1 January 2009 through 31 December 2013 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the ALARA philosophy. This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individual and collective) to the work force and to the general publicmore » to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Five-Year ALARA Review of Dosimetry Results 1 January 2010 through 31 December 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Luke R.
2015-06-01
A review of dosimetry results from 1 January 2010 through 31 December 2014 was conducted to demonstrate that radiation protection methods used are compliant with regulatory limits and conform to the philosophy to keep exposures to radiation As Low As is Reasonably Achievable (ALARA). This included a review and evaluation of personnel dosimetry (external and internal) results at Sandia National Laboratories, New Mexico as well as at Sandia National Laboratories, California. Additionally, results of environmental monitoring efforts at Sandia National Laboratories, New Mexico were reviewed. ALARA is a philosophical approach to radiation protection by managing and controlling radiation exposures (individualmore » and collective) to the work force and to the general public to levels that are As Low As is Reasonably Achievable taking social, technical, economic, practical, and public policy considerations into account. ALARA is not a dose limit but a process which has the objective of attaining doses as far below applicable dose limits As Low As is Reasonably Achievable.« less
Radiation exposure to the eye lens of orthopaedic surgeons during various orthopaedic procedures.
Romanova, K; Vassileva, J; Alyakov, M
2015-07-01
The aim of the present study was to assess the radiation dose to the eye lens of orthopaedic surgeons during various orthopaedic procedures and to make efforts to ensure that radiation protection is optimised. The study was performed for Fractura femoris and Fractura cruris procedures performed in orthopaedic operating theatres, as well as for fractures of wrist, ankle and hand/shoulder performed in the emergency trauma room. The highest mean value of the eye lens dose of 47.2 μSv and higher mean fluoroscopy time of 3 min, as well as the corresponding highest maximum values of 77.1 μSv and 5.0 min were observed for the Fractura femoris procedure performed with the Biplanar 500e fluoroscopy systems. At a normal workload, the estimated mean annual dose values do not exceed the annual occupational dose limit for the lens of eye, but at a heavy workload in the department, this dose limit could be achieved or exceeded. The use of protective lead glasses is recommended as they could reduce the radiation exposure of the lens of the eye. The phantom measurements demonstrated that the use of half-dose mode could additionally reduce dose to the operator's eye lens. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maldonado, Delis
2012-06-01
The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorizedmore » Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes included increasing the time horizon beyond 1,050 years (yr), and using the radionuclide concentrations provided by the DOE-PPPO as inputs into the codes. The deterministic peak doses were evaluated within time horizons of 70 yr (for the Landfill Worker and Trespasser), 1,050 yr, 10,000 yr and 100,000 yr (for the Resident Farmer [onsite], Resident Gardener, Recreational User, Outdoor Worker and Offsite Resident Farmer) at the request of the DOE-PPPO. The time horizons of 10,000 yr and 100,000 yr were used at the request of the DOE-PPPO for informational purposes only. The probabilistic peak of the mean dose assessment was performed for the Offsite Resident Farmer using Technetium-99 (Tc-99) and a time horizon of 1,050 yr. The results of the deterministic analyses indicate that among all receptors and time horizons evaluated, the highest projected dose, 2,700 mrem/yr, occurred for the Resident Farmer (onsite) at 12,773 yr. The exposure pathways contributing to the peak dose are ingestion of plants, external gamma, and ingestion of milk, meat and soil. However, this receptor is considered an implausible receptor. The only receptors considered plausible are the Landfill Worker, Recreational User, Outdoor Worker and the Offsite Resident Farmer. The maximum projected dose among the plausible receptors is 220 mrem/yr for the Outdoor Worker and it occurs at 19,045 yr. The exposure pathways contributing to the dose for this receptor are external gamma and soil ingestion. The results of the probabilistic peak of the mean dose analysis for the Offsite Resident Farmer indicate that the average (arithmetic mean) of the peak of the mean doses for this receptor is 0.98 mrem/yr and it occurs at 1,050 yr. This dose corresponds to Tc-99 within the time horizon of 1,050 yr.« less
Dose-response relationships for carcinogens: a review.
Zeise, L; Wilson, R; Crouch, E A
1987-01-01
We review the experimental evidence for various shapes of dose-response relationships for carcinogens and summarize those experiments that give the most information on relatively low doses. A brief review of some models is given to illustrate the shapes of dose-response curve expected from them. Our major interest is in the use of dose-response relationships to estimate risks to humans at low doses, and so we pay special attention to experimentally observed and theoretically expected nonlinearities. There are few experimental examples of nonlinear dose-response relations in humans, but this may simply be due to the limitations in the data. The several examples in rodents, even though for high dose data, suggest that nonlinearity is common. In some cases such nonlinearities may be rationalized on the basis of the pharmacokinetics of the test compound or its metabolites. PMID:3311725
[Brachytherapy for head and neck cancers].
Peiffert, D; Coche-Dequéant, B; Lapeyre, M; Renard, S
2018-05-29
The main indications of the brachytherapy of head and neck cancers are the limited tumours of the lip, the nose, the oral cavity and the oropharynx. Nasopharynx tumours are nowadays treated by intensity-modulated radiotherapy. This technique can be exclusive, associated with external radiotherapy or postoperative. It can also be a salvage treatment for the second primaries in previously irradiated areas. If the low dose rate brachytherapy rules remain the reference, the pulse dose rate technique allows the prescription of the dose rate and the optimisation of the dose distribution. Results of high dose rate brachytherapy are now published. This paper reports the recommendations of the Gec-ESTRO, published in 2017, and takes into account the data of the historical low dose rate series, and is upgraded with the pulsed-dose rate and high dose rate series. Copyright © 2018. Published by Elsevier SAS.
Survey of Occupational Noise Exposure in CF Personnel in Selected High-Risk Trades
2003-11-01
peak, maximum level , minimum level , average sound level , time weighted average, dose, projected 8-hour dose, and upper limit time were measured for...10 4.4.2 Maximum Sound Level ...11 4.4.3 Minimum Sound Level
Immuno-oncology Clinical Trial Design: Limitations, Challenges, and Opportunities
Baik, Christina S.; Rubin, Eric H.; Forde, Patrick M.; Mehnert, Janice M.; Collyar, Deborah; Butler, Marcus O.; Dixon, Erica L.; Chow, Laura Q.M.
2017-01-01
Recent advances in immuno-oncology and regulatory approvals have been rapid and paradigm shifting in many difficult-to-treat malignancies. Despite immune checkpoint inhibitor therapy becoming the standard of care across multiple tumor types, there are many unanswered questions that need to be addressed before this therapeutic modality can be fully harnessed. Areas of limitations include treatment of patients not sufficiently represented in clinical trials, uncertainty of the optimal treatment dosing and duration, and lack of understanding regarding long-term immune related toxicities and atypical tumor responses. Patients such as those with autoimmune disease, chronic viral infections, limited performance status, and brain metastases were often excluded from initial trials due to concerns of safety. However, limited data suggest that some of these patients can benefit from therapy with manageable toxicities; thus, future studies should incorporate these patients to clearly define safety and efficacy. There are still controversies regarding the optimal dosing strategy that can vary from weight-based to flat dosing, with undefined treatment duration. Further elucidation of the optimal dosing approach and evaluation of predictive biomarkers should be incorporated in the design of future trials. Finally, there are long-term immune-mediated toxicities, atypical tumor responses such as pseudoprogression and endpoints unique to immuno-oncology that are not adequately captured by traditional trial designs; thus, novel study designs are needed. In this article, we discuss in detail the above challenges and propose needed areas of research for exploration and incorporation in the next generation of immuno-oncology clinical trials. PMID:28864727
Dosimetric evaluation of the staff working in a PET/CT department
NASA Astrophysics Data System (ADS)
Dalianis, K.; Malamitsi, J.; Gogou, L.; Pagou, M.; Efthimiadou, R.; Andreou, J.; Louizï, A.; Georgiou, E.
2006-12-01
The dosimetric literature data concerning the medical personnel working in positron emission tomography/computed tomography (PET/CT) departments are limited. Therefore, we measured the radiation dose of the staff working in the first PET/CT department in Greece at the Diagnostic and Therapeutic Center of Athens HYGEIA—Harvard Medical International. As, for the time being, only 2-deoxy-2-[ 18F]fluoro-d-glucose (FDG) PET studies are performed, radiation dose measurements concern those derived from dispensing of the radiopharmaceutical as well as from the patients undergoing FDG-PET imaging. Our aim is to develop more effective protective measures against radionuclide exposure. To estimate the effective dose from external exposure, all seven members of the staff (two nurses, two medical physicists, two technologists, one secretary) had TLD badges worn at the upper pocket of their overall, TLD rings on the right hand and digital dosimeters at their upper side pocket. In addition, isodose curves were measured with thermoluminescence detectors for distances of 20, 50, 70 and 100 cm away from patients who had been injected with 18F-FDG. Dose values of the PET/CT staff were measured with digital detectors, TLD badges and TLD rings over the first 8 months for a total of 160 working days of the department's operation, consisting of a workload of about 10-15 patients/week who received 250-420 MBq of 18F-FDG each. Whole - body collective doses and hand doses for the staff were the following: Nurse #1 received 1.6 mSv as a whole body dose and 2,1 as a hand dose, Nurse #2 received 1.9 and 2.4 mSv respectively. For medical physicist #1 the dose values were 1.45 mSv whole body and 1.7 mSv hand dose, for medical physicist #2 1.67 mSv wholebody dose and 1.55 mSv hand dose and for technologists #1 & #2 the whole body doses were 0.7 and 0.64 mSv respectively. Lastly, the secretary received 0.1 mSv whole body dose. These preliminary data have shown that the dose levels of our PET/CT staff are within acceptable limits.
Risk of eye lens radiation exposure for members of the public.
Chevallier, M-A; Rannou, A; Villagrasa, C; Clairand, I
2016-01-01
In 2011, the International Commission on Radiological Protection (ICRP) reviewed its recommendation concerning the equivalent dose limit for the eye lens, lowering it to 20 mSv in a year, for occupational exposure in planned exposure situations. The ICRP's statement does not contain any explicit recommendations regarding the organ dose limit for the eye lens for public exposure. For the moment, no change is proposed. But, to be coherent in the overall approach, the current equivalent limit for the public might be lowered. A similar yardstick than in the former recommendation may be used, that is to say a reduction of 10 times lower than that for occupational exposure. In this context, additional data on potential scenarios for public exposure of the eye lens are necessary. This paper, mainly based on a literature study, aims to provide, as far as possible, an exhaustive list of the situations in which members of the public can be exposed at the level of the eye lens. Once these situations have been defined, some calculations, made to assess the associated doses to the eye lens, are presented. This literature study did not reveal any current situations where members of the public would receive significant radiation doses to the eye lens. Indeed, the situations in which the dose to the eye lens might reach around 1 mSv per year for the public are extremely rare. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pereira, Wagner de S.; Kelecom, Alphonse; Py Júnior, Delcy de Azevedo
2008-08-01
The uranium mining at Caetité (Uranium Concentrate Unit—URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210). As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5×103 μGy y-1 has been used. The derived absorbed dose rate calculated for Tilapia was 2.51×100 μGy y-1, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Wagner de S; Universidade Federal Fluminense, Programa de Pos-graduacao em Biologia Marinha; Kelecom, Alphonse
2008-08-07
The uranium mining at Caetite (Uranium Concentrate Unit--URA) is in its operational phase. Aiming to estimate the radiological environmental impact of the URA, a monitoring program is underway. In order to preserve the biota of the deleterious effects from radiation and to act in a pro-active way as expected from a licensing body, the present work aims to use an environmental protection methodology based on the calculation of absorbed dose rate in biota. Thus, selected target organism was the Tilapia fish (Tilapia nilotica, Linnaeus, 1758) and the radionuclides were: uranium (U-238), thorium (Th-232), radium (Ra-226 and Ra-228) and lead (Pb-210).more » As, in Brazil there are no radiation exposure limits adopted for biota the value proposed by the Department of Energy (DOE) of the United States of 3.5x10{sup 3} {mu}Gy y{sup -1} has been used. The derived absorbed dose rate calculated for Tilapia was 2.51x10{sup 0} {mu}Gy y{sup -1}, that is less than 0.1% of the dose limit established by DOE. The critical radionuclide was Ra-226, with 56% of the absorbed dose rate, followed by U-238 with 34% and Th-232 with 9%. This value of 0.1% of the limit allows to state that, in the operational conditions analyzed, natural radionuclides do not represent a radiological problem to biota.« less
Swords, Ronan T; Erba, Harry P; DeAngelo, Daniel J; Bixby, Dale L; Altman, Jessica K; Maris, Michael; Hua, Zhaowei; Blakemore, Stephen J; Faessel, Hélène; Sedarati, Farhad; Dezube, Bruce J; Giles, Francis J; Medeiros, Bruno C
2015-05-01
This trial was conducted to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of the first in class NEDD8-activating enzyme (NAE) inhibitor, pevonedistat, and to investigate pevonedistat pharmacokinetics and pharmacodynamics in patients with acute myeloid leukaemia (AML) and myelodysplastic syndromes (MDS). Pevonedistat was administered via a 60-min intravenous infusion on days 1, 3 and 5 (schedule A, n = 27), or days 1, 4, 8 and 11 (schedule B, n = 26) every 21-days. Dose escalation proceeded using a standard '3 + 3' design. Responses were assessed according to published guidelines. The MTD for schedules A and B were 59 and 83 mg/m(2) , respectively. On schedule A, hepatotoxicity was dose limiting. Multi-organ failure (MOF) was dose limiting on schedule B. The overall complete (CR) and partial (PR) response rate in patients treated at or below the MTD was 17% (4/23, 2 CRs, 2 PRs) for schedule A and 10% (2/19, 2 PRs) for schedule B. Pevonedistat plasma concentrations peaked after infusion followed by elimination in a biphasic pattern. Pharmacodynamic studies of biological correlates of NAE inhibition demonstrated target-specific activity of pevonedistat. In conclusion, administration of the first-in-class agent, pevonedistat, was feasible in patients with MDS and AML and modest clinical activity was observed. © 2015 John Wiley & Sons Ltd.
Fidias, Panos; Pennell, Nathan A; Boral, Anthony L; Shapiro, Geoffrey I; Skarin, Arthur T; Eder, Joseph P; Kwoh, T Jesse; Geary, Richard S; Johnson, Bruce E; Lynch, Thomas J; Supko, Jeffrey G
2009-09-01
A phase I trial was performed to evaluate the administration of carboplatin/paclitaxel in combination with ISIS-5132, a phosphorothioate antisense oligodeoxynucleotide inhibitor of c-raf-1 kinase expression, in patients with advanced non-small cell lung cancer (NSCLC). Previously untreated patients with stage IIIB/IV NSCLC received ISIS 5132 by continuous intravenous infusion at 2.0 mg/kg/d for 14 days. Starting doses were paclitaxel 175 mg/m(2) and carboplatin targeting an area under the free platinum plasma concentration-time curve (AUC(fp)) of 5 mg . min/ml (dose level 1). The carboplatin dose was then increased to AUC(fp) 6 mg . min/ml (dose level 2) after which the paclitaxel dose was increased to 200 mg/m(2) (dose level 3). The maximum tolerated dose was established by toxicity during the first two 21-day cycles of therapy. The pharmacokinetics of all three agents was determined before and during the ISIS 5132 infusion. Thirteen patients were treated with the carboplatin/paclitaxel/ISIS 5132 combination. Dose-limiting neutropenia occurred in two patients at dose level 3. Grade 3 and 4 nonhematologic toxicities were infrequent and limited to nausea and constipation. The maximum tolerated doses were carboplatin AUC(fp) 6 mg . min/ml, paclitaxel 175 mg/m(2), and ISIS 5132 2.0 mg/kg/d for 14 days. There were no objective responses and the concurrent infusion of ISIS 5132 did not alter the plasma pharmacokinetics of paclitaxel or total platinum. ISIS 5132 can be safely combined with standard doses of carboplatin and paclitaxel. Combining cytotoxic chemotherapeutic agents with inhibitors of aberrant signal transduction mediated by Raf proteins produced no objective responses in the dose and schedule administered in this study.
Moore, Kathleen N; Borghaei, Hossein; O'Malley, David M; Jeong, Woondong; Seward, Shelly M; Bauer, Todd M; Perez, Raymond P; Matulonis, Ursula A; Running, Kelli L; Zhang, Xiaoyan; Ponte, Jose F; Ruiz-Soto, Rodrigo; Birrer, Michael J
2017-08-15
Mirvetuximab soravtansine (IMGN853) is an antibody-drug conjugate that selectively targets folate receptor α (FRα). In this phase 1 dose-escalation study, the authors investigated IMGN853 in patients with FRα-positive solid tumors. Patients received IMGN853 on day 1 of a 21-day cycle (once every 3 weeks dosing), with cycles repeated until patients experienced dose-limiting toxicity or progression. Dose escalation commenced in single-patient cohorts for the first 4 planned dose levels and then followed a standard 3 + 3 scheme. The primary objectives were to determine the maximum tolerated dose and the recommended phase 2 dose. Secondary objectives were to determine safety and tolerability, to characterize the pharmacokinetic profile, and to describe preliminary clinical activity. In total, 44 patients received treatment at doses escalating from 0.15 to 7.0 mg/kg. No meaningful drug accumulation was observed with the dosing regimen of once every 3 weeks. The most common treatment-related adverse events were fatigue, blurred vision, and diarrhea, the majority of which were grade 1 or 2. The dose-limiting toxicities observed were grade 3 hypophosphatemia (5.0 mg/kg) and grade 3 punctate keratitis (7.0 mg/kg). Two patients, both of whom were individuals with epithelial ovarian cancer, achieved confirmed tumor responses according to Response Evaluation Criteria in Solid Tumors 1.1, and each was a partial response. IMGN853 demonstrated a manageable safety profile and encouraging preliminary clinical activity, particularly in patients with ovarian cancer. The results establish a recommended phase 2 dosing of 6.0 mg/kg (based on adjusted ideal body weight) once every 3 weeks. Cancer 2017. © 2017 American Cancer Society. Cancer 2017;123:3080-7. © 2017 American Cancer Society. © 2017 American Cancer Society.
NASA Astrophysics Data System (ADS)
Szumska, A.; Budzanowski, M.; Kopeć, R.
2017-11-01
In its statement on tissue reactions approved on 21st April 2011, the International Commission on Radiological Protection (ICRP, 2012) reviewed its recommendation concerning the equivalent dose limit for the eye lens and reduced the dose limits for occupationally exposed persons to 20 mSv in a year, averaged over defined periods of 5 years, with no single year exceeding 50 mSv. This limit was approved and written down in the new EURATOM (European Atomic Energy Community) directive 2013/59 and in the IAEA (International Atomic Energy Agency) BSS (Basic Safety Standard) of July 2014. For that reason, the necessity to monitor the eye lens may become more important than it was before. However, specially dedicated dosemeters for the dose quantity Hp(3) are using very rarely. Commonly use are only whole body personal dosemeters for the personal dose equivalent quantities Hp(10) worn on the trunk and ring dosemeters worn on finger to measure the quantity Hp(0.07). Therefore, in this work it was investigated whether dosemeters from routine use calibrated in terms of Hp(10) and Hp(0.07) and worn on thyroid collar and protective apron could deliver similar results like dedicated eye lens dosemeter worn close to the eyes. The results show that the best method if dedicated eye lens dosimeters is not used is to measure doses in terms of Hp(0.07) on the thyroid collar (Pearson product, r=0.85). Obtained results shows also importance of proper localization of eye lens dosimeter (close to the eye, from side of the X-ray source).
MacDonald, A; Ambery, P; Donaldson, J; Hicks, K; Keymeulen, B; Parkin, J
2016-05-01
Targeting CD3 antigens on human T lymphocytes with monoclonal antibodies has been shown to reduce the rate of decline of C-peptides in recent-onset type 1 diabetes mellitus patients. However, effective doses are associated with infusion reactions typical of "cytokine release syndrome" and appear to be dose-limiting when administered as short-duration infusions. A possible alternative approach, which may reduce the rate of T cell activation and consequent systemic cytokine release, is to inject subcutaneously. We investigated single- and repeat-dose subcutaneous administration of the anti-CD3 monoclonal antibody otelixizumab in small cohorts of patients with type 1 diabetes. Transient reductions in free or unbound CD3 antigen on CD4+ and CD8+ cells and absolute lymphocyte count were observed in the blood of these patients during treatment, consistent with the known mechanism of action of otelixizumab and other anti-CD3 monoclonal antibodies. This was despite the very low systemic exposure of antibodies measured during the same time period. With the exception of sporadic headaches, other symptoms associated with cytokine release syndrome, such as fever, nausea, vomiting, myalgia, and arthralgia, were absent in treated patients. However, treatment-related injection site reactions were consistently observed. The reactions were erythematous and their sizes were dose-dependent; in some cases, reactions persisted for up to 2 weeks following the start of treatment. While patients responded well to topical corticosteroid treatment and prophylaxis reduced the intensity of injection site reactions, the reactions were considered dose-limiting and higher doses were not investigated. © Georg Thieme Verlag KG Stuttgart · New York.
SUDOQU, a new dose-assessment methodology for radiological surface contamination.
van Dillen, Teun; van Dijk, Arjan
2018-06-12
A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked out demonstrating the potential applications of the methodology. . Creative Commons Attribution license.
Macheras, Panos; Iliadis, Athanassios; Melagraki, Georgia
2018-05-30
The aim of this work is to develop a gastrointestinal (GI) drug absorption model based on a reaction limited model of dissolution and consider its impact on the biopharmaceutic classification of drugs. Estimates for the fraction of dose absorbed as a function of dose, solubility, reaction/dissolution rate constant and the stoichiometry of drug-GI fluids reaction/dissolution were derived by numerical solution of the model equations. The undissolved drug dose and the reaction/dissolution rate constant drive the dissolution rate and determine the extent of absorption when high-constant drug permeability throughout the gastrointestinal tract is assumed. Dose is an important element of drug-GI fluids reaction/dissolution while solubility exclusively acts as an upper limit for drug concentrations in the lumen. The 3D plots of fraction of dose absorbed as a function of dose and reaction/dissolution rate constant for highly soluble and low soluble drugs for different "stoichiometries" (0.7, 1.0, 2.0) of the drug-reaction/dissolution with the GI fluids revealed that high extent of absorption was found assuming high drug- reaction/dissolution rate constant and high drug solubility. The model equations were used to simulate in vivo supersaturation and precipitation phenomena. The model developed provides the theoretical basis for the interpretation of the extent of drug's absorption on the basis of the parameters associated with the drug-GI fluids reaction/dissolution. A new paradigm emerges for the biopharmaceutic classification of drugs, namely, a model independent biopharmaceutic classification scheme of four drug categories based on either the fulfillment or not of the current dissolution criteria and the high or low % drug metabolism. Copyright © 2018. Published by Elsevier B.V.
Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R
2006-06-10
The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.
Radionuclides and radiation doses in heavy mineral sands and other mining operations in Mozambique.
Carvalho, Fernando P; Matine, Obete F; Taímo, Suzete; Oliveira, João M; Silva, Lídia; Malta, Margarida
2014-01-01
Sites at the littoral of Mozambique with heavy mineral sands exploited for ilmenite, rutile and zircon and inland mineral deposits exploited for tantalite, uranium and bauxite were surveyed for ambient radiation doses, and samples were collected for the determination of radionuclide concentrations. In heavy mineral sands, (238)U and (232)Th concentrations were 70±2 and 308±9 Bq kg(-1) dry weight (dw), respectively, whereas after separation of minerals, the concentrations in the ilmenite fraction were 2240±64 and 6125±485 Bq kg(-1) (dw), respectively. Tantalite displayed the highest concentrations with 44 738±2474 Bq kg(-1) of (238)U. Radiation exposure of workers in mining facilities is likely to occur at levels above the dose limit for members of the public (1 mSv y(-1)) and therefore radiation doses should be assessed as occupational exposures. Local populations living in these regions in general are not exposed to segregated minerals with high radionuclide concentrations. However, there is intensive artisanal mining and a large number of artisanal miners and their families may be exposed to radiation doses exceeding the dose limit. A radiation protection programme is therefore needed to ensure radiation protection of the public and workers of developing mining projects.
NASA Astrophysics Data System (ADS)
Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian
2018-01-01
Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.
NASA Astrophysics Data System (ADS)
Pyakuryal, Anil
2009-05-01
Studies have shown that as many as 8 out of 10 men had prostate cancer by age 80.Prostate cancer begins with small changes (prostatic intraepithelial neoplasia(PIN)) in size and shape of prostate gland cells,known as prostate adenocarcinoma.With advent in technology, prostate cancer has been the most widely used application of IMRT with the longest follow-up periods.Prostate cancer fits the ideal target criteria for IMRT of adjacent sensitive dose-limiting tissue (rectal, bladder).A retrospective study was performed on 10 prostate cancer patients treated with radiation to a limited pelvic field with a standard 4 field arrangements at dose 45 Gy, and an IMRT boost field to a total isocenter dose of 75 Gy.Plans were simulated for 4 field and the supplementary IMRT treatments with proposed dose delivery at 1.5 Gy/fraction in BID basis.An automated DVH analysis software, HART (S. Jang et al., 2008,Med Phys 35,p.2812)was used to perform DVH assessments in IMRT plans.A statistical analysis of dose coverage at targets in prostate gland and neighboring critical organs,and the plan indices(homogeneity, conformality etc) evaluations were also performed using HART extracted DVH statistics.Analyzed results showed a better correlation with the proposed outcomes (TCP, NTCP) of the treatments.
Current status of radiological protection at nuclear power stations in Japan.
Suzuki, Akira; Hori, Shunsuke
2011-07-01
The radiation dose to workers at nuclear power stations (NPSs) in Japan was drastically reduced between the late-1970s and the early-1990s by continuous dose-reduction programmes. The total collective dose of radiation workers in FY 2008 was 84.04 person Sv, while the average collective dose was 1.5 person Sv per reactor. The average annual individual dose was 1.1 mSv and the maximum annual individual dose was 19.5 mSv. These values are sufficiently lower than the regulatory dose limits. Radioactive effluent released from NPSs is already so trivial that additional protective measures will not be necessary. Experience in radiation protection at NPSs has been accumulated over 40 y and will be very useful in establishing a rational radiation control system in the future.
Kumar, A; Kaur, M; Sharma, S; Mehra, R; Sharma, D K; Mishra, R
2016-10-01
In the present investigation, radon concentration and heavy metal analysis were carried out in drinking water samples in Jammu district, Jammu & Kashmir, India. The radon concentration was measured by using RAD-7, portable alpha particle detector. The values of radon concentration in drinking water samples were also compared within the safe limit recommended by different health agencies. The total annual effective dose ranged from 53.04 to 197.29 µSv y -1 The annual effective dose from few locations from the studied area was found to be greater than the safe limit (100 µSv y -1 ) suggested by World Health Organisation (WHO) and EU Council. Heavy metal concentration was determined by atomic absorption spectrophotometer. A total of eight elements were analysed, viz. arsenic, mercury, zinc, iron, copper, chromium, manganese and cadmium. Heavy metals are considered to be the major pollutants of water sources. The results were compared with the limits of WHO, EU and Indian organisations. The trace metal analysis is not on the exceeding side of the permissible limit in all the samples. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Report of IRPA task group on the impact of the eye lens dose limits.
Cantone, Marie Claire; Ginjaume, Merce; Miljanic, Saveta; Martin, Colin J; Akahane, Keiichi; Mpete, Louisa; Michelin, Severino C; Flannery, Cynthia M; Dauer, Lawrence T; Balter, Stephen
2017-06-26
In 2012 IRPA established a task group (TG) to identify key issues in the implementation of the revised eye lens dose limit. The TG reported its conclusions in 2013. In January 2015, IRPA asked the TG to review progress with the implementation of the recommendations from the early report and to collate current practitioner experience. This report presents the results of a survey on the view of the IRPA professionals on the new limit to the lens of the eye and on the wider issue of tissue reactions. Recommendations derived from the survey are presented. This report was approved by IRPA Executive Council on 31 January 2017.
Broughton, J; Cantone, M C; Ginjaume, M; Shah, B; Czarwinski, R
2015-06-01
In April 2011, the International Commission on Radiological Protection issued a statement on reduction of the equivalent dose limits for the lens of the eye, and strongly recommended its consideration in the revision of the International Atomic Energy Agency's International Basic Safety Standards on Radiation Protection. The reduced dose limit was incorporated in the final version of the Basic Safety Standards. As significant concern was expressed by radiation protection professionals worldwide, the International Radiation Protection Association (IRPA) established a task group to assess the impact of implementation of the revised dose limit for the lens of the eye for occupational exposure. IRPA Associate Societies (ASs) were asked for their views using a questionnaire addressing three topics: implications for dosimetry, implications for methods of protection, and wider implications. The responses received indicate various methods of approach and express different points of view, reflecting nuances of particular ASs or specific professional groups. Topic experts nominated by ASs were selected to assist with collation of responses, and a report was produced by the task group. Conclusions were drawn on the three issues, including potential cost implications. A number of recommendations were drawn from the responses received including: the request for more understanding about the relationship between exposure of the lens of the eye and cataract formation, and further guidance to assist implementation; the importance of economic and social considerations when introducing the limits into national regulations; the need to propose or define procedures related to employment of people with existing or pre-cataract conditions; and the practical aspects relating to dosimetry and protective equipment. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, W.G.
2001-08-16
The offsite radiological effects from high velocity straight winds, tornadoes, and earthquakes have been estimated for a proposed facility for manufacturing enriched uranium fuel cores by powder metallurgy. Projected doses range up to 30 mrem/event to the maximum offsite individual for high winds and up to 85 mrem/event for very severe earthquakes. Even under conservative assumptions on meteorological conditions, the maximum offsite dose would be about 20 per cent of the DOE limit for accidents involving enriched uranium storage facilities. The total dose risk is low and is dominated by the risk from earthquakes. This report discusses this test.
Bouffler, S D; Peters, S; Gilvin, P; Slack, K; Markiewicz, E; Quinlan, R A; Gillan, J; Coster, M; Barnard, S; Rothkamm, K; Ainsbury, E
2015-06-01
The recommendation from the International Commission on Radiological Protection that the occupational equivalent dose limit for the lens of the eye should be reduced to 20 mSv year(-1), averaged over 5 years with no year exceeding 50 mSv, has stimulated a discussion on the practicalities of implementation of this revised dose limit, and the most appropriate risk and protection framework to adopt. This brief paper provides an overview of some of the drivers behind the move to a lower recommended dose limit. The issue of implementation in the medical sector in the UK has been addressed through a small-scale survey of doses to the lens of the eye amongst interventional cardiologists and radiologists. In addition, a mechanistic study of early and late post-irradiation changes in the lens of the eye in in-vivo-exposed mice is outlined. Surveys and studies such as those described can contribute to a deeper understanding of fundamental and practical issues, and therefore contribute to a robust evidence base for ensuring adequate protection of the eye while avoiding undesirable restrictions to working practices. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Dating Middle Pleistocene loess using IRSL luminescence
NASA Astrophysics Data System (ADS)
Michel, L.
2008-12-01
Loess is a unique palaeoclimate proxy that has a relatively global distribution. A major issue in loess studies is their age, as most terrestrial sediments are outside the realm of isotopic dating methods. Luminescence dating of loess has been attempted with limited success as Optically Stimulated Luminescence (OSL) from the two common dosimeters used in luminescence, quartz and feldspar minerals, both yielded age underestimates. Quartz is limited by dose saturation and feldspar suffers from anomalous fading. Over the last decade, we have developed methods to deal with anomalous fading and hence correct Infrared Stimulated Luminescence (IRSL) ages from feldspar dominated samples. A method known as Dose Rate Correction (DRC) has been successfully applied to loess from the Western European Belt, for ages as old as the Middle Pleistocene. Ages using the same method have been obtained for loess in Alaska and the technique is now being extended to loess from Illinois and China. IRSL can also be used as a reliable telecorrelation tool as luminescence properties of loess are broadly similar, whatever the geological provenance. DRC corrected IRSL extends the applicability of luminescence to dating loess up to at least 500 ka. The limiting factor in the specific case of loess is dose saturation due to relatively high dose rate compared to the average terrestrial sediment radioactivity.
EXCRETION OF P$sup 32$ AFTER THERAPY FOR POLYCYTHEMIA RUBRA VERA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weijer, D.L.; Duggan, H.E.; Scott, D.B.
1962-09-01
Fifteen subjects undergoing treatment for polycythemia rubra vera were given P/sup 32/. Carrier-free P/sup 32/ was administered intravenously in 11 and orally in 6. Total excretion studies were carried out in each case for periods of 5 to 22 days. Average urinary excretion of P/sup 32/, as a percentage of the initial dose to the end of 3 days for the entire series, was 14.3%, with limits of 6.4 and 18.7%. The corresponding 5-day average amounted to 17.8%, with limits of 7.5 and 22.5%. In the six patients treated orally, the average 3-day urinary excretion was 11.2% and for 5more » days was 14.2%. For the 11 patients treated intravenously, the average 3-day excretion was 16.1%, the average 5-day excretion 19.8%. The average fecal excretion as a percentage of the initial dose to the end of 3 days was 1.7%, with limits of 0.1 and 5.5%, and the average 5-day excretion was 2.5%, with limits 0.5 and 5.9%. In the orally treated fasting group the total stool excretion to the end of 3 days was 2.0 and 2.5% at the end of 5 days. Of the 10 polycythemia patients treated intravenously, the stool excretion to the end of 3 days was 1.5% and at 5 days 2.5%. Under fasting conditions (both before and after the administration of P/sup 32/) with little or no carrier added, the fecal excretion of P/sup 32/is small. Thus, the total excretion of P/sup 32/ does not differ significantly for oral and intravenous administration. Hence, despite contrary reports, it appears that under fasting conditions of administration it is not necessary to increase the oral dose of P/ sup 32/ to 4/3 of the intravenous dose in order to obtain equivalent absorption of the administered dose. It is concluded that the P/sup 32/ content of urine in the first 24 hr after therapy, by either route of administration, indicates whether or not a particular patient will retain the dose within normal limits. (BBB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodrigues, George, E-mail: george.rodrigues@lhsc.on.ca; Yartsev, Slav; Yaremko, Brian
2011-07-15
Purpose: Stereotactic radiosurgery is an alternative to surgical resection for selected intracranial lesions. Integrated image-guided intensity-modulated-capable radiotherapy platforms such as helical tomotherapy (HT) could potentially replace traditional radiosurgery apparatus. The present study's objective was to determine the maximally tolerated dose of a simultaneous in-field boost integrated with whole brain radiotherapy for palliative treatment of patients with one to three brain metastases using HT. Methods and Materials: The inclusion/exclusion criteria and endpoints were consistent with the Radiation Therapy Oncology Group 9508 radiosurgery trial. The cohorts were constructed with a 3 + 3 design; however, additional patients were enrolled in the lowermore » dose tolerable cohorts during the toxicity assessment periods. Whole brain radiotherapy (30 Gy in 10 fractions) was delivered with a 5-30-Gy (total lesion dose of 35-60 Gy in 10 fractions) simultaneous in-field boost delivered to the brain metastases. The maximally tolerated dose was determined by the frequency of neurologic Grade 3-5 National Cancer Institute Common Toxicity Criteria, version 3.0, dose-limiting toxicity events within each Phase I cohort. Results: A total of 48 patients received treatment in the 35-Gy (n = 3), 40-Gy (n = 16), 50-Gy (n = 15), 55-Gy (n = 8), and 60-Gy (n = 6) cohorts. No patients experienced dose-limiting toxicity events in any of the trial cohorts. The 3-month RECIST assessments available for 32 of the 48 patients demonstrated a complete response in 2, a partial response in 16, stable disease in 6, and progressive disease in 8 patients. Conclusion: The delivery of 60 Gy in 10 fractions to one to three brain metastases synchronously with 30 Gy whole brain radiotherapy was achieved without dose-limiting central nervous system toxicity as assessed 3 months after treatment. This approach is being tested in a Phase II efficacy trial.« less
Role of belly board device in the age of intensity modulated radiotherapy for pelvic irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estabrook, Neil C.; Bartlett, Gregory K.; Compton, Julia J.
Small bowel dose often represents a limiting factor for radiation treatment of pelvic malignancies. To reduce small bowel toxicity, a belly board device (BBD) with a prone position is often recommended. Intensity modulated radiotherapy (IMRT) could reduce dose to small bowel based on the desired dose-volume constraints. We investigated the efficacy of BBD in conjunction with IMRT. A total of 11 consecutive patients with the diagnosis of rectal cancer, who were candidates for definitive therapy, were selected. Patients were immobilized with BBD in prone position for simulation and treatment. Supine position computed tomography (CT) data were either acquired at themore » same time or during a diagnostic scan, and if existed was used. Target volumes (TV) as well as organs at risk (OAR) were delineated in both studies. Three-dimensional conformal treatment (3DCRT) and IMRT plans were made for both scans. Thus for each patient, 4 plans were generated. Statistical analysis was conducted for maximum, minimum, and mean dose to each structure. When comparing the normalized mean Gross TV dose for the different plans, there was no statistical difference found between the planning types. There was a significant difference in small bowel sparing when using prone position on BBD comparing 3DCRT and IMRT plans, favoring IMRT with a 29.6% reduction in dose (p = 0.007). There was also a statistically significant difference in small bowel sparing when comparing supine position IMRT to prone-BBD IMRT favoring prone-BBD IMRT with a reduction of 30.3% (p = 0.002). For rectal cancer when small bowel could be a limiting factor, prone position using BBD along with IMRT provides the best sparing. We conclude that whenever a dose escalation in rectal cancer is desired where small bowel could be limiting factor, IMRT in conjunction with BBD should be selected.« less
An Eye Model for Computational Dosimetry Using A Multi-Scale Voxel Phantom
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-06-01
The lens of the eye is a radiosensitive tissue with cataract formation being the major concern. Recently reduced recommended dose limits to the lens of the eye have made understanding the dose to this tissue of increased importance. Due to memory limitations, the voxel resolution of computational phantoms used for radiation dose calculations is too large to accurately represent the dimensions of the eye. A revised eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and is then transformed into a high-resolution voxel model. This eye model is combined with an existing set of whole body models to form a multi-scale voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Cancer mortality among coke oven workers.
Redmond, C K
1983-01-01
The OSHA standard for coke oven emissions, which went into effect in January 1977, sets a permissible exposure limit to coke oven emissions of 150 micrograms/m3 benzene-soluble fraction of total particulate matter (BSFTPM). Review of the epidemiologic evidence for the standard indicates an excess relative risk for lung cancer as high as 16-fold in topside coke oven workers with 15 years of exposure or more. There is also evidence for a consistent dose-response relationship in lung cancer mortality when duration and location of employment at the coke ovens are considered. Dose-response models fitted to these same data indicate that, while excess risks may still occur under the OSHA standard, the predicted levels of increased relative risk would be about 30-50% if a linear dose-response model is assumed and 3-7% if a quadratic model is assumed. Lung cancer mortality data for other steelworkers suggest the predicted excess risk has probably been somewhat overestimated, but lack of information on important confounding factors limits further dose-response analysis. PMID:6653539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santucci, P.; Guetat, P.
1993-12-31
This document describes the code CERISE, Code d`Evaluations Radiologiques Individuelles pour des Situations en Enterprise et dans l`Environnement. This code has been developed in the frame of European studies to establish acceptance criteria of very low-level radioactive waste and materials. This code is written in Fortran and runs on PC. It calculates doses received by the different pathways: external exposure, ingestion, inhalation and skin contamination. Twenty basic scenarios are already elaborated, which have been determined from previous studies. Calculations establish the relation between surface, specific and/or total activities, and doses. Results can be expressed as doses for an average activitymore » unit, or as average activity limits for a set of reference doses (defined for each scenario analyzed). In this last case, the minimal activity values and the corresponding limiting scenarios, are selected and summarized in a final table.« less
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Rojdev, Kristina; Valle, Gerard D.; Zipay, John J.; Atwell, William S.
2013-01-01
The Hybrid Inflatable DSH combined with electric propulsion and high power solar-electric power systems offer a near TRL-now solution to the space radiation crew dose problem that is an inevitable aspect of long term manned interplanetary flight. Spreading program development and launch costs over several years can lead to a spending plan that fits with NASA's current and future budgetary limitations, enabling early manned interplanetary operations with space radiation dose control, in the near future while biomedical research, nuclear electric propulsion and active shielding research and development proceed in parallel. Furthermore, future work should encompass laboratory validation of HZETRN calculations, as previous laboratory investigations have not considered large shielding thicknesses and the calculations presented at these thicknesses are currently performed via extrapolation.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G
2011-05-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments.
Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate
Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.
2011-01-01
Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with an improved understanding of the effects of dose and dose rate will aid single-particle cryo-electron microscopists to have better control of the outcome of their experiments. PMID:21525648
Creelan, Ben C; Gabrilovich, Dmitry I; Gray, Jhanelle E; Williams, Charles C; Tanvetyanon, Tawee; Haura, Eric B; Weber, Jeffrey S; Gibney, Geoffrey T; Markowitz, Joseph; Proksch, Joel W; Reisman, Scott A; McKee, Mark D; Chin, Melanie P; Meyer, Colin J; Antonia, Scott J
2017-01-01
Omaveloxolone is a semisynthetic oleanane triterpenoid that potently activates Nrf2 with subsequent antioxidant function. We conducted a first-in-human Phase I clinical trial (NCT02029729) with the primary objectives to determine the appropriate dose for Phase II studies, characterize pharmacokinetic and pharmacodynamic parameters, and assess antitumor activity. Omaveloxolone was administered orally once daily continuously in a 28-day cycle for patients with stage 4 relapsed/refractory melanoma or non-small cell lung cancer. An accelerated titration design was employed until a grade 2-related adverse event (AE) occurred. A standard 3+3 dose escalation was employed. Single-dose and steady-state plasma pharmacokinetics of the drug were characterized. Downstream Nrf2 activation was assessed in peripheral blood mononuclear cells by quantification of target gene mRNA expression. Omaveloxolone was tested at four dose levels up to 15 mg given orally once daily. No dose-limiting toxicities were detected, and the maximum tolerated dose was not determined. All drug-related AEs were either grade 1 or 2 in severity, and none required clinical action. The most common drug-related AEs were elevated alkaline phosphatase (18%) and anemia (18%). No drug interruptions or reductions were required. Omaveloxolone was rapidly absorbed and exhibited proportional increases in exposure across dose levels. With some exceptions, an overall trend toward time-dependent and dose-dependent activation of Nrf2 antioxidant genes was observed. No confirmed radiologic responses were seen, although one lung cancer subject did have stable disease exceeding 1 year. Omaveloxolone has favorable tolerability at biologically active doses, although this trial had a small sample size which limits definitive conclusions. These findings support further investigation of omaveloxolone in cancer.
SU-F-T-538: CyberKnife with MLC for Treatment of Large Volume Tumors: A Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bichay, T; Mayville, A
2016-06-15
Purpose: CyberKnife is a well-documented modality for SRS and SBRT treatments. Typical tumors are small and 1–5 fractions are usually used. We determined the feasibility of using CyberKnife, with an InCise multileaf collimator option, for larger tumors undergoing standard dose and fractionation. The intent was to understand the limitation of using this modality for other external beam radiation treatments. Methods: Five tumors from different anatomical sites with volumes from 127.8 cc to 1,320.5 cc were contoured and planned on a Multiplan V5.1 workstation. The target average diameter ranged from 7 cm to 13 cm. The dose fractionation was 1.8–2.0 Gy/fractionmore » and 25–45 fractions for total doses of 45–81 Gy. The sites planned were: pancreas, head and neck, prostate, anal, and esophagus. The plans were optimized to meet conventional dose constraints based on various RTOG protocols for conventional fractionation. Results: The Multiplan treatment planning system successfully generated clinically acceptable plans for all sites studied. The resulting dose distributions achieved reasonable target coverage, all greater than 95%, and satisfactory normal tissue sparing. Treatment times ranged from 9 minutes to 38 minutes, the longest being a head and neck plan with dual targets receiving different doses and with multiple adjacent critical structures. Conclusion: CyberKnife, with the InCise multileaf collimation option, can achieve acceptable dose distributions in large volume tumors treated with conventional dose and fractionation. Although treatment times are greater than conventional accelerator time; target coverage and dose to critical structures can be kept within a clinically acceptable range. While time limitations exist, when necessary CyberKnife can provide an alternative to traditional treatment modalities for large volume tumors.« less
Durk, Matthew R; Deshmukh, Gauri; Valle, Nicole; Ding, Xiao; Liederer, Bianca M; Liu, Xingrong
2018-07-01
Microdialysis is a powerful technique allowing for real-time measurement of unbound drug concentrations in brain interstitial fluid in conscious animals. Use of microdialysis in drug discovery is limited by high resource requirement and low throughput, but this may be improved by cassette dosing. Administering multiple compounds intravenously of diverse physiochemical properties, it is often very challenging and time consuming to identify a vehicle that can dissolve all of the compounds. To overcome this limitation, the present study explores the possibility of administering a cassette dose of nine diverse compounds (carbamazepine, citalopram, desmethylclozapine, diphenhydramine, gabapentin, metoclopramide, naltrexone, quinidine, and risperidone) in suspension, rather than in solution, by intraperitoneal and subcutaneous routes, and determining if this is a viable option for assessing blood-brain barrier penetration in microdialysis studies. Repeated hourly subcutaneous dosing during the 6-hour microdialysis study allowed for the best attainment of distributional equilibrium between brain and plasma, resulting in less than a 2-fold difference in the unbound brain to unbound plasma concentration ratio for the cassette dosing method versus discrete dosing. Both subcutaneous and intraperitoneal repeated dosing can provide a more practical substitute for intravenous dosing in determining brain penetration of a cassette of diverse compounds in brain microdialysis studies. The results from the present study demonstrate that dosing compounds in suspension represents a practical approach to eliminating the technical challenge and labor-intensive step of preparation of solutions of a mixture of compounds and will enable the use of the cassette brain microdialysis method in a central nervous system drug discovery setting. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Wouda, R M; Hocker, S E; Higginbotham, M L
2018-03-01
Combining conventional cytotoxic maximum tolerated dose (MTD) chemotherapy with low-dose metronomic and/or anti-angiogenic agents is a exciting area of oncologic research. The objective of this study was to establish the MTD, safety and adverse event (AE) profile of 1 such drug combination. This prospective phase I dose-finding clinical trial assumed an open-label 3 + 3 cohort design. Client-owned dogs with 1 or more cytologically and/or histologically confirmed and macroscopically measurable, naive or recurrent, malignant tumours, were enrolled. No preference for tumour histology, grade or stage was expressed. Toceranib was administered at a dose of 2.75 mg kg -1 by mouth (PO) every other day (EOD), and carboplatin administered intravenously (IV) every 21 days at a starting dose of 200 mg m -2 . A total of 25% dose escalation was proposed for carboplatin, to a maximum of 300 mg m -2 . AEs were graded according to the Veterinary Cooperative Oncology Group's common terminology criteria for AEs (VCOG-CTCAE). Grade 3 haematologic or gastrointestinal AEs were nominated dose-limiting. Response to therapy was evaluated according to the VCOG's revised RECIST criteria. Eleven dogs were enrolled. Tumour histologies included sinonasal carcinoma, osteosarcoma, thyroid carcinoma, melanoma and apocrine gland anal sac adenocarcinoma. MTDs of carboplatin and toceranib were identified as 200 mg m -2 IV every 21 days and approximately 2.75 mg kg -1 PO EOD, respectively. The dose-limiting toxicity was neutropenia. Two dogs experienced a partial response, and 6 maintained stable disease. Combination carboplatin and toceranib chemotherapy was well-tolerated. Clinical benefit was observed in most cases. This protocol warrants further investigation in phase II/III trials. © 2017 John Wiley & Sons Ltd.
Fakih, Marwan G.; Pendyala, Lakshmi; Fetterly, Gerald; Toth, Karoli; Zwiebel, James A; Espinoza-Delgado, Igor; Litwin, Alan; Rustum, Youcef M.; Ross, Mary Ellen; Holleran, Julianne L.; Egorin, Merrill J.
2014-01-01
Purpose We conducted a phase I study to determine the maximum tolerated dose (MTD) of vorinostat in combination with fixed doses of 5-Fluorouracil (5-FU), leucovorin, and oxaliplatin (FOLFOX). Experimental Design Vorinostat was given PO BID for 1 week every 2 weeks. FOLFOX was given on days 4 and 5 of vorinostat. The vorinostat starting dose was 100 mg BID. Escalation occurred in cohorts of 3–6 patients. Pharmacokinetics of vorinostat, 5-FU, and oxaliplatin were studied. Results Twenty-one patients were enrolled. Thrombocytopenia, neutropenia, gastrointestinal toxicities, and fatigue increased in frequency and severity at higher dose-levels (DL) of vorinostat. Two of 4 evaluable patients at DL 4 (vorinostat 400 mg PO BID) developed dose-limiting fatigue. One of 10 evaluable patients at DL3 (vorinostat 300 mg PO BID) had dose-limiting fatigue, anorexia, and dehydration. There were significant relationships between vorinostat dose and AUC on days 1 and 5 (Pearson, < 0.001). Vorinostat AUC increased (p = 0.005) and clearance decreased (p = 0.003) on day 5 compared to day 1. The median Cmax of 5-FU at each DL increased significantly with increasing doses of vorinostat, suggesting a pharmacokinetic interaction between 5-FU and vorinostat. Vorinostat-induced thymidylate synthase modulation was not consistent; only two of six patients had a decrease in intra-tumoral thymidylate synthase expression by RT-PCR. Conclusions The MTD of vorinostat in combination with FOLFOX is 300 mg PO BID x 1 week every two weeks. Alternative vorinostat dosing schedules may be needed for optimal down-regulation of thymidylate synthase expression. PMID:19383814
Schneider, Frank; Bludau, Frederic; Clausen, Sven; Fleckenstein, Jens; Obertacke, Udo; Wenz, Frederik
2017-05-01
To the present date, IORT has been eye and hand guided without treatment planning and tissue heterogeneity correction. This limits the precision of the application and the precise documentation of the location and the deposited dose in the tissue. Here we present a set-up where we use image guidance by intraoperative cone beam computed tomography (CBCT) for precise online Monte Carlo treatment planning including tissue heterogeneity correction. An IORT was performed during balloon kyphoplasty using a dedicated Needle Applicator. An intraoperative CBCT was registered with a pre-op CT. Treatment planning was performed in Radiance using a hybrid Monte Carlo algorithm simulating dose in homogeneous (MCwater) and heterogeneous medium (MChet). Dose distributions on CBCT and pre-op CT were compared with each other. Spinal cord and the metastasis doses were evaluated. The MCwater calculations showed a spherical dose distribution as expected. The minimum target dose for the MChet simulations on pre-op CT was increased by 40% while the maximum spinal cord dose was decreased by 35%. Due to the artefacts on the CBCT the comparison between MChet simulations on CBCT and pre-op CT showed differences up to 50% in dose. igIORT and online treatment planning improves the accuracy of IORT. However, the current set-up is limited by CT artefacts. Fusing an intraoperative CBCT with a pre-op CT allows the combination of an accurate dose calculation with the knowledge of the correct source/applicator position. This method can be also used for pre-operative treatment planning followed by image guided surgery. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance
NASA Astrophysics Data System (ADS)
Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.
2014-09-01
An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).
De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S
2015-04-01
Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audet, C; Poffenbarger, B; Hwang, A
2015-06-15
Purpose: To investigate some limitations of single isocenter VMAT for cranial multiple met cases. Methods: A single isocenter VMAT plan (Varian, Eclipse AAA10 commissioned down to 1 cm) was designed for two 7mm diameter spherical targets in a rectangular Solid Water (Gammex) phantom. The targets were separated by a distance of 6cm and the isocenter was centered in one of the targets. The plan was delivered (Varian, Truebeam STx) three separate times with different artificial couch angle errors of 0, 0.5 and 1 degree. The coronal dose distributions were measured with calibrated EBT3 film placed at mid-phantom. EBT3 film dosimetrymore » was also performed on the delivery of separate multiple arc vmat plans to targets below 6mm in diameter. Results: Measurements of the sup/inf dose profiles through the high dose distributions show no movement of the central axis high dose region and shifts of the high dose region intended for the off-axis target. For the 1 degree rotation error, the high dose region was shifted 1.04mm from the target. This corresponds to the shift expected from triangulation (60mmxTan(1deg)=1.047mm). Furthermore, a streak of 10% interleaf leakage dose was observed and is likely a Result of the off axis target traveling a wide path such that a long length of MLC is exposed for the whole arc. The calculated dose was about 10% to 15% low compared to that measured on film for a 5mm diameter target. Conclusion: Judicious use of additional margin for off axis targets or limits on the span of multiple mets treated with one isocenter is recommended. The magnitude of the margin should be based on the rotational errors evaluated for the positioning system and the distance of the target from the isocenter. A lower limit of lesion size that can be accurately treated with VMAT should be determined.« less
Dose-finding design for multi-drug combinations
Wages, Nolan A; Conaway, Mark R; O'Quigley, John
2012-01-01
Background Most of the current designs used for Phase I dose finding trials in oncology will either involve only a single cytotoxic agent or will impose some implicit ordering among the doses. The goal of the studies is to estimate the maximum tolerated dose (MTD), the highest dose that can be administered with an acceptable level of toxicity. A key working assumption of these methods is the monotonicity of the dose–toxicity curve. Purpose Here we consider situations in which the monotonicity assumption may fail. These studies are becoming increasingly common in practice, most notably, in phase I trials that involve combinations of agents. Our focus is on studies where there exist pairs of treatment combinations for which the ordering of the probabilities of a dose-limiting toxicity cannot be known a priori. Methods We describe a new dose-finding design which can be used for multiple-drug trials and can be applied to this kind of problem. Our methods proceed by laying out all possible orderings of toxicity probabilities that are consistent with the known orderings among treatment combinations and allowing the continual reassessment method (CRM) to provide efficient estimates of the MTD within these orders. The design can be seen to simplify to the CRM when the full ordering is known. Results We study the properties of the design via simulations that provide comparisons to the Bayesian approach to partial orders (POCRM) of Wages, Conaway, and O'Quigley. The POCRM was shown to perform well when compared to other suggested methods for partial orders. Therefore, we comapre our approach to it in order to assess the performance of the new design. Limitations A limitation concerns the number of possible orders. There are dose-finding studies with combinations of agents that can lead to a large number of possible orders. In this case, it may not be feasible to work with all possible orders. Conclusions The proposed design demonstrates the ability to effectively estimate MTD combinations in partially ordered dosefinding studies. Because it relaxes the monotonicity assumption, it can be considered a multivariate generalization of the CRM. Hence, it can serve as a link between single and multiple-agent dosefinding trials. PMID:21652689
Patient dosimetry audit for establishing local diagnostic reference levels for nuclear medicine CT.
Gardner, Matthew; Katsidzira, Ngonidzashe M; Ross, Erin; Larkin, Elizabeth A
2017-03-01
To establish a system for patient dosimetry audit and setting of local diagnostic reference levels (LDRLs) for nuclear medicine (NM) CT. Computed radiological information system (CRIS) data were matched with NM paper records, which provided the body region and dose mode for NMCT carried out at a large UK hospital. It was necessary to divide data in terms of the NM examination type, body region and dose mode. The mean and standard deviation dose-length products (DLPs) for common NMCT examinations were then calculated and compared with the proposed National Diagnostic Reference Levels (NDRLs). Only procedures which have 10 or more patients will be used to suggest LDRLs. For most examinations, the mean DLPs do not exceed the proposed NDRLs. The bone single-photon emission CT/CT lumbar spine data clearly show the need to divide data according to the purpose of the scan (dose mode), with mean (±standard error) DLPs ranging from 51 ± 5 mGy cm (low dose) to 1086 ± 124 mGy cm (metal dose). A system for NMCT patient dose audit has been developed, but there are non-trivial challenges which make the process labour intensive. These include limited information provided by CRIS downloads, dependence on paper records and limited number of examinations available owing to the need to subdivide data. Advances in knowledge: This article demonstrates that a system can be developed for NMCT patient dose audit, but also highlights the challenges associated with such audit, which may not be encountered with more routine audit of radiology CT.
10 CFR 20.1204 - Determination of internal exposure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...
10 CFR 20.1204 - Determination of internal exposure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...
10 CFR 20.1204 - Determination of internal exposure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...
10 CFR 20.1204 - Determination of internal exposure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...
10 CFR 20.1204 - Determination of internal exposure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Determination of internal exposure. 20.1204 Section 20.1204 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Occupational Dose Limits § 20.1204 Determination of internal exposure. (a) For purposes of assessing dose used to determine...
NASA Technical Reports Server (NTRS)
Koontz, Steven
2012-01-01
Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations
Eye dose to staff involved in interventional and procedural fluoroscopy
NASA Astrophysics Data System (ADS)
McLean, D.; Hadaya, D.; Tse, J.
2016-03-01
In 2011 the International Commission on Radiological Protection (ICRP) lowered the occupational eye dose limit from 150 to 20 mSv/yr [1]. While international jurisdictions are in a process of adopting these substantial changes, medical physicists at the clinical level have been advising medical colleagues on specific situations based on dose measurements. Commissioned and calibrated TLDs mounted in commercially available holders designed to simulate the measurement of Hp(3), were applied to staff involved in x-ray procedures for a one month period. During this period clinical procedure data was concurrently collected and subject to audit. The use or not of eye personal protective equipment (PPE) was noted for all staff. Audits were conducted in the cardiac catheterisation laboratory, the interventional angiography rooms and the procedural room where endoscopic retrograde cholangiopancreatography (ERCP) procedures are performed. Significant levels of occupational dose were recorded in the cardiac and interventional procedures, with maximum reading exceeding the new limit for some interventional radiologists. No significant eye doses were measured for staff performing ERCP procedures. One outcome of the studies was increased use of eye PPE for operators of interventional equipment with increased availability also to nursing staff, when standing in close proximity to the patient during procedures.
[Doses to organs at risk in conformational radiotherapy and stereotaxic irradiation: The heart].
Vandendorpe, B; Servagi Vernat, S; Ramiandrisoa, F; Bazire, L; Kirova, Y M
2017-10-01
Radiation therapy of breast cancer, Hodgkin lymphoma, lung cancer and others thoracic irradiations induce an ionizing radiation dose to the heart. Irradiation of the heart, associated with patient cardiovascular risk and cancer treatment-induced cardiotoxicity, increase cardiovascular mortality. The long survival after breast or Hodgkin lymphoma irradiation requires watching carefully late treatment toxicity. The over-risk of cardiac events is related to the dose received by the heart and the irradiated cardiac volume. The limitation of cardiac irradiation should be a priority in the planning of thoracic irradiations. Practices have to be modified, using modern techniques to approach of the primary objective of radiotherapy which is to optimize the dose to the target volume, sparing healthy tissues, in this case the heart. We have reviewed the literature on cardiac toxicity induced by conformational tridimensional radiation therapy, intensity-modulated radiation therapy or stereotactic body radiation therapy, in order to evaluate the possibilities to limit cardiotoxicity. Finally, we summarise the recommendations on dose constraints to the heart and coronary arteries. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornsife, William P.; Kirk, J. Scott; Shaw, Chris G.
2012-07-01
This Performance Assessment (PA) submittal is an update to the original PA that was developed to support the licensing of the Waste Control Specialists LLC Low-Level Radioactive Waste (LLRW) disposal facility. This update includes both the Compact Waste Facility (CWF) and the Federal Waste Facility (FWF), in accordance with Radioactive Material License (RML) No. R04100, License Condition (LC) 87. While many of the baseline assumptions supporting the initial license application PA were incorporated in this update, a new transport code, GoldSim, and new deterministic groundwater flow codes, including HYDRUS and MODFLOWSURFACT{sup TM}, were employed to demonstrate compliance with the performancemore » objectives codified in the regulations and RML No. R04100, LC 87. A revised source term, provided by the Texas Commission on Environmental Quality staff, was used to match the initial 15 year license term. This updated PA clearly confirms and demonstrates the robustness of the characteristics of the site's geology and the advanced engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public and site workers predicted in the initial and updated PA were a small fraction of the criterion doses of 0.25 mSv and 50 mSv, respectively. In a comparison between the results of the updated PA against the one developed in support of the initial license, both clearly demonstrated the robustness of the characteristics of the site's geology and engineering design of the disposal units. Based on the simulations from fate and transport models, the radiation doses to members of the general public predicted in the initial and updated PA were a fraction of the allowable 25 mrem/yr (0.25 m sievert/yr) dose standard for tens-of-thousands of years into the future. Draft Texas guidance on performance assessment (TCEQ, 2004) recommends a period of analysis equal to 1,000 years or until peak doses from the more mobile radionuclides occur. The EPA National Emissions Standards for Hazardous Air Pollutants limits radionuclide doses through the air pathway to 10 mrem/yr. Gaseous radionuclide doses from the CWF and the FWF, due to decomposition gases, are a small fraction of the dose limit. The radon flux from the CWF and FWF were compared to the flux limit of 20 pCi/m{sup 2}-s from 40 CFR 192. Because of the thick cover system, the calculated radon flux was a very small fraction of the limit. (authors)« less
Wuelfing, W Peter; Daublain, Pierre; Kesisoglou, Filippos; Templeton, Allen; McGregor, Caroline
2015-04-06
In the drug discovery setting, the ability to rapidly identify drug absorption risk in preclinical species at high doses from easily measured physical properties is desired. This is due to the large number of molecules being evaluated and their high attrition rate, which make resource-intensive in vitro and in silico evaluation unattractive. High-dose in vivo data from rat, dog, and monkey are analyzed here, using a preclinical dose number (PDo) concept based on the dose number described by Amidon and other authors (Pharm. Res., 1993, 10, 264-270). PDo, as described in this article, is simply calculated as dose (mg/kg) divided by compound solubility in FaSSIF (mg/mL) and approximates the volume of biorelevant media per kilogram of animal that would be needed to fully dissolve the dose. High PDo values were found to be predictive of difficulty in achieving drug exposure (AUC)-dose proportionality in in vivo studies, as could be expected; however, this work analyzes a large data set (>900 data points) and provides quantitative guidance to identify drug absorption risk in preclinical species based on a single solubility measurement commonly carried out in drug discovery. Above the PDo values defined, >50% of all in vivo studies exhibited poor AUC-dose proportionality in rat, dog, and monkey, and these values can be utilized as general guidelines in discovery and early development to rapidly assess risk of solubility-limited absorption for a given compound. A preclinical dose number generated by biorelevant dilutions of formulated compounds (formulated PDo) was also evaluated and defines solubility targets predictive of suitable AUC-dose proportionality in formulation development efforts. Application of these guidelines can serve to efficiently identify compounds in discovery that are likely to present extreme challenges with respect to solubility-limited absorption in preclinical species as well as reduce the testing of poor formulations in vivo, which is a key ethical and resource matter.
Dose conversion coefficients for electron exposure of the human eye lens
NASA Astrophysics Data System (ADS)
Behrens, R.; Dietze, G.; Zankl, M.
2009-07-01
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity Hp(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity Hp(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0° and 45° are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.
Dose conversion coefficients for electron exposure of the human eye lens.
Behrens, R; Dietze, G; Zankl, M
2009-07-07
Recent epidemiological studies suggest a rather low dose threshold (below 0.5 Gy) for the induction of a cataract of the eye lens. Some other studies even assume that there is no threshold at all. Therefore, protection measures have to be optimized and current dose limits for the eye lens may be reduced in the future. Two questions arise from this situation: first, which dose quantity is related to the risk of developing a cataract, and second, which personal dose equivalent quantity is appropriate for monitoring this dose quantity. While the dose equivalent quantity H(p)(0.07) has often been seen as being sufficiently accurate for monitoring the dose to the lens of the eye, this would be questionable in the case when the dose limits were reduced and, thus, it may be necessary to generally use the dose equivalent quantity H(p)(3) for this purpose. The basis for a decision, however, must be the knowledge of accurate conversion coefficients from fluence to equivalent dose to the lens. This is especially important for low-penetrating radiation, for example, electrons. Formerly published values of conversion coefficients are based on quite simple models of the eye. In this paper, quite a sophisticated model of the eye including the inner structure of the lens was used for the calculations and precise conversion coefficients for electrons with energies between 0.2 MeV and 12 MeV, and for angles of radiation incidence between 0 degrees and 45 degrees are presented. Compared to the values adopted in 1996 by the International Commission on Radiological Protection (ICRP), the new values are up to 1000 times smaller for electron energies below 1 MeV, nearly equal at 1 MeV and above 4 MeV, and by a factor of 1.5 larger at about 1.5 MeV electron energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkham, D.W.; Shultz, D.; Loo, B.W.
Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less
Nonparametric estimation of benchmark doses in environmental risk assessment
Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen
2013-01-01
Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. As a result, the use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO 3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Dumas, J L; Lorchel, F; Perrot, Y; Aletti, P; Noel, A; Wolf, D; Courvoisier, P; Bosset, J F
2007-03-01
The goal of our study was to quantify the limits of the EUD models for use in score functions in inverse planning software, and for clinical application. We focused on oesophagus cancer irradiation. Our evaluation was based on theoretical dose volume histograms (DVH), and we analyzed them using volumetric and linear quadratic EUD models, average and maximum dose concepts, the linear quadratic model and the differential area between each DVH. We evaluated our models using theoretical and more complex DVHs for the above regions of interest. We studied three types of DVH for the target volume: the first followed the ICRU dose homogeneity recommendations; the second was built out of the first requirements and the same average dose was built in for all cases; the third was truncated by a small dose hole. We also built theoretical DVHs for the organs at risk, in order to evaluate the limits of, and the ways to use both EUD(1) and EUD/LQ models, comparing them to the traditional ways of scoring a treatment plan. For each volume of interest we built theoretical treatment plans with differences in the fractionation. We concluded that both volumetric and linear quadratic EUDs should be used. Volumetric EUD(1) takes into account neither hot-cold spot compensation nor the differences in fractionation, but it is more sensitive to the increase of the irradiated volume. With linear quadratic EUD/LQ, a volumetric analysis of fractionation variation effort can be performed.
Kovarik, Libor; Stevens, Andrew J.; Liyu, Andrey V.; ...
2016-10-17
Aberration correction for scanning transmission electron microscopes (STEM) has dramatically increased spatial image resolution for beam-stable materials, but it is the sample stability rather than the microscope that often limits the practical resolution of STEM images. To extract physical information from images of beam sensitive materials it is becoming clear that there is a critical dose/dose-rate below which the images can be interpreted as representative of the pristine material, while above it the observation is dominated by beam effects. Here we describe an experimental approach for sparse sampling in the STEM and in-painting image reconstruction in order to reduce themore » electron dose/dose-rate to the sample during imaging. By characterizing the induction limited rise-time and hysteresis in scan coils, we show that sparse line-hopping approach to scan randomization can be implemented that optimizes both the speed of the scan and the amount of the sample that needs to be illuminated by the beam. The dose and acquisition time for the sparse sampling is shown to be effectively decreased by factor of 5x relative to conventional acquisition, permitting imaging of beam sensitive materials to be obtained without changing the microscope operating parameters. The use of sparse line-hopping scan to acquire STEM images is demonstrated with atomic resolution aberration corrected Z-contrast images of CaCO3, a material that is traditionally difficult to image by TEM/STEM because of dose issues.« less
Ibogaine for treating drug dependence. What is a safe dose?
Schep, L J; Slaughter, R J; Galea, S; Newcombe, D
2016-09-01
The indole alkaloid ibogaine, present in the root bark of the West African rain forest shrub Tabernanthe iboga, has been adopted in the West as a treatment for drug dependence. Treatment of patients requires large doses of the alkaloid to cause hallucinations, an alleged integral part of the patient's treatment regime. However, case reports and case series continue to describe evidences of ataxia, gastrointestinal distress, ventricular arrhythmias and sudden and unexplained deaths of patients undergoing treatment for drug dependence. High doses of ibogaine act on several classes of neurological receptors and transporters to achieve pharmacological responses associated with drug aversion; limited toxicology research suggests that intraperitoneal doses used to successfully treat rodents, for example, have also been shown to cause neuronal injury (purkinje cells) in the rat cerebellum. Limited research suggests lethality in rodents by the oral route can be achieved at approximately 263mg/kg body weight. To consider an appropriate and safe initial dose for humans, necessary safety factors need to be applied to the animal data; these would include factors such as intra- and inter-species variability and for susceptible people in a population (such as drug users). A calculated initial dose to treat patients could be approximated at 0.87mg/kg body weight, substantially lower than those presently being administered to treat drug users. Morbidities and mortalities will continue to occur unless practitioners reconsider doses being administered to their susceptible patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division
This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiologicalmore » characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were analyzed. Based on the dose assessment results, it is indicated that, if the disposition activities are completed within a year, the maximum individual dose would be about 0.021 mrem/yr, which is about 0.02% of the primary dose limit of 100 mrem/yr set by U.S. Department of Energy (DOE) for members of the public. The maximum individual dose was associated with a conservative and unlikely scenario involving a hypothetical farmer who intruded the landfill area to set up a subsistence living above the disposal area 30 years after burial of the incineration residue. Potential collective dose for worker and the general public combined was estimated to be less than 4 x 10{sup -4} person-rem/yr, about 0.004% of the DOE authorized release objective of 10 person-rem/yr for collective exposure. In reality, the actual radiation doses incurred by workers and the general public are expected to be at least two orders of magnitude lower than the estimated values. To follow the ALARA (as low as reasonably achievable) principle of reducing potential radiation exposures associated with authorized release of the PCB capacitors, a dose constraint of 1 mrem/yr, corresponding to a small fraction of the 25 mrem/yr limit set by DOE, was initially used as a reference to derive the authorized release limits. On the basis of the dose assessment results, the following authorized release limits are proposed - 0.6 pCi/g for Mn-54, 0.6 pCi/g for Na-22, 0.1 pCi/g for Co-57, and 2.3 pCi/g for Co-60, with a corresponding maximum individual dose of 0.21 mrem/yr. This maximum dose, about 0.2% of the DOE primary dose limit of 100 mrem/yr for members of the public from all sources and exposure pathways, was then selected as the final dose constraint for releasing the PCB capacitors through the authorized process. The proposed authorized release limits would satisfy the DOE requirements for the release of non-real properties to a commercial treatment and disposal facility. In addition, due to the relatively short half-lives (< 5.27 years) of radionuclides of concern, there will be no long-term buildup of doses either in groundwater or through other exposure pathways associated with this particular release action. Contact with Clean Harbors and the State of Texas has been initiated. The radioactivity levels in the PCB capacitors meet the State of Texas radiological exemption limits and would be accepted by Clean Harbors, subject to the approval by DOE for the authorized release process. Cost benefit analysis shows that authorized release of the PCB capacitors would provide significant cost saving over the low-level radioactive waste (LLRW) disposition alternative, i.e. sending the PCB capacitors to a certified LLRW facility for treatment and disposal, and would not cause a significantly different impact in terms of human health protection. Therefore, authorized release is determined to be the preferred alternative for the disposition of Argonne PCB capacitors.« less
Balderson, Michael J; Kirkby, Charles
2015-01-01
In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of EUD and TCP, the bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV varies. The results suggest, at least in a limiting sense, the potential for allowing some degree of dose heterogeneity within a CTV, although further investigation of the assumptions of the bystander model are warranted.
Dose estimation to eye lens of industrial gamma radiography workers using the Monte Carlo method.
de Lima, Alexandre Roza; Hunt, John Graham; Da Silva, Francisco Cesar Augusto
2017-12-01
The ICRP Statement on Tissue Reactions (2011), based on epidemiological evidence, recommended a reduction for the eye lens equivalent dose limit from 150 to 20 mSv per year. This paper presents mainly the dose estimations received by industrial gamma radiography workers, during planned or accidental exposure to the eye lens, Hp(10) and effective dose. A Brazilian Visual Monte Carlo Dose Calculation program was used and two relevant scenarios were considered. For the planned exposure situation, twelve radiographic exposures per day for 250 days per year, which leads to a direct exposure of 10 h per year, were considered. The simulation was carried out using a 192 Ir source with 1.0 TBq of activity; a source/operator distance between 5 and 10 m and placed at heights of 0.02 m, 1 m and 2 m, and an exposure time of 12 s. Using a standard height of 1 m, the eye lens doses were estimated as being between 16.3 and 60.3 mGy per year. For the accidental exposure situation, the same radionuclide and activity were used, but in this case the doses were calculated with and without a collimator. The heights above ground considered were 1.0 m, 1.5 m and 2.0 m; the source/operator distance was 40 cm, and the exposure time 74 s. The eye lens doses at 1.5 m were 12.3 and 0.28 mGy without and with a collimator, respectively. The conclusions were that: (1) the estimated doses show that the 20 mSv annual limit for eye lens equivalent dose can directly impact industrial gamma radiography activities, mainly in industries with high number of radiographic exposures per year; (2) the risk of lens opacity has a low probability for a single accident, but depending on the number of accidental exposures and the dose levels found in planned exposures, the threshold dose can easily be exceeded during the professional career of an industrial radiography operator, and; (3) in a first approximation, Hp(10) can be used to estimate the equivalent dose to the eye lens.
Brønd, Marie; Martins, Cesario L; Byberg, Stine; Benn, Christine S; Whittle, Hilton; Garly, May-Lill; Aaby, Peter; Fisker, Ane B
2017-06-15
Two doses of measles vaccine (MV) might reduce the nonmeasles mortality rate more than 1 dose of MV does. The effect of 2 versus 1 dose on morbidity has not been examined. Within a randomized trial of the effect of 2 doses versus 1 dose of MV on mortality in Guinea-Bissau, we investigated the effect on hospital admissions. Children were randomly assigned 1:2 to receive MV at 4.5 and 9 months of age or the currently recommended dose at 9 months. We compared hospital admission rates among children between 9 and 18 months of age in a Cox regression model with age as the underlying time scale. Half of the children had received neonatal vitamin A supplementation (NVAS) in another trial. The beneficial effect of MV at 4.5 and 9 months on mortality was limited to children who had not received NVAS; therefore, we investigated the interaction of MV with NVAS on admission rates. Among 5626 children (2 doses of MV, 1960 children; 1 dose of MV, 3666), we identified 311 hospital admissions of children between 9 and 18 months of age. Overall, compared to 1 dose of MV, 2 doses reduced the risk of hospital admission for children who had not received NVAS (hazard ratio [HR], 0.66 [95% confidence interval (CI), 0.47-0.93]), but we found no effect among NVAS recipients (HR, 1.16 [95% CI, 0.82-1.63]) (P = .02 for interaction). The benefit of 2 doses of MV was limited to children who had not received NVAS. NVAS is not generally recommended; hence, an early 2-dose measles vaccination policy might reduce hospital admissions more than the current policy of providing the first MV at 9 months of age. ClinicalTrials.gov identifier NCT00168558. © The Author 2017. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
De Saint-Hubert, Marijke; Verellen, Dirk; Poels, Kenneth; Crijns, Wouter; Magliona, Federica; Depuydt, Tom; Vanhavere, Filip; Struelens, Lara
2017-07-01
Medulloblastoma treatment involves irradiation of the entire central nervous system, i.e. craniospinal irradiation (CSI). This is associated with the significant exposure of large volumes of healthy tissue and there is growing concern regarding treatment-associated side effects. The current study compares out-of-field organ doses in children receiving CSI through 3D-conformal radiotherapy (3D-CRT), intensity modulated radiotherapy (IMRT), helical tomotherapy (HT) and an electron-based technique, and includes radiation doses resulting from imaging performed during treatment. An extensive phantom study is performed, using an anthropomorphic phantom corresponding to a five year old child, in which organ absorbed doses are measured using thermoluminescent detectors. Additionally, the study evaluates and explores tools for calculating out-of-field patient doses using the treatment planning system (TPS) and analytical models. In our study, 3D-CRT resulted in very high doses to a limited number of organs, while it was able to spare organs such as the lungs and breast when compared to IMRT and HT. Both IMRT and HT spread the dose over more organs and were able to spare the heart, thyroid, bladder, uterus and testes when compared to 3D-CRT. The electron-based technique considerably decreased the out-of-field doses in deep-seated organs but could not avoid nearby out-of-field organs such as the lungs, ribs, adrenals, kidneys and uterus. The daily imaging dose is small compared to the treatment dose burden. The TPS error for out-of-field doses was most pronounced for organs further away from the target; nevertheless, no systematic underestimation was observed for any of the studied TPS systems. Finally, analytical modeling was most optimal for 3D-CRT although the number of organs that could be modeled was limited. To conclude, none of the techniques studied was capable of sparing all organs from out-of-field doses. Nevertheless, the electron-based technique showed the most promise for out-of-field organ dose reduction during CSI when compared to photon techniques.
Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...
Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses us...
Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are not well known. Since...
Bioavailable nitrogen is a limiting nutrient throughout the Eastern United States. Research demonstrates that exposure to large doses of nitrogen leads to deleterious environmental impacts. However, effects of chronic exposure to lower doses of nitrogen are under-appreciated. ...
Oral Therapy of Diabetes Insipidus with Chlorpropamide
Cushard, William G.; Beauchamp, Charles J.; Martin, Neil D.
1971-01-01
Chlorpropamide was found to be an effective antidiuretic agent in vasopressin-sensitive diabetes insipidus. Full clinical use of this action is limited by the frequent occurrence of hypoglycemia on higher doses. This complication can be avoided, however, by restricting the dose and by employing combination therapy with hydrochlorothiazide. PMID:5563815
16 CFR 1500.135 - Summary of guidelines for determining chronic toxicity.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Research on Cancer's (IARC) Group 1, or the American National Standards Institute's (ANSI) Category 1. A... or quantitative limitations with respect to experimental procedures (e.g., doses, exposure, follow-up... absorption of the toxic substance, and (D) Dose. (3) Assessment of Risk. This section on quantitative risk...
16 CFR 1500.135 - Summary of guidelines for determining chronic toxicity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Research on Cancer's (IARC) Group 1, or the American National Standards Institute's (ANSI) Category 1. A... or quantitative limitations with respect to experimental procedures (e.g., doses, exposure, follow-up... absorption of the toxic substance, and (D) Dose. (3) Assessment of Risk. This section on quantitative risk...
16 CFR § 1500.135 - Summary of guidelines for determining chronic toxicity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Research on Cancer's (IARC) Group 1, or the American National Standards Institute's (ANSI) Category 1. A... or quantitative limitations with respect to experimental procedures (e.g., doses, exposure, follow-up... absorption of the toxic substance, and (D) Dose. (3) Assessment of Risk. This section on quantitative risk...
16 CFR 1500.135 - Summary of guidelines for determining chronic toxicity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Research on Cancer's (IARC) Group 1, or the American National Standards Institute's (ANSI) Category 1. A... or quantitative limitations with respect to experimental procedures (e.g., doses, exposure, follow-up... absorption of the toxic substance, and (D) Dose. (3) Assessment of Risk. This section on quantitative risk...
16 CFR 1500.135 - Summary of guidelines for determining chronic toxicity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Research on Cancer's (IARC) Group 1, or the American National Standards Institute's (ANSI) Category 1. A... or quantitative limitations with respect to experimental procedures (e.g., doses, exposure, follow-up... absorption of the toxic substance, and (D) Dose. (3) Assessment of Risk. This section on quantitative risk...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Podonsky, Glenn S.
The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED increased by 3% from 2011 to 2012. Additional analyses show that the dose distribution in 2012 was similar to the distribution in 2011. In 2012, 13% of the monitored workers received a measurable TED and the average measurable TED, 0.069 rem, was less than 2% of the DOE limit. From 2011 to 2012, the collective TED and the number of individuals with measurable TED decreased 17.1% and 19%, respectively. These decreases were mainly due to an overall reduction of D&D activities at the PFP and TRU retrieval activities at Hanford; a 78% decrease in the number of targeted waste drums that were processed at the Idaho Site’s Accelerated Retrieval Project (ARP) from 5,566 drums in 2011 to a total of 1,211 drums processed in 2012; and ALARA initiatives employed site wide at SRS. In addition, the decreases were the result of decreased American Recovery and Reinvestment Act (ARRA) activities and continuing D&D, particularly at the DOE sites that comprise the majority of DOE collective dose. Over the past 5 years, the size of the monitored workforce has remained at a fairly stable level (within 12%), while the collective dose has varied up to 37%. No reported doses exceeded the DOE occupational limit of 5 rems TED in 2012 and no reported doses exceeded the DOE ACL of 2 rems TED.« less
TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bushberg, J; Boreham, D; Ulsh, B
2014-06-15
At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased belowmore » background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.« less
Is eye lens dosimetry needed in nuclear medicine?
Wrzesień, M; Królicki, L; Albiniak, Ł; Olszewski, J
2018-06-01
The exact level of exposure experienced by nuclear medicine personnel, whose work often requires performing manual procedures involving radioactive isotopes, is associated with the form of radiation source used. The variety of radionuclides and medical procedures, and the yearly increase in the number of patients, as well as the change of the individual dose limit for the lens of the eye from a value of 150 mSv yr -1 to 20 mSv yr -1 , mean that issues of eye lens routine dosimetry become interesting from the radiation protection point of view. This paper presents an analysis of the exposure of the eye lenses of nuclear medicine department personnel, as well as those of personnel in the facilities that produce radiopharmaceuticals for the purpose of diagnosis by positron emission tomography, from the viewpoint of the advisability of routine eye lens exposure monitoring, taking into account changes in the dose limit for the lens of the eye. The paper considers the two most commonly used radionuclides for diagnostic purposes 99m Tc, 18 F, and-for therapeutic purposes- 131 I. Dose measurements were made using thermoluminescent detectors. The estimated exposure analysis identifies the cases when the maximum annual value of the personal dose equivalent, in terms of Hp(3), exceeds threefold the new limit value (20 mSv yr -1 ). It is recommended that Hp(3) doses be routinely monitored in the group of radiopharmacists who label pharmaceuticals with the radionuclide 99m Tc and in chemists working in 18 F-FDG quality control departments in production units, where this is carried out manually.
Egle, Alexander; Steurer, Michael; Melchardt, Thomas; Weiss, Lukas; Gassner, Franz Josef; Zaborsky, Nadja; Geisberger, Roland; Catakovic, Kemal; Hartmann, Tanja Nicole; Pleyer, Lisa; Voskova, Daniela; Thaler, Josef; Lang, Alois; Girschikofsky, Michael; Petzer, Andreas; Greil, Richard
2018-06-04
Despite recent advances, chemoimmunotherapy remains a standard for fit previously untreated chronic lymphocytic leukaemia patients. Lenalidomide had activity in early monotherapy trials, but tumour lysis and flare proved major obstacles in its development. We combined lenalidomide in increasing doses with six cycles of fludarabine and rituximab (FR), followed by lenalidomide/rituximab maintenance. In 45 chemo-naive patients, included in this trial, individual tolerability of the combination was highly divergent and no systematic toxicity determining a maximum tolerated dose was found. Grade 3/4 neutropenia (71%) was high, but only 7% experienced grade 3 infections. No tumour lysis or flare > grade 2 was observed, but skin toxicity proved dose-limiting in nine patients (20%). Overall and complete response rates after induction were 89 and 44% by intention-to-treat, respectively. At a median follow-up of 78.7 months, median progression-free survival (PFS) was 60.3 months. Minimal residual disease and immunoglobulin variable region heavy chain mutation state predicted PFS and TP53 mutation most strongly predicted OS. Baseline clinical factors did not predict tolerance to the immunomodulatory drug lenalidomide, but pretreatment immunophenotypes of T cells showed exhausted memory CD4 cells to predict early dose-limiting non-haematologic events. Overall, combining lenalidomide with FR was feasible and effective, but individual changes in the immune system seemed associated with limiting side effects. clinicaltrials.gov (NCT00738829) and EU Clinical Trials Register ( www.clinicaltrialsregister.eu , 2008-001430-27).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Deepesh; Bertelli, Luiz; Klumpp, John A.
After a plutonium-contaminated wound, the role of an internal dosimetrist is to inform the patient and the physician of the dosimetric considerations. The doses averted due to medical treatments (excision or chelation) are higher if the treatments are administered early; therefore, the internal dosimetrist needs to rely on limited information on wound counts and process knowledge for advising the physician. For this study, several wound cases in the literature were reviewed to obtain estimates of the efficacies of surgical excision and chelation treatment after plutonium-contaminated wounds. The dose coefficients calculated by coupling the NCRP 156 wound model with the systemicmore » model were used to derive the decision guidelines that may indicate medical treatment based on 1) the concept of saved doses proposed by the NCRP 156 wound model, 2) the limits recommended by the CEC/DOE guidebook, and 3) the Clinical Decision Guidelines proposed in NCRP Report No. 161. These guidelines by themselves, however, are of limited use for several reasons, including 1) large uncertainties associated with wound measurements, 2) exposure to forms of radionuclides that cannot be assigned to a single category in the NCRP 156 framework, 3) inability of the NCRP 156 model to explain some of the wound cases in the literature, 4) neglect of the local doses to the wound site and the pathophysiological response of the tissue, 5) poorly understood relationship between effective doses and risks of late health effects, and 6) disregard of the psychological aspects of radionuclide intake.« less
Poudel, Deepesh; Bertelli, Luiz; Klumpp, John A.; ...
2018-03-01
After a plutonium-contaminated wound, the role of an internal dosimetrist is to inform the patient and the physician of the dosimetric considerations. The doses averted due to medical treatments (excision or chelation) are higher if the treatments are administered early; therefore, the internal dosimetrist needs to rely on limited information on wound counts and process knowledge for advising the physician. For this study, several wound cases in the literature were reviewed to obtain estimates of the efficacies of surgical excision and chelation treatment after plutonium-contaminated wounds. The dose coefficients calculated by coupling the NCRP 156 wound model with the systemicmore » model were used to derive the decision guidelines that may indicate medical treatment based on 1) the concept of saved doses proposed by the NCRP 156 wound model, 2) the limits recommended by the CEC/DOE guidebook, and 3) the Clinical Decision Guidelines proposed in NCRP Report No. 161. These guidelines by themselves, however, are of limited use for several reasons, including 1) large uncertainties associated with wound measurements, 2) exposure to forms of radionuclides that cannot be assigned to a single category in the NCRP 156 framework, 3) inability of the NCRP 156 model to explain some of the wound cases in the literature, 4) neglect of the local doses to the wound site and the pathophysiological response of the tissue, 5) poorly understood relationship between effective doses and risks of late health effects, and 6) disregard of the psychological aspects of radionuclide intake.« less
Gwinn, Maureen R; Craig, Jeneva; Axelrad, Daniel A; Cook, Rich; Dockins, Chris; Fann, Neal; Fegley, Robert; Guinnup, David E; Helfand, Gloria; Hubbell, Bryan; Mazur, Sarah L; Palma, Ted; Smith, Roy L; Vandenberg, John; Sonawane, Babasaheb
2011-01-01
Quantifying the benefits of reducing hazardous air pollutants (HAPs, or air toxics) has been limited by gaps in toxicological data, uncertainties in extrapolating results from high-dose animal experiments to estimate human effects at lower doses, limited ambient and personal exposure monitoring data, and insufficient economic research to support valuation of the health impacts often associated with exposure to individual air toxics. To address some of these issues, the U.S. Environmental Protection Agency held the Workshop on Estimating the Benefits of Reducing Hazardous Air Pollutants (HAPs) in Washington, DC, from 30 April to 1 May 2009. Experts from multiple disciplines discussed how best to move forward on air toxics benefits assessment, with a focus on developing near-term capability to conduct quantitative benefits assessment. Proposed methodologies involved analysis of data-rich pollutants and application of this analysis to other pollutants, using dose-response modeling of animal data for estimating benefits to humans, determining dose-equivalence relationships for different chemicals with similar health effects, and analysis similar to that used for criteria pollutants. Limitations and uncertainties in economic valuation of benefits assessment for HAPS were discussed as well. These discussions highlighted the complexities in estimating the benefits of reducing air toxics, and participants agreed that alternative methods for benefits assessment of HAPs are needed. Recommendations included clearly defining the key priorities of the Clean Air Act air toxics program to identify the most effective approaches for HAPs benefits analysis, focusing on susceptible and vulnerable populations, and improving dose-response estimation for quantification of benefits.
Lawler, Jacqueline; Curns, Aaron T.; Brandeburg, Christina; Wallace, Gregory S.
2013-01-01
Although the measles-mumps-rubella (MMR) vaccine is not recommended for mumps postexposure prophylaxis (PEP), data on its effectiveness are limited. During the 2009–2010 mumps outbreak in the northeastern United States, we assessed effectiveness of PEP with a third dose of MMR vaccine among contacts in Orthodox Jewish households who were given a third dose within 5 days of mumps onset in the household’s index patient. We compared mumps attack rates between persons who received a third MMR dose during the first incubation period after onset in the index patient and 2-dose vaccinated persons who had not. Twenty-eight (11.7%) of 239 eligible household members received a third MMR dose as PEP. Mumps attack rates were 0% among third-dose recipients versus 5.2% among 2-dose recipients without PEP (p = 0.57). Although a third MMR dose administered as PEP did not have a significant effect, it may offer some benefits in specific outbreak contexts. PMID:23965729
RADIATION PROTECTION CABIN FOR CATHETER-DIRECTED LIVER INTERVENTIONS: OPERATOR DOSE ASSESSMENT.
Maleux, Geert; Bergans, Niki; Bosmans, Hilde; Bogaerts, Ria
2016-09-01
The number and complexity of interventional radiological procedures and in particular catheter-directed liver interventions have increased substantially. The current study investigates the reduction of personal doses when using a dedicated radiation protection cabin (RPC) for these procedures. Operator and assistant doses were assessed for 3 series of 20 chemoinfusion/chemoembolisation interventions, including an equal number of procedures with and without RPC. Whole body doses, finger doses and doses at the level of knees and eyes were evaluated with different types of TLD-100 Harshaw dosemeters. Dosemeters were also attached on the three walls of the RPC. The operator doses were significantly reduced by the RPC, but also without RPC, the doses appear to be limited as a result of thorough optimisation with existing radiation protection tools. The added value of the RPC should thus be determined by the outcome of balancing dose reduction and other aspects such as ergonomic benefits. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, Hyun Cheol; Yoo, Do Hyeon; Testa, Mauro; Shin, Wook-Geun; Choi, Hyun Joon; Ha, Wi-Ho; Yoo, Jaeryong; Yoon, Seokwon; Min, Chul Hee
2016-04-01
The aim of this study is to evaluate the potential hazard of naturally occurring radioactive material (NORM) added consumer products. Using the Monte Carlo method, the radioactive products were simulated with ICRP reference phantom and the organ doses were calculated with the usage scenario. Finally, the annual effective doses were evaluated as lower than the public dose limit of 1mSv y(-1) for 44 products. It was demonstrated that NORM-added consumer products could be quantitatively assessed for the safety regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tsatsakis, Aristidis M; Docea, Anca Oana; Tsitsimpikou, Christina
2016-10-01
The general population experiences uncontrolled multi-chemicals exposure from many different sources at doses around or well below regulatory limits. Therefore, traditional chronic toxicity evaluations for a single chemical could possibly miss to identify adequately all the risks. For this an experimental methodology that has the ambition to provide at one strike multi-answers to multi-questions is hereby proposed: a long-term toxicity study of non-commercial chemical mixtures, consisting of common everyday life chemicals (pesticides, food additives, life-style products components) at low and realistic dose levels around the regulatory limits and with the simultaneous investigation of several key endpoints, like genotoxicity, endocrine disruption, target organ toxicity including the heart and systemic mechanistic pathways, like oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low-dose, high-resolution and high-efficiency ptychography at STXM beamline of SSRF
NASA Astrophysics Data System (ADS)
Xu, Zijian; Wang, Chunpeng; Liu, Haigang; Tao, Xulei; Tai, Renzhong
2017-06-01
Ptychography is a diffraction-based X-ray microscopy method that can image extended samples quantitatively while remove the resolution limit imposed by image-forming optical elements. As a natural extension of scanning transmission X-ray microscopy (STXM) imaging method, we developed soft X-ray ptychographic coherent diffraction imaging (PCDI) method at the STXM endstation of BL08U beamline of Shanghai Synchrotron Radiation Facility. Compared to the traditional STXM imaging, the new PCDI method has resulted in significantly lower dose, higher resolution and higher efficiency imaging in our platform. In the demonstration experiments shown here, a spatial resolution of sub-10 nm was obtained for a gold nanowires sample, which is much better than the limit resolution 30 nm of the STXM method, while the radiation dose is only 1/12 of STXM.
Hormesis as a biological hypothesis.
Calabrese, E J; Baldwin, L A
1998-01-01
A comprehensive effort was undertaken to identify articles demonstrating chemical hormesis. Nearly 4000 potentially relevant articles were retrieved from preliminary computer database searches by using various key word descriptors and extensive cross-referencing. A priori evaluation criteria were established including study design features (e.g., number of doses, dose range), statistical analysis, and reproducibility of results. Evidence of chemical hormesis was judged to have occurred in approximately 350 of the 4000 studies evaluated. Chemical hormesis was observed in a wide range of taxonomic groups and involved agents representing highly diverse chemical classes, many of potential environmental relevance. Numerous biological end points were assessed; growth responses were the most prevalent, followed by metabolic effects, longevity, reproductive responses, and survival. Hormetic responses were generally observed to be of limited magnitude. The average low-dose maximum stimulation was approximately 50% greater than controls. The hormetic dose-response range was generally limited to about one order of magnitude, with the upper end of the hormetic curve approaching the estimated no observable effect level for the particular end point. Based on the evaluation criteria, high to moderate evidence of hormesis was observed in studies comprised of > 6 doses; with > 3 doses in the hormetic zone. The present analysis suggests that chemical hormesis is a reproducible and relatively common biological phenomenon. A quantitative scheme is presented for future application to the database. PMID:9539030
Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M
2017-08-02
The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.
Liu, Jian; Wu, Lihua; Wu, Guolan; Hu, Xingjiang; Zhou, Huili; Chen, Junchun; Zhu, Meixiang; Xu, Wei; Tan, Fenlai; Ding, Lieming; Wang, Yinxiang
2016-01-01
Lessons Learned This phase I study evaluated the maximum tolerated dose, dose-limiting toxicities, safety, pharmacokinetics, and efficacy of icotinib with a starting dose of 250 mg in pretreated, advanced non-small cell lung cancer patients. We observed a maximum tolerated dose of 500 mg with a favorable pharmacokinetics profile and antitumor activity. These findings provide clinicians with evidence for application of higher-dose icotinib. Background. Icotinib, an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has shown favorable tolerability and antitumor activity at 100–200 mg in previous studies without reaching the maximum tolerated dose (MTD). In July 2011, icotinib was approved by the China Food and Drug Administration at a dose of 125 mg three times daily for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) after failure of at least one platinum-based chemotherapy regimen. This study investigated the MTD, tolerability, and pharmacokinetics of higher-dose icotinib in patients with advanced NSCLC. Methods. Twenty-six patients with advanced NSCLC were treated at doses of 250–625 mg three times daily The EGFR mutation test was not mandatory in this study. Results. Twenty-four (92.3%) of 26 patients experienced at least one adverse event (AE); rash (61.5%), diarrhea (23.1%), and oral ulceration (11.5%) were most frequent AEs. Dose-limiting toxicities were seen in 2 of 6 patients in the 625-mg group, and the MTD was established at 500 mg. Icotinib was rapidly absorbed and eliminated. The amount of time that the drug was present at the maximum concentration in serum (Tmax) ranged from 1 to 3 hours (1.5–4 hours) after multiple doses. The t1/2 was similar after single- and multiple-dose administration (7.11 and 6.39 hours, respectively). A nonlinear relationship was observed between dose and drug exposure. Responses were seen in 6 (23.1%) patients, and 8 (30.8%) patients had stable disease. Conclusion. This study demonstrated that higher-dose icotinib was well-tolerated, with a MTD of 500 mg. Favorable antitumor activity and pharmacokinetic profile were observed in patients with heavily pretreated, advanced NSCLC. PMID:27789778
Liu, Jian; Wu, Lihua; Wu, Guolan; Hu, Xingjiang; Zhou, Huili; Chen, Junchun; Zhu, Meixiang; Xu, Wei; Tan, Fenlai; Ding, Lieming; Wang, Yinxiang; Shentu, Jianzhong
2016-11-01
This phase I study evaluated the maximum tolerated dose, dose-limiting toxicities, safety, pharmacokinetics, and efficacy of icotinib with a starting dose of 250 mg in pretreated, advanced non-small cell lung cancer patients. We observed a maximum tolerated dose of 500 mg with a favorable pharmacokinetics profile and antitumor activity.These findings provide clinicians with evidence for application of higher-dose icotinib. Icotinib, an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has shown favorable tolerability and antitumor activity at 100-200 mg in previous studies without reaching the maximum tolerated dose (MTD). In July 2011, icotinib was approved by the China Food and Drug Administration at a dose of 125 mg three times daily for the treatment of patients with locally advanced or metastatic non-small cell lung cancer (NSCLC) after failure of at least one platinum-based chemotherapy regimen. This study investigated the MTD, tolerability, and pharmacokinetics of higher-dose icotinib in patients with advanced NSCLC. Twenty-six patients with advanced NSCLC were treated at doses of 250-625 mg three times daily The EGFR mutation test was not mandatory in this study. Twenty-four (92.3%) of 26 patients experienced at least one adverse event (AE); rash (61.5%), diarrhea (23.1%), and oral ulceration (11.5%) were most frequent AEs. Dose-limiting toxicities were seen in 2 of 6 patients in the 625-mg group, and the MTD was established at 500 mg. Icotinib was rapidly absorbed and eliminated. The amount of time that the drug was present at the maximum concentration in serum (T max ) ranged from 1 to 3 hours (1.5-4 hours) after multiple doses. The t 1/2 was similar after single- and multiple-dose administration (7.11 and 6.39 hours, respectively). A nonlinear relationship was observed between dose and drug exposure. Responses were seen in 6 (23.1%) patients, and 8 (30.8%) patients had stable disease. This study demonstrated that higher-dose icotinib was well-tolerated, with a MTD of 500 mg. Favorable antitumor activity and pharmacokinetic profile were observed in patients with heavily pretreated, advanced NSCLC. ©AlphaMed Press; the data published online to support this summary is the property of the authors.
Radiation safety standards: space hazards vs. terrestrial hazards.
Sinclair, W K
1983-01-01
The standards currently recommended for use in space travel were perhaps the first risk derived recommendations for dose limitations developed for quasi-occupational circumstances. They were based on data, considerations, and philosophy existing prior to 1970 and considered carcinogenesis primarily. In the intervening twelve years, not only has radiation risk information improved markedly but considerations relating to risk in general have become better known. The earlier recommendations have been examined with respect to changes in risk estimation and it is noted that the same philosophy used today, would probably lead to different dose limitations. However, other philosophies might be used; in particular a comparison of risks between terrestrial occupational radiation circumstances and also with fatal accident rates in a range of industries can be made and might be used in a modified philosophy with respect to risks from carcinogenesis. Developments have also taken place with respect to the knowledge of the biological effects of HZE particles but whether these effects are limiting as compared with radiation induced carcinogenesis is not yet clear. More studies on the effects of HZE particles, now becoming available, are needed. It is recommended that an in depth reexamination be undertaken of the biological effectiveness of space radiations and the philosophy of dose limitations in comparison with other risks.
Phase I study of Carzelesin (U-80,244) given (4-weekly) by intravenous bolus schedule
Awada, A; Punt, C J A; Piccart, M J; Tellingen, O Van; Manen, L Van; Kerger, J; Groot, Y; Wanders, J; Verweij, J; Wagener, D J Th
1999-01-01
Carzelesin is a cyclopropylpyrroloindole analogue which acts as a DNA-sequence-specific alkylating agent. In this phase I study, Carzelesin was given as a 4-weekly 10 min IV infusion to 51 patients with advanced solid tumours. Patients received a median of two courses (range 1–5) at one of nine dose levels: 24, 48, 96, 130, 150, 170, 210, 250 and 300 μg m−2. According to NCI-CTC criteria, non-haematological toxicities (grade 1/2) included fever, nausea and vomiting, mucositis and anorexia, none of which was clearly dose related. The dose-limiting toxicity was haematological and consisted mainly of neutropenia and to a lesser extent thrombocytopenia. From the dose level 150 μg m−2, the haematological toxicity (particularly thrombocytopenia) was delayed in onset, prolonged and cumulative in some patients. In several courses, double WBC nadirs occurred. The maximum tolerated dose for a single course was 300 μg m−2. From the dose level 170 μg m−2, the intended dose intensity could not be delivered to most patients receiving > 2 courses owing to cumulative haematological toxicity. The dose level with the best dose intensity for multiple courses was 150 μg m−2. The pharmacokinetics of Carzelesin and its metabolites (U-76,073; U-76,074) have been established in 31 patients during the first course of treatment using a HPLC method. Carzelesin exhibited linear pharmacokinetics. The concentration of U-76,074 (active metabolite) extended above the lower limit of quantitation (1 ng ml−1) for short periods of time and only at the higher dose levels. There was no relationship between neutropenia and the AUC of the prodrug Carzelesin, but the presence of detectable plasma levels of the active metabolite U-76,074 was usually associated with a substantial decrease in ANC values. © 1999 Cancer Research Campaign PMID:10188890
Arthur, Douglas W; Vicini, Frank A; Todor, Dorin A; Julian, Thomas B; Lyden, Maureen R
2011-01-01
Dosimetric findings in patients treated with the Contura multilumen balloon (MLB) breast brachytherapy catheter to deliver accelerated partial breast irradiation (APBI) on a multi-institutional Phase IV registry trial are presented. Computed tomography-based three-dimensional planning with dose optimization was performed. For the trial, new ideal dosimetric goals included (1) ≥95% of the prescribed dose (PD) covering ≥90% of the target volume, (2) a maximum skin dose ≤125% of the PD, (3) maximum rib dose ≤145% of the PD, and (4) the V150 ≤50 cc and V200 ≤10 cc. The ability to concurrently achieve these dosimetric goals using the Contura MLB was analyzed. 144 cases were available for review. Using the MLB, all dosimetric criteria were met in 76% of cases. Evaluating dosimetric criteria individually, 92% and 89% of cases met skin and rib dose criteria, respectively. In 93% of cases, ideal target volume coverage goals were met, and in 99%, dose homogeneity criteria (V150 and V200) were satisfied. When skin thickness was ≥5 mm to <7 mm, the median skin dose was limited to 120.1% of the PD, and when skin thickness was <5 mm, the median skin dose was 124.2%. When rib distance was <5 mm, median rib dose was reduced to 136.5% of the PD. When skin thickness was <7 mm and distance to rib was <5 mm, median skin and rib doses were jointly limited to 120.6% and 142.1% of the PD, respectively. The Contura MLB catheter provided the means of achieving the imposed higher standard of dosimetric goals in the majority of clinical scenarios encountered. Copyright © 2011 Elsevier Inc. All rights reserved.
Schafer, Eric S; Rau, Rachel E; Berg, Stacey; Liu, Xiaowei; Minard, Charles G; D'Adamo, David; Scott, Rachael; Reyderman, Larisa; Martinez, Gresel; Devarajan, Sandhya; Reid, Joel M; Fox, Elizabeth; Weigel, Brenda J; Blaney, Susan M
2018-05-02
Eribulin mesylate is a novel anticancer agent that inhibits microtubule growth, without effects on shortening, and promotes nonproductive tubulin aggregate formation. We performed a phase 1 trial to determine the dose-limiting toxicities (DLTs), maximum tolerated or recommended phase 2 dose (MTD/RP2D), and pharmacokinetics (PK) of eribulin in children with refractory or recurrent solid (excluding central nervous system) tumors. Eribulin was administered intravenously on days 1 and 8 in 21-day cycles. Three dose levels (1.1, 1.4, and 1.8 mg/m 2 /dose) were evaluated using the rolling six design with additional patients enrolled into a PK expansion cohort at the MTD. PK samples were obtained following the day 1, cycle 1 dose. Twenty-three patients, ages 3-17 (median 14) years were enrolled; 20 were evaluable for toxicity. DLTs occurred in 0/6 and 1/6 subjects at the 1.1 and 1.4 mg/m 2 /dose, respectively. One subject at the 1.4 mg/m 2 /dose had grade 4 neutropenia and grade 3 fatigue. At the 1.8 mg/m 2 /dose, 2/5 subjects experienced dose-limiting (grade 4) neutropenia. Grade 3/4 non-DLTs included lymphopenia and hypokalemia, while low-grade toxicities included anorexia and nausea. No episodes of grade > 2 corrected QT interval prolongation or peripheral neuropathy were reported. Eribulin pharmacokinetic parameters were highly variable; the median elimination half-life was 39.6 (range 24.2-96.4) hr. A partial response was observed in one patient (Ewing sarcoma). Eribulin was well tolerated in children with refractory or recurrent solid tumors with neutropenia identified as the primary DLT. The RP2D of eribulin is 1.4 mg/m 2 /dose on days 1 and 8 of a 21-day cycle. © 2018 Wiley Periodicals, Inc.
Hill, P; Dederichs, H; Pillath, J; Schlecht, W; Hille, R; Artemev, O; Ptitskaya, L; Akhmetov, M
2002-01-01
The joint projects performed since 1995 by the Jülich Research Centre in co-operation with the Kazakh National Nuclear Centre in the area of the former nuclear test site near Semipalatinsk, in eastern Kazakhstan, have assessed the current dose rate of the population at and around the test site, as well as determining retrospectively the dose rate of persons affected by the atmospheric tests. Measurements of the population by personal dosemeters depend on reliably wearing these dosemeters over prolonged periods of time, and of a sufficient dosemeter return. In the past, such measurements have been particularly successful whenever short wearing times were possible. This requires high sensitivity of the dosemeters. The suitability of the highly sensitive TLD material of the BICRON TLD 700H type for such personal dosimetry measurements was investigated. It was tested in practical field application at the Semipalatinsk nuclear test site in September 2000. Initial results are available from individual doses received by a group of geologists and a group of herdsmen at the test site. For the first time, the individual dose was measured directly in these population groups. Detection limits below 1 microSv permit informative measurements for wearing times of less than two weeks. Most individual doses did not arise significantly out of local fluctuations of natural background. A conservative assessment from the aspect of practical health physics yielded a mean personal dose of 0.55 microSv per day for the herdsmen, whereas the geologists received a mean personal dose of 0.45 microSv per day. For an annual exposure period of typically, about three months, the radiation dose received by the persons investigated, in addition to the natural radiation exposure, is thus well below the international limit value of 1 mSv x a(-1) for the population dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugh, Thomas J.; Chen Changhu; Rabinovitch, Rachel
Purpose: To determine the maximal tolerated dose of bortezomib with concurrent external beam radiation therapy in patients with incurable solid malignant tumors requiring palliative therapy. Methods and Materials: An open label, dose escalation, phase I clinical trial evaluated the safety of three dose levels of bortezomib administered intravenously (1.0 mg/m{sup 2}, 1.3 mg/m{sup 2}, and 1.6 mg/m{sup 2}/ dose) once weekly with concurrent radiation in patients with histologically confirmed solid tumors and a radiographically appreciable lesion suitable for palliative radiation therapy. All patients received 40 Gy in 16 fractions to the target lesion. Dose-limiting toxicity was the primary endpoint, definedmore » as any grade 4 hematologic toxicity, any grade {>=}3 nonhematologic toxicity, or any toxicity requiring treatment to be delayed for {>=}2 weeks. Results: A total of 12 patients were enrolled. Primary sites included prostate (3 patients), head and neck (3 patients), uterus (1 patient), abdomen (1 patient), breast (1 patient), kidney (1 patient), lung (1 patient), and colon (1 patient). The maximum tolerated dose was not realized with a maximum dose of 1.6 mg/m{sup 2}. One case of dose-limiting toxicity was appreciated (grade 3 urosepsis) and felt to be unrelated to bortezomib. The most common grade 3 toxicity was lymphopenia (10 patients). Common grade 1 to 2 events included nausea (7 patients), infection without neutropenia (6 patients), diarrhea (5 patients), and fatigue (5 patients). Conclusions: The combination of palliative external beam radiation with concurrent weekly bortezomib therapy at a dose of 1.6 mg/m{sup 2} is well tolerated in patients with metastatic solid tumors. The maximum tolerated dose of once weekly bortezomib delivered concurrently with radiation therapy is greater than 1.6 mg/m{sup 2}.« less
Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA).
Delistraty, Damon; Van Verst, Scott; Rochette, Elizabeth A
2010-02-01
Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from the Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site. (c) 2009 Elsevier Inc. All rights reserved.
Radiological risk from consuming fish and wildlife to Native Americans on the Hanford Site (USA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delistraty, Damon, E-mail: DDEL461@ecy.wa.gov; Verst, Scott Van; Rochette, Elizabeth A.
Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result of stakeholder concerns, Native American exposure scenarios have been integrated into Hanford risk assessments. Because its contribution to radiological risk to Native Americans is culturally and geographically specific but quantitatively uncertain, a fish and wildlife ingestion pathway was examined in this study. Adult consumption rates were derived from 20 Native American scenarios (based on 12 studies) at Hanford, and tissue concentrations of key radionuclides in fish, game birds, and game mammals were compiled from themore » Hanford Environmental Information System (HEIS) database for a recent time interval (1995-2007) during the post-operational period. It was assumed that skeletal muscle comprised 90% of intake, while other tissues accounted for the remainder. Acknowledging data gaps, median concentrations of eight radionuclides (i.e., Co-60, Cs-137, Sr-90, Tc-99, U-234, U-238, Pu-238, and Pu-239/240) in skeletal muscle and other tissues were below 0.01 and 1 pCi/g wet wt, respectively. These radionuclide concentrations were not significantly different (Bonferroni P>0.05) on and off the Hanford Site. Despite no observed difference between onsite and offsite tissue concentrations, radiation dose and risk were calculated for the fish and wildlife ingestion pathway using onsite data. With median consumption rates and radionuclide tissue concentrations, skeletal muscle provided 42% of the dose, while other tissues (primarily bone and carcass) accounted for 58%. In terms of biota, fish ingestion was the largest contributor to dose (64%). Among radionuclides, Sr-90 was dominant, accounting for 47% of the dose. At median intake and radionuclide levels, estimated annual dose (0.36 mrem/yr) was below a dose limit of 15 mrem/yr recommended by the United States Environmental Protection Agency (USEPA), as well as below a dose limit of 100 mrem/yr proposed by the International Commission on Radiation Protection (ICRP). Similarly, lifetime cancer risk (1.7E-5), calculated with median inputs, was below risk levels corresponding to these dose limits. However, our dose and risk estimates apply to only one pathway within a multidimensional exposure scenario for Native Americans. On the other hand, radiation dose and risk corresponding to onsite tissue concentrations were not significantly different from those corresponding to offsite (background) concentrations. Recognizing uncertainties in exposure and toxicity assessments, our results may facilitate informed decision making and optimize resource allocation within a risk assessment framework at the Hanford Site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denine, E.P.; Stout, L.D.; Peckham, J.C.
1978-11-10
Dose-limiting gastrointestinal toxicosis was qualitatively similar in dogs, monkeys, and mice. In dogs and monkeys, anorexia and/or oligodipsia were cardinal signs. Severity of intoxication was indicated by progression to a diarrheal syndrome. Intoxication of the erythron was indicated in the dog and monkey studies. Quantitatively, mice were the most resistant to toxicity, and monkeys were more resistant than dogs. In dogs, fractionation of a single dose to five daily doses resulted in marked cumulative toxicity. Further fractionation to 10 daily doses produced only additive intoxication. Fractionation of a single dose to weekly doses offered some protection from additive toxicity. Similarmore » results were obtained when 5 daily doses were fractionated to three 5-day courses of treatment separated by 9-day rest periods.« less
Improved dosimetry techniques for intravascular brachytherapy
NASA Astrophysics Data System (ADS)
Sehgal, Varun
Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated using Monte Carlo-based radiation transport code MCNP and tabulated for a range of different coronary geometries and different radionuclides. A new technique using imaging techniques such as intravascular ultrasound and angiography to assess dosimetry for realistic coronary arteries is also introduced. The results indicate the need for accurate assessment of post-intervention clinical measurements such as minimal lumen diameter and residual plaque burden and incorporating them into dose calculations.
Meinzer, Caitlyn; Martin, Renee; Suarez, Jose I
2017-09-08
In phase II trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase III trial. Recent designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies. However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total amount of information available across the dose range as a function of imbalanced sample size. To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug, defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented in the context of a phase II trial for subarachnoid hemorrhage. For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial is used to illustrate how this design can be customized for specific objectives and available data. Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the optimal dose for treatment efficacy within the context of limited resources. While the design is general enough to apply to many situations, future work is needed to address interim analyses and the incorporation of models for dose response.
Buggy, Joseph J.; Sharman, Jeff P.; Smith, Sonali M.; Boyd, Thomas E.; Grant, Barbara; Kolibaba, Kathryn S.; Furman, Richard R.; Rodriguez, Sara; Chang, Betty Y.; Sukbuntherng, Juthamas; Izumi, Raquel; Hamdy, Ahmed; Hedrick, Eric; Fowler, Nathan H.
2013-01-01
Purpose Survival and progression of mature B-cell malignancies depend on signals from the B-cell antigen receptor, and Bruton tyrosine kinase (BTK) is a critical signaling kinase in this pathway. We evaluated ibrutinib (PCI-32765), a small-molecule irreversible inhibitor of BTK, in patients with B-cell malignancies. Patients and Methods Patients with relapsed or refractory B-cell lymphoma and chronic lymphocytic leukemia received escalating oral doses of ibrutinib. Two schedules were evaluated: one, 28 days on, 7 days off; and two, once-daily continuous dosing. Occupancy of BTK by ibrutinib in peripheral blood was monitored using a fluorescent affinity probe. Dose escalation proceeded until either the maximum-tolerated dose (MTD) was achieved or, in the absence of MTD, until three dose levels above full BTK occupancy by ibrutinib. Response was evaluated every two cycles. Results Fifty-six patients with a variety of B-cell malignancies were treated over seven cohorts. Most adverse events were grade 1 and 2 in severity and self-limited. Dose-limiting events were not observed, even with prolonged dosing. Full occupancy of the BTK active site occurred at 2.5 mg/kg per day, and dose escalation continued to 12.5 mg/kg per day without reaching MTD. Pharmacokinetic data indicated rapid absorption and elimination, yet BTK occupancy was maintained for at least 24 hours, consistent with the irreversible mechanism. Objective response rate in 50 evaluable patients was 60%, including complete response of 16%. Median progression-free survival in all patients was 13.6 months. Conclusion Ibrutinib, a novel BTK-targeting inhibitor, is well tolerated, with substantial activity across B-cell histologies. PMID:23045577
Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.
2017-07-01
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less
Domienik, J; Bissinger, A; Grabowicz, W; Jankowski, Ł; Kręcki, R; Makowski, M; Masiarek, K; Plewka, M; Lubiński, A; Peruga, J Z
2016-06-01
The aim of the study was to check, in clinical practice, the potential for the dose reduction of lead eyewear and a ceiling-suspended shield used to protect the eye lens of physicians working in interventional cardiology. To this end, for the lead eyewear, the dose reduction factors were derived to correct the readings from a dosimeter used routinely outside the glasses. Four types of lead eyewear with attached loose thermoluminescent dosimeters and EYE-D dosimeters were worn by physicians in two clinical centres, for two-month periods, during coronary angiography (CA), percutaneous coronary intervention (PCI), and pacemaker procedures. In order to analyse, separately, how a ceiling-suspended lead screen absorbs the scattered radiation, a series of measurements was carried out during single CA/PCI procedures performed with and without the protection. The lead eyewear may reduce the doses to the eye closest to the x-ray tube by a factor between 1.1 and 3.4, depending on its model and the physician's position. The effectiveness of the eyewear may, however, vary-even for the same model and physician-almost twofold between different working periods. The ceiling-suspended shield decreases the doses in clinical practice by a factor of 2.3. The annual eye lens doses without the eyewear estimated from routine measurements are high-above or close to the new eye lens dose limit established by the recent EU Basic Safety Standards, even though the ceiling-suspended shield was used. Therefore, to comply with the new dose limit that is set in the Directive, protection of the eyes of physicians with high workloads might require the use of both the eyewear and the ceiling-suspended shield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogen, K.T.; Conrado, C.L.; Robison, W.L.
A detailed analysis of uncertainty and interindividual variability in estimated doses was conducted for a rehabilitation scenario for Bikini Island at Bikini Atoll, in which the top 40 cm of soil would be removed in the housing and village area, and the rest of the island is treated with potassium fertilizer, prior to an assumed resettlement date of 1999. Predicted doses were considered for the following fallout-related exposure pathways: ingested Cesium-137 and Strontium-90, external gamma exposure, and inhalation and ingestion of Americium-241 + Plutonium-239+240. Two dietary scenarios were considered: (1) imported foods are available (IA), and (2) imported foods aremore » unavailable (only local foods are consumed) (IUA). Corresponding calculations of uncertainty in estimated population-average dose showed that after {approximately}5 y of residence on Bikini, the upper and lower 95% confidence limits with respect to uncertainty in this dose are estimated to be approximately 2-fold higher and lower than its population-average value, respectively (under both IA and IUA assumptions). Corresponding calculations of interindividual variability in the expected value of dose with respect to uncertainty showed that after {approximately}5 y of residence on Bikini, the upper and lower 95% confidence limits with respect to interindividual variability in this dose are estimated to be approximately 2-fold higher and lower than its expected value, respectively (under both IA and IUA assumptions). For reference, the expected values of population-average dose at age 70 were estimated to be 1.6 and 5.2 cSv under the IA and IUA dietary assumptions, respectively. Assuming that 200 Bikini resettlers would be exposed to local foods (under both IA and IUA assumptions), the maximum 1-y dose received by any Bikini resident is most likely to be approximately 2 and 8 mSv under the IA and IUA assumptions, respectively.« less
Carini, Fabrizio; Bucalo, Concetta; Saggese, Vito; Monai, Dario; Porcaro, Gianluca
2012-01-01
Summary Aims the assessment of the limit dose for the organs at risk in external radiotherapy is a fundamental step to guarantee an optimal risk-benefit ratio. The aim of this study was to assess, through contouring the single dental cavities, the absorbed radiation dose on irradiated alveolar bones during the treatment of cervico-facial tumours, so as to test the correlation between the absorbed dose of radiation at alveolar level and the level of individual surgical risk for osteonecrosis. Materials and methods we selected 45 out of 89 patients on the basis of different exclusion criteria. Nine of these patients showed evidence of osteoradionecrosis. The patients were treated either with 3D conformational radiation therapy (3D-CRT) or with intensity-modulated radiation therapy (IMRT), there after alveolar bones were contoured using computed axial tomography (CAT scans) carried out following oncological and dental treatment. The dose-volume histograms (DVH) were obtained on the basis of such data, which included those relating to the dental cavities in addition to those inherent to the tumours and the organs at risk. Results all patients, irrespective of type of treatment, received an average of 60 to 70 grays in 30/35 sittings. The patients treated with IMRT showed higher variation in absorbed radiation dose than those treated with 3D-CRT. The alveolar encirclement allowed the assessment of the absorbed radiation dose, and consequently it also allowed to assess the individual surgical risk for osteonecrosis in patients with head and neck tumours who underwent radiography treatment. Conclusions the study of DVH allows the assessment of limit dose and the detection of the areas at greater risk for osteoradionecrosis before dental surgery. PMID:23285316
Construction of new skin models and calculation of skin dose coefficients for electron exposures
NASA Astrophysics Data System (ADS)
Yeom, Yeon Soo; Kim, Chan Hyeong; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Jeong, Jong Hwi
2016-08-01
The voxel-type reference phantoms of the International Commission on Radiological Protection (ICRP), due to their limited voxel resolutions, cannot represent the 50- μm-thick radiosensitive target layer of the skin necessary for skin dose calculations. Alternatively, in ICRP Publication 116, the dose coefficients (DCs) for the skin were calculated approximately, averaging absorbed dose over the entire skin depth of the ICRP phantoms. This approximation is valid for highly-penetrating radiations such as photons and neutrons, but not for weakly penetrating radiations like electrons due to the high gradient in the dose distribution in the skin. To address the limitation, the present study introduces skin polygon-mesh (PM) models, which have been produced by converting the skin models of the ICRP voxel phantoms to a high-quality PM format and adding a 50- μm-thick radiosensitive target layer into the skin models. Then, the constructed skin PM models were implemented in the Geant4 Monte Carlo code to calculate the skin DCs for external exposures of electrons. The calculated values were then compared with the skin DCs of the ICRP Publication 116. The results of the present study show that for high-energy electrons (≥ 1 MeV), the ICRP-116 skin DCs are, indeed, in good agreement with the skin DCs calculated in the present study. For low-energy electrons (< 1 MeV), however, significant discrepancies were observed, and the ICRP-116 skin DCs underestimated the skin dose as much as 15 times for some energies. Besides, regardless of the small tissue weighting factor of the skin ( w T = 0.01), the discrepancies in the skin dose were found to result in significant discrepancies in the effective dose, demonstarting that the effective DCs in ICRP-116 are not reliable for external exposure to electrons.
Sato, Yasushi; Hirakawa, Masahiro; Ohnuma, Hiroyuki; Takahashi, Minoru; Okamoto, Tetsuro; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Furuhata, Tomohisa; Takemasa, Ichiro; Kato, Junji; Takayama, Tetsuji
2017-12-01
The addition of cetuximab to triplet chemotherapy can increase treatment efficacy for patients with metastatic colorectal cancer (mCRC). We explored the dose-limiting toxicity and feasibility of a triweekly capecitabine, oxaliplatin, irinotecan, plus cetuximab (XELOXIRI plus cetuximab) regimen in patients with wild-type KRAS mCRC. Patients received oxaliplatin (100 mg/m 2 , day 1), capecitabine (1700 mg/m 2 per day from day 2 to 15), irinotecan (100, 120, and 150 mg/m 2 for dose levels 1, 2, 3, respectively, on day 1), and cetuximab (400 mg/m 2 , day 1 and, thereafter, 250 mg/m 2 every week), repeated every 3 weeks. Dose-limiting toxicities (DLTs) were assessed in the first 2 treatment cycles to determine the maximum tolerated dose (MTD) and the recommended dose (RD). Twelve patients received a median of 7 cycles of therapy (range 2-10). The DLT was grade 4 neutropenia, observed in 1 of 6 patients at dose level 2. The MTD was not reached at dose level 3. Therefore, the RD of irinotecan was defined as 150 mg/m 2 . Most common grade ≥ 3 toxicities were neutropenia (50%), diarrhea (17%), and febrile neutropenia (8%). The response rate was 83% (complete and partial response: 1 and 9 patient(s), respectively), including 4 conversion cases. The combination of XELOXIRI and cetuximab is feasible and has an acceptable toxicity profile; neutropenia was the DLT. The RD of irinotecan is 150 mg/m 2 . The observed response rate was promising and warrants further investigation.
Phase I Study of Daily Irinotecan as a Radiation Sensitizer for Locally Advanced Pancreatic Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouchardiere, Christelle de la, E-mail: delafo@lyon.fnclcc.f; Negrier, Sylvie; Labrosse, Hugues
2010-06-01
Purpose: The study aimed to determine the maximum tolerated dose of daily irinotecan given with concomitant radiotherapy in patients with locally advanced adenocarcinoma of the pancreas. Methods and Materials: Between September 2000 and March 2008, 36 patients with histologically proven unresectable pancreas adenocarcinoma were studied prospectively. Irinotecan was administered daily, 1 to 2 h before irradiation. Doses were started at 6 mg/m{sup 2} per day and then escalated by increments of 2 mg/m{sup 2} every 3 patients. Radiotherapy was administered in 2-Gy fractions, 5 fractions per week, up to a total dose of 50 Gy to the tumor volume. Inoperabilitymore » was confirmed by a surgeon involved in a multidisciplinary team. All images and responses were centrally reviewed by radiologists. Results: Thirty-six patients were enrolled over a period of 8 years through eight dose levels (6 mg/m{sup 2} to 20 mg/m{sup 2} per day). The maximum tolerated dose was determined to be 18 mg/m{sup 2} per day. The dose-limiting toxicities were nausea/vomiting, diarrhea, anorexia, dehydration, and hypokalemia. The median survival time was 12.6 months with a median follow-up of 53.8 months. The median progression-free survival time was 6.5 months, and 4 patients (11.4%) with very good responses could undergo surgery. Conclusions: The maximum tolerated dose of irinotecan is 18 mg/m{sup 2} per day for 5 weeks. Dose-limiting toxicities are mainly gastrointestinal. Even though efficacy was not the aim of this study, the results are very promising, with a median survival time of 12.6 months.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tada, Takuhito, E-mail: tada@msic.med.osaka-cu.ac.jp; Department of Radiology, Izumi Municipal Hospital, Izumi; Chiba, Yasutaka
2012-05-01
Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non-small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non-small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m{sup 2}) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m{sup 2}). Total doses were 54 Gy in 36 fractions, 60 Gymore » in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade {>=}4 esophagitis and neutropenic fever and Grade {>=}3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.« less
Scofield, Patricia A; Smith, Linda L; Johnson, David N
2017-07-01
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y-12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations on Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package-1988 computer model files. This database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scofield, Patricia A.; Smith, Linda Lenell; Johnson, David N.
The U.S. Environmental Protection Agency promulgated national emission standards for emissions of radionuclides other than radon from US Department of Energy facilities in Chapter 40 of the Code of Federal Regulations (CFR) 61, Subpart H. This regulatory standard limits the annual effective dose that any member of the public can receive from Department of Energy facilities to 0.1 mSv. As defined in the preamble of the final rule, all of the facilities on the Oak Ridge Reservation, i.e., the Y–12 National Security Complex, Oak Ridge National Laboratory, East Tennessee Technology Park, and any other U.S. Department of Energy operations onmore » Oak Ridge Reservation, combined, must meet the annual dose limit of 0.1 mSv. At Oak Ridge National Laboratory, there are monitored sources and numerous unmonitored sources. To maintain radiological source and inventory information for these unmonitored sources, e.g., laboratory hoods, equipment exhausts, and room exhausts not currently venting to monitored stacks on the Oak Ridge National Laboratory campus, the Environmental Protection Rad NESHAPs Inventory Web Database was developed. This database is updated annually and is used to compile emissions data for the annual Radionuclide National Emission Standards for Hazardous Air Pollutants (Rad NESHAPs) report required by 40 CFR 61.94. It also provides supporting documentation for facility compliance audits. In addition, a Rad NESHAPs source and dose database was developed to import the source and dose summary data from Clean Air Act Assessment Package—1988 computer model files. As a result, this database provides Oak Ridge Reservation and facility-specific source inventory; doses associated with each source and facility; and total doses for the Oak Ridge Reservation dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu
2013-04-01
To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less
Advani, Ranjana H; Buggy, Joseph J; Sharman, Jeff P; Smith, Sonali M; Boyd, Thomas E; Grant, Barbara; Kolibaba, Kathryn S; Furman, Richard R; Rodriguez, Sara; Chang, Betty Y; Sukbuntherng, Juthamas; Izumi, Raquel; Hamdy, Ahmed; Hedrick, Eric; Fowler, Nathan H
2013-01-01
Survival and progression of mature B-cell malignancies depend on signals from the B-cell antigen receptor, and Bruton tyrosine kinase (BTK) is a critical signaling kinase in this pathway. We evaluated ibrutinib (PCI-32765), a small-molecule irreversible inhibitor of BTK, in patients with B-cell malignancies. Patients with relapsed or refractory B-cell lymphoma and chronic lymphocytic leukemia received escalating oral doses of ibrutinib. Two schedules were evaluated: one, 28 days on, 7 days off; and two, once-daily continuous dosing. Occupancy of BTK by ibrutinib in peripheral blood was monitored using a fluorescent affinity probe. Dose escalation proceeded until either the maximum-tolerated dose (MTD) was achieved or, in the absence of MTD, until three dose levels above full BTK occupancy by ibrutinib. Response was evaluated every two cycles. Fifty-six patients with a variety of B-cell malignancies were treated over seven cohorts. Most adverse events were grade 1 and 2 in severity and self-limited. Dose-limiting events were not observed, even with prolonged dosing. Full occupancy of the BTK active site occurred at 2.5 mg/kg per day, and dose escalation continued to 12.5 mg/kg per day without reaching MTD. Pharmacokinetic data indicated rapid absorption and elimination, yet BTK occupancy was maintained for at least 24 hours, consistent with the irreversible mechanism. Objective response rate in 50 evaluable patients was 60%, including complete response of 16%. Median progression-free survival in all patients was 13.6 months. Ibrutinib, a novel BTK-targeting inhibitor, is well tolerated, with substantial activity across B-cell histologies.
Martin, Colin J
2016-06-01
Doses to the eye lenses of clinicians undertaking fluoroscopically guided procedures can exceed the dose annual limit of 20 mSv, so optimisation of radiation protection is essential. Ceiling-suspended shields and disposable radiation absorbing pads can reduce eye dose by factors of 2-7. Lead glasses that shield against exposures from the side can lower doses by 2.5-4.5 times. Training in effective use of protective devices is an essential element in achieving good protection and acceptable eye doses. Effective methods for dose monitoring are required to identify protection issues. Dosemeters worn adjacent to the eye provide the better option for interventional clinicians, but an unprotected dosemeter worn at the neck will give an indication of eye dose that is adequate for most interventional staff. Potential requirements for protective devices and dose monitoring can be determined from risk assessments using generic values for dose linked to examination workload. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Farah, J; Struelens, L; Auvinen, A; Jacob, S; Koukorava, C; Schnelzer, M; Vanhavere, F; Clairand, I
2015-04-01
In preparation of a large European epidemiological study on the relation between eye lens dose and the occurrence of lens opacities, the European ELDO project focused on the development of practical methods to estimate retrospectively cumulative eye lens dose for interventional medical professionals exposed to radiation. The present paper applies one of the ELDO approaches, correlating eye lens dose to whole-body doses, to assess cumulative eye lens dose for 14 different Finnish interventional cardiologists for whom annual whole-body dose records were available for their entire working period. The estimated cumulative left and right eye lens dose ranged from 8 to 264 mSv and 6 to 225 mSv, respectively. In addition, calculations showed annual eye lens doses sometimes exceeding the new ICRP annual limit of 20 mSv. The work also highlights the large uncertainties associated with the application of such an approach proving the need for dedicated dosimetry systems in the routine monitoring of the eye lens dose. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Toyota, Masahiko; Saigo, Yasumasa; Higuchi, Kenta; Fujimura, Takuya; Koriyama, Chihaya; Yoshiura, Takashi; Akiba, Suminori
2017-11-01
Intensity-modulated radiation therapy (IMRT) can deliver high and homogeneous doses to the target area while limiting doses to organs at risk. We used a pediatric phantom to simulate the treatment of a head and neck tumor in a child. The peripheral doses were examined for three different IMRT techniques [dynamic multileaf collimator (DMLC), segmental multileaf collimator (SMLC) and volumetric modulated arc therapy (VMAT)]. Peripheral doses were evaluated taking thyroid, breast, ovary and testis as the points of interest. Doses were determined using a radio-photoluminescence glass dosemeter, and the COMPASS system was used for three-dimensional dose evaluation. VMAT achieved the lowest peripheral doses because it had the highest monitor unit efficiency. However, doses in the vicinity of the irradiated field, i.e. the thyroid, could be relatively high, depending on the VMAT collimator angle. DMLC and SMLC had a large area of relatively high peripheral doses in the breast region. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pernas, Sonia; Martin, Miguel; Kaufman, Peter A; Gil-Martin, Marta; Gomez Pardo, Patricia; Lopez-Tarruella, Sara; Manso, Luis; Ciruelos, Eva; Perez-Fidalgo, Jose Alejandro; Hernando, Cristina; Ademuyiwa, Foluso O; Weilbaecher, Katherine; Mayer, Ingrid; Pluard, Timothy J; Martinez Garcia, Maria; Vahdat, Linda; Perez-Garcia, Jose; Wach, Achim; Barker, Debra; Fung, Samson; Romagnoli, Barbara; Cortes, Javier
2018-04-26
The C-X-C chemokine receptor type 4 (CXCR4)-stromal cell-derived factor-1α (SDF-1α) axis regulates function and trafficking of immune cells and the tumour microenvironment. CXCR4 antagonists have been shown to enhance the activity of different anticancer treatments in preclinical models. We assessed the safety, tolerability, pharmacokinetics, and preliminary phase 1 activity of the CXCR4 antagonist, balixafortide, in combination with eribulin chemotherapy in patients with heavily pretreated, relapsed metastatic breast cancer. This single-arm, dose-escalation, phase 1 trial enrolled patients at 11 sites in Spain and the USA. Eligible patients were women aged 18 years or older who had histologically confirmed HER2-negative metastatic breast cancer, evidence of tumour cell CXCR4 expression, an Eastern Cooperative Oncology Group performance status of 0 or 1, and who had previously received between one and three chemotherapy regimens for metastatic breast cancer, and at least one endocrine therapy if they had hormone receptor-positive disease, unless they were considered unsuitable for endocrine therapy. A standard 3+3 dose-escalation design was used, followed by an expanded cohort at the established maximum tolerated dose or highest dose if no dose-limiting toxicity was observed for the combination. After a treatment-related fatal adverse event in the first cohort who received 21-day cycles of treatment with eribulin and balixafortide, a protocol amendment modified the study design to be done in two parts. Patients enrolled to part 1 received an initial 28-day run-in cycle, with some cohorts receiving de-escalated doses of eribulin plus balixafortide to assess the safety and pharmacokinetics of the combination. The evaluation of part 1 did not confirm any dose-limiting toxicities or eribulin-balixafortide interactions, and therefore part 2 started enrolling patients to receive eribulin at the originally planned dose of 1·4 mg/m 2 on days 2 and 9 of a 21-day cycle and balixafortide from a starting dose of 2 mg/kg with dose increments of 0·5 or 1 mg/kg on days 1-3 and 8-10 of the 21-day cycle. Both drugs were administered as intravenous infusions. All patients were to receive treatment until disease progression or unacceptable toxicity. The primary endpoints were dose-limiting toxicities and adverse events, and the establishment of a maximum tolerated dose or recommended phase 2 dose, and pharmacokinetic parameters. Safety analysis was done in all patients who received at least one dose of study treatment. Analysis of antitumour activity was done in all patients who received at least one full cycle of study treatment. The trial is registered at ClinicalTrials.gov, number NCT01837095, and is closed to accrual. Between Jan 28, 2014, and Oct 4, 2016, 56 patients were enrolled into the trial. No dose-limiting toxicities were confirmed and the maximum tolerated dose was not reached. The highest dose was established as eribulin 1·4 mg/m 2 on days 2 and 9, and balixafortide 5·5 mg/kg on days 1-3 and 8-10 of the 21-day cycle. Objective responses (all partial responses) were observed in 16 (30%; 95% CI 18-44) of 54 patients who were evaluable for antitumour activity. The most common treatment-emergent adverse events of any grade were fatigue (44 [79%] of 56 patients), neutropenia (32 [57%]), infusion-related reactions (27 [48%]), alopecia (26 [46%]), constipation (26 [46%]), and nausea (25 [45%]). Serious adverse events occurred in 21 (38%) of 56 patients, including febrile neutropenia in five (9%) of 56 patients, neutrophil count decrease in two (4%) patients, constipation in two (4%) patients, pneumonia in two (4%) patients, and urinary tract infection in three (5%) patients. Two (4%) of 56 patients died while receiving study treatment; one from septic shock and one from pneumonia. The safety and tolerability of balixafortide plus eribulin seems to be similar to that of eribulin or balixafortide monotherapy, and the preliminary activity of the combination seems promising in patients with HER-negative metastatic breast cancer. The results suggest that balixafortide plus eribulin has potential to provide a new therapeutic option in heavily pretreated patients with metastatic breast cancer and warrants further investigation in randomised trials. Polyphor. Copyright © 2018 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
ABSTRACT Background: Enhanced n-3 intake benefit CVD risk reduction. Increasing consumption at a population level will be better addressed by dietary modification than through supplementation. However, limited data are available on the effect of increasing doses of fish intake on circulating level...
Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry
NASA Astrophysics Data System (ADS)
Caracappa, Peter F.; Rhodes, Ashley; Fiedler, Derek
2014-09-01
Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.
Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A
2012-05-01
Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.
How, Jonathan; Minden, Mark D.; Brian, Leber; Chen, Eric X.; Brandwein, Joseph; Schuh, Andre C.; Schimmer, Aaron D.; Gupta, Vikas; Webster, Sheila; Degelder, Tammy; Haines, Patricia; Stayner, Lee-Anne; McGill, Shauna; Wang, Lisa; Piekarz, Richard; Wong, Tracy; Siu, Lillian L.; Espinoza-Delgado, Igor; Holleran, Julianne L.; Egorin, Merrill J.; Yee, Karen W. L.
2015-01-01
This phase I trial evaluated two schedules of escalating vorinostat in combination with decitabine every 28 days: (i) sequential or (ii) concurrent. There were three dose-limiting toxicities: grade 3 fatigue and generalized muscle weakness on the sequential schedule (n = 1) and grade 3 fatigue on the concurrent schedule (n = 2). The maximum tolerated dose was not reached on both planned schedules. The overall response rate (ORR) was 23% (three complete response [CR], two CR with incomplete incomplete blood count recovery [CRi], one partial response [PR] and two morphological leukemic free state [MLFS]). The ORR for all and previously untreated patients in the sequential arm was 13% (one CRi; one MLFS) and 0% compared to 30% (three CR; one CRi; one PR; one MLFS) and 36% in the concurrent arm (p = 0.26 for both), respectively. Decitabine plus vorinostat was safe and has clinical activity in patients with previously untreated acute myeloid leukemia. Responses appear higher with the concurrent dose schedule. Cumulative toxicities may limit long-term usage on the current dose/schedules. PMID:25682963
Regulatory implications of a linear non-threshold (LNT) dose-based risks.
Aleta, C R
2009-01-01
Current radiation protection regulatory limits are based on the linear non-threshold (LNT) theory using health data from atomic bombing survivors. Studies in recent years sparked debate on the validity of the theory, especially at low doses. The present LNT overestimates radiation risks since the dosimetry included only acute gammas and neutrons; the role of other bomb-caused factors, e.g. fallout, induced radioactivity, thermal radiation (UVR), electromagnetic pulse (EMP), and blast, were excluded. Studies are proposed to improve the dose-response relationship.
Rao, Vatturi Venkata Satya Prabhakar; Manthri, Ranadheer; Hemalatha, Pottumuthu; Kumar, Vuyyuru Navin; Azhar, Mohammad
2016-01-01
Hot lab dispensing of large doses of 18 fluorine fluorodeoxyglucose in master vials supplied from the cyclotrons requires high degrees of skill to handle high doses. Presently practiced conventional method of fractionating from the inverted tiltable vial pig mounted on a metal frame has its own limitations such as increasing isotope handling times and exposure to the technologist. Innovative technique devised markedly improves the fractionating efficiency along with speed, precision, and reduced dose exposure. PMID:27095872
Olive oil phenolics are dose-dependently absorbed in humans.
Visioli, F; Galli, C; Bornet, F; Mattei, A; Patelli, R; Galli, G; Caruso, D
2000-02-25
Olive oil phenolic constituents have been shown, in vitro, to be endowed with potent biological activities including, but not limited to, an antioxidant action. To date, there is no information on the absorption and disposition of such compounds in humans. We report that olive oil phenolics, namely tyrosol and hydroxytyrosol, are dose-dependently absorbed in humans after ingestion and that they are excreted in the urine as glucuronide conjugates. Furthermore, an increase in the dose of phenolics administered increased the proportion of conjugation with glucuronide.
Estimation of eye lens doses received by pediatric interventional cardiologists.
Alejo, L; Koren, C; Ferrer, C; Corredoira, E; Serrada, A
2015-09-01
Maximum Hp(0.07) dose to the eye lens received in a year by the pediatric interventional cardiologists has been estimated. Optically stimulated luminescence dosimeters were placed on the eyes of an anthropomorphic phantom, whose position in the room simulates the most common irradiation conditions. Maximum workload was considered with data collected from procedures performed in the Hospital. None of the maximum values obtained exceed the dose limit of 20 mSv recommended by ICRP. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radiation dose to the global flying population.
Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H
2016-03-01
Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions.
Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.; ...
2015-12-09
The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, Benjamin M.; Paunesku, Tatjana; Grdina, David J.
The US government regulates allowable radiation exposures relying, in large part, on the seventh report from the committee to estimate the Biological Effect of Ionizing Radiation (BEIR VII), which estimated that most contemporary exposures- protracted or low-dose, carry 1.5 fold less risk of carcinogenesis and mortality per Gy than acute exposures of atomic bomb survivors. This correction is known as the dose and dose rate effectiveness factor for the life span study of atomic bomb survivors (DDREF LSS). As a result, it was calculated by applying a linear-quadratic dose response model to data from Japanese atomic bomb survivors and amore » limited number of animal studies.« less
Radiation Therapy and Hearing Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham
2010-03-01
A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associatedmore » ototoxicity as well as a detailed approach for scoring toxicity is presented.« less
Dose‐finding methods for Phase I clinical trials using pharmacokinetics in small populations
Zohar, Sarah; Lentz, Frederike; Alberti, Corinne; Friede, Tim; Stallard, Nigel; Comets, Emmanuelle
2017-01-01
The aim of phase I clinical trials is to obtain reliable information on safety, tolerability, pharmacokinetics (PK), and mechanism of action of drugs with the objective of determining the maximum tolerated dose (MTD). In most phase I studies, dose‐finding and PK analysis are done separately and no attempt is made to combine them during dose allocation. In cases such as rare diseases, paediatrics, and studies in a biomarker‐defined subgroup of a defined population, the available population size will limit the number of possible clinical trials that can be conducted. Combining dose‐finding and PK analyses to allow better estimation of the dose‐toxicity curve should then be considered. In this work, we propose, study, and compare methods to incorporate PK measures in the dose allocation process during a phase I clinical trial. These methods do this in different ways, including using PK observations as a covariate, as the dependent variable or in a hierarchical model. We conducted a large simulation study that showed that adding PK measurements as a covariate only does not improve the efficiency of dose‐finding trials either in terms of the number of observed dose limiting toxicities or the probability of correct dose selection. However, incorporating PK measures does allow better estimation of the dose‐toxicity curve while maintaining the performance in terms of MTD selection compared to dose‐finding designs that do not incorporate PK information. In conclusion, using PK information in the dose allocation process enriches the knowledge of the dose‐toxicity relationship, facilitating better dose recommendation for subsequent trials. PMID:28321893
HLW Flexible jumper materials compatibility evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, T. E.
H-Tank Farm Engineering tasked SRNL/Materials Science & Technology (MS&T) to evaluate the compatibility of Goodyear Viper® chemical transfer hose with HLW solutions. The hose is proposed as a flexible Safety Class jumper for up to six months service. SRNL/MS&T performed various tests to evaluate the effects of radiation, high pH chemistry and elevated temperature on the hose, particularly the inner liner. Test results suggest an upper dose limit of 50 Mrad for the hose. Room temperature burst pressure values at 50 Mrad are estimated at 600- 800 psi, providing a safety factor of 4.0-5.3X over the anticipated operating pressure ofmore » 150 psi and a safety factor of 3.0-4.0X over the working pressure of the hose (200 psi), independent of temperature effects. Radiation effects are minimal at doses less than 10 Mrad. Doses greater than 50 Mrad may be allowed, depending on operating conditions and required safety factors, but cannot be recommended at this time. At 250 Mrad, burst pressure values are reduced to the hose working pressure. At 300 Mrad, burst pressures are below 150 psi. At a bounding continuous dose rate of 57,870 rad/hr, the 50 Mrad dose limit is reached within 1.2 months. Actual dose rates may be lower, particularly during non-transfer periods. Refined dose calculations are therefore recommended to justify longer service. This report details the tests performed and interpretation of the results. Recommendations for shelf-life/storage, component quality verification, and post-service examination are provided.« less
ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria.
Miley, Galen P; Pou, Sovitj; Winter, Rolf; Nilsen, Aaron; Li, Yuexin; Kelly, Jane X; Stickles, Allison M; Mather, Michael W; Forquer, Isaac P; Pershing, April M; White, Karen; Shackleford, David; Saunders, Jessica; Chen, Gong; Ting, Li-Min; Kim, Kami; Zakharov, Lev N; Donini, Cristina; Burrows, Jeremy N; Vaidya, Akhil B; Charman, Susan A; Riscoe, Michael K
2015-09-01
ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 μM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Mukai, Hirofumi; Saeki, Toshiaki; Aogi, Kenjiro; Naito, Yoichi; Matsubara, Nobuaki; Shigekawa, Takashi; Ueda, Shigeto; Takashima, Seiki; Hara, Fumikata; Yamashita, Tomonari; Ohwada, Shoichi; Sasaki, Yasutsuna
2016-10-01
Human epidermal growth factor receptor 3 (HER3) expression in lung and breast cancers has a negative impact on survival. Patritumab, a human anti-HER3 mAb, has shown anticancer activity in preclinical models. This study examined the safety and pharmacokinetics of patritumab in combination with trastuzumab and paclitaxel in patients with HER2-overexpressing metastatic breast cancer. In this open-label, multicenter, dose-escalation, phase Ib study, patients received patritumab 9 or 18 mg/kg plus trastuzumab and paclitaxel at known tolerated doses. Safety and tolerability were assessed based on dose-limiting toxicities and other non-life threatening adverse events. The pharmacokinetic profile for patritumab was determined based on the target trough level. Clinical efficacy was evaluated based on the overall response rate and progression-free survival. Six patients received patritumab 9 mg/kg and 12 received 18 mg/kg. The most common adverse events were diarrhea, alopecia, leukopenia, neutropenia, and maculopapular rash. No dose-limiting toxicities were observed. The target trough serum concentration was achieved in all patients at a dose of 18 mg/kg. Overall response rate was 38.9% and median progression-free survival was 274 days. In conclusion, patritumab plus trastuzumab and paclitaxel was tolerable and efficacious at both doses. We recommend the dose level of 18 mg/kg for future phase II studies. (Clinical trial registration: JapicCTI-121772.). © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities
Ezzalfani, Monia; Zohar, Sarah; Qin, Rui; Mandrekar, Sumithra J; Deley, Marie-Cécile Le
2013-01-01
The aim of a phase I oncology trial is to identify a dose with an acceptable safety profile. Most phase I designs use the dose-limiting toxicity, a binary endpoint, to assess the unacceptable level of toxicity. The dose-limiting toxicity might be incomplete for investigating molecularly targeted therapies as much useful toxicity information is discarded. In this work, we propose a quasi-continuous toxicity score, the total toxicity profile (TTP), to measure quantitatively and comprehensively the overall severity of multiple toxicities. We define the TTP as the Euclidean norm of the weights of toxicities experienced by a patient, where the weights reflect the relative clinical importance of each grade and toxicity type. We propose a dose-finding design, the quasi-likelihood continual reassessment method (CRM), incorporating the TTP score into the CRM, with a logistic model for the dose–toxicity relationship in a frequentist framework. Using simulations, we compared our design with three existing designs for quasi-continuous toxicity score (the Bayesian quasi-CRM with an empiric model and two nonparametric designs), all using the TTP score, under eight different scenarios. All designs using the TTP score to identify the recommended dose had good performance characteristics for most scenarios, with good overdosing control. For a sample size of 36, the percentage of correct selection for the quasi-likelihood CRM ranged from 80% to 90%, with similar results for the quasi-CRM design. These designs with TTP score present an appealing alternative to the conventional dose-finding designs, especially in the context of molecularly targeted agents. PMID:23335156
Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure
2012-01-01
Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409
Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia.
Akdim, Fatima; Tribble, Diane L; Flaim, JoAnn D; Yu, Rosie; Su, John; Geary, Richard S; Baker, Brenda F; Fuhr, Rainard; Wedel, Mark K; Kastelein, John J P
2011-11-01
Mipomersen, an apolipoprotein (apo) B synthesis inhibitor, has been shown to produce potent reductions in apoB and LDL-cholesterol levels in animal models as well as healthy human volunteers. A randomized, double-blind, placebo-controlled, dose-escalation study was designed to evaluate the efficacy and safety of mipomersen monotherapy with or without dose loading in subjects with mild-to-moderate hyperlipidaemia. Fifty subjects with LDL-cholesterol levels between 119 and 266 mg/dL were enrolled into five cohorts at a 4:1 randomization ratio of active to placebo. Two 13-week dose regimens were evaluated at doses ranging from 50 to 400 mg/week. Mipomersen produced dose-dependent reductions in all apoB containing lipoproteins. In the 200 and 300 mg/week dose cohorts, mean reductions from baseline in LDL cholesterol were -45 ± 10% (P= 0.000) and -61 ± 8% (P= 0.000), corresponding to a -46 ± 11% (P= 0.000) and -61 ± 7% (P= 0.000) decrease in apoB levels. Triglyceride levels were also lowered with median reductions up to 53% (P= 0.021). The most common adverse events were injection site reactions. Seven of 40 subjects (18%) showed consecutive transaminase elevations >3× upper limit of normal. Five of these subjects received 400 mg/week, four of whom had apoB levels below the limit of detection. As a consequence, the 400 mg/week cohort was discontinued. Mipomersen administered as monotherapy in subjects with mild-to-moderate hyperlipidaemia produced potent reductions in all apoB-containing lipoproteins. Higher doses were associated with hepatic transaminase increases.
High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasin, Zafar, E-mail: zafar.yasin@eli-np.ro; Matei, Catalin; Ur, Calin A.
The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKAmore » and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.« less
Minor oral surgery without stopping daily low-dose aspirin therapy: a study of 51 patients.
Madan, Gautam A; Madan, Sonal G; Madan, Gauri; Madan, A D
2005-09-01
The risk of excessive bleeding prompts physicians to stop low-dose long-term aspirin regimens before surgery, which puts the patient at risk from adverse thrombotic events. We hypothesize that most minor oral surgical procedures can be carried out safely without stopping low-dose aspirin. All minor oral surgery patients at our hospital (Madan Dental Hospital, Ahmedabad, India) from May 2002 to May 2003, who were also on long-term low-dose aspirin therapy regimens (acetylsalicylic acid 75 mg to 100 mg/day), were included. Investigation of bleeding time and platelet count was performed. If within normal limits, aspirin was not stopped before surgery. Patients were operated under local anesthesia on an outpatient basis. All wounds were sutured and followed up at 24, 48, and 72 hours, 1 week, and 2 weeks after the procedure. The study included 51 patients (32 males, 19 females), ranging in age from 45 to 70 years. Preoperative values were within normal limits for all patients. Aspirin was not stopped for a single patient. There was no excessive intraoperative bleeding in all cases except 1; there was no postoperative bleeding in all cases. We conclude that most minor oral surgery procedures can be carried out safely without stopping long-term low-dose aspirin regimen.
Nazarudheen, Shabana; Dey, Surajit; Kandhwal, Kirti; Arora, Rachna; Reyar, Simrit; Khuroo, Arshad H; Monif, Tausif; Madan, Sumit; Arora, Vinod
2013-11-01
A pharmacokinetic bioequivalence study was conducted in Asian subjects, to compare a fixed dose combination capsule single oral dose of alpha adrenoceptor blocker-Alfuzosin hydrochloride 10mg extended release and muscarinic antagonists-Solifenacin succinate 5mg against individually administered Xatral XL 10mg tablets (Alfuzosin) of Sanofi Synthelabo Limited, United Kingdom (UK) and Vesicare 5mg tablets (Solifenacin) of Astellas Pharma Limited, UK under fed conditions. Blood samples were collected pre-dose up to 72 h post dose for determination of plasma Alfuzosin and Solifenacin concentrations and calculation of the pharmacokinetic parameters. ANOVA was performed on the log (natural)-transformed pharmacokinetic parameters. A 90% confidence interval for the ratios of the test and reference product averages (least square means) were calculated for alfuzosin and solifenacin. The 90% confidence intervals obtained for alfuzosin for Cmax, AUC0-t and AUC0-∞ were 102.74-122.75%, 95.84-116.96% and 95.82-116.76%, respectively. The 90% confidence intervals obtained for Solifenacin for Cmax, and AUC0-72 were 89.55-97.91% and 90.47-99.38%, respectively. Based on the results, the fixed dose combination was concluded to be bioequivalent to individually administered products. Copyright © 2013 Elsevier Inc. All rights reserved.
Fast CPU-based Monte Carlo simulation for radiotherapy dose calculation.
Ziegenhein, Peter; Pirner, Sven; Ph Kamerling, Cornelis; Oelfke, Uwe
2015-08-07
Monte-Carlo (MC) simulations are considered to be the most accurate method for calculating dose distributions in radiotherapy. Its clinical application, however, still is limited by the long runtimes conventional implementations of MC algorithms require to deliver sufficiently accurate results on high resolution imaging data. In order to overcome this obstacle we developed the software-package PhiMC, which is capable of computing precise dose distributions in a sub-minute time-frame by leveraging the potential of modern many- and multi-core CPU-based computers. PhiMC is based on the well verified dose planning method (DPM). We could demonstrate that PhiMC delivers dose distributions which are in excellent agreement to DPM. The multi-core implementation of PhiMC scales well between different computer architectures and achieves a speed-up of up to 37[Formula: see text] compared to the original DPM code executed on a modern system. Furthermore, we could show that our CPU-based implementation on a modern workstation is between 1.25[Formula: see text] and 1.95[Formula: see text] faster than a well-known GPU implementation of the same simulation method on a NVIDIA Tesla C2050. Since CPUs work on several hundreds of GB RAM the typical GPU memory limitation does not apply for our implementation and high resolution clinical plans can be calculated.
Statistical controversies in clinical research: requiem for the 3 + 3 design for phase I trials.
Paoletti, X; Ezzalfani, M; Le Tourneau, C
2015-09-01
More than 95% of published phase I trials have used the 3 + 3 design to identify the dose to be recommended for phase II trials. However, the statistical community agrees on the limitations of the 3 + 3 design compared with model-based approaches. Moreover, the mechanisms of action of targeted agents strongly challenge the hypothesis that the maximum tolerated dose constitutes the optimal dose, and more outcomes including clinical and biological activity increasingly need to be taken into account to identify the optimal dose. We review key elements from clinical publications and from the statistical literature to show that the 3 + 3 design lacks the necessary flexibility to address the challenges of targeted agents. The design issues raised by expansion cohorts, new definitions of dose-limiting toxicity and trials of combinations are not easily addressed by the 3 + 3 design or its extensions. Alternative statistical proposals have been developed to make a better use of the complex data generated by phase I trials. Their applications require a close collaboration between all actors of early phase clinical trials. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Biological effects and equivalent doses in radiotherapy: A software solution
Voyant, Cyril; Julian, Daniel; Roustit, Rudy; Biffi, Katia; Lantieri, Céline
2013-01-01
Background The limits of TDF (time, dose, and fractionation) and linear quadratic models have been known for a long time. Medical physicists and physicians are required to provide fast and reliable interpretations regarding delivered doses or any future prescriptions relating to treatment changes. Aim We, therefore, propose a calculation interface under the GNU license to be used for equivalent doses, biological doses, and normal tumor complication probability (Lyman model). Materials and methods The methodology used draws from several sources: the linear-quadratic-linear model of Astrahan, the repopulation effects of Dale, and the prediction of multi-fractionated treatments of Thames. Results and conclusions The results are obtained from an algorithm that minimizes an ad-hoc cost function, and then compared to an equivalent dose computed using standard calculators in seven French radiotherapy centers. PMID:24936319
NASA Astrophysics Data System (ADS)
Chapot, Melissa S.; Roberts, Helen M.; Lamb, Henry F.; Schäbitz, Frank; Asrat, Asfawossen; Trauth, Martin H.
2017-04-01
Optically stimulated luminescence (OSL) dating is a family of numerical chronometric techniques applied to quartz or feldspar mineral grains to assess the time since these grains were last exposed to sunlight (i.e. deposited), based on the amount of energy they absorbed from ambient radiation during burial. The maximum limit of any OSL dating technique is not defined by a fixed upper age limit, but instead by the maximum radiation dose the sample can accurately record before the OSL signal saturates. The challenge is to assess this upper limit of accurate age determination without necessitating comparison to independent age control. Laboratory saturation of OSL signals can be observed using a dose response curve (DRC) plotting OSL signal intensity against absorbed laboratory radiation dose. When a DRC is fitted with a single saturating exponential, one of the equation's parameters can be used to define a pragmatic upper limit beyond which uncertainties become large and asymmetric (Wintle and Murray, 2006). However, many sub-samples demonstrate DRCs that are best defined by double saturating exponential equations, which cannot be used to define this upper limit. To investigate the reliability of luminescence ages approaching saturation, Chapot et al. (2012) developed the Natural DRC concept, which uses expected ages derived from independent age control, combined with sample-specific measurements of ambient radioactivity, to calculate expected doses of absorbed radiation during burial. Natural OSL signal intensity is then plotted against these expected doses and compared to laboratory-generated DRCs. Using this approach, discrepancies between natural and laboratory DRCs have been observed for the same mineral material as natural OSL signal intensities saturate at absorbed radiation doses lower than the pragmatic upper limit defined by laboratory DRCs, leading to increasing age underestimation with depth without a metric for questioning the age reliability. The present study explores a means of defining the upper limit for reliable luminescence ages for sedimentary records without an established chronologic framework, using a long ( 280m; Cohen et al., 2016) lacustrine record from Chew Bahir, Ethiopia, drilled as part of the Hominin Sites and Paleolakes Drilling Project (HSPDP) of the International Continental Scientific Drilling Programme (ICDP) and CRC806 "Our way to Europe". Natural saturation of OSL signals is explored by plotting natural signal intensity against depth, creating a pseudo-Natural DRC that can be compared to laboratory DRCs. Unlike the homogenous deposits of the Chinese Loess Plateau where the Natural DRC concept was developed, the 280m composite core from Chew Bahir shows significant variation in lithology enabling investigation of the effects of sample to sample variability on Natural DRC construction, and facilitating comparison between signals from fine-quartz, fine-polymineral, and coarse-potassium feldspar grains. This work demonstrates how the concepts of Natural DRCs can be used to define the upper dating limit of sample suites without independent age control, providing valuable information for long sedimentary sequences such as the lacustrine deposits from Chew Bahir. Chapot M.S., et al. (2012), Radiation Measurements 47: 1045-1052. Cohen A, et al. (2016), Scientific Drilling 21: 1-16. Wintle, A.G., Murray, A.S. (2006) Radiation Measurements 41: 369-391.
Mims, Alice S; Mishra, Anjali; Orwick, Shelley; Blachly, James; Klisovic, Rebecca B; Garzon, Ramiro; Walker, Alison R; Devine, Steven M; Walsh, Katherine J; Vasu, Sumithira; Whitman, Susan; Marcucci, Guido; Jones, Daniel; Heerema, Nyla A; Lozanski, Gerard; Caligiuri, Michael A; Bloomfield, Clara D; Byrd, John C; Piekarz, Richard; Grever, Michael R; Blum, William
2018-06-01
KMT2A partial tandem duplication occurs in approximately 5-10% of patients with acute myeloid leukemia and is associated with adverse prognosis. KMT2A wild type is epigenetically silenced in KMT2A partial tandem duplication; re-expression can be induced with DNA methyltransferase and/or histone deacetylase inhibitors in vitro , sensitizing myeloid blasts to chemotherapy. We hypothesized that epigenetic silencing of KMT2A wildtype contributes to KMT2A partial tandem duplication-associated leukemogenesis and pharmacologic re-expression activates apoptotic mechanisms important for chemoresponse. We developed a regimen for this unique molecular subset, but due to relatively low frequency of KMT2A partial tandem duplication, this dose finding study was conducted in relapsed/refractory disease regardless of molecular subtype. Seventeen adults (< age 60) with relapsed/refractory acute myeloid leukemia were treated on study. Patients received decitabine 20 milligrams/meter 2 daily on days 1-10 and vorinostat 400 milligrams daily on days 5-10. Cytarabine was dose-escalated from 1.5 grams/meter 2 every 12 hours to 3 grams/meter 2 every 12 hours on days 12, 14 and 16. Two patients experienced dose limiting toxicities at dose level 1 due to prolonged myelosuppression. However, as both patients achieved complete remission after Day 42, the protocol was amended to adjust the definition of hematologic dose limiting toxicity. No further dose limiting toxicities were found. Six of 17 patients achieved complete remission including 2 of 4 patients with KMT2A partial tandem duplication. Combination therapy with decitabine, vorinostat and cytarabine was tolerated in younger relapsed/refractory acute myeloid leukemia and should be explored further focusing on the KMT2A partial tandem duplication subset. ( clinicaltrials.gov identifier 01130506 ). Copyright © 2018 Ferrata Storti Foundation.
Simon, Steven L.; Bouville, André; Kleinerman, Ruth
2009-01-01
Biodosimetry measurements can potentially be an important and integral part of the dosimetric methods used in long-term studies of health risk following radiation exposure. Such studies rely on accurate estimation of doses to the whole body or to specific organs of individuals in order to derive reliable estimates of cancer risk. However, dose estimates based on analytical dose reconstruction (i.e., models) or personnel monitoring measurements, e.g., film-badges, can have substantial uncertainty. Biodosimetry can potentially reduce uncertainty in health risk studies by corroboration of model-based dose estimates or by using them to assess bias in dose models. While biodosimetry has begun to play a more significant role in long-term health risk studies, its use is still generally limited in that context due to one or more factors including, inadequate limits of detection, large inter-individual variability of the signal measured, high per-sample cost, and invasiveness. Presently, the most suitable biodosimetry methods for epidemiologic studies are chromosome aberration frequencies from fluorescence in situ hybridization (FISH) of peripheral blood lymphocytes and electron paramagnetic resonance (EPR) measurements made on tooth enamel. Both types of measurements, however, are usually invasive and require difficult to obtain biological samples. Moreover, doses derived from these methods are not always directly relevant to the tissues of interest. To increase the value of biodosimetry to epidemiologic studies, a number of issues need to be considered including limits of detection, effects of inhomogenous exposure of the body, how to extrapolate from the tissue sampled to the tissues of interest, and how to adjust dosimetry models applied to large populations based on sparse biodosimetry measurements. The requirements of health risk studies suggest a set of characteristics that, if satisfied by new biodosimetry methods, would increase the overall usefulness of biodosimetry to determining radiation health risks. PMID:20065672
Asaduzzaman, Khandoker; Mannan, Farhana; Khandaker, Mayeen Uddin; Farook, Mohideen Salihu; Elkezza, Aeman; Amin, Yusoff Bin Mohd; Sharma, Sailesh; Abu Kassim, Hasan Bin
2015-01-01
The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg(-1), 50 Bq kg(-1) and 500 Bq kg(-1), respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg(-1), with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h(-1), and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y(-1). For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y(-1) but complies with the upper dose principle of 1 mSv y(-1).
Asaduzzaman, Khandoker; Mannan, Farhana; Khandaker, Mayeen Uddin; Farook, Mohideen Salihu; Elkezza, Aeman; Amin, Yusoff Bin Mohd; Sharma, Sailesh; Abu Kassim, Hasan Bin
2015-01-01
The concentrations of primordial radionuclides (226Ra, 232Th and 40K) in commonly used building materials (brick, cement and sand), the raw materials of cement and the by-products of coal-fired power plants (fly ash) collected from various manufacturers and suppliers in Bangladesh were determined via gamma-ray spectrometry using an HPGe detector. The results showed that the mean concentrations of 226Ra, 232Th and 40K in all studied samples slightly exceeded the typical world average values of 50 Bq kg−1, 50 Bq kg−1 and 500 Bq kg−1, respectively. The activity concentrations (especially 226Ra) of fly-ash-containing cement in this study were found to be higher than those of fly-ash-free cement. To evaluate the potential radiological risk to individuals associated with these building materials, various radiological hazard indicators were calculated. The radium equivalent activity values for all samples were found to be lower than the recommended limit for building materials of 370 Bq kg-1, with the exception of the fly ash. For most samples, the values of the alpha index and the radiological hazard (external and internal) indices were found to be within the safe limit of 1. The mean indoor absorbed dose rate was observed to be higher than the population-weighted world average of 84 nGy h–1, and the corresponding annual effective dose for most samples fell below the recommended upper dose limit of 1 mSv y–1. For all investigated materials, the values of the gamma index were found to be greater than 0.5 but less than 1, indicating that the gamma dose contribution from the studied building materials exceeds the exemption dose criterion of 0.3 mSv y-1 but complies with the upper dose principle of 1 mSv y−1. PMID:26473957
Escalation to High Dose Defibrotide in Patients with Hepatic Veno-Occlusive Disease
Triplett, Brandon M.; Kuttab, Hani I.; Kang, Guolian; Leung, Wing
2015-01-01
Hepatic veno-occlusive disease (VOD) is a serious complication of high-dose chemotherapy regimens, such as those utilized in hematopoietic cell transplantation recipients. Defibrotide is considered a safe and effective treatment when dosed at 25 mg/kg/day. However, patients who develop VOD still have increased mortality despite the use of defibrotide. Data are limited on the use of doses above 60 mg/kg/day for persistent VOD. In this prospective clinical trial, 34 patients received escalating doses of defibrotide. For patients with persistent VOD despite doses of 60 mg/kg/day, doses were increased to a maximum of 110 mg/kg/day. There was no observed increase in toxicity until doses rose beyond 100 mg/kg/day. Patients receiving doses between 10–100 mg/kg/day experienced an average of 3 bleeding episodes per 100 days of treatment, while those receiving doses >100 mg/kg/day experienced 13.2 bleeding episodes per 100 days (p=0.008). Moreover, dose reductions due to toxicity were needed at doses of 110 mg/kg/day more often than at lower doses. Defibrotide may be safely escalated to doses well above the current standard without an increase in bleeding risk. However, the efficacy of this dose escalation strategy remains unclear, as outcomes were similar to published cohorts of patients receiving standard doses of defibrotide for VOD. PMID:26278046
Inoue, Tatsuya; Widder, Joachim; van Dijk, Lisanne V; Takegawa, Hideki; Koizumi, Masahiko; Takashina, Masaaki; Usui, Keisuke; Kurokawa, Chie; Sugimoto, Satoru; Saito, Anneyuko I; Sasai, Keisuke; Van't Veld, Aart A; Langendijk, Johannes A; Korevaar, Erik W
2016-11-01
To investigate the impact of setup and range uncertainties, breathing motion, and interplay effects using scanning pencil beams in robustly optimized intensity modulated proton therapy (IMPT) for stage III non-small cell lung cancer (NSCLC). Three-field IMPT plans were created using a minimax robust optimization technique for 10 NSCLC patients. The plans accounted for 5- or 7-mm setup errors with ±3% range uncertainties. The robustness of the IMPT nominal plans was evaluated considering (1) isotropic 5-mm setup errors with ±3% range uncertainties; (2) breathing motion; (3) interplay effects; and (4) a combination of items 1 and 2. The plans were calculated using 4-dimensional and average intensity projection computed tomography images. The target coverage (TC, volume receiving 95% of prescribed dose) and homogeneity index (D2 - D98, where D2 and D98 are the least doses received by 2% and 98% of the volume) for the internal clinical target volume, and dose indexes for lung, esophagus, heart and spinal cord were compared with that of clinical volumetric modulated arc therapy plans. The TC and homogeneity index for all plans were within clinical limits when considering the breathing motion and interplay effects independently. The setup and range uncertainties had a larger effect when considering their combined effect. The TC decreased to <98% (clinical threshold) in 3 of 10 patients for robust 5-mm evaluations. However, the TC remained >98% for robust 7-mm evaluations for all patients. The organ at risk dose parameters did not significantly vary between the respective robust 5-mm and robust 7-mm evaluations for the 4 error types. Compared with the volumetric modulated arc therapy plans, the IMPT plans showed better target homogeneity and mean lung and heart dose parameters reduced by about 40% and 60%, respectively. In robustly optimized IMPT for stage III NSCLC, the setup and range uncertainties, breathing motion, and interplay effects have limited impact on target coverage, dose homogeneity, and organ-at-risk dose parameters. Copyright © 2016 Elsevier Inc. All rights reserved.
Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Frank G.; Phifer, Mark A.
2014-01-22
The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to anmore » intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vande Walle, Caroline; Ceelen, Wim P., E-mail: wim.ceelen@ugent.be; Boterberg, Tom
2012-03-01
Purpose: Neoadjuvant chemoradiation (CRT) is increasingly used in locally advanced esophageal cancer. Some studies have suggested that CRT results in increased surgical morbidity. We assessed the influence of CRT on anastomotic complications in a cohort of patients who underwent CRT followed by Ivor Lewis esophagectomy. Patients and Methods: Clinical and pathologic data were collected from all patients treated with neoadjuvant CRT (36 Gy combined with 5-fluorouracil and cisplatin) followed by Ivor Lewis esophagectomy. On the radiotherapy (RT) planning computed tomography scans, normal tissue volumes were drawn encompassing the proximal esophageal region and the gastric fundus. Within these volumes, dose-volume histogramsmore » were analyzed to generate the total dose to 50% of the volume (D{sub 50}). We studied the ability of the D{sub 50} to predict anastomotic complications (leakage, ischemia, or stenosis). Dose limits were derived using receiver operating characteristics analysis. Results: Fifty-four patients were available for analysis. RT resulted in either T or N downstaging in 51% of patients; complete pathologic response was achieved in 11%. In-hospital mortality was 5.4%, and major morbidity occurred in 36% of patients. Anastomotic complications (AC) developed in 7 patients (13%). No significant influence of the D{sub 50} on the proximal esophagus was noted on the anastomotic complication rate. The median D{sub 50} on the gastric fundus, however, was 33 Gy in patients with AC and 18 Gy in patients without AC (p = 0.024). Using receiver operating characteristics analysis, the D{sub 50} limit on the gastric fundus was defined as 29 Gy. Conclusions: In patients undergoing neoadjuvant CRT followed by Ivor Lewis esophagectomy, the incidence of AC is related to the RT dose on the gastric fundus but not to the dose received by the proximal esophagus. When planning preoperative RT, efforts should be made to limit the median dose on the gastric fundus to 29 Gy with a V{sub 30} below 40%.« less
Hartmann, Josefin; Distler, Florian A; Baumueller, Martin; Guni, Ewald; Pahernik, Sascha A; Wucherer, Michael
2018-06-14
Due to new radiobiological data, the ICRP recommends a dose limit of 20mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the EU council directive 2013/59/EURATOM requires a reduction of the annual dose limit from 150mSv to 20mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions during which the patient is in the lithotomy position. The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of two months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied: well-calibrated electronic personal dosimeter EPD Mk2 and self-calibrated TLD-100H (both Thermo Fisher Scientific, Waltham, USA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time (FT). The correlation between DAP and the apron dose of the urologist was in average 0.07µSv per 1µGym². The more experienced urologists yielded a mean DAP of 166µGym² for stage I and 415µGym² for stage II procedures. The interventionist was exposed with 10µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20µSv (mean DAP: 233µGym²). The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, approximately 1000 interventions can be performed until the annual eye lens dose limit is achieved.
DICOM organ dose does not accurately represent calculated dose in mammography
NASA Astrophysics Data System (ADS)
Suleiman, Moayyad E.; Brennan, Patrick C.; McEntee, Mark F.
2016-03-01
This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 centers were included in the study, mean calculated dose and mean organ dose (+/- standard deviation) were 1.47 (+/-0.66) and 1.38 (+/-0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal agents for differences between organ and calculated doses and to generate a correction factor for organ dose.
Adult Lead Exposure: Time for Change
Schwartz, Brian S.; Hu, Howard
2007-01-01
We have assembled this mini-monograph on adult lead exposure to provide guidance to clinicians and public health professionals, to summarize recent thinking on lead biomarkers and their relevance to epidemiologic research, and to review two key lead-related outcomes, namely, cardiovascular and cognitive. The lead standards of the U.S. Occupational Safety and Health Administration are woefully out of date given the growing evidence of the health effects of lead at levels of exposure previously thought to be safe, particularly newly recognized persistent or progressive effects of cumulative dose. The growing body of scientific evidence suggests that occupational standards should limit recent dose to prevent the acute effects of lead and separately limit cumulative dose to prevent the chronic effects of lead. We hope this mini-monograph will motivate renewed discussion of ways to protect lead-exposed adults in the United States and around the world. PMID:17431498
Radiation accident dosimetry on plastics by EPR spectrometry.
Trompier, F; Bassinet, C; Clairand, I
2010-02-01
In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallner, Christian; Rall, Anna-Maria; Thummerer, Severin
In order to assess the risk of radiological consequences of incidents and accidents in nuclear facilities it is important to contemplate their frequency of occurrence. It has to be shown that incidents and accidents occur sufficiently seldom according to their radiological consequences i. e. the occurrence frequency of radiological doses has to be limited. This is even demanded by the German radiation protection ordinance (StrlSchV), which says that in nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, the occurrence frequency of incidents and accidents shall be contemplated in order to prove the design of safetymore » measures and safety installations. Based on the ideas of the ICRP64, we developed a risk based assessment concept for nuclear facilities, which fulfils the requirements of the German regulations concerning dose limits in normal operation and design basis accidents. The general use of the concept is dedicated to nuclear facilities other than nuclear power plants (NPP) in operation and for decommissioning, where the regulation of risk assessment is less sophisticated. The concept specifies occurrence frequency limits for radiation exposure dose ranges, i. e. the occurrence frequency of incidents and accidents has to be limited according to their radiological effects. To apply this concept, scenarios of incidents and accidents are grouped in exposition classes according to their resulting potential effective dose to members of the general public. The occurrence frequencies of the incidents and accidents are summarized in each exposition class whereas the sum must not exceed the frequency limits mentioned above. In the following we introduce the application of this concept in the assessment of the potential radiological consequences of the decommissioning of a nuclear research reactor. We carried out this assessment for the licensing process of the decommissioning on behalf of German authorities. (authors)« less
Regal, Jean F.; Regal, Ronald R.; Meehan, Jessica L.; Mohrman, Margaret E.
2010-01-01
Background Limiting allergen exposure in the sensitization phase has been proposed as a means of primary prevention of asthma, but its effectiveness is debated. Hypothesis Primary prevention of asthma is more effective in limiting asthma symptoms in young guinea pigs compared with adults, whether males or females. Methods The following experimental groups were used: young/young, sensitized and challenged before sexual maturity; young/adult, sensitized young and challenged after sexual maturity; adult/adult, sensitized and challenged after sexual maturity. Males and females were sensitized intraperitoneally with varying doses of ovalbumin (OVA) and challenged intratracheally with a constant OVA dose. Cellular infiltration into lung and lavage fluid as well as airway hyperresponsiveness to intravenous methacholine was determined 24 h later. Results In unsensitized animals, density of resident inflammatory cells as well as baseline pulmonary function differed with age and sex. Maximum OVA-induced eosinophilia in females occurred at a lower sensitizing dose of OVA than in males, and the slopes of the dose-response relationship differed significantly between sexes. Young females had more pronounced increases in eosinophils compared with some adult treatment groups. The concentrations of OVA-specific antibodies were not directly related to differences in cellular infiltration. Airway hyperresponsiveness to methacholine challenge was observed in all treatment groups. Conclusion Young animals require major reductions in allergen exposure compared with adults to effectively limit airway inflammation in primary prevention. Heterogeneity of asthma symptoms seen with age and sex suggests that primary prevention by limiting allergen exposure or treatment with anti-inflammatory or bronchodilator drugs may be more effective strategies for specific age and gender populations. PMID:16931886
NASA Astrophysics Data System (ADS)
Panghal, Amanjeet; Kumar, Ajay; Kumar, Suneel; Singh, Joga; Sharma, Sumit; Singh, Parminder; Mehra, Rohit; Bajwa, B. S.
2017-06-01
Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25 µg L-1 with an average of 17.91 µg L-1 and 16.06 ± 0.97 to 57.35 ± 1.28 Bq L-1 with an average of 32.98 ± 2.45 Bq L-1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11 Bq L-1 (USEPA) and all the values are within the European Commission recommended limit of 100 Bq L-1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100 µSv y-1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.
Uptake and timeliness of rotavirus vaccination in Norway: The first year post-introduction.
Valcarcel Salamanca, Beatriz; Hagerup-Jenssen, Maria Elisabeth; Flem, Elmira
2016-09-07
To minimise vaccine-associated risk of intussusception following rotavirus vaccination, Norway adopted very strict age limits for initiating and completing the vaccine series at the time rotavirus vaccination was included in the national immunisation programme, October 2014. Although Norway has a high coverage for routine childhood vaccines, these stringent age limits could negatively affect rotavirus coverage. We documented the status and impact of rotavirus vaccination on other infant vaccines during the first year after its introduction. We used individual vaccination data from the national immunisation register to calculate coverage for rotavirus and other vaccines and examine adherence with the recommended schedules. We identified factors associated with completing the full rotavirus series by performing multiple logistic regression analyses. We also evaluated potential changes in uptake and timeliness of other routine vaccines after the introduction of rotavirus vaccine using the Kaplan-Meier method. The national coverage for rotavirus vaccine achieved a year after the introduction was 89% for one dose and 82% for two doses, respectively. Among fully rotavirus-vaccinated children, 98% received both doses within the upper age limit and 90% received both doses according to the recommended schedule. The child's age at the initiation of rotavirus series and being vaccinated with diphtheria, tetanus, pertussis, polio and Haemophilus influenzae type b (DTaP/IPV/Hib) and pneumococcal vaccines were the strongest predictors of completing the full rotavirus series. No major changes in uptake and timeliness of other paediatric vaccines were observed after introduction of rotavirus vaccine. Norway achieved a high national coverage and excellent adherence with the strict age limits for rotavirus vaccine administration during the first year of introduction, indicating robustness of the national immunisation programme. Rotavirus vaccination did not impact coverage or timeliness of other infant vaccines. Copyright © 2016. Published by Elsevier Ltd.
Low-dose intradermal and intramuscular vaccination against hepatitis B.
Bryan, J P; Sjogren, M H; Perine, P L; Legters, L J
1992-03-01
Hepatitis B and its sequelae are global problems preventable by immunization. Expense limits the use of hepatitis B vaccines, but low-dose intradermal immunization has been evaluated as a cost-saving strategy in numerous studies. With few exceptions, low-dose intradermal plasma-derived vaccines have elicited protective levels of antibody in 82%-100% of young healthy adults--a proportion similar to that noted with full-dose regimens; peak levels of antibody to hepatitis B surface antigen (HBsAg) are lower with reduced doses, however. Although children respond well to low-dose intradermal immunization, this procedure is technically difficult in neonates and should not be used for those born to HBsAg-positive mothers. For persons at high risk, antibody to HBsAg must be assessed after immunization to determine the need for a booster dose. A fourth dose 1-2 years after the initial series substantially increases antibody concentrations. In low intradermal doses, recombinant vaccine elicits lower rates of seroconversion than plasma-derived vaccine. However, low intramuscular doses of recombinant vaccine give favorable results. In short, low-dose intradermal or intramuscular immunization offers protection against hepatitis B at significant savings and may be useful for mass immunization of populations at high risk.
NASA Astrophysics Data System (ADS)
Morén, B.; Larsson, T.; Carlsson Tedgren, Å.
2018-03-01
High dose-rate brachytherapy is a method for cancer treatment where the radiation source is placed within the body, inside or close to a tumour. For dose planning, mathematical optimization techniques are being used in practice and the most common approach is to use a linear model which penalizes deviations from specified dose limits for the tumour and for nearby organs. This linear penalty model is easy to solve, but its weakness lies in the poor correlation of its objective value and the dose-volume objectives that are used clinically to evaluate dose distributions. Furthermore, the model contains parameters that have no clear clinical interpretation. Another approach for dose planning is to solve mixed-integer optimization models with explicit dose-volume constraints which include parameters that directly correspond to dose-volume objectives, and which are therefore tangible. The two mentioned models take the overall goals for dose planning into account in fundamentally different ways. We show that there is, however, a mathematical relationship between them by deriving a linear penalty model from a dose-volume model. This relationship has not been established before and improves the understanding of the linear penalty model. In particular, the parameters of the linear penalty model can be interpreted as dual variables in the dose-volume model.
NASA Astrophysics Data System (ADS)
González, S. J.; Pozzi, E. C. C.; Monti Hughes, A.; Provenzano, L.; Koivunoro, H.; Carando, D. G.; Thorp, S. I.; Casal, M. R.; Bortolussi, S.; Trivillin, V. A.; Garabalino, M. A.; Curotto, P.; Heber, E. M.; Santa Cruz, G. A.; Kankaanranta, L.; Joensuu, H.; Schwint, A. E.
2017-10-01
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson’s correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
Unwrapping 3D complex hollow organs for spatial dose surface analysis.
Witztum, A; George, B; Warren, S; Partridge, M; Hawkins, M A
2016-11-01
Toxicity dose-response models describe the correlation between dose delivered to an organ and a given toxic endpoint. Duodenal toxicity is a dose limiting factor in the treatment of pancreatic cancer with radiation but the relationship between dose and toxicity in the duodenum is not well understood. While there have been limited studies into duodenal toxicity through investigations of the volume of the organ receiving dose over a specific threshold, both dose-volume and dose-surface histograms lack spatial information about the dose distribution, which may be important in determining normal tissue response. Due to the complex geometry of the duodenum, previous methods for unwrapping tubular organs for spatial modeling of toxicity are insufficient. A geometrically robust method for producing 2D dose surface maps (DSMs), specifically for the duodenum, has been developed and tested in order to characterize the spatial dose distribution. The organ contour is defined using Delaunay triangulation. The user selects a start and end coordinate in the structure and a path is found by regulating both length and curvature. This path is discretized and rays are cast from each point on the plane normal to the vector between the previous and the next point on the path and the dose at the closest perimeter point recorded. These angular perimeter slices are "unwrapped" from the edge distal to the pancreas to ensure the high dose region (proximal to the tumor) falls in the centre of the dose map. Gamma analysis is used to quantify the robustness of this method and the effect of overlapping planes. This method was used to extract DSMs for 15 duodena, with one esophagus case to illustrate the application to simpler geometries. Visual comparison indicates that a 30 × 30 map provides sufficient resolution to view gross spatial features of interest. A lookup table is created to store the area (cm 2 ) represented by each pixel in the DSMs in order to allow spatial descriptors in absolute size. The method described in this paper is robust, requires minimal human interaction, has been shown to be generalizable to simpler geometries, and uses readily available commercial software. The difference seen in DSMs due to overlapping planes is large and justifies the need for a solution that removes such planes. This is the first time 2D dose surface maps have been produced for the duodenum and provide spatial dose distribution information which can be explored to create models that may improve toxicity prediction in treatments for locally advanced pancreatic cancer.
González, S J; Pozzi, E C C; Monti Hughes, A; Provenzano, L; Koivunoro, H; Carando, D G; Thorp, S I; Casal, M R; Bortolussi, S; Trivillin, V A; Garabalino, M A; Curotto, P; Heber, E M; Santa Cruz, G A; Kankaanranta, L; Joensuu, H; Schwint, A E
2017-10-03
Boron neutron capture therapy (BNCT) is a treatment modality that combines different radiation qualities. Since the severity of biological damage following irradiation depends on the radiation type, a quantity different from absorbed dose is required to explain the effects observed in the clinical BNCT in terms of outcome compared with conventional photon radiation therapy. A new approach for calculating photon iso-effective doses in BNCT was introduced previously. The present work extends this model to include information from dose-response assessments in animal models and humans. Parameters of the model were determined for tumour and precancerous tissue using dose-response curves obtained from BNCT and photon studies performed in the hamster cheek pouch in vivo models of oral cancer and/or pre-cancer, and from head and neck cancer radiotherapy data with photons. To this end, suitable expressions of the dose-limiting Normal Tissue Complication and Tumour Control Probabilities for the reference radiation and for the mixed field BNCT radiation were developed. Pearson's correlation coefficients and p-values showed that TCP and NTCP models agreed with experimental data (with r > 0.87 and p-values >0.57). The photon iso-effective dose model was applied retrospectively to evaluate the dosimetry in tumours and mucosa for head and neck cancer patients treated with BNCT in Finland. Photon iso-effective doses in tumour were lower than those obtained with the standard RBE-weighted model (between 10% to 45%). The results also suggested that the probabilities of tumour control derived from photon iso-effective doses are more adequate to explain the clinical responses than those obtained with the RBE-weighted values. The dosimetry in the mucosa revealed that the photon iso-effective doses were about 30% to 50% higher than the corresponding RBE-weighted values. While the RBE-weighted doses are unable to predict mucosa toxicity, predictions based on the proposed model are compatible with the observed clinical outcome. The extension of the photon iso-effective dose model has allowed, for the first time, the determination of the photon iso-effective dose for unacceptable complications in the dose-limiting normal tissue. Finally, the formalism developed in this work to compute photon-equivalent doses can be applied to other therapies that combine mixed radiation fields, such as hadron therapy.
Radiation dose to physicians’ eye lens during interventional radiology
NASA Astrophysics Data System (ADS)
Bahruddin, N. A.; Hashim, S.; Karim, M. K. A.; Sabarudin, A.; Ang, W. C.; Salehhon, N.; Bakar, K. A.
2016-03-01
The demand of interventional radiology has increased, leading to significant risk of radiation where eye lens dose assessment becomes a major concern. In this study, we investigate physicians' eye lens doses during interventional procedures. Measurement were made using TLD-100 (LiF: Mg, Ti) dosimeters and was recorded in equivalent dose at a depth of 0.07 mm, Hp(0.07). Annual Hp(0.07) and annual effective dose were estimated using workload estimation for a year and Von Boetticher algorithm. Our results showed the mean Hp(0.07) dose of 0.33 mSv and 0.20 mSv for left and right eye lens respectively. The highest estimated annual eye lens dose was 29.33 mSv per year, recorded on left eye lens during fistulogram procedure. Five physicians had exceeded 20 mSv dose limit as recommended by international commission of radiological protection (ICRP). It is suggested that frequent training and education on occupational radiation exposure are necessary to increase knowledge and awareness of the physicians’ thus reducing dose during the interventional procedure.
Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong
2018-03-15
ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.
Medical and occupational dose reduction in pediatric barium meal procedures
NASA Astrophysics Data System (ADS)
Filipov, D.; Schelin, H. R.; Denyak, V.; Paschuk, S. A.; Ledesma, J. A.; Legnani, A.; Bunick, A. P.; Sauzen, J.; Yagui, A.; Vosiak, P.
2017-11-01
Doses received in pediatric Barium Meal procedure can be rather high. It is possible to reduce dose values following the recommendations of the European Communities (EC) and the International Commission on Radiological Protection (ICRP). In the present work, the modifications of radiographic techniques made in a Brazilian hospital according to the EC and the ICRP recommendations and their influence on medical and occupational exposure are reported. The procedures of 49 patients before and 44 after the optimization were studied and air kerma-area product (PK,A) values and the effective doses were evaluated. The occupational equivalent doses were measured next to the eyes, under the thyroid shield and on each hand of both professionals who remained inside the examination room. The implemented modifications reduced by 70% and 60% the PK,A and the patient effective dose, respectively. The obtained dose values are lower than approximately 75% of the results from similar studies. The occupational annual equivalent doses for all studied organs became lower than the limits set by the ICRP. The equivalent doses in one examination were on average below than 75% of similar studies.
10 CFR 835.208 - Limits for members of the public entering a controlled area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Limits for members of the public entering a controlled area. 835.208 Section 835.208 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards... area. The total effective dose limit for members of the public exposed to radiation and/or radioactive...
10 CFR 835.208 - Limits for members of the public entering a controlled area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Limits for members of the public entering a controlled area. 835.208 Section 835.208 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards... area. The total effective dose limit for members of the public exposed to radiation and/or radioactive...
10 CFR 835.208 - Limits for members of the public entering a controlled area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Limits for members of the public entering a controlled area. 835.208 Section 835.208 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards... area. The total effective dose limit for members of the public exposed to radiation and/or radioactive...
10 CFR 835.208 - Limits for members of the public entering a controlled area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Limits for members of the public entering a controlled area. 835.208 Section 835.208 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Standards... area. The total effective dose limit for members of the public exposed to radiation and/or radioactive...
Raghubar, Kimberly P; Lamba, Michael; Cecil, Kim M; Yeates, Keith Owen; Mahone, E Mark; Limke, Christina; Grosshans, David; Beckwith, Travis J; Ris, M Douglas
2018-06-01
Advances in radiation treatment (RT), specifically volumetric planning with detailed dose and volumetric data for specific brain structures, have provided new opportunities to study neurobehavioral outcomes of RT in children treated for brain tumor. The present study examined the relationship between biophysical and physical dose metrics and neurocognitive ability, namely learning and memory, 2 years post-RT in pediatric brain tumor patients. The sample consisted of 26 pediatric patients with brain tumor, 14 of whom completed neuropsychological evaluations on average 24 months post-RT. Prescribed dose and dose-volume metrics for specific brain regions were calculated including physical metrics (i.e., mean dose and maximum dose) and biophysical metrics (i.e., integral biological effective dose and generalized equivalent uniform dose). We examined the associations between dose-volume metrics (whole brain, right and left hippocampus), and performance on measures of learning and memory (Children's Memory Scale). Biophysical dose metrics were highly correlated with the physical metric of mean dose but not with prescribed dose. Biophysical metrics and mean dose, but not prescribed dose, correlated with measures of learning and memory. These preliminary findings call into question the value of prescribed dose for characterizing treatment intensity; they also suggest that biophysical dose has only a limited advantage compared to physical dose when calculated for specific regions of the brain. We discuss the implications of the findings for evaluating and understanding the relation between RT and neurocognitive functioning. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Shen, Sui; Ove, Roger
We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less
Brudecki, K; Kowalska, A; Zagrodzki, P; Szczodry, A; Mroz, T; Janowski, P; Mietelski, J W
2017-03-01
This paper presents results of 131 I thyroid activity measurements in 30 members of the nuclear medicine personnel of the Department of Endocrinology and Nuclear Medicine Holy Cross Cancer Centre in Kielce, Poland. A whole-body spectrometer equipped with two semiconductor gamma radiation detectors served as the basic research instrument. In ten out of 30 examined staff members, the determined 131 I activity was found to be above the detection limit (DL = 5 Bq of 131 I in the thyroid). The measured activities ranged from (5 ± 2) Bq to (217 ± 56) Bq. The highest activities in thyroids were detected for technical and cleaning personnel, whereas the lowest values were recorded for medical doctors. Having measured the activities, an attempt has been made to estimate the corresponding annual effective doses, which were found to range from 0.02 to 0.8 mSv. The highest annual equivalent doses have been found for thyroid, ranging from 0.4 to 15.4 mSv, detected for a cleaner and a technician, respectively. The maximum estimated effective dose corresponds to 32% of the annual background dose in Poland, and to circa 4% of the annual limit for the effective dose due to occupational exposure of 20 mSv per year, which is in compliance with the value recommended by the International Commission on Radiological Protection.
Scanlan, Aaron T; Fox, Jordan L; Borges, Nattai R; Dascombe, Ben J; Dalbo, Vincent J
2017-02-01
The influence of various factors on training-load (TL) responses in basketball has received limited attention. This study aimed to examine the temporal changes and influence of cumulative training dose on TL responses and interrelationships during basketball activity. Ten state-level Australian male junior basketball players completed 4 × 10-min standardized bouts of simulated basketball activity using a circuit-based protocol. Internal TL was quantified using the session rating of perceived exertion (sRPE), summated heart-rate zones (SHRZ), Banister training impulse (TRIMP), and Lucia TRIMP models. External TL was assessed via measurement of mean sprint and circuit speeds. Temporal TL comparisons were performed between 10-min bouts, while Pearson correlation analyses were conducted across cumulative training doses (0-10, 0-20, 0-30, and 0-40 min). sRPE TL increased (P < .05) after the first 10-min bout of basketball activity. sRPE TL was only significantly related to Lucia TRIMP (r = .66-.69; P < .05) across 0-10 and 0-20 min. Similarly, mean sprint and circuit speed were significantly correlated across 0-20 min (r = .67; P < .05). In contrast, SHRZ and Banister TRIMP were significantly related across all training doses (r = .84-.89; P < .05). Limited convergence exists between common TL approaches across basketball training doses lasting beyond 20 min. Thus, the interchangeability of commonly used internal and external TL approaches appears dose-dependent during basketball activity, with various psychophysiological mediators likely underpinning temporal changes.
Limits of fetal thyroid risk from radioiodine exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, R.D.; Tripp, D.A.; Kerber, R.A.
1996-04-01
An incident in which a young women became pregnant soon after being treated with 444 MBq {sup 131}I for Graves disease prompted us to search local records for the occurrence of thyroid abnormalities among people exposed in utero to fallout radioiodine. The data base from the Utah Fallout Study indicated that there had been 480 cohort subjects for whom dose to thyroid from fallout radioiodine had been calculated and who could have received any thyroid dose before birth (2473 subjects had been re-examined in 1985-86 of the 4818 examined in 1965-70). Of these 480 subjects in this category, 403 ofmore » them could be located in the 1980`s and were examined for abnormalities. Although nodules, thyroiditis, hypothyroidism and goiter were seen among the 375 persons with in utero thyroid doses from fallout radioiodine below 0.42 Gy, no thyroid abnormalities of any kind occurred in the 4 persons with in utero thyroid doses of 0.5 to 2.6 Gy. In addition, no neoplasia was found in any of the 403 subjects examined about 3 decades after in utero fallout exposure. These limited data do not indicate that the fetal thyroid is more sensitive than the postnatal thyroid by more than about a factor of about 4 when thyroid dose is considered and by not much more than unity when the comparison is based on dose equivalent (x-ray vs. radioiodine). 21 refs., 1 tab.« less
Low-molecular-weight heparin use in the obese, elderly, and in renal insufficiency.
Clark, N P
2008-01-01
Superior bioavailability and simple weight-based dosing have made low-molecular-weight heparins (LMWH) the preferred agents for treatment and prevention of venous thromboembolism (VTE) for most indications. Despite improved pharmacokinetics, there remain populations where appropriate LMWH dose intensity and frequency are open to question. Obese patients have a lower proportion of lean body mass as a percentage of total body weight. As a result, LMWH dosing based on total body weight could cause supra-therapeutic anticoagulation. Elderly patients also have less lean body mass in addition to a higher incidence of age-related renal disease and increased risk of bleeding. Renal insufficiency presents a risk of LMWH accumulation as well as increased risk of bleeding. Among LMWH products, only dalteparin labeling recommends a maximum dose. Prospective data call into question the validity of this dose limitation. Additionally, because obese patients are already at higher risk of VTE recurrence, they may be particularly sensitive to subtherapeutic anticoagulation. Prospective data evaluating LMWH use in elderly patients have been limited to in-patient treatment. Few recommendations can be made in this population other than close monitoring. Renal insufficiency is a risk for bleeding during LMWH use. Available evidence supports the potential for enoxaparin accumulation, but not tinzaparin. Enoxaparin dose adjustment, either empiric or based on anti-Xa monitoring, has insufficient data to support widespread implementation. Unfractionated heparin is not reliant on renal elimination and is a sensible option for VTE treatment in patients with a creatinine clearance<30 ml/min.
Erickson, J Alan; Grenache, David G
2016-01-15
Routine testing for chromogranin A (CgA) using an established commercial ELISA revealed an apparent high-dose hook effect in approximately 15% of specimens. Investigations found the same effect in two additional ELISAs. We hypothesized that a CgA derived peptide(s) at high concentrations was responsible but experiments were inconclusive. Here we describe the analytical performance characteristics of the Chromoa™ CgA ELISA that did not display the apparent high-dose hook effect. Performance characteristics of the Chromoa ELISA were assessed. The reference interval was established utilizing healthy volunteers. Specimens producing the apparent high-dose hook effect in other assays were evaluated using the Chromoa ELISA. The limit of detection was 8ng/ml. Linearity was acceptable (slope=1.04, intercept=18.1 and r(2)=0.997). CVs were ≤4.6 and ≤9.3% for repeatability and within-laboratory imprecision, respectively. CgA was stable at ambient and refrigerated temperatures for a minimum of two and 14days, respectively. An upper reference interval limit of 95ng/ml was established. Specimens demonstrating the apparent high-dose hook effect in other ELISAs did not exhibit the phenomenon using the Chromoa ELISA. The Chromoa ELISA demonstrates acceptable performance for quantifying serum CgA. The apparent high-dose hook effect exhibited in other ELISAs was absent using the Chromoa assay. Copyright © 2015 Elsevier B.V. All rights reserved.
Ishmael, D Richard; Chen, Wei R; Hamilton, Steven A; Liu, Hong; Nordquist, Robert E
2003-01-01
Our previous studies have demonstrated the existence of synergism in a combination therapy using mitoguazone and gemcitabine when the mitoguazone is administered 24 hours before gemcitabine. Based on the cell culture and animal experimental results, a phase I clinical trial was performed in order to determine the toxicity of the combined treatment. Mitoguazone and gemcitabine were administered sequentially: mitoguazone on day 1 and gemcitabine on day 2. This cycle was repeated every 2 weeks. The dosages of these two drugs were varied between patients. Ten patients were enrolled in the study. Six patients began treatment at dose level 1 (mitoguazone 500 mg/m2, gemcitabine 1500 mg/m2), three at dose level 2 (mitoguazone 500 mg/m2, gemcitabine 2000 mg/m2), and one at dose level 3 (mitoguazone 600 mg/m2, gemcitabine 2000 mg/m2). Dose-limiting toxicity (DLT) was only observed in two patients treated at dose level 1 and one patient treated at dose level 3, while all the other patients only experienced nonhematologic toxicity, such as asthenia and mucositis. Two melanoma patients showed responses (one partial and one minor) to the treatment. One lymphoma patient also showed a brief partial response. This phase I trial indicated that the combination of mitoguazone and gemcitabine had limited but noticeable activity for treatment of cancer patients. Further study on the toxicity and on the effect of the scheduled mitoguazone-gemcitabine combination is needed.
Assessment of natural radionuclides and its radiological hazards from tiles made in Nigeria
NASA Astrophysics Data System (ADS)
Joel, E. S.; Maxwell, O.; Adewoyin, O. O.; Ehi-Eromosele, C. O.; Embong, Z.; Saeed, M. A.
2018-03-01
Activity concentration of 10 different brands of tiles made in Nigeria were analyzed using High purity Germanium gamma detector and its hazard indices such as absorbed dose rate, radium equivalent activity, external Hazard Index (Hex), internal Hazard Index (Hin), Annual Effective Dose (mSv/y), Gamma activity Index (Iγ) and Alpha Index (Iα) were determined. The result showed that the average activity concentrations of radionuclides (226Ra, 232Th and 40K) content are within the recommended limit. The average radium equivalent is within the recommended limit of 370 Bq/kg. The result obtained further showed that the mean values for the absorbed dose rate (D), external and internal hazard index, the annual effective dose (AEDR) equivalent, gamma activity index and Alpha Index were: 169.22 nGyh-1, 0.95 and 1.14, 1.59 mSv/y, 1.00 Sv yr-1 and 0.34 respectively. The result established that radiological hazards such as absorbed dose rate, internal hazard, annual effective dose rate, gamma activity index and Alpha Index for some samples are found to be slightly close or above international recommended values. The result for the present study was compared with tiles sample from others countries, it was observed that the concentration of tiles made in Nigeria and other countries are closer, however recommends proper radiation monitoring for some tiles made in Nigeria before usage due to the long term health effect.
Creaven, P J; Raghavan, D; Pendyala, L; Loewen, G; Kindler, H L; Berghorn, E J
1997-08-01
The combination of paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) given by 3-hour infusion followed by carboplatin infused over 30 minutes has been evaluated in a series of phase I studies and is currently being explored in a phase II study in patients with limited- and extensive-stage small cell lung cancer. Pharmacokinetic measurements were performed at all dose levels in the phase I studies, in which the use of granulocyte colony-stimulating factor in previously treated patients enabled more than twice the dose of paclitaxel to be given with low to moderate doses of carboplatin (dosed to a target area under the concentration-time curve of 4.0 mg x min x mL[-1]). Treatment-naive patients tolerated high paclitaxel doses (270 mg/m2) with carboplatin (dosed to a target area under the curve of 4.5 mg x min x mL[-1]) without granulocyte colony-stimulating factor support. Twenty-three patients (including previously treated and untreated) with non-small cell lung cancer were entered at a variety of paclitaxel doses in the phase I studies. At 100 to 205 mg/m2 paclitaxel, none of nine treated patients responded; at 230 to 290 mg/m2, four (29%) of 14 responded. In the phase II study of paclitaxel 250 mg/m2 in previously untreated patients with small cell lung cancer, two of five evaluable patients with extensive-stage disease have shown a partial response. In a preliminary analysis of the pharmacodynamics of paclitaxel in relation to neurotoxicity (dose limiting in two of three phase I studies), neurotoxicity correlated with the total dose of paclitaxel, the area under the curve, and the peak paclitaxel concentration, but not with the length of time plasma paclitaxel levels remained above 0.05 micromol/L. These correlations were not strong, however, and analysis of these data is ongoing.
Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.
Electronic compensation technique to deliver a total body dose
NASA Astrophysics Data System (ADS)
Lakeman, Tara E.
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth
2008-08-01
Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissuemore » dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.« less
Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.
2014-01-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; Mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA- activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32%–87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906
Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.
Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A
1988-02-01
A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to the limitations of the theoretical analysis.
Yannovits, N; Zintzaras, E; Pouli, A; Koukoulis, G; Lyberi, S; Savari, E; Potamianos, S; Triposkiadis, F; Stefanidis, I; Zartaloudis, E; Benakis, A
2006-01-01
Probably for genetic reasons a substantial part of the Greek population requires Levothyroxine treatment. Since commercially available Levothyroxine was first marketed, the manufacture and storage of the drug in tablet form has been complicated and difficult; and as cases of therapeutic failure have frequently been reported following treatment with this medicinal agent, quality control is an essential factor. Due to the unreliability of Levothyroxine-based commercial products, in the present study we decided to follow the Food and Drug Administration (FDA) guidelines*, and use a Levothyroxine solution as reference product. The bioavailability of the Levothyroxine sodium tablet formulation THYROHORMONE/Ni-The Ltd (0.2 mg/tab) and that of a reference oral solution (0.3 mg/100 ml) under fasting conditions were compared in an open, randomized, single-dose two-way crossover study. Twenty four healthy Caucasian volunteers (M/F=15/9, mean age=32.9+/-7.4yr) participated in the study. Bioavailability was assessed by pharmacokinetic parameters such as the area under plasma concentration-time curve from time zero up to the measurable last time point (AUC(last)) and the maximum plasma concentration (Cmax). Heparinized venous blood samples were collected pre-dose and up to a 48-hour period post-dose. Levothyroxine sodium in plasma samples was assayed by a validated electrochemiluninescent immunoassay technique. Statistical analysis showed that the post-dose thyrotropin-stimulating hormone (TSH) levels decreased significantly (p<0.05). Regarding Levothyroxine (T4), the point estimate of the test formulation to the reference formulation ratios (T/R) for AUC(last) and Cmax was 0.92 with 90% confidence limits (0.90, 0.94) and 0.93 with 90% confidence limits (0.91, 0.94), respectively. Regarding triiodo-L-thyronine (T3), the point estimate for the T/R ratios of AUC(last) and Cmax was 0.92 with 90% confidence limits (0.90, 0.95) and 0.94 with 90% confidence limits (0.92, 0.95), respectively. The 90% confidence limits for the pharmacokinetic parameters AUC(last) and Cmax lie within the acceptance limits for bioequivalence (0.80, 1.25), for both T3 and T4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S. L.; Yee, B. S.; Kaufman, R. A.
Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.« less
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the mating period and, approximately, two weeks post-mating). In view of the limited pre-mating dosing...) Selection of animal species. This test standard is designed for use with the rat. If other species are used... three test groups and a control group should be used. Dose levels may be based on information from acute...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Jeffrey Y.C., E-mail: jwong@coh.org; Forman, Stephen; Somlo, George
2013-01-01
Purpose: We have demonstrated that toxicities are acceptable with total marrow irradiation (TMI) at 16 Gy without chemotherapy or TMI at 12 Gy and the reduced intensity regimen of fludarabine/melphalan in patients undergoing hematopoietic cell transplantation (HCT). This article reports results of a study of TMI combined with higher intensity chemotherapy regimens in 2 phase I trials in patients with advanced acute myelogenous leukemia or acute lymphoblastic leukemia (AML/ALL) who would do poorly on standard intent-to-cure HCT regimens. Methods and Materials: Trial 1 consisted of TMI on Days -10 to -6, etoposide (VP16) on Day -5 (60 mg/kg), and cyclophosphamidemore » (CY) on Day -3 (100 mg/kg). TMI dose was 12 (n=3 patients), 13.5 (n=3 patients), and 15 (n=6 patients) Gy at 1.5 Gy twice daily. Trial 2 consisted of busulfan (BU) on Days -12 to -8 (800 {mu}M min), TMI on Days -8 to -4, and VP16 on Day -3 (30 mg/kg). TMI dose was 12 (n=18) and 13.5 (n=2) Gy at 1.5 Gy twice daily. Results: Trial 1 had 12 patients with a median age of 33 years. Six patients had induction failures (IF), and 6 had first relapses (1RL), 9 with leukemia blast involvement of bone marrow ranging from 10%-98%, 5 with circulating blasts (24%-85%), and 2 with chloromas. No dose-limiting toxicities were observed. Eleven patients achieved complete remission at Day 30. With a median follow-up of 14.75 months, 5 patients remained in complete remission from 13.5-37.7 months. Trial 2 had 20 patients with a median age of 41 years. Thirteen patients had IF, and 5 had 1RL, 2 in second relapse, 19 with marrow blasts (3%-100%) and 13 with peripheral blasts (6%-63%). Grade 4 dose-limiting toxicities were seen at 13.5 Gy (stomatitis and hepatotoxicity). Stomatitis was the most frequent toxicity in both trials. Conclusions: TMI dose escalation to 15 Gy is possible when combined with CY/VP16 and is associated with acceptable toxicities and encouraging outcomes. TMI dose escalation is not possible with BU/VP16 due to dose-limiting toxicities. Future efforts will focus on whether further dose escalation with CY/VP16 is safe, with the goal of improving disease control in this high-risk population.« less
Martin, David E; Blum, Robert; Wilton, John; Doto, Judy; Galbraith, Hal; Burgess, Gina L; Smith, Philip C; Ballow, Charles
2007-09-01
Bevirimat (BVM; formerly known as PA-457) is a novel inhibitor of human immunodeficiency virus (HIV) maturation that is being developed for the treatment of HIV infection. The pharmacokinetics of this agent in healthy male volunteers were studied in a randomized, double-blind study in which the participants received single oral doses of placebo (n = 8) or escalating doses of BVM at 25, 50, 100, or 250 mg (n = 6 per dose); escalation was performed only after the pharmacokinetics and safety of the preceding dose had been evaluated. Plasma was collected over 480 h after dosing and urine was collected over 48 h after dosing for determination of the values of pharmacokinetic parameters. BVM was well absorbed after oral administration, with peak plasma concentrations being achieved 1 to 3 h after dosing. The half-life was 60 to 80 h. The exposure assessed by determination of the peak concentration and the area under the concentration-time curve was dose proportional. Single oral doses of BVM were well tolerated: there were no dose-limiting toxicities, and no serious adverse events were reported. These findings suggest that that BVM offers a favorable pharmacokinetic profile, with predictable pharmacokinetics following the oral administration of single doses. The long half-life of BVM may facilitate once-daily dosing.
Radiation exposure in interventional radiology
NASA Astrophysics Data System (ADS)
Pinto, N. G. V.; Braz, D.; Vallim, M. A.; Filho, L. G. P.; Azevedo, F. S.; Barroso, R. C.; Lopes, R. T.
2007-09-01
The aim of this study is to evaluate dose values in patients and staff involved in some interventional radiology procedures. Doses have been measured using thermoluminescent dosemeters for single procedures (such as renal and cerebral arteriography, transjungular intrahepatic portasystemic shunt (TIPS) and chemoembolization). The magnitude of doses through the hands of interventional radiologists has been studied. Dose levels were evaluated in three points for patients (eye, thyroid and gonads). The dose-area product (DAP) was also investigated using a Diamentor (PTW-M2). The dose in extremities was estimated for a professional who generally performed one TIPS, two chemoembolizations, two cerebral arteriographies and two renal arteriographies in a week. The estimated annual radiation dose was converted to effective dose as suggested by the 453-MS/Brazil norm The annual dose values were 137.25 mSv for doctors, 40.27 mSv for nurses and 51.95 mSv for auxiliary doctors, and all these annual dose values are below the limit established. The maximum values of the dose obtained for patients were 6.91, 10.92 and 15.34 mGy close to eye, thyroid and gonads, respectively. The DAP values were evaluated for patients in the same interventional radiology procedures. The dose and DAP values obtained are in agreement with values encountered in the literature.
Radiation exposure and risk assessment for critical female body organs
NASA Technical Reports Server (NTRS)
Atwell, William; Weyland, Mark D.; Hardy, Alva C.
1991-01-01
Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.