Science.gov

Sample records for dose lung ct

  1. Screening for lung cancer with low-dose CT.

    PubMed

    Coche, E

    2008-01-01

    Lung cancer represents the leading cause of cancer-related mortality in the world. In the past, many attempts were made to detect the disease at an early stage and subsequently reduce its mortality. Chest X-ray was abandoned for this purpose. For several years low-dose computed tomography has been introduced as a potential tool for early screening in a high-risk population. As demonstrated in several papers, the task is not easy and researchers are faced with many difficulties. This paper reviews mainly the role of low-dose CT for early cancer screening. Results of past and current trials, controversies related to the high rate of lung nodules, cost-effectiveness, and delivered radiation dose to the patient are presented. Finally some limitations of low dose CT for lung cancer detection are explained.

  2. Lung Cancer Screening with Low Dose CT

    PubMed Central

    Caroline, Chiles

    2014-01-01

    SUMMARY The announcement of the results of the NLST, showing a 20% reduction in lung-cancer specific mortality with LDCT screening in a high risk population, marked a turning point in lung cancer screening. This was the first time that a randomized controlled trial had shown a mortality reduction with an imaging modality aimed at early detection of lung cancer. Current guidelines endorse LDCT screening for smokers and former smokers ages 55 to 74, with at least a 30 pack year smoking history. Adherence to published algorithms for nodule follow-up is strongly encouraged. Future directions for screening research include risk stratification for selection of the screening population, and improvements in the diagnostic follow-up for indeterminate pulmonary nodules. As with screening for other malignancies, screening for lung cancer with LDCT has revealed that there are indolent lung cancers which may not be fatal. More research is necessary if we are to maximize the risk-benefit ratio in lung cancer screening. PMID:24267709

  3. Ultralow-radiation-dose chest CT: accuracy for lung densitometry and emphysema detection.

    PubMed

    Wang, Rui; Sui, Xin; Schoepf, U Joseph; Song, Wei; Xue, Huadan; Jin, Zhengyu; Schmidt, Bernhard; Flohr, Thomas G; Canstein, Christian; Spearman, James V; Chen, Jiuhong; Meinel, Felix G

    2015-04-01

    The purpose of this study was to determine whether ultralow-radiation-dose chest CT can be used for quantification of lung density and for emphysema detection in participants undergoing lung cancer screening. Fifty-two patients were prospectively enrolled and underwent scanning twice with low-dose CT (reference parameters, 120 kV, 50 effective mAs) and ultralow-dose CT (reference parameters, 80 kV, 4-5 effective mAs). Images were reconstructed by filtered back projection (FBP) for low-dose CT and FBP and iterative reconstruction (IR) for ultralow-dose CT. Radiation dose was recorded. Image noise, mean lung attenuation, 15th percentile of lung attenuation, and emphysema index were measured in each image series and compared. Test characteristics of ultralow-dose CT in detecting more than subtle emphysema (emphysema index≥3%) were calculated. The effective dose of low-dose CT was 2.1±0.5 mSv, and that of ultralow-dose CT was 0.13±0.04 mSv. Compared with the findings for low-dose CT, absolute overestimation of emphysema index was 7% on ultralow-dose CT images reconstructed with FBP and 2% on those processed with IR. The 15th percentile of lung attenuation was underestimated by 21.3 HU on ultralow-dose FBP images and by 5.8 HU on IR images. No relevant bias was observed for mean lung attenuation. Four patients (8%) had more than subtle emphysema. The emphysema index measured at ultralow-dose CT with FBP and IR had 100% and 100% sensitivity and 92% and 96% specificity in identifying patients with more than subtle emphysema at a cutoff of greater than 12.1% for FBP and greater than 6.7% for IR. Ultralow-dose chest CT performed for lung cancer screening can be used for quantification of lung density and for emphysema detection. IR improves the accuracy of ultralow-dose CT in this setting.

  4. Low-dose CT screening for lung cancer with automatic exposure control: phantom study.

    PubMed

    Gomi, Shiho; Muramatsu, Yoshihisa; Tsukagoshi, Shinsuke; Suzuki, Masahiro; Kakinuma, Ryutaro; Tsuchiya, Ryosuke; Moriyama, Noriyuki

    2008-07-01

    We conducted a study to determine optimal scan conditions for automatic exposure control (AEC) in computed tomography (CT) of low-dose chest screening in order to provide consistent image quality without increasing the collective dose. Using a chest CT phantom, we set CT-AEC scan conditions with a dose-reduction wedge (DR-Wedge) to the same radiation dose as those for low-tube current, fixed-scan conditions. Image quality was evaluated with the use of the standard deviation of the CT number, contrast-noise ratios (CNR), and receiver-operating characteristic (ROC) analysis. At the same radiation dose, in the scan conditions using CT-AEC with the DR-Wedge, the SD of the CT number of each slice position was stable. The CNR values were higher at the lung apex and lung base under CT-AEC with the DR-Wedge than under standard scan conditions (p < 0.0002). In addition, ROC analysis of blind evaluation by four radiologists and three technologists showed that the image quality was improved for the lung apex (p < 0.009), tracheal bifurcation (p < 0.038), and lung base (p < 0.022) in the scan conditions using CT-AEC with the DR-Wedge. We achieved improvement of image quality without increasing the collective dose by using CT-AEC with the DR-Wedge under low-dose scan conditions.

  5. 20 percent lower lung cancer mortality with low-dose CT vs chest X-ray

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray.

  6. Computerized lung nodule detection: comparison of performance for low-dose and standard-dose helical CT scans

    NASA Astrophysics Data System (ADS)

    Armato, Samuel G., III; Giger, Maryellen L.; Doi, Kunio; Bick, Ulrich; MacMahon, Heber

    2001-07-01

    The vast amount of image data acquired during a computed tomography (CT) scan makes lung nodule detection a burdensome task. Moreover, the growing acceptance of low-dose CT for lung cancer screening promises to further impact radiologists' workloads. Therefore, we have developed a computerized method to automatically analyze structures within a CT scan and identify those structures that represent lung nodules. Gray-level thresholding is performed to segment the lungs in each section to produce a segmented lung volume, which is then iteratively thresholded. At each iteration, remaining voxels are grouped into contiguous three-dimensional structures. Structures that satisfy a volume criterion then become nodule candidates. The set of nodule candidates is subjected to feature analysis. To distinguish candidates representing nodule and non-nodule structures, a rule-based approach is combined with an automated classifier. This method was applied to 43 standard-dose (diagnostic) CT scans and 13 low-dose CT scans. The method achieved an overall detection sensitivity of 71% with 1.5 false-positive detections per section on the standard-dose database and 71% sensitivity with 1.2 false-positive detections per section on the low-dose database. This automated method demonstrates promising performance in its ability to accurately detect lung nodules in standard-dose and low-dose CT images.

  7. Low-dose high-resolution CT of lung parenchyma

    SciTech Connect

    Zwirewich, C.V.; Mayo, J.R.; Mueller, N.L. )

    1991-08-01

    To evaluate the efficacy of low-dose high-resolution computed tomography (HRCT) in the assessment of lung parenchyma, three observers reviewed the scans of 31 patients. The 1.5-mm-collimation, 2-second, 120-kVp scans were obtained at 20 and 200 mA at selected identical levels in the chest. The observers evaluated the visualization of normal pulmonary anatomy, various parenchymal abnormalities and their distribution, and artifacts. The low-dose and conventional scans were equivalent in the evaluation of vessels, lobar and segmental bronchi, and anatomy of secondary pulmonary lobules, and in characterizing the extent and distribution of reticulation, honeycomb cysts, and thickened interlobular septa. The low-dose technique failed to demonstrate ground-glass opacity in two of 10 cases (20%) and emphysema in one of nine cases (11%), in which they were evident but subtle on the high-dose scans. These differences were not statistically significant. Linear streak artifact was more prominent on images acquired with the low-dose technique, but the two techniques were judged equally diagnostic in 97% of cases. The authors conclude that HRCT images acquired at 20 mA yield anatomic information equivalent to that obtained with 200-mA scans in the majority of patients, without significant loss of spatial resolution or image degradation due to linear streak artifact.

  8. Lung Dose Calculation With SPECT/CT for {sup 90}Yittrium Radioembolization of Liver Cancer

    SciTech Connect

    Yu, Naichang; Srinivas, Shaym M.; DiFilippo, Frank P.; Shrikanthan, Sankaran; Levitin, Abraham; McLennan, Gordon; Spain, James; Xia, Ping; Wilkinson, Allan

    2013-03-01

    Purpose: To propose a new method to estimate lung mean dose (LMD) using technetium-99m labeled macroaggregated albumin ({sup 99m}Tc-MAA) single photon emission CT (SPECT)/CT for {sup 90}Yttrium radioembolization of liver tumors and to compare the LMD estimated using SPECT/CT with clinical estimates of LMD using planar gamma scintigraphy (PS). Methods and Materials: Images of 71 patients who had SPECT/CT and PS images of {sup 99m}Tc-MAA acquired before TheraSphere radioembolization of liver cancer were analyzed retrospectively. LMD was calculated from the PS-based lung shunt assuming a lung mass of 1 kg and 50 Gy per GBq of injected activity shunted to the lung. For the SPECT/CT-based estimate, the LMD was calculated with the activity concentration and lung volume derived from SPECT/CT. The effect of attenuation correction and the patient's breathing on the calculated LMD was studied with the SPECT/CT. With these effects correctly taken into account in a more rigorous fashion, we compared the LMD calculated with SPECT/CT with the LMD calculated with PS. Results: The mean dose to the central region of the lung leads to a more accurate estimate of LMD. Inclusion of the lung region around the diaphragm in the calculation leads to an overestimate of LMD due to the misregistration of the liver activity to the lung from the patient's breathing. LMD calculated based on PS is a poor predictor of the actual LMD. For the subpopulation with large lung shunt, the mean overestimation from the PS method for the lung shunt was 170%. Conclusions: A new method of calculating the LMD for TheraSphere and SIR-Spheres radioembolization of liver cancer based on {sup 99m}Tc-MAA SPECT/CT is presented. The new method provides a more accurate estimate of radiation risk to the lungs. For patients with a large lung shunt calculated from PS, a recalculation of LMD based on SPECT/CT is recommended.

  9. Patient-specific image denoising for ultra-low-dose CT-guided lung biopsies.

    PubMed

    Green, Michael; Marom, Edith M; Konen, Eli; Kiryati, Nahum; Mayer, Arnaldo

    2017-06-10

    Low-dose CT screening of the lungs is becoming a reality, triggering many more CT-guided lung biopsies. During these biopsies, the patient is submitted to repeated guiding scans with substantial cumulated radiation dose. Extension of the dose reduction to the biopsy procedure is therefore necessary. We propose an image denoising algorithm that specifically addresses the setup of CT-guided lung biopsies. It minimizes radiation exposure while keeping the image quality appropriate for navigation to the target lesion. A database of high-SNR CT patches is used to filter noisy pixels in a non-local means framework, while explicitly enforcing local spatial consistency in order to preserve fine image details and structures. The patch database may be created from a multi-patient set of high-SNR lung scans. Alternatively, the first scan, acquired at high-SNR right before the needle insertion, can provide a convenient patient-specific patch database. The proposed algorithm is compared to state-of-the-art denoising algorithms for a dataset of 43 real CT-guided biopsy scans. Ultra-low-dose scans were simulated by synthetic noise addition to the sinogram, equivalent to a 96% reduction in radiation dose. The feature similarity score for the proposed algorithm outperformed the compared methods for all the scans in the dataset. The benefit of the patient-specific patch database over the multi-patient one is demonstrated in terms of recovered contrast for a tiny porcine lung nodule, following denoising with both approaches. The proposed method provides a promising approach to the denoising of ultra-low-dose CT-guided biopsy images.

  10. Targeting of Low-Dose CT Screening According to the Risk of Lung-Cancer Death

    PubMed Central

    Kovalchik, Stephanie A.; Tammemagi, Martin; Berg, Christine D.; Caporaso, Neil E.; Riley, Tom L.; Korch, Mary; Silvestri, Gerard A.

    2013-01-01

    BACKGROUND In the National Lung Screening Trial (NLST), screening with low-dose computed tomography (CT) resulted in a 20% reduction in lung-cancer mortality among participants between the ages of 55 and 74 years with a minimum of 30 pack-years of smoking and no more than 15 years since quitting. It is not known whether the benefits and potential harms of such screening vary according to lung-cancer risk. METHODS We assessed the variation in efficacy, the number of false positive results, and the number of lung-cancer deaths prevented among 26,604 participants in the NLST who underwent low-dose CT screening, as compared with the 26,554 participants who underwent chest radiography, according to the quintile of 5-year risk of lung-cancer death (ranging from 0.15 to 0.55% in the lowest-risk group [quintile 1] to more than 2.00% in the highest-risk group [quintile 5]). RESULTS The number of lung-cancer deaths per 10,000 person-years that were prevented in the CT-screening group, as compared with the radiography group, increased according to risk quintile (0.2 in quintile 1, 3.5 in quintile 2, 5.1 in quintile 3, 11.0 in quintile 4, and 12.0 in quintile 5; P = 0.01 for trend). Across risk quintiles, there were significant decreasing trends in the number of participants with false positive results per screening-prevented lung-cancer death (1648 in quintile 1, 181 in quintile 2, 147 in quintile 3, 64 in quintile 4, and 65 in quintile 5). The 60% of participants at highest risk for lung-cancer death (quintiles 3 through 5) accounted for 88% of the screening-prevented lung-cancer deaths and for 64% of participants with false positive results. The 20% of participants at lowest risk (quintile 1) accounted for only 1% of prevented lung-cancer deaths. CONCLUSIONS Screening with low-dose CT prevented the greatest number of deaths from lung cancer among participants who were at highest risk and prevented very few deaths among those at lowest risk. These findings provide empirical

  11. SU-E-P-03: Implementing a Low Dose Lung Screening CT Program Meeting Regulatory Requirements

    SciTech Connect

    LaFrance, M; Marsh, S; O'Donnell, G

    2014-06-01

    Purpose: To provide information pertaining to IROC Houston QA Center's (RPC) credentialing process for institutions participating in NCI-sponsored clinical trials. Purpose: Provide guidance to the Radiology Departments with the intent of implementing a Low Dose CT Screening Program using different CT Scanners with multiple techniques within the framework of the required state regulations. Method: State Requirements for the purpose of implementing a Low Dose CT Lung Protocol required working with the Radiology and Pulmonary Department in setting up a Low Dose Screening Protocol designed to reduce the radiation burden to the patients enrolled. Radiation dose measurements (CTDIvol) for various CT manufacturers (Siemens16, Siemens 64, Philips 64, and Neusoft128) for three different weight based protocols. All scans were reviewed by the Radiologist. Prior to starting a low dose lung screening protocol, information had to be submitted to the state for approval. Performing a Healing Arts protocol requires extensive information. This not only includes name and address of the applicant but a detailed description of the disease, the x-ray examination and the population to be examined. The unit had to be tested by a qualified expert using the technique charts. The credentials of all the operators, the supervisors and the Radiologists had to be submitted to the state. Results: All the appropriate documentation was sent to the state for review. The measured results between the Low Dose Protocol versus the default Adult Chest Protocol showed that there was a dose reduction of 65% for small (100-150 lb.) patient, 75% for the Medium patient (151-250 lbs.), and a 55% reduction for the Large patient ( over 250 lbs.). Conclusion: Measured results indicated that the Low Dose Protocol indeed lowered the screening patient's radiation dose and the institution was able to submit the protocol to the State's regulators.

  12. Computer-aided detection of early interstitial lung diseases using low-dose CT images.

    PubMed

    Park, Sang Cheol; Tan, Jun; Wang, Xingwei; Lederman, Dror; Leader, Joseph K; Kim, Soo Hyung; Zheng, Bin

    2011-02-21

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 ± 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  13. Computer-aided detection of early interstitial lung diseases using low-dose CT images

    NASA Astrophysics Data System (ADS)

    Park, Sang Cheol; Tan, Jun; Wang, Xingwei; Lederman, Dror; Leader, Joseph K.; Kim, Soo Hyung; Zheng, Bin

    2011-02-01

    This study aims to develop a new computer-aided detection (CAD) scheme to detect early interstitial lung disease (ILD) using low-dose computed tomography (CT) examinations. The CAD scheme classifies each pixel depicted on the segmented lung areas into positive or negative groups for ILD using a mesh-grid-based region growth method and a multi-feature-based artificial neural network (ANN). A genetic algorithm was applied to select optimal image features and the ANN structure. In testing each CT examination, only pixels selected by the mesh-grid region growth method were analyzed and classified by the ANN to improve computational efficiency. All unselected pixels were classified as negative for ILD. After classifying all pixels into the positive and negative groups, CAD computed a detection score based on the ratio of the number of positive pixels to all pixels in the segmented lung areas, which indicates the likelihood of the test case being positive for ILD. When applying to an independent testing dataset of 15 positive and 15 negative cases, the CAD scheme yielded the area under receiver operating characteristic curve (AUC = 0.884 ± 0.064) and 80.0% sensitivity at 85.7% specificity. The results demonstrated the feasibility of applying the CAD scheme to automatically detect early ILD using low-dose CT examinations.

  14. Lung cancer screening - Low dose CT for lung cancer screening: recent trial results and next steps.

    PubMed

    O'Dowd, Emma L; Baldwin, David R

    2017-07-27

    Screening for lung cancer using low-dose computed tomography has already been implemented in North America following the results of the National Lung Screening Trial. Outside North America, clinicians and researchers are addressing issues that may have a major impact on the success of screening programmes by reviewing results of existing trials and by designing new research and pilot programmes. This review summarises the work that has been done to try to answer the remaining questions and highlights potential barriers which may affect screening uptake and cost effectiveness.

  15. Computer simulation of low-dose CT with clinical lung image database: a preliminary study

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Gao, Peng; Liu, Wenlei; Zhang, Yuanke; Liu, Tianshuai; Lu, Hongbing

    2017-03-01

    Large samples of raw low-dose CT (LDCT) projections on lungs are needed for evaluating or designing novel and effective reconstruction algorithms suitable for lung LDCT imaging. However, there exists radiation risk when getting them from clinical CT scanning. To avoid the problem, a new strategy for producing large samples of lung LDCT projections with computer simulations is proposed in this paper. In the simulation, clinical images from the publicly available medical image database-the Lung Image Database Consortium(LIDC) and Image Database Resource Initiative (IDRI) database (LIDC/IDRI) are used as the projected object to form the noise-free sinogram. Then by adding a Poisson distributed quantum noise plus Gaussian distributed electronic noise to the projected transmission data calculated from the noise-free sinogram, different noise levels of LDCT projections are obtained. At last the LDCT projections are used for evaluating two reconstruction strategies. One is the conventional filtered back projection (FBP) algorithm and the other is FBP reconstruction from the filtered sinogram with penalized weighted least square criterion (PWLS-FBP). Images reconstructed with the LDCT simulations have shown that the PWLS-FBP algorithm performs better than the FBP algorithm in reducing streaking artifacts and preserving resolution. Preliminary results indicate that the feasibility of the proposed lung LDCT simulation strategy for helping to determine advanced reconstruction algorithms.

  16. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers.

    PubMed

    Liang, Mingzhu; Tang, Wei; Xu, Dong Ming; Jirapatnakul, Artit C; Reeves, Anthony P; Henschke, Claudia I; Yankelevitz, David

    2016-10-01

    Purpose To update information regarding the usefulness of computer-aided detection (CAD) systems with a focus on the most critical category, that of missed cancers at earlier imaging, for cancers that manifest as a solid nodule. Materials and Methods By using a HIPAA-compliant institutional review board-approved protocol where informed consent was obtained, 50 lung cancers that manifested as a solid nodule on computed tomographic (CT) scans in annual rounds of screening (time 1) were retrospectively identified that could, in retrospect, be identified on the previous CT scans (time 0). Four CAD systems were compared, which were referred to as CAD 1, CAD 2, CAD 3, and CAD 4. The total number of accepted CAD-system-detected nodules at time 0 was determined by consensus of two radiologists and the number of CAD-system-detected nodules that were rejected by the radiologists was also documented. Results At time 0 when all the cancers had been missed, CAD system detection rates for the cancers were 56%, 70%, 68%, and 60% (κ = 0.45) for CAD systems 1, 2, 3, and 4, respectively. At time 1, the rates were 74%, 82%, 82%, and 78% (κ = 0.32), respectively. The average diameter of the 50 cancers at time 0 and time 1 was 4.8 mm and 11.4 mm, respectively. The number of CAD-system-detected nodules that were rejected per CT scan for CAD systems 1-4 at time 0 was 7.4, 1.7, 0.6, and 4.5 respectively. Conclusion CAD systems detected up to 70% of lung cancers that were not detected by the radiologist but failed to detect about 20% of the lung cancers when they were identified by the radiologist, which suggests that CAD may be useful in the role of second reader. (©) RSNA, 2016.

  17. [Lung cancer screening with low-dose thoracic CT-scan in the Somme area].

    PubMed

    Leleu, O; Auquier, M; Carre, O; Chauffert, B; Dubreuil, A; Petigny, V; Trancart, B; Berna, P; Jounieaux, V

    2017-03-01

    This feasibility trial proposes to set up in the department of the Somme an annual screening for lung cancer with low-dose thoracic CT. It responds to the first objective of the third cancer plan and follows the publication of the results of the National Lung Screening Trial in 2011. The method of this study is to use the existing networks among and between healthcare professionals and the departmental cancer screening structure. The inclusion criteria will be those of the National Lung Screening Trial. Screening will be proposed by treating physicians and chest physicians. The CT-scan will be performed in radiological centers that adhere to the good practice charter for low radiation scanning. A copy of CT results will be sent to the departmental structure of cancer screening (ADEMA80) which will ensure traceability and will perform statistical analysis. The study received funding from the Agence régionale de santé de la Picardie and la ligue contre le cancer. The primary endpoints of this screening will be the number of cancers diagnosed and the survival of the patients. The follow-up of positive examinations, delays in management and the level of participation will also be assessed. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  18. Automatic detection of lung nodules from multislice low-dose CT images

    NASA Astrophysics Data System (ADS)

    Fan, Li; Novak, Carol L.; Qian, JianZhong; Kohl, Gerhard; Naidich, David

    2001-07-01

    We describe in this paper a novel, efficient method to automatically detect lung nodules from low-dose, high- resolution CT (HRCT) images taken with a multi-slice scanner. First, the program identifies initial anatomical seeds, including lung nodule candidates, airways, vessels, and other features that appear as bright opacities in CT images. Next, a 3D region growing method is applied to each seed. The thresholds for segmentation are adaptively adjusted based upon automatic analysis of the local histogram. Once an object has been examined, vessels and other non-nodule objects are quickly excluded from future study, thus saving computation time. Finally, extracted 3D objects are classified a nodule candidates or non-nodule structures. Anatomical knowledge and multiple measurements, such as volume and sphericity, are used to categorize each object. The detected nodules are presented to the user for examination and verification. The proposed method was applied to 14 low dose HRCT patient studies. Since the CT images were taken with a multi-slice scanner, the average number of slices per study was 292. In every case the x-ray exposure was about 20 mAs, a suitable dosage for screening. In our preliminary results, the method detected an average of 8 nodules per study, with an average size of 3.3 mm in diameter.

  19. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    SciTech Connect

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  20. Body Size-Specific Organ and Effective Doses of Chest CT Screening Examinations of the National Lung Screening Trial.

    PubMed

    Lee, Choonsik; Flynn, Michael J; Judy, Phillip F; Cody, Dianna D; Bolch, Wesley E; Kruger, Randell L

    2017-05-01

    We calculated body size-specific organ and effective doses for 23,734 participants in the National Lung Screening Trial (NLST) using a CT dose calculator. We collected participant-specific technical parameters of 23,734 participants who underwent CT in the clinical trial. For each participant, we calculated two sets of organ doses using two methods. First, we computed body size-specific organ and effective doses using the National Cancer Institute CT (NCICT) dosimetry program, which is based on dose coefficients derived from a library of body size-dependent adult male and female computational phantoms. We then recalculated organ and effective doses using dose coefficients from reference size phantoms for all examinations to investigate potential errors caused by the lack of body size consideration in the dose calculations. The underweight participants (body mass index [BMI; weight in kilograms divided by the square of height in meters] < 18.5) received 1.3-fold greater lung dose (median, 4.93 mGy) than the obese participants (BMI > 30) (3.90 mGy). Thyroid doses were approximately 1.3- to 1.6-fold greater than the lung doses (6.3-6.5 mGy). The reference phantom-based dose calculation underestimates the body size-specific lung dose by up to 50% for the underweight participants and overestimates that value by up to 200% for the overweight participants. The median effective dose ranges from 2.01 mSv in obese participants to 2.80 mSv in underweight participants. Body size-specific organ and effective doses were computed for 23,734 NLST participants who underwent low-dose CT screening. The use of reference size phantoms can lead to significant errors in organ dose estimates when body size is not considered in the dose assessment.

  1. Low-dose lung cancer screening with photon-counting CT: a feasibility study

    NASA Astrophysics Data System (ADS)

    Symons, Rolf; Cork, Tyler E.; Sahbaee, Pooyan; Fuld, Matthew K.; Kappler, Steffen; Folio, Les R.; Bluemke, David A.; Pourmorteza, Amir

    2017-01-01

    To evaluate the feasibility of using a whole-body photon-counting detector (PCD) CT scanner for low-dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom were acquired at different radiation dose levels (CTDIvol: 3.0, 1.5, and 0.75 mGy) and different tube voltages (120, 100, and 80 kVp). EID and PCD images were compared for quantitative Hounsfield unit (HU) accuracy, noise levels, and contrast-to-noise ratios (CNR) for detection of ground-glass nodules (GGN) and emphysema. The PCD HU accuracy was better than EID for water at all scan parameters. PCD HU stability for lung, GGN and emphysema regions were superior to EID and PCD attenuation values were more reproducible than EID for all scan parameters (all P  <  0.01), while HUs for lung, GGN and emphysema ROIs changed significantly for EID with decreasing dose (all P  <  0.001). PCD showed lower noise levels at the lowest dose setting at 120, 100 and 80 kVp (15.2  ±  0.3 HU versus 15.8  ±  0.2 HU, P  =  0.03 16.1  ±  0.3 HU versus 18.0  ±  0.4 HU, P  =  0.003 and 16.1  ±  0.3 HU versus 17.9  ±  0.3 HU, P  =  0.001, respectively), resulting in superior CNR for evaluation of GGNs and emphysema at 100 and 80 kVp. PCD provided better HU stability for lung, ground-glass, and emphysema-equivalent foams at lower radiation dose settings with better reproducibility than EID. Additionally, PCD showed up to 10% less noise, and 11% higher CNR at 0.75 mGy for both 100 and 80 kVp. PCD technology may help reduce radiation exposure in lung cancer screening while maintaining diagnostic quality.

  2. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality.

    PubMed

    Yamao, Yoshikazu; Yamakado, Koichiro; Takaki, Haruyuki; Yamada, Tomomi; Murashima, Shuichi; Uraki, Junji; Kodama, Hiroshi; Nagasawa, Naoki; Takeda, Kan

    2010-04-01

    To evaluate the relationship between radiation doses and lung computed tomographic (CT) fluoroscopic scan parameters and to determine optimal scan parameters for performance of lung interventional radiologic (IR) procedures. The institutional review board approved this prospective study, which included 32 patients with a single lung tumor; written informed consent was obtained. CT fluoroscopic images were obtained with three tube voltages (80,120,135 kV) and three tube currents (10, 20, 30 mA) in each patient. The signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) were measured quantitatively. To evaluate the feasibility of performing lung IR procedures, four readers visually scored the image quality. Acceptable CT fluoroscopic images were determined by using agreement of at least three of the four readers. The weighted CT dose index for each CT scan parameter was measured. A piecewise linear regression equation was obtained from the relationship between radiation doses and visual image scores. Both the SNR and the CNR improved as the radiation dose increased, leading to improvement in the image quality. Acceptable image quality was achieved in 94% (30 of 32) of patients when the radiation dose was 1.18 mGy/sec (120 kV, 10 mA) and in all patients when it was greater than 1.48 mGy/sec (135 kV, 10 mA). The piecewise linear curve showed rapid improvement in image quality until the radiation dose increased to 1.48 mGy/sec (135 kV, 10 mA). When the radiation dose was increased greater than 1.48 mGy/sec, improvement in the image quality became more gradual. Results of this study can be used to guide the determination of optimal scan parameters in lung CT fluoroscopy. RSNA, 2010

  3. Automatic lobar segmentation for diseased lungs using an anatomy-based priority knowledge in low-dose CT images

    NASA Astrophysics Data System (ADS)

    Park, Sang Joon; Kim, Jung Im; Goo, Jin Mo; Lee, Doohee

    2014-03-01

    Lung lobar segmentation in CT images is a challenging tasks because of the limitations in image quality inherent to CT image acquisition, especially low-dose CT for clinical routine environment. Besides, complex anatomy and abnormal lesions in the lung parenchyma makes segmentation difficult because contrast in CT images are determined by the differential absorption of X-rays by neighboring structures, such as tissue, vessel or several pathological conditions. Thus, we attempted to develop a robust segmentation technique for normal and diseased lung parenchyma. The images were obtained with low-dose chest CT using soft reconstruction kernel (Sensation 16, Siemens, Germany). Our PC-based in-house software segmented bronchial trees and lungs with intensity adaptive region-growing technique. Then the horizontal and oblique fissures were detected by using eigenvalues-ratio of the Hessian matrix in the lung regions which were excluded from airways and vessels. To enhance and recover the faithful 3-D fissure plane, our proposed fissure enhancing scheme were applied to the images. After finishing above steps, for careful smoothening of fissure planes, 3-D rolling-ball algorithm in xyz planes were performed. Results show that success rate of our proposed scheme was achieved up to 89.5% in the diseased lung parenchyma.

  4. Effects of Iterative Reconstruction Algorithms on Computer-assisted Detection (CAD) Software for Lung Nodules in Ultra-low-dose CT for Lung Cancer Screening.

    PubMed

    Nomura, Yukihiro; Higaki, Toru; Fujita, Masayo; Miki, Soichiro; Awaya, Yoshikazu; Nakanishi, Toshio; Yoshikawa, Takeharu; Hayashi, Naoto; Awai, Kazuo

    2017-02-01

    This study aimed to evaluate the effects of iterative reconstruction (IR) algorithms on computer-assisted detection (CAD) software for lung nodules in ultra-low-dose computed tomography (ULD-CT) for lung cancer screening. We selected 85 subjects who underwent both a low-dose CT (LD-CT) scan and an additional ULD-CT scan in our lung cancer screening program for high-risk populations. The LD-CT scans were reconstructed with filtered back projection (FBP; LD-FBP). The ULD-CT scans were reconstructed with FBP (ULD-FBP), adaptive iterative dose reduction 3D (AIDR 3D; ULD-AIDR 3D), and forward projected model-based IR solution (FIRST; ULD-FIRST). CAD software for lung nodules was applied to each image dataset, and the performance of the CAD software was compared among the different IR algorithms. The mean volume CT dose indexes were 3.02 mGy (LD-CT) and 0.30 mGy (ULD-CT). For overall nodules, the sensitivities of CAD software at 3.0 false positives per case were 78.7% (LD-FBP), 9.3% (ULD-FBP), 69.4% (ULD-AIDR 3D), and 77.8% (ULD-FIRST). Statistical analysis showed that the sensitivities of ULD-AIDR 3D and ULD-FIRST were significantly higher than that of ULD-FBP (P < .001). The performance of CAD software in ULD-CT was improved by using IR algorithms. In particular, the performance of CAD in ULD-FIRST was almost equivalent to that in LD-FBP. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Reduced-dose chest CT with 3D automatic exposure control vs. standard chest CT: quantitative assessment of emphysematous changes in smokers' lung parenchyma.

    PubMed

    Koyama, Hisanobu; Ohno, Yoshiharu; Yamazaki, Youichi; Matsumoto, Keiko; Onishi, Yumiko; Takenaka, Daisuke; Yoshikawa, Takeshi; Nishio, Mizuho; Matsumoto, Sumiaki; Murase, Kenya; Nishimura, Yoshihiro; Sugimura, Kazuro

    2012-06-01

    To determine the capability of reduced-dose chest CT with three-dimensional (3D) automatic exposure control (AEC) on quantitative assessment of emphysematous change in smoker' lung parenchyma, compared to standard chest CT. Twenty consecutive smoker patients (mean age 62.8 years) underwent CT examinations using a standard protocol (150 mAs) and a protocol with 3D-AEC. In this study, the targeted standard deviations number was set to 160. For quantitative assessment of emphysematous change in lung parenchyma in each subject using the standard protocol, a percentage of voxels less than -950 HU in the lung (%LAA(-950)) was calculated. The 3D-AEC protocol's %LAA was computed from of voxel percentages under selected threshold CT value. The differences of radiation doses between these two protocols were evaluated, and %LAAs(-950) was compared with the 3D-AEC protocol %LAAs. Mean dose length products were 780.2 ± 145.5 mGy cm (standard protocol), and 192.0 ± 95.9 (3D-AEC protocol). There was significant difference between them (paired Student's t test, p<0.00001). Meanwhile, only setting -960 HU yielded no significant difference (paired Student's t test, p=0.32) between %LAAs(-950) and 3D-AEC protocol %LAAs. In adopting the feasible threshold CT values of the 3D-AEC protocol, the 3D-AEC protocol %LAAs were significantly correlated with %LAAs(-950) (r = 0.98, p<0.001) and limits of agreement from Bland-Altman analysis was 0.52 ± 4.3%. Changing threshold CT values demonstrated that reduced-dose chest CT with 3D-AEC can substitute for the standard protocol in assessments of emphysematous change in smoker' lung parenchyma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Longitudinal follow-up study of smoking-induced emphysema progression in low-dose CT screening of lung cancer

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, Masahiro; Moriyama, N.

    2014-03-01

    Chronic obstructive pulmonary disease is a major public health problem that is predicted to be third leading cause of death in 2030. Although spirometry is traditionally used to quantify emphysema progression, it is difficult to detect the loss of pulmonary function by emphysema in early stage, and to assess the susceptibility to smoking. This study presents quantification method of smoking-induced emphysema progression based on annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in lung cancer screening. The method consists of three steps. First, lung lobes are segmented using extracted interlobar fissures by enhancement filter based on fourdimensional curvature. Second, LAV of each lung lobe is segmented. Finally, smoking-induced emphysema progression is assessed by statistical analysis of the annual changes represented by linear regression of LAV percentage in each lung lobe. This method was applied to 140 participants in lung cancer CT screening for six years. The results showed that LAV progressions of nonsmokers, past smokers, and current smokers are different in terms of pack-year and smoking cessation duration. This study demonstrates effectiveness in diagnosis and prognosis of early emphysema in lung cancer CT screening.

  7. Effects of CT dose and nodule characteristics on lung-nodule detectability in a cohort of 90 national lung screening trial patients

    NASA Astrophysics Data System (ADS)

    Young, Stefano; Lo, Pechin; Hoffman, John M.; Kim, H. J. Grace; Brown, Matthew S.; McNitt-Gray, Michael F.

    2016-03-01

    Lung cancer screening CT is already performed at low dose. There are many techniques to reduce the dose even further, but it is not clear how such techniques will affect nodule detectability. In this work, we used an in-house CAD algorithm to evaluate detectability. 90348 patients and their raw CT data files were drawn from the National Lung Screening Trial (NLST) database. All scans were acquired at ~2 mGy CTDIvol with fixed tube current, 1 mm slice thickness, and B50 reconstruction kernel on a Sensation 64 scanner (Siemens Healthcare). We used the raw CT data to simulate two additional reduced-dose scans for each patient corresponding to 1 mGy (50%) and 0.5 mGy (25%). Radiologists' findings on the NLST reader forms indicated 65 nodules in the cohort, which we subdivided based on LungRADS criteria. For larger category 4 nodules, median sensitivities were 100% at all three dose levels, and mean sensitivity decreased with dose. For smaller nodules meeting the category 2 or 3 criteria, the dose dependence was less obvious. Overall, mean patient-level sensitivity varied from 38.5% at 100% dose to 40.4% at 50% dose, a difference of only 1.9%. However, the false-positive rate quadrupled from 1 per case at 100% dose to 4 per case at 25% dose. Dose reduction affected lung-nodule detectability differently depending on the LungRADS category, and the false-positive rate was very sensitive at sub-screening dose levels. Thus, care should be taken to adapt CAD for the very challenging noise characteristics of screening.

  8. Lung Cancer Screening With Low-Dose CT: Its Effect on Smoking Behavior

    PubMed Central

    Gomez, Meaghan McEntee; LoBiondo-Wood, Geri

    2013-01-01

    Lung cancer screening provides an opportunity for smoking cessation interventions. A review of the literature found that smokers who participated in lung cancer screening had a higher smoking cessation rate compared with smokers in the general population. However, the randomized controlled trials included in the review did not identify any difference in smoking cessation rates between the individuals who had a CT scan to screen for lung cancer and unscreened control groups. Multiple studies observed participants for lengths of time ranging from 1 to 36 months and concluded that individuals who received abnormal CT results had a higher smoking cessation rate compared with participants with normal CT results. A single study that observed participants for 6 years initially found similar increased cessation rates among those with abnormal CT results, but at the conclusion of the study the difference in cessation rates had dissipated. Lung cancer screening produces a teachable moment when individuals may be more receptive to smoking cessation interventions. Advanced practitioners should take an active role in promoting smoking cessation interventions and fostering this teachable moment created by lung cancer screening. PMID:25032020

  9. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    SciTech Connect

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placed within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.

  10. Effects of JPEG and wavelet compression of spiral low-dose ct images on detection of small lung cancers.

    PubMed

    Li, F; Sone, S; Takashima, S; Kiyono, K; Yang, Z G; Hasegawa, M; Kawakami, S; Saito, A; Hanamura, K; Asakura, K

    2001-03-01

    To compare the effect of compression of spiral low-dose CT images by the Joint Photographic Experts Group (JPEG) and wavelet algorithms on detection of small lung cancers. Low-dose spiral CT images of 104 individuals (52 with peripheral lung cancers smaller than 20 mm and 52 control subjects) were used. The original images were compressed using JPEG or wavelet algorithms at a ratio of 10:1 or 20:1. Five radiologists interpreted these images and evaluated the image quality on a high-resolution CRT monitor. Observer performance was studied by receiver operating characteristic (ROC) analysis. There was no significant difference in the detection of cancers measuring 6 to 15 mm in uncompressed images and in those compressed by either of the algorithms, although the quality of images compressed at 20:1 with the wavelet algorithm was somewhat inferior. A lower diagnostic accuracy was noted using images compressed by the JPEG or wavelet algorithms at 20:1 in detecting lung cancers measuring 6 to 10 mm and cancers measuring from 6 to 15 mm with ground-glass opacity. Compression of low-dose CT images at a ratio of 10:1 using JPEG and wavelet algorithms does not compromise the detection rate of small lung cancers.

  11. Lung cancer screening with low-dose helical CT in Korea: experiences at the Samsung Medical Center.

    PubMed

    Chong, Semin; Lee, Kyung Soo; Chung, Myung Jin; Kim, Tae Sung; Kim, Hojoong; Kwon, O Jung; Choi, Yoon-Ho; Rhee, Chong H

    2005-06-01

    To determine overall detection rates of lung cancer by low-dose CT (LDCT) screening and to compare histopathologic and imaging differences of detected cancers between high- and low-risk groups, this study included 6,406 asymptomatic Korean adults with >or=45 yr of age who underwent LDCT for lung cancer screening. All were classified into high- (>or=20 pack-year smoking; 3,353) and low-risk (3,053; <20 pack-yr smoking and non-smokers) groups. We compared CT findings of detected cancers and detection rates between high- and low-risk. At initial CT, 35% (2,255 of 6,406) had at least one or more non-calcified nodule. Lung cancer detection rates were 0.36% (23 of 6,406). Twenty-one non-small cell lung cancers appeared as solid (n=14) or ground-glass opacity (GGO) (n=7) nodules. Cancer likelihood was higher in GGO nodules than in solid nodules (p<0.01). Fifteen of 23 cancers occurred in high-risk group and 8 in low-risk group (p=0.215). Therefore, LDCT screening help detect early stage of lung cancer in asymptomatic Korean population with detection rate of 0.36% on a population basis and may be useful for discovering early lung cancer in low-risk group as well as in high-risk group.

  12. SU-E-I-34: Evaluating Use of AEC to Lower Dose for Lung Cancer Screening CT Protocols

    SciTech Connect

    Arbique, G; Anderson, J; Guild, J; Duan, X; Malguria, N; Omar, H; Brewington, C; Zhang, D

    2015-06-15

    Purpose: The National Lung Screening Trial mandated manual low dose CT technique factors, where up to a doubling of radiation output could be used over a regular to large patient size range. Recent guidance from the AAPM and ACR for lung cancer CT screening recommends radiation output adjustment for patient size either through AEC or a manual technique chart. This study evaluated the use of AEC for output control and dose reduction. Methods: The study was performed on a multidetector helical CT scanner (Aquillion ONE, Toshiba Medical) equipped with iterative reconstruction (ADIR-3D), AEC was adjusted with a standard deviation (SD) image quality noise index. The protocol SD parameter was incrementally increased to reduce patient population dose while image quality was evaluated by radiologist readers scoring the clinical utility of images on a Likert scale. Results: Plots of effective dose vs. body size (water cylinder diameter reported by the scanner) demonstrate monotonic increase in patient dose with increasing patient size. At the initial SD setting of 19 the average CTDIvol for a standard size patient was ∼ 2.0 mGy (1.2 mSv effective dose). This was reduced to ∼1.0 mGy (0.5 mSv) at an SD of 25 with no noticeable reduction in clinical utility of images as demonstrated by Likert scoring. Plots of effective patient diameter and BMI vs body size indicate that these metrics could also be used for manual technique charts. Conclusion: AEC offered consistent and reliable control of radiation output in this study. Dose for a standard size patient was reduced to one-third of the 3 mGy CTDIvol limit required for ACR accreditation of lung cancer CT screening. Gary Arbique: Research Grant, Toshiba America Medical Systems; Cecelia Brewington: Research Grant, Toshiba America Medical Systems; Di Zhang: Employee, Toshiba America Medical Systems.

  13. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    SciTech Connect

    Zhao, B; Tan, Y; Tsai, W; Lu, L; Schwartz, L; So, J; Goldman, J; Lu, Z

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six image series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to

  14. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients

    SciTech Connect

    Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley; Justusson, Julia; Contee, Clay; Malik, Renuka; Al-Hallaq, Hania A.

    2015-01-15

    Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An

  15. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients.

    PubMed

    Cunliffe, Alexandra R; Contee, Clay; Armato, Samuel G; White, Bradley; Justusson, Julia; Malik, Renuka; Al-Hallaq, Hania A

    2015-01-01

    To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Eighteen patients who received curative doses (≥ 60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4-75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps) using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm ("Fast" and "EMPIRE10"). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (dE) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of dE, dose (D), dose standard deviation (SD(dose)) in an eight-pixel neighborhood, and the registration algorithm used. Over 1400 landmark point pairs were identified, with 58-93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9-10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average dE across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of dE (0.42 Gy/mm), D (0.05 Gy/Gy), SD(dose) (1.4 Gy/Gy), and the algorithm used (≤ 1 Gy). An average error of <4 Gy in radiation dose was introduced when points were mapped between

  16. 4D cone beam CT-based dose assessment for SBRT lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Dhou, Salam; Cifter, Fulya; Myronakis, Marios; Hurwitz, Martina H.; Williams, Christopher L.; Berbeco, Ross I.; Seco, Joao; Lewis, John H.

    2016-01-01

    The purpose of this research is to develop a 4DCBCT-based dose assessment method for calculating actual delivered dose for patients with significant respiratory motion or anatomical changes during the course of SBRT. To address the limitation of 4DCT-based dose assessment, we propose to calculate the delivered dose using time-varying (‘fluoroscopic’) 3D patient images generated from a 4DCBCT-based motion model. The method includes four steps: (1) before each treatment, 4DCBCT data is acquired with the patient in treatment position, based on which a patient-specific motion model is created using a principal components analysis algorithm. (2) During treatment, 2D time-varying kV projection images are continuously acquired, from which time-varying ‘fluoroscopic’ 3D images of the patient are reconstructed using the motion model. (3) Lateral truncation artifacts are corrected using planning 4DCT images. (4) The 3D dose distribution is computed for each timepoint in the set of 3D fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach is validated using six modified XCAT phantoms with lung tumors and different respiratory motions derived from patient data. The estimated doses are compared to that calculated using ground-truth XCAT phantoms. For each XCAT phantom, the calculated delivered tumor dose values generally follow the same trend as that of the ground truth and at most timepoints the difference is less than 5%. For the overall delivered dose, the normalized error of calculated 3D dose distribution is generally less than 3% and the tumor D95 error is less than 1.5%. XCAT phantom studies indicate the potential of the proposed method to accurately estimate 3D tumor dose distributions for SBRT lung treatment based on 4DCBCT imaging and motion modeling. Further research is necessary to investigate its performance for clinical patient data.

  17. Incidental renal tumours on low-dose CT lung cancer screening exams.

    PubMed

    Pinsky, Paul F; Dunn, Barbara; Gierada, David; Nath, P Hrudaya; Munden, Reginald; Berland, Lincoln; Kramer, Barnett S

    2017-06-01

    Introduction Renal cancer incidence has increased markedly in the United States in recent decades, largely due to incidentally detected tumours from computed tomography imaging. Here, we analyze the potential for low-dose computed tomography lung cancer screening to detect renal cancer. Methods The National Lung Screening Trial randomized subjects to three annual screens with either low-dose computed tomography or chest X-ray. Eligibility criteria included 30 + pack-years, current smoking or quit within 15 years, and age 55-74. Subjects were followed for seven years. Low-dose computed tomography screening forms collected information on lung cancer and non-lung cancer abnormalities, including abnormalities below the diaphragm. A reader study was performed on a sample of National Lung Screening Trial low-dose computed tomography images assessing presence of abnormalities below the diaphragms and abnormalities suspicious for renal cancer. Results There were 26,722 and 26,732 subjects enrolled in the low-dose computed tomography and chest X-ray arms, respectively, and there were 104 and 85 renal cancer cases diagnosed, respectively (relative risk = 1.22, 95% CI: 0.9-1.5). From 75,126 low-dose computed tomography screens, there were 46 renal cancer diagnoses within one year. Abnormalities below the diaphragm rates were 39.1% in screens with renal cancer versus 4.1% in screens without (P < 0.001). Cases with abnormalities below the diaphragms had shorter median time to diagnosis than those without (71 vs. 160 days, P = 0.004). In the reader study, 64% of renal cancer cases versus 13% of non-cases had abnormalities below the diaphragms; 55% of cases and 0.8% of non-cases had a finding suspicious for renal cancer (P < 0.001). Conclusion Low-dose computed tomography screens can potentially detect renal cancers. The benefits to harms tradeoff of incidental detection of renal tumours on low-dose computed tomography is unknown.

  18. Small pulmonary nodules in baseline and incidence screening rounds of low-dose CT lung cancer screening

    PubMed Central

    Walter, Joan E.; Oudkerk, Matthijs

    2017-01-01

    Currently, lung cancer screening by low-dose computed tomography (LDCT) is widely recommended for high-risk individuals by US guidelines, but there still is an ongoing debate concerning respective recommendations for European countries. Nevertheless, the available data regarding pulmonary nodules released by lung cancer screening studies could improve future screening guidelines, as well as the clinical practice of incidentally detected pulmonary nodules on routine CT scans. Most lung cancer screening trials present results for baseline and incidence screening rounds separately, clustering pulmonary nodules initially found at baseline screening and newly detected pulmonary nodules after baseline screening together. This approach does not appreciate possible differences among pulmonary nodules detected at baseline and firstly detected at incidence screening rounds and is heavily influenced by methodological differences of the respective screening trials. This review intends to create a basis for assessing non-calcified pulmonary nodules detected during LDCT lung cancer screening in a more clinical relevant manner. The aim is to present data of non-calcified pulmonary baseline nodules and new non-calcified pulmonary incident nodules without clustering them together, thereby also simplifying translation to the clinical practice of incidentally detected pulmonary nodules. Small pulmonary nodules newly detected at incidence screening rounds of LDCT lung cancer screening may possess a greater lung cancer probability than pulmonary baseline nodules at a smaller size, which is essential for the development of new guidelines. PMID:28331823

  19. Small pulmonary nodules in baseline and incidence screening rounds of low-dose CT lung cancer screening.

    PubMed

    Walter, Joan E; Heuvelmans, Marjolein A; Oudkerk, Matthijs

    2017-02-01

    Currently, lung cancer screening by low-dose computed tomography (LDCT) is widely recommended for high-risk individuals by US guidelines, but there still is an ongoing debate concerning respective recommendations for European countries. Nevertheless, the available data regarding pulmonary nodules released by lung cancer screening studies could improve future screening guidelines, as well as the clinical practice of incidentally detected pulmonary nodules on routine CT scans. Most lung cancer screening trials present results for baseline and incidence screening rounds separately, clustering pulmonary nodules initially found at baseline screening and newly detected pulmonary nodules after baseline screening together. This approach does not appreciate possible differences among pulmonary nodules detected at baseline and firstly detected at incidence screening rounds and is heavily influenced by methodological differences of the respective screening trials. This review intends to create a basis for assessing non-calcified pulmonary nodules detected during LDCT lung cancer screening in a more clinical relevant manner. The aim is to present data of non-calcified pulmonary baseline nodules and new non-calcified pulmonary incident nodules without clustering them together, thereby also simplifying translation to the clinical practice of incidentally detected pulmonary nodules. Small pulmonary nodules newly detected at incidence screening rounds of LDCT lung cancer screening may possess a greater lung cancer probability than pulmonary baseline nodules at a smaller size, which is essential for the development of new guidelines.

  20. NIH-funded study shows 20 percent reduction in lung cancer mortality with low-dose CT compared to chest X-ray: | Division of Cancer Prevention

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray. The primary research results from the National Lung Screening Trial (NLST) were published online today in the New England Journal of Medicine. |

  1. A rare 'incidentaloma' found on low-dose CT screening for lung cancer: 'scanner beware'.

    PubMed

    Federman, Daniel G; Baldassarri, Rebecca J; Cain, Hilary C

    2017-08-01

    Screening for lung cancer with low-dose computed tomography (LDCT) has been shown to reduce mortality and has been recommended by the U.S. Preventive Services Task Force for adults 55 to 80 years of age with a 30 pack-year smoking history who are either current smokers or those that quit within 15 years. However, the overwhelming majority of abnormalities detected are not from malignancy. We report a case of pulmonary Langerhans' cell histiocytosis, here-to-fore thought of as extremely uncommon, and make readers aware that this may be increasingly found as LDCT is more widely adopted.

  2. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging.

    PubMed

    Huber, Adrian; Landau, Julia; Ebner, Lukas; Bütikofer, Yanik; Leidolt, Lars; Brela, Barbara; May, Michelle; Heverhagen, Johannes; Christe, Andreas

    2016-10-01

    To investigate the detection rate of pulmonary nodules in ultralow-dose CT acquisitions. In this lung phantom study, 232 nodules (115 solid, 117 ground-glass) of different sizes were randomly distributed in a lung phantom in 60 different arrangements. Every arrangement was acquired once with standard radiation dose (100 kVp, 100 references mAs) and once with ultralow radiation dose (80 kVp, 6 mAs). Iterative reconstruction was used with optimized kernels: I30 for ultralow-dose, I70 for standard dose and I50 for CAD. Six radiologists examined the axial 1-mm stack for solid and ground-glass nodules. During a second and third step, three radiologists used maximum intensity projection (MIPs), finally checking with computer-assisted detection (CAD), while the others first used CAD, finally checking with the MIPs. The detection rate was 95.5 % with standard dose (DLP 126 mGy*cm) and 93.3 % with ultralow-dose (DLP: 9 mGy*cm). The additional use of either MIP reconstructions or CAD software could compensate for this difference. A combination of both MIP reconstructions and CAD software resulted in a maximum detection rate of 97.5 % with ultralow-dose. Lung cancer screening with ultralow-dose CT using the same radiation dose as a conventional chest X-ray is feasible. • 93.3 % of all lung nodules were detected with ultralow-dose CT. • A sensitivity of 97.5 % is possible with additional image post-processing. • The radiation dose is comparable to a standard radiography in two planes. • Lung cancer screening with ultralow-dose CT is feasible.

  3. Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features

    PubMed Central

    Lo, P.; Young, S.; Kim, H. J.; Brown, M. S.

    2016-01-01

    Purpose: To investigate the effects of dose level and reconstruction method on density and texture based features computed from CT lung nodules. Methods: This study had two major components. In the first component, a uniform water phantom was scanned at three dose levels and images were reconstructed using four conventional filtered backprojection (FBP) and four iterative reconstruction (IR) methods for a total of 24 different combinations of acquisition and reconstruction conditions. In the second component, raw projection (sinogram) data were obtained for 33 lung nodules from patients scanned as a part of their clinical practice, where low dose acquisitions were simulated by adding noise to sinograms acquired at clinical dose levels (a total of four dose levels) and reconstructed using one FBP kernel and two IR kernels for a total of 12 conditions. For the water phantom, spherical regions of interest (ROIs) were created at multiple locations within the water phantom on one reference image obtained at a reference condition. For the lung nodule cases, the ROI of each nodule was contoured semiautomatically (with manual editing) from images obtained at a reference condition. All ROIs were applied to their corresponding images reconstructed at different conditions. For 17 of the nodule cases, repeat contours were performed to assess repeatability. Histogram (eight features) and gray level co-occurrence matrix (GLCM) based texture features (34 features) were computed for all ROIs. For the lung nodule cases, the reference condition was selected to be 100% of clinical dose with FBP reconstruction using the B45f kernel; feature values calculated from other conditions were compared to this reference condition. A measure was introduced, which the authors refer to as Q, to assess the stability of features across different conditions, which is defined as the ratio of reproducibility (across conditions) to repeatability (across repeat contours) of each feature. Results: The

  4. TU-G-204-09: The Effects of Reduced- Dose Lung Cancer Screening CT On Lung Nodule Detection Using a CAD Algorithm

    SciTech Connect

    Young, S; Lo, P; Kim, G; Hsu, W; Hoffman, J; Brown, M; McNitt-Gray, M

    2015-06-15

    Purpose: While Lung Cancer Screening CT is being performed at low doses, the purpose of this study was to investigate the effects of further reducing dose on the performance of a CAD nodule-detection algorithm. Methods: We selected 50 cases from our local database of National Lung Screening Trial (NLST) patients for which we had both the image series and the raw CT data from the original scans. All scans were acquired with fixed mAs (25 for standard-sized patients, 40 for large patients) on a 64-slice scanner (Sensation 64, Siemens Healthcare). All images were reconstructed with 1-mm slice thickness, B50 kernel. 10 of the cases had at least one nodule reported on the NLST reader forms. Based on a previously-published technique, we added noise to the raw data to simulate reduced-dose versions of each case at 50% and 25% of the original NLST dose (i.e. approximately 1.0 and 0.5 mGy CTDIvol). For each case at each dose level, the CAD detection algorithm was run and nodules greater than 4 mm in diameter were reported. These CAD results were compared to “truth”, defined as the approximate nodule centroids from the NLST reports. Subject-level mean sensitivities and false-positive rates were calculated for each dose level. Results: The mean sensitivities of the CAD algorithm were 35% at the original dose, 20% at 50% dose, and 42.5% at 25% dose. The false-positive rates, in decreasing-dose order, were 3.7, 2.9, and 10 per case. In certain cases, particularly in larger patients, there were severe photon-starvation artifacts, especially in the apical region due to the high-attenuating shoulders. Conclusion: The detection task was challenging for the CAD algorithm at all dose levels, including the original NLST dose. However, the false-positive rate at 25% dose approximately tripled, suggesting a loss of CAD robustness somewhere between 0.5 and 1.0 mGy. NCI grant U01 CA181156 (Quantitative Imaging Network); Tobacco Related Disease Research Project grant 22RT-0131.

  5. Adaptive Statistical Iterative Reconstruction-Applied Ultra-Low-Dose CT with Radiography-Comparable Radiation Dose: Usefulness for Lung Nodule Detection.

    PubMed

    Yoon, Hyun Jung; Chung, Myung Jin; Hwang, Hye Sun; Moon, Jung Won; Lee, Kyung Soo

    2015-01-01

    To assess the performance of adaptive statistical iterative reconstruction (ASIR)-applied ultra-low-dose CT (ULDCT) in detecting small lung nodules. Thirty patients underwent both ULDCT and standard dose CT (SCT). After determining the reference standard nodules, five observers, blinded to the reference standard reading results, independently evaluated SCT and both subsets of ASIR- and filtered back projection (FBP)-driven ULDCT images. Data assessed by observers were compared statistically. Converted effective doses in SCT and ULDCT were 2.81 ± 0.92 and 0.17 ± 0.02 mSv, respectively. A total of 114 lung nodules were detected on SCT as a standard reference. There was no statistically significant difference in sensitivity between ASIR-driven ULDCT and SCT for three out of the five observers (p = 0.678, 0.735, < 0.01, 0.038, and < 0.868 for observers 1, 2, 3, 4, and 5, respectively). The sensitivity of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT in three out of the five observers (p < 0.01 for three observers, and p = 0.064 and 0.146 for two observers). In jackknife alternative free-response receiver operating characteristic analysis, the mean values of figure-of-merit (FOM) for FBP, ASIR-driven ULDCT, and SCT were 0.682, 0.772, and 0.821, respectively, and there were no significant differences in FOM values between ASIR-driven ULDCT and SCT (p = 0.11), but the FOM value of FBP-driven ULDCT was significantly lower than that of ASIR-driven ULDCT and SCT (p = 0.01 and 0.00). Adaptive statistical iterative reconstruction-driven ULDCT delivering a radiation dose of only 0.17 mSv offers acceptable sensitivity in nodule detection compared with SCT and has better performance than FBP-driven ULDCT.

  6. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening.

    PubMed

    Horeweg, Nanda; van Rosmalen, Joost; Heuvelmans, Marjolein A; van der Aalst, Carlijn M; Vliegenthart, Rozemarijn; Scholten, Ernst Th; ten Haaf, Kevin; Nackaerts, Kristiaan; Lammers, Jan-Willem J; Weenink, Carla; Groen, Harry J; van Ooijen, Peter; de Jong, Pim A; de Bock, Geertruida H; Mali, Willem; de Koning, Harry J; Oudkerk, Matthijs

    2014-11-01

    The main challenge in CT screening for lung cancer is the high prevalence of pulmonary nodules and the relatively low incidence of lung cancer. Management protocols use thresholds for nodule size and growth rate to determine which nodules require additional diagnostic procedures, but these should be based on individuals' probabilities of developing lung cancer. In this prespecified analysis, using data from the NELSON CT screening trial, we aimed to quantify how nodule diameter, volume, and volume doubling time affect the probability of developing lung cancer within 2 years of a CT scan, and to propose and evaluate thresholds for management protocols. Eligible participants in the NELSON trial were those aged 50-75 years, who have smoked 15 cigarettes or more per day for more than 25 years, or ten cigarettes or more for more than 30 years and were still smoking, or had stopped smoking less than 10 years ago. Participants were randomly assigned to low-dose CT screening at increasing intervals, or no screening. We included all participants assigned to the screening group who had attended at least one round of screening, and whose results were available from the national cancer registry database. We calculated lung cancer probabilities, stratified by nodule diameter, volume, and volume doubling time and did logistic regression analysis using diameter, volume, volume doubling time, and multinodularity as potential predictor variables. We assessed management strategies based on nodule threshold characteristics for specificity and sensitivity, and compared them to the American College of Chest Physicians (ACCP) guidelines. The NELSON trial is registered at www.trialregister.nl, number ISRCTN63545820. Volume, volume doubling time, and volumetry-based diameter of 9681 non-calcified nodules detected by CT screening in 7155 participants in the screening group of NELSON were used to quantify lung cancer probability. Lung cancer probability was low in participants with a nodule

  7. Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D-CT data and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Flampouri, Stella; Jiang, Steve B.; Sharp, Greg C.; Wolfgang, John; Patel, Abhijit A.; Choi, Noah C.

    2006-06-01

    The purpose of this study is to accurately estimate the difference between the planned and the delivered dose due to respiratory motion and free breathing helical CT artefacts for lung IMRT treatments, and to estimate the impact of this difference on clinical outcome. Six patients with representative tumour motion, size and position were selected for this retrospective study. For each patient, we had acquired both a free breathing helical CT and a ten-phase 4D-CT scan. A commercial treatment planning system was used to create four IMRT plans for each patient. The first two plans were based on the GTV as contoured on the free breathing helical CT set, with a GTV to PTV expansion of 1.5 cm and 2.0 cm, respectively. The third plan was based on the ITV, a composite volume formed by the union of the CTV volumes contoured on free breathing helical CT, end-of-inhale (EOI) and end-of-exhale (EOE) 4D-CT. The fourth plan was based on GTV contoured on the EOE 4D-CT. The prescribed dose was 60 Gy for all four plans. Fluence maps and beam setup parameters of the IMRT plans were used by the Monte Carlo dose calculation engine MCSIM for absolute dose calculation on both the free breathing CT and 4D-CT data. CT deformable registration between the breathing phases was performed to estimate the motion trajectory for both the tumour and healthy tissue. Then, a composite dose distribution over the whole breathing cycle was calculated as a final estimate of the delivered dose. EUD values were computed on the basis of the composite dose for all four plans. For the patient with the largest motion effect, the difference in the EUD of CTV between the planed and the delivered doses was 33, 11, 1 and 0 Gy for the first, second, third and fourth plan, respectively. The number of breathing phases required for accurate dose prediction was also investigated. With the advent of 4D-CT, deformable registration and Monte Carlo simulations, it is feasible to perform an accurate calculation of the

  8. SU-C-202-04: Adapting Biologically Optimized Dose Escalation Based On Mid-Treatment PET/CT for Non-Small-Cell Lung Cancer

    SciTech Connect

    Zhang, P; Kuo, L; Yorke, E; Hu, Y; Lockney, N; Mageras, G; Deasy, J; Rimner, A

    2016-06-15

    Purpose: To develop a biological modeling strategy which incorporates the response observed on the mid-treatment PET/CT into a dose escalation design for adaptive radiotherapy of non-small-cell lung cancer. Method: FDG-PET/CT was acquired midway through standard fractionated treatment and registered to pre-treatment planning PET/CT to evaluate radiation response of lung cancer. Each mid-treatment PET voxel was assigned the median SUV inside a concentric 1cm-diameter sphere to account for registration and imaging uncertainties. For each voxel, the planned radiation dose, pre- and mid-treatment SUVs were used to parameterize the linear-quadratic model, which was then utilized to predict the SUV distribution after the full prescribed dose. Voxels with predicted post-treatment SUV≥2 were identified as the resistant target (response arm). An adaptive simultaneous integrated boost was designed to escalate dose to the resistant target as high as possible, while keeping prescription dose to the original target and lung toxicity intact. In contrast, an adaptive target volume was delineated based only on the intensity of mid-treatment PET/CT (intensity arm), and a similar adaptive boost plan was optimized. The dose escalation capability of the two approaches was compared. Result: Images of three patients were used in this planning study. For one patient, SUV prediction indicated complete response and no necessary dose escalation. For the other two, resistant targets defined in the response arm were multifocal, and on average accounted for 25% of the pre-treatment target, compared to 67% in the intensity arm. The smaller response arm targets led to a 6Gy higher mean target dose in the adaptive escalation design. Conclusion: This pilot study suggests that adaptive dose escalation to a biologically resistant target predicted from a pre- and mid-treatment PET/CT may be more effective than escalation based on the mid-treatment PET/CT alone. More plans and ultimately clinical

  9. Clinical Value of a One-Stop-Shop Low-Dose Lung Screening Combined with (18)F-FDG PET/CT for the Detection of Metastatic Lung Nodules from Colorectal Cancer.

    PubMed

    Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee

    2016-06-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve

  10. Quantitative Features of Liver Lesions, Lung Nodules, and Renal Stones at Multi-Detector Row CT Examinations: Dependency on Radiation Dose and Reconstruction Algorithm.

    PubMed

    Solomon, Justin; Mileto, Achille; Nelson, Rendon C; Roy Choudhury, Kingshuk; Samei, Ehsan

    2016-04-01

    To determine if radiation dose and reconstruction algorithm affect the computer-based extraction and analysis of quantitative imaging features in lung nodules, liver lesions, and renal stones at multi-detector row computed tomography (CT). Retrospective analysis of data from a prospective, multicenter, HIPAA-compliant, institutional review board-approved clinical trial was performed by extracting 23 quantitative imaging features (size, shape, attenuation, edge sharpness, pixel value distribution, and texture) of lesions on multi-detector row CT images of 20 adult patients (14 men, six women; mean age, 63 years; range, 38-72 years) referred for known or suspected focal liver lesions, lung nodules, or kidney stones. Data were acquired between September 2011 and April 2012. All multi-detector row CT scans were performed at two different radiation dose levels; images were reconstructed with filtered back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) algorithms. A linear mixed-effects model was used to assess the effect of radiation dose and reconstruction algorithm on extracted features. Among the 23 imaging features assessed, radiation dose had a significant effect on five, three, and four of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Adaptive statistical iterative reconstruction had a significant effect on three, one, and one of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). MBIR reconstruction had a significant effect on nine, 11, and 15 of the features for liver lesions, lung nodules, and renal stones, respectively (P < .002 for all comparisons). Of note, the measured size of lung nodules and renal stones with MBIR was significantly different than those for the other two algorithms (P < .002 for all comparisons). Although lesion texture was significantly affected by the

  11. Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a retrospective cohort analysis of a randomised, multicentre, diagnostic screening trial.

    PubMed

    Patz, Edward F; Greco, Erin; Gatsonis, Constantine; Pinsky, Paul; Kramer, Barnett S; Aberle, Denise R

    2016-05-01

    Annual low-dose CT screening for lung cancer has been recommended for high-risk individuals, but the necessity of yearly low-dose CT in all eligible individuals is uncertain. This study examined rates of lung cancer in National Lung Screening Trial (NLST) participants who had a negative prevalence (initial) low-dose CT screen to explore whether less frequent screening could be justified in some lower-risk subpopulations. We did a retrospective cohort analysis of data from the NLST, a randomised, multicentre screening trial comparing three annual low-dose CT assessments with three annual chest radiographs for the early detection of lung cancer in high-risk, eligible individuals (aged 55-74 years with at least a 30 pack-year history of cigarette smoking, and, if a former smoker, had quit within the past 15 years), recruited from US medical centres between Aug 5, 2002, and April 26, 2004. Participants were followed up for up to 5 years after their last annual screen. For the purposes of this analysis, our cohort consisted of all NLST participants who had received a low-dose CT prevalence (T0) screen. We determined the frequency, stage, histology, study year of diagnosis, and incidence of lung cancer, as well as overall and lung cancer-specific mortality, and whether lung cancers were detected as a result of screening or within 1 year of a negative screen. We also estimated the effect on mortality if the first annual (T1) screen in participants with a negative T0 screen had not been done. The NLST is registered with ClinicalTrials.gov, number NCT00047385. Our cohort consisted of 26 231 participants assigned to the low-dose CT screening group who had undergone their T0 screen. The 19 066 participants with a negative T0 screen had a lower incidence of lung cancer than did all 26 231 T0-screened participants (371·88 [95% CI 337·97-408·26] per 100 000 person-years vs 661·23 [622·07-702·21]) and had lower lung cancer-related mortality (185·82 [95% CI 162·17

  12. TU-EF-204-08: Dose Efficiency of Added Beam-Shaping Filter with Varied Attenuation Levels in Lung-Cancer Screening CT

    SciTech Connect

    Ma, C; Yu, L; Vrieze, T; Leng, S; Fletcher, J; McCollough, C

    2015-06-15

    Purpose: Added filtration such as tin filter has the potential to improve dose efficiency of x-ray beam in lung-cancer screening CT. However, dose efficiency with added beam filtration is highly dependent on patient attenuation level. In this phantom study, we evaluated the image quality at different tube voltages with and without added tin filter when attenuation level varies. Methods: A 30 x 20 cm anthropomorphic thorax phantom with three added extension rings were used to simulate small (S), medium (M), large (L), and extra-large (XL) adult patients. These phantoms were scanned on a 192-slice CT scanner (Force, Siemens) at 100 and 120kV without tin filtration, and 100 and 150 kV with tin filtration (100Sn and 150Sn), at multiple dose levels at each kV. Images were reconstructed using iterative reconstruction (ADMIRE, Siemens). Radiation dose was measured with a 0.6 cc ion chamber in the middle and peripheral areas of the phantom. Image quality was assessed using mean image noise at uniform areas in the central region and lung. Radiation dose that is required for each kV to match the noise in a routine lung-cancer CT screening technique (120kV, 25 quality reference mAs) was calculated. Results: At each of the four phantom sizes, 100Sn had the lowest noise in both soft tissue and lung. Compared with 120 kV, 100Sn saved 39%–60% dose for the same noise, depending on phantom size. For the XL phantom (50 by 40 cm), 150Sn provided images with the least beam-hardening artifact in peripheral region. Conclusion: For thoracic CT, added tin filtration can provide considerable dose reduction compared with 120 kV. 100Sn provides better dose efficiencies for all phantom sizes, while 150Sn provides better image quality in peripheral region for extra-large patients. Drs.Joel G. Fletcher and Cynthia H. McCollough receive research support from Siemens Healthcare.

  13. TU-F-BRF-03: Effect of Radiation Therapy Planning Scan Registration On the Dose in Lung Cancer Patient CT Scans

    SciTech Connect

    Cunliffe, A; Contee, C; White, B; Justusson, J; Armato, S; Malik, R; Al-Hallaq, H

    2014-06-15

    Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps) using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used

  14. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    SciTech Connect

    Xiang, H; Li, B; Behrman, R; Russo, G; Kachnic, L; Lu, H; Fernando, H

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each density insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.

  15. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial.

    PubMed

    Walter, Joan E; Heuvelmans, Marjolein A; de Jong, Pim A; Vliegenthart, Rozemarijn; van Ooijen, Peter M A; Peters, Robin B; Ten Haaf, Kevin; Yousaf-Khan, Uraujh; van der Aalst, Carlijn M; de Bock, Geertruida H; Mali, Willem; Groen, Harry J M; de Koning, Harry J; Oudkerk, Matthijs

    2016-07-01

    US guidelines now recommend lung cancer screening with low-dose CT for high-risk individuals. Reports of new nodules after baseline screening have been scarce and are inconsistent because of differences in definitions used. We aimed to identify the occurrence of new solid nodules and their probability of being lung cancer at incidence screening rounds in the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON). In the ongoing, multicentre, randomised controlled NELSON trial, between Dec 23, 2003, and July 6, 2006, 15 822 participants who had smoked at least 15 cigarettes a day for more than 25 years or ten cigarettes a day for more than 30 years and were current smokers, or had quit smoking less than 10 years ago, were enrolled and randomly assigned to receive either screening with low-dose CT (n=7915) or no screening (n=7907). From Jan 28, 2004, to Dec 18, 2006, 7557 individuals underwent baseline screening with low-dose CT; 7295 participants underwent second and third screening rounds. We included all participants with solid non-calcified nodules, registered by the NELSON radiologists as new or smaller than 15 mm(3) (study detection limit) at previous screens. Nodule volume was generated semiautomatically by software. We calculated the maximum volume doubling time for nodules with an estimated percentage volume change of 25% or more, representing the minimum growth rate for the time since the previous scan. Lung cancer diagnosis was based on histology, and benignity was based on histology or stable size for at least 2 years. The NELSON trial is registered at trialregister.nl, number ISRCTN63545820. We analysed data for participants with at least one solid non-calcified nodule at the second or third screening round. In the two incidence screening rounds, the NELSON radiologists registered 1222 new solid nodules in 787 (11%) participants. A new solid nodule was lung cancer in 49 (6%) participants with new solid nodules and, in total, 50 lung cancers were

  16. Assessment of Selection Criteria for Low-Dose Lung Screening CT Among Asian Ethnic Groups in Taiwan: From Mass Screening to Specific Risk-Based Screening for Non-Smoker Lung Cancer.

    PubMed

    Wu, Fu-Zong; Huang, Yi-Luan; Wu, Carol C; Tang, En-Kuei; Chen, Chi-Shen; Mar, Guang-Yuan; Yen, Yu; Wu, Ming-Ting

    2016-09-01

    The National Lung Screening Trial (NLST) showed low-dose screening chest computed tomography (CT) reduced the lung cancer mortality rate up to 20% in high-risk patients in the United States. We aimed to investigate the impact of applying the NLST eligibility criteria to the population in Taiwan, and to identify additional risk factors to select subjects at risk for lung cancer. We retrospectively reviewed the medical records of 1763 asymptomatic healthy subjects (age range, 40-80 years) who voluntarily underwent low-dose chest CT (1029 male, 734 female) from August 2013 to August 2014. Clinical information and nodule characteristics were recorded. The results of subsequent follow-up and outcome were also recorded. A total of 8.4% (148/1763) of subjects would have been eligible for lung cancer screening based on the NLST criteria. However, only 1 of these eligible subjects would have a lung cancer detected at baseline. Among the 1615 subjects who did not meet the NLST criteria, the detection rates of lung cancer were 2.6% in women and 0.56% in men. Logistic regression showed that female gender and a family history of lung cancer were the 2 most important predictors of lung cancer in Taiwan (odds ratio, 6.367; P = .003; odds ratio, 3.017; P = .016, respectively). In conclusion, NLST eligibility criteria may not be effective in screening for lung cancer in Taiwan. A risk-based prediction model based on the family history of lung cancer and female gender can potentially improve the efficiency of lung cancer screening programs in Taiwan. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Computer-aided nodule detection and volumetry to reduce variability between radiologists in the interpretation of lung nodules at low-dose screening CT

    PubMed Central

    Jeon, Kyung Nyeo; Goo, Jin Mo; Lee, Chang Hyun; Lee, Youkyung; Choo, Ji Yung; Lee, Nyoung Keun; Shim, Mi-Suk; Lee, In Sun; Kim, Kwang Gi; Gierada, David S.; Bae, Kyongtae T.

    2012-01-01

    Objective To evaluate whether a computer-aided diagnosis (CAD) system improves interobserver agreement in the interpretation of lung nodules at low-dose CT screening for lung cancer. Materials and Methods Baseline low-dose screening CT examinations from 134 participants enrolled in the National Lung Screening Trial were reviewed by seven chest radiologists. All participants consented to the use of their de-identified images for research purposes. Screening results were classified as positive when noncalcified nodules larger than 4 mm in diameter were present. Follow-up evaluation was recommended according to the nodule diameter: ≤ 4 mm; >4–8 mm; > 8 mm. When multiple nodules were present, recommendations were based on the largest nodule. Readers initially assessed the nodule presence visually and measured the average nodule diameter manually. Revision of their decisions after reviewing the CAD marks and size measurement was allowed. Interobserver agreement evaluated using multirater κ statistics was compared between initial assessment and that with CAD. Results Multirater κ values for the positivity of the screening results and follow-up recommendations were improved from moderate (κ=0.53; 0.54) at initial assessment to good (κ=0.66; 0.67) after reviewing CAD results. The average percentage of agreement between reader pairs on the positivity of screening results and follow-up recommendations per case was also increased from 77% and 72% at initial assessment to 84% and 80% with CAD. Conclusion CAD may improve the reader agreement on the positivity of screening results and follow-up recommendations in the assessment of low-dose screening CT. PMID:22717879

  18. Low-dose CT Lung Cancer Screening Practices and Attitudes Among Primary Care Providers at an Academic Medical Center

    PubMed Central

    Lewis, Jennifer A.; Petty, W. Jeffrey; Tooze, Janet A.; Miller, David Philip; Chiles, Caroline; Miller, Antonius A.; Bellinger, Christina; Weaver, Kathryn E.

    2015-01-01

    Background Low-dose computed tomography (LDCT) screening reduces lung cancer-specific and overall mortality. We sought to assess lung cancer screening practices and attitudes among primary care providers (PCPs) in the era of new LDCT screening guidelines. Methods In 2013, we surveyed PCPs at an academic medical center (60% response) and assessed: lung cancer screening use, perceived screening effectiveness, knowledge of screening guidelines, perceived barriers to LDCT use, and interest in LDCT screening education. Results Few PCPs (n=212) reported ordering lung cancer screening: chest x-ray (21%), LDCT (12%), and sputum cytology (3%). Only 47% of providers knew three or more of six guideline components for LDCT screening; 24% did not know any guideline components. In multiple logistic regression analysis, providers who knew three or more guideline components were more likely to order LDCT (OR 7.1, 95% CI 2.0-25.6). Many providers (30%) were unsure of the effectiveness of LDCT. Mammography, colonoscopy, and Pap smear were rated more frequently as effective in reducing cancer mortality compared to LDCT (all p-values < 0.0001). Common perceived barriers included patient cost (86.9% major or minor barrier), harm from false positives (82.7%), patients’ lack of awareness (81.3%), risk of incidental findings (81.3%), and insurance coverage (80.1%). Conclusions LDCT lung cancer screening is currently an uncommon practice at an academic medical center. PCPs report ordering chest x-ray, a non-recommended screening test, more often than LDCT. PCPs had a limited understanding of lung cancer screening guidelines and LDCT effectiveness. Provider educational interventions are needed to facilitate shared-decision making with patients. PMID:25613118

  19. Still equivalent for dose calculation in the Monte Carlo era? A comparison of free breathing and average intensity projection CT datasets for lung SBRT using three generations of dose calculation algorithms.

    PubMed

    Zvolanek, Kristina; Ma, Rongtao; Zhou, Christina; Liang, Xiaoying; Wang, Shuo; Verma, Vivek; Zhu, Xiaofeng; Zhang, Qinghui; Driewer, Joseph; Lin, Chi; Zhen, Weining; Wahl, Andrew; Zhou, Su-Min; Zheng, Dandan

    2017-05-01

    Inhomogeneity dose modeling and respiratory motion description are two critical technical challenges for lung stereotactic body radiotherapy, an important treatment modality for small size primary and secondary lung tumors. Recent studies revealed lung density-dependent target dose differences between Monte Carlo (Type-C) algorithm and earlier algorithms. Therefore, this study aimed to investigate the equivalence of the two most popular CT datasets for treatment planning, free breathing (FB) and average intensity projection (AIP) CTs, using Type-C algorithms, and comparing with two older generation algorithms (Type-A and Type-B). Twenty patients (twenty-one lesions) were planned using a Type-A algorithm on the FB CT. Lung was contoured separately on FB and AIP CTs and compared. Dose comparison was obtained between the two CTs using four commercial dose algorithms including one Type-A (Pencil Beam Convolution - PBC), one Type-B (Analytical Anisotropic Algorithm - AAA), and two Type-C algorithms (Voxel Monte Carlo - VMC and Acuros External Beam - AXB). For each algorithm, the dosimetric parameters of the target (PTV, Dmin , Dmax , Dmean , D95, and D90) and lung (V5, V10, V20, V30, V35, and V40) were compared between the two CTs using the Wilcoxon signed rank test. Correlation between dosimetric differences and density differences for each algorithm were studied using linear regression and Spearman correlation, in which both global and local density differences were evaluated. Although the lung density differences on FB and AIP CTs were statistically significant (P = 0.003), the magnitude was small at 1.21 ± 1.45%. Correspondingly, for the two Type-C algorithms, target and lung dosimetric differences were small in magnitude and statistically insignificant (P > 0.05) for all but one instance, similar to the findings for the older generation algorithms. Nevertheless, a significant correlation was shown between the dosimetric and density differences for Type-C and Type

  20. Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer Screening Trial.

    PubMed

    Brain, Kate; Carter, Ben; Lifford, Kate J; Burke, Olivia; Devaraj, Anand; Baldwin, David R; Duffy, Stephen; Field, John K

    2017-10-01

    Smoking cessation was examined among high-risk participants in the UK Lung Cancer Screening (UKLS) Pilot Trial of low-dose CT screening. High-risk individuals aged 50-75 years who completed baseline questionnaires were randomised to CT screening (intervention) or usual care (no screening control). Smoking habit was determined at baseline using self-report. Smokers were asked whether they had quit smoking since joining UKLS at T1 (2 weeks after baseline scan results or control assignment) and T2 (up to 2 years after recruitment). Intention-to-treat (ITT) regression analyses were undertaken, adjusting for baseline lung cancer distress, trial site and sociodemographic variables. Of a total 4055 individuals randomised to CT screening or control, 1546 were baseline smokers (759 intervention, 787 control). Smoking cessation rates were 8% (control n=36/479) versus 14% (intervention n=75/527) at T1 and 21% (control n=79/377) versus 24% (intervention n=115/488) at T2. ITT analyses indicated that the odds of quitting among screened participants were significantly higher at T1 (adjusted OR (aOR) 2.38, 95% CI 1.56 to 3.64, p<0.001) and T2 (aOR 1.60, 95% CI 1.17 to 2.18, p=0.003) compared with control. Intervention participants who needed additional clinical investigation were more likely to quit in the longer term compared with the control group (aOR 2.29, 95% CI 1.62 to 3.22, p=0.007) and those receiving a negative result (aOR 2.43, 95% CI 1.54 to 3.84, p<0.001). CT lung cancer screening for high-risk participants presents a teachable moment for smoking cessation, especially among those who receive a positive scan result. Further behavioural research is needed to evaluate optimal strategies for integrating smoking cessation intervention with stratified lung cancer screening. Results, ISRCTN 78513845. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. A multiscale Laplacian of Gaussian filtering approach to automated pulmonary nodule detection from whole-lung low-dose CT scans

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    The primary stage of a pulmonary nodule detection system is typically a candidate generator that efficiently provides the centroid location and size estimate of candidate nodules. A scale-normalized Laplacian of Gaussian (LOG) filtering method presented in this paper has been found to provide high sensitivity along with precise locality and size estimation. This approach involves a computationally efficient algorithm that is designed to identify all solid nodules in a whole lung anisotropic CT scan. This nodule candidate generator has been evaluated in conjunction with a set of discriminative features that target both isolated and attached nodules. The entire detection system was evaluated with respect to a sizeenriched dataset of 656 whole-lung low-dose CT scans containing 459 solid nodules with diameter greater than 4 mm. Using a soft margin SVM classifier, and setting false positive rate of 10 per scan, we obtained a sensitivity of 97% for isolated, 93% for attached, and 89% for both nodule types combined. Furthermore, the LOG filter was shown to have good agreement with the radiologist ground truth for size estimation.

  2. Identification of early-stage usual interstitial pneumonia from low-dose chest CT scans using fractional high-density lung distribution

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Salvatore, Mary; Liu, Shuang; Jirapatnakul, Artit; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2017-03-01

    A fully-automated computer algorithm has been developed to identify early-stage Usual Interstitial Pneumonia (UIP) using features computed from low-dose CT scans. In each scan, the pre-segmented lung region is divided into N subsections (N = 1, 8, 27, 64) by separating the lung from anterior/posterior, left/right and superior/inferior in 3D space. Each subsection has approximately the same volume. In each subsection, a classic density measurement (fractional high-density volume h) is evaluated to characterize the disease severity in that subsection, resulting in a feature vector of length N for each lung. Features are then combined in two different ways: concatenation (2*N features) and taking the maximum in each of the two corresponding subsections in the two lungs (N features). The algorithm was evaluated on a dataset consisting of 51 UIP and 56 normal cases, a combined feature vector was computed for each case and an SVM classifier (RBF kernel) was used to classify them into UIP or normal using ten-fold cross validation. A receiver operating characteristic (ROC) area under the curve (AUC) was used for evaluation. The highest AUC of 0.95 was achieved by using concatenated features and an N of 27. Using lung partition (N = 27, 64) with concatenated features had significantly better result over not using partitions (N = 1) (p-value < 0.05). Therefore this equal-volume partition fractional high-density volume method is useful in distinguishing early-stage UIP from normal cases.

  3. Estimation of non-solid lung nodule volume with low-dose CT protocols: effect of reconstruction algorithm and measurement method

    NASA Astrophysics Data System (ADS)

    Gavrielides, Marios A.; DeFilippo, Gino; Berman, Benjamin P.; Li, Qin; Petrick, Nicholas; Schultz, Kurt; Siegelman, Jenifer

    2017-03-01

    Computed tomography is primarily the modality of choice to assess stability of nonsolid pulmonary nodules (sometimes referred to as ground-glass opacity) for three or more years, with change in size being the primary factor to monitor. Since volume extracted from CT is being examined as a quantitative biomarker of lung nodule size, it is important to examine factors affecting the performance of volumetric CT for this task. More specifically, the effect of reconstruction algorithms and measurement method in the context of low-dose CT protocols has been an under-examined area of research. In this phantom study we assessed volumetric CT with two different measurement methods (model-based and segmentation-based) for nodules with radiodensities of both nonsolid (-800HU and -630HU) and solid (-10HU) nodules, sizes of 5mm and 10mm, and two different shapes (spherical and spiculated). Imaging protocols included CTDIvol typical of screening (1.7mGy) and sub-screening (0.6mGy) scans and different types of reconstruction algorithms across three scanners. Results showed that radio-density was the factor contributing most to overall error based on ANOVA. The choice of reconstruction algorithm or measurement method did not affect substantially the accuracy of measurements; however, measurement method affected repeatability with repeatability coefficients ranging from around 3-5% for the model-based estimator to around 20-30% across reconstruction algorithms for the segmentation-based method. The findings of the study can be valuable toward developing standardized protocols and performance claims for nonsolid nodules.

  4. Assessment of lung tumor response by perfusion CT.

    PubMed

    Coche, E

    2013-01-01

    Perfusion CT permits evaluation of lung cancer angiogenesis and response to therapy by demonstrating alterations in lung tumor vascularity. It is advocated that perfusion CT performed shortly after initiating therapy may provide a better evaluation of physiological changes rather than the conventional size assessment obtained with RECIST. The radiation dose,the volume of contrast medium delivered to the patient and the reproducibility of blood flow parameters remain an issue for this type of investigation.

  5. Reliability analysis of visual ranking of coronary artery calcification on low-dose CT of the thorax for lung cancer screening: comparison with ECG-gated calcium scoring CT.

    PubMed

    Kim, Yoon Kyung; Sung, Yon Mi; Cho, So Hyun; Park, Young Nam; Choi, Hye-Young

    2014-12-01

    Coronary artery calcification (CAC) is frequently detected on low-dose CT (LDCT) of the thorax. Concurrent assessment of CAC and lung cancer screening using LDCT is beneficial in terms of cost and radiation dose reduction. The aim of our study was to evaluate the reliability of visual ranking of positive CAC on LDCT compared to Agatston score (AS) on electrocardiogram (ECG)-gated calcium scoring CT. We studied 576 patients who were consecutively registered for health screening and undergoing both LDCT and ECG-gated calcium scoring CT. We excluded subjects with an AS of zero. The final study cohort included 117 patients with CAC (97 men; mean age, 53.4 ± 8.5). AS was used as the gold standard (mean score 166.0; range 0.4-3,719.3). Two board-certified radiologists and two radiology residents participated in an observer performance study. Visual ranking of CAC was performed according to four categories (1-10, 11-100, 101-400, and 401 or higher) for coronary artery disease risk stratification. Weighted kappa statistics were used to measure the degree of reliability on visual ranking of CAC on LDCT. The degree of reliability on visual ranking of CAC on LDCT compared to ECG-gated calcium scoring CT was excellent for board-certified radiologists and good for radiology residents. A high degree of association was observed with 71.6% of visual rankings in the same category as the Agatston category and 98.9% varying by no more than one category. Visual ranking of positive CAC on LDCT is reliable for predicting AS rank categorization.

  6. Initial experience of dual-energy lung perfusion CT using a dual-source CT system in children.

    PubMed

    Goo, Hyun Woo

    2010-09-01

    Initial experience of dual-source dual-energy (DE) lung perfusion CT in children is described. In addition to traditional identification of pulmonary emboli, the assessment of lung perfusion is technically feasible with dual-source DE CT in children with acceptable radiation dose. This article describes how to perform dual-source DE lung perfusion CT in children, including the optimization of intravenous injection method and CT dose parameters. How to produce weighted-average CT images for the assessment of pulmonary emboli and colour-coded perfusion maps for the assessment of regional lung perfusion is also detailed. Lung perfusion status can then be evaluated on perfusion maps by means of either qualitative or quantitative analysis. Potential advantages and disadvantages of this emerging CT technique compared to lung perfusion scintigraphy and cardiac MRI are discussed.

  7. Organ doses to adult patients for chest CT

    SciTech Connect

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer; Schoepf, U. Joseph

    2010-02-15

    Purpose: The goal of this study was to estimate organ doses for chest CT examinations using volume computed tomography dose index (CTDI{sub vol}) data as well as accounting for patient weight. Methods: A CT dosimetry spreadsheet (ImPACT CT patient dosimetry calculator) was used to compute organ doses for a 70 kg patient undergoing chest CT examinations, as well as volume computed tomography dose index (CTDI{sub vol}) in a body CT dosimetry phantom at the same CT technique factors. Ratios of organ dose to CTDI{sub vol} (f{sub organ}) were generated as a function of anatomical location in the chest for the breasts, lungs, stomach, red bone marrow, liver, thyroid, liver, and thymus. Values of f{sub organ} were obtained for x-ray tube voltages ranging from 80 to 140 kV for 1, 4, 16, and 64 slice CT scanners from two vendors. For constant CT techniques, we computed ratios of dose in water phantoms of differing diameter. By modeling patients of different weights as equivalent water cylinders of different diameters, we generated factors that permit the estimation of the organ doses in patients weighing between 50 and 100 kg who undergo chest CT examinations relative to the corresponding organ doses received by a 70 kg adult. Results: For a 32 cm long CT scan encompassing the complete lungs, values of f{sub organ} ranged from 1.7 (thymus) to 0.3 (stomach). Organs that are directly in the x-ray beam, and are completely irradiated, generally had f{sub organ} values well above 1 (i.e., breast, lung, heart, and thymus). Organs that are not completely irradiated in a total chest CT scan generally had f{sub organ} values that are less than 1 (e.g., red bone marrow, liver, and stomach). Increasing the x-ray tube voltage from 80 to 140 kV resulted in modest increases in f{sub organ} for the heart (9%) and thymus (8%), but resulted in larger increases for the breast (19%) and red bone marrow (21%). Adult patient chests have been modeled by water cylinders with diameters between

  8. Dual-energy lung perfusion and ventilation CT in children.

    PubMed

    Goo, Hyun Woo

    2013-03-01

    Dual-energy thoracic CT provides two key insights into lung physiology, i.e. regional perfusion and ventilation, and has been actively investigated to find clinically relevant applications since the introduction of dual-source CT. This functional information provided by dual-energy thoracic CT is supplementary because high-resolution thoracic anatomy is entirely preserved on dual-energy thoracic CT. In addition, virtual non-contrast imaging can omit pre-contrast scanning. In this respect, dual-energy CT imaging technique is at least dose-neutral, which is a critical requirement for paediatric imaging. In this review, imaging protocols, analysis methods, clinical applications and diagnostic pitfalls of dual-energy thoracic CT for evaluating lung perfusion and ventilation in children are described.

  9. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography.

    PubMed

    Saltybaeva, Natalia; Martini, Katharina; Frauenfelder, Thomas; Alkadhi, Hatem

    2016-01-01

    Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients' lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100'000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation.

  10. Organ Dose and Attributable Cancer Risk in Lung Cancer Screening with Low-Dose Computed Tomography

    PubMed Central

    Saltybaeva, Natalia; Martini, Katharina; Frauenfelder, Thomas; Alkadhi, Hatem

    2016-01-01

    Purpose Lung cancer screening with CT has been recently recommended for decreasing lung cancer mortality. The radiation dose of CT, however, must be kept as low as reasonably achievable for reducing potential stochastic risks from ionizing radiation. The purpose of this study was to calculate individual patients’ lung doses and to estimate cancer risks in low-dose CT (LDCT) in comparison with a standard dose CT (SDCT) protocol. Materials and Methods This study included 47 adult patients (mean age 63.0 ± 5.7 years) undergoing chest CT on a third-generation dual-source scanner. 23/47 patients (49%) had a non-enhanced chest SDCT, 24 patients (51%) underwent LDCT at 100 kVp with spectral shaping at a dose equivalent to a chest x-ray. 3D-dose distributions were obtained from Monte Carlo simulations for each patient, taking into account their body size and individual CT protocol. Based on the dose distributions, patient-specific lung doses were calculated and relative cancer risk was estimated according to BEIR VII recommendations. Results As compared to SDCT, the LDCT protocol allowed for significant organ dose and cancer risk reductions (p<0.001). On average, lung dose was reduced from 7.7 mGy to 0.3 mGy when using LDCT, which was associated with lowering of the cancer risk from 8.6 to 0.35 per 100’000 cases. A strong linear correlation between lung dose and patient effective diameter was found for both protocols (R2 = 0.72 and R2 = 0.75 for SDCT and LDCT, respectively). Conclusion Use of a LDCT protocol for chest CT with a dose equivalent to a chest x-ray allows for significant lung dose and cancer risk reduction from ionizing radiation. PMID:27203720

  11. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  12. Coronary CT angiography with low radiation dose.

    PubMed

    Xu, Lei; Zhang, Zhaoqi

    2010-02-01

    With the introduction of 64-slice CT and dual-source CT technology, coronary CT angiography(CCTA) has emerged as a useful diagnostic imaging modality for the noninvasive assessment of coronary heart disease. Recently, the risks associated with ionizing radiation on CT have raised serious concerns.The main concern of exposure to ionizing radiation is the potential risk of cancer. CCTA involves much higher radiation dose with the advances in the spatial and temporal resolution of cardiac CT. Currently,various dose-saving algorithms, such as ECG (electrocardiography)-based dose modulation, reduced tube voltage, and prospective ECG gating, high-pitch helical scanning are available to lower radiation exposure during cardiac CT. Therefore, careful selection of CT scanning protocols is needed to keep the radiation exposure 'as low as reasonably achievable (ALARA)'. In this review we will discuss the radiation dose safety issues, the measurement of radiation dose and current use of dose-saving techniques in CCTA.

  13. Development of Quantitative CT Lung Protocols

    PubMed Central

    Newell, John D; Sieren, Jered; Hoffman, Eric A.

    2013-01-01

    The purpose of this paper is to review the process of developing optimal CT protocols for quantitative lung CT. This will include discussions of the following important topics; QCT derived metrics of lung disease, QCT scanning protocols and quality control and QCT image processing software. We will briefly discuss several QCT derived metrics of lung disease that have been developed for the assessment of emphysema, small airway disease and large airway disease. The CT scanning protocol is one of the most important elements of successfully performing QCT. We will provide a detailed description of the current thinking on optimizing the QCT protocol for the assessment of COPD and Asthma. Quality control of the CT images is also a very important part of the QCT process and we will discuss why it is necessary to use CT scanner test objects (phantoms) to provide frequent periodic checks on the CT scanner calibration to assure precise and accurate CT numbers are obtained. We will discuss the use of quantitative CT image processing software to segment the lung and extract the desired QCT metrics of lung disease. We will discuss the practical issues of using this software. The data obtained from the image processing software is then combined with other clinical information, health status questionnaires, pulmonary physiology and genomic data to increase our understanding of obstructive lung disease and to improve our ability to design new therapies for these diseases. PMID:23934142

  14. Pediatric CT: Strategies to Lower Radiation Dose

    PubMed Central

    Zacharias, Claudia; Alessio, Adam M.; Otto, Randolph K.; Iyer, Ramesh S.; Philips, Grace S.; Swanson, Jonathan O.; Thapa, Mahesh M.

    2016-01-01

    OBJECTIVE The introduction of MDCT has increased the utilization of CT in pediatric radiology along with concerns for radiation sequelae. This article reviews general principles of lowering radiation dose, the basic physics that impact radiation dose, and specific CT integrated dose-reduction tools focused on the pediatric population. CONCLUSION The goal of this article is to provide a comprehensive review of the recent literature regarding CT dose reduction methods, their limitations, and an outlook on future developments with a focus on the pediatric population. The discussion will initially focus on general considerations that lead to radiation dose reduction, followed by specific technical features that influence the radiation dose. PMID:23617474

  15. Nutrient intake and nutrient patterns and risk of lung cancer among heavy smokers: results from the COSMOS screening study with annual low-dose CT.

    PubMed

    Gnagnarella, Patrizia; Maisonneuve, Patrick; Bellomi, Massimo; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Palli, Domenico; Veronesi, Giulia

    2013-06-01

    The role of nutrients in lung cancer aetiology remains controversial and has never been evaluated in the context of screening. Our aim was to investigate the role of single nutrients and nutrient patterns in the aetiology of lung cancer in heavy smokers. Asymptomatic heavy smokers (≥20 pack-years) were invited to undergo annual low-dose computed tomography. We assessed diet using a self-administered food frequency questionnaire and collected information on multivitamin supplement use. We performed principal component analysis identifying four nutrient patterns and used Cox proportional Hazards regression to assess the association between nutrients and nutrients patterns and lung cancer risk. During a mean follow-up of 5.7 years, 178 of 4,336 participants were diagnosed with lung cancer by screening. We found a significant risk reduction of lung cancer with increasing vegetable fat consumption (HR for highest vs. lowest quartile = 0.50, 95% CI = 0.31-0.80; P-trend = 0.02). Participants classified in the high "vitamins and fiber" pattern score had a significant risk reduction of lung cancer (HR = 0.57; 95% CI = 0.36-0.90, P-trend = 0.01). Among heavy smokers enrolled in a screening trial, high vegetable fat intake and adherence to the "vitamin and fiber" nutrient pattern were associated with reduced lung cancer incidence.

  16. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  17. Visual anatomical lung CT scan assessment of lung recruitability.

    PubMed

    Chiumello, Davide; Marino, Antonella; Brioni, Matteo; Menga, Federica; Cigada, Irene; Lazzerini, Marco; Andrisani, Maria C; Biondetti, Pietro; Cesana, Bruno; Gattinoni, Luciano

    2013-01-01

    The computation of lung recruitability in acute respiratory distress syndrome (ARDS) is advocated to set positive end-expiratory pressure (PEEP) for preventing lung collapse. The quantitative lung CT scan, obtained by manual image processing, is the reference method but it is time consuming. The aim of this study was to evaluate the accuracy of a visual anatomical analysis compared with a quantitative lung CT scan analysis in assessing lung recruitability. Fifty sets of two complete lung CT scans of ALI/ARDS patients computing lung recruitment were analyzed. Lung recruitability computed at an airway pressure of 5 and 45 cm H(2)O was defined as the percentage decrease in the collapsed/consolidated lung parenchyma assessed by two expert radiologists using a visual anatomical analysis and as the decrease in not aerated lung regions using a quantitative analysis computed by dedicated software. Lung recruitability was 11.3 % (interquartile range 7.39-16.41) and 15.5 % (interquartile range 8.18-21.43) with the visual anatomical and quantitative analysis, respectively. In the Bland-Altman analysis, the bias and agreement bands between the visual anatomical and quantitative analysis were -2.9 % (-11.8 to +5.9 %). The ROC curve showed that the optimal cutoff values for the visual anatomical analysis in predicting high versus low lung recruitability was 8.9 % (area under the ROC curve 0.9248, 95 % CI 0.8550-0.9946). Considering this cutoff, the sensitivity, specificity, and diagnostic accuracy were 0.96, 0.76, and 0.86, respectively. Visual anatomical analysis can classify patients into those with high and low lung recruitability allowing more intensivists to get access to lung recruitability assessment.

  18. Doses metrics and patient age in CT.

    PubMed

    Huda, Walter; Tipnis, Sameer V

    2016-03-01

    The aim of this study was to investigate how effective dose and size-specific dose estimate (SSDE) change with patient age (size) for routine head and abdominal/pelvic CT examinations. Heads and abdomens of patients were modelled as a mass-equivalent cylinder of water corresponding to the patient 'effective diameter'. Head CT scans were performed at CTDIvol(S) of 40 mGy, and abdominal CT scans were performed at CTDIvol(L) of 10 mGy. Values of SSDE were obtained using conversion factors in AAPM Task Group Report 204. Age-specific scan lengths for head and abdominal CT scans obtained from the authors' clinical practice were used to estimate the dose-length product for each CT examination. Effective doses were calculated from previously published age- and sex-specific E/DLP conversion factors, based on ICRP 103 organ-weighting factors. For head CT examinations, the scan length increased from 15 cm in a newborn to 20 cm in adults, and for an abdominal/pelvic CT, the scan length increased from 20 cm in a newborn to 45 cm in adults. For head CT scans, SSDE ranged from 37.2 mGy in adults to 48.8 mGy in a newborn, an increase of 31 %. The corresponding head CT effective doses range from 1.4 mSv in adults to 5.2 mSv in a newborn, an increase of 270 %. For abdomen CT scans, SSDE ranged from 13.7 mGy in adults to 23.0 mGy in a newborn, an increase of 68 %. The corresponding abdominal CT effective doses ranged from 6.3 mSv in adults to 15.4 mSv in a newborn, an increase of 140 %. SSDE increases much less than effective dose in paediatric patients compared with adults because it does not account for scan length or scattered radiation. Size- and age-specific effective doses better quantify the total radiation received by patients in CT by explicitly accounting for all organ doses, as well as their relative radio sensitivity.

  19. Efficacy of high-pitch CT protocols for radiation dose reduction.

    PubMed

    Guberina, N; Lechel, U; Forsting, M; Ringelstein, A

    2016-12-01

    Various strategies have been developed to reduce radiation exposure of patients in CT examinations. The aim of this study was to evaluate the efficacy of high pitch in representative CT protocols examining lung embolism. We performed thermoluminescence measurements with an anthropomorphic phantom exposing it to CT algorithms for lung embolism in a 128-multislice, dual-source CT scanner: a standard CT protocol (sCT) and a CT protocol with a high pitch (+ F). Radiation doses for both CT algorithms were compared and the dose reduction potential of high pitch for individual organs was evaluated. As expected, the  +F mode reduced the effective dose and organ doses in the primary beam of radiation (namely, lung, bone marrow, heart, breast, skin and skeleton) compared with sCT by up to 52% for an equivalent image quality. On the contrary, for organs at the margin of the primary beam (thymus, thyroid, liver, pancreas, kidneys, colon and small intestine), the  +F mode reduced effective radiation doses by only 0-30%, compared with sCT. The dose reduction potential of the  +F mode greatly depends on the position of the organ in the scan field. While for organs in the primary beam  + F leads to a considerable dose reduction, it is less effective for tissues at the margin of the scanned area.

  20. Strategies for reducing radiation dose in CT.

    PubMed

    McCollough, Cynthia H; Primak, Andrew N; Braun, Natalie; Kofler, James; Yu, Lifeng; Christner, Jodie

    2009-01-01

    In recent years, the media has focused on the potential danger of radiation exposure from CT, even though the potential benefit of a medically indicated CT far outweighs the potential risks. This attention has reminded the radiology community that doses must be as low as reasonably achievable (ALARA) while maintaining diagnostic image quality. To satisfy the ALARA principle, the dose reduction strategies described in this article must be well understood and properly used. The use of CT must also be justified for the specific diagnostic task.

  1. Computing effective dose in cardiac CT

    NASA Astrophysics Data System (ADS)

    Huda, Walter; Tipnis, Sameer; Sterzik, Alexander; Schoepf, U. Joseph

    2010-07-01

    We present a method of estimating effective doses in cardiac CT that accounts for selected techniques (kV mAs-1), anatomical location of the scan and patient size. A CT dosimetry spreadsheet (ImPACT CT Patient Dosimetry Calculator) was used to estimate effective doses (E) using ICRP 103 weighting factors for a 70 kg patient undergoing cardiac CT examinations. Using dose length product (DLP) for the same scans, we obtained values of E/DLP for three CT scanners used in cardiac imaging from two vendors. E/DLP ratios were obtained as a function of the anatomical location in the chest and for x-ray tube voltages ranging from 80 to 140 kV. We also computed the ratio of the average absorbed dose in a water cylinder modeling a patient weighing W kg to the corresponding average absorbed dose in a water cylinder equivalent to a 70 kg patient. The average E/DLP for a 16 cm cardiac heart CT scan was 26 µSv (mGy cm)-1, which is about 70% higher than the current E/DLP values used for chest CT scans (i.e. 14-17 µSv (mGy cm)-1). Our cardiac E/DLP ratios are higher because the cardiac region is ~30% more radiosensitive than the chest, and use of the ICRP 103 tissue weighting factors increases cardiac CT effective doses by ~30%. Increasing the x-ray tube voltage from 80 to 140 kV increases the E/DLP conversion factor for cardiac CT by 17%. For the same incident radiation at 120 kV, doses in 45 kg adults were ~22% higher than those in 70 kg adults, whereas doses in 120 kg adults were ~28% lower. Accurate estimates of the patient effective dose in cardiac CT should use ICRP 103 tissue weighting factors, and account for a choice of scan techniques (kV mAs-1), exposed scan region, as well as patient size.

  2. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  3. CT radiation dose awareness among paediatricians.

    PubMed

    Al-Rammah, Tamader Y

    2016-08-31

    The radiation dose delivered from computed tomography (CT) scanning and the risks associated with ionising radiation are major concerns in paediatric imaging. Compared to adults, children have increased organ sensitivity and a longer expected lifetime in which cancer may develop. Therefore, it is important to investigate the awareness of paediatricians (referring physicians) regarding radiation doses and the associated risks. A multiple-choice survey was distributed among paediatricians in 8 hospitals in Riyadh, the capital of Saudi Arabia. Among the 162 respondents, only 24 (15 %) were aware of the As Low As Reasonably Achievable (ALARA) principle. Approximately half (54 %) of the respondents believed that multi-slice CT delivered a low radiation dose, and 100 (62 %) of the respondents were not aware that radiation is considered carcinogenic by the Food and Drug Administration in the United States. Among the respondents, 110 (68 %) did not have any specific education regarding radiation during their training. There was an overall underestimation (83 %) of the CT radiation dose, and 70 % thought that magnetic resonance imaging (MRI) delivered some level of ionising radiation. Among paediatricians in Saudi Arabian hospitals, there was a wide underestimation of the CT radiation dose and the associated risks for children. We should improve paediatricians' knowledge about radiation doses. Radiologists, paediatricians, radiation technologists and medical physicists should work together to optimise CT guidelines and protocols to reduce the radiation risks for children.

  4. [Dose and time dependency of "CT clearance"].

    PubMed

    Kaltenborn, H A; Klose, K J; Dexheimer, C; von Steinijans

    1989-06-01

    The contrast medium dose used in CT renal function analysis corresponds to about 1 ml/kg body weight at a measurement interval of 5 or 10 minutes. In the present study the dependence of "CT clearance" on dosage and time was examined in 12 healthy subjects. The amount of clearance was directly proportional to the employed contrast medium dose and to the length of the measurement interval. On account of the superior signal-to-noise ratio, the higher dose (1 ml/kg body weight) will continue to be preferred in future. The measurement interval can be limited to 10 minutes.

  5. Dosimetric evaluation of synthetic CT for magnetic resonance-only based radiotherapy planning of lung cancer.

    PubMed

    Wang, Hesheng; Chandarana, Hersh; Block, Kai Tobias; Vahle, Thomas; Fenchel, Matthias; Das, Indra J

    2017-06-26

    Interest in MR-only treatment planning for radiation therapy is growing rapidly with the emergence of integrated MRI/linear accelerator technology. The purpose of this study was to evaluate the feasibility of using synthetic CT images generated from conventional Dixon-based MRI scans for radiation treatment planning of lung cancer. Eleven patients who underwent whole-body PET/MR imaging following a PET/CT exam were randomly selected from an ongoing prospective IRB-approved study. Attenuation maps derived from the Dixon MR Images and atlas-based method was used to create CT data (synCT). Treatment planning for radiation treatment of lung cancer was optimized on the synCT and subsequently copied to the registered CT (planCT) for dose calculation. Planning target volumes (PTVs) with three sizes and four different locations in the lung were planned for irradiation. The dose-volume metrics comparison and 3D gamma analysis were performed to assess agreement between the synCT and CT calculated dose distributions. Mean differences between PTV doses on synCT and CT across all the plans were -0.1% ± 0.4%, 0.1% ± 0.5%, and 0.4% ± 0.5% for D95, D98 and D100, respectively. Difference in dose between the two datasets for organs at risk (OARs) had average differences of -0.14 ± 0.07 Gy, 0.0% ± 0.1%, and -0.1% ± 0.2% for maximum spinal cord, lung V20, and heart V40 respectively. In patient groups based on tumor size and location, no significant differences were observed in the PTV and OARs dose-volume metrics (p > 0.05), except for the maximum spinal-cord dose when the target volumes were located at the lung apex (p = 0.001). Gamma analysis revealed a pass rate of 99.3% ± 1.1% for 2%/2 mm (dose difference/distance to agreement) acceptance criteria in every plan. The synCT generated from Dixon-based MRI allows for dose calculation of comparable accuracy to the standard CT for lung cancer treatment planning. The dosimetric agreement

  6. Analytical modelling of regional radiotherapy dose response of lung

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu; Stroian, Gabriela; Kopek, Neil; AlBahhar, Mahmood; Seuntjens, Jan; El Naqa, Issam

    2012-06-01

    Knowledge of the dose-response of radiation-induced lung disease (RILD) is necessary for optimization of radiotherapy (RT) treatment plans involving thoracic cavity irradiation. This study models the time-dependent relationship between local radiation dose and post-treatment lung tissue damage measured by computed tomography (CT) imaging. Fifty-eight follow-up diagnostic CT scans from 21 non-small-cell lung cancer patients were examined. The extent of RILD was segmented on the follow-up CT images based on the increase of physical density relative to the pre-treatment CT image. The segmented RILD was locally correlated with dose distribution calculated by analytical anisotropic algorithm and the Monte Carlo method to generate the corresponding dose-response curves. The Lyman-Kutcher-Burman (LKB) model was fit to the dose-response curves at six post-RT time periods, and temporal change in the LKB parameters was recorded. In this study, we observed significant correlation between the probability of lung tissue damage and the local dose for 96% of the follow-up studies. Dose-injury correlation at the first three months after RT was significantly different from later follow-up periods in terms of steepness and threshold dose as estimated from the LKB model. Dependence of dose response on superior-inferior tumour position was also observed. The time-dependent analytical modelling of RILD might provide better understanding of the long-term behaviour of the disease and could potentially be applied to improve inverse treatment planning optimization.

  7. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  8. Patient doses from CT examinations in Turkey

    PubMed Central

    Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi

    2015-01-01

    PURPOSE We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. METHODS CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). RESULTS The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. CONCLUSION The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey. PMID:26133189

  9. Lung and Heart Dose Variability During Radiation Therapy of Non-Small Cell Lung Cancer.

    PubMed

    Jan, Nuzhat; Guy, Christopher; Reshko, Leonid B; Hugo, Geoffrey D; Weiss, Elisabeth

    2017-07-01

    To investigate the hypothesis that positional and anatomic variations during radiation therapy induce changes in lung and heart volumes and associated radiation doses. In this longitudinal investigation, variations in lung and heart volumes and standard dose parameters of mean lung dose, lung V20Gy, mean heart dose, and heart V40Gy were analyzed on weekly 4-dimensional CT scans of 15 lung cancer patients during conventionally fractionated radiochemotherapy. Tumor, individual lung lobes, and heart were delineated on the mid-ventilation phase of weekly 4-dimensional CT scans. Lung lobes and heart were also contoured on individual breathing phases of pre-, mid-, and end-of-treatment scans. Planning dose was transferred to consecutive scans via rigid registration. Volume and dose variations were assessed relative to the initial planning scan. Interfraction lung volume variability relative to week 0 was twice as large as tidal volume variability (8.0% ± 5.3% vs 4.0% ± 3.3%, P=.003). Interfraction lung volume variation ranged between 0.8% and 17.1% for individual patient means. Lower lung lobes had larger volume variability compared with upper lobes (13.5% ± 8.1% vs 7.0% ± 5.0%, P<.00001). Average mean lung dose variation was 0.5 Gy (range, 0.2-1.0 Gy for individual patient means) and average lung V20Gy variation 0.9% (range, 0.2%-1.6%). Average heart volume variation was 7.2% (range, 3.4%-12.6%). Average mean heart dose variation was 1.2 Gy (range, 0.1-3.0 Gy) and average heart V40Gy variation 1.4% (range, 0%-4.2%). Anatomic and positional variations during radiation therapy induce changes in radiation doses to lung and heart. Repeated lung and heart dose assessment will provide a better estimate of the actual delivered dose and will improve prediction models for normal tissue toxicity, if assessed in larger cohorts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mass preserving registration for lung CT

    NASA Astrophysics Data System (ADS)

    Gorbunova, Vladlena; Lo, Pechin; Loeve, Martine; Tiddens, Harm A.; Sporring, Jon; Nielsen, Mads; de Bruijne, Marleen

    2009-02-01

    In this paper, we evaluate a novel image registration method on a set of expiratory-inspiratory pairs of computed tomography (CT) lung scans. A free-form multi resolution image registration technique is used to match two scans of the same subject. To account for the differences in the lung intensities due to differences in inspiration level, we propose to adjust the intensity of lung tissue according to the local expansion or compression. An image registration method without intensity adjustment is compared to the proposed method. Both approaches are evaluated on a set of 10 pairs of expiration and inspiration CT scans of children with cystic fibrosis lung disease. The proposed method with mass preserving adjustment results in significantly better alignment of the vessel trees. Analysis of local volume change for regions with trapped air compared to normally ventilated regions revealed larger differences between these regions in the case of mass preserving image registration, indicating that mass preserving registration is better at capturing localized differences in lung deformation.

  11. Genomic characterization of asymptomatic CT-detected lung cancers.

    PubMed

    Belloni, E; Veronesi, G; Micucci, C; Javan, S; Minardi, S P; Venturini, E; Maisonneuve, P; Volorio, S; Riboni, M; Bellomi, M; Scanagatta, P; Taliento, G; Pelosi, G; Pece, S; Spaggiari, L; Pelicci, P G

    2011-03-03

    Computed tomography (CT) screening of lung cancer allows the detection of early tumors. The objective of our study was to verify whether initial asymptomatic lung cancers, identified by high-resolution low-dose CT (LD-CT) on a high-risk population, show genetic abnormalities that could be indicative of the early events of lung carcinogenesis. We analyzed 78 tumor samples: 21 (pilot population) from heavy smokers with asymptomatic non-screening detected early-stage lung cancers and 57 from 5203 asymptomatic heavy smoker volunteers, who underwent a LD-CT screening study. During surgical resection of the detected tumors, tissue samples were collected and short-term cultures were started for karyotype evaluation. Samples were classified according to the normal (NK) or aneuploid (AK) karyotype. The NK samples were further analyzed by the Affymetrix single-nucleotide polymorphisms (SNPs) technology. Metaphase spreads were obtained in 73.0% of the selected samples: 80.7% showed an AK. A statistically significant correlation was found between presence of vascular invasion and abnormal karyotype. A total of 10 NK samples were suitable for SNPs analysis. Subtle genomic alterations were found in eight tumors, the remaining two showing no evidence to date of chromosomal aberrations anywhere in the genome. Two common regions of amplification were identified at 5p and 8p11. Mutation analysis by direct sequencing was conducted for the K-RAS, TP53 and EGFR genes, confirming data already described for heavy smokers. We show that: (i) the majority of screening-detected tumors are aneuploid; (ii) early-stage tumors tend to harbor a less abnormal karyotype; (iii) whole genome analysis of NK tumors allows for the detection of common regions of copy number variation (such as amplifications at 5p and 8p11), highlighting genes that might be considered candidate markers of early events in lung carcinogenesis.

  12. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  13. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  14. Reduced lung-cancer mortality with low-dose computed tomographic screening.

    PubMed

    Aberle, Denise R; Adams, Amanda M; Berg, Christine D; Black, William C; Clapp, Jonathan D; Fagerstrom, Richard M; Gareen, Ilana F; Gatsonis, Constantine; Marcus, Pamela M; Sicks, JoRean D

    2011-08-04

    The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer

  15. Radiation dose reduction in multidetector CT in fracture evaluation.

    PubMed

    Yi, Jung Woo; Park, Hee Jin; Lee, So Yeon; Rho, Myung Ho; Hong, Hyun Pyo; Choi, Yoon Jung; Kim, Mi Sung

    2017-08-01

    To evaluate whether multidetector CT with low-dose radiation (low-dose CT) of joints can be useful when evaluating fractures. Our study included CT scans of 398 patients, 103 shoulder cases, 109 wrist cases, 98 pelvis cases and 88 ankle cases. There were 191 females and 207 males. The low-dose CTs were performed using identical voltage and parameters with the exception of decreased (half of standard dose) tube current. Low-dose and standard-dose images were compared with regards to objective image quality, subjective evaluation of image quality and diagnostic performance for the fractures. There was no significant difference of image noise between standard-dose CT and low-dose CT in every joint (p > 0.05). Each mean value of subjective score did not show significant difference according to the dosage of the CT scan. There were no statistically significant differences in the sensitivity (96-100%), specificity (95.2-100%) or accuracy (97.9-100%) between standard-dose CT and low-dose CT (p values, 0.1336-1.000). The evaluation of extremities for fractures using low-dose CT can reduce radiation exposure by about 50% compared with standard-dose CT without affecting image quality or diagnostic performance. Advances in knowledge: Low-dose CT of the extremities (shoulder, pelvis, ankle and wrist) can reduce radiation dose by about 50% compared with standard-dose CT and does not significantly affect image quality or diagnostic performance in fracture detection.

  16. Effect of Third-generation Dual-source CT Technology on Image Quality of Low-dose Chest CT.

    PubMed

    Sui, Xin; Xu, Xiaoli; Song, Lan; DU, Qianni; Wang, Xiao; Jing, Zhengyu; Song, Wei

    2017-02-20

    Objective To evaluate the image quality and radiation dose of third-generation dual-source CT with tin filtration for spectral shaping and iterative reconstructions.Methods Thirty-five patients underwent low-dose CT (LDCT) for lung cancer screening on second-generation dual-source CT and follow-ups on third-generation dual-source CT. Image quality and radiation dose were compared between the two examinations.ResultsThe radiation dose of third-generation dual-source CT [dose-length product (DLP)(49.7±18.2)mGy·cm, effective dose (ED)(0.73±0.26)mSv] was lower than second-generation dual-source CT [DLP (86.37±13.44) mGy·cm, ED(1.20±0.42)mSv](t=6.01, P=0.000;t=6.57, P=0.000). The objective image noise of second-generation dual-source CT [(25.7±2.9)HU] was higher than that of third-generation dual-soure CT[(18.6±4.2)HU](t=5.24,P=0.000).The subjective image noise of second-generation dual-source CT [(4.60±0.49)scores] was significantly lower than that of third-generation dual-source CT [(4.80±0.40)scores] (t=4.15, P=0.000). Conclusion Chest CT for the detection of pulmonary nodules can be performed with third-generation dual-source CT that produces high image quality and low radiation dose when using a stellar infinity detector with spectral shaping.

  17. Highly accurate fast lung CT registration

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd

    2013-03-01

    Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.

  18. Dose impact in radiographic lung injury following lung SBRT: Statistical analysis and geometric interpretation

    SciTech Connect

    Yu, Victoria; Kishan, Amar U.; Cao, Minsong; Low, Daniel; Lee, Percy; Ruan, Dan

    2014-03-15

    Purpose: To demonstrate a new method of evaluating dose response of treatment-induced lung radiographic injury post-SBRT (stereotactic body radiotherapy) treatment and the discovery of bimodal dose behavior within clinically identified injury volumes. Methods: Follow-up CT scans at 3, 6, and 12 months were acquired from 24 patients treated with SBRT for stage-1 primary lung cancers or oligometastic lesions. Injury regions in these scans were propagated to the planning CT coordinates by performing deformable registration of the follow-ups to the planning CTs. A bimodal behavior was repeatedly observed from the probability distribution for dose values within the deformed injury regions. Based on a mixture-Gaussian assumption, an Expectation-Maximization (EM) algorithm was used to obtain characteristic parameters for such distribution. Geometric analysis was performed to interpret such parameters and infer the critical dose level that is potentially inductive of post-SBRT lung injury. Results: The Gaussian mixture obtained from the EM algorithm closely approximates the empirical dose histogram within the injury volume with good consistency. The average Kullback-Leibler divergence values between the empirical differential dose volume histogram and the EM-obtained Gaussian mixture distribution were calculated to be 0.069, 0.063, and 0.092 for the 3, 6, and 12 month follow-up groups, respectively. The lower Gaussian component was located at approximately 70% prescription dose (35 Gy) for all three follow-up time points. The higher Gaussian component, contributed by the dose received by planning target volume, was located at around 107% of the prescription dose. Geometrical analysis suggests the mean of the lower Gaussian component, located at 35 Gy, as a possible indicator for a critical dose that induces lung injury after SBRT. Conclusions: An innovative and improved method for analyzing the correspondence between lung radiographic injury and SBRT treatment dose has

  19. Pediatric organ dose measurements in axial and helical multislice CT

    SciTech Connect

    McDermott, Alanna; White, R. Allen; Mc-Nitt-Gray, Mike; Angel, Erin; Cody, Dianna

    2009-05-15

    An anthropomorphic pediatric phantom (5-yr-old equivalent) was used to determine organ doses at specific surface and internal locations resulting from computed tomography (CT) scans. This phantom contains four different tissue-equivalent materials: Soft tissue, bone, brain, and lung. It was imaged on a 64-channel CT scanner with three head protocols (one contiguous axial scan and two helical scans [pitch=0.516 and 0.984]) and four chest protocols (one contiguous axial scan and three helical scans [pitch=0.516, 0.984, and 1.375]). Effective mA s [=(tube currentxrotation time)/pitch] was kept nearly constant at 200 effective mA s for head and 290 effective mA s for chest protocols. Dose measurements were acquired using thermoluminescent dosimeter powder in capsules placed at locations internal to the phantom and on the phantom surface. The organs of interest were the brain, both eyes, thyroid, sternum, both breasts, and both lungs. The organ dose measurements from helical scans were lower than for contiguous axial scans by 0% to 25% even after adjusting for equivalent effective mA s. There was no significant difference (p>0.05) in organ dose values between the 0.516 and 0.984 pitch values for both head and chest scans. The chest organ dose measurements obtained at a pitch of 1.375 were significantly higher than the dose values obtained at the other helical pitches used for chest scans (p<0.05). This difference was attributed to the automatic selection of the large focal spot due to a higher tube current value. These findings suggest that there may be a previously unsuspected radiation dose benefit associated with the use of helical scan mode during computed tomography scanning.

  20. [Dose optimization in CT examination of children].

    PubMed

    Hojreh, A; Prosch, H

    2012-10-01

    Problems arise due to the increased clinical use of computed tomography (CT) and the high radiosensitivity of children. The ALARA concept (as low as reasonably achievable) prevails in pediatric radiology. Justified indications and full utilization of available dose optimization methods. Medical physicists and the manufacturers should support pediatric radiology in the implementation of the ALARA concept. The referring physicians and radiology staff should be integrated into training programs. Sufficient diagnostic image quality is paramount and not the pretty images.

  1. [Indications for low-dose CT in the emergency setting].

    PubMed

    Poletti, Pierre-Alexandre; Andereggen, Elisabeth; Rutschmann, Olivier; de Perrot, Thomas; Caviezel, Alessandro; Platon, Alexandra

    2009-08-19

    CT delivers a large dose of radiation, especially in abdominal imaging. Recently, a low-dose abdominal CT protocol (low-dose CT) has been set-up in our institution. "Low-dose CT" is almost equivalent to a single standard abdominal radiograph in term of dose of radiation (about one sixth of those delivered by a standard CT). "Low-dose CT" is now used routinely in our emergency service in two main indications: patients with a suspicion of renal colic and those with right lower quadrant pain. It is obtained without intravenous contrast media. Oral contrast is given to patients with suspicion of appendicitis. "Low-dose CT" is used in the frame of well defined clinical algorithms, and does only replace standard CT when it can reach a comparable diagnostic quality.

  2. WE-B-207-02: CT Lung Cancer Screening and the Medical Physicist: A Dosimetry Summary of CT Participants in the National Lung Cancer Screening Trial (NLST)

    SciTech Connect

    Lee, C.

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  3. A study evaluating the dependence of the patient dose on the CT dose change in a SPECT/CT scan

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Hyun; Kim, Ho-Sung; Dong, Kyung-Rae; Chung, Woon-Kwan; Cho, Jae-Hwan; Shin, Jae-Woo

    2012-07-01

    This study assessed ways of reducing the patient dose by examining the dependence of the patient dose on the CT (computed tomography) dose in a SPECT (single-photon emission computed tomography)/CT scan. To measure the patient dose, we used Precedence 16 SPECT/CT along with a phantom for the CT dose measurement (CT dose phantom kit for adult's head and body, Model 76-414-4150), a 100-mm ionization chamber (CT Ion Chamber) and an X-ray detector (Victoreen Model 4000M+). In addition, the patient dose was evaluated under conditions similar to those for an actual examination using an ImPACT (imaging performance assessment of CT scanners) dosimetry calculator in the Monte Carlo simulation method. The experimental method involved the use of a CT dose phantom to measure the patient dose under different CT conditions (kVp and mAs) to determine the CTDI (CT dose index) under each condition. An ImPACT dosimetry calculator was also used to measure CTDIw (CT dose index water ), CTDIv (CT dose index volume ), DLP (dose-length product), and effective dose. According to the patient dose measurements using the CT dose phantom, the CTDI showed an approximately 54 fold difference between when the maximum (140 kVp and 250 mAs) and the minimum dose (90 kVp and 25 mAs) was used. The CTDI showed a 4.2 fold difference between the conditions (120 kVp and 200 mAs) used mainly in a common CT scan and the conditions (120 kVp and 50 mAs) used mainly in a SPECT/CT scan. According to the measurement results using the dosimetry calculator, the effective dose showed an approximately 35 fold difference between the conditions for the maximum and the minimum doses, as in the case with the CT dose phantom. The effective dose showed a 4.1 fold difference between the conditions used mainly in a common CT scan and those used mainly in a SPECT/CT scan. This study examined the patient dose by reducing the CT dose in a SPECT/CT scan. As various examinations can be conducted due to the development of

  4. Patient-specific dose estimation for pediatric chest CT

    PubMed Central

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-01-01

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9–18.2kg) were created based on the patients’ actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120kVp, 70 or 75mA, 0.4s gantry rotation period, pitch of 1.375, 20mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7–5.3mSv∕100mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4–12.6mGy∕100mAs and 11.2–13.3mGy∕100mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%–18%) and for partially or indirectly exposed organs (11%–77%). Normalized effective dose correlated weakly with body weight (correlation coefficient:r=−0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=−0.99, heart: r=−0.93); these strong correlation relationships can be used to estimate patient

  5. In vivo quantification of human lung dose response relationship

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter; Wang, Peng; Liu, Haisong; Fuller, David; Schell, Michael C.; Okunieff, Paul

    2007-03-01

    Purpose: To implement a new non-invasive in-vivo assay to compute the dose-response relationship following radiation-induced injury to normal lung tissue, using computed tomography (CT) scans of the chest. Methods and Materials: Follow-up volumetric CT scans were acquired in patients with metastatic tumors to the lung treated using stereotactic radiation therapy. The images reveal a focal region of fibrosis corresponding to the high-dose region and no observable long-term damage in distant sites. For each pixel in the follow-up image the treatment dose and the change in apparent tissue density was compiled. For each of 12 pre-selected dose levels the average pixel tissue density change was computed and fit to a two-parameter dose-response model. The sensitivity of the resulting fits to registration error was also quantified. Results: Complete in vivo dose-response relationships in human normal lung tissue were computed. Increasing radiation sensitivity was found with larger treatment volume. Radiation sensitivity increased also over time up to 12 months, but decreased at later time points. The time-course of dose response correlated with the time-course of levels of circulating IL-1α, TGFβ and MCP-1. The method was found to be robust to registration errors up to 3 mm. Conclusions: This approach for the first time enables the quantification of the full range dose response relationship in human subjects. The method may be used to assess quantitatively the efficacy of various agents thought to illicit radiation protection to the lung.

  6. The characteristics of dose at mass interface on lung cancer Stereotactic Body Radiotherapy (SBRT) simulation

    NASA Astrophysics Data System (ADS)

    Wulansari, I. H.; Wibowo, W. E.; Pawiro, S. A.

    2017-05-01

    In lung cancer cases, there exists a difficulty for the Treatment Planning System (TPS) to predict the dose at or near the mass interface. This error prediction might influence the minimum or maximum dose received by lung cancer. In addition to target motion, the target dose prediction error also contributes in the combined error during the course of treatment. The objective of this work was to verify dose plan calculated by adaptive convolution algorithm in Pinnacle3 at the mass interface against a set of measurement. The measurement was performed using Gafchromic EBT 3 film in static and dynamic CIRS phantom with amplitudes of 5 mm, 10 mm, and 20 mm in superior-inferior motion direction. Static and dynamic phantom were scanned with fast CT and slow CT before planned. The results showed that adaptive convolution algorithm mostly predicted mass interface dose lower than the measured dose in a range of -0,63% to 8,37% for static phantom in fast CT scanning and -0,27% to 15,9% for static phantom in slow CT scanning. In dynamic phantom, this algorithm was predicted mass interface dose higher than measured dose up to -89% for fast CT and varied from -17% until 37% for slow CT. This interface of dose differences caused the dose mass decreased in fast CT, except for 10 mm motion amplitude, and increased in slow CT for the greater amplitude of motion.

  7. WE-D-207-00: CT Lung Cancer Screening and the Medical Physicist: Moving Forward

    SciTech Connect

    2015-06-15

    In the United States, Lung Cancer is responsible for more cancer deaths than the next four cancers combined. In addition, the 5 year survival rate for lung cancer patients has not improved over the past 40 to 50 years. To combat this deadly disease, in 2002 the National Cancer Institute launched a very large Randomized Control Trial called the National Lung Screening Trial (NLST). This trial would randomize subjects who had substantial risk of lung cancer (due to age and smoking history) into either a Chest X-ray arm or a low dose CT arm. In November 2010, the National Cancer Institute announced that the NLST had demonstrated 20% fewer lung cancer deaths among those who were screened with low-dose CT than with chest X-ray. In December 2013, the US Preventive Services Task Force recommended the use of Lung Cancer Screening using low dose CT and a little over a year later (Feb. 2015), CMS announced that Medicare would also cover Lung Cancer Screening using low dose CT. Thus private and public insurers are required to provide Lung Cancer Screening programs using CT to the appropriate population(s). The purpose of this Symposium is to inform medical physicists and prepare them to support the implementation of Lung Screening programs. This Symposium will focus on the clinical aspects of lung cancer screening, requirements of a screening registry for systematically capturing and tracking screening patients and results (such as required Medicare data elements) as well as the role of the medical physicist in screening programs, including the development of low dose CT screening protocols. Learning Objectives: To understand the clinical basis and clinical components of a lung cancer screening program, including eligibility criteria and other requirements. To understand the data collection requirements, workflow, and informatics infrastructure needed to support the tracking and reporting components of a screening program. To understand the role of the medical physicist in

  8. Uncertainties on lung doses from inhaled plutonium.

    PubMed

    Puncher, Matthew; Birchall, Alan; Bull, Richard K

    2011-10-01

    In a recent epidemiological study, Bayesian uncertainties on lung doses have been calculated to determine lung cancer risk from occupational exposures to plutonium. These calculations used a revised version of the Human Respiratory Tract Model (HRTM) published by the ICRP. In addition to the Bayesian analyses, which give probability distributions of doses, point estimates of doses (single estimates without uncertainty) were also provided for that study using the existing HRTM as it is described in ICRP Publication 66; these are to be used in a preliminary analysis of risk. To infer the differences between the point estimates and Bayesian uncertainty analyses, this paper applies the methodology to former workers of the United Kingdom Atomic Energy Authority (UKAEA), who constituted a subset of the study cohort. The resulting probability distributions of lung doses are compared with the point estimates obtained for each worker. It is shown that mean posterior lung doses are around two- to fourfold higher than point estimates and that uncertainties on doses vary over a wide range, greater than two orders of magnitude for some lung tissues. In addition, we demonstrate that uncertainties on the parameter values, rather than the model structure, are largely responsible for these effects. Of these it appears to be the parameters describing absorption from the lungs to blood that have the greatest impact on estimates of lung doses from urine bioassay. Therefore, accurate determination of the chemical form of inhaled plutonium and the absorption parameter values for these materials is important for obtaining reliable estimates of lung doses and hence risk from occupational exposures to plutonium.

  9. SU-E-J-87: Ventilation Weighting Effect On Mean Doses of Both Side Lungs for Patients with Advanced Stage Lung Cancer

    SciTech Connect

    Qu, H; Xia, P; Yu, N

    2015-06-15

    Purpose: To study ventilation weighting effect on radiation doses to both side lungs for patients with advanced stage lung cancer. Methods: Fourteen patients with advanced stage lung cancer were included in this retrospective study. Proprietary software was developed to calculate the lung ventilation map based on 4DCT images acquired for radiation therapy. Two phases of inhale (0%) and exhale (50%) were used for the lung ventilation calculations. For each patient, the CT images were resampled to the same dose calculation resolution of 3mmx3mmx3mm. The ventilation distribution was then normalized by the mean value of the ventilation. The ventilation weighted dose was calculated by applying linearly weighted ventilation to the dose of each pixel. The lung contours were automatically delineated from patient CT image with lung window, excluding the tumor and high density tissues. For contralateral and ipsilateral lungs, the mean lung doses from the original plan and ventilation weighted mean lung doses were compared using two tail t-Test. Results: The average of mean dose was 6.1 ±3.8Gy for the contralateral lungs, and 26.2 ± 14.0Gy for the ipsilateral lungs. The average of ventilation weighted dose was 6.3± 3.8Gy for the contralateral lungs and 24.6 ± 13.1Gy for the ipsilateral lungs. The statistics analysis shows the significance of the mean dose increase (p<0.015) for the contralateral lungs and decrease (p<0.005) for the ipsilateral lungs. Conclusion: Ventilation weighted doses were greater than the un-weighted doses for contralateral lungs and smaller for ipsilateral lungs. This Result may be helpful to understand the radiation dosimetric effect on the lung function and provide planning guidance for patients with advance stage lung cancer.

  10. Comparison of cone-beam CT-guided and CT fluoroscopy-guided transthoracic needle biopsy of lung nodules.

    PubMed

    Rotolo, Nicola; Floridi, Chiara; Imperatori, Andrea; Fontana, Federico; Ierardi, Anna Maria; Mangini, Monica; Arlant, Veronica; De Marchi, Giuseppe; Novario, Raffaele; Dominioni, Lorenzo; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2016-02-01

    To compare the diagnostic performance of cone-beam CT (CBCT)-guided and CT fluoroscopy (fluoro-CT)-guided technique for transthoracic needle biopsy (TNB) of lung nodules. The hospital records of 319 consecutive patients undergoing 324 TNBs of lung nodules in a single radiology unit in 2009-2013 were retrospectively evaluated. The newly introduced CBCT technology was used to biopsy 123 nodules; 201 nodules were biopsied by conventional fluoro-CT-guided technique. We assessed the performance of the two biopsy systems for diagnosis of malignancy and the radiation exposure. Nodules biopsied by CBCT-guided and by fluoro-CT-guided technique had similar characteristics: size, 20 ± 6.5 mm (mean ± standard deviation) vs. 20 ± 6.8 mm (p = 0.845); depth from pleura, 15 ± 15 mm vs. 15 ± 16 mm (p = 0.595); malignant, 60% vs. 66% (p = 0.378). After a learning period, the newly introduced CBCT-guided biopsy system and the conventional fluoro-CT-guided system showed similar sensitivity (95% and 92%), specificity (100% and 100%), accuracy for diagnosis of malignancy (96% and 94%), and delivered non-significantly different median effective doses [11.1 mSv (95 % CI 8.9-16.0) vs. 14.5 mSv (95% CI 9.5-18.1); p = 0.330]. The CBCT-guided and fluoro-CT-guided systems for lung nodule biopsy are similar in terms of diagnostic performance and effective dose, and may be alternatively used to optimize the available technological resources. • CBCT-guided and fluoro-CT-guided lung nodule biopsy provided high and similar diagnostic accuracy. • Effective dose from CBCT-guided and fluoro-CT-guided lung nodule biopsy was similar. • To optimize resources, CBCT-guided lung nodule biopsy may be an alternative to fluoro-CT-guided.

  11. Ultra-low dose CT attenuation correction for PET/CT.

    PubMed

    Xia, Ting; Alessio, Adam M; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E

    2012-01-21

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.

  12. Ultra-low dose CT attenuation correction for PET/CT

    PubMed Central

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for PET/CT quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently-available, lowest dose CT techniques, extended duration CINE CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. Methods We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. Results CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. Conclusion When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging. PMID:22156174

  13. Ultra-low dose CT attenuation correction for PET/CT

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Alessio, Adam M.; De Man, Bruno; Manjeshwar, Ravindra; Asma, Evren; Kinahan, Paul E.

    2012-01-01

    A challenge for positron emission tomography/computed tomography (PET/CT) quantitation is patient respiratory motion, which can cause an underestimation of lesion activity uptake and an overestimation of lesion volume. Several respiratory motion correction methods benefit from longer duration CT scans that are phase matched with PET scans. However, even with the currently available, lowest dose CT techniques, extended duration cine CT scans impart a substantially high radiation dose. This study evaluates methods designed to reduce CT radiation dose in PET/CT scanning. We investigated selected combinations of dose reduced acquisition and noise suppression methods that take advantage of the reduced requirement of CT for PET attenuation correction (AC). These include reducing CT tube current, optimizing CT tube voltage, adding filtration, CT sinogram smoothing and clipping. We explored the impact of these methods on PET quantitation via simulations on different digital phantoms. CT tube current can be reduced much lower for AC than that in low dose CT protocols. Spectra that are higher energy and narrower are generally more dose efficient with respect to PET image quality. Sinogram smoothing could be used to compensate for the increased noise and artifacts at radiation dose reduced CT images, which allows for a further reduction of CT dose with no penalty for PET image quantitation. When CT is not used for diagnostic and anatomical localization purposes, we showed that ultra-low dose CT for PET/CT is feasible. The significant dose reduction strategies proposed here could enable respiratory motion compensation methods that require extended duration CT scans and reduce radiation exposure in general for all PET/CT imaging.

  14. Patient doses from hybrid SPECT-CT procedures.

    PubMed

    Avramova-Cholakova, S; Dimcheva, M; Petrova, E; Garcheva, M; Dimitrova, M; Palashev, Y; Vassileva, J

    2015-07-01

    The aim of this work is to estimate patient doses from hybrid single-photon emission computed tomography (SPECT) and computed tomography (CT) procedures. The study involved all four SPECT-CT systems in Bulgaria. Effective dose was estimated for about 100 patients per system. Ten types of examinations were considered, representing all diagnostic procedures performed in the SPECT-CT systems. Effective doses from the SPECT component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index and dose length product were retrospectively obtained from the archives of the systems, and effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the National Radiological Protection Board (NRPB) conversion coefficients was performed where applicable. Large variations were found in the current practice of SPECT-CT imaging. Optimisation actions and diagnostic reference levels were proposed.

  15. Detection and size measurements of pulmonary nodules in ultra-low-dose CT with iterative reconstruction compared to low dose CT.

    PubMed

    Sui, Xin; Meinel, Felix G; Song, Wei; Xu, Xiaoli; Wang, Zixing; Wang, Yuyan; Jin, Zhengyu; Chen, Jiuhong; Vliegenthart, Rozemarijn; Schoepf, U Joseph

    2016-03-01

    In this study, the accuracy of ultra-low-dose computed tomography (CT) with iterative reconstruction (IR) for detection and measurement of pulmonary nodules was evaluated. Eighty-four individuals referred for lung cancer screening (mean age: 54.5±10.8 years) underwent low-dose computed tomography (LDCT) and ultra-low-dose CT. CT examinations were performed with attenuation-based tube current modulation. Reference tube voltage and current were set to 120kV/25mÅs for LDCT and 80kV/4mÅs for ultra-low-dose CT. CT images were reconstructed with filtered back projection (FBP) for LDCT, and with FBP and IR for ultra-low-dose CT datasets. A reference standard was established by a consensus panel of 2 different radiologists on LDCT. Volume and diameter of the solid nodules were measured on LDCT with FBP and ultra-low dose CT with FBP and IR. Interobserver and interscan variability were analyzed and compared by the Bland-Altman method. A total of 127 nodules were identified, including 105 solid nodules, 15 part solid nodules, 7 ground glass nodules. On ultra-low-dose CT scans, the effective radiation dose was 0.13±0.11mSv. A total of 113 (88.9%) and 110 (86.6%) true-positive nodules with FBP versus 117 (92.1%) and 118(92.9%) with IR were detected by two observers, respectively. The volume and size of the 105 solid nodules were measured, with mean volume/diameter of 46.5±46.6 mm(3)/5.1±1.6mm. There was no significant difference in nodule volume or diameter measurements between ultra-low-dose CT and LDCT protocols for solid nodules. Ultra-low-dose CT with iterative reconstruction has high sensitivity for lung nodule detection without significant difference in nodule size and volume measurement compared to LDCT. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Extracting information from previous full-dose CT scan for knowledge-based Bayesian reconstruction of current low-dose CT images

    PubMed Central

    Zhang, Hao; Han, Hao; Liang, Zhengrong; Hu, Yifan; Liu, Yan; Moore, William; Ma, Jianhua; Lu, Hongbing

    2015-01-01

    Markov random field (MRF) model has been widely employed in edge-preserving regional noise smoothing penalty to reconstruct piece-wise smooth images in the presence of noise, such as in low-dose computed tomography (LdCT). While it preserves edge sharpness, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it may compromise clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodules or colon polyps. This study aims to shift the edge-preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF’s neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of muscle, fat, bone, lung, etc. from previous full-dose CT (FdCT) scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of the proposed reconstruction framework, experiments using clinical patient scans were conducted. The experimental outcomes showed a dramatic gain by the a priori knowledge for LdCT image reconstruction using the commonly-used Haralick texture measures. Thus, it is conjectured that the texture-preserving LdCT reconstruction has advantages over the edge-preserving regional smoothing paradigm for texture-specific clinical applications. PMID:26561284

  17. Pulmonary embolism during pregnancy: diagnosis with lung scintigraphy or CT angiography?

    PubMed

    Revel, Marie-Pierre; Cohen, Stéphanie; Sanchez, Olivier; Collignon, Marie-Anne; Thiam, Rokhaya; Redheuil, Alban; Meyer, Guy; Frija, Guy

    2011-02-01

    To evaluate the rate of positive, negative, and indeterminate results and the agreement between initial and expert readings for lung scintigraphy and computed tomographic (CT) angiography performed in patients suspected of having pulmonary embolism (PE) during pregnancy. Institutional review board approval was obtained. The authors retrospectively analyzed the images from lung scintigraphy and CT angiography performed in pregnant patients during the past 9 years. Images from 46 CT angiographic examinations performed in 43 patients and 91 of 94 lung scintigraphic examinations were reviewed by experts, whose readings were then compared with the initial reports. For CT angiography, the quality of opacification was graded as good, suboptimal, or poor and intraarterial attenuation was measured. The rates of positive findings (seven of 43 patients [16%] with CT angiography and 10 of 91 patients [11%] with scintigraphy, P = .36), negative findings (28 of 43 patients [65%] with CT angiography and 64 of 91 patients [70%] with scintigraphy, P = .54), and indeterminate findings (eight of 43 patients [19%] with CT angiography and 17 of 91 patients [19%] with scintigraphy, P = .99) were similar for CT angiography and lung scintigraphy. There were four discrepancies between initial and expert readings for CT angiography (κ = 0.84; confidence interval: 0.68, 0.99) and 14 for lung scintigraphy (κ = 0.75; 95% confidence interval: 0.63, 0.87). Opacification was classified as good for only 23 of the 46 CT angiographic examinations (50%). Attenuation values were significantly different among the groups with good, suboptimal, or poor opacification. Alternative diagnoses unsuspected at chest radiography were demonstrated at CT angiography in five of the 43 patients (12%). The mean maternal radiation dose was 0.9 mSv for lung scintigraphy and 7.3 mSv for CT angiography. Lung scintigraphy and CT angiography have comparable performances for PE diagnosis during pregnancy. Interobserver

  18. Asbestos Surveillance Program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT.

    PubMed

    Das, Marco; Mühlenbruch, Georg; Mahnken, Andreas H; Hering, K G; Sirbu, H; Zschiesche, W; Knoll, Lars; Felten, Michael K; Kraus, Thomas; Günther, Rolf W; Wildberger, Joachim E

    2007-05-01

    The purpose of this study was to assess the prevalence of lung cancer in a high-risk asbestos-exposed cohort using low-dose MDCT. Of a population of 5,389 former power-plant workers, 316 were characterized as individuals at highest risk for lung cancer according to a lung-cancer risk model including age, asbestos exposure and smoking habits. Of these 316, 187 (mean age: 66.6 years) individuals were included in a prospective trial. Mean asbestos exposure time was 29.65 years and 89% were smokers. Screening was performed on a 16-slice MDCT (Siemens) with low-dose technique (10/20 mAs(eff.); 1 mm/0.5 mm increment). In addition to soft copy PACS reading analysis on a workstation with a dedicated lung analysis software (LungCARE; Siemens) was performed. One strongly suspicious mass and eight cases of histologically proven lung cancer were found plus 491 additional pulmonary nodules (average volume: 40.72 ml, average diameter 4.62 mm). Asbestos-related changes (pleural plaques, fibrosis) were visible in 80 individuals. Lung cancer screening in this high-risk cohort showed a prevalence of lung cancer of 4.28% (8/187) at baseline screening with an additional large number of indeterminate pulmonary nodules. Low-dose MDCT proved to be feasible in this highly selected population.

  19. Scanner conformity in CT densitometry of the lungs.

    PubMed

    Kemerink, G J; Lamers, R J; Thelissen, G R; van Engelshoven, J M

    1995-12-01

    To quantify inter- and intrascanner conformity in computed tomographic (CT) densitometry of the lungs. With six scanners from four manufacturers, a lung densitometry protocol with several variations was applied for performance comparison. Phantoms included water, air, and a humanoid thorax phantom equipped with a dog lung and exchangeable pseudolungs of polyethylene foam. All scanners produced acceptable CT numbers (Hounsfield units) for water, but some not for air. An incorrect calibration of air density affected all CT numbers at lung densities, but the error was easily correctable. Some systems were more sensitive to object size than others were. Sensitivity of CT numbers to section thickness, reconstruction filter, zoom factor, and table height was small, except for two scanners in relation to section thickness. After correction for poor air calibration, scanner conformity was acceptable when the reproducibility of lung densitometry in clinical practice was set as a reference.

  20. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT.

    PubMed

    McNitt-Gray, Michael F

    2002-01-01

    This article describes basic radiation dose concepts as well as those specifically developed to describe the radiation dose from computed tomography (CT). Basic concepts of radiation dose are reviewed, including exposure, absorbed dose, and effective dose. Radiation dose from CT demonstrates variations within the scan plane and along the z axis because of its unique geometry and usage. Several CT-specific dose descriptors have been developed: the Multiple Scan Average Dose descriptor, the Computed Tomography Dose Index (CTDI) and its variations (CTDI(100), CTDI(w), CTDI(vol)), and the dose-length product. Factors that affect radiation dose from CT include the beam energy, tube current-time product, pitch, collimation, patient size, and dose reduction options. Methods of reducing the radiation dose to a patient from CT include reducing the milliampere-seconds value, increasing the pitch, varying the milliampere-seconds value according to patient size, and reducing the beam energy. The effective dose from CT can be estimated by using Monte Carlo methods to simulate CT of a mathematical patient model, by estimating the energy imparted to the body region being scanned, or by using conversion factors for general anatomic regions. Issues related to radiation dose from CT are being addressed by the Society for Pediatric Radiology, the American Association of Physicists in Medicine, the American College of Radiology, and the Center for Devices and Radiological Health of the Food and Drug Administration.

  1. Pediatric cardiac-gated CT angiography: assessment of radiation dose.

    PubMed

    Hollingsworth, Caroline L; Yoshizumi, Terry T; Frush, Donald P; Chan, Frandics P; Toncheva, Greta; Nguyen, Giao; Lowry, Carolyn R; Hurwitz, Lynne M

    2007-07-01

    The purpose of our study was to determine a dose range for cardiac-gated CT angiography (CTA) in children. ECG-gated cardiac CTA simulating scanning of the heart was performed on an anthropomorphic phantom of a 5-year-old child on a 16-MDCT scanner using variable parameters (small field of view; 16 x 0.625 mm configuration; 0.5-second gantry cycle time; 0.275 pitch; 120 kVp at 110, 220, and 330 mA; and 80 kVp at 385 mA). Metal oxide semiconductor field effect transistor (MOSFET) technology measured 20 organ doses. Effective dose calculated using the dose-length product (DLP) was compared with effective dose determined from measured absorbed organ doses. Highest organ doses included breast (3.5-12.6 cGy), lung (3.3-12.1 cGy), and bone marrow (1.7-7.6 cGy). The 80 kVp/385 mA examination produced lower radiation doses to all organs than the 120 kVp/220 mA examination. MOSFET effective doses (+/- SD) were as follows: 110 mA: 7.4 mSv (+/- 0.6 mSv), 220 mA: 17.2 mSv (+/- 0.3 mSv), 330 mA: 25.7 mSv (+/- 0.3 mSv), 80 kVp/385 mA: 10.6 mSv (+/- 0.2 mSv). DLP effective doses for diagnostic runs were as follows: 110 mA: 8.7 mSv, 220 mA: 19 mSv, 330 mA: 28 mSv, 80 kVp/385 mA: 12 mSv. DLP effective doses exceeded MOSFET effective doses by 9.7-17.2%. Radiation doses for a 5-year-old during cardiac-gated CTA vary greatly depending on parameters. Organ doses can be high; the effective dose may reach 28.4 mSv. Further work, including determination of size-appropriate mA and image quality, is important before routine use of this technique in children.

  2. WE-B-207-00: CT Lung Cancer Screening Part 1

    SciTech Connect

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  3. SU-E-J-190: Characterization of Radiation Induced CT Number Changes in Tumor and Normal Lung During Radiation Therapy for Lung Cancer

    SciTech Connect

    Yang, C; Liu, F; Tai, A; Gore, E; Johnstone, C; Li, X

    2014-06-01

    Purpose: To measure CT number (CTN) changes in tumor and normal lung as a function of radiation therapy (RT) dose during the course of RT delivery for lung cancer using daily IGRT CT images and single respiration phase CT images. Methods: 4D CT acquired during planning simulation and daily 3D CT acquired during daily IGRT for 10 lung cancer cases randomly selected in terms of age, caner type and stage, were analyzed using an in-house developed software tool. All patients were treated in 2 Gy fractions to primary tumors and involved nodal regions. Regions enclosed by a series of isodose surfaces in normal lung were delineated. The obtained contours along with target contours (GTVs) were populated to each singlephase planning CT and daily CT. CTN in term of Hounsfield Unit (HU) of each voxel in these delineated regions were collectively analyzed using histogram, mean, mode and linear correlation. Results: Respiration induced normal lung CTN change, as analyzed from single-phase planning CTs, ranged from 9 to 23 (±2) HU for the patients studied. Normal lung CTN change was as large as 50 (±12) HU over the entire treatment course, was dose and patient dependent and was measurable with dose changes as low as 1.5 Gy. For patients with obvious tumor volume regression, CTN within the GTV drops monotonically as much as 10 (±1) HU during the early fractions with a total dose of 20 Gy delivered. The GTV and CTN reductions are significantly correlated with correlation coefficient >0.95. Conclusion: Significant RT dose induced CTN changes in lung tissue and tumor region can be observed during even the early phase of RT delivery, and may potentially be used for early prediction of radiation response. Single respiration phase CT images have dramatically reduced statistical noise in ROIs, making daily dose response evaluation possible.

  4. Panel Reviews Benefits and Harms of CT Scans for Lung Cancer Screening | Division of Cancer Prevention

    Cancer.gov

    A panel of experts has reviewed the evidence regarding the benefits and harms of screening for lung cancer with low-dose computed tomography (CT) and concluded that the technology may benefit some individuals at high risk for lung cancer. But the panel cautioned that many questions remain about the potential harms of screening and how to translate screening into clinical practice. |

  5. Accuracy of low dose CT in the diagnosis of appendicitis in childhood and comparison with USG and standard dose CT.

    PubMed

    Yi, Dae Yong; Lee, Kyung Hoon; Park, Sung Bin; Kim, Jee Taek; Lee, Na Mi; Kim, Hyery; Yun, Sin Weon; Chae, Soo Ahn; Lim, In Seok

    2017-04-23

    Computed tomography should be performed after careful consideration due to radiation hazard, which is why interest in low dose CT has increased recently in acute appendicitis. Previous studies have been performed in adult and adolescents populations, but no studies have reported on the efficacy of using low-dose CT in children younger than 10 years. Patients (n=475) younger than 10 years who were examined for acute appendicitis were recruited. Subjects were divided into three groups according to the examinations performed: low-dose CT, ultrasonography, and standard-dose CT. Subjects were categorized according to age and body mass index (BMI). Low-dose CT was a contributive tool in diagnosing appendicitis, and it was an adequate method, when compared with ultrasonography and standard-dose CT in terms of sensitivity (95.5% vs. 95.0% and 94.5%, p=0.794), specificity (94.9% vs. 80.0% and 98.8%, p=0.024), positive-predictive value (96.4% vs. 92.7% and 97.2%, p=0.019), and negative-predictive value (93.7% vs. 85.7% and 91.3%, p=0.890). Low-dose CT accurately diagnosed patients with a perforated appendix. Acute appendicitis was effectively diagnosed using low-dose CT in both early and middle childhood. BMI did not influence the accuracy of detecting acute appendicitis on low-dose CT. Low-dose CT is effective and accurate for diagnosing acute appendicitis in childhood, as well as in adolescents and young adults. Additionally, low-dose CT was relatively accurate, irrespective of age or BMI, for detecting acute appendicitis. Therefore, low-dose CT is recommended for assessing children with suspected acute appendicitis. Copyright © 2017. Published by Elsevier Editora Ltda.

  6. CT findings of small cell lung carcinoma

    PubMed Central

    Lee, Dongjun; Rho, Ji Young; Kang, Seunghun; Yoo, Koun Joy; Choi, Hye Jeong

    2016-01-01

    Abstract The purpose of this study was to clarify the recognizable computed tomography (CT) features of small cell lung carcinoma (SCLC). Contrast enhanced CT scans were reviewed retrospectively for mass location, mediastinal extension, and other concomitant findings in 142 patients with pathologically proven SCLC. SCLC was classified into hilar mass only (type I), hilar mass with ipsilateral mediastinal extension (type II), hilar mass with bilateral mediastinal extension (type III), and peripheral mass (type IV). When mediastinal lymphadenopathy (m-LAP) was indistinguishable from a hilar mass, we defined it as a mediastinal conglomerate mass (m-CM). Type IIa or IIIa had ipsilateral or bilateral m-LAP and type IIb, IIIb or IIIc had ipsilateral or bilateral m-CM. Type I (n = 8, 5.6%), type II (n = 58, 40.8%), type III (n = 55, 38.8%), and type IV (n = 21, 14.8%) were manifested. The combination of a hilar mass and m-CM was found in 68 patients (47.9%). Type IV masses showed lobulation in 11, microlobulation in 4, both lobulated and irregular margins in 4, and spiculation in 2. A total of 120 patients (84.5%) had a bronchial stenosis/obstruction; single (n = 52) and 2 or more (n = 68). Ninety-five patients (67.0%) had vascular invasion including main/lobar pulmonary artery and superior vena cava, and 55 (38.7%) had pleural effusion and/or pleural nodules. Concomitant parenchymal findings (n = 92, 64.8%) were noted: contiguous consolidation/nodule (n = 45), hematogeneous spread (n = 32), lymphangitic spread (n = 21), obstructive pneumonia (n = 22), and obstructive atelectasis (n = 14). In conclusion, the recognizable CT features of SCLC were a hilar mass with m-CM. Most of the hilar masses showed 2 or more bronchial stenoses/obstructions. Most cases of peripheral SCLC manifested as a lobulated mass rather than a spiculated mass. Vascular invasion and concomitant parenchymal findings were observed commonly. PMID:27893684

  7. Development of lung cancer CT screening operating support system

    NASA Astrophysics Data System (ADS)

    Ishigaki, Rikuta; Hanai, Kozou; Suzuki, Masahiro; Kawata, Yoshiki; Niki, Noboru; Eguchi, Kenji; Kakinuma, Ryutaro; Moriyama, Noriyuki

    2009-02-01

    In Japan, lung cancer death ranks first among men and third among women. Lung cancer death is increasing yearly, thus early detection and treatment are needed. For this reason, CT screening for lung cancer has been introduced. The CT screening services are roughly divided into three sections: office, radiology and diagnosis sections. These operations have been performed through paper-based or a combination of paper-based and an existing electronic health recording system. This paper describes an operating support system for lung cancer CT screening in order to make the screening services efficient. This operating support system is developed on the basis of 1) analysis of operating processes, 2) digitalization of operating information, and 3) visualization of operating information. The utilization of the system is evaluated through an actual application and users' survey questionnaire obtained from CT screening centers.

  8. CT in the diagnosis of interstitial lung disease

    SciTech Connect

    Bergin, C.J.; Mueller, N.L.

    1985-09-01

    The computed tomographic (CT) appearance of interstitial lung disease was assessed in 23 patients with known interstitial disease. These included seven patients with fibrosing alveolitis, six with silicosis, two with hypersensitivity pneumonitis, three with lymphangitic spread of tumor, two with sarcoidosis, one with rheumatoid lung disease, and two with neurofibromatosis. The CT appearance of the interstitial changes in the different disease entities was assessed. Nodules were a prominent CT feature in silicosis, sarcoidosis, and lymphangitic spread of malignancy. Distribution of nodules and associated interlobular septal thickening provided further distinguishing features in these diseases. Reticular densities were the predominant CT change in fibrosing alveolitis, rheumatoid lung disease, and extrinsic allergic alveolitis. CT can be useful in the investigation of selected instances of interstitial pulmonary disease.

  9. Principles of CT: radiation dose and image quality.

    PubMed

    Goldman, Lee W

    2007-12-01

    This article discusses CT radiation dose, the measurement of CT dose, and CT image quality. The most commonly used dose descriptor is CT dose index, which represents the dose to a location (e.g., depth) in a scanned volume from a complete series of slices. A weighted average of the CT dose index measured at the center and periphery of dose phantoms provides a convenient single-number estimate of patient dose for a procedure, and this value (or a related indicator that includes the scanned length) is often displayed on the operator's console. CT image quality, as in most imaging, is described in terms of contrast, spatial resolution, image noise, and artifacts. A strength of CT is its ability to visualize structures of low contrast in a subject, a task that is limited primarily by noise and is therefore closely associated with radiation dose: The higher the dose contributing to the image, the less apparent is image noise and the easier it is to perceive low-contrast structures. Spatial resolution is ultimately limited by sampling, but both image noise and resolution are strongly affected by the reconstruction filter. As a result, diagnostically acceptable image quality at acceptable doses of radiation requires appropriately designed clinical protocols, including appropriate kilovolt peaks, amperages, slice thicknesses, and reconstruction filters.

  10. Segmentation of the ovine lung in 3D CT Images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.

    2004-04-01

    Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.

  11. Low-dose interpolated average CT for attenuation correction in cardiac PET/CT

    NASA Astrophysics Data System (ADS)

    Wu, Tung-Hsin; Zhang, Geoffrey; Wang, Shyh-Jen; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Huang, Tzung-Chi

    2010-07-01

    Because of the advantages in the use of high photon flux and thus the short scan times of CT imaging, the traditional 68Ge scans for positron emission tomography (PET) image attenuation correction have been replaced by CT scans in the modern PET/CT technology. The combination of fast CT scan and slow PET scan often causes image misalignment between the PET and CT images due to respiration motion. Use of the average CT derived from cine CT images is reported to reduce such misalignment. However, the radiation dose to patients is higher with cine CT scans. This study introduces a method that uses breath-hold CT images and their interpolations to generate the average CT for PET image attenuation correction. Breath-hold CT sets are taken at end-inspiration and end-expiration. Deformable image registration is applied to generate a voxel-to-voxel motion matrix between the two CT sets. The motion is equally divided into 5 steps from inspiration to expiration and 5 steps from expiration to inspiration, generating a total of 8 phases of interpolated CT sets. An average CT image is generated from all the 10 phase CT images, including original inhale/exhale CT and 8 interpolated CT sets. Quantitative comparison shows that the reduction of image misalignment artifacts using the average CT from the interpolation technique for PET attenuation correction is at a similar level as that using cine average CT, while the dose to the patient from the CT scans is reduced significantly. The interpolated average CT method hence provides a low dose alternative to cine CT scans for PET attenuation correction.

  12. (18)FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases.

    PubMed

    Inoue, Kentaro; Okada, Ken; Taki, Yasuyuki; Goto, Ryoi; Kinomura, Shigeo; Fukuda, Hiroshi

    2009-05-01

    The dependent-density of computed tomography (CT) images of positron emission tomography (PET)/CT is sometimes difficult to distinguish from chronic interstitial lung disease (ILD) when it accompanies increased (18)F-fluorodeoxy-D: -glucose ((18)FDG) uptake. Though the possible utility of (18)FDG-PET for the diagnosis of active ILD has been reported, the clinical relevance of mild lung (18)FDG uptake in ILD cases without signs and symptoms suggesting acute progression has not been described. This study aimed to test relationships between (18)FDG uptake and lung density on CT using PET/CT in patients with normal lung as well as clinically stable chronic ILD. Thirty-six patients with normal lungs (controls) and 28 patients with chronic ILD (ILD cases) without acute exacerbation were retrospectively selected from (18)FDG-PET/CT scans performed in examination of malignant neoplasms. Elliptical regions of interest (ROIs) were placed on the lung. The relationships between CT density and (18)FDG uptake between the control and ILD cases were tested. The CT density and (18)FDG uptake had a linear correlation in both the controls and the ILD cases without a difference in their regression slopes, and they were overlapped between the controls and the ILD cases with higher mean values in the ILD cases. Lung (18)FDG uptake was considered to reflect a gravity-dependent tissue density in the normal lung. Though the lung (18)FDG uptake as well as the CT density tended to be higher in chronic ILD patients, it may be difficult to distinguish them in normal dependent regions from those related to chronic ILD in some cases.

  13. Dose conversion coefficients for CT examinations of adults with automatic tube current modulation

    NASA Astrophysics Data System (ADS)

    Schlattl, H.; Zankl, M.; Becker, J.; Hoeschen, C.

    2010-10-01

    Automatic tube current modulation (TCM) is used in modern CT devices. This is implemented in the numerical calculation of dose conversion coefficients for CT examinations. For four models of adults, the female and male reference models of ICRP and ICRU and a lighter and a heavier female model, dose conversion coefficients normalized to CTDIvol (DCCCT) have been computed with a Monte Carlo transport code for CT scans with and without TCM. It could be shown for both cases that reliable values for spiral CT scans are obtained when combining the results from an appropriate set of axial scans. The largest organ DCCCT are presented for typical CT examinations for all four models. The impact of TCM is greatest for chest, pelvis and whole-trunk CT examinations, where with TCM the effective DCCCT can be 20-25% lower than without TCM. Typical organs with strong dependence on TCM are thyroid, urinary bladder, lungs and oesophagus. While the DCCCT of thyroid and urinary bladder are mainly sensitive to angular TCM, the DCCCT of lungs and oesophagus are influenced primarily by longitudinal TCM. The impact of the body stature on the effective DCCCT is of the same order as the effect of TCM. Thus, for CT scans in the trunk region, accurate dose values can only be obtained when different sets of DCCCT are employed that are appropriate for the patient's sex and stature and the actual TCM settings.

  14. Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach

    PubMed Central

    Cheng, Wenjun; Ma, Luyao; Yang, Tiejun; Liang, Jiali

    2016-01-01

    Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained. PMID:27611188

  15. Effectiveness of CT for clinical stratification of occupational lung edema.

    PubMed

    Masaki, Yoshinori; Sugiyama, Keisaku; Tanaka, Hiroyuki; Uwabe, Yasuhide; Takayama, Masanori; Sakai, Masao; Hayashi, Takuya; Otsuka, Masayuki; Suzuki, Shinya

    2007-01-01

    We treated two occupational lung diseases in different situations during military training. The purpose of this study is to investigate the availability of CT scanning for the evaluation of inhalation pulmonary edema. Two soldiers suffered severe lung edema after using a spray for the daily maintenance of their firearms. Four soldiers suffered severe dyspnea after undertaking drills in a narrow zone where numerous smoke bombs had been used. We evaluated these patients from several aspects. CT scans of the chest of spray-induced patients revealed bilateral infiltration predominantly in the upper lung fields. The patients received steroid pulse treatment and gradually recovered. CT scans of the chest of smoke-induced patients revealed bilateral ground-glass attenuation with peripheral lung sparing. The patients gradually recovered with steroid therapy. In accordance with previous studies, CT scans of the chest in our patients demonstrated that the periphery of the lungs remained normal, except in cases of serious injury. When differential diagnosis is required, we consider that CT scans of the chest are particularly useful; CT findings are useful in determining the severity of lung injury as well as the diagnosis of inhalation pulmonary edema.

  16. Effect of a small number of training cases on the performance of massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenji; Armato, Samuel G., III; Li, Feng; Sone, Shusuke; Doi, Kunio

    2003-05-01

    In this study, we investigated a pattern-classification technique which can be trained with a small number of cases with a massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose CT (LDCT). The MTANN consists of a modified multilayer artificial neural network (ANN), which is capable of operating on image data directly. The MTANN is trained by use of a large number of sub-regions extracted from input images together with the teacher images containing the distribution for the "likelihood of being a nodule." The output image is obtained by scanning of an input image with the MTANN. In the MTANN, the distinction between nodules and non-nodules is treated as an image-processing task, in other words, as a highly nonlinear filter that performs both nodule enhancement and non-nodule suppression. This allows us to train the MTANN not on a case basis, but on a sub-region basis. Therefore, the MTANN can be trained with a very small number of cases. Our database consisted of 101 LDCT scans acquired from 71 patients in a lung cancer screening program. The scans consisted of 2,822 sections, and contained 121 nodules including 104 nodules representing confirmed primary cancers. With our current CAD scheme, a sensitivity of 81.0% (98/121 nodules) with 0.99 false positives per section (2,804/2,822) was achieved. By use of the MTANN trained with a small number of training cases (n=10), i.e., five pairs of nodules and non-nodules, we were able to remove 55.8% of false positives without a reduction in the number of true positives, i.e., a classification sensitivity of 100%. Thus, the false-positive rate of our current CAD scheme was reduced from 0.99 to 0.44 false positive per section, while the current sensitivity (81.0%) was maintained.

  17. Patient specific respiratory motion modeling using a limited number of 3D lung CT images.

    PubMed

    Cui, Xueli; Gao, Xin; Xia, Wei; Liu, Yangchuan; Liang, Zhiyuan

    2014-01-01

    To build a patient specific respiratory motion model with a low dose, a novel method was proposed that uses a limited number of 3D lung CT volumes with an external respiratory signal. 4D lung CT volumes were acquired for patients with in vitro labeling on the upper abdominal surface. Meanwhile, 3D coordinates of in vitro labeling were measured as external respiratory signals. A sequential correspondence between the 4D lung CT and the external respiratory signal was built using the distance correlation method, and a 3D displacement for every registration control point in the CT volumes with respect to time can be obtained by the 4D lung CT deformable registration. A temporal fitting was performed for every registration control point displacements and an external respiratory signal in the anterior-posterior direction respectively to draw their fitting curves. Finally, a linear regression was used to fit the corresponding samples of the control point displacement fitting curves and the external respiratory signal fitting curve to finish the pulmonary respiration modeling. Compared to a B-spline-based method using the respiratory signal phase, the proposed method is highly advantageous as it offers comparable modeling accuracy and target modeling error (TME); while at the same time, the proposed method requires 70% less 3D lung CTs. When using a similar amount of 3D lung CT data, the mean of the proposed method's TME is smaller than the mean of the PCA (principle component analysis)-based methods' TMEs. The results indicate that the proposed method is successful in striking a balance between modeling accuracy and number of 3D lung CT volumes.

  18. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic.

    PubMed

    Poletti, Pierre-Alexandre; Platon, Alexandra; Rutschmann, Olivier T; Schmidlin, Franz R; Iselin, Christophe E; Becker, Christoph D

    2007-04-01

    The purpose of our study was to compare a low-dose abdominal CT protocol, delivering a dose of radiation close to the dose delivered by abdominal radiography, with standard-dose unenhanced CT in patients with suspected renal colic. One hundred twenty-five patients (87 men, 38 women; mean age, 45 years) who were admitted with suspected renal colic underwent both abdominal low-dose CT (30 mAs) and standard-dose CT (180 mAs). Low-dose CT and standard-dose CT were independently reviewed, in a delayed fashion, by two radiologists for the characterization of renal and ureteral calculi (location, size) and for indirect signs of renal colic (renal enlargement, pyeloureteral dilatation, periureteral or renal stranding). Results reported for low-dose CT, with regard to the patients' body mass indexes (BMIs), were compared with those obtained with standard-dose CT (reference standard). The presence of non-urinary tract-related disorders was also assessed. Informed consent was obtained from all patients. In patients with a BMI < 30, low-dose CT achieved 96% sensitivity and 100% specificity for the detection of indirect signs of renal colic and a sensitivity of 95% and a specificity of 97% for detecting ureteral calculi. In patients with a BMI < 30, low-dose CT was 86% sensitive for detecting ureteral calculi < 3 mm and 100% sensitive for detecting calculi > 3 mm. Low-dose CT was 100% sensitive and specific for depicting non-urinary tract-related disorders (n = 6). Low-dose CT achieves sensitivities and specificities close to those of standard-dose CT in assessing the diagnosis of renal colic, depicting ureteral calculi > 3 mm in patients with a BMI < 30, and correctly identifying alternative diagnoses.

  19. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    NASA Astrophysics Data System (ADS)

    Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Sabarudin, A.; Chin, A. W.; Saripan, M. I.; Bradley, D. A.

    2016-09-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose.

  20. Texture-preserving Bayesian image reconstruction for low-dose CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Han, Hao; Hu, Yifan; Liu, Yan; Ma, Jianhua; Li, Lihong; Moore, William; Liang, Zhengrong

    2016-03-01

    Markov random field (MRF) model has been widely used in Bayesian image reconstruction to reconstruct piecewise smooth images in the presence of noise, such as in low-dose X-ray computed tomography (LdCT). While it can preserve edge sharpness via edge-preserving potential function, its regional smoothing may sacrifice tissue image textures, which have been recognized as useful imaging biomarkers, and thus it compromises clinical tasks such as differentiating malignant vs. benign lesions, e.g., lung nodule or colon polyp. This study aims to shift the edge preserving regional noise smoothing paradigm to texture-preserving framework for LdCT image reconstruction while retaining the advantage of MRF's neighborhood system on edge preservation. Specifically, we adapted the MRF model to incorporate the image textures of lung, bone, fat, muscle, etc. from previous full-dose CT scan as a priori knowledge for texture-preserving Bayesian reconstruction of current LdCT images. To show the feasibility of proposed reconstruction framework, experiments using clinical patient scans (with lung nodule or colon polyp) were conducted. The experimental outcomes showed noticeable gain by the a priori knowledge for LdCT image reconstruction with the well-known Haralick texture measures. Thus, it is conjectured that texture-preserving LdCT reconstruction has advantages over edge-preserving regional smoothing paradigm for texture-specific clinical applications.

  1. The importance of lung cancer screening with low-dose computed tomography for Medicare beneficiaries.

    PubMed

    Wood, Douglas E

    2014-12-01

    The National Lung Screening Trial has provided convincing evidence of a substantial mortality benefit of lung cancer screening with low-dose computed tomography (CT) for current and former smokers at high risk. The United States Preventive Services Task Force has recommended screening, triggering coverage of low-dose CT by private health insurers under provisions of the Affordable Care Act. The Centers for Medicare & Medicaid Services (CMS) are currently evaluating coverage of lung cancer screening for Medicare beneficiaries. Since 70% of lung cancer occurs in patients 65 years or older, CMS should cover low-dose CT, thus avoiding the situation of at-risk patients being screened up to age 64 through private insurers and then abruptly ceasing screening at exactly the ages when their risk for developing lung cancer is increasing. Legitimate concerns include false-positive findings that lead to further testing and invasive procedures, overdiagnosis (detection of clinically unimportant cancers), the morbidity and mortality of surgery, and the overall costs of follow-up tests and procedures. These concerns can be mitigated by clear criteria for screening high-risk patients, disciplined management of abnormalities based on algorithms, and high-quality multidisciplinary care. Lung cancer screening with low-dose CT can lead to early diagnosis and cure for thousands of patients each year. Professional societies can help CMS responsibly implement a program that is patient-centered and minimizes unintended harms and costs.

  2. Low-dose techniques in CT-guided interventions.

    PubMed

    Sarti, Marc; Brehmer, William P; Gay, Spencer B

    2012-01-01

    Computed tomography (CT)-guided interventions such as biopsy, drainage, and ablation may be significant sources of radiation exposure in both patients and radiologists. Simple CT techniques to reduce radiation dose may be employed without increasing the procedure time or significantly degrading image quality. To develop low-dose protocols, it is important to understand the key concepts of delivered radiation dose to patients and physicians during CT-guided interventions. Patient dose estimates are easily followed and are provided at CT workstations. Familiarity with dose estimates, which are expressed as CT dose index and dose-length product, is also important. Methods to reduce radiation exposure in patients and physicians include performing proper preprocedure planning and paying careful attention to technique during the planning stage, making use of personal protective equipment, performing CT fluoroscopy intermittently instead of in real time, and optimizing needle visualization. Representative examples of these techniques have resulted in dose reductions of as much as 89%. Alternative imaging technologies that do not use ionizing radiation, such as virtual and ultrasonographic guidance, may also be used to reduce radiation dose. Understanding dose contribution strategies to reduce radiation dose provides a safer, more efficient environment for patients and the radiology team.

  3. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-09-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose

  4. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms.

    PubMed

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M; Asma, Evren; Kinahan, Paul E; De Man, Bruno

    2015-10-07

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition.We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality.With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  5. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    PubMed Central

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  6. CT Radiation Dose Optimization and Estimation: an Update for Radiologists

    PubMed Central

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  7. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method.

  8. Practical strategies to reduce pediatric CT radiation dose.

    PubMed

    Nelson, Thomas R

    2014-03-01

    The objective of this article is to provide a brief review of CT scanning radiation sensitivity in children and explain CT scan parameters that affect radiation dose. We discuss key factors influencing radiation dose and study quality and how these factors can be used to optimize scan protocols with the goal of reducing pediatric CT radiation dose without compromising diagnostic quality. Finally, we provide some practical tips for reducing radiation doses to children. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  9. [Phantom Study on Dose Reduction Using Iterative Reconstruction in Low-dose Computed Tomography for Lung Cancer Screening].

    PubMed

    Minehiro, Kaori; Takata, Tadanori; Hayashi, Hiroyuki; Sakuda, Keita; Nunome, Haruka; Kawashima, Hiroko; Sanada, Shigeru

    2015-12-01

    We investigated dose reduction ability of an iterative reconstruction technology for low-dose computed tomography (CT) for lung cancer screening. The Sinogram Affirmed Iterative Reconstruction (SAFIRE) provided in a multi slice CT system, Somatom Definition Flash (Siemens Healthcare) was used. An anthropomorphic chest phantom (N-1, Kyoto Kagaku) was scanned at volume CT dose index (CTDIvol) of 0.50-11.86 mGy with 120 kV. For noise (standard deviation) and contrast-to-noise ratio (CNR) measurements, CTP486 and CTP515 modules in the Catphan (The Phantom Laboratory) were scanned. Radiological technologists were participated in the perceptual comparison. SAFIRE reduced the SD values by approximately 50% compared with filter back projection (FBP). The estimated dose reduction rates by SAFIRE determined from the perceptual comparison was approximately 23%, while 75% dose reduction rate was expected from the SD value reduction of 50%.

  10. PET/CT imaging in lung cancer: indications and findings*

    PubMed Central

    Hochhegger, Bruno; Alves, Giordano Rafael Tronco; Irion, Klaus Loureiro; Fritscher, Carlos Cezar; Fritscher, Leandro Genehr; Concatto, Natália Henz; Marchiori, Edson

    2015-01-01

    The use of PET/CT imaging in the work-up and management of patients with lung cancer has greatly increased in recent decades. The ability to combine functional and anatomical information has equipped PET/CT to look into various aspects of lung cancer, allowing more precise disease staging and providing useful data during the characterization of indeterminate pulmonary nodules. In addition, the accuracy of PET/CT has been shown to be greater than is that of conventional modalities in some scenarios, making PET/CT a valuable noninvasive method for the investigation of lung cancer. However, the interpretation of PET/CT findings presents numerous pitfalls and potential confounders. Therefore, it is imperative for pulmonologists and radiologists to familiarize themselves with the most relevant indications for and limitations of PET/CT, seeking to protect their patients from unnecessary radiation exposure and inappropriate treatment. This review article aimed to summarize the basic principles, indications, cancer staging considerations, and future applications related to the use of PET/CT in lung cancer. PMID:26176525

  11. Impact of temporal probability in 4D dose calculation for lung tumors.

    PubMed

    Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi

    2015-11-08

    The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can

  12. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer.

    PubMed

    Lee, Percy; Kupelian, Patrick; Czernin, Johannes; Ghosh, Partha

    2012-01-01

    Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory-gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT-based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.

  13. A Simple Low-dose X-ray CT Simulation from High-dose Scan.

    PubMed

    Zeng, Dong; Huang, Jing; Bian, Zhaoying; Niu, Shanzhou; Zhang, Hua; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2015-10-01

    Low-dose X-ray computed tomography (CT) simulation from high-dose scan is required in optimizing radiation dose to patients. In this study, we propose a simple low-dose CT simulation strategy in sinogram domain using the raw data from high-dose scan. Specially, a relationship between the incident fluxes of low- and high- dose scans is first determined according to the repeated projection measurements and analysis. Second, the incident flux level of the simulated low-dose scan is generated by properly scaling the incident flux level of high-dose scan via the determined relationship in the first step. Third, the low-dose CT transmission data by energy integrating detection is simulated by adding a statistically independent Poisson noise distribution plus a statistically independent Gaussian noise distribution. Finally, a filtered back-projection (FBP) algorithm is implemented to reconstruct the resultant low-dose CT images. The present low-dose simulation strategy is verified on the simulations and real scans by comparing it with the existing low-dose CT simulation tool. Experimental results demonstrated that the present low-dose CT simulation strategy can generate accurate low-dose CT sinogram data from high-dose scan in terms of qualitative and quantitative measurements.

  14. Low dose chest CT protocol (50 mAs) as a routine protocol for comprehensive assessment of intrathoracic abnormality.

    PubMed

    Kubo, Takeshi; Ohno, Yoshiharu; Nishino, Mizuki; Lin, Pei-Jan; Gautam, Shiva; Kauczor, Hans-Ulrich; Hatabu, Hiroto

    2016-01-01

    To determine the diagnostic capability of low-dose CT (50 mAs) in comparison to standard-dose CT (150 mAs). Fifty-nine consecutive patients underwent two non-contrast chest CT scans with different current-time products (50 and 150 mAs at 120 kVp) on a 64-detector row CT scanner. Three board certified chest radiologists independently reviewed 118 series of 2 mm-thick images (2 series for each of 59 patients) in a random order. The readers assessed abnormal findings including emphysema, ground-glass opacity, reticular opacity, micronodules, bronchiectasis, honeycomb, nodules (>5 mm), aortic aneurysm, coronary artery calcification, pericardial and pleural effusion, pleural thickening, mediastinal tumor and lymph node enlargement. Five-point scale from 1 (definitely absent) to 5 (definitely present) was used to record the results. The rates of score agreement between two images were calculated. Deviation of one observer's score from other two observers was compared between low dose CT and standard dose CT. Mean agreement rate of the lung parenchymal findings between low dose CT and standard dose CT images was 0.836 (range, 0.746-0.926). Mean agreement rates for mediastinal and pleural findings were 0.920 (range, 0.735-1.000). There was no statistically significant difference in the deviation of the observers' scores between low-dose CT and standard-dose CT. Low dose CT protocol at 50 mAs can produce the screening results consistent with standard dose CT protocol (150 mAs), supporting routine use of low dose chest CT protocol.

  15. Radiation dose-reduction strategies for neuroradiology CT protocols.

    PubMed

    Smith, A B; Dillon, W P; Gould, R; Wintermark, M

    2007-10-01

    Within the past 2 decades, the number of CT examinations performed has increased almost 10-fold. This is in large part due to advances in multidetector-row CT technology, which now allows faster image acquisition and improved isotropic imaging. The increased use, along with multidetector technique, has led to a significantly increased radiation dose to the patient from CT studies. This places increased responsibility on the radiologist to ensure that CT examinations are indicated and that the "as low as reasonably achievable" concept is adhered to. Neuroradiologists are familiar with factors that affect patient dose such as pitch, milliamperes, kilovolt peak (kVp), collimation, but with increasing attention being given to dose reduction, they are looking for additional ways to further reduce the radiation associated with their CT protocols. In response to increasing concern, CT manufacturers have developed dose-reduction tools, such as dose modulation, in which the tube current is adjusted along with the CT acquisition, according to patient's attenuation. This review will describe the available techniques for reducing dose associated with neuroradiologic CT imaging protocols.

  16. Standardizing CT lung density measure across scanner manufacturers.

    PubMed

    Chen-Mayer, Huaiyu Heather; Fuld, Matthew K; Hoppel, Bernice; Judy, Philip F; Sieren, Jered P; Guo, Junfeng; Lynch, David A; Possolo, Antonio; Fain, Sean B

    2017-03-01

    Computed Tomography (CT) imaging of the lung, reported in Hounsfield Units (HU), can be parameterized as a quantitative image biomarker for the diagnosis and monitoring of lung density changes due to emphysema, a type of chronic obstructive pulmonary disease (COPD). CT lung density metrics are global measurements based on lung CT number histograms, and are typically a quantity specifying either the percentage of voxels with CT numbers below a threshold, or a single CT number below which a fixed relative lung volume, nth percentile, falls. To reduce variability in the density metrics specified by CT attenuation, the Quantitative Imaging Biomarkers Alliance (QIBA) Lung Density Committee has organized efforts to conduct phantom studies in a variety of scanner models to establish a baseline for assessing the variations in patient studies that can be attributed to scanner calibration and measurement uncertainty. Data were obtained from a phantom study on CT scanners from four manufacturers with several protocols at various tube potential voltage (kVp) and exposure settings. Free from biological variation, these phantom studies provide an assessment of the accuracy and precision of the density metrics across platforms solely due to machine calibration and uncertainty of the reference materials. The phantom used in this study has three foam density references in the lung density region, which, after calibration against a suite of Standard Reference Materials (SRM) foams with certified physical density, establishes a HU-electron density relationship for each machine-protocol. We devised a 5-step calibration procedure combined with a simplified physical model that enabled the standardization of the CT numbers reported across a total of 22 scanner-protocol settings to a single energy (chosen at 80 keV). A standard deviation was calculated for overall CT numbers for each density, as well as by scanner and other variables, as a measure of the variability, before and after the

  17. Impact of new technologies on dose reduction in CT.

    PubMed

    Lee, Ting-Yim; Chhem, Rethy K

    2010-10-01

    The introduction of slip ring technology enables helical CT scanning in the late 1980's and has rejuvenated CT's role in diagnostic imaging. Helical CT scanning has made possible whole body scanning in a single breath hold and computed tomography angiography (CTA) which has replaced invasive catheter based angiography in many cases because of its easy of operation and lesser risk to patients. However, a series of recent articles and accidents have heightened the concern of radiation risk from CT scanning. Undoubtedly, the radiation dose from CT studies, in particular, CCTA studies, are among the highest dose studies in diagnostic imaging. Nevertheless, CT has remained the workhorse of diagnostic imaging in emergent and non-emergent situations because of their ubiquitous presence in medical facilities from large academic to small regional hospitals and their round the clock accessibility due to their ease of use for both staff and patients as compared to MR scanners. The legitimate concern of radiation dose has sparked discussions on the risk vs benefit of CT scanning. It is recognized that newer CT applications, like CCTA and perfusion, will be severely curtailed unless radiation dose is reduced. This paper discusses the various hardware and software techniques developed to reduce radiation dose to patients in CT scanning. The current average effective dose of a CT study is ∼10 mSv, with the implementation of dose reduction techniques discussed herein; it is realistic to expect that the average effective dose may be decreased by 2-3 fold. Copyright © 2010. Published by Elsevier Ireland Ltd.

  18. 4D CT lung ventilation images are affected by the 4D CT sorting method

    PubMed Central

    Yamamoto, Tokihiro; Kabus, Sven; Lorenz, Cristian; Johnston, Eric; Maxim, Peter G.; Diehn, Maximilian; Eclov, Neville; Barquero, Cristian; Loo, Billy W.; Keall, Paul J.

    2013-01-01

    Purpose: Four-dimensional (4D) computed tomography (CT) ventilation imaging is a novel promising technique for lung functional imaging. The current standard 4D CT technique using phase-based sorting frequently results in artifacts, which may deteriorate the accuracy of ventilation imaging. The purpose of this study was to quantify the variability of 4D CT ventilation imaging due to 4D CT sorting. Methods: 4D CT image sets from nine lung cancer patients were each sorted by the phase-based method and anatomic similarity-based method, designed to reduce artifacts, with corresponding ventilation images created for each method. Artifacts in the resulting 4D CT images were quantified with the artifact score which was defined based on the difference between the normalized cross correlation for CT slices within a CT data segment and that for CT slices bordering the interface between adjacent CT data segments. The ventilation variation was quantified using voxel-based Spearman rank correlation coefficients for all lung voxels, and Dice similarity coefficients (DSC) for the spatial overlap of low-functional lung volumes. Furthermore, the correlations with matching single-photon emission CT (SPECT) ventilation images (assumed ground truth) were evaluated for three patients to investigate which sorting method provides higher physiologic accuracy. Results: Anatomic similarity-based sorting reduced 4D CT artifacts compared to phase-based sorting (artifact score, 0.45 ± 0.14 vs 0.58 ± 0.24, p = 0.10 at peak-exhale; 0.63 ± 0.19 vs 0.71 ± 0.31, p = 0.25 at peak-inhale). The voxel-based correlation between the two ventilation images was 0.69 ± 0.26 on average, ranging from 0.03 to 0.85. The DSC was 0.71 ± 0.13 on average. Anatomic similarity-based sorting yielded significantly fewer lung voxels with paradoxical negative ventilation values than phase-based sorting (5.0 ± 2.6% vs 9.7 ± 8.4%, p = 0.05), and improved the correlation with SPECT ventilation regionally. Conclusions

  19. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Radiation dose reduction in chest CT: a review.

    PubMed

    Kubo, Takeshi; Lin, Pei-Jan Paul; Stiller, Wolfram; Takahashi, Masaya; Kauczor, Hans-Ulrich; Ohno, Yoshiharu; Hatabu, Hiroto

    2008-02-01

    This article aims to summarize the available data on reducing radiation dose exposure in routine chest CT protocols. First, the general aspects of radiation dose in CT and radiation risk are discussed, followed by the effect of changing parameters on image quality. Finally, the results of previous radiation dose reduction studies are reviewed, and important information contributing to radiation dose reduction will be shared. A variety of methods and techniques for radiation dose reduction should be used to ensure that radiation exposure is kept as low as is reasonably achievable.

  1. Strategies to reduce radiation dose in cardiac PET/CT

    NASA Astrophysics Data System (ADS)

    Wu, Tung Hsin; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Jay; S. P. Mok, Greta; Yang, Ching-Ching; Huang, Tzung-Chi

    2011-08-01

    Our aim was to investigate CT dose reduction strategies on a hybrid PET/CT scanner for cardiac applications.MaterialsImage quality and dose estimation of different CT scanning protocols for CT coronary angiography (CTCA), and CT-based attenuation correction for PET imaging were investigated. Fifteen patients underwent CTCA, perfusion PET imaging at rest and under stress, and FDG PET for myocardial viability. These patients were divided into three groups based on the CTCA technique performed: retrospectively gated helical (RGH), ECG tube current modulation (ETCM), and prospective gated axial (PGA) acquisitions. All emission images were corrected for photon attenuation using CT images obtained by default setting and an ultra-low dose CT (ULDCT) scan.ResultsRadiation dose in RGH technique was 22.2±4.0 mSv. It was reduced to 10.95±0.82 and 4.13±0.31 mSv using ETCM and PGA techniques, respectively. Radiation dose in CT transmission scan was reduced by 96.5% (from 4.53±0.5 to 0.16±0.01 mSv) when applying ULDCT as compared to the default CT. No significant difference in terms of image quality was found among various protocols.ConclusionThe proposed CT scanning strategies, i.e. ETCM or PGA for CTCA and ULDCT for PET attenuation correction, could reduce radiation dose up to 47% without degrading imaging quality in an integrated cardiac PET/CT coronary artery examination.

  2. Evaluation of segmentation using lung nodule phantom CT images

    NASA Astrophysics Data System (ADS)

    Judy, Philip F.; Jacobson, Francine L.

    2001-07-01

    Segmentation of chest CT images has several purposes. In lung-cancer screening programs, for nodules below 5mm, growth measured from sequential CT scans is the primary indication of malignancy. Automatic segmentation procedures have been used as a means to insure a reliable measurement of lung nodule size. A lung nodule phantom was developed to evaluate the validity and reliability of size measurements using CT images. Thirty acrylic spheres and cubes (2-8 mm) were placed in a 15cm diameter disk of uniform-material that simulated the lung. To demonstrate the use of the phantom, it was scanned using out hospital's lung-cancer screening protocol. A simple, yet objective threshold technique was used to segment all of the images in which the objects were visible. All the pixels above a common threshold (the mean of the lung material and the acrylic CT numbers) were considered within the nodule. The relative bias did not depend on the shape of the objects and ranged from -18% for the 2 mm objects to -2.5% for 8-mm objects. DICOM image files of the phantom are available for investigators with an interest in using the images to evaluate and compare segmentation procedures.

  3. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-11-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  4. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    PubMed Central

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-01-01

    Purpose: To determine the impact of constrained reconstruction techniques on quantitative CT (qCT) of the lung parenchyma and airways for low x-ray radiation dose. Methods: Measurement of small airways with qCT remains a challenge, especially for low x-ray dose protocols. Images of the COPDGene quality assurance phantom (CTP698, The Phantom Laboratory, Salem, NY) were obtained using a GE discovery CT750 HD scanner for helical scans at x-ray radiation dose-equivalents ranging from 1 to 4.12 mSv (12–100 mA s current–time product). Other parameters were 40 mm collimation, 0.984 pitch, 0.5 s rotation, and 0.625 mm thickness. The phantom was sandwiched between 7.5 cm thick water attenuating phantoms for a total length of 20 cm to better simulate the scatter conditions of patient scans. Image data sets were reconstructed using STANDARD (STD), DETAIL, BONE, and EDGE algorithms for filtered back projection (FBP), 100% adaptive statistical iterative reconstruction (ASIR), and Veo reconstructions. Reduced (half) display field of view (DFOV) was used to increase sampling across airway phantom structures. Inner diameter (ID), wall area percent (WA%), and wall thickness (WT) measurements of eight airway mimicking tubes in the phantom, including a 2.5 mm ID (42.6 WA%, 0.4 mm WT), 3 mm ID (49.0 WA%, 0.6 mm WT), and 6 mm ID (49.0 WA%, 1.2 mm WT) were performed with Airway Inspector (Surgical Planning Laboratory, Brigham and Women’s Hospital, Boston, MA) using the phase congruency edge detection method. The average of individual measures at five central slices of the phantom was taken to reduce measurement error. Results: WA% measures were greatly overestimated while IDs were underestimated for the smaller airways, especially for reconstructions at full DFOV (36 cm) using the STD kernel, due to poor sampling and spatial resolution (0.7 mm pixel size). Despite low radiation dose, the ID of the 6 mm ID airway was consistently measured accurately for all methods other than STD

  5. Model-based Iterative Reconstruction: Effect on Patient Radiation Dose and Image Quality in Pediatric Body CT

    PubMed Central

    Dillman, Jonathan R.; Goodsitt, Mitchell M.; Christodoulou, Emmanuel G.; Keshavarzi, Nahid; Strouse, Peter J.

    2014-01-01

    Purpose To retrospectively compare image quality and radiation dose between a reduced-dose computed tomographic (CT) protocol that uses model-based iterative reconstruction (MBIR) and a standard-dose CT protocol that uses 30% adaptive statistical iterative reconstruction (ASIR) with filtered back projection. Materials and Methods Institutional review board approval was obtained. Clinical CT images of the chest, abdomen, and pelvis obtained with a reduced-dose protocol were identified. Images were reconstructed with two algorithms: MBIR and 100% ASIR. All subjects had undergone standard-dose CT within the prior year, and the images were reconstructed with 30% ASIR. Reduced- and standard-dose images were evaluated objectively and subjectively. Reduced-dose images were evaluated for lesion detectability. Spatial resolution was assessed in a phantom. Radiation dose was estimated by using volumetric CT dose index (CTDIvol) and calculated size-specific dose estimates (SSDE). A combination of descriptive statistics, analysis of variance, and t tests was used for statistical analysis. Results In the 25 patients who underwent the reduced-dose protocol, mean decrease in CTDIvol was 46% (range, 19%–65%) and mean decrease in SSDE was 44% (range, 19%–64%). Reduced-dose MBIR images had less noise (P > .004). Spatial resolution was superior for reduced-dose MBIR images. Reduced-dose MBIR images were equivalent to standard-dose images for lungs and soft tissues (P > .05) but were inferior for bones (P = .004). Reduced-dose 100% ASIR images were inferior for soft tissues (P < .002), lungs (P < .001), and bones (P < .001). By using the same reduced-dose acquisition, lesion detectability was better (38% [32 of 84 rated lesions]) or the same (62% [52 of 84 rated lesions]) with MBIR as compared with 100% ASIR. Conclusion CT performed with a reduced-dose protocol and MBIR is feasible in the pediatric population, and it maintains diagnostic quality. © RSNA, 2013 Online supplemental

  6. Quantitative assessment of smoking-induced emphysema progression in longitudinal CT screening for lung cancer

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2015-03-01

    Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, p<0.05). This paper demonstrates effectiveness of the proposed method in diagnosis and prognosis of early emphysema in CT screening for lung cancer.

  7. Longitudinal multistage model for lung cancer incidence, mortality, and CT detected indolent and aggressive cancers

    PubMed Central

    Hazelton, William D.; Goodman, Gary; Rom, William N.; Tockman, Melvyn; Thornquist, Mark; Moolgavkar, Suresh; Weissfeld, Joel L.; Feng, Ziding

    2012-01-01

    It is currently not known whether most lung cancers detected by computerized tomography (CT) screening are aggressive and likely to be fatal if left untreated, or if a sizable fraction are indolent and unlikely to cause death during the natural lifetime of the individual. We developed a longitudinal biologically-based model of the relationship between individual smoking histories and the probability for lung cancer incidence, CT screen detection, lung cancer mortality, and other-cause mortality. The longitudinal model relates these different outcomes to an underlying lung cancer disease pathway and an effective other-cause mortality pathway, which are both influenced by the individual smoking history. The longitudinal analysis provides additional information over that available if these outcomes were analyzed separately, including testing if the number of CT detected and histologically-confirmed lung cancers is consistent with the expected number of lung cancers “in the pipeline”. We assume indolent nodules undergo Gompertz growth and are detectable by CT, but do not grow large enough to contribute significantly to symptom-based lung cancer incidence or mortality. Likelihood-based model calibration was done jointly to data from 6,878 heavy smokers without asbestos exposure in the control (placebo) arm of the Carotene and Retinol Efficacy Trial (CARET); and to 3,642 heavy smokers with comparable smoking histories in the Pittsburgh Lung Screening Study (PLuSS), a single-arm prospective trial of low-dose spiral CT screening for diagnosis of lung cancer. Model calibration was checked using data from two other single-arm prospective CT screening trials, the New York University Lung Cancer Biomarker Center (NYU) (n=1,021), and Moffitt Cancer Center (Moffitt) cohorts (n=677). In the PLuSS cohort, we estimate that at the end of year 2, after the baseline and first annual CT exam, that 33.0 (26.9, 36.9)% of diagnosed lung cancers among females and 7.0 (4.9, 11.7)% among

  8. Analysis of patient CT dose data using virtualdose

    NASA Astrophysics Data System (ADS)

    Bennett, Richard

    X-ray computer tomography has many benefits to medical and research applications. Recently, over the last decade CT has had a large increase in usage in hospitals and medical diagnosis. In pediatric care, from 2000 to 2006, abdominal CT scans increased by 49 % and chest CT by 425 % in the emergency room (Broder 2007). Enormous amounts of effort have been performed across multiple academic and government groups to determine an accurate measure of organ dose to patients who undergo a CT scan due to the inherent risks with ionizing radiation. Considering these intrinsic risks, CT dose estimating software becomes a necessary tool that health care providers and radiologist must use to determine many metrics to base the risks versus rewards of having an x-ray CT scan. This thesis models the resultant organ dose as body mass increases for patients with all other related scan parameters fixed. In addition to this,this thesis compares a modern dose estimating software, VirtualDose CT to two other programs, CT-Expo and ImPACT CT. The comparison shows how the software's theoretical basis and the phantom they use to represent the human body affect the range of results in organ dose. CT-Expo and ImPACT CT dose estimating software uses a different model for anatomical representation of the organs in the human body and the results show how that approach dramatically changes the outcome. The results categorizes four datasets as compared to the three software types where the appropriate phantom was available. Modeling was done to simulate chest abdominal pelvis scans and whole body scans. Organ dose difference versus body mass index shows as body mass index (BMI) ranges from 23.5 kg/m 2 to 45 kg/m2 the amount of organ dose also trends a percent change from -4.58 to -176.19 %. Comparing organ dose difference with increasing x-ray tube potential from 120 kVp to 140 kVp the percent change in organ dose increases from 55 % to 65 % across all phantoms. In comparing VirtualDose to CT

  9. Quantitative assessment of Pulmonary Alveolar Proteinosis (PAP) with ultra-dose CT and correlation with Pulmonary Function Tests (PFTs)

    PubMed Central

    Sui, Xin; Du, Qianni; Xu, Kai-feng; Tian, Xinlun; Song, Lan; Wang, Xiao; Xu, Xiaoli; Wang, Zixing; Wang, Yuyan; Gu, Jun; Song, Wei; Jin, Zhengyu

    2017-01-01

    Background The purpose of this study was to investigate whether ultra-low-dose chest computed tomography (CT) can be used for visual assessment of CT features in patients with pulmonary alveolar proteinosis (PAP) and to evaluate the relationship between the quantitative analysis of the ultra-low-dose CT scans and the pulmonary function tests (PFTs). Methods Thirty-eight patients (mean [SD] age, 44.47 [12.28] years; 29 males, 9 females) with PAP were enrolled and subjected to two scans each with low-dose CT (reference parameters: 120 kV and 50 mAs) and ultra-low-dose CT (reference parameters, 80 kV, 25 mAs). Images were reconstructed via filtered back projection (FBP) for low-dose CT and iterative reconstruction (IR) for ultra-low-dose CT. All patients underwent PFT. The Visual analysis for ground glass opacity (GGO) is performed. The quantitative CT and PFT results were analyzed by canonical correlations. Results The mean body mass index (BMI) was 25.37±3.26 kg/m2. The effective radiation doses were 2.30±0.46 and 0.24±0.05 mSv for low-dose and ultra-low-dose CT, respectively. The size-specific dose estimates were 5.81±0.81 and 0.62±0.09 mSv for low-dose and ultra-low-dose CT. GGOs and interlobular septal thickening were observed bilaterally in all patients. The average visual GGO score was lower in the upper field (2.67±1.24) but higher in the middle and lower fields (3.08±1.32 and 3.08±0.97, respectively). The average score for the whole lung was 2.94±1.19. There is a significant correlation between PFTs and quantitative of ultra-low-dose CT (canonical loading = 0.78). Conclusions Ultra-low-dose CT has the potential to quantify the lung parenchyma changes of PAP. This technique could provide a sensitive and objective assessment of PAP and has good relation with PFTs. In addition, the radiation dose of ultra-low-dose CT was very low. PMID:28301535

  10. Quantitative assessment of Pulmonary Alveolar Proteinosis (PAP) with ultra-dose CT and correlation with Pulmonary Function Tests (PFTs).

    PubMed

    Sui, Xin; Du, Qianni; Xu, Kai-Feng; Tian, Xinlun; Song, Lan; Wang, Xiao; Xu, Xiaoli; Wang, Zixing; Wang, Yuyan; Gu, Jun; Song, Wei; Jin, Zhengyu

    2017-01-01

    The purpose of this study was to investigate whether ultra-low-dose chest computed tomography (CT) can be used for visual assessment of CT features in patients with pulmonary alveolar proteinosis (PAP) and to evaluate the relationship between the quantitative analysis of the ultra-low-dose CT scans and the pulmonary function tests (PFTs). Thirty-eight patients (mean [SD] age, 44.47 [12.28] years; 29 males, 9 females) with PAP were enrolled and subjected to two scans each with low-dose CT (reference parameters: 120 kV and 50 mAs) and ultra-low-dose CT (reference parameters, 80 kV, 25 mAs). Images were reconstructed via filtered back projection (FBP) for low-dose CT and iterative reconstruction (IR) for ultra-low-dose CT. All patients underwent PFT. The Visual analysis for ground glass opacity (GGO) is performed. The quantitative CT and PFT results were analyzed by canonical correlations. The mean body mass index (BMI) was 25.37±3.26 kg/m2. The effective radiation doses were 2.30±0.46 and 0.24±0.05 mSv for low-dose and ultra-low-dose CT, respectively. The size-specific dose estimates were 5.81±0.81 and 0.62±0.09 mSv for low-dose and ultra-low-dose CT. GGOs and interlobular septal thickening were observed bilaterally in all patients. The average visual GGO score was lower in the upper field (2.67±1.24) but higher in the middle and lower fields (3.08±1.32 and 3.08±0.97, respectively). The average score for the whole lung was 2.94±1.19. There is a significant correlation between PFTs and quantitative of ultra-low-dose CT (canonical loading = 0.78). Ultra-low-dose CT has the potential to quantify the lung parenchyma changes of PAP. This technique could provide a sensitive and objective assessment of PAP and has good relation with PFTs. In addition, the radiation dose of ultra-low-dose CT was very low.

  11. Automated extraction of radiation dose information for CT examinations.

    PubMed

    Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W

    2010-11-01

    Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management.

  12. Hybrid detection of lung nodules on CT scan images

    SciTech Connect

    Lu, Lin; Tan, Yongqiang; Schwartz, Lawrence H.; Zhao, Binsheng

    2015-09-15

    Purpose: The diversity of lung nodules poses difficulty for the current computer-aided diagnostic (CAD) schemes for lung nodule detection on computed tomography (CT) scan images, especially in large-scale CT screening studies. We proposed a novel CAD scheme based on a hybrid method to address the challenges of detection in diverse lung nodules. Methods: The hybrid method proposed in this paper integrates several existing and widely used algorithms in the field of nodule detection, including morphological operation, dot-enhancement based on Hessian matrix, fuzzy connectedness segmentation, local density maximum algorithm, geodesic distance map, and regression tree classification. All of the adopted algorithms were organized into tree structures with multi-nodes. Each node in the tree structure aimed to deal with one type of lung nodule. Results: The method has been evaluated on 294 CT scans from the Lung Image Database Consortium (LIDC) dataset. The CT scans were randomly divided into two independent subsets: a training set (196 scans) and a test set (98 scans). In total, the 294 CT scans contained 631 lung nodules, which were annotated by at least two radiologists participating in the LIDC project. The sensitivity and false positive per scan for the training set were 87% and 2.61%. The sensitivity and false positive per scan for the testing set were 85.2% and 3.13%. Conclusions: The proposed hybrid method yielded high performance on the evaluation dataset and exhibits advantages over existing CAD schemes. We believe that the present method would be useful for a wide variety of CT imaging protocols used in both routine diagnosis and screening studies.

  13. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    PubMed Central

    Jacob, Richard E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2014-01-01

    Rationale and Objectives To investigate the ability of variogram analysis of octree-decomposed CT images and volume change maps to detect radiation-induced damage in rat lungs. Materials and Methods The lungs of female Sprague-Dawley rats were exposed to one of five absorbed doses (0, 6, 9, 12, or 15 Gy) of gamma radiation from a Co-60 source. At 6 months post-exposure, pulmonary function tests were performed and 4DCT images were acquired using a respiratory-gated microCT scanner. Volume change maps were then calculated from the 4DCT images. Octree decomposition was performed on CT images and volume change maps, and variogram analysis was applied to the decomposed images. Correlations of measured parameters with dose were evaluated. Results The effects of irradiation were not detectable from measured parameters, indicating only mild lung damage. Additionally, there were no significant correlations of pulmonary function results or CT densitometry with radiation dose. However, the variogram analysis did detect a significant correlation with dose in both the CT images (r=−0.57, p=0.003) and the volume change maps (r=−0.53, p=0.008). Conclusion This is the first study to utilize variogram analysis of lung images to assess pulmonary damage in a model of radiation injury. Results show that this approach is more sensitive to detecting radiation damage than conventional measures such as pulmonary function tests or CT densitometry. PMID:24029058

  14. Automatic lung nodule matching on sequential CT images.

    PubMed

    Hong, Helen; Lee, Jeongjin; Yim, Yeny

    2008-05-01

    We propose an automatic segmentation and registration method that provides more efficient and robust matching of lung nodules in sequential chest computed tomography (CT) images. Our method consists of four steps. First, the lungs are extracted from chest CT images by the automatic segmentation method. Second, gross translational mismatch is corrected by optimal cube registration. This initial alignment does not require extracting any anatomical landmarks. Third, the initial alignment is step-by-step refined by hierarchical surface registration. To evaluate the distance measures between lung boundary points, a three-dimensional distance map is generated by narrow-band distance propagation, which drives fast and robust convergence to the optimal value. Finally, correspondences of manually detected nodules are established from the pairs with the smallest Euclidean distances. Experimental results show that our segmentation method accurately extracts lung boundaries and the registration method effectively finds the nodule correspondences.

  15. WE-D-207-03: CT Protocols for Screening and the ACR Designated Lung Screening Program

    SciTech Connect

    McNitt-Gray, M.

    2015-06-15

    In the United States, Lung Cancer is responsible for more cancer deaths than the next four cancers combined. In addition, the 5 year survival rate for lung cancer patients has not improved over the past 40 to 50 years. To combat this deadly disease, in 2002 the National Cancer Institute launched a very large Randomized Control Trial called the National Lung Screening Trial (NLST). This trial would randomize subjects who had substantial risk of lung cancer (due to age and smoking history) into either a Chest X-ray arm or a low dose CT arm. In November 2010, the National Cancer Institute announced that the NLST had demonstrated 20% fewer lung cancer deaths among those who were screened with low-dose CT than with chest X-ray. In December 2013, the US Preventive Services Task Force recommended the use of Lung Cancer Screening using low dose CT and a little over a year later (Feb. 2015), CMS announced that Medicare would also cover Lung Cancer Screening using low dose CT. Thus private and public insurers are required to provide Lung Cancer Screening programs using CT to the appropriate population(s). The purpose of this Symposium is to inform medical physicists and prepare them to support the implementation of Lung Screening programs. This Symposium will focus on the clinical aspects of lung cancer screening, requirements of a screening registry for systematically capturing and tracking screening patients and results (such as required Medicare data elements) as well as the role of the medical physicist in screening programs, including the development of low dose CT screening protocols. Learning Objectives: To understand the clinical basis and clinical components of a lung cancer screening program, including eligibility criteria and other requirements. To understand the data collection requirements, workflow, and informatics infrastructure needed to support the tracking and reporting components of a screening program. To understand the role of the medical physicist in

  16. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation

    SciTech Connect

    Lee, J.Y.; Shank, B.; Bonfiglio, P.; Reid, A.

    1984-10-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.

  17. Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading

    NASA Astrophysics Data System (ADS)

    Keller, Brad M.; Reeves, Anthony P.; Apanosovich, Tatiyana V.; Wang, Jianwei; Yankelevitz, David F.; Henschke, Claudia I.

    2009-02-01

    Emphysema is a disease of the lungs that destroys the alveolar air sacs and induces long-term respiratory dysfunction. CT scans allow for imaging of the anatomical basis of emphysema and for visual assessment by radiologists of the extent present in the lungs. Several measures have been introduced for the quantification of the extent of disease directly from CT data in order to add to the qualitative assessments made by radiologists. In this paper we compare emphysema index, mean lung density, histogram percentiles, and the fractal dimension to visual grade in order to evaluate the predictability of radiologist visual scoring of emphysema from low-dose CT scans through quantitative scores, in order to determine which measures can be useful as surrogates for visual assessment. All measures were computed over nine divisions of the lung field (whole lung, individual lungs, and upper/middle/lower thirds of each lung) for each of 148 low-dose, whole lung scans. In addition, a visual grade of each section was also given by an expert radiologist. One-way ANOVA and multinomial logistic regression were used to determine the ability of the measures to predict visual grade from quantitative score. We found that all measures were able to distinguish between normal and severe grades (p<0.01), and between mild/moderate and all other grades (p<0.05). However, no measure was able to distinguish between mild and moderate cases. Approximately 65% prediction accuracy was achieved from using quantitative score to predict visual grade, with 73% if mild and moderate cases are considered as a single class.

  18. Collateral Ventilation to Congenital Hyperlucent Lung Lesions Assessed on Xenon-Enhanced Dynamic Dual-Energy CT: an Initial Experience

    PubMed Central

    Yang, Dong Hyun; Kim, Namkug; Park, Seung Il; Kim, Dong Kwan; Kim, Ellen Ai-Rhan

    2011-01-01

    Objective We wanted to evaluate the resistance to collateral ventilation in congenital hyperlucent lung lesions and to correlate that with the anatomic findings on xenon-enhanced dynamic dual-energy CT. Materials and Methods Xenon-enhanced dynamic dual-energy CT was successfully and safely performed in eight children (median age: 5.5 years, 4 boys and 4 girls) with congenital hyperlucent lung lesions. Functional assessment of the lung lesions on the xenon map was done, including performing a time-xenon value curve analysis and assessing the amplitude of xenon enhancement (A) value, the rate of xenon enhancement (K) value and the time of arrival value. Based on the A value, the lung lesions were categorized into high or low (A value > 10 Hounsfield unit [HU]) resistance to collateral ventilation. In addition, the morphologic CT findings of the lung lesions, including cyst, mucocele and an accessory or incomplete fissure, were assessed on the weighted-average CT images. The xenon-enhanced CT radiation dose was estimated. Results Five of the eight lung lesions were categorized into the high resistance group and three lesions were categorized into the low resistance group. The A and K values in the normal lung were higher than those in the low resistance group. The time of arrival values were delayed in the low resistance group. Cysts were identified in five lesions, mucocele in four, accessory fissure in three and incomplete fissure in two. Either cyst or an accessory fissure was seen in four of the five lesions showing high resistance to collateral ventilation. The xenon-enhanced CT radiation dose was 2.3 ± 0.6 mSv. Conclusion Xenon-enhanced dynamic dual-energy CT can help visualize and quantitate various degrees of collateral ventilation to congenital hyperlucent lung lesions in addition to assessing the anatomic details of the lung. PMID:21228937

  19. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates.

    PubMed

    Quinn, Brian; Dauer, Zak; Pandit-Taskar, Neeta; Schoder, Heiko; Dauer, Lawrence T

    2016-06-18

    Whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) is the standard of care in oncologic diagnosis and staging, and patient radiation dose must be well understood to balance exam benefits with the risk from radiation exposure. Although reference PET/CT patient doses are available, the potential for widely varying total dose prompts evaluation of clinic-specific patient dose. The aims of this study were to use exam-specific information to characterize the radiation dosimetry of PET/CT exams that used two different CT techniques for adult oncology patients and evaluate the practicality of employing an exam-specific approach to dose estimation. Whole body PET/CT scans from two sets of consecutive adult patients were retrospectively reviewed. One set received a PET scan with a standard registration CT and the other a PET scan with a diagnostic quality CT. PET dose was calculated by modifying the standard reference phantoms in OLINDA/EXM 1.1 with patient-specific organ mass. CT dose was calculated using patient-specific data in ImPACT. International Commission on Radiological Protection publication 103 tissue weighting coefficients were used for effective dose. One hundred eighty three adult scans were evaluated (95 men, 88 women). The mean patient-specific effective dose from a mean injected 18F-FDG activity of 450 ± 32 MBq was 9.0 ± 1.6 mSv. For all standard PET/CT patients, mean effective mAs was 39 ± 11 mAs, mean CT effective dose was 5.0 ± 1.0 mSv and mean total effective dose was 14 ± 1.3 mSv. For all diagnostic PET/CT patients, mean effective mAs was 120 ± 51 mAs, mean CT effective dose was 15.4 ± 5.0 mSv and mean total effective dose was 24.4 ± 4.3 mSv. The five organs receiving the highest organ equivalent doses in all exams were bladder, heart, brain, liver and lungs. Patient-specific parameters optimize the patient dosimetry utilized in the medical justification of

  20. Organ dose measurement using Optically Stimulated Luminescence Detector (OSLD) during CT examination

    NASA Astrophysics Data System (ADS)

    Yusuf, Muhammad; Alothmany, Nazeeh; Abdulrahman Kinsara, Abdulraheem

    2017-10-01

    This study provides detailed information regarding the imaging doses to patient radiosensitive organs from a kilovoltage computed tomography (CT) scan procedure using OSLD. The study reports discrepancies between the measured dose and the calculated dose from the ImPACT scan, as well as a comparison with the dose from a chest X-ray radiography procedure. OSLDs were inserted in several organs, including the brain, eyes, thyroid, lung, heart, spinal cord, breast, spleen, stomach, liver and ovaries, of the RANDO phantom. Standard clinical scanning protocols were used for each individual site, including the brain, thyroid, lung, breast, stomach, liver and ovaries. The measured absorbed doses were then compared with the simulated dose obtained from the ImPACT scan. Additionally, the equivalent doses for each organ were calculated and compared with the dose from a chest X-ray radiography procedure. Absorbed organ doses measured by OSLD in the RANDO phantom of up to 17 mGy depend on the organ scanned and the scanning protocols used. A maximum 9.82% difference was observed between the target organ dose measured by OSLD and the results from the ImPACT scan. The maximum equivalent organ dose measured during this experiment was equal to 99.899 times the equivalent dose from a chest X-ray radiography procedure. The discrepancies between the measured dose with the OSLD and the calculated dose from the ImPACT scan were within 10%. This report recommends the use of OSLD for measuring the absorbed organ dose during CT examination.

  1. Local Correlation Between Monte-Carlo Dose and Radiation-Induced Fibrosis in Lung Cancer Patients

    SciTech Connect

    Stroian, Gabriela; Martens, Chandra; Souhami, Luis; Collins, D. Louis; Seuntjens, Jan

    2008-03-01

    Purpose: To present a new method of evaluating the correlation between radiotherapy (RT)-induced fibrosis and the local dose delivered to non-small-cell lung cancer patients. Methods and Materials: Treatment plans were generated using the CadPlan treatment planning system (pencil beam, no heterogeneity corrections), and RT delivery was based on these plans. Retrospective Monte-Carlo dose calculations were performed, and the Monte-Carlo distributions of dose to real tissue were calculated using the planning computed tomography (CT) images and the number of monitor units actually delivered. After registration of the follow-up CT images with the planning CT images, different grades of radiologic fibrosis were automatically segmented on the follow-up CT images. Subsequently, patient-specific fibrosis probabilities were studied as a function of the local dose and a function of time after RT completion. Results: A strong patient-specific variation in the fibrosis volumes was found during the follow-up period. For both lungs, the threshold dose for which the probability of fibrosis became significant coincided with the threshold dose at which significant volumes of the lung were exposed. At later stages, only fibrosis localized in the high-dose regions persisted for both lungs. Overall, the Monte-Carlo dose distributions correlated much better with the probability of RT-induced fibrosis than did the CadPlan dose distributions. Conclusion: The presented method allows for an accurate, systematic, patient-specific and post-RT time-dependent numeric study of the relationship between RT-induced fibrosis and the local dose.

  2. [Ultra-low-dose spiral (helical) CT of the thorax: a filtering technique].

    PubMed

    Nitta, N; Takahashi, M; Murata, K; Mori, M; Shimoyama, K; Mishina, A; Matsuo, H; Morita, R; Sugii, K; Nomura, A

    1996-01-01

    To reduce the radiation dose from spiral (helical) CT, a custom-made aluminium filter was installed in the X-ray tube and a reduction of effective tube current was attempted. A pronounced reduction of effective tube current, namely, 6 and 3 mA, was achieved with 26 and 37 mm thick aluminium filters, respectively. Visualization of normal lung structure was accomplished with both 6 and 3 mA settings. However, images of 3 mA failed to delineate mediastinal structures because of marked beam hardening resulting from the bone structure of the thoracic inlet. Six mA was considered the lowest dose setting of spiral (helical) CT of the thorax that could be used for lung cancer screening.

  3. Low-dose CT via convolutional neural network

    PubMed Central

    Chen, Hu; Zhang, Yi; Zhang, Weihua; Liao, Peixi; Li, Ke; Zhou, Jiliu; Wang, Ge

    2017-01-01

    In order to reduce the potential radiation risk, low-dose CT has attracted an increasing attention. However, simply lowering the radiation dose will significantly degrade the image quality. In this paper, we propose a new noise reduction method for low-dose CT via deep learning without accessing original projection data. A deep convolutional neural network is here used to map low-dose CT images towards its corresponding normal-dose counterparts in a patch-by-patch fashion. Qualitative results demonstrate a great potential of the proposed method on artifact reduction and structure preservation. In terms of the quantitative metrics, the proposed method has showed a substantial improvement on PSNR, RMSE and SSIM than the competing state-of-art methods. Furthermore, the speed of our method is one order of magnitude faster than the iterative reconstruction and patch-based image denoising methods. PMID:28270976

  4. Effective dose estimation during conventional and CT urography

    NASA Astrophysics Data System (ADS)

    Alzimami, K.; Sulieman, A.; Omer, E.; Suliman, I. I.; Alsafi, K.

    2014-11-01

    Intravenous urography (IVU) and CT urography (CTU) are efficient radiological examinations for the evaluation of the urinary system disorders. However patients are exposed to a significant radiation dose. The objectives of this study are to: (i) measure and compare patient radiation dose by computed tomography urography (CTU) and conventional intravenous urography (IVU) and (ii) evaluate organ equivalent dose and cancer risks from CTU and IVU imaging procedures. A total of 141 patients were investigated. A calibrated CT machine (Siemens-Somatom Emotion duo) was used for CTU, while a Shimadzu X ray machine was used for IVU. Thermoluminescence dosimeters (TLD-GR200A) were used to measure patients' entrance surface doses (ESD). TLDs were calibrated under reproducible reference conditions. Patients radiation dose values (DLP) for CTU were 172±61 mGy cm, CTDIvol 4.75±2 mGy and effective dose 2.58±1 mSv. Patient cancer probabilities were estimated to be 1.4 per million per CTU examination. Patients ESDs values for IVU were 21.62±5 mGy, effective dose 1.79±1 mSv. CT involves a higher effective dose than IVU. In this study the radiation dose is considered low compared to previous studies. The effective dose from CTU procedures was 30% higher compared to IVU procedures. Wide dose variation between patient doses suggests that optimization is not fulfilled yet.

  5. Visual assessment of early emphysema and interstitial abnormalities on CT is useful in lung cancer risk analysis.

    PubMed

    Wille, Mathilde M W; Thomsen, Laura H; Petersen, Jens; de Bruijne, Marleen; Dirksen, Asger; Pedersen, Jesper H; Shaker, Saher B

    2016-02-01

    Screening for lung cancer should be limited to a high-risk-population, and abnormalities in low-dose computed tomography (CT) screening images may be relevant for predicting the risk of lung cancer. Our aims were to compare the occurrence of visually detected emphysema and interstitial abnormalities in subjects with and without lung cancer in a screening population of smokers. Low-dose chest CT examinations (baseline and latest possible) of 1990 participants from The Danish Lung Cancer Screening Trial were independently evaluated by two observers who scored emphysema and interstitial abnormalities. Emphysema (lung density) was also measured quantitatively. Emphysema was seen more frequently and its extent was greater among participants with lung cancer on baseline (odds ratio (OR), 1.8, p = 0.017 and p = 0.002) and late examinations (OR 2.6, p < 0.001 and p < 0.001). No significant difference was found using quantitative measurements. Interstitial abnormalities were more common findings among participants with lung cancer (OR 5.1, p < 0.001 and OR 4.5, p < 0.001).There was no association between presence of emphysema and presence of interstitial abnormalities (OR 0.75, p = 0.499). Even early signs of emphysema and interstitial abnormalities are associated with lung cancer. Quantitative measurements of emphysema-regardless of type-do not show the same association. • Visually detected emphysema on CT is more frequent in individuals who develop lung cancer. • Emphysema grading is higher in those who develop lung cancer. • Interstitial abnormalities, including discrete changes, are associated with lung cancer. • Quantitative lung density measurements are not useful in lung cancer risk prediction. • Early CT signs of emphysema and interstitial abnormalities can predict future risk.

  6. Toward computer-aided emphysema quantification on ultralow-dose CT: reproducibility of ventrodorsal gravity effect measurement and correction

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Opfer, Roland; Bülow, Thomas; Rogalla, Patrik; Steinberg, Amnon; Dharaiya, Ekta; Subramanyan, Krishna

    2007-03-01

    Computer aided quantification of emphysema in high resolution CT data is based on identifying low attenuation areas below clinically determined Hounsfield thresholds. However, the emphysema quantification is prone to error since a gravity effect can influence the mean attenuation of healthy lung parenchyma up to +/- 50 HU between ventral and dorsal lung areas. Comparing ultra-low-dose (7 mAs) and standard-dose (70 mAs) CT scans of each patient we show that measurement of the ventrodorsal gravity effect is patient specific but reproducible. It can be measured and corrected in an unsupervised way using robust fitting of a linear function.

  7. Evaluation of dose reduction and image quality in CT colonography: comparison of low-dose CT with iterative reconstruction and routine-dose CT with filtered back projection.

    PubMed

    Nagata, Koichi; Fujiwara, Masanori; Kanazawa, Hidenori; Mogi, Tomohiro; Iida, Nao; Mitsushima, Toru; Lefor, Alan T; Sugimoto, Hideharu

    2015-01-01

    To prospectively evaluate the radiation dose and image quality comparing low-dose CT colonography (CTC) reconstructed using different levels of iterative reconstruction techniques with routine-dose CTC reconstructed with filtered back projection. Following institutional ethics clearance and informed consent procedures, 210 patients underwent screening CTC using automatic tube current modulation for dual positions. Examinations were performed in the supine position with a routine-dose protocol and in the prone position, randomly applying four different low-dose protocols. Supine images were reconstructed with filtered back projection and prone images with iterative reconstruction. Two blinded observers assessed the image quality of endoluminal images. Image noise was quantitatively assessed by region-of-interest measurements. The mean effective dose in the supine series was 1.88 mSv using routine-dose CTC, compared to 0.92, 0.69, 0.57, and 0.46 mSv at four different low doses in the prone series (p < 0.01). Overall image quality and noise of low-dose CTC with iterative reconstruction were significantly improved compared to routine-dose CTC using filtered back projection. The lowest dose group had image quality comparable to routine-dose images. Low-dose CTC with iterative reconstruction reduces the radiation dose by 48.5 to 75.1% without image quality degradation compared to routine-dose CTC with filtered back projection. • Low-dose CTC reduces radiation dose ≥ 48.5% compared to routine-dose CTC. • Iterative reconstruction improves overall CTC image quality compared with FBP. • Iterative reconstruction reduces overall CTC image noise compared with FBP. • Automated exposure control with iterative reconstruction is useful for low-dose CTC.

  8. Quantitative analysis of CT attenuation distribution patterns of nodule components for pathologic categorization of lung nodules

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Wei, Jun; Hadjiiski, Lubomir M.; Chughtai, Aamer; Kazerooni, Ella A.

    2017-03-01

    We investigated the feasibility of classifying pathologic invasive nodules and pre-invasive or benign nodules by quantitative analysis of the CT attenuation distribution patterns and other radiomic features of lung nodule components. We developed a new 3D adaptive multi-component Expectation-Maximization (EM) analysis method to segment the solid and non-solid nodule components and the surrounding lung parenchymal region. Features were extracted to characterize the size, shape, and the CT attenuation distribution of the entire nodule as well as the individual regions. With permission of the National Lung Screening Trial (NLST) project, a data set containing the baseline low dose CT scans of 53 cases with known pathologic tumor type categorization was obtained. The 53 cases contain 45 invasive nodules (group 1) and 42 pre-invasive nodules (group 2). A logistic regression model (LRM) was built using leave-one-case-out resampling and receiver operating characteristic (ROC) analysis for classification of group 1 and group 2, using the pathologic categorization as ground truth. With 4 selected features, the LRM achieved a test area under the curve (AUC) value of 0.877+/-0.036. The results demonstrated that the pathologic invasiveness of lung adenocarcinomas could be categorized according to the CT attenuation distribution patterns of the nodule components manifested on LDCT images.

  9. Classification of lung area using multidetector-row CT images

    NASA Astrophysics Data System (ADS)

    Mukaibo, Tsutomu; Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2002-05-01

    Recently, we can get high quality images in the short time for the progress of X-ray CT scanner. And the three dimensional (3-D) analysis of pulmonary organs using multidetector-row CT (MDCT) images, is expected. This paper presents a method for classifying lung area into each lobe using pulmonary MDCT images of the whole lung area. It is possible to recognize the position of nodule by classifying lung area into these lobes. The structure of lungs differs on the right one and left one. The right lung is divided into three domains by major fissure and minor fissure. And, the left lung is divided into two domains by major fissure. Watching MDCT images carefully, we find that the surroundings of fissures have few blood vessels. Therefore, lung area is classified by extraction of the domain that the distance from pulmonary blood vessels is large and connective search of these extracted domains. These extraction and search are realized by 3-D weighted Hough transform.

  10. Fetal dose estimates for CT pelvimetry

    SciTech Connect

    Moore, M.M.; Shearer, D.R.

    1989-04-01

    Fetal and maternal dose estimates for computed tomographic pelvimetry have been obtained from phantom measurements. Use of routine abdomen imaging techniques may result in localized fetal doses in excess of 13 mGy (1.3 rad). With the use of a low-exposure (40-mAs) technique, it is possible to obtain images of acceptable quality for the necessary measurements. The resulting dose to the fetus is approximately 2.3 mGy (0.23 rad).

  11. Automated segmentation of lungs with severe interstitial lung disease in CT.

    PubMed

    Wang, Jiahui; Li, Feng; Li, Qiang

    2009-10-01

    Accurate segmentation of lungs with severe interstitial lung disease (ILD) in thoracic computed tomography (CT) is an important and difficult task in the development of computer-aided diagnosis (CAD) systems. Therefore, we developed in this study a texture analysis-based method for accurate segmentation of lungs with severe ILD in multidetector CT scans. Our database consisted of 76 CT scans, including 31 normal cases and 45 abnormal cases with moderate or severe ILD. The lungs in three selected slices for each CT scan were first manually delineated by a medical physicist, and then confirmed or revised by an expert chest radiologist, and they were used as the reference standard for lung segmentation. To segment the lungs, we first employed a CT value thresholding technique to obtain an initial lung estimate, including normal and mild ILD lung parenchyma. We then used texture-feature images derived from the co-occurrence matrix to further identify abnormal lung regions with severe ILD. Finally, we combined the identified abnormal lung regions with the initial lungs to generate the final lung segmentation result. The overlap rate, volume agreement, mean absolute distance (MAD), and maximum absolute distance (dmax) between the automatically segmented lungs and the reference lungs were employed to evaluate the performance of the segmentation method. Our segmentation method achieved a mean overlap rate of 96.7%, a mean volume agreement of 98.5%, a mean MAD of 0.84 mm, and a mean dmax of 10.84 mm for all the cases in our database; a mean overlap rate of 97.7%, a mean volume agreement of 99.0%, a mean MAD of 0.66 mm, and a mean dmax of 9.59 mm for the 31 normal cases; and a mean overlap rate of 96.1%, a mean volume agreement of 98.1%, a mean MAD of 0.96 mm, and a mean dmax of 11.71 mm for the 45 abnormal cases with ILD. Our lung segmentation method provided accurate segmentation results for abnormal CT scans with severe ILD and would be useful for developing CAD systems

  12. Three-Dimensions Segmentation of Pulmonary Vascular Trees for Low Dose CT Scans

    NASA Astrophysics Data System (ADS)

    Lai, Jun; Huang, Ying; Wang, Ying; Wang, Jun

    2016-12-01

    Due to the low contrast and the partial volume effects, providing an accurate and in vivo analysis for pulmonary vascular trees from low dose CT scans is a challenging task. This paper proposes an automatic integration segmentation approach for the vascular trees in low dose CT scans. It consists of the following steps: firstly, lung volumes are acquired by the knowledge based method from the CT scans, and then the data are smoothed by the 3D Gaussian filter; secondly, two or three seeds are gotten by the adaptive 2D segmentation and the maximum area selecting from different position scans; thirdly, each seed as the start voxel is inputted for a quick multi-seeds 3D region growing to get vascular trees; finally, the trees are refined by the smooth filter. Through skeleton analyzing for the vascular trees, the results show that the proposed method can provide much better and lower level vascular branches.

  13. Effects of CT based Voxel Phantoms on Dose Distribution Calculated with Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Chen, Chaobin; Huang, Qunying; Wu, Yican

    2005-04-01

    A few CT-based voxel phantoms were produced to investigate the sensitivity of Monte Carlo simulations of x-ray beam and electron beam to the proportions of elements and the mass densities of the materials used to express the patient's anatomical structure. The human body can be well outlined by air, lung, adipose, muscle, soft bone and hard bone to calculate the dose distribution with Monte Carlo method. The effects of the calibration curves established by using various CT scanners are not clinically significant based on our investigation. The deviation from the values of cumulative dose volume histogram derived from CT-based voxel phantoms is less than 1% for the given target.

  14. LUDEP: A Lung Dose Evaluation Program

    SciTech Connect

    Birchall, A.; Bailey, M.R. ); James, A.C. )

    1990-06-01

    A Task Group of the ICRP is currently reviewing its dosimetric model for the respiratory tract with the aim of producing a more comprehensive and realistic model which can be used both for dosimetry and bioassay purposes. This in turn requires deposition, clearance, and dosimetry to be treated in a more detailed manner in than in the current model. In order to examine the practical application and radiological implications of the proposed model, a microcomputer program has been developed in a modular form so that changes can be easily included as the model develops. LUDEP (Lung Dose Evaluation Program) is a user-friendly menu-driven program which can be operated on any IBM-compatible PC. It enables the user to calculate (a) doses to each region of the respiratory tract and all other body organs, and (b) excretion rates and retention curves for bioassay purposes. 11 refs., 4 figs., 6 tabs.

  15. Strategies for reduction of radiation dose in cardiac multislice CT.

    PubMed

    Paul, Jean-François; Abada, Hicham T

    2007-08-01

    Because cardiac computed tomography (CT) (mainly coronary CT angiography) is a very promising technique, used more and more for coronary artery evaluation, the benefits and risks of this new low-invasive technique must be balanced. Radiation dose is a major concern for coronary CT angiography, especially in case of repeated examinations or in particular subgroups of patients (for example young female patients). Radiation dose to patient tends to increase from 16- to 64-slice CT. Radiation exposure in ECG-gated acquisitions may reach up to 40 mSv; considerable differences are attributable to the performance of CT machines, to technical dose-sparing tools, but also to radiological habits. Setting radiation dose at the lowest level possible should be a constant goal for the radiologist. Current technological tools are detailed in regard to their efficiency. Optimisation is necessary, by a judicious use of technological tools and also by individual adaptation of kV or mAs. This paper reviews the different current strategies for radiation dose reduction, keeping image quality constant. Data from the literature are discussed, and future technological developments are considered in regards to radiation dose reduction. The particular case of paediatric patients with congenital heart disease is also addressed.

  16. Model-based dose calculations for {sup 125}I lung brachytherapy

    SciTech Connect

    Sutherland, J. G. H.; Furutani, K. M.; Garces, Y. I.; Thomson, R. M.

    2012-07-15

    Purpose: Model-baseddose calculations (MBDCs) are performed using patient computed tomography (CT) data for patients treated with intraoperative {sup 125}I lung brachytherapy at the Mayo Clinic Rochester. Various metallic artifact correction and tissue assignment schemes are considered and their effects on dose distributions are studied. Dose distributions are compared to those calculated under TG-43 assumptions. Methods: Dose distributions for six patients are calculated using phantoms derived from patient CT data and the EGSnrc user-code BrachyDose. {sup 125}I (GE Healthcare/Oncura model 6711) seeds are fully modeled. Four metallic artifact correction schemes are applied to the CT data phantoms: (1) no correction, (2) a filtered back-projection on a modified virtual sinogram, (3) the reassignment of CT numbers above a threshold in the vicinity of the seeds, and (4) a combination of (2) and (3). Tissue assignment is based on voxel CT number and mass density is assigned using a CT number to mass density calibration. Three tissue assignment schemes with varying levels of detail (20, 11, and 5 tissues) are applied to metallic artifact corrected phantoms. Simulations are also performed under TG-43 assumptions, i.e., seeds in homogeneous water with no interseed attenuation. Results: Significant dose differences (up to 40% for D{sub 90}) are observed between uncorrected and metallic artifact corrected phantoms. For phantoms created with metallic artifact correction schemes (3) and (4), dose volume metrics are generally in good agreement (less than 2% differences for all patients) although there are significant local dose differences. The application of the three tissue assignment schemes results in differences of up to 8% for D{sub 90}; these differences vary between patients. Significant dose differences are seen between fully modeled and TG-43 calculations with TG-43 underestimating the dose (up to 36% in D{sub 90}) for larger volumes containing higher proportions of

  17. The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans

    NASA Astrophysics Data System (ADS)

    Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.

    2012-03-01

    Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.

  18. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy.

    PubMed

    Sutherland, J G H; Furutani, K M; Thomson, R M

    2013-10-21

    Iodine-125 ((125)I) and Caesium-131 ((131)Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, (169)Yb and (103)Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for (103)Pd, (125)I, (131)Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  19. Monte Carlo calculated doses to treatment volumes and organs at risk for permanent implant lung brachytherapy

    NASA Astrophysics Data System (ADS)

    Sutherland, J. G. H.; Furutani, K. M.; Thomson, R. M.

    2013-10-01

    Iodine-125 (125I) and Caesium-131 (131Cs) brachytherapy have been used with sublobar resection to treat stage I non-small cell lung cancer and other radionuclides, 169Yb and 103Pd, are considered for these treatments. This work investigates the dosimetry of permanent implant lung brachytherapy for a range of source energies and various implant sites in the lung. Monte Carlo calculated doses are calculated in a patient CT-derived computational phantom using the EGsnrc user-code BrachyDose. Calculations are performed for 103Pd, 125I, 131Cs seeds and 50 and 100 keV point sources for 17 implant positions. Doses to treatment volumes, ipsilateral lung, aorta, and heart are determined and compared to those determined using the TG-43 approach. Considerable variation with source energy and differences between model-based and TG-43 doses are found for both treatment volumes and organs. Doses to the heart and aorta generally increase with increasing source energy. TG-43 underestimates the dose to the heart and aorta for all implants except those nearest to these organs where the dose is overestimated. Results suggest that model-based dose calculations are crucial for selecting prescription doses, comparing clinical endpoints, and studying radiobiological effects for permanent implant lung brachytherapy.

  20. Imaging doses from the Elekta Synergy X-ray cone beam CT system.

    PubMed

    Amer, A; Marchant, T; Sykes, J; Czajka, J; Moore, C

    2007-06-01

    The Elekta Synergy is a radiotherapy treatment machine with integrated kilovoltage (kV) X-ray imaging system capable of producing cone beam CT (CBCT) images of the patient in the treatment position. The aim of this study is to assess the additional imaging dose. Cone beam CT dose index (CBDI) is introduced and measured inside standard CTDI phantoms for several sites (head: 100 kV, 38 mAs, lung: 120 kV, 152 mAs and pelvis: 130 kV, 456 mAs). The measured weighted doses were compared with thermoluminescent dosimeter (TLD) measurements at various locations in a Rando phantom and at patients' surfaces. The measured CBDIs in-air at the isocentre were 9.2 mGy 100 mAs(-1), 7.3 mGy 100 mAs(-1) and 5.3 mGy 100 mAs(-1) for 130 kV, 120 kV and 100 kV, respectively. The body phantom weighted CBDI were 5.5 mGy 100 mAs(-1) and 3.8 mGy 100 mAs(-1 )for 130 kV and 120 kV. The head phantom weighted CBDI was 4.3 mGy 100 mAs(-1) for 100 kV. The weighted doses for the Christie Hospital CBCT imaging techniques were 1.6 mGy, 6 mGy and 22 mGy for the head, lung and pelvis. The measured CBDIs were used to estimate the total effective dose for the Synergy system using the ImPACT CT Patient Dosimetry Calculator. Measured CBCT doses using the Christie Hospital protocols are low for head and lung scans whether compared with electronic portal imaging (EPI), commonly used for treatment verification, or single and multiple slice CT. For the pelvis, doses are similar to EPI but higher than CT. Repeated use of CBCT for treatment verification is likely and hence the total patient dose needs to be carefully considered. It is important to consider further development of low dose CBCT techniques to keep additional doses as low as reasonably practicable.

  1. Impact of low-dose CT scan in dual timepoint investigations: a phantom study

    NASA Astrophysics Data System (ADS)

    Micheelsen, M. A.; Jensen, M.

    2011-09-01

    Dual timepoint FDG takeup investigations have a potential for separating malignant lymph nodes from non-malignant in certain cases of suspected lung cancer. One hour seems to be the optimal time interval between the two scans (50-120 min). Many of the new PET scanners benefit from image fusion with a CT image and also use the CT for attenuation correction. In any practical hospital setting, 1 hour is too long to occupy the scanner bed and a second CT procedure thus becomes necessary. This study tries to validate to what extent the dose/quality of the second CT scan can be lowered, without compromising attenuation correction, lesion detection and quantification. Using a standard NEMA phantom with the GE Discovery PET/CT scanner, taken in and out between scan sessions, we have tried to find the minimal CT dose necessary for the second scan while still reaching tissue activity quantification within predetermined error limits. For a hot sphere to background activity concentration ratio of 1:5, the average uptake (normalised by the time corrected input activity concentration) in a sphere of 6 cm3 was found to be 0.90 ± 0.08 for the standard scan, yielding a dose of 5.5 mGy, and 0.90 ± 0.14 for a scan with lowest possible mAs product and lowest possible kV, yielding a dose of 0.65 mGy. With an insignificant increase in the uncertainty in the uptake measurement, we can get an order of magnitude reduction for the CT dose.

  2. WE-B-207-01: CT Lung Cancer Screening and the Medical Physicist: Background, Findings and Participant Dosimetry Summary of the National Lung Screening Trial (NLST)

    SciTech Connect

    Kruger, R.

    2015-06-15

    The US National Lung Screening Trial (NLST) was a multi-center randomized, controlled trial comparing a low-dose CT (LDCT) to posterior-anterior (PA) chest x-ray (CXR) in screening older, current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004 when 53,454 participants had been randomized at 33 screening sites in equal proportions. Funded by the National Cancer Institute this trial demonstrated that LDCT screening reduced lung cancer mortality. The US Preventive Services Task Force (USPSTF) cited NLST findings and conclusions in its deliberations and analysis of lung cancer screening. Under the 2010 Patient Protection and Affordable Care Act, the USPSTF favorable recommendation regarding lung cancer CT screening assisted in obtaining third-party payers coverage for screening. The objective of this session is to provide an introduction to the NLST and the trial findings, in addition to a comprehensive review of the dosimetry investigations and assessments completed using individual NLST participant CT and CXR examinations. Session presentations will review and discuss the findings of two independent assessments, a CXR assessment and the findings of a CT investigation calculating individual organ dosimetry values. The CXR assessment reviewed a total of 73,733 chest x-ray exams that were performed on 92 chest imaging systems of which 66,157 participant examinations were used. The CT organ dosimetry investigation collected scan parameters from 23,773 CT examinations; a subset of the 75,133 CT examinations performed using 97 multi-detector CT scanners. Organ dose conversion coefficients were calculated using a Monte Carlo code. An experimentally-validated CT scanner simulation was coupled with 193 adult hybrid computational phantoms representing the height and weight of the current U.S. population. The dose to selected organs was calculated using the organ dose library and the abstracted scan

  3. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-01

    On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No

  4. Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation.

    PubMed

    Yang, Yong; Schreibmann, Eduard; Li, Tianfang; Wang, Chuang; Xing, Lei

    2007-02-07

    On-board CBCT images are used to generate patient geometric models to assist patient setup. The image data can also, potentially, be used for dose reconstruction in combination with the fluence maps from treatment plan. Here we evaluate the achievable accuracy in using a kV CBCT for dose calculation. Relative electron density as a function of HU was obtained for both planning CT (pCT) and CBCT using a Catphan-600 calibration phantom. The CBCT calibration stability was monitored weekly for 8 consecutive weeks. A clinical treatment planning system was employed for pCT- and CBCT-based dose calculations and subsequent comparisons. Phantom and patient studies were carried out. In the former study, both Catphan-600 and pelvic phantoms were employed to evaluate the dosimetric performance of the full-fan and half-fan scanning modes. To evaluate the dosimetric influence of motion artefacts commonly seen in CBCT images, the Catphan-600 phantom was scanned with and without cyclic motion using the pCT and CBCT scanners. The doses computed based on the four sets of CT images (pCT and CBCT with/without motion) were compared quantitatively. The patient studies included a lung case and three prostate cases. The lung case was employed to further assess the adverse effect of intra-scan organ motion. Unlike the phantom study, the pCT of a patient is generally acquired at the time of simulation and the anatomy may be different from that of CBCT acquired at the time of treatment delivery because of organ deformation. To tackle the problem, we introduced a set of modified CBCT images (mCBCT) for each patient, which possesses the geometric information of the CBCT but the electronic density distribution mapped from the pCT with the help of a BSpline deformable image registration software. In the patient study, the dose computed with the mCBCT was used as a surrogate of the 'ground truth'. We found that the CBCT electron density calibration curve differs moderately from that of pCT. No

  5. Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer.

    PubMed

    Hui, Zhouguang; Zhang, Xiaodong; Starkschall, George; Li, Yupeng; Mohan, Radhe; Komaki, Ritsuko; Cox, James D; Chang, Joe Y

    2008-12-01

    Proton doses are sensitive to intra- and interfractional anatomic changes. We analyzed the effects of interfractional anatomic changes in doses to lung tumors treated with proton therapy. Weekly four-dimensional computed tomography (4D-CT) scans were acquired for 8 patients with mobile Stage III non-small cell lung cancer who were actually treated with intensity-modulated photon radiotherapy. A conformal proton therapy passive scattering plan was designed for each patient. Dose distributions were recalculated at end-inspiration and end-expiration breathing phases on each weekly 4D-CT data set using the same plans with alignment based on bone registration. Clinical target volume (CTV) coverage was compromised (from 99% to 90.9%) in 1 patient because of anatomic changes and motion pattern variation. For the rest of the patients, the mean CTV coverage on the repeated weekly 4D-CT data sets was 98.4%, compared with 99% for the original plans. For all 8 patients, however, a mean 4% increase in the volume of the contralateral lung receiving a dose of at least 5 Gy (V5) and a mean 4.4-Gy increase in the spinal cord maximum dose was observed in the repeated 4D-CT data sets. A strong correlation between the CTV density change resulting from tumor shrinkage or anatomic variations and mean contralateral lung dose was observed. Adaptive re-planning during proton therapy may be indicated in selected patients with non-small cell lung cancer. For most patients, however, CTV coverage is adequate if tumor motion is taken into consideration in the original simulation and planning processes.

  6. Effects of Interfractional Motion and Anatomic Changes on Proton Therapy Dose Distribution in Lung Cancer

    SciTech Connect

    Hui Zhouguang; Zhang Xiaodong; Starkschall, George; Li Yupeng; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2008-12-01

    Purpose: Proton doses are sensitive to intra- and interfractional anatomic changes. We analyzed the effects of interfractional anatomic changes in doses to lung tumors treated with proton therapy. Methods and Materials: Weekly four-dimensional computed tomography (4D-CT) scans were acquired for 8 patients with mobile Stage III non-small cell lung cancer who were actually treated with intensity-modulated photon radiotherapy. A conformal proton therapy passive scattering plan was designed for each patient. Dose distributions were recalculated at end-inspiration and end-expiration breathing phases on each weekly 4D-CT data set using the same plans with alignment based on bone registration. Results: Clinical target volume (CTV) coverage was compromised (from 99% to 90.9%) in 1 patient because of anatomic changes and motion pattern variation. For the rest of the patients, the mean CTV coverage on the repeated weekly 4D-CT data sets was 98.4%, compared with 99% for the original plans. For all 8 patients, however, a mean 4% increase in the volume of the contralateral lung receiving a dose of at least 5 Gy (V5) and a mean 4.4-Gy increase in the spinal cord maximum dose was observed in the repeated 4D-CT data sets. A strong correlation between the CTV density change resulting from tumor shrinkage or anatomic variations and mean contralateral lung dose was observed. Conclusions: Adaptive re-planning during proton therapy may be indicated in selected patients with non-small cell lung cancer. For most patients, however, CTV coverage is adequate if tumor motion is taken into consideration in the original simulation and planning processes.

  7. EFFECTS OF INTERFRACTIONAL MOTION AND ANATOMIC CHANGES ON PROTON THERAPY DOSE DISTRIBUTION IN LUNG CANCER

    PubMed Central

    Hui, Zhouguang; Zhang, Xiaodong; Starkschall, George; Li, Yupeng; Mohan, Radhe; Komaki, Ritsuko; Cox, James D.; Chang, Joe Y.

    2012-01-01

    Purpose Proton doses are sensitive to intra- and interfractional anatomic changes. We analyzed the effects of interfractional anatomic changes in doses to lung tumors treated with proton therapy. Methods and Materials Weekly four-dimensional computed tomography (4D-CT) scans were acquired for 8 patients with mobile Stage III non–small cell lung cancer who were actually treated with intensity-modulated photon radiotherapy. A conformal proton therapy passive scattering plan was designed for each patient. Dose distributions were recalculated at end-inspiration and end-expiration breathing phases on each weekly 4D-CT data set using the same plans with alignment based on bone registration. Results Clinical target volume (CTV) coverage was compromised (from 99% to 90.9%) in 1 patient because of anatomic changes and motion pattern variation. For the rest of the patients, the mean CTV coverage on the repeated weekly 4D-CT data sets was 98.4%, compared with 99% for the original plans. For all 8 patients, however, a mean 4% increase in the volume of the contralateral lung receiving a dose of at least 5 Gy (V5) and a mean 4.4-Gy increase in the spinal cord maximum dose was observed in the repeated 4D-CT data sets. A strong correlation between the CTV density change resulting from tumor shrinkage or anatomic variations and mean contralateral lung dose was observed. Conclusions Adaptive re-planning during proton therapy may be indicated in selected patients with non–small cell lung cancer. For most patients, however, CTV coverage is adequate if tumor motion is taken into consideration in the original simulation and planning processes. PMID:18486357

  8. Resolution enhancement of lung 4D-CT via group-sparsity

    SciTech Connect

    Bhavsar, Arnav; Wu, Guorong; Shen, Dinggang; Lian, Jun

    2013-12-15

    Purpose: 4D-CT typically delivers more accurate information about anatomical structures in the lung, over 3D-CT, due to its ability to capture visual information of the lung motion across different respiratory phases. This helps to better determine the dose during radiation therapy for lung cancer. However, a critical concern with 4D-CT that substantially compromises this advantage is the low superior-inferior resolution due to less number of acquired slices, in order to control the CT radiation dose. To address this limitation, the authors propose an approach to reconstruct missing intermediate slices, so as to improve the superior-inferior resolution.Methods: In this method the authors exploit the observation that sampling information across respiratory phases in 4D-CT can be complimentary due to lung motion. The authors’ approach uses this locally complimentary information across phases in a patch-based sparse-representation framework. Moreover, unlike some recent approaches that treat local patches independently, the authors’ approach employs the group-sparsity framework that imposes neighborhood and similarity constraints between patches. This helps in mitigating the trade-off between noise robustness and structure preservation, which is an important consideration in resolution enhancement. The authors discuss the regularizing ability of group-sparsity, which helps in reducing the effect of noise and enables better structural localization and enhancement.Results: The authors perform extensive experiments on the publicly available DIR-Lab Lung 4D-CT dataset [R. Castillo, E. Castillo, R. Guerra, V. Johnson, T. McPhail, A. Garg, and T. Guerrero, “A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets,” Phys. Med. Biol. 54, 1849–1870 (2009)]. First, the authors carry out empirical parametric analysis of some important parameters in their approach. The authors then demonstrate, qualitatively as well as

  9. An automated system for lung nodule detection in low-dose computed tomography

    NASA Astrophysics Data System (ADS)

    Gori, I.; Fantacci, M. E.; Preite Martinez, A.; Retico, A.

    2007-03-01

    A computer-aided detection (CAD) system for the identification of pulmonary nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 Italian project. One of the main goals of this project is to build a distributed database of lung CT scans in order to enable automated image analysis through a data and cpu GRID infrastructure. The basic modules of our lung-CAD system, a dot-enhancement filter for nodule candidate selection and a neural classifier for false-positive finding reduction, are described. The system was designed and tested for both internal and sub-pleural nodules. The results obtained on the collected database of low-dose thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  10. A novel dose-based positioning method for CT image-guided proton therapy

    PubMed Central

    Cheung, Joey P.; Park, Peter C.; Court, Laurence E.; Ronald Zhu, X.; Kudchadker, Rajat J.; Frank, Steven J.; Dong, Lei

    2013-01-01

    Purpose: Proton dose distributions can potentially be altered by anatomical changes in the beam path despite perfect target alignment using traditional image guidance methods. In this simulation study, the authors explored the use of dosimetric factors instead of only anatomy to set up patients for proton therapy using in-room volumetric computed tomographic (CT) images. Methods: To simulate patient anatomy in a free-breathing treatment condition, weekly time-averaged four-dimensional CT data near the end of treatment for 15 lung cancer patients were used in this study for a dose-based isocenter shift method to correct dosimetric deviations without replanning. The isocenter shift was obtained using the traditional anatomy-based image guidance method as the starting position. Subsequent isocenter shifts were established based on dosimetric criteria using a fast dose approximation method. For each isocenter shift, doses were calculated every 2 mm up to ±8 mm in each direction. The optimal dose alignment was obtained by imposing a target coverage constraint that at least 99% of the target would receive at least 95% of the prescribed dose and by minimizing the mean dose to the ipsilateral lung. Results: The authors found that 7 of 15 plans did not meet the target coverage constraint when using only the anatomy-based alignment. After the authors applied dose-based alignment, all met the target coverage constraint. For all but one case in which the target dose was met using both anatomy-based and dose-based alignment, the latter method was able to improve normal tissue sparing. Conclusions: The authors demonstrated that a dose-based adjustment to the isocenter can improve target coverage and/or reduce dose to nearby normal tissue. PMID:23635262

  11. Poster — Thur Eve — 12: Implementation of a Clinical Lung Tumour High Dose Containment Verification Procedure using Respiratory Cone-Beam CT (4DCBCT) on a Varian TrueBeam Linac

    SciTech Connect

    Beaudry, J.; Bergman, A.

    2014-08-15

    Lung tumours move due to respiratory motion. This is managed during planning by acquiring a 4DCT and capturing the excursion of the GTV (gross tumour volume) throughout the breathing cycle within an IGTV (Internal Gross Tumour Volume) contour. Patients undergo a verification cone-beam CT (CBCT) scan immediately prior to treatment. 3D reconstructed images do not consider tumour motion, resulting in image artefacts, such as blurring. This may lead to difficulty in identifying the tumour on reconstructed images. It would be valuable to create a 4DCBCT reconstruction of the tumour motion to confirm that does indeed remain within the planned IGTV. CBCT projections of a Quasar Respiratory Motion Phantom are acquired in Treatment mode (half-fan scan) on a Varian TrueBeam accelerator. This phantom contains a mobile, low-density lung insert with an embedded 3cm diameter tumour object. It is programmed to create a 15s periodic, 2cm (sup/inf) displacement. A Varian Real-time Position Management (RPM) tracking-box is placed on the phantom breathing platform. Breathing phase information is automatically integrated into the projection image files. Using in-house Matlab programs and RTK (Reconstruction Tool Kit) open-source toolboxes, the projections are re-binned into 10 phases and a 4DCBCT scan reconstructed. The planning IGTV is registered to the 4DCBCT and the tumour excursion is verified to remain within the planned contour. This technique successfully reconstructs 4DCBCT images using clinical modes for a breathing phantom. UBC-BCCA ethics approval has been obtained to perform 4DCBCT reconstructions on lung patients (REB#H12-00192). Clinical images will be accrued starting April 2014.

  12. Resolution enhancement of lung 4D-CT data using multiscale interphase iterative nonlocal means

    SciTech Connect

    Zhang Yu; Yap, Pew-Thian; Wu Guorong; Feng Qianjin; Chen Wufan; Lian Jun; Shen Dinggang

    2013-05-15

    Purpose: Four-dimensional computer tomography (4D-CT) has been widely used in lung cancer radiotherapy due to its capability in providing important tumor motion information. However, the prolonged scanning duration required by 4D-CT causes considerable increase in radiation dose. To minimize the radiation-related health risk, radiation dose is often reduced at the expense of interslice spatial resolution. However, inadequate resolution in 4D-CT causes artifacts and increases uncertainty in tumor localization, which eventually results in extra damages of healthy tissues during radiotherapy. In this paper, the authors propose a novel postprocessing algorithm to enhance the resolution of lung 4D-CT data. Methods: The authors' premise is that anatomical information missing in one phase can be recovered from the complementary information embedded in other phases. The authors employ a patch-based mechanism to propagate information across phases for the reconstruction of intermediate slices in the longitudinal direction, where resolution is normally the lowest. Specifically, the structurally matching and spatially nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical details, the authors employ a quad-tree technique to adaptively partition the image for more fine-grained refinement. The authors further devise an iterative strategy for significant enhancement of anatomical details. Results: The authors evaluated their algorithm using a publicly available lung data that consist of 10 4D-CT cases. The authors' algorithm gives very promising results with significantly enhanced image structures and much less artifacts. Quantitative analysis shows that the authors' algorithm increases peak signal-to-noise ratio by 3-4 dB and the structural similarity index by 3%-5% when compared with the standard interpolation-based algorithms. Conclusions: The authors have developed a new algorithm to improve the resolution of 4D-CT. It outperforms

  13. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening

    PubMed Central

    Han, Daiwei; Oudkerk, Matthijs

    2017-01-01

    Currently, lung cancer screening by low-dose chest CT is implemented in the United States for high-risk persons. A disadvantage of lung cancer screening is the large number of small-to-intermediate sized lung nodules, detected in around 50% of all participants, the large majority being benign. Accurate estimation of nodule size and growth is essential in the classification of lung nodules. Currently, manual diameter measurements are the standard for lung cancer screening programs and routine clinical care. However, European screening studies using semi-automated volume measurements have shown higher accuracy and reproducibility compared to diameter measurements. In addition to this, with the optimization of CT scan techniques and reconstruction parameters, as well as advances in segmentation software, the accuracy of nodule volume measurement can be improved even further. The positive results of previous studies on volume and diameter measurements of lung nodules suggest that manual measurements of nodule diameter may be replaced by semi-automated volume measurements in the (near) future. PMID:28331824

  14. Associations of dairy intake with CT lung density and lung function

    PubMed Central

    Jiang, Rui; Jacobs, David R.; He, Ka; Hoffman, Eric; Hankinson, John; Nettleton, Jennifer A.; Barr, R. Graham

    2013-01-01

    Objective Dairy products contain vitamin D and other nutrients that may be beneficial for lung function, but are also high in fats that may have mixed effects on lung function. However, the overall associations of dairy intake with lung density and lung function have not been studied. Methods We examined the cross-sectional relations between dairy intake and CT lung density and lung function in the Multi-Ethnic Study of Atherosclerosis (MESA). Total, low-fat and high-fat dairy intakes were quantified from food frequency questionnaire responses of men and women, aged 45–84 years, free of clinical cardiovascular disease. The MESA-Lung Study assessed CT lung density from cardiac CT imaging and prebronchodilator spirometry among 3,965 MESA participants. Results Total dairy intake was inversely associated with apical-basilar difference in percent emphysema and positively associated with FVC (the multivariate-adjusted mean difference between the highest and the lowest quintile of total dairy intake was −0.92 (p for trend=0.04) for apical-basilar difference in percent emphysema and 72.0 mL (p=0.01) for FVC). Greater low-fat dairy intake was associated with higher alpha (higher alpha values indicate less emphysema) and lower apical-basilar difference in percent emphysema (corresponding differences in alpha and apical-basilar difference in percent emphysema were 0.04 (p=0.02) and −0.98 (p=0.01) for low-fat dairy intake, respectively). High-fat dairy intake was not associated with lung density measures. Greater low- or high-fat dairy intake was not associated with higher FEV1, FVC and FEV1/FVC. Conclusions Higher low-fat dairy intake but not high-fat dairy intake was associated with moderately improved CT lung density. PMID:21504976

  15. Lung volume assessments in normal and surfactant depleted lungs: agreement between bedside techniques and CT imaging.

    PubMed

    Albu, Gergely; Petak, Ferenc; Zand, Tristan; Hallbäck, Magnus; Wallin, Mats; Habre, Walid

    2014-01-01

    Bedside assessment of lung volume in clinical practice is crucial to adapt ventilation strategy. We compared bedside measures of lung volume by helium multiple-breath washout technique (EELVMBW,He) and effective lung volume based on capnodynamics (ELV) to those assessed from spiral chest CT scans (EELVCT) under different PEEP levels in control and surfactant-depleted lungs. Lung volume was assessed in anaesthetized mechanically ventilated rabbits successively by measuring i) ELV by analyzing CO2 elimination traces during the application of periods of 5 consecutive alterations in inspiratory/expiratory ratio (1:2 to 1.5:1), ii) measuring EELVMBW,He by using helium as a tracer gas, and iii) EELVCT from CT scan images by computing the normalized lung density. All measurements were performed at PEEP of 0, 3 and 9 cmH2O in random order under control condition and following surfactant depletion by whole lung lavage. Variables obtained with all techniques followed sensitively the lung volume changes with PEEP. Excellent correlation and close agreement was observed between EELVMBW,He and EELVCT (r = 0.93, p < 0.0001). ELV overestimated EELVMBW,He and EELVCT in normal lungs, whereas this difference was not evidenced following surfactant depletion. These findings resulted in somewhat diminished but still significant correlations between ELV and EELVCT (r = 0.58, p < 0.001) or EELVMBW,He (0.76, p < 0.001) and moderate agreements. Lung volume assessed with bedside techniques allow the monitoring of the changes in the lung aeration with PEEP both in normal lungs and in a model of acute lung injury. Under stable pulmonary haemodynamic condition, ELV allows continuous lung volume monitoring, whereas EELVMBW,He offers a more accurate estimation, but intermittently.

  16. Videotaped helical CT images for lung cancer screening.

    PubMed

    Iwano, S; Makino, N; Ikeda, M; Itoh, S; Ishihara, S; Tadokoro, M; Ishigaki, T

    2000-01-01

    The goal of this work was to determine a radiologist's ability to detect solitary pulmonary nodules on helical CT using both video (cine) viewing and film-based viewing. Sixty-five chest helical CT studies were reviewed. Six radiologists searched for 40 lung nodules on CT images presented in three formats. Film-based viewing of images at 10 and 5 mm increments was performed with a light box. Video viewing of the same examinations was performed in 5 mm increments at 2 frames/s. The area under the receiver operating characteristic curve (Az) measured the observer's ability to detect nodules. The Az was 0.948 for the video viewing, 0.844 for 5 mm increment film-based viewing, and 0.879 for 10 mm increment film-based viewing. There were no statistically significant differences. Lung nodules can be detected with similar detection rates when viewing conventional film or videotaped helical CT images. Videotaped images incur a lower cost, an important consideration in mass screening for lung cancer.

  17. Fast CT-CT fluoroscopy registration with respiratory motion compensation for image-guided lung intervention

    NASA Astrophysics Data System (ADS)

    Su, Po; Xue, Zhong; Lu, Kongkuo; Yang, Jianhua; Wong, Stephen T.

    2012-02-01

    CT-fluoroscopy (CTF) is an efficient imaging method for guiding percutaneous lung interventions such as biopsy. During CTF-guided biopsy procedure, four to ten axial sectional images are captured in a very short time period to provide nearly real-time feedback to physicians, so that they can adjust the needle as it is advanced toward the target lesion. Although popularly used in clinics, this traditional CTF-guided intervention procedure may require frequent scans and cause unnecessary radiation exposure to clinicians and patients. In addition, CTF only generates limited slices of images and provides limited anatomical information. It also has limited response to respiratory movements and has narrow local anatomical dynamics. To better utilize CTF guidance, we propose a fast CT-CTF registration algorithm with respiratory motion estimation for image-guided lung intervention using electromagnetic (EM) guidance. With the pre-procedural exhale and inhale CT scans, it would be possible to estimate a series of CT images of the same patient at different respiratory phases. Then, once a CTF image is captured during the intervention, our algorithm can pick the best respiratory phase-matched 3D CT image and performs a fast deformable registration to warp the 3D CT toward the CTF. The new 3D CT image can be used to guide the intervention by superimposing the EM-guided needle location on it. Compared to the traditional repetitive CTF guidance, the registered CT integrates both 3D volumetric patient data and nearly real-time local anatomy for more effective and efficient guidance. In this new system, CTF is used as a nearly real-time sensor to overcome the discrepancies between static pre-procedural CT and the patient's anatomy, so as to provide global guidance that may be supplemented with electromagnetic (EM) tracking and to reduce the number of CTF scans needed. In the experiments, the comparative results showed that our fast CT-CTF algorithm can achieve better registration

  18. Radiation dose of cardiac CT--what is the evidence?

    PubMed

    Alkadhi, Hatem

    2009-06-01

    Current evidence and most pertinent literature on the radiation dose of cardiac computed tomography (CT) for the noninvasive assessment of coronary artery disease are reviewed. The various means for adjusting CT protocols to lower the radiation to a level that is as low as reasonably achievable are discussed. It is shown that for the target population of cardiac CT, the direct visualization of the heart and coronary arteries outweighs the hypothetical risk of the investigation, provided that indications are prudent and the protocols appropriate.

  19. Small Nodules Localization on CT Images of Lungs

    NASA Astrophysics Data System (ADS)

    Snezhko, E. V.; Kharuzhyk, S. A.; Tuzikov, A. V.; Kovalev, V. A.

    2017-05-01

    According to the World Health Organization (WHO) lung cancer remains the leading cause of death of men among all malignant tumors [1, 2]. One of the reasons of such a statistics is the fact that the lung cancer is hardly diagnosed on the yearly stages when it is almost asymptomatic. The purpose of this paper is to present a Computer-Aided Diagnosis (CAD) software developed for assistance of early detection of nodules in CT lung images including solitary pulmonary nodules (SPN) as well as multiple nodules. The efficiency of nodule localization was intended to be as high as the level of the best practice. The software developed supports several functions including lungs segmentation, selection of nodule candidates and nodule candidates filtering.

  20. Radiation dose in cardiac SPECT/CT: An estimation of SSDE and effective dose.

    PubMed

    Abdollahi, Hamid; Shiri, Isaac; Salimi, Yazdan; Sarebani, Maghsoud; Mehdinia, Reza; Deevband, Mohammad Reza; Mahdavi, Seied Rabi; Sohrabi, Ahmad; Bitarafan-Rajabi, Ahmad

    2016-12-01

    The dose levels for Computed Tomography (CT) localization and attenuation correction of Single Photon Emission Computed Tomography (SPECT) are limited and reported as Volume Computed Tomography Dose Index (CTDIvol) and Dose-Length Product (DLP). This work presents CT dose estimation from Cardiac SPECT/CT based on new American Association of Physicists in Medicine (AAPM) Size Specific Dose Estimation (SSDE) parameter, effective dose, organ doses and also emission dose from nuclear issue. Myocardial perfusion SPECT/CT for 509 patients was included in the study. SSDE, effective dose and organ dose were calculated using AAPM guideline and Impact-Dose software. Data were analyzed using R and SPSS statistical software. Spearman-Pearson correlation test and linear regression models were used for finding correlations and relationships among parameters. The mean CTDIvol was 1.34 mGy±0.19 and the mean SSDE was 1.7 mGy±0.16. The mean±SD of effective dose from emission, CT and total dose were 11.5±1.4, 0.49±0.11 and 12.67±1.73 (mSv) respectively. The mean±SD of effective dose from emission, CT and total dose were 11.5±1.4, 0.49±0.11 and 12.67±1.73 (mSv) respectively. The spearman test showed that correlation between body size and organ doses is significant except thyroid and red bone marrow. CTDIvol was strongly dependent on patient size, but SSDE was not. Emission dose was strongly dependent on patient weight, but its dependency was lower to effective diameter. The dose parameters including CTDIvol, DLP, SSDE, effective dose values reported here are very low and below the reference level. This data suggest that appropriate CT acquisition parameters in SPECT/CT localization and attenuation correction are very beneficial for patients and lowering cancer risks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Sinogram smoothing with bilateral filtering for low-dose CT

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Manduca, Armando; Trzasko, Joshua D.; Khaylova, Natalia; Kofler, James M.; McCollough, Cynthia M.; Fletcher, Joel G.

    2008-03-01

    Optimal noise control is critical for dose reduction in CT. In this work, we investigated the use of a locally-adaptive method for noise reduction in low-dose CT. This method is based upon bilateral filtering, which smoothes the projection data using a weighted average in a local neighborhood, where the weights are determined according to both the spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus without significantly sacrificing the spatial resolution. It is closely related to anisotropic diffusion, but is significantly faster. More importantly, a CT noise model can be readily incorporated in the filtering and denoising process. We have evaluated the noise-resolution properties of the bilateral filtering in a phantom study and a preliminary patient study with contrast-enhanced abdominal CT exams. The results demonstrated that bilateral filtering can achieve a better noise-resolution tradeoff than a series of commercial reconstruction kernels. This improvement on noise-resolution properties can be used for improving the image quality in low-dose CT and can also be translated to substantial dose reduction.

  2. GMctdospp: Description and validation of a CT dose calculation system

    SciTech Connect

    Schmidt, Ralph Wulff, Jörg; Zink, Klemens

    2015-07-15

    Purpose: To develop a Monte Carlo (MC)-based computed tomography (CT) dose estimation method with a graphical user interface with options to define almost arbitrary simulation scenarios, to make calculations sufficiently fast for comfortable handling, and to make the software free of charge for general availability to the scientific community. Methods: A framework called GMctdospp was developed to calculate phantom and patient doses with the MC method based on the EGSnrc system. A CT scanner was modeled for testing and was adapted to half-value layer, beam-shaping filter, z-profile, and tube-current modulation (TCM). To validate the implemented variance reduction techniques, depth-dose and cross-profile calculations of a static beam were compared against DOSXYZnrc/EGSnrc. Measurements for beam energies of 80 and 120 kVp at several positions of a CT dose-index (CTDI) standard phantom were compared against calculations of the created CT model. Finally, the efficiency of the adapted code was benchmarked against EGSnrc defaults. Results: The CT scanner could be modeled accurately. The developed TCM scheme was confirmed by the dose measurement. A comparison of calculations to DOSXYZnrc showed no systematic differences. Measurements in a CTDI phantom could be reproduced within 2% average, with a maximal difference of about 6%. Efficiency improvements of about six orders of magnitude were observed for larger organ structures of a chest-examination protocol in a voxelized phantom. In these cases, simulations took 25 s to achieve a statistical uncertainty of ∼0.5%. Conclusions: A fast dose-calculation system for phantoms and patients in a CT examination was developed, successfully validated, and benchmarked. Influences of scan protocols, protection method, and other issues can be easily examined with the developed framework.

  3. Detection and early phase assessment of radiation-induced lung injury in mice using micro-CT.

    PubMed

    Saito, Shigeyoshi; Murase, Kenya

    2012-01-01

    Radiation therapy is an important therapeutic modality for thoracic malignancies. However, radiation-induced pulmonary injuries such as radiation pneumonitis and fibrosis are major dose-limiting factors. Previous research shows that micro-computed tomography (micro-CT) can detect radiation-induced lung injuries a few months following irradiation, but studies to assess the early response of lung tissue are lacking. The aim of this study was to determine if micro-CT could be used to detect and assess early-phase radiation-induced lung injury in mice. Twenty-one animals were divided into three groups: normal (n = 7), one day after x-ray exposure (n = 7), and at four days after x-ray exposure (n = 7). The x-ray-exposed groups received a single dose of 20 Gy, to the whole lung. Histology showed enlargements of the air space (Lm: mean chord length) following irradiation. 40.5 ± 3.8 µm and 60.0 ± 6.9 µm were observed after one and four days, respectively, compared to 26.5 ± 3.1 µm in normal mice. Three-dimensional micro-CT images were constructed and histograms of radiodensity - Hounsfield Units (HU) - were used to assess changes in mouse lungs. Radiation-induced lung injury was observed in irradiated mice, by the use of two parameters which were defined as shifts in peak HU between -200 to -800 HU (Peak(HU)) and increase in the number of pixels at -1000 HU (Number(-1000)). These parameters were correlated with histological changes. The results demonstrate that micro-CT can be used for the early detection and assessment of structural and histopathological changes resulting from radiation-induced lung injury in mice. Micro-CT has the advantage, over traditional histological techniques, of allowing longitudinal studies of lung disease progression and assessment of the entire lung, while reducing the number of animals required for such studies.

  4. [A Decrease in Lung Cancer Mortality Following the Implementation of CT Screening for General Population].

    PubMed

    Nawa, Takeshi

    2015-01-01

    In Hitachi Medical Area, a large-scale lung cancer screening program using low-dose CT has been underway in two medical facilities since its introduction in 1998 and 2001. A total of 61,914 tests were performed among 25,385 participants until 2006. Two hundred and ten lung cancer patients had been identified on CT screening. The estimated 5-year survival rate for all patients was 90%. Among residents in Hitachi City, nearly 40% of inhabitants aged 50-69 years were estimated to have participated in the screening from 1998 through 2009. Cancer mortality data were obtained from a regional cancer registry and the standardized mortality ratio (SMR) of lung cancer was calculated for each 5-year period during 1995-2009. For residents aged 50-79 years, SMR was nearly unity between 1995 and 2004; however, there was a significant decrease during 2005-2009, with SMR (95% confidence interval) being 0.76 (0.67-0.86). These results suggest that the wide implementation of CT screening may reduce lung cancer mortality in the community, 4-8 years after introduction. It is desirable to continue to focus on future developments, including original research in Japan.

  5. Lung cancer risk prediction to select smokers for screening CT--a model based on the Italian COSMOS trial.

    PubMed

    Maisonneuve, Patrick; Bagnardi, Vincenzo; Bellomi, Massimo; Spaggiari, Lorenzo; Pelosi, Giuseppe; Rampinelli, Cristiano; Bertolotti, Raffaella; Rotmensz, Nicole; Field, John K; Decensi, Andrea; Veronesi, Giulia

    2011-11-01

    Screening with low-dose helical computed tomography (CT) has been shown to significantly reduce lung cancer mortality but the optimal target population and time interval to subsequent screening are yet to be defined. We developed two models to stratify individual smokers according to risk of developing lung cancer. We first used the number of lung cancers detected at baseline screening CT in the 5,203 asymptomatic participants of the COSMOS trial to recalibrate the Bach model, which we propose using to select smokers for screening. Next, we incorporated lung nodule characteristics and presence of emphysema identified at baseline CT into the Bach model and proposed the resulting multivariable model to predict lung cancer risk in screened smokers after baseline CT. Age and smoking exposure were the main determinants of lung cancer risk. The recalibrated Bach model accurately predicted lung cancers detected during the first year of screening. Presence of nonsolid nodules (RR = 10.1, 95% CI = 5.57-18.5), nodule size more than 8 mm (RR = 9.89, 95% CI = 5.84-16.8), and emphysema (RR = 2.36, 95% CI = 1.59-3.49) at baseline CT were all significant predictors of subsequent lung cancers. Incorporation of these variables into the Bach model increased the predictive value of the multivariable model (c-index = 0.759, internal validation). The recalibrated Bach model seems suitable for selecting the higher risk population for recruitment for large-scale CT screening. The Bach model incorporating CT findings at baseline screening could help defining the time interval to subsequent screening in individual participants. Further studies are necessary to validate these models.

  6. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT.

    PubMed

    Halliburton, Sandra S; Abbara, Suhny; Chen, Marcus Y; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L; Shaw, Leslee J; Hausleiter, Jörg

    2011-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring.

  7. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  8. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and

  9. Ga-68 MAA Perfusion 4D-PET/CT Scanning Allows for Functional Lung Avoidance Using Conformal Radiation Therapy Planning.

    PubMed

    Siva, Shankar; Devereux, Thomas; Ball, David L; MacManus, Michael P; Hardcastle, Nicholas; Kron, Tomas; Bressel, Mathias; Foroudi, Farshad; Plumridge, Nikki; Steinfort, Daniel; Shaw, Mark; Callahan, Jason; Hicks, Rodney J; Hofman, Michael S

    2016-02-01

    Ga-68-macroaggregated albumin ((68)Ga-perfusion) positron emission tomography/computed tomography (PET/CT) is a novel imaging technique for the assessment of functional lung volumes. The purpose of this study was to use this imaging technique for functional adaptation of definitive radiotherapy plans in patients with non-small cell lung cancer (NSCLC). This was a prospective clinical trial of patients with NSCLC who received definitive 3-dimensional (3D) conformal radiotherapy to 60 Gy in 30 fx and underwent pretreatment respiratory-gated (4-dimensional [4D]) perfusion PET/CT. The "perfused" lung volume was defined as all lung parenchyma taking up radiotracer, and the "well-perfused" lung volume was contoured using a visually adapted threshold of 30% maximum standardized uptake value (SUV max). Alternate 3D conformal plans were subsequently created and optimized to avoid perfused and well-perfused lung volumes. Functional dose volumetrics were compared using mean lung dose (MLD), V5 (volume receiving 5 Gy or more), V10, V20, V30, V40, V50, and V60 parameters. Fourteen consecutive patients had alternate radiotherapy plans created based on functional lung volumes. When considering the original treatment plan, the dose to perfused and well-perfused functional lung volumes was similar to that of the conventional anatomical lung volumes with an average MLD of 12.15, 12.67, and 12.11 Gy, respectively. Plans optimized for well-perfused lung improved functional V30, V40, V50, and V60 metrics (all P values <.05). The functional MLD of well-perfused lung was improved by a median of 0.86 Gy, P < .01. However, plans optimized for perfused lung only showed significant improvement in the functional V60 dose parameter (median 1.00%, P = .04) but at a detriment of a worse functional V5 (median 3.33%, P = .05). This study demonstrates proof of principle that 4D-perfusion PET/CT may enable functional lung avoidance during treatment planning of patients with NSCLC. Radiotherapy plans

  10. Radiation dose reduction in parasinus CT by spectral shaping.

    PubMed

    May, Matthias S; Brand, Michael; Lell, Michael M; Sedlmair, Martin; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-02-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNReye globe/air did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality.

  11. CT effective dose per dose length product using ICRP 103 weighting factors

    SciTech Connect

    Huda, Walter; Magill, Dennise; He Wenjun

    2011-03-15

    Purpose: To generate effective dose per unit dose length product (E/DLP) conversion factors incorporating ICRP Publication 103 tissue weighting factors. Methods: Effective doses for CT examinations were obtained using the IMPACT Dosimetry Calculator using all 23 dose data sets that are offered by this spreadsheet. CT examinations were simulated for scans performed along the patient long axis for each dosimetry data set using a 4 cm beam width ranging from the upper thighs to top of the head. Five basic body regions (head, neck, chest, abdomen, and pelvis), as well as combinations of the regions (head/neck, chest/abdomen, abdomen/pelvis, and chest/abdomen/pelvis) and whole body CT scans were investigated. Correction factors were generated that can be applied to convert E/DLP conversion factors based on ICRP 60 data to conversion factors that are valid for ICRP 103 data (i.e., E{sub 103}/E{sub 60}). Results: Use of ICRP 103 weighting factors increase effective doses for head scans by {approx}11%, for chest scans by {approx}20%, and decrease effective doses for pelvis scans by {approx}25%. Current E/DLP conversion factors are estimated to be 2.4 {mu}Sv/mGy cm for head CT examinations and range between 14 and 20 {mu}Sv/mGy cm for body CT examinations. Conclusions: Factors that enable patient CT doses to be adjusted to account for ICRP 103 tissue weighting factors are provided, which result in E/DLP factors that were increased in head and chest CT, reduced in pelvis CT, and showed no marked change in neck and abdomen CT.

  12. Validation of CT dose-reduction simulation

    SciTech Connect

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-15

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The ''just noticeable difference (JND)'' in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%{+-}1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%{+-}1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%{+-}2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose, which

  13. Validation of CT dose-reduction simulation

    PubMed Central

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F.; Bae, Kyongtae T.; Whiting, Bruce R.

    2009-01-01

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The “just noticeable difference (JND)” in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p>0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6%±1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1%±1.6%. Cadaver measurements indicated that image noise was matched to within 2.6%±2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p=0.86) was observed. JND studies indicated that observers’ sensitivity to change in noise levels corresponded to a 25% difference in dose, which is

  14. Validation of CT dose-reduction simulation.

    PubMed

    Massoumzadeh, Parinaz; Don, Steven; Hildebolt, Charles F; Bae, Kyongtae T; Whiting, Bruce R

    2009-01-01

    The objective of this research was to develop and validate a custom computed tomography dose-reduction simulation technique for producing images that have an appearance consistent with the same scan performed at a lower mAs (with fixed kVp, rotation time, and collimation). Synthetic noise is added to projection (sinogram) data, incorporating a stochastic noise model that includes energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system noise. Experimental methods were developed to determine the parameters required for each component of the noise model. As a validation, the outputs of the simulations were compared to measurements with cadavers in the image domain and with phantoms in both the sinogram and image domain, using an unbiased root-mean-square relative error metric to quantify agreement in noise processes. Four-alternative forced-choice (4AFC) observer studies were conducted to confirm the realistic appearance of simulated noise, and the effects of various system model components on visual noise were studied. The "just noticeable difference (JND)" in noise levels was analyzed to determine the sensitivity of observers to changes in noise level. Individual detector measurements were shown to be normally distributed (p > 0.54), justifying the use of a Gaussian random noise generator for simulations. Phantom tests showed the ability to match original and simulated noise variance in the sinogram domain to within 5.6% +/- 1.6% (standard deviation), which was then propagated into the image domain with errors less than 4.1% +/- 1.6%. Cadaver measurements indicated that image noise was matched to within 2.6% +/- 2.0%. More importantly, the 4AFC observer studies indicated that the simulated images were realistic, i.e., no detectable difference between simulated and original images (p = 0.86) was observed. JND studies indicated that observers' sensitivity to change in noise levels corresponded to a 25% difference in dose

  15. A micro-CT analysis of murine lung recruitment in bleomycin-induced lung injury

    PubMed Central

    Shofer, Scott; Badea, Cristian; Qi, Yi; Potts, Erin; Foster, W. Michael; Johnson, G. Allan

    2008-01-01

    The effects of lung injury on pulmonary recruitment are incompletely understood. X-ray computed tomography (CT) has been a valuable tool in assessing changes in recruitment during lung injury. With the development of preclinical CT scanners designed for thoracic imaging in rodents, it is possible to acquire high-resolution images during the evolution of a pulmonary injury in living mice. We quantitatively assessed changes in recruitment caused by intratracheal bleomycin at 1 and 3 wk after administration using micro-CT in 129S6/SvEvTac mice. Twenty female mice were administered 2.5 U of bleomycin or saline and imaged with micro-CT at end inspiration and end expiration. Mice were extubated and allowed to recover from anesthesia and then reevaluated in vivo for quasi-static compliance measurements, followed by harvesting of the lungs for collagen analysis and histology. CT images were converted to histograms and analyzed for mean lung attenuation (MLA). MLA was significantly greater for bleomycin-exposed mice at week 1 for both inspiration (P < 0.0047) and exhalation (P < 0.0377) but was not significantly different for week 3 bleomycin-exposed mice. However, week 3 bleomycin-exposed mice did display significant increases in MLA shift from expiration to inspiration compared with either group of control mice (P < 0.005), suggesting increased lung recruitment at this time point. Week 1 bleomycin-exposed mice displayed normal shifts in MLA with inspiration, suggesting normal lung recruitment despite significant radiographic and histological changes. Lung alveolar recruitment is preserved in a mouse model of bleomycin-induced parenchymal injury despite significant changes in radiographic and physiological parameters. PMID:18566189

  16. PET/CT-guided Interventions: Personnel Radiation Dose

    SciTech Connect

    Ryan, E. Ronan Thornton, Raymond; Sofocleous, Constantinos T.; Erinjeri, Joseph P.; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T.; Solomon, Stephen B.

    2013-08-01

    PurposeTo quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures.MethodsIn this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound).ResultsThe median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06).ConclusionThe operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  17. PET/CT-guided interventions: personnel radiation dose.

    PubMed

    Ryan, E Ronan; Thornton, Raymond; Sofocleous, Constantinos T; Erinjeri, Joseph P; Hsu, Meier; Quinn, Brian; Dauer, Lawrence T; Solomon, Stephen B

    2013-08-01

    To quantify radiation exposure to the primary operator and staff during PET/CT-guided interventional procedures. In this prospective study, 12 patients underwent PET/CT-guided interventions over a 6 month period. Radiation exposure was measured for the primary operator, the radiology technologist, and the nurse anesthetist by means of optically stimulated luminescence dosimeters. Radiation exposure was correlated with the procedure time and the use of in-room image guidance (CT fluoroscopy or ultrasound). The median effective dose was 0.02 (range 0-0.13) mSv for the primary operator, 0.01 (range 0-0.05) mSv for the nurse anesthetist, and 0.02 (range 0-0.05) mSv for the radiology technologist. The median extremity dose equivalent for the operator was 0.05 (range 0-0.62) mSv. Radiation exposure correlated with procedure duration and with the use of in-room image guidance. The median operator effective dose for the procedure was 0.015 mSv when conventional biopsy mode CT was used, compared to 0.06 mSv for in-room image guidance, although this did not achieve statistical significance as a result of the small sample size (p = 0.06). The operator dose from PET/CT-guided procedures is not significantly different than typical doses from fluoroscopically guided procedures. The major determinant of radiation exposure to the operator from PET/CT-guided interventional procedures is time spent in close proximity to the patient.

  18. SU-C-12A-05: Radiation Dose in High-Pitch Pediatric Cardiac CTA: Correlation Between Lung Dose and CTDIvol, DLP, and Size Specific Dose Estimates (SSDE)

    SciTech Connect

    Wang, J; Kino, A; Newman, B; Chan, F

    2014-06-01

    Purpose: To investigate the radiation dose for pediatric high pitch cardiac CTA Methods: A total of 14 cases were included in this study, with mean age of 6.2 years (ranges from 2 months to 15 years). Cardiac CTA was performed using a dual-source CT system (Definition Flash, Siemens). Tube voltage (70, 80 and 100kV) was chosen based on patient weight. All patients were scanned using a high-pitch spiral mode (pitch ranges from 2.5 to 3) with tube current modulation technique (CareDose4D, Siemens). For each case, the three dimensional dose distributions were calculated using a Monte Carlo software package (IMPACT-MC, CT Image GmbH). Scanning parameters of each exam, including tube voltage, tube current, beamshaping filters, beam collimation, were defined in the Monte Carlo calculation. Tube current profile along projection angles was obtained from projection data of each tube, which included data within the over-scanning range along z direction. The volume of lungs was segmented out with CT images (3DSlicer). Lung doses of all patients were calculated and compared with CTDIvol, DLP, and SSDE. Results: The average (range) of CTDIvol, DLP and SSDE of all patients was 1.19 mGy (0.58 to 3.12mGy), 31.54 mGy*cm (12.56 to 99 mGy*cm), 2.26 mGy (1.19 to 6.24 mGy), respectively. Radiation dose to the lungs ranged from 0.83 to 4.18 mGy. Lung doses correlated with CTDIvol, DLP and SSDE with correlation coefficients(k) at 0.98, 0.93, and 0.99. However, for the cases with CTDIvol less than 1mGy, only SSDE preserved a strong correlation with lung doses (k=0.83), while much weaker correlations were found for CTDIvol (k=0.29) and DLP (k=-0.47). Conclusion: Lung doses to pediatric patients during Cardiac CTA were estimated. SSDE showed the most robust correlation with lung doses in contrast to CTDIvol and DLP.

  19. SU-E-T-500: Dose Escalation Strategy for Lung Cancer Patients Using a Biologically- Guided Target Definition

    SciTech Connect

    Shusharina, N; Khan, F; Choi, N; Sharp, G

    2014-06-01

    Purpose: Dose escalation strategy for lung cancer patients can lead to late symptoms such as pneumonitis and cardiac injury. We propose a strategy to increase radiation dose for improving local tumor control while simultaneously striving to minimize the injury of organs at risk (OAR). Our strategy is based on defining a small, biologically-guided target volume for receiving additional radiation dose. Methods: 106 patients with lung cancer treated with radiotherapy were selected for patients diagnosed with stage II and III disease. Previous research has shown that 50% of the maximum SUV threshold in FDG-PET imaging is appropriate for delineation of the most aggressive part of a tumor. After PET- and CT-derived targets were contoured, an IMRT treatment plan was designed to deliver 60 Gy to the GTV as delineated on a 4D CT (Plan 1). A second plan was designed with additional dose of 18 Gy to the PET-derived volume (Plan 2). A composite plan was generated by the addition of Plan 1 and Plan 2. Results: Plan 1 was compared to the composite plan and increases in OAR dose were assessed. For seven patients on average, lung V5 was increased by 1.4% and V20 by 4.2% for ipsilateral lung and by 13.5% and 7% for contralateral lung. For total lung, V5 and V20 were increased by 4.5% and 4.8% respectively. Mean lung dose was increased by 9.7% for the total lung. The maximum dose to the spinal cord increased by 16% on average. For the heart, V20 increased by 4.2% and V40 by 5.2%. Conclusion: It seems feasible that an additional 18 Gy of radiation dose can be delivered to FDG PET-derived subvolume of the CT-based GTV of the primary tumor without significant increase in total dose to the critical organs such as lungs, spinal cord and heart.

  20. Detecting airway remodeling in COPD and emphysema using low-dose CT imaging

    NASA Astrophysics Data System (ADS)

    Rudyanto, R.; Ceresa, M.; Muñoz-Barrutia, A.; Ortiz-de-Solorzano, C.

    2012-03-01

    In this study, we quantitatively characterize lung airway remodeling caused by smoking-related emphysema and Chronic Obstructive Pulmonary Disease (COPD), in low-dose CT scans. To that end, we established three groups of individuals: subjects with COPD (n=35), subjects with emphysema (n=38) and healthy smokers (n=28). All individuals underwent a low-dose CT scan, and the images were analyzed as described next. First the lung airways were segmented using a fast marching method and labeled according to its generation. Along each airway segment, cross-section images were resampled orthogonal to the airway axis. Next 128 rays were cast from the center of the airway lumen in each crosssection slice. Finally, we used an integral-based method, to measure lumen radius, wall thickness, mean wall percentage and mean peak wall attenuation on every cast ray. Our analysis shows that both the mean global wall thickness and the lumen radius of the airways of both COPD and emphysema groups were significantly different from those of the healthy group. In addition, the wall thickness change starts at the 3rd airway generation in the COPD patients compared with emphysema patients, who display the first significant changes starting in the 2nd generation. In conclusion, it is shown that airway remodeling happens in individuals suffering from either COPD or emphysema, with some local difference between both groups, and that we are able to detect and accurately quantify this process using images of low-dose CT scans.

  1. Assessment of extravascular lung water by quantitative ultrasound and CT in isolated bovine lung.

    PubMed

    Corradi, Francesco; Ball, Lorenzo; Brusasco, Claudia; Riccio, Anna Maria; Baroffio, Michele; Bovio, Giulio; Pelosi, Paolo; Brusasco, Vito

    2013-07-01

    Lung ultrasonography (LUS) and computed tomography (CT) were compared for quantitative assessment of extravascular lung water (EVLW) in 10 isolated bovine lung lobes. LUS and CT were obtained at different inflation pressures before and after instillation with known amounts of hypotonic saline. A video-based quantitative LUS analysis was superior to both single-frame quantitative analysis and visual scoring in the assessment of EVLW. Video-based mean LUS intensity was strongly correlated with EVLW density (r(2)=0.87) but weakly correlated with mean CT attenuation (r(2)=0.49) and physical density (r(2)=0.49). Mean CT attenuation was weakly correlated with EVLW density (r(2)=0.62) but strongly correlated with physical density (r(2)=0.99). When the effect of physical density was removed by partial correlation analysis, EVLW density was significantly correlated with video-based LUS intensity (r(2)=0.75) but not mean CT attenuation (r(2)=0.007). In conclusion, these findings suggest that quantitative LUS by video gray-scale analysis can assess EVLW more reliably than LUS visual scoring or quantitative CT. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The effect of CT technical factors on quantification of lung fissure integrity

    NASA Astrophysics Data System (ADS)

    Chong, D.; Brown, M. S.; Ochs, R.; Abtin, F.; Brown, M.; Ordookhani, A.; Shaw, G.; Kim, H. J.; Gjertson, D.; Goldin, J. G.

    2009-02-01

    A new emphysema treatment uses endobronchial valves to perform lobar volume reduction. The degree of fissure completeness may predict treatment efficacy. This study investigated the behavior of a semiautomated algorithm for quantifying lung fissure integrity in CT with respect to reconstruction kernel and dose. Raw CT data was obtained for six asymptomatic patients from a high-risk population for lung cancer. The patients were scanned on either a Siemens Sensation 16 or 64, using a low-dose protocol of 120 kVp, 25 mAs. Images were reconstructed using kernels ranging from smooth to sharp (B10f, B30f, B50f, B70f). Research software was used to simulate an even lower-dose acquisition of 15 mAs, and images were generated at the same kernels resulting in 8 series per patient. The left major fissure was manually contoured axially at regular intervals, yielding 37 contours across all patients. These contours were read into an image analysis and pattern classification system which computed a Fissure Integrity Score (FIS) for each kernel and dose. FIS values were analyzed using a mixed-effects model with kernel and dose as fixed effects and patient as random effect to test for difference due to kernel and dose. Analysis revealed no difference in FIS between the smooth kernels (B10f, B30f) nor between sharp kernels (B50f, B70f), but there was a significant difference between the sharp and smooth groups (p = 0.020). There was no significant difference in FIS between the two low-dose reconstructions (p = 0.882). Using a cutoff of 90%, the number of incomplete fissures increased from 5 to 10 when the imaging protocol changed from B50f to B30f. Reconstruction kernel has a significant effect on quantification of fissure integrity in CT. This has potential implications when selecting patients for endobronchial valve therapy.

  3. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  4. Feature extraction, analysis, and 3D visualization of local lung regions in volumetric CT images

    NASA Astrophysics Data System (ADS)

    Delegacz, Andrzej; Lo, Shih-Chung B.; Freedman, Matthew T.; Mun, Seong K.

    2001-05-01

    The purpose of the work was to develop image functions for volumetric segmentation, feature extraction, and enhanced 3D visualization of local regions using CT datasets of human lungs. The system is aimed to assist the radiologist in the analysis of lung nodules. Volumetric datasets consisting of 30-50 thoracic helical low-dose CT slices were used in the study. The 3D topological characteristics of local structures including bronchi, blood vessels, and nodules were computed and evaluated. When a location of a region of interest is identified, the computer would automatically compute size, surface of the area, and normalized shape index of the suspected lesion. The developed system can also allow the user to perform interactive operation for evaluation of lung regions and structures through a user- friendly interface. These functions provide the user with a powerful tool to observe and investigate clinically interesting regions through unconventional radiographic viewings and analyses. The developed functions can also be used to view and analyze patient's lung abnormalities in surgical planning applications. Additionally, we see the possibility of using the system as a teaching tool for correlating anatomy of lungs.

  5. Lung fissure detection in CT images using global minimal paths

    NASA Astrophysics Data System (ADS)

    Appia, Vikram; Patil, Uday; Das, Bipul

    2010-03-01

    Pulmonary fissures separate human lungs into five distinct regions called lobes. Detection of fissure is essential for localization of the lobar distribution of lung diseases, surgical planning and follow-up. Treatment planning also requires calculation of the lobe volume. This volume estimation mandates accurate segmentation of the fissures. Presence of other structures (like vessels) near the fissure, along with its high variational probability in terms of position, shape etc. makes the lobe segmentation a challenging task. Also, false incomplete fissures and occurrence of diseases add to the complications of fissure detection. In this paper, we propose a semi-automated fissure segmentation algorithm using a minimal path approach on CT images. An energy function is defined such that the path integral over the fissure is the global minimum. Based on a few user defined points on a single slice of the CT image, the proposed algorithm minimizes a 2D energy function on the sagital slice computed using (a) intensity (b) distance of the vasculature, (c) curvature in 2D, (d) continuity in 3D. The fissure is the infimum energy path between a representative point on the fissure and nearest lung boundary point in this energy domain. The algorithm has been tested on 10 CT volume datasets acquired from GE scanners at multiple clinical sites. The datasets span through different pathological conditions and varying imaging artifacts.

  6. SU-E-J-260: Dose Recomputation Versus Dose Deformation for Stereotactic Body Radiation Therapy in Lung Tumors: A Dosimetric Study

    SciTech Connect

    Ma, M; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric accuracy between recomputed dose and deformed dose for stereotactic body radiation therapy in lung tumors. Methods: Two non-small-cell lung cancer patients were analyzed in this study, both of whom underwent 4D-CT and breath-hold CT imaging. Treatment planning was performed using the breath-hold CT images for the dose calculation and the 4D-CT images for determining internal target volumes. 4D-CT images were reconstructed with ten breathing amplitude for each patient. Maximum tumor motion was 13 mm for patient 1, and 7 mm for patient 2. The delivered dose was calculated using the 4D-CT images and using the same planning parameters as for the breath-hold CT. The deformed dose was computed by deforming the planning dose using the deformable image registration between each binned CT and the breath-hold CT. Results: For patient 1, the difference between recomputed dose and deformed mean lung dose (MLD) ranged from 11.3%(0.5 Gy) to 1.1%(0.06 Gy), mean tumor dose (MTD) ranged from 0.4%(0.19 Gy) to −1.3%(−0.6 Gy), lung V20 ranged from +0.74% to −0.33%. The differences in all three dosimetric criteria remain relatively invariant to target motion. For patient 2, V20 ranged from +0.42% to −2.41%, MLD ranged from −0.2%(−0.05 Gy) to −10.4%(−2.12 Gy), and MTD ranged from −0.5%(−0.31 Gy) to −5.3%(−3.24 Gy). The difference between recomputed dose and deformed dose shows strong correlation with tumor motion in all three dosimetric measurements. Conclusion: The correlation between dosimetric criteria and tumor motion is patient-specific, depending on the tumor locations, motion pattern, and deformable image registration accuracy. Deformed dose can be a good approximation for recalculated dose when tumor motion is small. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  7. Lung Cancers Diagnosed at Annual CT Screening: Volume Doubling Times

    PubMed Central

    Yankelevitz, David F.; Yip, Rowena; Reeves, Anthony P.; Farooqi, Ali; Xu, Dongming; Smith, James P.; Libby, Daniel M.; Pasmantier, Mark W.; Miettinen, Olli S.

    2012-01-01

    Purpose: To empirically address the distribution of the volume doubling time (VDT) of lung cancers diagnosed in repeat annual rounds of computed tomographic (CT) screening in the International Early Lung Cancer Action Program (I-ELCAP), first and foremost with respect to rates of tumor growth but also in terms of cell types. Materials and Methods: All CT screenings in I-ELCAP from 1993 to 2009 were performed according to HIPAA-compliant protocols approved by the institutional review boards of the collaborating institutions. All instances of first diagnosis of primary lung cancer after a negative screening result 7–18 months earlier were identified, with symptom-prompted diagnoses included. Lesion diameter was calculated by using the measured length and width of each cancer at the time when the nodule was first identified for further work-up and at the time of the most recent prior screening, 7–18 months earlier. The length and width were measured a second time for each cancer, and the geometric mean of the two calculated diameters was used to calculate the VDT. The χ2 statistic was used to compare the VDT distributions. Results: The median VDT for 111 cancers was 98 days (interquartile range, 108). For 56 (50%) cancers it was less than 100 days, and for three (3%) cancers it was more than 400 days. Adenocarcinoma was the most frequent cell type (50%), followed by squamous cell carcinoma (19%), small cell carcinoma (19%), and others (12%). Lung cancers manifesting as subsolid nodules had significantly longer VDTs than those manifesting as solid nodules (P < .0001). Conclusion: Lung cancers diagnosed in annual repeat rounds of CT screening, as manifest by the VDT and cell-type distributions, are similar to those diagnosed in the absence of screening. © RSNA, 2012 PMID:22454506

  8. Effects of Respiration-Induced Density Variations on Dose Distributions in Radiotherapy of Lung Cancer

    SciTech Connect

    Mexner, Vanessa; Wolthaus, Jochem W.H.; Herk, Marcel van; Damen, Eugene M.F.; Sonke, Jan-Jakob

    2009-07-15

    Purpose: To determine the effect of respiration-induced density variations on the estimated dose delivered to moving structures and, consequently, to evaluate the necessity of using full four-dimensional (4D) treatment plan optimization. Methods and Materials: In 10 patients with large tumor motion (median, 1.9 cm; range, 1.1-3.6 cm), the clinical treatment plan, designed using the mid-ventilation ([MidV]; i.e., the 4D-CT frame closest to the time-averaged mean position) CT scan, was recalculated on all 4D-CT frames. The cumulative dose was determined by transforming the doses in all breathing phases to the MidV geometry using deformable registration and then averaging the results. To determine the effect of density variations, this cumulative dose was compared with the accumulated dose after similarly deforming the planned (3D) MidV-dose in each respiratory phase using the same transformation (i.e., 'blurring the dose'). Results: The accumulated tumor doses, including and excluding density variations, were almost identical. Relative differences in the minimum gross tumor volume (GTV) dose were less than 2% for all patients. The relative differences were even smaller in the mean lung dose and the V20 (<0.5% and 1%, respectively). Conclusions: The effect of respiration-induced density variations on the dose accumulated over the respiratory cycle was very small, even in the presence of considerable respiratory motion. A full 4D-dose calculation for treatment planning that takes into account such density variations is therefore not required. Planning using the MidV-CT derived from 4D-CT with an appropriate margin for geometric uncertainties is an accurate and safe method to account for respiration-induced anatomy variations.

  9. SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis

    SciTech Connect

    Park, I; Song, J; Kim, K

    2016-06-15

    Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated by using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).

  10. TU-F-17A-08: The Relative Accuracy of 4D Dose Accumulation for Lung Radiotherapy Using Rigid Dose Projection Versus Dose Recalculation On Every Breathing Phase

    SciTech Connect

    Lamb, J; Lee, C; Tee, S; Lee, P; Iwamoto, K; Low, D; Valdes, G; Robinson, C

    2014-06-15

    Purpose: To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Methods: Radiotherapy plans were analyzed for 10 patients with stage I-II lung cancer planned using 4D-CT. SBRT plans were optimized using the dose calculated by a commercially-available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as well as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Results: Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14±0.70 Gy, - 0.11±0.51 Gy, and 0.00±0.62 Gy, respectively. Deviations of between 8 and 13 Gy were observed between the 4D-MC calculations and both 3D methods for the proximal bronchial trees of 3 patients. Conclusions: 4D dose accumulation using projection without re-calculation may be sufficiently accurate compared to 4D dose accumulated from Monte Carlo recalculation on every phase, depending on institutional protocols. Use of 4D dose accumulation should be considered when evaluating normal tissue complication

  11. Standardization and optimization of CT protocols to achieve low dose.

    PubMed

    Trattner, Sigal; Pearson, Gregory D N; Chin, Cynthia; Cody, Dianna D; Gupta, Rajiv; Hess, Christopher P; Kalra, Mannudeep K; Kofler, James M; Krishnam, Mayil S; Einstein, Andrew J

    2014-03-01

    The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities, and various indications require unique protocols, but there remains room for standardization and optimization. In this paper, the authors summarize approaches to reduce dose, as discussed in lectures constituting the first session of the 2013 UCSF Virtual Symposium on Radiation Safety and Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose.

  12. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    SciTech Connect

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh.; Paydar, R.

    2016-06-15

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-system component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose

  13. Definitive radiotherapy in locally advanced non-small cell lung cancer: dose and fractionation.

    PubMed

    Dağoğlu, Nergiz; Karaman, Şule; Arifoğlu, Alptekin; Küçücük, Seden; Oral, Ethem N

    2014-12-01

    Definitive radiotherapy plays a major role in the treatment of locally advanced non-small cell lung cancer (LA NSCLC). After the impact of RT dose for lung cancer was established, a number of trials were structured with the aim of better local control and overall survival by either dose escalation or shortening the total treatment time through conventional/altered fractionation, even in combination with chemotherapy (CT) and other targeted agents. In spite of the increased number of these studies, the optimal dose or fractionation still remains to be determined. Another aspect questioned is the incorporation of these higher doses and shorter treatment times with chemotherapy or targeted agents. This review summarises the results of significant trials on dose and altered fractionation in the treatment of LA-NSCLC with an emphasis on possible future perspectives.

  14. Lung cancer screening beyond low-dose computed tomography: the role of novel biomarkers.

    PubMed

    Hasan, Naveed; Kumar, Rohit; Kavuru, Mani S

    2014-10-01

    Lung cancer is the most common and lethal malignancy in the world. The landmark National lung screening trial (NLST) showed a 20% relative reduction in mortality in high-risk individuals with screening low-dose computed tomography. However, the poor specificity and low prevalence of lung cancer in the NLST provide major limitations to its widespread use. Furthermore, a lung nodule on CT scan requires a nuanced and individualized approach towards management. In this regard, advances in high through-put technology (molecular diagnostics, multi-gene chips, proteomics, and bronchoscopic techniques) have led to discovery of lung cancer biomarkers that have shown potential to complement the current screening standards. Early detection of lung cancer can be achieved by analysis of biomarkers from tissue samples within the respiratory tract such as sputum, saliva, nasal/bronchial airway epithelial cells and exhaled breath condensate or through peripheral biofluids such as blood, serum and urine. Autofluorescence bronchoscopy has been employed in research setting to identify pre-invasive lesions not identified on CT scan. Although these modalities are not yet commercially available in clinic setting, they will be available in the near future and clinicians who care for patients with lung cancer should be aware. In this review, we present up-to-date state of biomarker development, discuss their clinical relevance and predict their future role in lung cancer management.

  15. Estimating radiation dose to organs of patients undergoing conventional and novel multidetector CT exams using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Angel, Erin

    Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this

  16. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  17. CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy

    SciTech Connect

    Niimi, Hiroshi; Kang, Eun-Young; Kwong, S.

    1996-03-01

    Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodes (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.

  18. Effective dose assessment for participants in the National Lung Screening Trial undergoing posteroanterior chest radiographic examinations.

    PubMed

    Kruger, Randell; Flynn, Michael J; Judy, Phillip F; Cagnon, Christopher H; Seibert, J Anthony

    2013-07-01

    The National Lung Screening Trial (NLST) is a multicenter randomized controlled trial comparing low-dose helical CT with chest radiography in the screening of older current and former heavy smokers for early detection of lung cancer. Recruitment was launched in September 2002 and ended in April 2004, when 53,454 participants had been randomized at 33 screening sites. The objective of this study was to determine the effective radiation dose associated with individual chest radiographic screening examinations. A total of 73,733 chest radiographic examinations were performed with 92 chest imaging systems. The entrance skin air kerma (ESAK) of participants' chest radiographic examinations was estimated and used in this analysis. The effective dose per ESAK for each examination was determined with a Monte Carlo-based program. The examination effective dose was calculated as the product of the examination ESAK and the Monte Carlo estimate of the ratio of effective dose per ESAK. This study showed that the mean effective dose assessed from 66,157 postero-anterior chest examinations was 0.052 mSv. Additional findings were a median effective dose of 0.038 mSv, a 95th percentile value of 0.136 mSv, and a fifth percentile value of 0.013 mSv. The effective dose for participant NLST chest radiographic examinations was determined and is of specific interest in relation to that associated with the previously published NLST low-dose CT examinations conducted during the trial.

  19. Dose reduction in chest CT: comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques.

    PubMed

    Yamada, Yoshitake; Jinzaki, Masahiro; Hosokawa, Takahiro; Tanami, Yutaka; Sugiura, Hiroaki; Abe, Takayuki; Kuribayashi, Sachio

    2012-12-01

    To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Improving the Diagnostic Specificity of CT for Early Detection of Lung Cancer: 4D CT-Based Pulmonary Nodule Elastometry

    DTIC Science & Technology

    2014-08-01

    of a representative patient; delineated MPN ( red ) and 1cm ring of the surrounding lung (yellow) for deep inhale (left column) and deformed MPN and...based on deformable image processing of 4D CT images and their validation in an animal model and in a retrospective review of over 200 4D CT scans from...Pulmonary nodule elastometry, 4DCT, deformable image registration, Jacobian, lung cancer, lung cancer screening 16. SECURITY CLASSIFICATION OF: 17

  1. Influence of CT automatic tube current modulation on uncertainty in effective dose.

    PubMed

    Sookpeng, S; Martin, C J; Gentle, D J

    2016-01-01

    Computed tomography (CT) scanners are equipped with automatic tube current modulation (ATCM) systems that adjust the current to compensate for variations in patient attenuation. CT dosimetry variables are not defined for ATCM situations and, thus, only the averaged values are displayed and analysed. The patient effective dose (E), which is derived from a weighted sum of organ equivalent doses, will be modified by the ATCM. Values for E for chest-abdomen-pelvis CT scans have been calculated using the ImPACT spreadsheet for patients on five CT scanners. Values for E resulting from the z-axis modulation under ATCM have been compared with results assessed using the same effective mAs values with constant tube currents. Mean values for E under ATCM were within ±10 % of those for fixed tube currents for all scanners. Cumulative dose distributions under ATCM have been simulated for two patient scans using single-slice dose profiles measured in elliptical and cylindrical phantoms on one scanner. Contributions to the effective dose from organs in the upper thorax under ATCM are 30-35 % lower for superficial tissues (e.g. breast) and 15-20 % lower for deeper organs (e.g. lungs). The effect on doses to organs in the abdomen depends on body shape, and they can be 10-22 % higher for larger patients. Results indicate that scan dosimetry parameters, dose-length product and effective mAs averaged over the whole scan can provide an assessment in terms of E that is sufficiently accurate to quantify relative risk for routine patient exposures under ATCM.

  2. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  3. Dose assessment according to changes in algorithm in cardiac CT

    NASA Astrophysics Data System (ADS)

    Jang, H. C.; Cho, J. H.; Lee, H. K.; Hong, I. S.; Cho, M. S.; Park, C. S.; Lee, S. Y.; Dong, K. R.; Goo, E. H.; Chung, W. K.; Ryu, Y. H.; Lim, C. S.

    2012-06-01

    The principal objective of this study was to determine the effects of the application of the adaptive statistical iterative reconstruction (ASIR) technique in combination with another two factors (body mass index (BMI) and tube potential) on radiation dose in cardiac computed tomography (CT). For quantitative analysis, regions of interest were positioned on the central region of the great coronary artery, the right coronary artery, and the left anterior descending artery, after which the means and standard deviations of measured CT numbers were obtained. For qualitative analysis, images taken from the major coronary arteries (right coronary, left anterior descending, and left circumflex) were graded on a scale of 1-5, with 5 indicating the best image quality. Effective dose, which was calculated by multiplying the value of the dose length product by a standard conversion factor of 0.017 for the chest, was employed as a measure of radiation exposure dose. In cardiac CT in patients with BMI of less than 25 kg/m2, the use of 40% ASIR in combination with a low tube potential of 100 kVp resulted in a significant reduction in the radiation dose without compromising diagnostic quality. Additionally, the combination of the 120 kVp protocol and the application of 40% ASIR application for patients with BMI higher than 25 kg/m2 yielded similar results.

  4. Utilisation of PACS to monitor patient CT doses.

    PubMed

    AlSuwaidi, J S; Bayoumi, M; Al Shibli, N; Sulaiman, H; Urrahman, T; AlYarah, M

    2011-09-01

    In the past 5 y, the number of computed tomography (CT) studies has doubled at Dubai Health Authority hospitals. This situation, along with patient's overdoses reported internationally, has prompted action to establish a system to manage patient doses incurred due to medical imaging practices. In this work, the authors aim to homogenise dose reporting to monitor radiation dose levels and facilitate the establishment of local and national dose reference levels. The two hospitals enrolled in this study are equipped with three CT systems (two 4 slices and one 64 slices). Through the Picture Archive and Communication Systems (PACS) tracking system, it is mandatory to fill CT patient doses in radiology information system (RIS). Dose length product (mGy cm) was recorded for 2502 adult and 178 paediatric patients. All patients' dosimetry data were collected from the RIS by Cogonos statistical software. The PACS data were reviewed to exclude incomplete data. Average and range of effective doses for adult and paediatric patients were calculated using an appropriate weighting factor. Individual accumulated effective doses for adult and paediatric patients were calculated for 4s-scanner-1 only. Adult average effective doses for the head (1482 exams) were 1.23 ± 0.58, 2.84 ± 0.83 and 2.98 ± 1.103 mSv, the chest (545 exams) were 5.39 ± 1.63, 21.85 ± 5.63 and 18.19 ± 3.22 mSv and for the abdomen and pelvis (1183 exams) were 10.85 ± 4.26, 25.66 ± 8.83 and 26.46 ± 13.75 mSv for 4s-scanner-1, 4s-scanner-2 and 64 s, respectively. The paediatric average effective dose for the head (127 exams) was 1.77 ± 0.82 mSv, for the chest (22 exams) was 3.3 ± 1.29 mSv and for the abdomen and pelvis (27 exams) was 6.16 ± 2.64 mSv. Results of individual accumulated effective doses for adult and paediatric patients were presented. PACS dose reporting facilitated dosimetry clinical auditing. Effective doses obtained in this work demonstrated that the results of one scanner were within

  5. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  6. Ultra low-dose CT attenuation correction in PET SPM

    NASA Astrophysics Data System (ADS)

    Wang, Shyh-Jen; Yang, Bang-Hung; Tsai, Chia-Jung; Yang, Ching-Ching; Lee, Jason J. S.; Wu, Tung-Hsin

    2010-07-01

    The use of CT images for attenuation correction (CTAC) allows significantly shorter scanning time and a high quality noise-free attenuation map compared with conventional germanium-68 transmission scan because at least 10 4 times greater of photon flux would be generated from a CT scan under standard operating condition. However, this CTAC technique would potentially introduce more radiation risk to the patients owing to the higher radiation exposure from CT scan. Statistic parameters mapping (SPM) is a prominent technique in nuclear medicine community for the analysis of brain imaging data. The purpose of this study is to assess the feasibility of low-dose CT (LDCT) and ultra low-dose CT (UDCT) in PET SPM applications. The study was divided into two parts. The first part was to evaluate of tracer uptake distribution pattern and quantity analysis by using the striatal phantom to initially assess the feasibility of AC for clinical purpose. The second part was to examine the group SPM analysis using the Hoffman brain phantom. The phantom study is to simulate the human brain and to reduce the experimental uncertainty of real subjects. The initial studies show that the results of PET SPM analysis have no significant differences between LDCT and UDCT comparing to the current used default CTAC. Moreover, the dose of the LDCT is lower than that of the default CT by a factor of 9, and UDCT can even yield a 42 times dose reduction. We have demonstrated the SPM results while using LDCT and UDCT for PET AC is comparable to those using default CT setting, suggesting their feasibility in PET SPM applications. In addition, the necessity of UDCT in PET SPM studies to avoid excess radiation dose is also evident since most of the subjects involved are non-cancer patients or children and some normal subjects are even served as a comparison group in the experiment. It is our belief that additional attempts to decrease the radiation dose would be valuable, especially for children and

  7. SU-E-T-117: Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

    SciTech Connect

    Pelletier, C; Jung, J; Lee, C; Kim, J; Lee, C

    2014-06-01

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.

  8. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  9. Adaptively Tuned Iterative Low Dose CT Image Denoising.

    PubMed

    Hashemi, SayedMasoud; Paul, Narinder S; Beheshti, Soosan; Cobbold, Richard S C

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.

  10. Adaptive sampling of CT data for myocardial blood flow estimation from dose-reduced dynamic CT

    NASA Astrophysics Data System (ADS)

    Modgil, Dimple; Bindschadler, Michael D.; Alessio, Adam M.; La Rivière, Patrick J.

    2015-03-01

    Quantification of myocardial blood flow (MBF) can aid in the diagnosis and treatment of coronary artery disease (CAD). However, there are no widely accepted clinical methods for estimating MBF. Dynamic CT holds the promise of providing a quick and easy method to measure MBF quantitatively, however the need for repeated scans has raised concerns about the potential for high radiation dose. In our previous work, we explored techniques to reduce the patient dose by either uniformly reducing the tube current or by uniformly reducing the number of temporal frames in the dynamic CT sequence. These dose reduction techniques result in very noisy data, which can give rise to large errors in MBF estimation. In this work, we seek to investigate whether nonuniformly varying the tube current or sampling intervals can yield more accurate MBF estimates. Specifically, we try to minimize the dose and obtain the most accurate MBF estimate through addressing the following questions: when in the time attenuation curve (TAC) should the CT data be collected and at what tube current(s). We hypothesize that increasing the sampling rate and/or tube current during the time frames when the myocardial CT number is most sensitive to the flow rate, while reducing them elsewhere, can achieve better estimation accuracy for the same dose. We perform simulations of contrast agent kinetics and CT acquisitions to evaluate the relative MBF estimation performance of several clinically viable adaptive acquisition methods. We found that adaptive temporal and tube current sequences can be performed that impart an effective dose of about 5 mSv and allow for reductions in MBF estimation RMSE on the order of 11% compared to uniform acquisition sequences with comparable or higher radiation doses.

  11. Lung vessel segmentation in CT images using graph-cuts

    NASA Astrophysics Data System (ADS)

    Zhai, Zhiwei; Staring, Marius; Stoel, Berend C.

    2016-03-01

    Accurate lung vessel segmentation is an important operation for lung CT analysis. Filters that are based on analyzing the eigenvalues of the Hessian matrix are popular for pulmonary vessel enhancement. However, due to their low response at vessel bifurcations and vessel boundaries, extracting lung vessels by thresholding the vesselness is not sufficiently accurate. Some methods turn to graph-cuts for more accurate segmentation, as it incorporates neighbourhood information. In this work, we propose a new graph-cuts cost function combining appearance and shape, where CT intensity represents appearance and vesselness from a Hessian-based filter represents shape. Due to the amount of voxels in high resolution CT scans, the memory requirement and time consumption for building a graph structure is very high. In order to make the graph representation computationally tractable, those voxels that are considered clearly background are removed from the graph nodes, using a threshold on the vesselness map. The graph structure is then established based on the remaining voxel nodes, source/sink nodes and the neighbourhood relationship of the remaining voxels. Vessels are segmented by minimizing the energy cost function with the graph-cuts optimization framework. We optimized the parameters used in the graph-cuts cost function and evaluated the proposed method with two manually labeled sub-volumes. For independent evaluation, we used 20 CT scans of the VESSEL12 challenge. The evaluation results of the sub-volume data show that the proposed method produced a more accurate vessel segmentation compared to the previous methods, with F1 score 0.76 and 0.69. In the VESSEL12 data-set, our method obtained a competitive performance with an area under the ROC curve of 0.975, especially among the binary submissions.

  12. Lung imaging in rodents using dual energy micro-CT

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Guo, X.; Clark, D.; Johnston, S. M.; Marshall, C.; Piantadosi, C.

    2012-03-01

    Dual energy CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. The purpose of this work is to investigate the use of dual energy micro-CT for the estimation of vascular, tissue, and air fractions in rodent lungs using a post-reconstruction three-material decomposition method. We have tested our method using both simulations and experimental work. Using simulations, we have estimated the accuracy limits of the decomposition for realistic micro-CT noise levels. Next, we performed experiments involving ex vivo lung imaging in which intact lungs were carefully removed from the thorax, were injected with an iodine-based contrast agent and inflated with air at different volume levels. Finally, we performed in vivo imaging studies in (n=5) C57BL/6 mice using fast prospective respiratory gating in endinspiration and end-expiration for three different levels of positive end-expiratory pressure (PEEP). Prior to imaging, mice were injected with a liposomal blood pool contrast agent. The mean accuracy values were for Air (95.5%), Blood (96%), and Tissue (92.4%). The absolute accuracy in determining all fraction materials was 94.6%. The minimum difference that we could detect in material fractions was 15%. As expected, an increase in PEEP levels for the living mouse resulted in statistically significant increases in air fractions at end-expiration, but no significant changes in end-inspiration. Our method has applicability in preclinical pulmonary studies where various physiological changes can occur as a result of genetic changes, lung disease, or drug effects.

  13. Radiation Dose Reduction in Paranasal Sinus CT: With Feasibility of Iterative Reconstruction Technique.

    PubMed

    Bang, Minseo; Choi, Seong Hoon; Park, Jongha; Kang, Byeong Seong; Kwon, Woon Jung; Lee, Tae Hoon; Nam, Jung Gwon

    2016-12-01

    To (1) compare the radiation dose of low-dose computed tomography (CT) to that of standard-dose CT, (2) determine the minimum optimal radiation dose for use in patients who need endoscopic sinus surgery, and (3) assess the reliability of iterative model reconstruction. Prospective single-institution study. Tertiary care center. We recruited 48 adults with medically refractory sinusitis. Each patient underwent 4 scans with different CT parameters: 120 kV and 100 mAs (standard dose), 100 kV and 40 mAs (low dose), 100 kV and 20 mAs (very low dose), and 100 kV and 10 mAs (ultra-low dose). All CT scans were reconstructed via filtered back-projection, and ultra-low dose scans were additionally reconstructed through iterative model reconstruction. Radiation dose, image quality, and diagnostic performance were compared among the scans. Radiation doses decreased to 6% (ultra-low dose), 12% (very low dose), and 22% (low dose) of the standard-dose CT. The image quality of low-dose CT was similar to that of standard-dose CT. Ultra-low-dose CT with iterative model reconstruction was inferior to standard-dose CT for identifying anatomic structures, except for the optic nerve. All CT scans had 100% agreement for diagnosing rhinosinusitis. With low-dose CT, the radiation dose can be decreased to 22% of that of standard-dose CT without affecting the image quality. Low-dose CT can be considered the minimum optimal radiation for patients who need surgery. Iterative model reconstruction is not useful for assessing the anatomic details of the paranasal sinus on CT. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  14. Multidetector CT in children: current concepts and dose reduction strategies

    PubMed Central

    van Dam, Ingrid M.; van der Molen, Aart J.

    2010-01-01

    The recent technical development of multidetector CT (MDCT) has contributed to a substantial increase in its diagnostic applications and accuracy in children. A major drawback of MDCT is the use of ionising radiation with the risk of inducing secondary cancer. Therefore, justification and optimisation of paediatric MDCT is of great importance in order to minimise these risks (“as low as reasonably achievable” principle). This review will focus on all technical and non-technical aspects relevant for paediatric MDCT optimisation and includes guidelines for radiation dose level-based CT protocols. PMID:20535463

  15. Multidetector CT in children: current concepts and dose reduction strategies.

    PubMed

    Nievelstein, Rutger A J; van Dam, Ingrid M; van der Molen, Aart J

    2010-08-01

    The recent technical development of multidetector CT (MDCT) has contributed to a substantial increase in its diagnostic applications and accuracy in children. A major drawback of MDCT is the use of ionising radiation with the risk of inducing secondary cancer. Therefore, justification and optimisation of paediatric MDCT is of great importance in order to minimise these risks ("as low as reasonably achievable" principle). This review will focus on all technical and non-technical aspects relevant for paediatric MDCT optimisation and includes guidelines for radiation dose level-based CT protocols.

  16. Combined micro-PET/micro-CT imaging of lung tumours in SPC-raf and SPC-myc transgenic mice.

    PubMed

    Rodt, Thomas; Luepke, Matthias; Boehm, Claudia; Hueper, Katja; Halter, Roman; Glage, Silke; Hoy, Ludwig; Wacker, Frank; Borlak, Juergen; von Falck, Christian

    2012-01-01

    SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and (18)F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours.

  17. [Coronary artery calcium quantification with non-ECG-gated low-radiation dose CT of the chest].

    PubMed

    Bastarrika, G; Alonso, A; Saiz-Mendiguren, R; Arias, J; Cosín, O

    2010-01-01

    To evaluate the feasibility of quantifying coronary artery calcification in low-radiation dose chest CT (LDCT) studies performed in an early lung cancer detection program by comparing the results of this technique with those of dedicated retrospectively ECG-gated cardiac CT. After obtaining informed consent, we evaluated the CT studies of 48 consecutive asymptomatic smokers (44 male, 4 female; mean age 59.7 years) included in an early lung cancer detection trial who underwent multislice LDCT (Volume Zoom, Siemens) of the chest and a retrospectively ECG-gated cardiac CT specifically dedicated to quantifying coronary artery calcification. LDCT examinations were reconstructed to reproduce cardiac CT parameters. Coronary calcium values were compared using the Wilcoxon signed-rank test. The concordance correlation coefficient (CCC) was calculated to determine the agreement between the two methods. Coronary calcium values ranged from 0 to 1,908.4 (median: 89.6; IQR: 3.2; 227.4) in LDCT exams and from 0 to 1,486.6 (median: 81.3; IQR: 2.5; 316.4) in cardiac CT studies. No statistically significant difference was observed in the estimation of total coronary calcium score (p=0.28). The concordance between the two techniques was excellent (CCC > or = 0.81). The LDCT study performed in lung cancer early detection trials enables coronary artery calcification to be quantified with the same accuracy as the dedicated retrospectively ECG-gated cardiac CT examination. Copyright 2009 SERAM. Published by Elsevier Espana. All rights reserved.

  18. Comparison of low- and ultralow-dose computed tomography protocols for quantitative lung and airway assessment.

    PubMed

    Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C

    2017-09-01

    Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction

  19. An improved analytical model for CT dose simulation with a new look at the theory of CT dose

    SciTech Connect

    Dixon, Robert L.; Munley, Michael T.; Bayram, Ersin

    2005-12-15

    Gagne [Med. Phys. 16, 29-37 (1989)] has previously described a model for predicting the sensitivity and dose profiles in the slice-width (z) direction for CT scanners. The model, developed prior to the advent of multidetector CT scanners, is still widely used; however, it does not account for the effect of anode tilt on the penumbra or include the heel effect, both of which are increasingly important for the wider beams (up to 40 mm) of contemporary, multidetector scanners. Additionally, it applied only on (or near) the axis of rotation, and did not incorporate the photon energy spectrum. The improved model described herein transcends all of the aforementioned limitations of the Gagne model, including extension to the peripheral phantom axes. Comparison of simulated and measured dose data provides experimental validation of the model, including verification of the superior match to the penumbra provided by the tilted-anode model, as well as the observable effects on the cumulative dose distribution. The initial motivation for the model was to simulate the quasiperiodic dose distribution on the peripheral, phantom axes resulting from a helical scan series in order to facilitate the implementation of an improved method of CT dose measurement utilizing a short ion chamber, as proposed by Dixon [Med. Phys. 30, 1272-1280 (2003)]. A more detailed set of guidelines for implementing such measurements is also presented in this paper. In addition, some fundamental principles governing CT dose which have not previously been clearly enunciated follow from the model, and a fundamental (energy-based) quantity dubbed 'CTDI-aperture' is introduced.

  20. Reduction in radiation doses from paediatric CT scans in Great Britain.

    PubMed

    Lee, Choonsik; Pearce, Mark S; Salotti, Jane A; Harbron, Richard W; Little, Mark P; McHugh, Kieran; Chapple, Claire-Louise; Berrington de Gonzalez, Amy

    2016-01-01

    Although CT scans provide great medical benefits, concerns have been raised about the magnitude of possible associated cancer risk, particularly in children who are more sensitive to radiation than adults. Unnecessary high doses during CT examinations can also be delivered to children, if the scan parameters are not adjusted for patient age and size. We conducted the first survey to directly assess the trends in CT scan parameters and doses for paediatric CT scans performed in Great Britain between 1978 and 2008. We retrieved 1073 CT film sets from 36 hospitals. The patients were 0-19 years old, and CT scans were conducted between 1978 and 2008. We extracted scan parameters from each film including tube current-time product [milliampere seconds (mAs)], tube potential [peak kilovoltage (kVp)] and manufacturer and model of the CT scanner. We estimated the mean mAs for head and trunk (chest and abdomen/pelvis) scans, according to patient age (0-4, 5-9, 10-14 and 15-19 years) and scan year (<1990, 1990-1994, 1995-1999 and ≥2000), and then derived the volumetric CT dose index and estimated organ doses. For head CT scans, mean mAs decreased by about 47% on average from before 1990 to after 2000, with the decrease starting around 1990. The mean mAs for head CTs did not vary with age before 1990, whereas slightly lower mAs values were used for younger patients after 1990. Similar declines in mAs were observed for trunk CTs: a 46% decline on an average from before 1990 to after 2000. Although mean mAs for trunk CTs did not vary with age before 1990, the value varied markedly by age, from 63 mAs for age 0-4 years compared with 315 mAs for those aged >15 years after 2000. No material changes in kVp were found. Estimated brain-absorbed dose from head CT scans decreased from 62 mGy before 1990 to approximately 30 mGy after 2000. For chest CT scans, the lung dose to children aged 0-4 years decreased from 28 mGy before 1990 to 4 mGy after 2000. We found that mAs for

  1. CT in children--dose protection and general considerations when planning a CT in a child.

    PubMed

    Sorantin, E; Weissensteiner, S; Hasenburger, G; Riccabona, M

    2013-07-01

    Today CT represents about 10% of all ionizing radiation based imaging modalities, but delivers more than 50% of the total collective dose for diagnostic imaging. Compared to adults the radiation sensitivity of children is considerable higher than in adults. Additionally children differ from adults--factors like body size, mass, density, proportions as well as metabolism have to be mentioned. Children grow and mature--all this components have to be mapped in examination protocols by Pediatric Radiology. The total dose of a CT examination depends on the settings of several factors such as the scout view, the scan length, exposure settings including automated exposure control, type of scanning (single slice, helical, volume mode), slice thickness, pitch values as well as on image reconstruction parameters. If intravenous contrast media injection is needed bolus tracking or timing represents another source of radiation. The aim of the paper is to present and discuss all aspects of defining a pediatric age and query adapted CT protocol particularly concerning all dose relevant factors in pediatric CT and their adjustment in children. Moreover hints are given concerning optimization of intravenous contrast media injection as well as special (low dose) imaging protocols.

  2. Quantification of Proton Dose Calculation Accuracy in the Lung

    SciTech Connect

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-06-01

    Purpose: To quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC)–based dose calculation through measurements and to assess the clinical impact in a cohort of patients with tumors located in the lung. Methods and Materials: A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in the lung, and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results: MC increased dose calculation accuracy in lung tissue compared with the TPS and reproduced dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target was 5.6% for the TPS and 1.6% for MC. MC recalculations in patients showed a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors, MC also predicted consistently higher V5 and V10 to the normal lung, because of a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target could show large deviations, although this effect was highly patient specific. Range measurements showed that MC can reduce range uncertainty by a factor of ∼2: the average (maximum) difference to the measured range was 3.9 mm (7.5 mm) for MC and 7 mm (17 mm) for the TPS in lung tissue. Conclusion: Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. In addition, the ability to confidently reduce range margins would benefit all patients by potentially lowering toxicity.

  3. Quantification of Proton Dose Calculation Accuracy in the Lung

    PubMed Central

    Grassberger, Clemens; Daartz, Juliane; Dowdell, Stephen; Ruggieri, Thomas; Sharp, Greg; Paganetti, Harald

    2014-01-01

    Purpose Quantify the accuracy of a clinical proton treatment planning system (TPS) as well as Monte Carlo (MC) based dose calculation through measurements. Assess the clinical impact in a cohort of patients with tumors located in the lung. Methods A lung phantom and ion chamber array were used to measure the dose to a plane through a tumor embedded in lung and to determine the distal fall-off of the proton beam. Results were compared with TPS and MC calculations. Dose distributions in 19 patients (54 fields total) were simulated using MC and compared to the TPS algorithm. Results MC increases dose calculation accuracy in lung tissue compared to the TPS and reproduces dose measurements in the target to within ±2%. The average difference between measured and predicted dose in a plane through the center of the target is 5.6% for the TPS and 1.6% for MC. MC recalculations in patients show a mean dose to the clinical target volume on average 3.4% lower than the TPS, exceeding 5% for small fields. For large tumors MC also predicts consistently higher V5 and V10 to the normal lung, due to a wider lateral penumbra, which was also observed experimentally. Critical structures located distal to the target can show large deviations, though this effect is very patient-specific. Range measurements show that MC can reduce range uncertainty by a factor ~2: the average(maximum) difference to the measured range is 3.9mm(7.5mm) for MC and 7mm(17mm) for the TPS in lung tissue. Conclusion Integration of Monte Carlo dose calculation techniques into the clinic would improve treatment quality in proton therapy for lung cancer by avoiding systematic overestimation of target dose and underestimation of dose to normal lung. Additionally, the ability to confidently reduce range margins would benefit all patients through potentially lower toxicity. PMID:24726289

  4. Radiation dose comparison between V/P-SPECT and CT-angiography in the diagnosis of pulmonary embolism.

    PubMed

    Isidoro, Jorge; Gil, Paulo; Costa, Gracinda; Pedroso de Lima, João; Alves, Caseiro; Ferreira, Nuno C

    2017-09-01

    The aim of this study is to compare two routine protocols at our institution, CTPA and V/P-SPECT, in terms of radiation dose to the most exposed organs (lungs and breast) and to the embryo/fetus in the case of pregnant patients. At our institution, the CTPA protocol includes a contrast enhanced CT (scan parameters: 100kVp, 700mA, 0.5s/rot, pitch 0.984) and in some cases a non-contrast enhanced CT acquisition (120kVp, 400mA, 0.5s/rot, pitch 1.375). In the V/P-SPECT protocol, ventilation SPECT was performed after inhalation of 99mTc-Technegas, reaching 30MBq in the lungs; perfusion was performed after intravenous administration of 60-120MBq of 99mTc-MAA. The absorbed doses (mGy) to lungs and breast from CTPA were estimated using the "ImPACT CT Patient Dosimetry Calculator". The embryo/fetus dose was estimated for different gestational stages (0-7, 8-12, 13-25 and 26-40weeks) using the web based calculation tool "COnceptus Dose Estimation" (CODE). Doses to organs and embryo/fetus from V/P-SPECT were estimated based on published dose data normalized to administered activity (mGy/MBq). Embryo/fetus absorbed doses are similar for CTPA and V/P-SPECT and bellow 1mGy. The calculated dose to the lungs (breast) was 1.3-10.6 (27-136) times higher from CTPA when compared with V/P-SPECT. For the diagnosis of PE in women, if both imaging modalities are available, it is recommended to proceed with V/P-SPECT rather than CTPA due to the considerably lower radiation dose to the breast. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  6. Measurement of radiation dose in cerebral CT perfusion study.

    PubMed

    Hirata, Masaaki; Sugawara, Yoshifumi; Fukutomi, Yukimi; Oomoto, Kenji; Murase, Kenya; Miki, Hitoshi; Mochizuki, Teruhito

    2005-03-01

    To evaluate radiation dose in cerebral perfusion studies with a multi-detector row CT (MDCT) scanner on various voltage and current settings by using a human head phantom. Following the CT perfusion study protocol, continuous cine scans (1 sec/rotation x60 sec) consisting of four 5-mm-thick contiguous slices were performed three times at variable tube voltages of 80 kV, 100 kV, 120 kV, and 140 kV with the same tube current setting of 200 mA and on variable current settings of 50 mA, 100 mA, 150 mA, and 200 mA with the same tube voltage of 80 kV. Radiation doses were measured using a total of 41 theroluminescent dosimeters (TLDs) placed in the human head phantom. Thirty-six TLDs were inside and three were on the surface of the slice of the X-ray beam center, and two were placed on the surface 3 cm caudal assuming the lens position. Average radiation doses of surface, inside, and lens increased in proportion to the increases of tube voltage and tube current. The lowest inside dose was 87.6+/-15.3 mGy, and the lowest surface dose was 162.5+/-6.7 mGy at settings of 80 kV and 50 mA. The highest inside dose was 1,591.5+/-179.7 mGy, and the highest surface dose was 2,264.6+/-123.7 mGy at 140 kV-200 mA. At 80 kV-50 mA, the average radiation dose of lens was the lowest at 5.5+/-0.0 mGy. At 140 kV-200 mA the radiation dose of lens was the highest at 127.2+/-0.6 mGy. In cerebral CT perfusion study, radiation dose can vary considerably. Awareness of the patient's radiation dose is recommended.

  7. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  8. Attenuation correction of PET cardiac data with low-dose average CT in PET/CT

    SciTech Connect

    Pan Tinsu; Mawlawi, Osama; Luo, Dershan; Liu, Hui H.; Chi Paichun, M.; Mar, Martha V.; Gladish, Gregory; Truong, Mylene; Erasmus, Jeremy Jr.; Liao Zhongxing; Macapinlac, H. A.

    2006-10-15

    We proposed a low-dose average computer tomography (ACT) for attenuation correction (AC) of the PET cardiac data in PET/CT. The ACT was obtained from a cine CT scan of over one breath cycle per couch position while the patient was free breathing. We applied this technique on four patients who underwent tumor imaging with {sup 18}F-FDG in PET/CT, whose PET data showed high uptake of {sup 18}F-FDG in the heart and whose CT and PET data had misregistration. All four patients did not have known myocardiac infarction or ischemia. The patients were injected with 555-740 MBq of {sup 18}F-FDG and scanned 1 h after injection. The helical CT (HCT) data were acquired in 16 s for the coverage of 100 cm. The PET acquisition was 3 min per bed of 15 cm. The duration of cine CT acquisition per 2 cm was 5.9 s. We used a fast gantry rotation cycle time of 0.5 s to minimize motion induced reconstruction artifacts in the cine CT images, which were averaged to become the ACT images for AC of the PET data. The radiation dose was about 5 mGy for 5.9 s cine duration. The selection of 5.9 s was based on our analysis of the respiratory signals of 600 patients; 87% of the patients had average breath cycles of less than 6 s and 90% had standard deviations of less than 1 s in the period of breath cycle. In all four patient studies, registrations between the CT and the PET data were improved. An increase of average uptake in the anterior and the lateral walls up to 48% and a decrease of average uptake in the septal and the inferior walls up to 16% with ACT were observed. We also compared ACT and conventional slow scan CT (SSCT) of 4 s duration in one patient study and found ACT was better than SSCT in depicting average respiratory motion and the SSCT images showed motion-induced reconstruction artifacts. In conclusion, low-dose ACT improved registration of the CT and the PET data in the heart region in our study of four patients. ACT was superior than SSCT for depicting average respiration

  9. Estimating thyroid dose in pediatric CT exams from surface dose measurement

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.

    2012-07-01

    The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.

  10. Low dose CT perfusion using k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2016-03-01

    We aim at improving low dose CT perfusion functional parameters maps and CT images quality, preserving quantitative information. In a dynamic CT perfusion dataset, each voxel is measured T times, where T is the number of acquired time points. In this sense, we can think about a voxel as a point in a T-dimensional space, where the coordinates of the voxels would be the values of its time attenuation curve (TAC). Starting from this idea, a k-means algorithm was designed to group voxels in K classes. A modified guided time-intensity profile similarity (gTIPS) filter was implemented and applied only for those voxels belonging to the same class. The approach was tested on a digital brain perfusion phantom as well as on clinical brain and body perfusion datasets, and compared to the original TIPS implementation. The TIPS filter showed the highest CNR improvement, but lowest spatial resolution. gTIPS proved to have the best combination of spatial resolution and CNR improvement for CT images, while k-gTIPS was superior to both gTIPS and TIPS in terms of perfusion maps image quality. We demonstrate k-means clustering analysis can be applied to denoise dynamic CT perfusion data and to improve functional maps. Beside the promising results, this approach has the major benefit of being independent from the perfusion model employed for functional parameters calculation. No similar approaches were found in literature.

  11. SU-E-T-94: Daily Fraction Dose Recalculation Based On Rigid Registration Using Cone Beam CT

    SciTech Connect

    Bosse, C; Tuohy, R; Mavroidis, P; Shi, Z; Crownover, R; Papanikolaou, N; Stathakis, S

    2014-06-01

    Purpose: To calculate the daily fraction dose for a CBCT recalculation based on rigid registration and compare it to the planned CT dose. Methods: For this study, 30 patients that were previously treated (10 SBRT lung, 10 prostate and 10 abdomen) were considered. The daily CBCT images were imported into the Pinnacle treatment planning system from Mosaic. The prescribing physician contoured the regions of interest (ROI) on each CBCT and then dose was computed on each CBCT. Each CBCT dose distribution was then compared against the plan. The evaluation was based on isodose line comparison and Dose Volume Histogram comparison. Results: In the case of lung patients the dose differences between daily dose and plan dose were considered small. The PTV coverage was not compromised and the dose to the organs at risk had negligible differences. Larger differences were observed for prostate and abdomen patients. In these cases, although the PTV doses did not change on a daily basis, the doses to the organs at risk had significant differences. For a prostate patient, the bladder dose at 35% volume was 2714.444 cGy for the CT plan and 2844.747, 2801.556, 3552.37, and 2970.968 cGy for subsequent CBCTs. For the PTV on a SBRT patient, however, the CT plan had a dose at 35% volume of 6917.71 cGy and 6815.385, 6892.5, 6896.25, and 6922.9 cGy for the CBCTs. Conclusion: Daily dose validation is feasible using CBCT and treatment planning system. It provides means to evaluate the course of treatment for the patient undergoing radiation therapy and can assist in the decision of the need of adaptation of the treatment plan.

  12. Fast reconstruction of low dose proton CT by sinogram interpolation

    NASA Astrophysics Data System (ADS)

    Hansen, David C.; Sangild Sørensen, Thomas; Rit, Simon

    2016-08-01

    Proton computed tomography (CT) has been demonstrated as a promising image modality in particle therapy planning. It can reduce errors in particle range calculations and consequently improve dose calculations. Obtaining a high imaging resolution has traditionally required computationally expensive iterative reconstruction techniques to account for the multiple scattering of the protons. Recently, techniques for direct reconstruction have been developed, but these require a higher imaging dose than the iterative methods. No previous work has compared the image quality of the direct and the iterative methods. In this article, we extend the methodology for direct reconstruction to be applicable for low imaging doses and compare the obtained results with three state-of-the-art iterative algorithms. We find that the direct method yields comparable resolution and image quality to the iterative methods, even at 1 mSv dose levels, while yielding a twentyfold speedup in reconstruction time over previously published iterative algorithms.

  13. Effective dose from cone beam CT examinations in dentistry.

    PubMed

    Roberts, J A; Drage, N A; Davies, J; Thomas, D W

    2009-01-01

    Cone beam CT (CBCT) is becoming an increasingly utilized imaging modality for dental examinations in the UK. Previous studies have presented little information on patient dose for the range of fields of view (FOVs) that can be utilized. The purpose of the study was therefore to calculate the effective dose delivered to the patient during a selection of CBCT examinations performed in dentistry. In particular, the i-CAT CBCT scanner was investigated for several imaging protocols commonly used in clinical practice. A Rando phantom containing thermoluminescent dosemeters was scanned. Using both the 1990 and recently approved 2007 International Commission on Radiological Protection recommended tissue weighting factors, effective doses were calculated. The doses (E(1990), E(2007)) were: full FOV head (92.8 microSv, 206.2 microSv); 13 cm scan of the jaws (39.5 microSv, 133.9 microSv); 6 cm high-resolution mandible (47.2 microSv, 188.5 microSv); 6 cm high-resolution maxilla (18.5 microSv, 93.3 microSv); 6 cm standard mandible (23.9 microSv, 96.2 microSv); and 6 cm standard maxilla (9.7 microSv, 58.9 microSv). The doses from CBCT are low compared with conventional CT but significantly higher than conventional dental radiography techniques.

  14. Cone beam CT for dental and maxillofacial imaging: dose matters.

    PubMed

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications.

  15. Automated lung volumetry from routine thoracic CT scans: how reliable is the result?

    PubMed

    Haas, Matthias; Hamm, Bernd; Niehues, Stefan M

    2014-05-01

    Today, lung volumes can be easily calculated from chest computed tomography (CT) scans. Modern postprocessing workstations allow automated volume measurement of data sets acquired. However, there are challenges in the use of lung volume as an indicator of pulmonary disease when it is obtained from routine CT. Intra-individual variation and methodologic aspects have to be considered. Our goal was to assess the reliability of volumetric measurements in routine CT lung scans. Forty adult cancer patients whose lungs were unaffected by the disease underwent routine chest CT scans in 3-month intervals, resulting in a total number of 302 chest CT scans. Lung volume was calculated by automatic volumetry software. On average of 7.2 CT scans were successfully evaluable per patient (range 2-15). Intra-individual changes were assessed. In the set of patients investigated, lung volume was approximately normally distributed, with a mean of 5283 cm(3) (standard deviation = 947 cm(3), skewness = -0.34, and curtosis = 0.16). Between different scans in one and the same patient the median intra-individual standard deviation in lung volume was 853 cm(3) (16% of the mean lung volume). Automatic lung segmentation of routine chest CT scans allows a technically stable estimation of lung volume. However, substantial intra-individual variations have to be considered. A median intra-individual deviation of 16% in lung volume between different routine scans was found. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  16. CT dose minimization using personalized protocol optimization and aggressive bowtie

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yin, Zhye; Jin, Yannan; Wu, Mingye; Yao, Yangyang; Tao, Kun; Kalra, Mannudeep K.; De Man, Bruno

    2016-03-01

    In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.

  17. Patient specific tube current modulation for CT dose reduction

    NASA Astrophysics Data System (ADS)

    Jin, Yannan; Yin, Zhye; Yao, Yangyang; Wang, Hui; Wu, Mingye; Kalra, Mannudeep; De Man, Bruno

    2015-03-01

    Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.

  18. Measured Head CT/CTA Skin Dose and Intensive Care Unit Patient Cumulative Exposure.

    PubMed

    Nawfel, R D; Young, G S

    2017-03-01

    Estimates of cumulative CT/CTA radiation dose based on volumetric CT dose index have raised concern that neurological intensive care unit patient exposures may reach thresholds for deterministic skin injury. Because the accuracy of volumetric CT dose index for this purpose in unknown, we set out to directly measure head CT and CTA peak skin dose, assess the relationship of volumetric CT dose index to measured peak skin dose, and determine whether multiple CT/CTA exposures in typical patients in the neurological intensive care unit produce cumulative doses approaching or exceeding single-dose deterministic thresholds for skin injury. In a prospective study from 2011-2013, nanoDot optical stimulated luminescence dosimeters were used to measure head CT/CTA peak skin dose in 52 patients (28 female, 24 male; mean age, 63 years) divided equally between 2 CT scanners. Volumetric CT dose index and dose-length product were recorded for each examination. Peak skin dose was also measured on an acrylic skull phantom in each scanner. A 2-tailed, unpaired t test was used to compare mean patient skin doses between the 2 scanners. The measured peak skin doses were then used to calculate cumulative peak skin dose in 4 typical patients in intensive care units who received multiple CT/CTA scans. Head CT/CTA peak skin dose agreed between scanners in patients and phantoms: (scanner 1 CT/CTA: patients, 39.2 ± 3.7 mGy and 98.9 ± 5.3 mGy, respectively, versus phantom, 40.0 mGy and 105.4 mGy, respectively; scanner 2 CT/CTA: patients, 42.9 ± 9.4 mGy and 98.8 ± 7.4 mGy, respectively, versus phantom, 37.6 mGy and 95.2 mGy, respectively). Volumetric CT dose index overestimated peak skin dose by a factor of 1.4-1.9 depending on examination and CT scanner. Cumulative doses in 4 patients in the intensive care unit estimated from measured CT/CTA peak skin dose ranged from 1.9-4.5 Gy. Directly measured radiation skin doses from head CT/CTA patient examinations are substantially lower than

  19. Early identification of small airways disease on lung cancer screening CT: comparison of current air trapping measures.

    PubMed

    Mets, Onno M; Zanen, Pieter; Lammers, Jan-Willem J; Isgum, Ivana; Gietema, Hester A; van Ginneken, Bram; Prokop, Mathias; de Jong, Pim A

    2012-12-01

    Lung cancer screening CT scans might provide valuable information about air trapping as an early indicator of smoking-related lung disease. We studied which of the currently suggested measures is most suitable for detecting functionally relevant air trapping on low-dose computed tomography (CT) in a population of subjects with early-stage disease. This study was ethically approved and informed consent was obtained. Three quantitative CT air trapping measures were compared against a functional reference standard in 427 male lung cancer screening participants. This reference standard for air trapping was derived from the residual volume over total lung capacity ratio (RV/TLC) beyond the 95th percentile of predicted. The following CT air trapping measures were compared: expiratory to inspiratory relative volume change of voxels with attenuation values between -860 and -950 Hounsfield Units (RVC(-860 to -950)), expiratory to inspiratory ratio of mean lung density (E/I-ratio(MLD)) and percentage of voxels below -856 HU in expiration (EXP(-856)). Receiver operating characteristic (ROC) analysis was performed and area under the ROC curve compared. Functionally relevant air trapping was present in 38 (8.9 %) participants. E/I-ratio(MLD) showed the largest area under the curve (0.85, 95 % CI 0.813-0.883), which was significantly larger than RVC(-860 to -950) (0.703, 0.657-0.746; p < 0.001) and EXP(-856) (0.798, 0.757-0.835; p = 0.002). At the optimum for sensitivity and specificity, E/I-ratio(MLD) yielded an accuracy of 81.5 %. The expiratory to inspiratory ratio of mean lung density (E/I-ratio(MLD)) is most suitable for detecting air trapping on low-dose screening CT and performs significantly better than other suggested quantitative measures.

  20. Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations.

    PubMed

    Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela

    2013-08-01

    Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.

  1. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT

    SciTech Connect

    Manduca, Armando; Yu Lifeng; Trzasko, Joshua D.; Khaylova, Natalia; Kofler, James M.; McCollough, Cynthia M.; Fletcher, Joel G.

    2009-11-15

    Purpose: To investigate a novel locally adaptive projection space denoising algorithm for low-dose CT data. Methods: The denoising algorithm is based on bilateral filtering, which smooths values using a weighted average in a local neighborhood, with weights determined according to both spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus maintaining high spatial resolution. A CT noise model that takes into account the bowtie filter and patient-specific automatic exposure control effects is also incorporated into the denoising process. The authors evaluated the noise-resolution properties of bilateral filtering incorporating such a CT noise model in phantom studies and preliminary patient studies with contrast-enhanced abdominal CT exams. Results: On a thin wire phantom, the noise-resolution properties were significantly improved with the denoising algorithm compared to commercial reconstruction kernels. The noise-resolution properties on low-dose (40 mA s) data after denoising approximated those of conventional reconstructions at twice the dose level. A separate contrast plate phantom showed improved depiction of low-contrast plates with the denoising algorithm over conventional reconstructions when noise levels were matched. Similar improvement in noise-resolution properties was found on CT colonography data and on five abdominal low-energy (80 kV) CT exams. In each abdominal case, a board-certified subspecialized radiologist rated the denoised 80 kV images markedly superior in image quality compared to the commercially available reconstructions, and denoising improved the image quality to the point where the 80 kV images alone were considered to be of diagnostic quality. Conclusions: The results demonstrate that bilateral filtering incorporating a CT noise model can achieve a significantly better noise-resolution trade

  2. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT.

    PubMed

    Manduca, Armando; Yu, Lifeng; Trzasko, Joshua D; Khaylova, Natalia; Kofler, James M; McCollough, Cynthia M; Fletcher, Joel G

    2009-11-01

    To investigate a novel locally adaptive projection space denoising algorithm for low-dose CT data. The denoising algorithm is based on bilateral filtering, which smooths values using a weighted average in a local neighborhood, with weights determined according to both spatial proximity and intensity similarity between the center pixel and the neighboring pixels. This filtering is locally adaptive and can preserve important edge information in the sinogram, thus maintaining high spatial resolution. A CT noise model that takes into account the bowtie filter and patient-specific automatic exposure control effects is also incorporated into the denoising process. The authors evaluated the noise-resolution properties of bilateral filtering incorporating such a CT noise model in phantom studies and preliminary patient studies with contrast-enhanced abdominal CT exams. On a thin wire phantom, the noise-resolution properties were significantly improved with the denoising algorithm compared to commercial reconstruction kernels. The noise-resolution properties on low-dose (40 mA s) data after denoising approximated those of conventional reconstructions at twice the dose level. A separate contrast plate phantom showed improved depiction of low-contrast plates with the denoising algorithm over conventional reconstructions when noise levels were matched. Similar improvement in noise-resolution properties was found on CT colonography data and on five abdominal low-energy (80 kV) CT exams. In each abdominal case, a board-certified subspecialized radiologist rated the denoised 80 kV images markedly superior in image quality compared to the commercially available reconstructions, and denoising improved the image quality to the point where the 80 kV images alone were considered to be of diagnostic quality. The results demonstrate that bilateral filtering incorporating a CT noise model can achieve a significantly better noise-resolution trade-off than a series of commercial

  3. Lateral topography for reducing effective dose in low-dose chest CT.

    PubMed

    Bang, Dong-Ho; Lim, Daekeon; Hwang, Wi-Sub; Park, Seong-Hoon; Jeong, Ok-man; Kang, Kyung Wook; Kang, Hohyung

    2013-06-01

    The purposes of this study were to assess radiation exposure during low-dose chest CT by using lateral topography and to compare the lateral topographic findings with findings obtained with anteroposterior topography alone and anteroposterior and lateral topography combined. From November 2011 to February 2012, 210 male subjects were enrolled in the study. Age, weight, and height of the men were recorded. All subjects were placed into one of three subgroups based on the type of topographic image obtained: anteroposterior topography, lateral topography, and both anteroposterior and lateral topography. Imaging was performed with a 128-MDCT scanner. CT, except for topography, was the same for all subjects. A radiologist analyzed each image, recorded scan length, checked for any insufficiencies in the FOV, and calculated the effective radiation dose. One-way analysis of variance and multiple comparisons were used to compare the effective radiation exposure and scan length between groups. The mean scan length in the anteroposterior topography group was significantly greater than that of the lateral topography group and the combined anteroposterior and lateral topography group (p < 0.001). The mean effective radiation dose for the lateral topography group (0.735 ± 0.033 mSv) was significantly lower than that for the anteroposterior topography group (0.763 ± 0.038 mSv) and the combined anteroposterior and lateral topography group (0.773 ± 0.038) (p < 0.001). Lateral topographic low-dose CT was associated with a lower effective radiation dose and scan length than either anteroposterior topographic low-dose chest CT or low-dose chest CT with both anteroposterior and lateral topograms.

  4. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  5. IMRT treatment plans and functional planning with functional lung imaging from 4D-CT for thoracic cancer patients

    PubMed Central

    2013-01-01

    Background and purpose Currently, the inhomogeneity of the pulmonary function is not considered when treatment plans are generated in thoracic cancer radiotherapy. This study evaluates the dose of treatment plans on highly-functional volumes and performs functional treatment planning by incorporation of ventilation data from 4D-CT. Materials and methods Eleven patients were included in this retrospective study. Ventilation was calculated using 4D-CT. Two treatment plans were generated for each case, the first one without the incorporation of the ventilation and the second with it. The dose of the first plans was overlapped with the ventilation and analyzed. Highly-functional regions were avoided in the second treatment plans. Results For small targets in the first plans (PTV < 400 cc, 6 cases), all V5, V20 and the mean lung dose values for the highly-functional regions were lower than that of the total lung. For large targets, two out of five cases had higher V5 and V20 values for the highly-functional regions. All the second plans were within constraints. Conclusion Radiation treatments affect functional lung more seriously in large tumor cases. With compromise of dose to other critical organs, functional treatment planning to reduce dose in highly-functional lung volumes can be achieved PMID:23281734

  6. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    SciTech Connect

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  7. The relative accuracy of 4D dose accumulation for lung radiotherapy using rigid dose projection versus dose recalculation on every breathing phase.

    PubMed

    Valdes, Gilmer; Lee, Chul; Tenn, Stephen; Lee, Percy; Robinson, Clifford; Iwamoto, Keisuke; Low, Daniel; Lamb, James M

    2017-03-01

    To investigate the accuracy of 4D dose accumulation using projection of dose calculated on the end-exhalation, mid-ventilation, or average intensity breathing phase CT scan, versus dose accumulation performed using full Monte Carlo dose recalculation on every breathing phase. Radiotherapy plans for 10 patients with stage I-II lung cancer were analyzed. All patients had respiratory-correlated computed tomography (4D-CT) performed as part of an IRB-approved research protocol. Stereotactic body radiotherapy (SBRT) plans were optimized using the dose calculated by a commercially available Monte Carlo algorithm on the end-exhalation 4D-CT phase. 4D dose accumulations using deformable registration were performed with a commercially available tool that projected the planned dose onto every breathing phase without recalculation, as well as with a Monte Carlo recalculation of the dose on all breathing phases. The 3D planned dose (3D-EX), the 3D dose calculated on the average intensity image (3D-AVE), and the 4D accumulations of the dose calculated on the end-exhalation phase CT (4D-PR-EX), the mid-ventilation phase CT (4D-PR-MID), and the average intensity image (4D-PR-AVE), respectively, were compared against the accumulation of the Monte Carlo dose recalculated on every phase. Plan evaluation metrics relating to target volumes and critical structures relevant for lung SBRT were analyzed. Plan evaluation metrics tabulated using 4D-PR-EX, 4D-PR-MID, and 4D-PR-AVE differed from those tabulated using Monte Carlo recalculation on every phase by an average of 0.14 ± 0.70 Gy, -0.11 ± 0.51 Gy, and 0.00 ± 0.62 Gy, respectively. Plan evaluation metrics calculated from 3D-EX and 3D-AVE were acceptably accurate for target volumes and most critical structures, however, deviations of between 8 and 13 Gy were observed for the proximal bronchial trees of three patients. The accuracy of 4D dose accumulated by projecting the dose calculated on the end-exhale, mid

  8. Projected Clinical, Resource Use, and Fiscal Impacts of Implementing Low-Dose Computed Tomography Lung Cancer Screening in Medicare.

    PubMed

    Roth, Joshua A; Sullivan, Sean D; Goulart, Bernardo H L; Ravelo, Arliene; Sanderson, Joanna C; Ramsey, Scott D

    2015-07-01

    The Centers for Medicare and Medicaid Services (CMS) recently issued a national coverage determination that provides reimbursement for low-dose computed tomography (CT) lung cancer screening for enrollees age 55 to 77 years with ≥ 30-pack-year smoking history who currently smoke or quit in the last 15 years. The clinical, resource use, and fiscal impacts of this change in screening coverage policy remain uncertain. We developed a simulation model to forecast the 5-year health outcome impacts of the CMS low-dose CT screening policy in Medicare compared with no screening. The model used data from the National Lung Screening Trial, CMS enrollment statistics and reimbursement schedules, and peer-reviewed literature. Outcomes included counts of screening examinations, patient cases of lung cancer detected, stage distribution, and total and per-enrollee per-month fiscal impact. Over 5 years, we project that low-dose CT screening will result in 10.7 million more low-dose CT scans, 52,000 more lung cancers detected, and increased overall expenditure of $6.8 billion ($2.22 per Medicare enrollee per month). The most fiscally impactful factors were the average cost-per-screening episode, proportion of enrollees eligible for screening, and cost of treating stage I lung cancer. Low-dose CT screening is expected to increase lung cancer diagnoses, shift stage at diagnosis toward earlier stages, and substantially increase Medicare expenditures over a 5-year time horizon. These projections can inform planning efforts by Medicare administrators, contracted health care providers, and other stakeholders. Copyright © 2015 by American Society of Clinical Oncology.

  9. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    SciTech Connect

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-02-15

    metrics only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality.

  10. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    PubMed Central

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    only increased slightly for radiographic modalities and for chest tomosynthesis. Effective and organ doses normalized to mAs all illustrated an exponential decrease with increasing patient size. As a surface organ, breast doses had less correlation with body size than that of lungs or liver. Conclusions: Patient body size has a much greater impact on radiation dose of chest CT examinations than chest radiography and tomosynthesis. The size of a patient should be considered when choosing the best thoracic imaging modality. PMID:24506654

  11. Evaluation of image and dose according to I-dose technique when performing a CT scan

    NASA Astrophysics Data System (ADS)

    Ryu, S. W.; Lee, H. K.; Cho, J. H.

    2015-06-01

    In this study, we applied the iterative reconstruction technique to improve image quality (I-dose) and evaluated its usability by analyzing the quality of the resulting image and evaluating the dose. To perform the scans, we fixed the uniform module (CTP 486's section) 4 on the table of the computed tomography (CT) device with the American association of physicists in medicine (AAPM) phantom and located it in the center where the X-rays could be generated by using a razor beam. Then, we set up the conditions of 120 kilovoltage peak (kVp), 150 milliampere second (mAs), collimation 4 × 0.625 mm, and a standard YA (Y-Sharp) filter. Next, we formed two groups: Group A in which I-dose was not applied and Group B in which I-dose was applied. According to the rod in the middle, after fixing the location of (A) at 12 o'clock, (B) at 3 o'clock, (C) at 6 o'clock, and (D) at 9 o'clock to evaluate the image quality, the CT number was measured and the noise level was analyzed. Using the AAPM phantom with doses of 50, 100, 200, 250, and 300 mAs by 80, 100, and 120 kVp, a dose analysis was performed. After scanning, the CT numbers and noise level were measured 20 times as a function of the I-dose levels (1-7). After applying I-dose at 6, 9, 12, and 3 o'clock, when a higher I-dose was applied, a lower noise level was measured. As a result, it was found that when applying I-dose to the AAPM phantom, the higher the level of I-dose, the lower the level of noise. When applying I-dose, the dose can be reduced by 60%. When I-dose is applied when taking CT scans in a clinical study, it is possible to lower the dose and lower the noise level.

  12. SU-E-J-149: Establishing the Relationship Between Pre-Treatment Lung Ventilation, Dose, and Toxicity Outcome

    SciTech Connect

    Mistry, N; D'Souza, W; Sornsen de Koste, J; Senan, S

    2014-06-01

    Purpose: Recently, there has been an interest in incorporating functional information in treatment planning especially in thoracic tumors. The rationale is that healthy lung regions need to be spared from radiation if possible to help achieve better control on toxicity. However, it is still unclear whether high functioning regions need to be spared or have more capacity to deal with the excessive radiation as compared to the compromised regions of the lung. Our goal with this work is to establish the tools by which we can establish a relationship between pre-treatment lung function, dose, and radiographic outcomes of lung toxicity. Methods: Treatment planning was performed using a single phase of a 4DCT scan, and follow-up anatomical CT scans were performed every 3 months for most patients. In this study, we developed the pipeline of tools needed to analyze such a large dataset, while trying to establish a relationship between function, dose, and outcome. Pre-treatment lung function was evaluated using a recently published technique that evaluates Fractional Regional Ventilation (FRV). All images including the FRV map and the individual follow-up anatomical CT images were all spatially matched to the planning CT using a diffusion based Demons image registration algorithm. Change in HU value was used as a metric to capture the effects of lung toxicity. To validate the findings, a radiologist evaluated the follow-up anatomical CT images and scored lung toxicity. Results: Initial experience in 1 patient shows a relationship between the pre-treatment lung function, dose and toxicity outcome. The results are also correlated to the findings by the radiologist who was blinded to the analysis or dose. Conclusion: The pipeline we have established to study this enables future studies in large retrospective studies. However, the tools are dependent on the fidelity of 4DCT reconstruction for accurate evaluation of regional ventilation. Patent Pending for the technique

  13. CT image construction of a totally deflated lung using deformable model extrapolation

    SciTech Connect

    Sadeghi Naini, Ali; Pierce, Greg; Lee, Ting-Yim; and others

    2011-02-15

    Purpose: A novel technique is proposed to construct CT image of a totally deflated lung from a free-breathing 4D-CT image sequence acquired preoperatively. Such a constructed CT image is very useful in performing tumor ablative procedures such as lung brachytherapy. Tumor ablative procedures are frequently performed while the lung is totally deflated. Deflating the lung during such procedures renders preoperative images ineffective for targeting the tumor. Furthermore, the problem cannot be solved using intraoperative ultrasound (U.S.) images because U.S. images are very sensitive to small residual amount of air remaining in the deflated lung. One possible solution to address these issues is to register high quality preoperative CT images of the deflated lung with their corresponding low quality intraoperative U.S. images. However, given that such preoperative images correspond to an inflated lung, such CT images need to be processed to construct CT images pertaining to the lung's deflated state. Methods: To obtain the CT images of deflated lung, we present a novel image construction technique using extrapolated deformable registration to predict the deformation the lung undergoes during full deflation. The proposed construction technique involves estimating the lung's air volume in each preoperative image automatically in order to track the respiration phase of each 4D-CT image throughout a respiratory cycle; i.e., the technique does not need any external marker to form a respiratory signal in the process of curve fitting and extrapolation. The extrapolated deformation field is then applied on a preoperative reference image in order to construct the totally deflated lung's CT image. The technique was evaluated experimentally using ex vivo porcine lung. Results: The ex vivo lung experiments led to very encouraging results. In comparison with the CT image of the deflated lung we acquired for the purpose of validation, the constructed CT image was very similar. The

  14. Nintedanib reduces radiation-induced microscopic lung fibrosis but this cannot be monitored by CT imaging: A preclinical study with a high precision image-guided irradiator.

    PubMed

    De Ruysscher, Dirk; Granton, Patrick Vincent; Lieuwes, Natasja Gaby; van Hoof, Stefan; Wollin, Lutz; Weynand, Birgit; Dingemans, Anne-Marie; Verhaegen, Frank; Dubois, Ludwig

    2017-09-01

    Nintedanib has anti-fibrotic and anti-inflammatory activity and is approved for the treatment of idiopathic pulmonary fibrosis. The aim of this study was to noninvasively assess the efficacy of nintedanib in a mouse model of partial lung irradiation to prevent radiation-induced lung damage (RILD). 266 C57BL/6 adult male mice were irradiated with a single radiation dose (0, 4, 8, 12, 16 or 20Gy) using parallel-opposed fields targeting the upper right lung using a precision image-guided small animal irradiator sparing heart and spine based on micro-CT images. One week post irradiation, mice were randomized across nintedanib daily oral gavage treatment (0, 30 or 60mg/kg). CT density analysis of the lungs was performed on monthly acquired micro-CT images. After 39weeks, lungs were processed to evaluate the fibrotic phenotype. Although the CT density increase correlated with the radiation dose, nintedanib did not influence this relationship. Immunohistochemical analysis confirmed the ability of nintedanib to reduce the microscopic fibrotic phenotype, in particular interstitial edema, interstitial and perivascular fibrosis and inflammation, and vasculitis. Nintedanib reduces radiation-induced lung fibrosis after partial lung irradiation without adverse effects, however, noninvasive CT imaging measuring electron density cannot be applied for monitoring its effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Radiation dose in 320-slice multidetector cardiac CT: a single center experience of evolving dose minimization.

    PubMed

    Tung, Matthew K; Cameron, James D; Casan, Joshua M; Crossett, Marcus; Troupis, John M; Meredith, Ian T; Seneviratne, Sujith K

    2013-01-01

    Minimization of radiation exposure remains an important subject that occurs in parallel with advances in scanner technology. We report our experience of evolving radiation dose and its determinants after the introduction of 320-multidetector row cardiac CT within a single tertiary cardiology referral service. Four cohorts of consecutive patients (total 525 scans), who underwent cardiac CT at defined time points as early as 2008, are described. These include a cohort just after scanner installation, after 2 upgrades of the operating system, and after introduction of an adaptive iterative image reconstruction algorithm. The proportions of nondiagnostic coronary artery segments and studies with nondiagnostic segments were compared between cohorts. Significant reductions were observed in median radiation doses in all cohorts compared with the initial cohort (P < .001). Median dose-length product fell from 944 mGy · cm (interquartile range [IQR], 567.3-1426.5 mGy · cm) to 156 mGy · cm (IQR, 99.2-265.0 mGy · cm). Although the proportion of prospectively triggered scans has increased, reductions in radiation dose have occurred independently of distribution of scan formats. In multiple regression that combined all groups, determinants of dose-length product were tube output, the number of cardiac cycles scanned, tube voltage, scan length, scan format, body mass index, phase width, and heart rate (adjusted R(2) = 0.85, P < .001). The proportion of nondiagnostic coronary artery segments was slightly increased in group 4 (2.9%; P < .01). While maintaining diagnostic quality in 320-multidetector row cardiac CT, the radiation dose has decreased substantially because of a combination of dose-reduction protocols and technical improvements. Continued minimization of radiation dose will increase the potential for cardiac CT to expand as a cardiac imaging modality. Copyright © 2013 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  16. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    SciTech Connect

    Eslick, E; Kipritidis, J; Keall, P; Bailey, D; Bailey, E

    2014-06-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images using deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.

  17. Non-local means resolution enhancement of lung 4D-CT data.

    PubMed

    Zhang, Yu; Wu, Guorong; Yap, Pew-Thian; Feng, Qianjin; Lian, Jun; Chen, Wufan; Shen, Dinggang

    2012-01-01

    Image resolution in 4D-CT is a crucial bottleneck that needs to be overcome for improved dose planning in radiotherapy for lung cancer. In this paper, we propose a novel patch-based algorithm to enhance the image quality of 4D-CT data. Our premise is that anatomical information missing in one phase can be recovered from complementary information embedded in other phases. We employ a patch-based mechanism to propagate information across phases for reconstruction of intermediate slices in the axial direction, where resolution is normally the lowest. Specifically, structurally-matching and spatially-nearby patches are combined for reconstruction of each patch. For greater sensitivity to anatomical nuances, we further employ a quad-tree technique to adaptively partition each slice of the image in each phase for more fine-grained refinement. Our evaluation based on a public 4D-CT lung data indicates that our algorithm gives very promising results with significantly enhanced image structures.

  18. Radiation injury of the lung after stereotactic body radiation therapy (SBRT) for lung cancer: a timeline and pattern of CT changes.

    PubMed

    Linda, Anna; Trovo, Marco; Bradley, Jeffrey D

    2011-07-01

    Stereotactic body radiation therapy (SBRT) is a new radiotherapy treatment method that has been applied to the treatment of Stage I lung cancers in medically inoperable patients, with excellent clinical results. SBRT allows the delivery of a very high radiation dose to the target volume, while minimizing the dose to the adjacent normal tissues. As a consequence, CT findings after SBRT have different appearance, geographic extent and progression timeline compared to those following conventional radiation therapy for lung cancer. In particular, SBRT-induced changes are limited to the "shell" of normal tissue outside the tumor and have a complex shape. When SBRT-induced CT changes have a consolidation/mass-like appearance, the differentiation from tumor recurrence can be very difficult. An understanding of SBRT technique as it relates to the development of SBRT-induced lung injury and familiarity with the full spectrum of CT manifestations are important to facilitate diagnosis and management of lung cancer patients treated with this newly emerging radiotherapy method.

  19. Algorithm-enabled Low-dose Micro-CT Imaging

    PubMed Central

    Han, Xiao; Bian, Junguo; Eaker, Diane R.; Kline, Timothy L.; Sidky, Emil Y.; Ritman, Erik L.; Pan, Xiaochuan

    2013-01-01

    Micro-CT is an important tool in biomedical research and preclinical applications that can provide visual inspection of and quantitative information about imaged small animals and biological samples such as vasculature specimens. Currently, micro-CT imaging uses projection data acquired at a large number (300 – 1000) of views, which can limit system throughput and potentially degrade image quality due to radiation-induced deformation or damage to the small animal or specimen. In this work, we have investigated low-dose micro-CT and its application to specimen imaging from substantially reduced projection data by using a recently developed algorithm, referred to as the adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) algorithm, which reconstructs an image through minimizing the image total-variation and enforcing data constraints. To validate and evaluate the performance of the ASD-POCS algorithm, we carried out quantitative evaluation studies in a number of tasks of practical interest in imaging of specimens of real animal organs. The results show that the ASD-POCS algorithm can yield images with quality comparable to that obtained with existing algorithms, while using one-sixth to one quarter of the 361-view data currently used in typical micro-CT specimen imaging. PMID:20977983

  20. 3D Dose Verification Using Tomotherapy CT Detector Array

    SciTech Connect

    Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul

    2012-02-01

    Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

  1. A Survey of Pediatric CT Protocols and Radiation Doses in South Korean Hospitals to Optimize the Radiation Dose for Pediatric CT Scanning.

    PubMed

    Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung

    2015-12-01

    Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2-5 years), 23.5 to 44.1 (6-10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2-5 years), 3.9 to 9.3 (6-10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2-5 years), 5.7 to 12.4 (6-10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in

  2. Evaluation of the systematic error in using 3D dose calculation in scanning beam proton therapy for lung cancer.

    PubMed

    Li, Heng; Liu, Wei; Park, Peter; Matney, Jason; Liao, Zhongxing; Chang, Joe; Zhang, Xiaodong; Li, Yupeng; Zhu, Ronald X

    2014-09-08

    The objective of this study was to evaluate and understand the systematic error between the planned three-dimensional (3D) dose and the delivered dose to patient in scanning beam proton therapy for lung tumors. Single-field and multifield optimized scanning beam proton therapy plans were generated for ten patients with stage II-III lung cancer with a mix of tumor motion and size. 3D doses in CT datasets for different respiratory phases and the time-weighted average CT, as well as the four-dimensional (4D) doses were computed for both plans. The 3D and 4D dose differences for the targets and different organs at risk were compared using dose-volume histogram (DVH) and voxel-based techniques, and correlated with the extent of tumor motion. The gross tumor volume (GTV) dose was maintained in all 3D and 4D doses, using the internal GTV override technique. The DVH and voxel-based techniques are highly correlated. The mean dose error and the standard deviation of dose error for all target volumes were both less than 1.5% for all but one patient. However, the point dose difference between the 3D and 4D doses was up to 6% for the GTV and greater than 10% for the clinical and planning target volumes. Changes in the 4D and 3D doses were not correlated with tumor motion. The planning technique (single-field or multifield optimized) did not affect the observed systematic error. In conclusion, the dose error in 3D dose calculation varies from patient to patient and does not correlate with lung tumor motion. Therefore, patient-specific evaluation of the 4D dose is important for scanning beam proton therapy for lung tumors.

  3. A Segmentation Framework of Pulmonary Nodules in Lung CT Images.

    PubMed

    Mukhopadhyay, Sudipta

    2016-02-01

    Accurate segmentation of pulmonary nodules is a prerequisite for acceptable performance of computer-aided detection (CAD) system designed for diagnosis of lung cancer from lung CT images. Accurate segmentation helps to improve the quality of machine level features which could improve the performance of the CAD system. The well-circumscribed solid nodules can be segmented using thresholding, but segmentation becomes difficult for part-solid, non-solid, and solid nodules attached with pleura or vessels. We proposed a segmentation framework for all types of pulmonary nodules based on internal texture (solid/part-solid and non-solid) and external attachment (juxta-pleural and juxta-vascular). In the proposed framework, first pulmonary nodules are categorized into solid/part-solid and non-solid category by analyzing intensity distribution in the core of the nodule. Two separate segmentation methods are developed for solid/part-solid and non-solid nodules, respectively. After determining the category of nodule, the particular algorithm is set to remove attached pleural surface and vessels from the nodule body. The result of segmentation is evaluated in terms of four contour-based metrics and six region-based metrics for 891 pulmonary nodules from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) public database. The experimental result shows that the proposed segmentation framework is reliable for segmentation of various types of pulmonary nodules with improved accuracy compared to existing segmentation methods.

  4. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT.

    PubMed

    McCollough, Cynthia H; Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I

    2012-08-01

    This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation.

  5. Achieving Routine Submillisievert CT Scanning: Report from the Summit on Management of Radiation Dose in CT

    PubMed Central

    Chen, Guang Hong; Kalender, Willi; Leng, Shuai; Samei, Ehsan; Taguchi, Katsuyuki; Wang, Ge; Yu, Lifeng; Pettigrew, Roderic I.

    2012-01-01

    This Special Report presents the consensus of the Summit on Management of Radiation Dose in Computed Tomography (CT) (held in February 2011), which brought together participants from academia, clinical practice, industry, and regulatory and funding agencies to identify the steps required to reduce the effective dose from routine CT examinations to less than 1 mSv. The most promising technologies and methods discussed at the summit include innovations and developments in x-ray sources; detectors; and image reconstruction, noise reduction, and postprocessing algorithms. Access to raw projection data and standard data sets for algorithm validation and optimization is a clear need, as is the need for new, clinically relevant metrics of image quality and diagnostic performance. Current commercially available techniques such as automatic exposure control, optimization of tube potential, beam-shaping filters, and dynamic z-axis collimators are important, and education to successfully implement these methods routinely is critically needed. Other methods that are just becoming widely available, such as iterative reconstruction, noise reduction, and postprocessing algorithms, will also have an important role. Together, these existing techniques can reduce dose by a factor of two to four. Technical advances that show considerable promise for additional dose reduction but are several years or more from commercial availability include compressed sensing, volume of interest and interior tomography techniques, and photon-counting detectors. This report offers a strategic roadmap for the CT user and research and manufacturer communities toward routinely achieving effective doses of less than 1 mSv, which is well below the average annual dose from naturally occurring sources of radiation. © RSNA, 2012 PMID:22692035

  6. Asian consortium on radiation dose of pediatric cardiac CT (ASCI-REDCARD).

    PubMed

    Hui, Peter K T; Goo, Hyun Woo; Du, Jing; Ip, Janice J K; Kanzaki, Suzu; Kim, Young Jin; Kritsaneepaiboon, Supika; Lilyasari, Oktavia; Siripornpitak, Suvipaporn

    2017-07-01

    With incremental utilization of pediatric cardiac CT in congenital heart disease, it is imperative to define its current radiation dose levels in clinical practice in order to help imagers optimize CT protocols, particularly in Asia and other developing countries where CT physicists are not readily available. To evaluate current radiation dose levels and influencing factors in cardiac CT in children with congenital heart disease in Asia by conducting a retrospective multi-center, multi-vendor study. We included 1,043 pediatric cardiac CT examinations performed in 8 centers between January 2014 and December 2014 to evaluate congenital heart disease. In five weight groups, we calculated radiation dose metrics including volume CT dose index, size-specific dose estimate, dose-length product and effective dose. Age at CT exam, gender, tube voltage, scan mode, CT indication and image reconstruction algorithm were analyzed to learn whether they influenced CT radiation dose. Volume CT dose index, size-specific dose estimate, dose-length product and effective dose of pediatric cardiac CT showed variations in the range of 4.3-23.8 mGy, 4.9-17.6 mGy, 55.8-501.3 mGy∙cm and 1.5-3.2 mSv, respectively, within five weight groups. Gender, tube voltage, scan mode and cardiac function assessment significantly influenced CT radiation dose. This multi-center, multi-vendor study demonstrated variations in radiation dose metrics of pediatric cardiac CT reflecting current practice in Asia. Gender, tube voltage, scan mode and cardiac function assessment should be considered as essential radiation dose-influencing factors in developing optimal pediatric cardiac CT protocols.

  7. Concepts for dose determination in flat-detector CT

    NASA Astrophysics Data System (ADS)

    Kyriakou, Yiannis; Deak, Paul; Langner, Oliver; Kalender, Willi A.

    2008-07-01

    Flat-detector computed tomography (FD-CT) scanners provide large irradiation fields of typically 200 mm in the cranio-caudal direction. In consequence, dose assessment according to the current definition of the computed tomography dose index CTDIL=100 mm, where L is the integration length, would demand larger ionization chambers and phantoms which do not appear practical. We investigated the usefulness of the CTDI concept and practical dosimetry approaches for FD-CT by measurements and Monte Carlo (MC) simulations. An MC simulation tool (ImpactMC, VAMP GmbH, Erlangen, Germany) was used to assess the dose characteristics and was calibrated with measurements of air kerma. For validation purposes measurements were performed on an Axiom Artis C-arm system (Siemens Medical Solutions, Forchheim, Germany) equipped with a flat detector of 40 cm × 30 cm. The dose was assessed for 70 kV and 125 kV in cylindrical PMMA phantoms of 160 mm and 320 mm diameter with a varying phantom length from 150 to 900 mm. MC simulation results were compared to the values obtained with a calibrated ionization chambers of 100 mm and 250 mm length and to thermoluminesence (TLD) dose profiles. The MCs simulations were used to calculate the efficiency of the CTDIL determination with respect to the desired CTDI∞. Both the MC simulation results and the dose distributions obtained by MC simulation were in very good agreement with the CTDI measurements and with the reference TLD profiles, respectively, to within 5%. Standard CTDI phantoms which have a z-extent of 150 mm underestimate the dose at the center by up to 55%, whereas a z-extent of >=600 mm appears to be sufficient for FD-CT; the baseline value of the respective profile was within 1% to the reference baseline. As expected, the measurements with ionization chambers of 100 mm and 250 mm offer a limited accuracy, whereas an increased integration length of >=600 mm appeared to be necessary to approximate CTDI∞ in within 1%. MC simulations

  8. Radiation Dose-Volume Effects in the Lung

    SciTech Connect

    Marks, Lawrence B.; Bentzen, Soren M. D.Sc.; Deasy, Joseph O.; Kong, F.-M.; Bradley, Jeffrey D.; Vogelius, Ivan S.; El Naqa, Issam; Hubbs, Jessica L. M.S.; Lebesque, Joos V.; Timmerman, Robert D.; Martel, Mary K.; Jackson, Andrew

    2010-03-01

    The three-dimensional dose, volume, and outcome data for lung are reviewed in detail. The rate of symptomatic pneumonitis is related to many dosimetric parameters, and there are no evident threshold 'tolerance dose-volume' levels. There are strong volume and fractionation effects.

  9. Low-dose computed tomography screening for lung cancer: how strong is the evidence?

    PubMed

    Woolf, Steven H; Harris, Russell P; Campos-Outcalt, Doug

    2014-12-01

    In 2013, the US Preventive Services Task Force (USPSTF) recommended low-dose computed tomographic (CT) screening for high-risk current and former smokers with a B recommendation (indicating a level of certainty that it offered moderate to substantial net benefit). Under the Affordable Care Act, the USPSTF recommendation requires commercial insurers to fully cover low-dose CT. The Centers for Medicare & Medicaid Services (CMS) is now considering whether to also offer coverage for Medicare beneficiaries. Although the National Lung Screening Trial (NLST) demonstrated the efficacy of low-dose CT, implementation of national screening may be premature. The magnitude of benefit from routine screening is uncertain; estimates are based on data from a single study and simulation models commissioned by the USPSTF. The potential harms-which could affect a large population-include false-positive results, anxiety, radiation exposure, diagnostic workups, and the resulting complications. It is unclear if routine screening would result in net benefit or net harm. The NLST may not be generalizable to a national screening program for the Medicare age group because 73% of NLST participants were younger than 65 years. Moreover, screening outside of trial conditions is less likely to be restricted to high-risk smokers and qualified imaging centers with responsible referral protocols. Until better data are available for older adults who are screened in ordinary (nontrial) community settings, CMS should postpone coverage of low-dose CT screening for Medicare beneficiaries.

  10. Radiation Doses of Various CT Protocols: a Multicenter Longitudinal Observation Study

    PubMed Central

    2016-01-01

    Emerging concerns regarding the hazard from medical radiation including CT examinations has been suggested. The purpose of this study was to observe the longitudinal changes of CT radiation doses of various CT protocols and to estimate the long-term efforts of supervising radiologists to reduce medical radiation. Radiation dose data from 11 representative CT protocols were collected from 12 hospitals. Attending radiologists had collected CT radiation dose data in two time points, 2007 and 2010. They collected the volume CT dose index (CTDIvol) of each phase, number of phases, dose length product (DLP) of each phase, and types of scanned CT machines. From the collected data, total DLP and effective dose (ED) were calculated. CTDIvol, total DLP, and ED of 2007 and 2010 were compared according to CT protocols, CT machine type, and hospital. During the three years, CTDIvol had significantly decreased, except for dynamic CT of the liver. Total DLP and ED were significantly decreased in all 11 protocols. The decrement was more evident in newer CT scanners. However, there was substantial variability of changes of ED during the three years according to hospitals. Although there was variability according to protocols, machines, and hospital, CT radiation doses were decreased during the 3 years. This study showed the effects of decreased CT radiation dose by efforts of radiologists and medical society. PMID:26908984

  11. Ultra-Low-Dose CT of the Thorax Using Iterative Reconstruction: Evaluation of Image Quality and Radiation Dose Reduction.

    PubMed

    Kim, Yookyung; Kim, Yoon Kyung; Lee, Bo Eun; Lee, Seok Jeong; Ryu, Yon Ju; Lee, Jin Hwa; Chang, Jung Hyun

    2015-06-01

    The purpose of this study is to assess the image quality and radiation dose reduction of ultra-low-dose CT using sinogram-affirmed iterative reconstruction (SAFIRE). This prospective study enrolled 25 patients who underwent three consecutive unenhanced CT scans including low-dose CT (120 kVp and 30 mAs) and two ultra-low-dose CT protocols (protocol A, 100 kVp and 20 mAs; protocol B, 80 kVp and 30 mAs) with image reconstruction using SAFIRE. The image quality and radiation dose reduction were assessed. The mean (± SD) effective radiation dose was 1.06 ± 0.11, 0.44 ± 0.05, and 0.31 ± 0.03 mSv for low-dose CT, ultra-low-dose CT protocol A, and ultra-low-dose CT protocol B, respectively. Overall image quality was determined as diagnostic in 100% of low-dose CT scans, 96% of ultra-low-dose CT protocol A scans, and 88% of ultra-low-dose CT protocol B scans. All patients with nondiagnostic quality images had a body mass index (weight in kilograms divided by the square of height in meters) greater than 25. There was no statistically significant difference in detection frequencies of 14 lesion types among the three CT protocols, but pulmonary emphysema was detected in fewer patients (3/25) in ultra-low-dose CT protocol B scans compared with ultra-low-dose CT protocol A scans (5/25) or low-dose CT scans (6/25). We measured the longest dimensions of 33 small solid nodules (3.8-12.4 mm in long diameter) and found no statistically significant difference in the values afforded by the three CT protocols (p = 0.135). Iterative reconstruction allows ultra-low-dose CT and affords acceptable image quality, allowing size measurements of solid pulmonary nodules to be made.

  12. Gamma Knife radiosurgery with CT image-based dose calculation.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-08

    The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution

  13. Gamma Knife radiosurgery with CT image-based dose calculation.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Niranjan, Ajay; Kondziolka, Douglas; Flickinger, John; Lunsford, L Dade; Huq, M Saiful

    2015-11-01

    The Leksell GammaPlan software version 10 introduces a CT image-based segmentation tool for automatic skull definition and a convolution dose calculation algorithm for tissue inhomogeneity correction. The purpose of this work was to evaluate the impact of these new approaches on routine clinical Gamma Knife treatment planning. Sixty-five patients who underwent CT image-guided Gamma Knife radiosurgeries at the University of Pittsburgh Medical Center in recent years were retrospectively investigated. The diagnoses for these cases include trigeminal neuralgia, meningioma, acoustic neuroma, AVM, glioma, and benign and metastatic brain tumors. Dose calculations were performed for each patient with the same dose prescriptions and the same shot arrangements using three different approaches: 1) TMR 10 dose calculation with imaging skull definition; 2) convolution dose calculation with imaging skull definition; 3) TMR 10 dose calculation with conventional measurement-based skull definition. For each treatment matrix, the total treatment time, the target coverage index, the selectivity index, the gradient index, and a set of dose statistics parameters were compared between the three calculations. The dose statistics parameters investigated include the prescription isodose volume, the 12 Gy isodose volume, the minimum, maximum and mean doses on the treatment targets, and the critical structures under consideration. The difference between the convolution and the TMR 10 dose calculations for the 104 treatment matrices were found to vary with the patient anatomy, location of the treatment shots, and the tissue inhomogeneities around the treatment target. An average difference of 8.4% was observed for the total treatment times between the convolution and the TMR algorithms. The maximum differences in the treatment times, the prescription isodose volumes, the 12 Gy isodose volumes, the target coverage indices, the selectivity indices, and the gradient indices from the convolution

  14. WE-G-BRD-07: Investigation of Distal Lung Atelectasis Following Stereotactic Body Radiation Therapy Using Regional Lung Volume Changes Between Pre- and Post- Treatment CT Scans

    SciTech Connect

    Diot, Q; Kavanagh, B; Miften, M

    2014-06-15

    Purpose: To propose a quantitative method using lung deformations to differentiate between radiation-induced fibrosis and potential airway stenosis with distal atelectasis in patients treated with stereotactic body radiation therapy (SBRT) for lung tumors. Methods: Twenty-four lung patients with large radiation-induced density increases outside the high dose region had their pre- and post-treatment CT scans manually registered. They received SBRT treatments at our institution between 2002 and 2009 in 3 or 5 fractions, to a median total dose of 54Gy (range, 30–60). At least 50 anatomical landmarks inside the lung (airway branches) were paired for the pre- and post-treatment scans to guide the deformable registration of the lung structure, which was then interpolated to the whole lung using splines. Local volume changes between the planning and follow-up scans were calculated using the deformation field Jacobian. Hyperdense regions were classified as atelectatic or fibrotic based on correlations between regional density increases and significant volume contractions compared to the surrounding tissues. Results: Out of 24 patients, only 7 demonstrated a volume contraction that was at least one σ larger than the remaining lung average. Because they did not receive high doses, these shrunk hyperdense regions were likely showing distal atelectasis resulting from radiation-induced airway stenosis rather than conventional fibrosis. On average, the hyperdense regions extended 9.2 cm farther than the GTV contours but not significantly more than 8.6 cm for the other patients (p>0.05), indicating that a large offset between the radiation and hyperdense region centers is not a good surrogate for atelectasis. Conclusion: A method based on the relative comparison of volume changes between different dates was developed to identify potential lung regions experiencing distal atelectasis. Such a tool is essential to study which lung structures need to be avoided to prevent

  15. Processing of CT images for analysis of diffuse lung disease in the lung tissue research consortium

    NASA Astrophysics Data System (ADS)

    Karwoski, Ronald A.; Bartholmai, Brian; Zavaletta, Vanessa A.; Holmes, David; Robb, Richard A.

    2008-03-01

    The goal of Lung Tissue Resource Consortium (LTRC) is to improve the management of diffuse lung diseases through a better understanding of the biology of Chronic Obstructive Pulmonary Disease (COPD) and fibrotic interstitial lung disease (ILD) including Idiopathic Pulmonary Fibrosis (IPF). Participants are subjected to a battery of tests including tissue biopsies, physiologic testing, clinical history reporting, and CT scanning of the chest. The LTRC is a repository from which investigators can request tissue specimens and test results as well as semi-quantitative radiology reports, pathology reports, and automated quantitative image analysis results from the CT scan data performed by the LTRC core laboratories. The LTRC Radiology Core Laboratory (RCL), in conjunction with the Biomedical Imaging Resource (BIR), has developed novel processing methods for comprehensive characterization of pulmonary processes on volumetric high-resolution CT scans to quantify how these diseases manifest in radiographic images. Specifically, the RCL has implemented a semi-automated method for segmenting the anatomical regions of the lungs and airways. In these anatomic regions, automated quantification of pathologic features of disease including emphysema volumes and tissue classification are performed using both threshold techniques and advanced texture measures to determine the extent and location of emphysema, ground glass opacities, "honeycombing" (HC) and "irregular linear" or "reticular" pulmonary infiltrates and normal lung. Wall thickness measurements of the trachea, and its branches to the 3 rd and limited 4 th order are also computed. The methods for processing, segmentation and quantification are described. The results are reviewed and verified by an expert radiologist following processing and stored in the public LTRC database for use by pulmonary researchers. To date, over 1200 CT scans have been processed by the RCL and the LTRC project is on target for recruitment of the

  16. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    SciTech Connect

    Titt, Uwe Mirkovic, Dragan; Mohan, Radhe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Oelfke, Uwe

    2015-11-15

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ~35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses.

  17. Degradation of proton depth dose distributions attributable to microstructures in lung-equivalent material

    PubMed Central

    Titt, Uwe; Sell, Martin; Unkelbach, Jan; Bangert, Mark; Mirkovic, Dragan; Oelfke, Uwe; Mohan, Radhe

    2015-01-01

    Purpose: The purpose of the work reported here was to investigate the influence of sub-millimeter size heterogeneities on the degradation of the distal edges of proton beams and to validate Monte Carlo (MC) methods’ ability to correctly predict such degradation. Methods: A custom-designed high-resolution plastic phantom approximating highly heterogeneous, lung-like structures was employed in measurements and in Monte Carlo simulations to evaluate the degradation of proton Bragg curves penetrating heterogeneous media. Results: Significant differences in distal falloff widths and in peak dose values were observed in the measured and the Monte Carlo simulated curves compared to pristine proton Bragg curves. Furthermore, differences between simulations of beams penetrating CT images of the phantom did not agree well with the corresponding experimental differences. The distal falloff widths in CT image-based geometries were underestimated by up to 0.2 cm in water (corresponding to 0.8–1.4 cm in lung tissue), and the peak dose values of pristine proton beams were overestimated by as much as ˜35% compared to measured curves or depth-dose curves simulated on the basis of true geometry. The authors demonstrate that these discrepancies were caused by the limited spatial resolution of CT images that served as a basis for dose calculations and lead to underestimation of the impact of the fine structure of tissue heterogeneities. A convolution model was successfully applied to mitigate the underestimation. Conclusions: The results of this study justify further development of models to better represent heterogeneity effects in soft-tissue geometries, such as lung, and to correct systematic underestimation of the degradation of the distal edge of proton doses. PMID:26520732

  18. Integrated PET/CT in lung cancer imaging: history and technical aspects.

    PubMed

    De Wever, W; Stroobants, S; Verschakelen, J A

    2007-01-01

    Integrated PET/CT is a new anatomo-metabolic imaging modality combining two different techniques: Computed Tomography (CT) that provides very detailed anatomic information and Positron Emission Tomography (PET) that provides metabolic information. Integrated PET/CT has several advantages. One of the advantages is the use of CT data for attenuation correction that is significantly faster compared to that in conventional PET systems. Due to the use of CT data for attenuation correction, artefacts can be generated on PET images related to the use of intravenous or oral CT contrast agents, CT beam-hardening artefacts due to metallic implants and motion artefacts (respiratory motion, physical bowel motion, cardiac motion). The purpose of this review is to discuss some technical considerations concerning the CT protocol that can be used for PET/CT in lung cancer imaging and to give a short overview of the initial results of staging of non-small cell lung cancer (NSCLC).

  19. Survey of volume CT dose index in Japan in 2014

    PubMed Central

    Kawaguchi, A; Kobayashi, K; Kinomura, Y; Kobayashi, M; Asada, Y; Minami, K; Suzuki, S; Chida, K

    2015-01-01

    Objective: The aims of this study are to propose a new set of Japanese diagnostic reference levels (DRLs) for 2014 and to study the impact of tube voltage and the type of reconstruction algorithm on patient doses. The volume CT dose index (CTDIvol) for adult and paediatric patients is assessed and compared with the results of a 2011 national survey and data from other countries. Methods: Scanning procedures for the head (non-helical and helical), chest and upper abdomen were examined for adults and 5-year-old children. A questionnaire concerning the following items was sent to 3000 facilities: tube voltage, use of reconstruction algorithms and displayed CTDIvol. Results: The mean CTDIvol values for paediatric examinations using voltages ranging from 80 to 100 kV were significantly lower than those for paediatric examinations using 120 kV. For adult examinations, the use of iterative reconstruction algorithms significantly reduced the mean CTDIvol values compared with the use of filtered back projection. Paediatric chest and abdominal scans showed slightly higher mean CTDIvol values in 2014 than in 2011. The proposed DRLs for adult head and abdominal scans were higher than those reported in other countries. Conclusion: The results imply that further optimization of CT examination protocols is required for adult head and abdominal scans as well as paediatric chest and abdominal scans. Advances in knowledge: Low-tube-voltage CT may be useful for reducing radiation doses in paediatric patients. The mean CTDIvol values for paediatric scans showed little difference that could be attributed to the choice of reconstruction algorithm. PMID:26043158

  20. Texton and Sparse Representation Based Texture Classification of Lung Parenchyma in CT Images

    PubMed Central

    Yang, Jie; Feng, Xinyang; Angelini, Elsa D.; Laine, Andrew F.

    2017-01-01

    Automated texture analysis of lung computed tomography (CT) images is a critical tool in subtyping pulmonary emphysema and diagnosing chronic obstructive pulmonary disease (COPD). Texton-based methods encode lung textures with nearest-texton frequency histograms, and have achieved high performance for supervised classification of emphysema subtypes from annotated lung CT images. In this work, we first explore characterizing lung textures with sparse decomposition from texton dictionaries, using different regularization strategies, and then extend the sparsity-inducing constraint to the construction of the dictionaries. The methods were evaluated on a publicly available lung CT database of annotated emphysema subtypes. We show that enforcing sparse decompositions from texton dictionaries and unsupervised dictionary learning can achieve high classification accuracy (>90%). The flexibility of sparse-inducing models embedded either in the representation stage or dictionary learning stage has potential in providing consistency in classification performance on heterogeneous lung CT datasets with further parameter tuning. PMID:28268558

  1. Preliminary assessment of the dose to the interventional radiologist in fluoro-CT-guided procedures.

    PubMed

    Pereira, M F; Alves, J G; Sarmento, S; Santos, J A M; Sousa, M J; Gouvêa, M; Oliveira, A D; Cardoso, J V; Santos, L M

    2011-03-01

    A preliminary assessment of the occupational dose to the intervention radiologist received in fluoroscopy computerised tomography (CT) used to guide the collection of lung and bone biopsies is presented. The main aim of this work was to evaluate the capability of the reading system as well as of the available whole-body (WB) and extremity dosemeters used in routine monthly monitoring periods to measure per procedure dose values. The intervention radiologist was allocated 10 WB detectors (LiF: Mg, Ti, TLD-100) placed at chest and abdomen levels above and below the lead apron, and at both right and left arms, knees and feet. A special glove was developed with casings for the insertion of 11 extremity detectors (LiF:Mg, Cu, P, TLD-100H) for the identification of the most highly exposed fingers. The H(p)(10) dose values received above the lead apron (ranged 0.20-0.02 mSv) depend mainly on the duration of the examination and on the placement of physician relative to the beam, while values below the apron are relatively low. The left arm seems to receive a higher dose value. H(p)(0.07) values to the hand (ranged 36.30-0.06 mSv) show that the index, middle and ring fingers are the most highly exposed. In this study, the wrist dose was negligible compared with the finger dose. These results are preliminary and further studies are needed to better characterise the dose assessment in CT fluoroscopy.

  2. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  3. Evaluation of radiation dose delivered by cone beam CT and tomosynthesis employed for setup of external breast irradiation

    SciTech Connect

    Winey, Brian; Zygmanski, Piotr; Lyatskaya, Yulia

    2009-01-15

    A systematic set of measurements is reported for evaluation of doses to critical organs resulting from cone-beam CT (CB-CT) and cone-beam tomosynthesis (CB-TS) as applied to breast setup for external beam irradiation. The specific focus of this study was on evaluation of doses from these modalities in a setting of volumetric breast imaging for target localization in radiotherapy treatments with the goal of minimizing radiation to healthy organs. Ion chamber measurements were performed in an anthropomorphic female thorax phantom at the center of each breast and lung and on the phantom surface at one anterior and two lateral locations (seven points total). The measurements were performed for three different isocenters located at the center of the phantom and at offset locations of the right and left breast. The dependence of the dose on angle selection for the CB-TS arc was also studied. For the most typical situation of centrally located CB-CT isocenter the measured doses ranged between 3 and 7 cGy, in good agreement with previous reports. Dose measurements were performed for a range of start/stop angles commonly used for CB-TS and the impact of direct and scatter dose on organs at risk was analyzed. All measured CB-TS doses were considerably lower than CB-CT doses, with greater decrease in dose for the organs outside of the beam (up to 98% decrease in dose). Remarkably, offsetting the isocenter towards the ipsilateral breast resulted on average to additional 46% dose reduction to organs at risk. The lowest doses to the contralateral breast and lung were less than 0.1 cGy when they were measured for the offset isocenter. The biggest reduction in dose was obtained by using CB-TS beams that completely avoid the critical organ. For points inside the CB-TS beam, the dose was reduced in a linear relation with distance from the center of the imaging arc. The data indicate that it is possible to reduce substantially radiation doses to the contralateral organs by proper

  4. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    NASA Astrophysics Data System (ADS)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  5. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms.

    PubMed

    Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-07-17

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  6. Preliminary clinical experience with a dedicated interventional robotic system for CT-guided biopsies of lung lesions: a comparison with the conventional manual technique.

    PubMed

    Anzidei, Michele; Argirò, Renato; Porfiri, Andrea; Boni, Fabrizio; Anile, Marco; Zaccagna, Fulvio; Vitolo, Domenico; Saba, Luca; Napoli, Alessandro; Leonardi, Andrea; Longo, Flavia; Venuta, Federico; Bezzi, Mario; Catalano, Carlo

    2015-05-01

    Evaluate the performance of a robotic system for CT-guided lung biopsy in comparison to the conventional manual technique. One hundred patients referred for CT-guided lung biopsy were randomly assigned to group A (robot-assisted procedure) or group B (conventional procedure). Size, distance from entry point and position in lung of target lesions were evaluated to assess homogeneity differences between the two groups. Procedure duration, dose length product (DLP), precision of needle positioning, diagnostic performance of the biopsy and rate of complications were evaluated to assess the clinical performance of the robotic system as compared to the conventional technique. All biopsies were successfully performed. The size (p = 0.41), distance from entry point (p = 0.86) and position in lung (p = 0.32) of target lesions were similar in both groups (p = 0.05). Procedure duration and radiation dose were significantly reduced in group A as compared to group B (p = 0.001). Precision of needle positioning, diagnostic performance of the biopsy and rate of complications were similar in both groups (p = 0.05). Robot-assisted CT-guided lung biopsy can be performed safely and with high diagnostic accuracy, reducing procedure duration and radiation dose in comparison to the conventional manual technique. • CT-guided biopsy is the main procedure to obtain diagnosis in lung tumours. • The robotic device facilitates percutaneous needle placement under CT guidance. • Robot-assisted CT-guided lung biopsy reduces procedure duration and radiation dose.

  7. Gamma regularization based reconstruction for low dose CT.

    PubMed

    Zhang, Junfeng; Chen, Yang; Hu, Yining; Luo, Limin; Shu, Huazhong; Li, Bicao; Liu, Jin; Coatrieux, Jean-Louis

    2015-09-07

    Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT image reconstruction. This solution is flexible and provides a good balance between the regularizations based on l0-norm and l1-norm. We evaluate the proposed approach using the projection data from simulated phantoms and scanned Catphan phantoms. Qualitative and quantitative results show that the Gamma regularization based reconstruction can perform better in both edge-preserving and noise suppression when compared with other norms.

  8. Optimizing CT radiation dose based on patient size and image quality: the size-specific dose estimate method.

    PubMed

    Larson, David B

    2014-10-01

    The principle of ALARA (dose as low as reasonably achievable) calls for dose optimization rather than dose reduction, per se. Optimization of CT radiation dose is accomplished by producing images of acceptable diagnostic image quality using the lowest dose method available. Because it is image quality that constrains the dose, CT dose optimization is primarily a problem of image quality rather than radiation dose. Therefore, the primary focus in CT radiation dose optimization should be on image quality. However, no reliable direct measure of image quality has been developed for routine clinical practice. Until such measures become available, size-specific dose estimates (SSDE) can be used as a reasonable image-quality estimate. The SSDE method of radiation dose optimization for CT abdomen and pelvis consists of plotting SSDE for a sample of examinations as a function of patient size, establishing an SSDE threshold curve based on radiologists' assessment of image quality, and modifying protocols to consistently produce doses that are slightly above the threshold SSDE curve. Challenges in operationalizing CT radiation dose optimization include data gathering and monitoring, managing the complexities of the numerous protocols, scanners and operators, and understanding the relationship of the automated tube current modulation (ATCM) parameters to image quality. Because CT manufacturers currently maintain their ATCM algorithms as secret for proprietary reasons, prospective modeling of SSDE for patient populations is not possible without reverse engineering the ATCM algorithm and, hence, optimization by this method requires a trial-and-error approach.

  9. A virtual clinical trial using projection-based nodule insertion to determine radiologist reader performance in lung cancer screening CT

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Hu, Qiyuan; Koo, Chi Wan; Takahashi, Edwin A.; Levin, David L.; Johnson, Tucker F.; Hora, Megan J.; Dirks, Shane; Chen, Baiyu; McMillan, Kyle; Leng, Shuai; Fletcher, J. G.; McCollough, Cynthia H.

    2017-03-01

    Task-based image quality assessment using model observers is promising to provide an efficient, quantitative, and objective approach to CT dose optimization. Before this approach can be reliably used in practice, its correlation with radiologist performance for the same clinical task needs to be established. Determining human observer performance for a well-defined clinical task, however, has always been a challenge due to the tremendous amount of efforts needed to collect a large number of positive cases. To overcome this challenge, we developed an accurate projection-based insertion technique. In this study, we present a virtual clinical trial using this tool and a low-dose simulation tool to determine radiologist performance on lung-nodule detection as a function of radiation dose, nodule type, nodule size, and reconstruction methods. The lesion insertion and low-dose simulation tools together were demonstrated to provide flexibility to generate realistically-appearing clinical cases under well-defined conditions. The reader performance data obtained in this virtual clinical trial can be used as the basis to develop model observers for lung nodule detection, as well as for dose and protocol optimization in lung cancer screening CT.

  10. A virtual clinical trial using projection-based nodule insertion to determine radiologist reader performance in lung cancer screening CT

    PubMed Central

    Yu, Lifeng; Hu, Qiyuan; Koo, Chi Wan; Takahashi, Edwin A.; Levin, David L.; Johnson, Tucker F.; Hora, Megan J.; Dirks, Shane; Chen, Baiyu; McMillan, Kyle; Leng, Shuai; Fletcher, JG; McCollough, Cynthia H.

    2017-01-01

    Task-based image quality assessment using model observers is promising to provide an efficient, quantitative, and objective approach to CT dose optimization. Before this approach can be reliably used in practice, its correlation with radiologist performance for the same clinical task needs to be established. Determining human observer performance for a well-defined clinical task, however, has always been a challenge due to the tremendous amount of efforts needed to collect a large number of positive cases. To overcome this challenge, we developed an accurate projection-based insertion technique. In this study, we present a virtual clinical trial using this tool and a low-dose simulation tool to determine radiologist performance on lung-nodule detection as a function of radiation dose, nodule type, nodule size, and reconstruction methods. The lesion insertion and low-dose simulation tools together were demonstrated to provide flexibility to generate realistically-appearing clinical cases under well-defined conditions. The reader performance data obtained in this virtual clinical trial can be used as the basis to develop model observers for lung nodule detection, as well as for dose and protocol optimization in lung cancer screening CT. PMID:28392614

  11. Implementation of interior micro-CT on a carbon nanotube dynamic micro-CT scanner for lower radiation dose

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Lu, Jianping; Zhou, Otto; Cao, Guohua

    2015-03-01

    Micro-CT is a high-resolution volumetric imaging tool that provides imaging evaluations for many preclinical applications. However, the relatively high cumulative radiation dose from micro-CT scans could lead to detrimental influence on the experimental outcomes or even the damages of specimens. Interior micro-computed tomography (micro- CT) produces exact tomographic images of an interior region-of-interest (ROI) embedded within an object from truncated projection data. It holds promises for many biomedical applications with significantly reduced radiation doses. Here, we present our first implementation of an interior micro-CT system using a carbon nanotube (CNT) field-emission microfocus x-ray source. The system has two modes - interior micro-CT mode and global micro-CT mode, which is realized with a detachable x-ray beam collimator at the source side. The interior mode has an effective field-of-view (FOV) of about 10mm in diameter, while for the global mode the FOV is about 40mm in diameter. We acquired CT data in these two modes from a mouse-sized phantom, and compared the reconstructed image qualities and the associated radiation exposures. Interior ROI reconstruction was achieved by using our in-house developed reconstruction algorithm. Overall, interior micro-CT demonstrated comparable image quality to the conventional global micro-CT. Radiation doses measured by an ion chamber show that interior micro-CT yielded significant dose reduction (up to 83%).

  12. CT Scan Screening for Lung Cancer: Risk Factors for Nodules and Malignancy in a High-Risk Urban Cohort

    PubMed Central

    Greenberg, Alissa K.; Lu, Feng; Goldberg, Judith D.; Eylers, Ellen; Tsay, Jun-Chieh; Yie, Ting-An; Naidich, David; McGuinness, Georgeann; Pass, Harvey; Tchou-Wong, Kam-Meng; Addrizzo-Harris, Doreen; Chachoua, Abraham; Crawford, Bernard; Rom, William N.

    2012-01-01

    Background Low-dose computed tomography (CT) for lung cancer screening can reduce lung cancer mortality. The National Lung Screening Trial reported a 20% reduction in lung cancer mortality in high-risk smokers. However, CT scanning is extremely sensitive and detects non-calcified nodules (NCNs) in 24–50% of subjects, suggesting an unacceptably high false-positive rate. We hypothesized that by reviewing demographic, clinical and nodule characteristics, we could identify risk factors associated with the presence of nodules on screening CT, and with the probability that a NCN was malignant. Methods We performed a longitudinal lung cancer biomarker discovery trial (NYU LCBC) that included low-dose CT-screening of high-risk individuals over 50 years of age, with more than 20 pack-year smoking histories, living in an urban setting, and with a potential for asbestos exposure. We used case-control studies to identify risk factors associated with the presence of nodules (n = 625) versus no nodules (n = 557), and lung cancer patients (n = 30) versus benign nodules (n = 128). Results The NYU LCBC followed 1182 study subjects prospectively over a 10-year period. We found 52% to have NCNs >4 mm on their baseline screen. Most of the nodules were stable, and 9.7% of solid and 26.2% of sub-solid nodules resolved. We diagnosed 30 lung cancers, 26 stage I. Three patients had synchronous primary lung cancers or multifocal disease. Thus, there were 33 lung cancers: 10 incident, and 23 prevalent. A sub-group of the prevalent group were stable for a prolonged period prior to diagnosis. These were all stage I at diagnosis and 12/13 were adenocarcinomas. Conclusions NCNs are common among CT-screened high-risk subjects and can often be managed conservatively. Risk factors for malignancy included increasing age, size and number of nodules, reduced FEV1 and FVC, and increased pack-years smoking. A sub-group of screen-detected cancers are slow-growing and may contribute to

  13. Weight preserving image registration for monitoring disease progression in lung CT.

    PubMed

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  14. Trade-off between benefits, harms and economic efficiency of low-dose CT lung cancer screening: a microsimulation analysis of nodule management strategies in a population-based setting.

    PubMed

    Treskova, Marina; Aumann, Ines; Golpon, Heiko; Vogel-Claussen, Jens; Welte, Tobias; Kuhlmann, Alexander

    2017-08-25

    In lung cancer screening, a nodule management protocol describes nodule assessment and thresholds for nodule size and growth rate to identify patients who require immediate diagnostic evaluation or additional imaging exams. The Netherlands-Leuvens Screening Trial and the National Lung Screening Trial used different selection criteria and nodule management protocols. Several modelling studies have reported variations in screening outcomes and cost-effectiveness across selection criteria and screening intervals; however, the effect of variations in the nodule management protocol remains uncertain. This study evaluated the effects of the eligibility criteria and nodule management protocols on the benefits, harms and cost-effectiveness of lung screening scenarios in a population-based setting in Germany. We developed a modular microsimulation model: a biological module simulated individual histories of lung cancer development from carcinogenesis onset to death; a screening module simulated patient selection, screening-detection, nodule management protocols, diagnostic evaluation and screening outcomes. Benefits included mortality reduction, life years gained and averted lung cancer deaths. Harms were costs, false positives and overdiagnosis. The comparator was no screening. The evaluated 76 screening scenarios included variations in selection criteria and thresholds for nodule size and growth rate. Five years of annual screening resulted in a 9.7-12.8% lung cancer mortality reduction in the screened population. The efficient scenarios included volumetric assessment of nodule size, a threshold for a volume of 300 mm(3) and a threshold for a volume doubling time of 400 days. Assessment of volume doubling time is essential for reducing overdiagnosis and false positives. Incremental cost-effectiveness ratios of the efficient scenarios were 16,754-23,847 euro per life year gained and 155,287-285,630 euro per averted lung cancer death. Lung cancer screening can be cost

  15. Spectrotemporal CT data acquisition and reconstruction at low dose

    SciTech Connect

    Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.

    2015-11-15

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  16. Dose reconstruction for real-time patient-specific dose estimation in CT

    SciTech Connect

    De Man, Bruno Yin, Zhye; Wu, Mingye; FitzGerald, Paul; Kalra, Mannudeep

    2015-05-15

    Purpose: Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization. Methods: The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors’ specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth. Results: The authors’ results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm. Conclusions: The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.

  17. Personalized low dose CT via variable kVp

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Jin, Yannan; Yao, Yangyang; Wu, Mingye; Yan, Ming; Tao, Kun; Yin, Zhye; De Man, Bruno

    2015-03-01

    Computerized Tomography (CT) is a powerful radiographic imaging technology but the health risk due to the exposure of x-ray radiation has drawn wide concern. In this study, we propose to use kVp modulation to reduce the radiation dose and achieve the personalized low dose CT. Two sets of simulation are performed to demonstrate the effectiveness of kVp modulation and the corresponding calibration. The first simulation used the helical body phantom (HBP) that is an elliptical water cylinder with high density bone inserts. The second simulation uses the NCAT phantom to emulate the practical use of kVp modulation approach with region of interest (ROI) selected in the cardiac region. The kVp modulation profile could be optimized view by view based on the knowledge of patient attenuation. A second order correction is applied to eliminate the beam hardening artifacts. To simplify the calibration process, we first generate the calibration vectors for a few representative spectra and then acquire other calibration vectors with interpolation. The simulation results demonstrate the beam hardening artifacts in the images with kVp modulation can be eliminated with proper beam hardening correction. The results also show that the simplification of calibration did not impair the image quality: the calibration with the simplified and the complete vectors both eliminate the artifacts effectively and the results are comparable. In summary, this study demonstrates the feasibility of kVp modulation and gives a practical way to calibrate the high order beam hardening artifacts.

  18. SU-F-I-12: Region-Specific Dictionary Learning for Low-Dose X-Ray CT Reconstruction

    SciTech Connect

    Xu, Q; Han, H; Xing, L

    2016-06-15

    Purpose: Dictionary learning based method has attracted more and more attentions in low-dose CT due to the superior performance on suppressing noise and preserving structural details. Considering the structures and noise vary from region to region in one imaging object, we propose a region-specific dictionary learning method to improve the low-dose CT reconstruction. Methods: A set of normal-dose images was used for dictionary learning. Segmentations were performed on these images, so that the training patch sets corresponding to different regions can be extracted out. After that, region-specific dictionaries were learned from these training sets. For the low-dose CT reconstruction, a conventional reconstruction, such as filtered back-projection (FBP), was performed firstly, and then segmentation was followed to segment the image into different regions. Sparsity constraints of each region based on its dictionary were used as regularization terms. The regularization parameters were selected adaptively according to different regions. A low-dose human thorax dataset was used to evaluate the proposed method. The single dictionary based method was performed for comparison. Results: Since the lung region is very different from the other part of thorax, two dictionaries corresponding to lung region and the rest part of thorax respectively were learned to better express the structural details and avoid artifacts. With only one dictionary some artifact appeared in the body region caused by the spot atoms corresponding to the structures in the lung region. And also some structure in the lung regions cannot be recovered well by only one dictionary. The quantitative indices of the result by the proposed method were also improved a little compared to the single dictionary based method. Conclusion: Region-specific dictionary can make the dictionary more adaptive to different region characteristics, which is much desirable for enhancing the performance of dictionary learning

  19. TU-CD-BRB-01: Normal Lung CT Texture Features Improve Predictive Models for Radiation Pneumonitis

    SciTech Connect

    Krafft, S; Briere, T; Court, L; Martel, M

    2015-06-15

    Purpose: Existing normal tissue complication probability (NTCP) models for radiation pneumonitis (RP) traditionally rely on dosimetric and clinical data but are limited in terms of performance and generalizability. Extraction of pre-treatment image features provides a potential new category of data that can improve NTCP models for RP. We consider quantitative measures of total lung CT intensity and texture in a framework for prediction of RP. Methods: Available clinical and dosimetric data was collected for 198 NSCLC patients treated with definitive radiotherapy. Intensity- and texture-based image features were extracted from the T50 phase of the 4D-CT acquired for treatment planning. A total of 3888 features (15 clinical, 175 dosimetric, and 3698 image features) were gathered and considered candidate predictors for modeling of RP grade≥3. A baseline logistic regression model with mean lung dose (MLD) was first considered. Additionally, a least absolute shrinkage and selection operator (LASSO) logistic regression was applied to the set of clinical and dosimetric features, and subsequently to the full set of clinical, dosimetric, and image features. Model performance was assessed by comparing area under the curve (AUC). Results: A simple logistic fit of MLD was an inadequate model of the data (AUC∼0.5). Including clinical and dosimetric parameters within the framework of the LASSO resulted in improved performance (AUC=0.648). Analysis of the full cohort of clinical, dosimetric, and image features provided further and significant improvement in model performance (AUC=0.727). Conclusions: To achieve significant gains in predictive modeling of RP, new categories of data should be considered in addition to clinical and dosimetric features. We have successfully incorporated CT image features into a framework for modeling RP and have demonstrated improved predictive performance. Validation and further investigation of CT image features in the context of RP NTCP

  20. Network-based reading system for lung cancer screening CT

    NASA Astrophysics Data System (ADS)

    Fujino, Yuichi; Fujimura, Kaori; Nomura, Shin-ichiro; Kawashima, Harumi; Tsuchikawa, Megumu; Matsumoto, Toru; Nagao, Kei-ichi; Uruma, Takahiro; Yamamoto, Shinji; Takizawa, Hotaka; Kuroda, Chikazumi; Nakayama, Tomio

    2006-03-01

    This research aims to support chest computed tomography (CT) medical checkups to decrease the death rate by lung cancer. We have developed a remote cooperative reading system for lung cancer screening over the Internet, a secure transmission function, and a cooperative reading environment. It is called the Network-based Reading System. A telemedicine system involves many issues, such as network costs and data security if we use it over the Internet, which is an open network. In Japan, broadband access is widespread and its cost is the lowest in the world. We developed our system considering human machine interface and security. It consists of data entry terminals, a database server, a computer aided diagnosis (CAD) system, and some reading terminals. It uses a secure Digital Imaging and Communication in Medicine (DICOM) encrypting method and Public Key Infrastructure (PKI) based secure DICOM image data distribution. We carried out an experimental trial over the Japan Gigabit Network (JGN), which is the testbed for the Japanese next-generation network, and conducted verification experiments of secure screening image distribution, some kinds of data addition, and remote cooperative reading. We found that network bandwidth of about 1.5 Mbps enabled distribution of screening images and cooperative reading and that the encryption and image distribution methods we proposed were applicable to the encryption and distribution of general DICOM images via the Internet.

  1. Effective doses from cone beam CT investigation of the jaws

    PubMed Central

    Davies, J; Johnson, B; Drage, NA

    2012-01-01

    Objectives The purpose of the study was to calculate the effective dose delivered to the patient undergoing cone beam (CB) CT of the jaws and maxillofacial complex using the i-CAT Next Generation CBCT scanner (Imaging Sciences International, Hatfield, PA). Methods A RANDO® phantom (The Phantom Laboratory, Salem, NY) containing thermoluminence dosemeters were scanned 10 times for each of the 6 imaging protocols. Effective doses for each protocol were calculated using the 1990 and approved 2007 International Commission on Radiological Protection (ICRP) recommended tissue weighting factors (E1990, E2007). Results The effective dose for E1990 and E2007, respectively, were: full field of view (FOV) of the head, 47 μSv and 78 μSv; 13 cm scan of the jaws, 44 μSv and 77 μSv; 6 cm standard mandible, 35 μSv and 58 μSv; 6 cm high resolution mandible, 69 μSv and 113 μSv; 6 cm standard maxilla, 18 μSv and 32 μSv; and 6 cm high resolution maxilla, 35 μSv and 60 μSv. Conclusions Using the new generation of CBCT scanner, the effective dose is lower than the original generation machine for a similar FOV using the ICRP 2007 tissue weighting factors. PMID:22184626

  2. Effective dose span of ten different cone beam CT devices.

    PubMed

    Rottke, D; Patzelt, S; Poxleitner, P; Schulze, D

    2013-01-01

    Evaluation and reduction of dose are important issues. Since cone beam CT (CBCT) has been established now not just in dentistry, the number of acquired examinations continues to rise. Unfortunately, it is very difficult to compare the doses of available devices on the market owing to different exposition parameters, volumes and geometries. The aim of this study was to evaluate the spans of effective doses (EDs) of ten different CBCT devices. 48 thermoluminescent dosemeters were placed in 24 sites in a RANDO(®) head phantom. Protocols with lowest exposition parameters and protocols with highest exposition parameters were performed for each of the ten devices. The ED was calculated from the measured energy doses according to the International Commission on Radiological Protection 2007 recommendations for each protocol and device, and the statistical values were evaluated afterwards. The calculation of the ED resulted in values between 17.2 µSv and 396 µSv for the ten devices. The mean values for protocols with lowest and highest exposition parameters were 31.6 µSv and 209 µSv, respectively. It was not the aim of this study to evaluate the image quality depending on different exposition parameters but to define the spans of EDs in which different CBCT devices work. There is a wide span of ED for different CBCT devices depending on the selected exposition parameters, required spatial resolution and many other factors.

  3. Effective dose span of ten different cone beam CT devices

    PubMed Central

    Rottke, D; Patzelt, S; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: Evaluation and reduction of dose are important issues. Since cone beam CT (CBCT) has been established now not just in dentistry, the number of acquired examinations continues to rise. Unfortunately, it is very difficult to compare the doses of available devices on the market owing to different exposition parameters, volumes and geometries. The aim of this study was to evaluate the spans of effective doses (EDs) of ten different CBCT devices. Methods: 48 thermoluminescent dosemeters were placed in 24 sites in a RANDO® head phantom. Protocols with lowest exposition parameters and protocols with highest exposition parameters were performed for each of the ten devices. The ED was calculated from the measured energy doses according to the International Commission on Radiological Protection 2007 recommendations for each protocol and device, and the statistical values were evaluated afterwards. Results: The calculation of the ED resulted in values between 17.2 µSv and 396 µSv for the ten devices. The mean values for protocols with lowest and highest exposition parameters were 31.6 µSv and 209 µSv, respectively. Conclusions: It was not the aim of this study to evaluate the image quality depending on different exposition parameters but to define the spans of EDs in which different CBCT devices work. There is a wide span of ED for different CBCT devices depending on the selected exposition parameters, required spatial resolution and many other factors. PMID:23584925

  4. The influence of CT dose and reconstruction parameters on automated detection of small pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Ochs, Robert; Angel, Erin; Boedeker, Kirsten; Petkovska, Iva; Panknin, Christoph; Goldin, Jonathan; Aberle, Denise; McNitt-Gray, Michael; Brown, Matthew

    2006-03-01

    The aim of our investigation was to assess the influence of both CT acquisition dose and reconstruction kernel on computer-aided detection (CAD) of pulmonary nodules. Our hypothesis is that the detection of small nodules is affected by the noise characteristics of the image and the signal to noise ratio of the nodule and bronchiovascular anatomy. Knowledge gained from this experiment will assist in developing an advanced CAD system designed to detect smaller and more subtle nodules with minimal false positives. Eleven research subjects were selected from the Lung Image Database Consortium (LIDC) database based on our inclusion criteria of: 1) having at least one nodule and 2) available raw CT projection data for the series that our institution submitted to the LIDC study. Using the original raw projection data, research software simulated raw projection data acquired with a dose reduced 32-40% from the original scan. Projection data for both dose levels was reconstructed with smooth to very sharp kernels (B10f, B30f, B50f, and B70f). The resulting series were used to investigate the influence of dose and reconstruction kernel on CAD performance. A prototype CAD system was used to investigate changes in sensitivity and false positives with varying imaging parameters. In a sub-study, the prototype system was compared to a commercial CAD system. We did not have enough subjects to conclude significance, but the results indicate our research system had a higher sensitivity with the smooth or medium reconstruction kernels than with the sharper kernels. The sensitivity was similar for both dose levels. The false positive rate was higher with the smooth kernels and the lower dose levels.

  5. Lung cancer screening with low-dose computed tomography.

    PubMed

    Chiles, Caroline

    2014-01-01

    Current guidelines endorse low-dose computed tomography (LDCT) screening for smokers and former smokers aged 55 to 74, with at least a 30-pack-year smoking history. Adherence to published algorithms for nodule follow-up is strongly encouraged. Future directions for screening research include risk stratification for selection of the screening population and improvements in the diagnostic follow-up for indeterminate pulmonary nodules. Screening for lung cancer with LDCT has revealed that there are indolent lung cancers that may not be fatal. More research is necessary if the risk-benefit ratio in lung cancer screening is to be maximized. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Computerized characterization of lung nodule subtlety using thoracic CT images

    NASA Astrophysics Data System (ADS)

    He, Xin; Sahiner, Berkman; Gallas, Brandon D.; Chen, Weijie; Petrick, Nicholas

    2014-02-01

    The goal of this work is to design computerized image analysis techniques for automatically characterizing lung nodule subtlety in CT images. Automated subtlety estimation methods may help in computer-aided detection (CAD) assessment by quantifying dataset difficulty and facilitating comparisons among different CAD algorithms. A dataset containing 813 nodules from 499 patients was obtained from the Lung Image Database Consortium. Each nodule was evaluated by four radiologists regarding nodule subtlety using a 5-point rating scale (1: most subtle). We developed a 3D technique for segmenting lung nodules using a prespecified initial ROI. Texture and morphological features were automatically extracted from the segmented nodules and their margins. The dataset was partitioned into trainers and testers using a 1:1 ratio. An artificial neural network (ANN) was trained with average reader subtlety scores as the reference. Effective features for characterizing nodule subtlety were selected based on the training set using the ANN and a stepwise feature selection method. The performance of the classifier was evaluated using prediction probability (PK) as an agreement measure, which is considered a generalization of the area under the receiver operating characteristic curve when the reference standard is multi-level. Using an ANN classifier trained with a set of 2 features (selected from a total of 30 features), including compactness and average gray value, the test concordance between computer scores and the average reader scores was 0.789 ± 0.014. Our results show that the proposed method had strong agreement with the average of subtlety scores provided by radiologists.

  7. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  8. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program

    PubMed Central

    Kim, Yeun Yoon; Shin, Hyun Joo; Kim, Myung-Joon; Lee, Mi-Jung

    2016-01-01

    PURPOSE We aimed to evaluate the use of a dose monitoring program for calculating and comparing the diagnostic radiation doses in pediatric patients with neuroblastoma. METHODS We retrospectively reviewed diagnostic and therapeutic imaging studies performed on pediatric patients with neuroblastoma from 2003 to 2014. We calculated the mean effective dose per exam for X-ray, conventional computed tomography (CT), and CT of positron emission tomography/computed tomography (PET/CT) from the data collected using a dose monitoring program (DoseTrack group) since October 2012. Using the data, we estimated the cumulative dose per person and the relative dose from each modality in all patients (Total group). The effective dose from PET was manually calculated for all patients. RESULTS We included 63 patients with a mean age of 3.2±3.5 years; 28 had a history of radiation therapy, with a mean irradiated dose of 31.9±23.2 Gy. The mean effective dose per exam was 0.04±0.19 mSv for X-ray, 1.09±1.11 mSv for CT, and 8.35±7.45 mSv for CT of PET/CT in 31 patients of the Dose-Track group. The mean estimated cumulative dose per patient in the Total group was 3.43±2.86 mSv from X-ray (8.5%), 7.66±6.09 mSv from CT (19.1%), 18.35±13.52 mSv from CT of PET/CT (45.7%), and 10.71±10.05 mSv from PET (26.7%). CONCLUSION CT of PET/CT contributed nearly half of the total cumulative dose in pediatric patients with neuroblastoma. The radiation dose from X-ray was not negligible because of the large number of X-ray images. A dose monitoring program can be useful for calculating radiation doses in patients with cancer. PMID:27306659

  9. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program.

    PubMed

    Kim, Yeun Yoon; Shin, Hyun Joo; Kim, Myung Joon; Lee, Mi-Jung

    2016-01-01

    We aimed to evaluate the use of a dose monitoring program for calculating and comparing the diagnostic radiation doses in pediatric patients with neuroblastoma. We retrospectively reviewed diagnostic and therapeutic imaging studies performed on pediatric patients with neuroblastoma from 2003 to 2014. We calculated the mean effective dose per exam for X-ray, conventional computed tomography (CT), and CT of positron emission tomography/computed tomography (PET/CT) from the data collected using a dose monitoring program (DoseTrack group) since October 2012. Using the data, we estimated the cumulative dose per person and the relative dose from each modality in all patients (Total group). The effective dose from PET was manually calculated for all patients. We included 63 patients with a mean age of 3.2±3.5 years; 28 had a history of radiation therapy, with a mean irradiated dose of 31.9±23.2 Gy. The mean effective dose per exam was 0.04±0.19 mSv for X-ray, 1.09±1.11 mSv for CT, and 8.35±7.45 mSv for CT of PET/CT in 31 patients of the DoseTrack group. The mean estimated cumulative dose per patient in the Total group was 3.43±2.86 mSv from X-ray (8.5%), 7.66±6.09 mSv from CT (19.1%), 18.35±13.52 mSv from CT of PET/CT (45.7%), and 10.71±10.05 mSv from PET (26.7%). CT of PET/CT contributed nearly half of the total cumulative dose in pediatric patients with neuroblastoma. The radiation dose from X-ray was not negligible because of the large number of X-ray images. A dose monitoring program can be useful for calculating radiation doses in patients with cancer.

  10. Algorithm for lung cancer detection based on PET/CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Ishimatsu, Keita; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohtsuka, Hideki; Nishitani, Hiromu; Ohmatsu, Hironobu; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2009-02-01

    The five year survival rate of the lung cancer is low with about twenty-five percent. In addition it is an obstinate lung cancer wherein three out of four people die within five years. Then, the early stage detection and treatment of the lung cancer are important. Recently, we can obtain CT and PET image at the same time because PET/CT device has been developed. PET/CT is possible for a highly accurate cancer diagnosis because it analyzes quantitative shape information from CT image and FDG distribution from PET image. However, neither benign-malignant classification nor staging intended for lung cancer have been established still enough by using PET/CT images. In this study, we detect lung nodules based on internal organs extracted from CT image, and we also develop algorithm which classifies benignmalignant and metastatic or non metastatic lung cancer using lung structure and FDG distribution(one and two hour after administering FDG). We apply the algorithm to 59 PET/CT images (malignant 43 cases [Ad:31, Sq:9, sm:3], benign 16 cases) and show the effectiveness of this algorithm.

  11. Dose fractionation and biological optimization in lung cancer.

    PubMed

    Trodella, Lucio; D'Angelillo, Rolando M; Ramella, Sara; Ciresa, Marzia; Massaccesi, Mariangela

    2004-01-01

    The treatment of choice of patients with locally advanced non-small cell lung cancer is radiotherapy combined or not with chemotherapy. Only 30% of lung cancer patients are operable for cure at diagnosis. Consequently the knowledge of the radiobiological basis and of clinical outcomes achieved with radiation therapy is of the utmost importance. Total dose, fractionation, concomitant chemotherapy are the main factors to be examined. In order to improve local control several attempts are reported in the literature. They concern: changes in fractionation and total dose; the use of radiosensitizers and radioprotectors; combined chemoradiation and molecular therapies.

  12. TBI lung dose comparisons using bilateral and anteroposterior delivery techniques and tissue density corrections.

    PubMed

    Bailey, Daniel W; Wang, Iris Z; Lakeman, Tara; Hales, Lee D; Singh, Anurag K; Podgorsak, Matthew B

    2015-03-08

    This study compares lung dose distributions for two common techniques of total body photon irradiation (TBI) at extended source-to-surface distance calculated with, and without, tissue density correction (TDC). Lung dose correction factors as a function of lateral thorax separation are approximated for bilateral opposed TBI (supine), similar to those published for anteroposterior-posteroanterior (AP-PA) techniques in AAPM Report 17 (i.e., Task Group 29). 3D treatment plans were created retrospectively for 24 patients treated with bilateral TBI, and for whom CT data had been acquired from the head to the lower leg. These plans included bilateral opposed and AP-PA techniques- each with and without - TDC, using source-to-axis distance of 377 cm and largest possible field size. On average, bilateral TBI requires 40% more monitor units than AP-PA TBI due to increased separation (26% more for 23 MV). Calculation of midline thorax dose without TDC leads to dose underestimation of 17% on average (standard deviation, 4%) for bilateral 6 MV TBI, and 11% on average (standard deviation, 3%) for 23 MV. Lung dose correction factors (CF) are calculated as the ratio of midlung dose (with TDC) to midline thorax dose (without TDC). Bilateral CF generally increases with patient separation, though with high variability due to individual uniqueness of anatomy. Bilateral CF are 5% (standard deviation, 4%) higher than the same corrections calculated for AP-PA TBI in the 6 MV case, and 4% higher (standard deviation, 2%) for 23 MV. The maximum lung dose is much higher with bilateral TBI (up to 40% higher than prescribed, depending on patient anatomy) due to the absence of arm tissue blocking the anterior chest. Dose calculations for bilateral TBI without TDC are incorrect by up to 24% in the thorax for 6 MV and up to 16% for 23 MV. Bilateral lung CF may be calculated as 1.05 times the values published in Table 6 of AAPM Report 17, though a larger patient pool is necessary to better

  13. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification.

  14. Heart region segmentation from low-dose CT scans: an anatomy based approach

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Biancardi, Alberto M.; Yankelevitz, David F.; Cham, Matthew D.; Henschke, Claudia I.

    2012-02-01

    Cardiovascular disease is a leading cause of death in developed countries. The concurrent detection of heart diseases during low-dose whole-lung CT scans (LDCT), typically performed as part of a screening protocol, hinges on the accurate quantification of coronary calcification. The creation of fully automated methods is ideal as complete manual evaluation is imprecise, operator dependent, time consuming and thus costly. The technical challenges posed by LDCT scans in this context are mainly twofold. First, there is a high level image noise arising from the low radiation dose technique. Additionally, there is a variable amount of cardiac motion blurring due to the lack of electrocardiographic gating and the fact that heart rates differ between human subjects. As a consequence, the reliable segmentation of the heart, the first stage toward the implementation of morphologic heart abnormality detection, is also quite challenging. An automated computer method based on a sequential labeling of major organs and determination of anatomical landmarks has been evaluated on a public database of LDCT images. The novel algorithm builds from a robust segmentation of the bones and airways and embodies a stepwise refinement starting at the top of the lungs where image noise is at its lowest and where the carina provides a good calibration landmark. The segmentation is completed at the inferior wall of the heart where extensive image noise is accommodated. This method is based on the geometry of human anatomy and does not involve training through manual markings. Using visual inspection by an expert reader as a gold standard, the algorithm achieved successful heart and major vessel segmentation in 42 of 45 low-dose CT images. In the 3 remaining cases, the cardiac base was over segmented due to incorrect hemidiaphragm localization.

  15. Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner.

    PubMed

    Geleijns, J; Salvadó Artells, M; de Bruin, P W; Matter, R; Muramatsu, Y; McNitt-Gray, M F

    2009-05-21

    Computed tomography (CT) dosimetry should be adapted to the rapid developments in CT technology. Recently a 160 mm wide, 320 detector row, cone beam CT scanner that challenges the existing Computed Tomography Dose Index (CTDI) dosimetry paradigm was introduced. The purpose of this study was to assess dosimetric characteristics of this cone beam scanner, to study the appropriateness of existing CT dose metrics and to suggest a pragmatic approach for CT dosimetry for cone beam scanners. Dose measurements with a small Farmer-type ionization chamber and with 100 mm and 300 mm long pencil ionization chambers were performed free in air to characterize the cone beam. According to the most common dose metric in CT, namely CTDI, measurements were also performed in 150 mm and 350 mm long CT head and CT body dose phantoms with 100 mm and 300 mm long pencil ionization chambers, respectively. To explore effects that cannot be measured with ionization chambers, Monte Carlo (MC) simulations of the dose distribution in 150 mm, 350 mm and 700 mm long CT head and CT body phantoms were performed. To overcome inconsistencies in the definition of CTDI100 for the 160 mm wide cone beam CT scanner, doses were also expressed as the average absorbed dose within the pencil chamber (D100). Measurements free in air revealed excellent correspondence between CTDI300air and D100air, while CTDI100air substantially underestimates CTDI300air. Results of measurements in CT dose phantoms and corresponding MC simulations at centre and peripheral positions were weighted and revealed good agreement between CTDI300w, D100w and CTDI600w, while CTDI100w substantially underestimates CTDI300w. D100w provides a pragmatic metric for characterizing the dose of the 160 mm wide cone beam CT scanner. This quantity can be measured with the widely available 100 mm pencil ionization chamber within 150 mm long CT dose phantoms. CTDI300w measured in 350 mm long CT dose phantoms serves as an appropriate standard of

  16. Perioperative Lung Protection Provided by High-Dose Ambroxol in Patients with Lung Cancer.

    PubMed

    Wang, Xin; Wang, Lei; Wang, Huayong; Zhang, Hao

    2015-11-01

    The purpose is to observe the clinical effect of large doses of ambroxol hydrochloride in lung protection during the perioperative period of lung cancer operation. Fifty-six lung cancer patients who have undergone open-thoracic pulmonary lobectomy were divided randomly into two groups, and were given normal and large doses of ambroxol hydrochloride, respectively, during their perioperative period. Statistics based on post-operation clinical observations were analyzed in terms of ease of expectoration and expectoration properties, duration of antibiotics dependence, occurrence of lung complications, and adverse reactions related to ambroxol hydrochloride. On the third and the seventh day, the experimental group showed signs of improvement in terms of ease of expectoration and expectoration properties, compared with the controlled group. In terms of occurrence of post-operation lung complications and duration of antibiotics dependence, the experimental group also performed better. Using large doses of ambroxol hydrochloride would result in better clinical effects than using normal doses in preventing post-operation complications, and its clinical value in lung protection during lung cancer perioperative period calls for further research and promotion.

  17. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) Improves Chest CT Image Quality and Reduces Radiation Exposure

    PubMed Central

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%. PMID:25153797

  18. Maltese CT doses for commonly performed examinations demonstrate alignment with published DRLs across Europe.

    PubMed

    Zarb, Francis; McEntee, Mark; Rainford, Louise

    2012-06-01

    This work recommends dose reference levels (DRLs) for abdomen, chest and head computerised tomography (CT) examinations in Malta as the first step towards national CT dose optimisation. Third quartiles volume CT dose index  values for abdomen: 12.1 mGy, chest: 13.1 mGy and head: 41 mGy and third quartile dose-length product values for abdomen: 539.4, chest: 492 and head: 736 mGy cm(-1) are recommended as Maltese DRLs derived from this first Maltese CT dose survey. These values compare well with DRLs of other European countries indicating that CT scanning in Malta is consistent with standards of good practice. Further work to minimise dose without affecting image quality and extending the establishment of DRLs for other CT examinations is recommended.

  19. Computed tomography (CT) of the lungs of the dog using a helical CT scanner, intravenous iodine contrast medium and different CT windows.

    PubMed

    Cardoso, L; Gil, F; Ramírez, G; Teixeira, M A; Agut, A; Rivero, M A; Arencibia, A; Vázquez, J M

    2007-10-01

    The aim of this study was to determine the accuracy of helical computed tomography (CT) for visualizing pulmonary parenchyma and associated formations in normal dogs. CT scan was performed by using intravenous contrast medium and by applying different types of CT windows: soft tissue and lung windows, and high-resolution computed tomography of the lung. This technique allowed, especially with lung window types, a good view of the parenchyma, bronchial tree, vascular structures and pleural cavity. The selected images, with high anatomical quality and tissue contrast, may be a reference for future clinical studies of this organ. Thus, helical CT is a promising non-invasive method of diagnosing a wide variety of pulmonary diseases in dogs.

  20. Noise reduction with low dose CT data based on a modified ROF model.

    PubMed

    Zhu, Yining; Zhao, Mengliu; Zhao, Yunsong; Li, Hongwei; Zhang, Peng

    2012-07-30

    In order to reduce the radiation exposure caused by Computed Tomography (CT) scanning, low dose CT has gained much interest in research as well as in industry. One fundamental difficulty for low dose CT lies in its heavy noise pollution in the raw data which leads to quality deterioration for reconstructed images. In this paper, we propose a modified ROF model to denoise low dose CT measurement data in light of Poisson noise model. Experimental results indicate that the reconstructed CT images based on measurement data processed by our model are in better quality, compared to the original ROF model or bilateral filtering.

  1. Quality and Dose Optimized CT Trauma Protocol - Recommendation from a University Level-I Trauma Center.

    PubMed

    Kahn, Johannes; Kaul, David; Böning, Georg; Rotzinger, Roman; Freyhardt, Patrick; Schwabe, Philipp; Maurer, Martin H; Renz, Diane Miriam; Streitparth, Florian

    2017-09-01

    Purpose As a supra-regional level-I trauma center, we evaluated computed tomography (CT) acquisitions of polytraumatized patients for quality and dose optimization purposes. Adapted statistical iterative reconstruction [(AS)IR] levels, tube voltage reduction as well as a split-bolus contrast agent (CA) protocol were applied. Materials and Methods 61 patients were split into 3 different groups that differed with respect to tube voltage (120 - 140 kVp) and level of applied ASIR reconstruction (ASIR 20 - 50 %). The CT protocol included a native acquisition of the head followed by a single contrast-enhanced acquisition of the whole body (64-MSCT). CA (350 mg/ml iodine) was administered as a split bolus injection of 100 ml (2 ml/s), 20 ml NaCl (1 ml/s), 60 ml (4 ml/s), 40 ml NaCl (4 ml/s) with a scan delay of 85 s to detect injuries of both the arterial system and parenchymal organs in a single acquisition. Both the quantitative (SNR/CNR) and qualitative (5-point Likert scale) image quality was evaluated in parenchymal organs that are often injured in trauma patients. Radiation exposure was assessed. Results The use of IR combined with a reduction of tube voltage resulted in good qualitative and quantitative image quality and a significant reduction in radiation exposure of more than 40 % (DLP 1087 vs. 647 mGyxcm). Image quality could be improved due to a dedicated protocol that included different levels of IR adapted to different slice thicknesses, kernels and the examined area for the evaluation of head, lung, body and bone injury patterns. In synopsis of our results, we recommend the implementation of a polytrauma protocol with a tube voltage of 120 kVp and the following IR levels: cCT 5mm: ASIR 20; cCT 0.625 mm: ASIR 40; lung 2.5 mm: ASIR 30, body 5 mm: ASIR 40; body 1.25 mm: ASIR 50; body 0.625 mm: ASIR 0. Conclusion A dedicated adaptation of the CT trauma protocol (level of reduction of tube voltage and of IR

  2. Radiation dose of CT coronary angiography in clinical practice: objective evaluation of strategies for dose optimization.

    PubMed

    Yerramasu, Ajay; Venuraju, Shreenidhi; Atwal, Satvir; Goodman, Dennis; Lipkin, David; Lahiri, Avijit

    2012-07-01

    CT coronary angiography (CTCA) is an evolving modality for the diagnosis of coronary artery disease. Radiation burden associated with CTCA has been a major concern in the wider application of this technique. It is important to reduce the radiation dose without compromising the image quality. To estimate the radiation dose of CTCA in clinical practice and evaluate the effect of dose-saving algorithms on radiation dose and image quality. Effective radiation dose was measured from the dose-length product in 616 consecutive patients (mean age 58 ± 12 years; 70% males) who underwent clinically indicated CTCA at our institution over 1 year. Image quality was assessed subjectively using a 4-point scale and objectively by measuring the signal- and contrast-to-noise ratios in the coronary arteries. Multivariate linear regression analysis was used to identify factors independently associated with radiation dose. Mean effective radiation dose of CTCA was 6.6 ± 3.3 mSv. Radiation dose was significantly reduced by dose saving algorithms such as 100 kV imaging (-47%; 95% CI, -44% to -50%), prospective gating (-35%; 95% CI, -29% to -40%) and ECG controlled tube current modulation (-23%; 95% CI, -9% to -34%). None of the dose saving algorithms were associated with a significant reduction in mean image quality or the frequency of diagnostic scans (P = non-significant for all comparisons). Careful application of radiation-dose saving algorithms in appropriately selected patients can reduce the radiation burden of CTCA significantly, without compromising the image quality. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Utilising pseudo-CT data for dose calculation and plan optimization in adaptive radiotherapy.

    PubMed

    Whelan, Brendan; Kumar, Shivani; Dowling, Jason; Begg, Jarrad; Lambert, Jonathan; Lim, Karen; Vinod, Shalini K; Greer, Peter B; Holloway, Lois

    2015-12-01

    To quantify the dose calculation error and resulting optimization uncertainty caused by performing inverse treatment planning on inaccurate electron density data (pseudo-CT) as needed for adaptive radiotherapy and Magnetic Resonance Imaging (MRI) based treatment planning. Planning Computer Tomography (CT) data from 10 cervix cancer patients was used to generate 4 pseudo-CT data sets. Each pseudo-CT was created based on an available method of assigning electron density to an anatomic image. An inversely modulated radiotherapy (IMRT) plan was developed on each planning CT. The dose calculation error caused by each pseudo-CT data set was quantified by comparing the dose calculated each pseudo-CT data set with that calculated on the original planning CT for the same IMRT plan. The optimization uncertainty introduced by the dose